WO2022032573A1 - 光学系统、摄像模组、电子设备及汽车 - Google Patents

光学系统、摄像模组、电子设备及汽车 Download PDF

Info

Publication number
WO2022032573A1
WO2022032573A1 PCT/CN2020/108905 CN2020108905W WO2022032573A1 WO 2022032573 A1 WO2022032573 A1 WO 2022032573A1 CN 2020108905 W CN2020108905 W CN 2020108905W WO 2022032573 A1 WO2022032573 A1 WO 2022032573A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
image side
object side
refractive power
Prior art date
Application number
PCT/CN2020/108905
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
兰宾利
周芮
Original Assignee
欧菲光集团股份有限公司
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 天津欧菲光电有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2020/108905 priority Critical patent/WO2022032573A1/zh
Publication of WO2022032573A1 publication Critical patent/WO2022032573A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the invention relates to the field of imaging, in particular to an optical system, a camera module, electronic equipment and an automobile.
  • the shooting performance of the devices has also undergone tremendous changes with the increase of users' demands for high-quality cameras.
  • the quality of the camera image will directly affect the safety factor of the driver in using the camera image to change lanes, reverse the car and even drive automatically.
  • the imaging image is prone to ghosting, which reduces the clarity of the imaging image and makes it impossible for the system to obtain a clear imaging image.
  • an optical system a camera module, an electronic device, and an automobile are provided.
  • An optical system comprising in order from the object side to the image side:
  • the first lens with negative refractive power the object side of the first lens is convex at the paraxial position, and the image side is concave at the paraxial position;
  • a second lens with negative refractive power the object side and the image side of the second lens are both concave at the paraxial position
  • the third lens with positive refractive power the object side of the third lens is convex at the paraxial position, and the image side is concave at the paraxial position;
  • f1 is the focal length of the first lens
  • Rs2 is the radius of curvature of the image side of the first lens at the optical axis
  • SAGs2 is the sag of the image side of the first lens at the maximum effective aperture.
  • a camera module includes a photosensitive element and the optical system according to any one of the above embodiments, wherein the photosensitive element is arranged on the image side of the optical system.
  • An electronic device includes a fixing member and the above-mentioned camera module, wherein the camera module is arranged on the fixing member.
  • An automobile includes a mounting portion and the electronic device described above, wherein the electronic device is provided on the mounting portion.
  • FIG. 1 is a schematic structural diagram of an optical system provided by a first embodiment of the present application.
  • FIG. 2 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the first embodiment
  • FIG. 3 is a schematic structural diagram of an optical system provided by a second embodiment of the present application.
  • FIG. 4 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the second embodiment
  • FIG. 5 is a schematic structural diagram of an optical system provided by a third embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an optical system provided by a fourth embodiment of the present application.
  • FIG. 8 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the fourth embodiment
  • FIG. 9 is a schematic structural diagram of an optical system provided by a fifth embodiment of the present application.
  • FIG. 10 includes longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the fifth embodiment
  • FIG. 11 is a schematic structural diagram of an optical system provided by a sixth embodiment of the present application.
  • FIG. 13 is a schematic diagram of a camera module provided by an embodiment of the application.
  • FIG. 15 is a schematic diagram of an automobile according to an embodiment of the application.
  • the optical system 10 includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a third lens
  • the first lens L1 has a negative refractive power
  • the second lens L2 has a negative refractive power
  • the third lens L3 has a positive refractive power
  • the fourth lens L4 has a positive refractive power
  • the fifth lens L5 has a negative refractive power
  • the sixth lens has a negative refractive power.
  • L6 has positive inflection force.
  • the lenses in the optical system 10 are arranged coaxially, that is, the optical axes of the lenses are in the same straight line, and the straight line may be called the optical axis of the optical system 10 .
  • the optical system 10 further includes a stop STO, the stop STO can be arranged between any two lenses or at the object side of the first lens L1 or the image side of the second lens L2, the center of the stop STO on the optical axis of the optical system 10 .
  • Each lens and diaphragm STO of the optical system 10 can be attached to the lens barrel.
  • At least one lens in the optical system 10 may be coated with a light-shielding coating on the object side or the image side, and the light-shielding coating retains a light-transmitting area on the coated surface of the lens to allow incident light to pass through, while The area where the light-shielding material is located can block the passage of light, so that the light-shielding coating acts as a diaphragm.
  • the first lens L1 includes an object side S1 and an image side S2
  • the second lens L2 includes an object side S3 and an image side S4
  • the third lens L3 includes an object side S5 and an image side S6
  • the fourth lens L4 includes an object side S7 and an image side S8,
  • the fifth lens L5 includes an object side S9 and an image side S10
  • the sixth lens L6 includes an object side S11 and an image side S12.
