WO2023015511A1 - 光学系统、取像模组、电子设备及载具 - Google Patents

光学系统、取像模组、电子设备及载具 Download PDF

Info

Publication number
WO2023015511A1
WO2023015511A1 PCT/CN2021/112182 CN2021112182W WO2023015511A1 WO 2023015511 A1 WO2023015511 A1 WO 2023015511A1 CN 2021112182 W CN2021112182 W CN 2021112182W WO 2023015511 A1 WO2023015511 A1 WO 2023015511A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
optical axis
object side
image side
Prior art date
Application number
PCT/CN2021/112182
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
乐宇明
赵迪
Original Assignee
欧菲光集团股份有限公司
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 天津欧菲光电有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/112182 priority Critical patent/WO2023015511A1/zh
Publication of WO2023015511A1 publication Critical patent/WO2023015511A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • the invention relates to the field of imaging, in particular to an optical system, an imaging module, electronic equipment and a carrier.
  • the installation position of the vehicle lens is different, and its function is also different.
  • the front-view camera needs to observe a long-distance image, it provides people with a reference for the blind spot area outside the observable area of the human eye, so that the driver It can grasp the road conditions ahead in real time and provide guarantee for safe driving. Therefore, the front-view camera needs to have a larger focal length.
  • the feature of the current front-view camera with a longer focal length it is easy to cause the image quality to degrade, and it is difficult to achieve both the telephoto feature and the high image quality.
  • an optical system an imaging module, electronic equipment, and a carrier are provided.
  • An optical system which sequentially includes from the object side to the image side along the optical axis:
  • a first lens with negative refractive power, the object side of the first lens is concave at the near optical axis;
  • a second lens with positive refractive power, the object side of the second lens is convex at the near optical axis;
  • a third lens with positive refractive power the object side of the third lens is convex at the near optical axis, and the image side is convex at the near optical axis;
  • a fifth lens with negative refractive power the object side of the fifth lens is concave at the near optical axis, and the image side is concave at the near optical axis;
  • a seventh lens with negative refractive power the object side of the seventh lens is concave at the near optical axis, and the image side is concave at the near optical axis;
  • f7 is the effective focal length of the seventh lens
  • f is the effective focal length of the optical system.
  • An image capturing module comprising a photosensitive element and the above-mentioned optical system, the photosensitive element is arranged on the image side of the optical system.
  • An electronic device includes a casing and the above-mentioned image-taking module, and the image-taking module is arranged on the casing.
  • a carrier includes an installation part and the above-mentioned electronic equipment, and the electronic equipment is arranged on the installation part.
  • FIG. 1 is a schematic structural view of the optical system in the first embodiment of the present application
  • Fig. 2 is the longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the first embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of an optical system in a second embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an optical system in a third embodiment of the present application.
  • FIG. 6 is a longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the third embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of an optical system in a fourth embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an optical system in a fifth embodiment of the present application.
  • FIG. 10 is a longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the fifth embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of an optical system in a sixth embodiment of the present application.
  • Fig. 12 is a longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the sixth embodiment of the present application;
  • FIG. 13 is a schematic diagram of an imaging module in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an electronic device in an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a carrier in an embodiment of the present application.
  • the optical system 100 sequentially includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a Fifth lens L5, sixth lens L6, and seventh lens L7.
  • the first lens L1 includes the object side S1 and the image side S2
  • the second lens L2 includes the object side S3 and the image side S4
  • the third lens L3 includes the object side S5 and the image side S6
  • the fourth lens L4 includes the object side S7 and the image side S8
  • the fifth lens L5 includes the object side S9 and the image side S10
  • the sixth lens L6 includes the object side S11 and the image side S12
  • the seventh lens L7 includes the object side S13 and the image side S14.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the seventh lens L7 are coaxially arranged, and the common axis of each lens in the optical system 100 is the optical Optical axis 110 of system 100 .
  • the first lens L has a negative refractive power
  • the object side S1 of the first lens L1 is a concave surface at the near optical axis 110, which is conducive to capturing light entering the system at a large angle and expanding the field of view range of the optical system 100. Therefore, the field of view angle of the optical system 100 will not be too small when it has a telephoto characteristic.
  • the second lens L2 has a positive refractive power
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110, which is beneficial to correct the aberration generated by the first lens L1.
  • the third lens L3 has a positive refractive power
  • the object side S5 and the image side S6 of the third lens L3 are both convex at the near optical axis 110, so that the third lens L3 can effectively converge light rays and reduce the image-side angle of the third lens L3.
  • the lens converges light rays, so that the surface shape of each lens on the image side of the third lens L3 will not be too curved, reducing the sensitivity of the optical system 100 .
  • the fourth lens L4 has a positive refractive power
  • the fifth lens L5 has a negative refractive power.
  • the positive refractive power of the fourth lens L4 cooperates with the negative refractive power of the fifth lens L5, which is beneficial to correct the chromatic aberration of the optical system 100 .
  • the fifth lens L5 provides negative refractive power for the optical system 100, and its object side S9 and image side S10 are both concave at the near optical axis 110, which is beneficial to increase the width of the incident light, so that the light incident at a large angle passes through the fourth lens L4 After being folded, it is further widened to fill the pupil and fully transmit to the imaging surface, which is beneficial to obtain a wider field of view and is also conducive to matching high-pixel photosensitive elements.
  • the sixth lens L6 has a positive refractive power and can effectively converge light rays, thereby reducing the overall length of the optical system 100 .
  • the seventh lens L7 has a negative refractive power, and the image side S14 of the seventh lens L7 is concave at the near optical axis 110 , which is beneficial to correct the aberration generated by the lenses on the object side of the seventh lens L7 and improve the imaging quality of the optical system 100 .
  • the object side surface S13 of the seventh lens L7 is concave at the near optical axis 110 .
  • the seventh lens L7 has a negative refractive power, which is beneficial to expand the beam of light and broaden the large-angle light refracted by the sixth lens L6, so that the large-angle light can be fully transmitted to the imaging surface, thereby facilitating the expansion of the optical system 100
  • the range of the field of view improves the imaging quality of the optical system 100 .
  • the fourth lens L4 and the fifth lens L5 are glued together, which is beneficial to correct the chromatic aberration of the optical system 100 and improve the imaging quality of the optical system 100 .
  • the optical system 100 is provided with an aperture STO, and the aperture STO can be arranged on the object side of the first lens L1, or between any two adjacent lenses of the optical system 100, such as an aperture
  • the STO may be disposed between the second lens L2 and the third lens L3.
  • the optical system 100 further includes an infrared filter L8 and a protective glass L9 disposed on the image side of the seventh lens L7.
  • the infrared filter L8 can be an infrared cut-off filter, which is used to filter out interference light and prevent interference light from reaching the imaging surface of the optical system 100 and affecting normal imaging.
  • the cover glass L9 is used to protect the photosensitive element provided at the imaging surface.
  • the optical system 100 also includes an image plane S19 located on the image side of the seventh lens L7, the image plane S19 is the imaging plane of the optical system 100, and the incident light passes through the first lens L1, the second lens L2, the third lens L3, The fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 can form an image on the image plane S19 after adjustment.
  • the object side and the image side of each lens of the optical system 100 are both aspherical.
  • the adoption of the aspherical structure can improve the flexibility of lens design, effectively correct spherical aberration, and improve imaging quality.
  • the object side and the image side of each lens of the optical system 100 may also be spherical. It should be noted that the above-mentioned embodiments are only examples of some embodiments of the present application, and in some embodiments, the surfaces of the lenses in the optical system 100 may be any combination of aspherical surfaces or spherical surfaces.
  • the object side S3 and the image side S4 of the second lens L2 and the object side S13 and the image side S14 of the seventh lens L7 are all aspherical, while the first lens L1, the third lens L3, the third lens The object side and the image side of the quadruple lens L4, the fifth lens L5 and the sixth lens L6 are all spherical surfaces.
  • each lens in the optical system 100 may be made of glass or plastic.
  • the lens made of plastic material can reduce the weight of the optical system 100 and lower the production cost, and cooperate with the small size of the optical system 100 to realize the light and thin design of the optical system 100 .
  • the lens made of glass makes the optical system 100 have excellent optical performance and high temperature resistance.
  • the material of each lens in the optical system 100 may also be any combination of glass and plastic, not necessarily all glass or all plastic.
  • the first lens L1 does not mean that there is only one lens.
  • the surface of the cemented lens closest to the object side can be regarded as the object side S1, and the surface closest to the image side can be regarded as the image side S2.
  • no cemented lens is formed between the lenses in the first lens L1, but the distance between the lenses is relatively fixed.
  • the object side of the lens closest to the object side is the object side S1
  • the lens closest to the image side The image side is the image side S2.
  • the number of lenses in the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 or the seventh lens L7 in some embodiments can also be greater than or equal to two, and any A cemented lens may be formed between adjacent lenses, or a non-cemented lens.
  • the optical system 100 satisfies the conditional formula: -5 ⁇ f7/f ⁇ -2.5; wherein, f7 is the effective focal length of the seventh lens L7, and f is the effective focal length of the optical system 100 .
  • f7/f may be: -4.621, -4.553, -4.022, -3.965, -3.855, -3.410, -3.011, -2.884, -2.731 or -2.592.
  • the refractive power of the seventh lens L7 is insufficient, which is not conducive to correcting the aberration of the optical system 100; exceeding the upper limit of the above conditional expression, the refractive power of the seventh lens L7 is too strong, and the image surface S19 will be formed. Sensitivity due to changes in the seventh lens L7 results in greater aberrations and reduces the imaging quality of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 1 ⁇ f37/f ⁇ 1.5; wherein, f37 is the value of the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the seventh lens L7 Combined focal length.
  • f37/f can be: 1.034, 1.056, 1.087, 1.112, 1.155, 1.195, 1.201, 1.225, 1.246 or 1.276.
  • the proportion of the combined focal lengths of the third lens L3 to the seventh lens L7 in the optical system 100 can be reasonably configured, which is conducive to the reasonable transition of light rays between the third lens L3 to the seventh lens L7, thereby having It is beneficial to reduce the height of the light beam exiting the optical system 100, thereby reducing the high-order aberration of the optical system 100 and the effective aperture of each lens in the third lens L3 to the seventh lens L7; at the same time, it is beneficial to correct the first lens L1 and the The field curvature generated by the second lens L2 improves the resolution of the optical system 100 .
  • the refractive power of the third lens L3 to the seventh lens L7 is insufficient, which is not conducive to correcting the field curvature of the first lens L1 and the second lens L2, and is also not conducive to reducing the outgoing height of light.
  • the optical system 100 when the fourth lens L4 and the fifth lens L5 are glued together, the optical system 100 satisfies the conditional formula: -4 ⁇ f45/f ⁇ -2; where, f45 is the fourth lens L4 and the fifth lens L5 combined focal length. Specifically, f45/f can be: -3.519, -3.455, -3.214, -3.031, -2.857, -2.556, -2.315, -2.295, -2.001 or -2.157.
  • the fourth lens L4 is cemented with the fifth lens L5, which is beneficial to correct the chromatic aberration of the optical system 100. At the same time, the fourth lens L4 is cemented with the fifth lens L5.
  • the positive refractive power of the fourth lens L4 is the same as the negative refractive power of the fifth lens L5.
  • the mutual cooperation of the refractive power is beneficial to the mutual correction of the aberrations of the fourth lens L4 and the fifth lens L5.
  • the proportion of the combined focal length of the fourth lens L4 and the fifth lens L5 in the optical system 100 can be reasonably configured, which is conducive to correcting aberrations such as chromatic aberration and astigmatism of the optical system 100, and improving the performance of the optical system 100. image quality.
  • the refractive power of the cemented lens formed by the fourth lens L4 and the fifth lens L5 is too strong, which makes the lens group prone to serious astigmatism, which is not conducive to the improvement of the imaging quality of the optical system 100;
  • the lower limit of the above conditional formula, the refractive power of the cemented lens formed by the fourth lens L4 and the fifth lens L5 is insufficient, which is not conducive to correcting the marginal aberration and chromatic aberration of the optical system 100 , and thus is not conducive to improving the resolution performance of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: f45 ⁇ 30. Satisfying the above conditional formula can reasonably configure the effective focal length of the cemented lens formed by the fourth lens L4 and the fifth lens L5, which is conducive to correcting aberrations such as chromatic aberration and astigmatism of the optical system 100, and improving the imaging quality of the optical system 100.
  • the optical system 100 satisfies the conditional formula: 5 ⁇ f3/CT3 ⁇ 9.5; wherein, f3 is the effective focal length of the third lens L3, and CT3 is the thickness of the third lens L3 on the optical axis 110 .
  • f3/CT3 may be: 5.339, 5.774, 5.901, 6.245, 6.451, 6.772, 7.234, 7.856, 8.521 or 9.247.
  • the ratio of the effective focal length of the third lens L3 to the center thickness can be reasonably configured, so that the refractive power configuration of the third lens L3 is more reasonable, and the surface shape of the third lens L3 will not be too smooth, so that It is beneficial to suppress the occurrence of high-order aberrations, and it is also conducive to the smooth transition of light rays in the third lens L3, thereby helping to reduce the sensitivity of the optical system 100; in addition, it is also beneficial to prevent the surface shape of the third lens L3 from being excessively curved , so as to facilitate the manufacturing and molding of the third lens L3.
  • the effective focal length of the third lens L3 is too large, the refractive power of the third lens L3 is insufficient, and the surface shape of the third lens L3 is too smooth, which is not conducive to suppressing the occurrence of high-order aberrations, so that it is easy to appear Serious high-order spherical aberration, coma and other phenomena affect the resolution and imaging quality of the optical system 100; below the lower limit of the above conditional formula, the refractive power of the third lens L3 is too strong, causing the width of the light beam to shrink rapidly, thereby increasing the light beam
  • the incident angle to the image square lens increases the burden of the image square lens to reduce the light angle of the light exiting the optical system 100, resulting in an increase in the sensitivity of the optical system 100; at the same time, the surface shape of the third lens L3 is excessively curved, which is not conducive to the first Forming of triple lens L3.
  • the optical system 100 when the fourth lens L4 is cemented with the fifth lens L5, the optical system 100 satisfies the conditional formula: -9.5mm*10 -6 /°C ⁇ (CT4-CT5)*( ⁇ 4- ⁇ 5) ⁇ - 6mm*10 -6 /°C; where, CT4 is the thickness of the fourth lens L4 on the optical axis 110, CT5 is the thickness of the fifth lens L5 on the optical axis 110, ⁇ 4 is the thickness of the fourth lens L4 at -30°C-70 ⁇ 5 is the thermal expansion coefficient of the fifth lens L5 under the condition of -30°C-70°C.
  • (CT4-CT5)*( ⁇ 4- ⁇ 5) can be: -9.219, -8.884, -8.512, -8.014, -7.512, -7.231, -7.021, -6.553, -6.441 or -6.376, and the numerical unit is mm*10 -6 /°C.
  • the material and center thickness of the fourth lens L4 and the fifth lens L5 can be reasonably arranged, and the difference in the center thickness and the difference in material properties of the fourth lens L4 and the fifth lens L5 can be reduced, which is beneficial to reduce
  • the cemented lens formed by the fourth lens L4 and the fifth lens L5 has the risk of cracking under high and low temperature conditions, thereby helping to reduce the impact of temperature on the imaging quality of the optical system 100, so that the optical system 100 can also be equipped under high or low temperature conditions. Good image quality.
  • the optical system 100 satisfies the conditional formula: 0.9 ⁇ 2*ImgH/EPD ⁇ 1.1; wherein, ImgH is half of the image height corresponding to the maximum viewing angle of the optical system 100, and EPD is the entrance of the optical system 100 Pupil diameter.
  • 2*ImgH/EPD can be: 0.998, 0.999, 1.000, 1.001, 1.002, 1.003, 1.004 or 1.005.
  • the entrance pupil diameter of the optical system 100 is too small, which is not conducive to increasing the aperture of the optical system 100, resulting in insufficient light incident of the optical system 100, and it is difficult to improve the brightness of the image plane; below the lower limit of the above-mentioned conditional formula, The diameter of the entrance pupil of the optical system 100 is too large, resulting in more serious aberrations such as astigmatism and field curvature of the peripheral field of view light beams, which is not conducive to the improvement of the imaging quality of the optical system 100 .
  • the optical system 100 can match a photosensitive element with a rectangular photosensitive surface, and the imaging surface of the optical system 100 coincides with the photosensitive surface of the photosensitive element.
  • the effective pixel area on the imaging surface of the optical system 100 has a horizontal direction and a diagonal direction, then the maximum field of view FOV can be understood as the maximum field of view in the diagonal direction of the optical system 100, and ImgH can be understood as the maximum field of view of the optical system 100 Half of the length in the diagonal direction of the effective pixel area on the imaging plane.
  • the optical system 100 satisfies the conditional formula: 0.6 ⁇ (D12+CT2)/(CT3+D34) ⁇ 1.5; wherein, D12 is the image side S2 of the first lens L1 to the object side S3 of the second lens L2 The distance on the optical axis 110, CT2 is the thickness of the second lens L2 on the optical axis 110, CT3 is the thickness of the third lens L3 on the optical axis 110, D34 is the image side S6 of the third lens L3 to the fourth lens The distance between the object side S7 of S4 and the optical axis 110 .
  • (D12+CT2)/(CT3+D34) may be: 0.682, 0.751, 0.834, 0.995, 1.021, 1.035, 1.122, 1.387, 1.402 or 1.450.
  • the distance between the first to fourth lenses will not be too small, which is conducive to the gentle transition of light, thereby helping to suppress the generation of aberrations and improve the imaging resolution, and also to make the structure of the optical system 100 It is more compact and can be miniaturized.
  • the central thickness of the second lens L2 and/or the air gap between the first lens L1 and the second lens L2 on the optical axis 110 is too large, which is not conducive to the miniaturization of the system.
  • the thickness of the third lens L3 and/or the air gap between the third lens L3 and the fourth lens L4 on the optical axis 110 is too small, which is not conducive to the correction of the aberration of the optical system 100, thereby It is not conducive to the improvement of system imaging quality.
  • the optical system 100 satisfies the conditional formula: 3 ⁇ CT6/CT7 ⁇ 5; wherein, CT6 is the thickness of the sixth lens L6 on the optical axis 110, and CT7 is the thickness of the seventh lens L7 on the optical axis 110 .
  • CT6/CT7 can be: 3.024, 3.125, 3.224, 3.359, 3.485, 3.502, 3.688, 3.951, 4.355 or 4.830.
  • the ratio of the central thicknesses of the sixth lens L6 and the seventh lens L7 can be reasonably configured, which is beneficial to shorten the total length of the optical system 100, realize miniaturization design, and can effectively adjust the sixth lens L6 and the seventh lens L7.
  • the refractive power relationship between the seventh lens L7 is beneficial to reduce the exit angle of the light exiting the optical system 100, so that the light is incident on the photosensitive element in a manner close to the normal incidence, thereby making the optical system 100 have a telecentric characteristic and improving the photosensitive
  • the sensitivity of the components reduces the possibility of vignetting in the system; if the upper limit of the relationship is exceeded, the refractive power of the seventh lens L7 is insufficient, which is not conducive to the correction of the aberration of the optical system 100 .
  • FIG. 1 is a schematic structural view of an optical system 100 in the first embodiment.
  • the optical system 100 includes a first lens L1 with negative refractive power and a lens L1 with positive refractive power from the object side to the image side.
  • the fourth lens L4 is cemented with the fifth lens L5.
  • 2 is the graphs of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the first embodiment from left to right, wherein the reference wavelength of the astigmatism graph and the distortion graph is 555 nm.
  • the object side S1 of the first lens L1 is concave at the near optical axis 110, and the image side S2 is concave at the near optical axis 110;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110, and the image side S4 is convex at the near optical axis 110;
  • the object side S5 of the third lens L3 is a convex surface at the near optical axis 110, and the image side S6 is convex at the near optical axis 110;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110, and the image side S8 is convex at the near optical axis 110;
  • the object side S9 of the fifth lens L5 is concave at the near optical axis 110, and the image side S10 is concave at the near optical axis 110;
  • the object side S11 of the sixth lens L6 is a convex surface at the near optical axis 110, and the image side S12 is concave at the near optical axis 110;
  • the object side S13 of the seventh lens L7 is concave at the near optical axis 110
  • the image side S14 is concave at the near optical axis 110 .
  • the object side and image side of the second lens L2 and the seventh lens L7 are all aspheric surfaces, and the object side and image side of the first lens L1, the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all glass.
  • f7 is the effective focal length of the seventh lens L7
  • f is the effective focal length of the optical system 100 .
  • f37 is the combined focal length of the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the seventh lens L7.
  • the proportion of the combined focal lengths of the third lens L3 to the seventh lens L7 in the optical system 100 can be reasonably configured, which is conducive to the reasonable transition of light rays between the third lens L3 to the seventh lens L7, thereby having It is beneficial to reduce the height of the light beam exiting the optical system 100, thereby reducing the high-order aberration of the optical system 100 and the effective aperture of each lens in the third lens L3 to the seventh lens L7; at the same time, it is beneficial to correct the first lens L1 and the The field curvature generated by the second lens L2 improves the resolution of the optical system 100 .
  • the refractive power of the third lens L3 to the seventh lens L7 is insufficient, which is not conducive to correcting the field curvature of the first lens L1 and the second lens L2, and is also not conducive to reducing the outgoing height of light.
  • the fourth lens L4 is cemented with the fifth lens L5, which is beneficial to correct the chromatic aberration of the optical system 100.
  • the fourth lens L4 is cemented with the fifth lens L5.
  • the positive refractive power of the fourth lens L4 is the same as the negative refractive power of the fifth lens L5.
  • the mutual cooperation of the refractive power is beneficial to the mutual correction of the aberrations of the fourth lens L4 and the fifth lens L5.
  • the proportion of the combined focal length of the fourth lens L4 and the fifth lens L5 in the optical system 100 can be reasonably configured, which is conducive to correcting aberrations such as chromatic aberration and astigmatism of the optical system 100, and improving the performance of the optical system 100. image quality.
  • the ratio of the effective focal length of the third lens L3 to the center thickness can be reasonably configured, so that the refractive power configuration of the third lens L3 is more reasonable, and the surface shape of the third lens L3 will not be too smooth, so that It is beneficial to suppress the occurrence of high-order aberrations, and it is also conducive to the smooth transition of light rays in the third lens L3, thereby helping to reduce the sensitivity of the optical system 100; in addition, it is also beneficial to prevent the surface shape of the third lens L3 from being excessively curved , so as to facilitate the manufacturing and molding of the third lens L3.
  • the effective focal length of the third lens L3 is too large, the refractive power of the third lens L3 is insufficient, and the surface shape of the third lens L3 is too smooth, which is not conducive to suppressing the occurrence of high-order aberrations, so that it is easy to appear Serious high-order spherical aberration, coma and other phenomena affect the resolution and imaging quality of the optical system 100; below the lower limit of the above conditional formula, the refractive power of the third lens L3 is too strong, causing the width of the light beam to shrink rapidly, thereby increasing the light beam
  • the incident angle to the image square lens increases the burden of the image square lens to reduce the light angle of the light exiting the optical system 100, resulting in an increase in the sensitivity of the optical system 100; at the same time, the surface shape of the third lens L3 is excessively curved, which is not conducive to the first Forming of triple lens L3.
  • the material and center thickness of the fourth lens L4 and the fifth lens L5 can be reasonably arranged, and the difference in the center thickness and the difference in material properties of the fourth lens L4 and the fifth lens L5 can be reduced, which is beneficial to reduce
  • the cemented lens formed by the fourth lens L4 and the fifth lens L5 has the risk of cracking under high and low temperature conditions, thereby helping to reduce the impact of temperature on the imaging quality of the optical system 100, so that the optical system 100 can also be equipped under high or low temperature conditions. Good image quality.
  • ImgH is half of the image height corresponding to the maximum viewing angle of the optical system 100
  • EPD is the diameter of the entrance pupil of the optical system 100 .
  • the entrance pupil diameter of the optical system 100 is too small, which is not conducive to increasing the aperture of the optical system 100, resulting in insufficient light incident of the optical system 100, and it is difficult to improve the brightness of the image plane; below the lower limit of the above-mentioned conditional formula, The diameter of the entrance pupil of the optical system 100 is too large, resulting in more serious aberrations such as astigmatism and field curvature of the peripheral field of view light beams, which is not conducive to the improvement of the imaging quality of the optical system 100 .
  • the distance between the first to fourth lenses will not be too small, which is conducive to the gentle transition of light, thereby helping to suppress the generation of aberrations and improve the imaging resolution, and also to make the structure of the optical system 100 It is more compact and can be miniaturized.
  • CT6 is the thickness of the sixth lens L6 on the optical axis 110
  • CT7 is the thickness of the seventh lens L7 on the optical axis 110 .
  • the refractive power relationship between the seventh lens L7 is beneficial to reduce the exit angle of the light exiting the optical system 100, so that the light is incident on the photosensitive element in a manner close to the normal incidence, thereby making the optical system 100 have a telecentric characteristic and improving the photosensitive
  • the sensitivity of the components reduces the possibility of vignetting in the system.
  • the image plane S19 in Table 1 can be understood as the imaging plane of the optical system 100 .
  • the elements from the object plane (not shown in the figure) to the image plane S19 are arranged in sequence according to the order of the elements in Table 1 from top to bottom.
  • the Y radius in Table 1 is the curvature radius at the optical axis 110 of the object side or image side of the corresponding surface number.