  • the optical system 10 has a virtual imaging surface S13, and the imaging surface S13 is located on the image side of the sixth lens L6.
  • the imaging surface S13 of the optical system 10 coincides with the photosensitive surface of the photosensitive element.
  • the photosensitive surface of the photosensitive element can be regarded as the imaging surface S13 of the optical system 10 .
  • the object side S1 of the first lens L1 is convex at the paraxial position, and the image side S2 is concave at the paraxial position; the object side S3 and the image side S4 of the second lens L2 are both concave at the paraxial position ;
  • the object side S5 of the third lens L3 is convex at the paraxial place, and the image side S6 is concave at the paraxial place.
  • the surface shape of the object side and the image side of the lens at the paraxial position is the surface shape of the corresponding surface in the area near the optical axis.
  • the first lens L1 can have a negative refractive power, and the object side S1 of the first lens L1 is convex at the paraxial position, and the image side S2 is concave at the paraxial position, so that the field angle of the system can be effectively enlarged, so that the optical system can be effectively expanded. 10 is capable of collecting light incident from large angles.
  • the second lens L2 has a negative refractive power, and both the object side S3 and the image side S4 of the second lens L2 are concave at the paraxial position, so the light from the first lens L1 can be adjusted so that the light can be incident at a small angle To the image-side lens group (the lens group composed of the third lens L3 to the sixth lens L6 ), which is beneficial to the improvement of the imaging illuminance.
  • the third lens L3 has a positive refractive power and can condense the light rays from the first lens L1 and the second lens L2, so that the divergent light rays can be restrained and completely enter the image system. Since both the first lens L1 and the second lens L2 are negative lenses, the third lens L3 having a positive refractive power can balance spherical aberration and positional chromatic aberration generated by the first lens L1 and the second lens L2.
  • the fourth lens L4 and the fifth lens L5 form a cemented lens, which can effectively reduce the system chromatic aberration and reduce the tolerance sensitivity of the system.
  • the fourth lens L4 has a positive refractive power
  • the fifth lens L5 has a negative refractive power
  • the sixth lens L6 has a positive refractive power, so the sixth lens L6 can effectively condense the light, so that the light diverged by the fifth lens L5 can be incident on the imaging surface of the system at a small incident angle, which is beneficial to improve the light sensitivity of the photosensitive element performance.
  • the optical system 10 satisfies the relationship:
  • f1 is the focal length of the first lens L1
  • Rs2 is the radius of curvature of the image side S2 of the first lens L1 at the optical axis
  • SAGs2 is the image side of the first lens L1
  • the sag is the distance from the center of the image side S2 of the first lens L1 to the maximum effective clear aperture of the surface in the direction parallel to the optical axis; when the value is positive, in the direction parallel to the optical axis of the system, the surface The maximum effective clear aperture is closer to the image side of the system than the center of the surface; when the value is negative, in the direction parallel to the optical axis of the system, the maximum effective clear aperture of the surface is The object side of the system is closer to the center of the face.
  • f1/(Rs2-SAGs2) in some embodiments may be -6.1, -6, -5.9, -5.8, -5.7, or -5.6.
  • the image side surface S2 of the first lens L1 can be prevented from being too curved, thereby preventing the incident light from inter-reflecting on the image side surface S2 of the first lens L1 and the surfaces of the lenses on the image side, resulting in serious ghosting phenomenon, and then Improve the clarity of the imaging image; in addition, the negative refractive power of the first lens L1 can also be controlled within a reasonable range, which is conducive to the large-angle light entering the optical system 10, thereby expanding the range of the field of view of the optical system 10. , to achieve ultra-wide-angle design.
  • the focal length of the first lens L1 is too small, and the refractive power of the lens is too strong, and the image surface imaging will become too sensitive due to the change of the first lens L1, which is prone to large aberrations; low
  • the image side S2 of the first lens L1 is too curved, which is not conducive to processing and manufacturing, and it is easy to cause the incident light rays to reflect each other between the image side S2 of the first lens L1 and the lenses on the image side, resulting in ghost images.
  • the refractive power of the first lens L1 is insufficient, which is not conducive to large-angle light entering the optical system 10 , and thus is not conducive to the wide-angle and miniaturized design of the system.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 is convex at the paraxial position.
  • the object side S9 of the fifth lens L5 is concave at the paraxial position, and the image side S10 is concave at the paraxial position.