  • the surface number S1 and the surface number S2 are the object side S1 and the image side S2 of the first lens L1 respectively, that is, in the same lens, the surface with a smaller surface number is the object side, and the surface with a larger surface number is the image side.
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis 110
  • the second value is the rear surface of the lens in the direction from the image side to the image side on the optical axis 110 distance.
  • the optical system 100 may not be provided with the infrared filter L8 and the protective glass L9, but at this time the distance from the image side S14 to the image surface S19 of the seventh lens L7 remains constant.
  • the optical system 100 can match a photosensitive element with high pixels, and can meet the design requirements of high pixels and high resolution.
  • the optical system 100 can realize both telephoto characteristics and high imaging quality.
  • the reference wavelength of the focal length of each lens is 555 nm, and the reference wavelength of the refractive index and Abbe number is 587.56 nm (d line).
  • the aspheric coefficients of the second lens L2 and the seventh lens L7 on the image side or the object side are given in Table 2.
  • the plane numbers S3 and S4 represent the object side S3 and the image side S4 of the second lens L2 respectively
  • the plane numbers S13 and S14 respectively represent the object side S13 and the image side S14 of the seventh lens L7.
  • the K-A20 from top to bottom represent the types of aspheric coefficients, among which, K represents the conic coefficient, A4 represents the fourth degree aspheric coefficient, A6 represents the sixth degree aspheric coefficient, and A8 represents the eighth degree aspheric coefficient. analogy.
  • the aspheric coefficient formula is as follows:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the vertex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis 110
  • c is the curvature of the vertex of the aspheric surface
  • k is the conic coefficient
  • Ai is the The coefficient corresponding to the i-th high-order term in the spherical surface formula.
  • FIG. 2 includes a Longitudinal Spherical Aberration diagram (Longitudinal Spherical Aberration) of the optical system 100 , which indicates the deviation of converging focal points of light rays of different wavelengths after passing through the lens.
  • the ordinate of the longitudinal spherical aberration diagram represents the normalized pupil coordinate (Normalized Pupil Coordinator) from the pupil center to the pupil edge, and the abscissa represents the distance from the imaging plane to the intersection point of the ray and the optical axis 110 (in mm) .
  • FIG. 2 also includes the field curvature diagram (ASTIGMATIC FIELD CURVES) of the optical system 100, wherein the S curve represents the sagittal field curvature at 555nm, and the T curve represents the meridian field curvature at 555nm. It can be seen from the figure that the field curvature of the optical system 100 is small, the field curvature and astigmatism of each field of view are well corrected, and the center and edge of the field of view have clear imaging.
  • FIG. 2 also includes a distortion diagram (DISTORTION) of the optical system 100. It can be seen from the diagram that the image distortion caused by the main beam is small, and the imaging quality of the system is excellent.
  • DISTORTION distortion diagram
  • FIG. 3 is a schematic structural view of the optical system 100 in the second embodiment.
  • the optical system 100 includes a first lens L1 with negative refractive power and a lens L1 with positive refractive power from the object side to the image side.
  • 4 is the graphs of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the second embodiment from left to right, wherein the reference wavelength of the astigmatism graph and the distortion graph is 555 nm.
  • the object side S1 of the first lens L1 is concave at the near optical axis 110, and the image side S2 is concave at the near optical axis 110;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110, and the image side S4 is convex at the near optical axis 110;
  • the object side S5 of the third lens L3 is a convex surface at the near optical axis 110, and the image side S6 is convex at the near optical axis 110;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110, and the image side S8 is convex at the near optical axis 110;
  • the object side S9 of the fifth lens L5 is concave at the near optical axis 110, and the image side S10 is concave at the near optical axis 110;
  • the object side S11 of the sixth lens L6 is a convex surface at the near optical axis 110, and the image side S12 is concave at the near optical axis 110;
  • the object side S13 of the seventh lens L7 is concave at the near optical axis 110
  • the image side S14 is concave at the near optical axis 110 .
  • the object side and image side of the second lens L2 and the seventh lens L7 are all aspheric surfaces, and the object side and image side of the first lens L1, the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all glass.
  • the reference wavelength of the focal length of each lens is 555 nm, and the reference wavelength of the refractive index and Abbe number is 587.56 nm (d line).
  • CT4-CT5 *( ⁇ 4- ⁇ 5) -9.219 f37/f 1.231 2*ImgH/EPD 1.000 f45/f -2.157 (D12+CT2)/(CT3+D34) 0.980 f3/CT3 6.474 CT6/CT7 3.024
  • FIG. 5 is a schematic structural view of the optical system 100 in the third embodiment.
  • the optical system 100 includes a first lens L1 with negative refractive power and a lens L1 with positive refractive power from the object side to the image side.
  • 6 is a graph from left to right of the longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the third embodiment, wherein the reference wavelength of the astigmatism diagram and the distortion diagram is 546 nm.
  • the object side S1 of the first lens L1 is concave at the near optical axis 110, and the image side S2 is concave at the near optical axis 110;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110, and the image side S4 is convex at the near optical axis 110;
  • the object side S5 of the third lens L3 is a convex surface at the near optical axis 110, and the image side S6 is convex at the near optical axis 110;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110, and the image side S8 is convex at the near optical axis 110;
  • the object side S9 of the fifth lens L5 is concave at the near optical axis 110, and the image side S10 is concave at the near optical axis 110;
  • the object side S11 of the sixth lens L6 is a convex surface at the near optical axis 110, and the image side S12 is concave at the near optical axis 110;
  • the object side S13 of the seventh lens L7 is concave at the near optical axis 110
  • the image side S14 is concave at the near optical axis 110 .
  • the object side and image side of the second lens L2 and the seventh lens L7 are all aspheric surfaces, and the object side and image side of the first lens L1, the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all glass.
  • the reference wavelength of the focal length of each lens is 546 nm, and the reference wavelength of the refractive index and Abbe number is 587.56 nm (d line).
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 6, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • CT4-CT5 *( ⁇ 4- ⁇ 5) -8.770 f37/f 1.276 2*ImgH/EPD 1.005 f45/f -3.519 (D12+CT2)/(CT3+D34) 1.252 f3/CT3 6.490 CT6/CT7 4.830
  • FIG. 7 is a schematic structural view of the optical system 100 in the fourth embodiment.
  • the optical system 100 includes a first lens L1 with negative refractive power and a lens L1 with positive refractive power from the object side to the image side.
  • 8 is the graphs of the longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the fourth embodiment from left to right, wherein the reference wavelength of the astigmatism graph and the distortion graph is 546nm.
  • the object side S1 of the first lens L1 is concave at the near optical axis 110, and the image side S2 is convex at the near optical axis 110;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110, and the image side S4 is concave at the near optical axis 110;
  • the object side S5 of the third lens L3 is a convex surface at the near optical axis 110, and the image side S6 is convex at the near optical axis 110;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110, and the image side S8 is convex at the near optical axis 110;
  • the object side S9 of the fifth lens L5 is concave at the near optical axis 110, and the image side S10 is concave at the near optical axis 110;
  • the object side S11 of the sixth lens L6 is a convex surface at the near optical axis 110, and the image side S12 is concave at the near optical axis 110;
  • the object side S13 of the seventh lens L7 is concave at the near optical axis 110
  • the image side S14 is concave at the near optical axis 110 .
  • the object side and image side of the second lens L2 and the seventh lens L7 are all aspheric surfaces, and the object side and image side of the first lens L1, the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all glass.
  • the reference wavelength of the focal length of each lens is 546 nm, and the reference wavelength of the refractive index and Abbe number is 587.56 nm (d line).
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 8, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • FIG. 9 is a schematic structural view of the optical system 100 in the fifth embodiment.
  • the optical system 100 includes a first lens L1 with negative refractive power and a first lens L1 with positive refractive power from the object side to the image side.
  • Fig. 10 is, from left to right, graphs of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the fifth embodiment, wherein the reference wavelength of the astigmatism graph and the distortion graph is 546 nm.
  • the object side S1 of the first lens L1 is concave at the near optical axis 110, and the image side S2 is convex at the near optical axis 110;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110, and the image side S4 is convex at the near optical axis 110;
  • the object side S5 of the third lens L3 is a convex surface at the near optical axis 110, and the image side S6 is convex at the near optical axis 110;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110, and the image side S8 is convex at the near optical axis 110;
  • the object side S9 of the fifth lens L5 is concave at the near optical axis 110, and the image side S10 is concave at the near optical axis 110;
  • the object side S11 of the sixth lens L6 is a convex surface at the near optical axis 110, and the image side S12 is concave at the near optical axis 110;
  • the object side S13 of the seventh lens L7 is concave at the near optical axis 110
  • the image side S14 is concave at the near optical axis 110 .
  • the object side and image side of the second lens L2 and the seventh lens L7 are all aspheric surfaces, and the object side and image side of the first lens L1, the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all glass.
  • the reference wavelength of the focal length of each lens is 546 nm, and the reference wavelength of the refractive index and Abbe number is 587.56 nm (d line).
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 10, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • CT4-CT5 *( ⁇ 4- ⁇ 5) -9.023 f37/f 1.251 2*ImgH/EPD 0.998 f45/f -2.652 (D12+CT2)/(CT3+D34) 1.264 f3/CT3 5.339 CT6/CT7 3.300
  • the optical system 100 of this embodiment has good imaging quality.
  • Fig. 11 is a schematic structural view of the optical system 100 in the sixth embodiment, the optical system 100 includes the first lens L1 with negative refractive power, the first lens L1 with positive refractive power Second lens L2, stop STO, third lens L3 with positive refractive power, fourth lens L4 with positive refractive power, fifth lens L5 with negative refractive power, sixth lens L6 with positive refractive power, and The seventh lens L7 with negative refractive power.
  • 12 is the graphs of the longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the fifth embodiment from left to right, wherein the reference wavelength of the astigmatism graph and the distortion graph is 546nm.
  • the object side S1 of the first lens L1 is concave at the near optical axis 110, and the image side S2 is convex at the near optical axis 110;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110, and the image side S4 is convex at the near optical axis 110;
  • the object side S5 of the third lens L3 is a convex surface at the near optical axis 110, and the image side S6 is convex at the near optical axis 110;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110, and the image side S8 is convex at the near optical axis 110;
  • the object side S9 of the fifth lens L5 is concave at the near optical axis 110, and the image side S10 is concave at the near optical axis 110;
  • the object side S11 of the sixth lens L6 is a convex surface at the near optical axis 110, and the image side S12 is concave at the near optical axis 110;
  • the object side S13 of the seventh lens L7 is concave at the near optical axis 110
  • the image side S14 is concave at the near optical axis 110 .
  • the object side and image side of the second lens L2 and the seventh lens L7 are all aspheric surfaces, and the object side and image side of the first lens L1, the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6 All are aspherical.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all glass.
  • the reference wavelength of the focal length of each lens is 546 nm, and the reference wavelength of the refractive index and Abbe number is 587.56 nm (d line).
  • CT4-CT5 *( ⁇ 4- ⁇ 5) -8.536 f37/f 1.139 2*ImgH/EPD 0.998 f45/f -2.689 (D12+CT2)/(CT3+D34) 1.450 f3/CT3 5.710 CT6/CT7 3.240
  • the optical system 100 can be assembled with the photosensitive element 210 to form the imaging module 200 .
  • the photosensitive surface of the photosensitive element 210 can be regarded as the image surface S19 of the optical system 100 .
  • the imaging module 200 can also be provided with an infrared filter L8 and a protective glass L9, and the infrared filter L8 and the protective glass L9 are sequentially disposed between the image side S14 and the image surface S19 of the seventh lens L7.
  • the photosensitive element 210 may be a charge coupled device (Charge Coupled Device, CCD) or a complementary metal oxide semiconductor device (Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor). Adopting the above-mentioned optical system 100 in the imaging module 200 can achieve both telephoto characteristics and high imaging quality.
  • the imaging module 200 can be applied in an electronic device 300 , the electronic device includes a housing 310 , and the imaging module 200 is disposed in the housing 310 .
  • the electronic device 300 may be, but not limited to, a mobile phone, a video phone, a smart phone, an e-book reader, a driving recorder and other vehicle-mounted camera equipment or a smart watch and other wearable devices.
  • the casing 310 may be a middle frame of the electronic device 300 .
  • the carrier 400 includes a mounting portion 410 and the above-mentioned electronic device 300 , and the electronic device 300 is disposed on the mounting portion 410 .
  • the vehicle can be a land vehicle such as a car or a train, or a flying vehicle such as a drone, or other common vehicles capable of carrying people or objects.
  • the mounting part 410 for installing the electronic device 300 may be an air intake grille, a rear tail box, a rearview mirror, and the like.
  • the electronic device 300 is a front-view camera in the vehicle 400 .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Abstract

一种光学系统(100)包括:具有负屈折力的第一透镜(L1),物侧面(S1)为凹面;具有正屈折力的第二透镜(L2),物侧面(S3)为凸面;具有正屈折力的第三透镜(L3),物侧面(S5)为凸面,像侧面(S6)为凸面;具有正屈折力的第四透镜(L4);具有负屈折力的第五透镜(L5),物侧面(S9)为凹面,像侧面(S10)为凹面;具有正屈折力的第六透镜(L6);具有负屈折力的第七透镜(L7),物侧面(S13)为凹面,像侧面(S14)为凹面;光学系统(100)满足:-5≤f7/f≤-2.5;f7为第七透镜(L7)的有效焦距,f为光学系统(100)的有效焦距。

Description

光学系统、取像模组、电子设备及载具 技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组、电子设备及载具。
背景技术
随着辅助驾驶技术、自动驾驶和无人驾驶等汽车安全技术的不断发展,车载镜头的应用也越来越普及。车载镜头的安装位置不同,其功能也不同,其中,前视摄像头因其需要观察到较远距离的影像,就人眼可观测区域以外的盲点区域为人们提供参考,使驾驶员在驾驶过程中能实时掌握前方路况,为安全行驶提供保障,因此前视摄像头需要具备较大焦距。然而,目前的前视摄像头因其具备较长焦距的特性,容易导致成像质量下降,难以兼顾长焦特性与高成像质量的实现。
发明内容
根据本申请的各种实施例,提供一种光学系统、取像模组、电子设备及载具。
一种光学系统,沿光轴由物侧至像侧依次包括:
具有负屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凹面;
具有正屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面;
具有正屈折力的第三透镜,所述第三透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
具有正屈折力的第四透镜;
具有负屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凹面,像侧面于近光轴处为凹面;
具有正屈折力的第六透镜;
具有负屈折力的第七透镜,所述第七透镜的物侧面于近光轴处为凹面,像侧面于近光轴处为凹面;
且所述光学系统满足以下条件式:
-5≤f7/f≤-2.5;
其中,f7为所述第七透镜的有效焦距,f为所述光学系统的有效焦距。
一种取像模组,包括感光元件以及上述的光学系统,所述感光元件设置于所述光学系统的像侧。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组设置于所述壳体。
一种载具,包括安装部及上述的电子设备,所述电子设备设置于所述安装部。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例中的光学系统的结构示意图;
图2为本申请第一实施例中的光学系统的纵向球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的结构示意图;
图4为本申请第二实施例中的光学系统的纵向球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的结构示意图;
图6为本申请第三实施例中的光学系统的纵向球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的结构示意图;
图8为本申请第四实施例中的光学系统的纵向球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的结构示意图;
图10为本申请第五实施例中的光学系统的纵向球差图、像散图及畸变图;
图11为本申请第六实施例中的光学系统的结构示意图;
图12为本申请第六实施例中的光学系统的纵向球差图、像散图及畸变图;
图13为本申请一实施例中的取像模组的示意图;
图14为本申请一实施例中的电子设备的示意图;
图15为本申请一实施例中的载具的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100沿光轴110由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11及像侧面S12,第七透镜L7包括物侧面S13及像侧面S14。第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7同轴设置,光学系统100中各透镜共同的轴线即为光学系统100的光轴110。
其中,第一透镜L具有负屈折力,第一透镜L1的物侧面S1于近光轴110处为凹面,有利于抓住大角度射进系统的光线,扩大光学系统100的视场角范围,使得光学系统100在具备长焦特性时视场角也不会过小。第二透镜L2具有正屈折力,第二透镜L2的物侧面S3于近光轴110处为凸面,有利于校正第一透镜L1产生的像差。第三透镜L3具有正屈折力,第三透镜L3的物侧面S5与像侧面S6于近光轴110处均为凸面,从而使得第三透镜L3能够有效会聚光线,降低第三透镜L3像方各透镜会聚光线的负担,进而使得第三透镜L3像方各透镜的面型不会过于弯曲,降低光学系统100的敏感度。第四透镜L4具有正屈折力,第五透镜L5具有负屈折力,第四透镜L4的正屈折力与第五透镜L5的负屈折力相配合,有利于校正光学系统100的色差。第五透镜L5为光学系统100提供负屈折力,其物侧面S9和像侧面S10于近光轴110处均为凹面,有利于增加入射光线的宽度,使大角度入射的光线经第四透镜L4折转后进一步扩宽,从而充满光瞳,充分传递至成像面,有利于获得更宽的视场范围,同时有利于匹配高像素的感光元件。第六透镜L6具有正屈折力,能够有效会聚光线,从而有利于缩短光学系统100的总长。第七透镜L7具有负屈折力,第七透镜L7的像侧面S14于近光轴110处为凹面,有利于校正第七透镜L7物侧各透镜产生的像差,提升光学系统100的成像质量。第七透镜L7的物侧面S13于近光轴110处为凹面。第七透镜L7具有负屈折力,有利于对光线进行扩束,扩宽经第六透镜L6折射后的大角度光线,使得大角度光线能够充分传递至成像面上,从而有利于扩大光学系统100的视场范围,提升光学系统100的成像质量。
在一些实施例中,第四透镜L4与第五透镜L5相胶合,有利于校正光学系统100的色差, 提升光学系统100的成像质量。
另外,在一些实施例中,光学系统100设置有光阑STO,光阑STO可设置于第一透镜L1的物侧,或设置于光学系统100任意相邻的两片透镜之间,例如光阑STO可设置于第二透镜L2与第三透镜L3之间。在一些实施例中,光学系统100还包括设置于第七透镜L7像侧的红外滤光片L8以及保护玻璃L9。红外滤光片L8可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的成像面而影响正常成像。保护玻璃L9用于保护设置于成像面处的感光元件。进一步地,光学系统100还包括位于第七透镜L7像侧的像面S19,像面S19即为光学系统100的成像面,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7调节后能够成像于像面S19。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,光学系统100的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学系统100中各透镜的表面可以是非球面或球面的任意组合。例如,在一些实施例中,第二透镜L2的物侧面S3和像侧面S4以及第七透镜L7的物侧面S13和像侧面S14均为非球面,而第一透镜L1、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为球面。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本,配合光学系统100的小尺寸以实现光学系统100的轻薄化设计。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6或第七透镜L7中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,光学系统100满足条件式:-5≤f7/f≤-2.5;其中,f7为第七透镜L7的有效焦距,f为光学系统100的有效焦距。具体地,f7/f可以为:-4.621、-4.553、-4.022、-3.965、-3.855、-3.410、-3.011、-2.884、-2.731或-2.592。满足上述条件式时,在实现长焦特性的同时,有利于提升光学系统100的成像质量,从而兼顾长焦特性与高成像质量的实现。低于上述条件式的下限,第七透镜L7的屈折力不足,不利于校正光学系统100的像差;超过上述条件式的上限,第七透镜L7的屈折力过强,则像面S19成像会因第七透镜L7的变化而敏感,从而产生较大的像差,降低光学系统100的成像质量。
在一些实施例中,光学系统100满足条件式:1≤f37/f≤1.5;其中,f37为第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的组合焦距。具体地,f37/f可以为:1.034、1.056、1.087、1.112、1.155、1.195、1.201、1.225、1.246或1.276。满足上述条件式时,能够合理配置第三透镜L3至第七透镜L7的组合焦距在光学系统100中的占比,有利于光线在第三透镜L3至第七透镜L7之间合理过渡,从而有利于降低光线束射出光学系统100的高度,进而有利于减小光学系统100的高级像差以及第三透镜L3至第七透镜L7中各透镜的有效孔径;同时,有利于校正第一透镜L1与第二透镜L2产生的场曲,提升光学系统100的解像力。超过上述条件式的上限,第三透镜L3至第七透镜L7的屈折力不足,不利于校正第一透镜L1与第二透镜L2的场曲,同时也不利于降低光线的出射高度。
在一些实施例中,当第四透镜L4与第五透镜L5相胶合时,光学系统100满足条件式:-4≤f45/f≤-2;其中,f45为第四透镜L4与第五透镜L5的组合焦距。具体地,f45/f可以 为:-3.519、-3.455、-3.214、-3.031、-2.857、-2.556、-2.315、-2.295、-2.001或-2.157。第四透镜L4与第五透镜L5相胶合,有利于校正光学系统100的色差,同时,第四透镜L4与第五透镜L5相胶合,第四透镜L4的正屈折力与第五透镜L5的负屈折力相互配合,有利于第四透镜L4与第五透镜L5像差的相互校正。满足上述条件式时,能够合理配置第四透镜L4与第五透镜L5的组合焦距在光学系统100中的占比,有利于校正光学系统100的色差、像散等像差,提升光学系统100的成像质量。超过上述条件式的上限,第四透镜L4和第五透镜L5形成的胶合透镜的屈折力过强,使得透镜组容易产生较严重的像散现象,不利于光学系统100成像品质的提升;低于上述条件式的下限,第四透镜L4与第五透镜L5形成的胶合透镜的屈折力不足,不利于校正光学系统100的边缘像差以及色差,从而不利于提高光学系统100的分辨性能。
在一些实施例中,光学系统100满足条件式:f45≤-30。满足上述条件式,能够对第四透镜L4与第五透镜L5形成的胶合透镜的有效焦距进行合理配置,有利于校正光学系统100的色差、像散等像差,提升光学系统100的成像质量。
在一些实施例中,光学系统100满足条件式:5≤f3/CT3≤9.5;其中,f3为第三透镜L3的有效焦距,CT3为第三透镜L3于光轴110上的厚度。具体地,f3/CT3可以为:5.339、5.774、5.901、6.245、6.451、6.772、7.234、7.856、8.521或9.247。满足上述条件式时,能够对第三透镜L3的有效焦距与中心厚度的比值进行合理配置,使得第三透镜L3的屈折力配置更加合理,第三透镜L3的面型也不会过于平滑,有利于抑制高阶像差的产生,同时也有利于光线在第三透镜L3平缓过渡,从而有利于降低光学系统100的敏感度;另外,还有利于使得第三透镜L3的面型不会过度弯曲,从而有利于第三透镜L3的制造成型。超过上述条件式的上限,第三透镜L3的有效焦距过大,则第三透镜L3的屈折力不足,第三透镜L3的面型过于平滑,不利于抑制高阶像差的产生,从而容易出现较严重的高阶球差、彗差等现象影响光学系统100的分辨率和成像品质;低于上述条件式的下限,第三透镜L3的屈折力过强,导致光线束宽度急速收缩,从而增大光线入射至像方透镜的入射角度,增加像方透镜为降低光线出射光学系统100的光线角度的负担,导致光学系统100的敏感度增大;同时第三透镜L3的面型过度弯曲,不利于第三透镜L3的成型。