  • the object side and/or the image side of at least one lens in the optical system 10 are aspherical, and the aspherical design can make the object side and/or the image side of the lens have a more flexible design, so that the lens has a smaller size.
  • the system can have good imaging quality, and it is helpful to shorten the length of the optical system 10.
  • the object side and/or the image side of at least one lens in the optical system 10 is a spherical surface, the manufacturing process of the spherical lens is simple, and the production cost is low.
  • the object side and the image side of the first lens L1 and the third lens L3 are spherical surfaces
  • Both the object side and the image side are aspherical.
  • the specific spherical and aspherical configurations between the lenses are determined according to actual design requirements, which will not be repeated here.
  • the aberration of the system can also be effectively eliminated by the cooperation of the spherical surface and the aspherical surface, so that the optical system 10 has good imaging quality, and at the same time, the flexibility of lens design and assembly is improved, so that the system can achieve a balance between high image quality and low cost .
  • the specific shapes of the spherical surface and the aspherical surface in the embodiments are not limited to the shapes of the spherical surface and the aspherical surface shown in the accompanying drawings, which are mainly for example reference and are not drawn strictly to scale.
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the surface vertex
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric vertex
  • k is the conic coefficient
  • Ai is the aspheric surface The coefficient corresponding to the i-th higher-order term in the face formula.
  • each lens in the optical system 10 is plastic.
  • each lens in the optical system 10 is made of glass.
  • the lens made of plastic can reduce the weight of the optical system 10 and the manufacturing cost, while the lens made of glass can withstand higher temperatures and have excellent optical effects.
  • the first lens L1 and the fourth lens L4 are made of glass, and the other lenses in the optical system 10 are made of plastic. It is glass, so these glass lenses located on the object side have good resistance to extreme environments, and are not easily affected by the object side environment and cause aging, so when the optical system 10 is in extreme environments such as exposure to high temperatures, this The structure can better balance the optical performance and cost of the system.
  • the material configuration relationship of the lenses in the optical system 10 is not limited to the above-mentioned embodiment.
  • the material of any lens may be plastic or glass, and the specific configuration relationship is determined according to actual design requirements, and will not be repeated here.
  • the optical system 10 includes an optical filter 110 .
  • the optical filter 110 is disposed on the image side of the sixth lens L6 and is relatively fixed to each lens in the optical system 10 .
  • the filter 110 is an infrared cut-off filter for filtering out infrared light, preventing infrared light from reaching the imaging surface S13 of the system, thereby preventing infrared light from interfering with normal imaging.
  • the filter 110 may be assembled with each lens as part of the optical system 10 .
  • each lens in the optical system 10 is mounted in a lens barrel, and the filter 110 is mounted on the image end of the lens barrel. In other embodiments, the filter 110 does not belong to the component of the optical system 10.
  • the filter 110 can be installed on the optical system 10 and the sensor together when the optical system 10 and the sensor are assembled into a camera module. between components.
  • the filter 110 may also be disposed on the object side of the first lens L1.
  • the filter 110 may not be provided, but an infrared filter film may be provided on the object side or the image side of at least one of the first lens L1 to the sixth lens L6 to achieve filtering. The role of infrared light.
  • the optical system 10 also satisfies at least one of the following relationships:
  • f1 is the focal length of the first lens L1
  • f2 is the focal length of the second lens L2
  • f3 is the focal length of the third lens L3.
  • f1*f2/f3 in some embodiments may be 3.55mm, 3.58mm, 3.6mm, 3.65mm, 3.68mm, 3.7mm or 3.72mm.
  • the refractive power of the first lens L1, the second lens L2 and the third lens L3 can be reasonably distributed, so that the refractive power of the lens group formed by the first lens L1 to the third lens L3 can be controlled within a reasonable range, It will not be too strong, thereby preventing excessive correction of aberrations of the system, effectively reducing the aberrations of the entire system, and helping to reduce the tolerance sensitivity of the first lens L1 to the third lens L3.
  • the refractive power of the lens group can be prevented from being too weak to properly correct systematic aberrations.
  • the refractive power of the first lens L1 and the second lens L2 is insufficient, and it is difficult for the large-angle light to enter the optical system 10, so that a sufficient object-side field of view cannot be obtained, which is not conducive to the wide-angle design of the optical system 10. .
  • the refractive power of the third lens L3 is insufficient, which is not conducive to correcting the aberration caused by the first lens L1 and the second lens L2 refracting incident light rays at large angles, thereby reducing the imaging quality.
  • f2/CT2 in some embodiments may be -4.2, -4.1, -4, -3.7, -3.5, -3.2, -3, or -2.9.