在一些实施例中,当第四透镜L4与第五透镜L5相胶合时,光学系统100满足条件式:-9.5mm*10 -6/℃≤(CT4-CT5)*(α4-α5)≤-6mm*10 -6/℃;其中,CT4为第四透镜L4于光轴110上的厚度,CT5为第五透镜L5于光轴110上的厚度,α4为第四透镜L4在-30℃-70℃条件下的热膨胀系数,α5为第五透镜L5在-30℃-70℃条件下的热膨胀系数。具体地,(CT4-CT5)*(α4-α5)可以为:-9.219、-8.884、-8.512、-8.014、-7.512、-7.231、-7.021、-6.553、-6.441或-6.376,数值单位为mm*10 -6/℃。满足上述条件式时,能够合理配置第四透镜L4与第五透镜L5的材料及中心厚度,减小第四透镜L4与第五透镜L5的中心厚度的差异以及材料特性的差异,有利于减小第四透镜L4与第五透镜L5形成的胶合镜片在高低温条件下开裂的风险,从而有利于减小温度对光学系统100成像质量的影响,使光学系统100在高温或低温条件下也能够具备良好的成像质量。
在一些实施例中,光学系统100满足条件式:0.9≤2*ImgH/EPD≤1.1;其中,ImgH为光学系统100的最大视场角所对应的像高的一半,EPD为光学系统100的入瞳直径。具体地,2*ImgH/EPD可以为:0.998、0.999、1.000、1.001、1.002、1.003、1.004或1.005。满足上述条件式时,有利于增大光学系统100的成像面,使得光学系统100容易匹配更高分辨率的感光元件,从而有利于提升光学系统100的成像质量,同时也有利于增大光学系统100的入光量,从而有利于像面S19亮度的提升。超过上述条件式的上限,光学系统100的入瞳直径过小,不利于增大光学系统100的光圈,导致光学系统100的入光量不足,难以提升像面亮度;低于上述条件式的下限,光学系统100的入瞳直径过大,导致边缘视场光线束的像散和像面弯曲等像差更加严重,不利于光学系统100成像质量的提升。
需要说明的是,在一些实施例中,光学系统100可以匹配具有矩形感光面的感光元件, 光学系统100的成像面与感光元件的感光面重合。此时,光学系统100成像面上有效像素区域具有水平方向以及对角线方向,则最大视场角FOV可以理解为光学系统100对角线方向的最大视场角,ImgH可以理解为光学系统100成像面上有效像素区域对角线方向的长度的一半。
在一些实施例中,光学系统100满足条件式:0.6≤(D12+CT2)/(CT3+D34)≤1.5;其中,D12为第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴110上的距离,CT2为第二透镜L2于光轴110上的厚度,CT3为第三透镜L3于光轴110上的厚度,D34为第三透镜L3的像侧面S6至第四透镜S4的物侧面S7于光轴110上的距离。具体地,(D12+CT2)/(CT3+D34)可以为:0.682、0.751、0.834、0.995、1.021、1.035、1.122、1.387、1.402或1.450。满足上述条件式时,第一至第四透镜的间隔不会过小,有利于光线的平缓过渡,从而有利于抑制像差的产生,提升成像解析度,同时也有利于使得光学系统100的结构更加紧凑,能够进行小型化设计。超过上述条件式的上限,第二透镜L2的中心厚度和/或第一透镜L1与第二透镜L2于光轴110上的空气间隔过大,从而不利于实现系统小型化。同时,超过上述条件式的上限,第三透镜L3的厚度和/或第三透镜L3与第四透镜L4于光轴110上的空气间隔过小,则不利于光学系统100像差的校正,从而不利于系统成像品质的提升。
在一些实施例中,光学系统100满足条件式:3≤CT6/CT7≤5;其中,CT6为第六透镜L6于光轴110上的厚度,CT7为第七透镜L7于光轴110上的厚度。具体地,CT6/CT7可以为:3.024、3.125、3.224、3.359、3.485、3.502、3.688、3.951、4.355或4.830。满足上述条件式时,能够对第六透镜L6与第七透镜L7的中心厚度的比值进行合理配置,有利于缩短光学系统100的总长,实现小型化设计,同时能够有效的调节第六透镜L6与第七透镜L7之间的屈折力关系,从而有利于减小光线射出光学系统100的出射角度,使得光线以接近垂直入射的方式在感光元件上,进而使光学系统100具有远心特性,提高感光元件的敏感度,减少系统产生暗角的可能性;超过关系式上限,第七透镜L7的屈折力不足,不利于光学系统100像差的校正。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。第四透镜L4与第五透镜L5相胶合。图2由左至右依次为第一实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为555nm。
第一透镜L1的物侧面S1于近光轴110处为凹面,像侧面S2于近光轴110处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,像侧面S4于近光轴110处为凸面;
第三透镜L3的物侧面S5于近光轴110处为凸面,像侧面S6于近光轴110处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,像侧面S8于近光轴110处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,像侧面S10于近光轴110处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凸面,像侧面S12于近光轴110处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凹面,像侧面S14于近光轴110处为凹面。
第二透镜L2与第七透镜L7的物侧面和像侧面均为非球面,第一透镜L1、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为玻璃。
进一步地,光学系统100满足条件式:f7/f=-2.592;其中,f7为第七透镜L7的有效焦距,f为光学系统100的有效焦距。满足上述条件式时,在实现长焦特性的同时,有利于提升光学系统100的成像质量,从而兼顾长焦特性与高成像质量的实现。低于上述条件式的下限,第七透镜L7的屈折力不足,不利于校正光学系统100的像差;超过上述条件式的上限,第七 透镜L7的屈折力过强,则像面S19成像会因第七透镜L7的变化而敏感,从而产生较大的像差,降低光学系统100的成像质量。
光学系统100满足条件式:f37/f=1.232;其中,f37为第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的组合焦距。满足上述条件式时,能够合理配置第三透镜L3至第七透镜L7的组合焦距在光学系统100中的占比,有利于光线在第三透镜L3至第七透镜L7之间合理过渡,从而有利于降低光线束射出光学系统100的高度,进而有利于减小光学系统100的高级像差以及第三透镜L3至第七透镜L7中各透镜的有效孔径;同时,有利于校正第一透镜L1与第二透镜L2产生的场曲,提升光学系统100的解像力。超过上述条件式的上限,第三透镜L3至第七透镜L7的屈折力不足,不利于校正第一透镜L1与第二透镜L2的场曲,同时也不利于降低光线的出射高度。
光学系统100满足条件式:f45/f=-2.213;其中,f45为第四透镜L4与第五透镜L5的组合焦距。第四透镜L4与第五透镜L5相胶合,有利于校正光学系统100的色差,同时,第四透镜L4与第五透镜L5相胶合,第四透镜L4的正屈折力与第五透镜L5的负屈折力相互配合,有利于第四透镜L4与第五透镜L5像差的相互校正。满足上述条件式时,能够合理配置第四透镜L4与第五透镜L5的组合焦距在光学系统100中的占比,有利于校正光学系统100的色差、像散等像差,提升光学系统100的成像质量。
光学系统100满足条件式:f45=-34.009mm。满足上述条件式时,有利于第四透镜L4与第五透镜L5校正光学系统100的色差、像散等像差,提升光学系统100的成像质量。
光学系统100满足条件式:f3/CT3=6.617;其中,f3为第三透镜L3的有效焦距,CT3为第三透镜L3于光轴110上的厚度。满足上述条件式时,能够对第三透镜L3的有效焦距与中心厚度的比值进行合理配置,使得第三透镜L3的屈折力配置更加合理,第三透镜L3的面型也不会过于平滑,有利于抑制高阶像差的产生,同时也有利于光线在第三透镜L3平缓过渡,从而有利于降低光学系统100的敏感度;另外,还有利于使得第三透镜L3的面型不会过度弯曲,从而有利于第三透镜L3的制造成型。超过上述条件式的上限,第三透镜L3的有效焦距过大,则第三透镜L3的屈折力不足,第三透镜L3的面型过于平滑,不利于抑制高阶像差的产生,从而容易出现较严重的高阶球差、彗差等现象影响光学系统100的分辨率和成像品质;低于上述条件式的下限,第三透镜L3的屈折力过强,导致光线束宽度急速收缩,从而增大光线入射至像方透镜的入射角度,增加像方透镜为降低光线出射光学系统100的光线角度的负担,导致光学系统100的敏感度增大;同时第三透镜L3的面型过度弯曲,不利于第三透镜L3的成型。
光学系统100满足条件式:(CT4-CT5)*(α4-α5)=-9.184mm*10 -6/℃;其中,CT4为第四透镜L4于光轴110上的厚度,CT5为第五透镜L5于光轴110上的厚度,α4为第四透镜L4在-30℃-70℃条件下的热膨胀系数,α5为第五透镜L5在-30℃-70℃条件下的热膨胀系数。满足上述条件式时,能够合理配置第四透镜L4与第五透镜L5的材料及中心厚度,减小第四透镜L4与第五透镜L5的中心厚度的差异以及材料特性的差异,有利于减小第四透镜L4与第五透镜L5形成的胶合镜片在高低温条件下开裂的风险,从而有利于减小温度对光学系统100成像质量的影响,使光学系统100在高温或低温条件下也能够具备良好的成像质量。
光学系统100满足条件式:2*ImgH/EPD=0.999;其中,ImgH为光学系统100的最大视场角所对应的像高的一半,EPD为光学系统100的入瞳直径。满足上述条件式时,有利于增大光学系统100的成像面,使得光学系统100容易匹配更高分辨率的感光元件,从而有利于提升光学系统100的成像质量,同时也有利于增大光学系统100的入光量,从而有利于像面S19亮度的提升。超过上述条件式的上限,光学系统100的入瞳直径过小,不利于增大光学系统100的光圈,导致光学系统100的入光量不足,难以提升像面亮度;低于上述条件式的下限,光学系统100的入瞳直径过大,导致边缘视场光线束的像散和像面弯曲等像差更加严重,不利于光学系统100成像质量的提升。
光学系统100满足条件式:(D12+CT2)/(CT3+D34)=0.981;其中,D12为第一透镜L1 的像侧面S2至第二透镜L2的物侧面S3于光轴110上的距离,CT2为第二透镜L2于光轴110上的厚度,CT3为第三透镜L3于光轴110上的厚度,D34为第三透镜L3的像侧面S6至第四透镜S4的物侧面S7于光轴110上的距离。满足上述条件式时,第一至第四透镜的间隔不会过小,有利于光线的平缓过渡,从而有利于抑制像差的产生,提升成像解析度,同时也有利于使得光学系统100的结构更加紧凑,能够进行小型化设计。
光学系统100满足条件式:CT6/CT7=3.031;其中,CT6为第六透镜L6于光轴110上的厚度,CT7为第七透镜L7于光轴110上的厚度。满足上述条件式时,能够对第六透镜L6与第七透镜L7的中心厚度的比值进行合理配置,有利于缩短光学系统100的总长,实现小型化设计,同时能够有效的调节第六透镜L6与第七透镜L7之间的屈折力关系,从而有利于减小光线射出光学系统100的出射角度,使得光线以接近垂直入射的方式在感光元件上,进而使光学系统100具有远心特性,提高感光元件的敏感度,减少系统产生暗角的可能性。
另外,光学系统100的各项参数由表1给出。其中,表1中的像面S19可理解为光学系统100的成像面。由物面(图未示出)至像面S19的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴110处的曲率半径。面序号S1和面序号S2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴110上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一表面于光轴110上的距离。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片L8以及保护玻璃L9,但此时第七透镜L7的像侧面S14至像面S19的距离保持不变。
在第一实施例中,光学系统100的有效焦距f=15.37mm,最大视场角FOV=35.2°,光圈数FNO=1.6。在第一实施例以及其他实施例中,光学系统100的有效焦距均满足:f≥15.28mm,可知光学系统100具有长焦特性,光学系统100的半像高均满足:ImgH=4.8mm,可知光学系统100能够匹配高像素的感光元件,能够满足高像素、高分辨率的设计要求,光学系统100能够兼顾长焦特性与高成像质量的实现。
各透镜的焦距的参考波长均为555nm,折射率和阿贝数的参考波长均为587.56nm(d线)。
表1
Figure PCTCN2021112182-appb-000001
Figure PCTCN2021112182-appb-000002
进一步地,第二透镜L2与第七透镜L7像侧面或物侧面的非球面系数由表2给出。其中,面序号S3、S4分别表示第二透镜L2的物侧面S3与像侧面S4,面序号S13、S14分别表示第七透镜L7的物侧面S13与像侧面S14。而从上到下的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure PCTCN2021112182-appb-000003
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴110的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
面序号 S3 S4 S13 S14
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 -8.75E-05 7.89E-05 -9.96E-03 -7.30E-03
A6 1.10E-06 7.87E-07 5.23E-06 2.87E-06
A8 -3.68E-08 -2.29E-08 2.20E-07 1.44E-06
A10 7.89E-10 3.64E-10 -5.66E-09 -5.21E-08
A12 -4.66E-12 -1.21E-12 -3.67E-10 7.60E-10
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00
另外,图2包括光学系统100的纵向球面像差图(Longitudinal Spherical Aberration),其表示不同波长的光线经由镜头后的汇聚焦点偏离。纵向球面像差图的纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示成像面到光线与光轴110交点的距离(单位为mm)。由纵向球面像差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学系统100的场曲图(ASTIGMATIC FIELD CURVES),其中S曲线代表555nm下的弧矢场曲,T曲线代表555nm下的子午场曲。由图中可知,光学系统100的场曲较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像。图2还包括光学系统100的畸变图(DISTORTION),由图中可知,由主光束引起的图像变形较小,系统的成像质量优良。
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。第四透镜L4与第五透镜L5相胶合,且f45=-33.124mm。图4由左至右依次为第二实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为555nm。
第一透镜L1的物侧面S1于近光轴110处为凹面,像侧面S2于近光轴110处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,像侧面S4于近光轴110处为凸面;
第三透镜L3的物侧面S5于近光轴110处为凸面,像侧面S6于近光轴110处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,像侧面S8于近光轴110处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,像侧面S10于近光轴110处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凸面,像侧面S12于近光轴110处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凹面,像侧面S14于近光轴110处为凹面。
第二透镜L2与第七透镜L7的物侧面和像侧面均为非球面,第一透镜L1、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为玻璃。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
各透镜的焦距的参考波长均为555nm,折射率和阿贝数的参考波长均为587.56nm(d线)。
表3
Figure PCTCN2021112182-appb-000004
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
面序号 S3 S4 S13 S14
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 -9.81E-05 1.17E-05 -6.84E-03 -4.78E-03
A6 9.82E-07 6.02E-07 8.65E-05 4.07E-05
A8 -3.53E-08 -8.35E-09 -5.37E-07 -1.16E-06
A10 5.11E-10 -4.36E-10 3.44E-07 6.28E-08
A12 1.84E-12 2.15E-11 -1.91E-08 -1.32E-09
A14 -7.16E-14 -2.04E-13 1.61E-10 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00
根据上述所提供的各参数信息,可推得以下数据:
f7/f -2.715 (CT4-CT5)*(α4-α5) -9.219
f37/f 1.231 2*ImgH/EPD 1.000
f45/f -2.157 (D12+CT2)/(CT3+D34) 0.980
f3/CT3 6.474 CT6/CT7 3.024
另外,由图4中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。第四透镜L4与第五透镜L5相胶合,且f45=-53.771mm。图6由左至右依次为第三实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为546nm。
第一透镜L1的物侧面S1于近光轴110处为凹面,像侧面S2于近光轴110处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,像侧面S4于近光轴110处为凸面;
第三透镜L3的物侧面S5于近光轴110处为凸面,像侧面S6于近光轴110处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,像侧面S8于近光轴110处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,像侧面S10于近光轴110处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凸面,像侧面S12于近光轴110处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凹面,像侧面S14于近光轴110处为凹面。
第二透镜L2与第七透镜L7的物侧面和像侧面均为非球面,第一透镜L1、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为玻璃。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
各透镜的焦距的参考波长均为546nm,折射率和阿贝数的参考波长均为587.56nm(d线)。
表5
Figure PCTCN2021112182-appb-000005
Figure PCTCN2021112182-appb-000006
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
面序号 S3 S4 S13 S14
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 -2.52E-06 -9.99E-06 -4.74E-04 -5.54E-03
A6 -1.29E-07 -4.80E-07 5.81E-06 3.63E-05
A8 1.90E-09 1.45E-08 -1.96E-07 -4.08E-08
A10 -1.31E-10 -3.95E-10 -3.09E-08 -1.77E-08
A12 1.31E-12 2.95E-12 1.30E-09 7.61E-10
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00
并且,根据上述所提供的各参数信息,可推得以下数据:
f7/f -4.316 (CT4-CT5)*(α4-α5) -8.770
f37/f 1.276 2*ImgH/EPD 1.005
f45/f -3.519 (D12+CT2)/(CT3+D34) 1.252
f3/CT3 6.490 CT6/CT7 4.830
另外,由图6中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。第四透镜L4与第五透镜L5相胶合,且f45=-41.995mm。图8由左至右依次为第四实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为546nm。
第一透镜L1的物侧面S1于近光轴110处为凹面,像侧面S2于近光轴110处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,像侧面S4于近光轴110处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,像侧面S6于近光轴110处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,像侧面S8于近光轴110处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,像侧面S10于近光轴110处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凸面,像侧面S12于近光轴110处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凹面,像侧面S14于近光轴110处为凹面。
第二透镜L2与第七透镜L7的物侧面和像侧面均为非球面,第一透镜L1、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为玻璃。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
各透镜的焦距的参考波长均为546nm,折射率和阿贝数的参考波长均为587.56nm(d线)。
表7
Figure PCTCN2021112182-appb-000007
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
面序号 S3 S4 S13 S14
K 4.84E+00 -5.09E+02 0.00E+00 2.13E+01
A4 -1.40E-05 -7.06E-05 -4.82E-03 -4.55E-03
A6 -6.62E-07 -9.11E-07 9.75E-06 3.51E-05
A8 2.12E-08 3.20E-08 -4.31E-06 -2.15E-06
A10 -4.16E-10 -5.91E-10 3.96E-07 1.53E-07
A12 4.28E-12 5.51E-12 -7.78E-09 -3.33E-09
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00
并且,根据上述所提供的各参数信息,可推得以下数据:
f7/f -4.621 (CT4-CT5)*(α4-α5) -6.376
f37/f 1.034 2*ImgH/EPD 1.003
f45/f -2.743 (D12+CT2)/(CT3+D34) 0.692
f3/CT3 9.247 CT6/CT7 3.269
另外,由图8中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。第四透镜L4与第五透镜L5相胶合,且f45=-40.822mm。图10由左至右依次为第五实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为546nm。
第一透镜L1的物侧面S1于近光轴110处为凹面,像侧面S2于近光轴110处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,像侧面S4于近光轴110处为凸面;
第三透镜L3的物侧面S5于近光轴110处为凸面,像侧面S6于近光轴110处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,像侧面S8于近光轴110处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,像侧面S10于近光轴110处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凸面,像侧面S12于近光轴110处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凹面,像侧面S14于近光轴110处为凹面。
第二透镜L2与第七透镜L7的物侧面和像侧面均为非球面,第一透镜L1、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为玻璃。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
各透镜的焦距的参考波长均为546nm,折射率和阿贝数的参考波长均为587.56nm(d线)。
表9
Figure PCTCN2021112182-appb-000008
Figure PCTCN2021112182-appb-000009
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
面序号 S3 S4 S13 S14
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 -1.98E-05 -5.61E-05 -3.32E-03 -3.43E-03
A6 1.91E-07 -2.00E-07 7.81E-05 7.81E-05
A8 -2.30E-08 4.14E-09 -5.48E-06 -1.95E-06
A10 9.01E-10 -2.72E-11 8.13E-08 1.82E-08
A12 -9.08E-12 4.90E-14 -4.54E-10 5.32E-10
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00
并且,根据上述所提供的各参数信息,可推得以下数据:
f7/f -2.718 (CT4-CT5)*(α4-α5) -9.023
f37/f 1.251 2*ImgH/EPD 0.998
f45/f -2.652 (D12+CT2)/(CT3+D34) 1.264
f3/CT3 5.339 CT6/CT7 3.300
另外,由图10中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第六实施例
请参见图11和图12,图11为第六实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6以及具有负屈折力的第七透镜L7。第四透镜L4与第五透镜L5相胶合,且f45=-41.378mm。图12由左至右依次为第五实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为546nm。
第一透镜L1的物侧面S1于近光轴110处为凹面,像侧面S2于近光轴110处为凸面;
第二透镜L2的物侧面S3于近光轴110处为凸面,像侧面S4于近光轴110处为凸面;
第三透镜L3的物侧面S5于近光轴110处为凸面,像侧面S6于近光轴110处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,像侧面S8于近光轴110处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凹面,像侧面S10于近光轴110处为凹面;
第六透镜L6的物侧面S11于近光轴110处为凸面,像侧面S12于近光轴110处为凹面;
第七透镜L7的物侧面S13于近光轴110处为凹面,像侧面S14于近光轴110处为凹面。
第二透镜L2与第七透镜L7的物侧面和像侧面均为非球面,第一透镜L1、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7的材质均为玻璃。
另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
各透镜的焦距的参考波长均为546nm,折射率和阿贝数的参考波长均为587.56nm(d线)。
表11
Figure PCTCN2021112182-appb-000010
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
面序号 S3 S4 S13 S14
K 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A4 -3.66E-06 -2.93E-05 -2.01E-03 -7.95E-03
A6 -1.69E-07 -2.45E-07 -9.36E-06 -6.97E-06
A8 -3.08E-09 3.97E-09 -1.29E-07 1.31E-07
A10 1.50E-10 -2.33E-11 -1.01E-08 -2.27E-08
A12 -1.88E-12 3.33E-14 2.01E-10 6.69E-10
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00
并且,根据上述所提供的各参数信息,可推得以下数据:
f7/f -4.597 (CT4-CT5)*(α4-α5) -8.536
f37/f 1.139 2*ImgH/EPD 0.998
f45/f -2.689 (D12+CT2)/(CT3+D34) 1.450
f3/CT3 5.710 CT6/CT7 3.240
另外,由图12中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
请参见图13,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学系统100的像面S19。取像模组200还可设置有红外滤光片L8以及保护玻璃L9,红外滤光片L8与保护玻璃L9依次设置于第七透镜L7的像侧面S14与像面S19之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学系统100,能够兼顾长焦特性与高成像质量的实现。
请参见图13和图14,在一些实施例中,取像模组200可应用于电子设备300中,电子设备包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。当电子设备300为智能手机时,壳体310可以为电子设备300的中框。在电子设备300中采用上述取像模组200,能够兼顾长焦特性与高成像质量的实现。
参考图15,本申请的一些实施例还提供了一种载具400。载具400包括安装部410及上述电子设备300,电子设备300设置于安装部410。载具可以为汽车、火车等陆地行驶载具,也可以是无人机等飞行载具,或者是其他常见的能够载人或载物的载具。当载具4000为汽车时,用于设置电子设备300的安装部410可以为进气格栅、后尾箱、后视镜等。进一步地,在一些实施例中,电子设备300为载具400中的前视摄像头。通过采用上述电子设备300,载具400能够兼顾长焦特性与高成像质量的实现,从而提升载具400行驶的安全性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而 言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学系统,沿光轴由物侧至像侧依次包括:
    具有负屈折力的第一透镜,所述第一透镜的物侧面于近光轴处为凹面;
    具有正屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面;
    具有正屈折力的第三透镜,所述第三透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凸面;
    具有正屈折力的第四透镜;
    具有负屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凹面,像侧面于近光轴处为凹面;
    具有正屈折力的第六透镜;
    具有负屈折力的第七透镜,所述第七透镜的物侧面于近光轴处为凹面,像侧面于近光轴处为凹面;
    且所述光学系统满足以下条件式:
    -5≤f7/f≤-2.5;
    其中,f7为所述第七透镜的有效焦距,f为所述光学系统的有效焦距。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    1≤f37/f≤1.5;
    其中,f37为所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜以及所述第七透镜的组合焦距。
  3. 根据权利要求1所述的光学系统,其特征在于,所述第四透镜与所述第五透镜相胶合,且所述光学系统满足以下条件式:
    -4≤f45/f≤-2;
    其中,f45为所述第四透镜与所述第五透镜的组合焦距。
  4. 根据权利要求3所述的光学系统,其特征在于,满足以下条件式:
    f45≤-30。
  5. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    5≤f3/CT3≤9.5;
    其中,f3为所述第三透镜的有效焦距,CT3为所述第三透镜于光轴上的厚度。
  6. 根据权利要求1所述的光学系统,其特征在于,所述第四透镜与所述第五透镜相胶合,且所述光学系统满足以下条件式:
    -9.5mm*10 -6/℃≤(CT4-CT5)*(α4-α5)≤-6mm*10 -6/℃;
    其中,CT4为所述第四透镜于光轴上的厚度,CT5为所述第五透镜于光轴上的厚度,α4为所述第四透镜在-30℃-70℃条件下的热膨胀系数,α5为所述第五透镜在-30℃-70℃条件下的热膨胀系数。
  7. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.9≤2*ImgH/EPD≤1.1;
    其中,ImgH为所述光学系统的最大视场角所对应的像高的一半,EPD为所述光学系统的入瞳直径。
  8. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.6≤(D12+CT2)/(CT3+D34)≤1.5;
    其中,D12为所述第一透镜的像侧面至所述第二透镜的物侧面于光轴上的距离,CT2为所述第二透镜于光轴上的厚度,CT3为所述第三透镜于光轴上的厚度,D34为所述第三透镜的像侧面至所述第四透镜的物侧面于光轴上的距离。
  9. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    3≤CT6/CT7≤5;
    其中,CT6为所述第六透镜于光轴上的厚度,CT7为所述第七透镜于光轴上的厚度。
  10. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    f≥15.28mm。
  11. 根据权利要求1-10任一项所述的光学系统,其特征在于,还包括光阑,所述光阑设置于所述第二透镜与所述第三透镜之间。
  12. 根据权利要求1-10任一项所述的光学系统,其特征在于,还包括红外滤光片,所处红外滤光片设置于所述第七透镜的像侧。
  13. 根据权利要求1-10任一项所述的光学系统,其特征在于,还包括保护玻璃,所述保护玻璃设置于所述第七透镜的像侧。
  14. 根据权利要求1-10任一项所述的光学系统,其特征在于,所述第二透镜的物侧面和像侧面以及所述第七透镜的物侧面和像侧面均为非球面,所述第一透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的物侧面和像侧面均为球面。
  15. 根据权利要求1-10任一项所述的光学系统,其特征在于,所述光学系统中各透镜的材质均为玻璃。
  16. 一种取像模组,包括感光元件以及权利要求1-15任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
  17. 根据权利要求16所述的取像模组,其特征在于,所述感光元件为电荷耦合元件或互补金属氧化物半导体器件。
  18. 一种电子设备,包括壳体以及权利要求16或17所述的取像模组,所述取像模组设置于所述壳体。
  19. 一种载具,包括安装部及权利要求18所述的电子设备,所述电子设备设置于所述安装部。
  20. 根据权利要求19所述的取像模组,其特征在于,所述电子设备为所述载具中的前视摄像头。
PCT/CN2021/112182 2021-08-12 2021-08-12 光学系统、取像模组、电子设备及载具 WO2023015511A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112182 WO2023015511A1 (zh) 2021-08-12 2021-08-12 光学系统、取像模组、电子设备及载具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112182 WO2023015511A1 (zh) 2021-08-12 2021-08-12 光学系统、取像模组、电子设备及载具

Publications (1)

Publication Number Publication Date
WO2023015511A1 true WO2023015511A1 (zh) 2023-02-16

Family

ID=85199675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112182 WO2023015511A1 (zh) 2021-08-12 2021-08-12 光学系统、取像模组、电子设备及载具

Country Status (1)

Country Link
WO (1) WO2023015511A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500759A (zh) * 2023-06-20 2023-07-28 江西联益光学有限公司 光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160377839A1 (en) * 2015-06-25 2016-12-29 Ability Enterprise Co., Ltd Optical lens
CN108919459A (zh) * 2018-06-14 2018-11-30 江西联创电子有限公司 光学透镜系统
CN211293433U (zh) * 2019-12-10 2020-08-18 浙江舜宇光学有限公司 光学成像镜头
CN112731630A (zh) * 2021-03-31 2021-04-30 江西联创电子有限公司 光学成像镜头
CN113031211A (zh) * 2019-12-25 2021-06-25 大立光电股份有限公司 摄影用光学镜头组、取像装置及电子装置
CN113138458A (zh) * 2021-04-06 2021-07-20 江西晶超光学有限公司 光学系统、取像模组及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160377839A1 (en) * 2015-06-25 2016-12-29 Ability Enterprise Co., Ltd Optical lens
CN108919459A (zh) * 2018-06-14 2018-11-30 江西联创电子有限公司 光学透镜系统
CN211293433U (zh) * 2019-12-10 2020-08-18 浙江舜宇光学有限公司 光学成像镜头
CN113031211A (zh) * 2019-12-25 2021-06-25 大立光电股份有限公司 摄影用光学镜头组、取像装置及电子装置
CN112731630A (zh) * 2021-03-31 2021-04-30 江西联创电子有限公司 光学成像镜头
CN113138458A (zh) * 2021-04-06 2021-07-20 江西晶超光学有限公司 光学系统、取像模组及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500759A (zh) * 2023-06-20 2023-07-28 江西联益光学有限公司 光学镜头
CN116500759B (zh) * 2023-06-20 2023-10-03 江西联益光学有限公司 光学镜头

Similar Documents

Publication Publication Date Title
WO2022032573A1 (zh) 光学系统、摄像模组、电子设备及汽车
EP4170407A1 (en) Seven-lens imaging objective
CN113900235B (zh) 光学系统、取像模组、电子设备及载具
CN112526722A (zh) 光学系统、取像模组及电子设备
WO2021217618A1 (zh) 光学系统、摄像模组、电子设备及汽车
CN113156612B (zh) 光学系统、取像模组及电子设备
WO2023015511A1 (zh) 光学系统、取像模组、电子设备及载具
CN211627920U (zh) 光学系统、镜头模组及终端设备
CN210775999U (zh) 光学系统、镜头模组和电子设备
EP3896510A1 (en) Optical system, image capturing device and electronic device
CN113625430B (zh) 光学系统、取像模组、电子设备及载具
CN113376797A (zh) 光学系统、镜头模组及终端设备
CN113985576B (zh) 光学系统、取像模组、电子设备及载具
CN113866940B (zh) 光学系统、摄像模组及电子设备
CN114326019B (zh) 光学系统、取像模组及电子设备
WO2022160121A1 (zh) 光学成像镜头、取像装置及电子设备
CN115480365A (zh) 光学系统、取像模组及电子设备
CN213903935U (zh) 光学系统、取像模组及电子设备
WO2022120678A1 (zh) 光学系统、取像模组及电子设备
WO2022151157A1 (zh) 光学系统、取像模组及电子设备
CN114675408A (zh) 光学系统、取像模组及电子设备
WO2022032433A1 (zh) 光学成像系统、取像模组、电子装置和载具
WO2021203277A1 (zh) 光学系统、取像模组及电子设备
CN112180555A (zh) 光学系统、镜头模组和电子设备
WO2023279362A1 (zh) 光学系统、取像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021953132

Country of ref document: EP

Effective date: 20240312