  • the refractive power and the center thickness of the second lens L2 can be reasonably configured, which is beneficial to correct the aberration caused by the refraction of the incident light by the first lens L1, thereby improving the imaging quality of the optical system 10.
  • it exceeds the range of the relational expression it is disadvantageous to correct the aberration of the optical system 10, and it is difficult to obtain image quality.
  • f3/CT3 is the focal length of the third lens L3
  • CT3 is the thickness of the third lens L3 on the optical axis.
  • f3/CT3 in some embodiments may be 1.5, 1.55, 1.6, 1.8, 1.9, 1.95, or 2.
  • the refractive power and the central thickness of the third lens L3 can be reasonably configured, which can reduce the tolerance sensitivity of the central thickness of the third lens L3, reduce the processing difficulty of the lens, and help improve the assembly yield of the system. Further reduction of production costs.
  • the center thickness of the third lens L3 is too thin, and the system is too sensitive to the center thickness of the third lens L3, which makes it difficult for the processing of the lens to meet the required tolerance requirements, thereby reducing the assembly yield of the system. It is beneficial to reduce the production cost; when it is lower than the lower limit of the relational expression, the central thickness of the third lens L3 is too large, which is not conducive to shortening the length of the optical system 10 .
  • f45 is the combined focal length of the fourth lens L4 and the fifth lens L5
  • f is the effective focal length of the optical system 10 .
  • f45/f in some embodiments may be 6.8, 7, 7.2, 7.6, 8, 8.5, 9, 10, 10.5, 11, 11.5, or 12.
  • the entire lens group formed by the fourth lens L4 and the fifth lens L5 has a positive refractive power, so that aberrations can be corrected for the system.
  • the cumulative tolerance of the two elements can be set to the tolerance of one integrated element, which can effectively reduce the eccentricity sensitivity, reduce the assembly sensitivity of the system, and solve the problem of the lens.
  • the aberrations between the fourth lens L4 and the fifth lens L5 constituting the cemented lens group can be mutually corrected, which is beneficial to improve the imaging resolution of the optical system 10 .
  • it exceeds the range of the relational expression it is disadvantageous to correct the aberration of the optical system 10, thereby reducing the imaging quality.
  • CT4 is the thickness of the fourth lens L4 on the optical axis
  • CT5 is the thickness of the fifth lens L5 on the optical axis
  • ⁇ 4 is the fourth lens L4
  • the thermal expansion coefficient of the lens L4, ⁇ 5 is the thermal expansion coefficient of the fifth lens L5.
  • in some embodiments may be 6.2, 6.5, 6.8, 7, 7.5, 8, 9, 11, 11.5, 12, 12.5, or 13.
  • the center thickness and thermal expansion coefficient of the fourth lens L4 and the fifth lens L5 can be well controlled, which can effectively prevent the fourth lens L4 and the fifth lens L5 from expanding and contracting due to thermal expansion. This leads to the problem of cracking at the glued part, so as to ensure that the optical system 10 can still have stable and good imaging quality in a high temperature or low temperature environment.
  • f6 is the focal length of the sixth lens L6
  • CT6 is the thickness of the sixth lens L6 on the optical axis.
  • f6/CT6 in some embodiments may be 0.95, 1, 1.15, 1.2, 1.25 or 1.3.
  • the focal length of the sixth lens L6 is too long and the refractive power of the lens is insufficient, so that the incident angle of the light entering the photosensitive element is relatively large, so that the photosensitive element cannot obtain the incident information well, resulting in the phenomenon of image distortion.
  • the central thickness of the third lens L3 is too large, and the thermal expansion and contraction of the lens will become too obvious, resulting in a decrease in the thermal stability of the optical system 10 .
  • Imgh is the length of the effective imaging area on the imaging plane S13 of the optical system 10 in the horizontal direction
  • EPD is the diameter of the entrance pupil of the optical system 10 .
  • the Imgh/EPD in some embodiments may be 8.85, 8.9, 9, 9.15, 9.2, 9.25, 9.3, 9.5, 9.55, or 9.6.
  • the effective imaging area of the imaging surface S13 of the optical system 10 coincides with the rectangular photosensitive surface of the photosensitive element, and the horizontal direction of the effective imaging area can be understood as the length direction of the rectangular photosensitive surface.
  • the size of the image plane and the diameter of the entrance pupil of the optical system 10 can be reasonably configured, so that the optical system 10 has the characteristics of a large image plane, which is beneficial to the ultra-wide-angle design of the system, and also enables the optical system 10 to have a large image plane and an ultra-wide angle.
  • the characteristic optical system 10 has sufficient image plane brightness in the fringe field of view, so that the system has excellent imaging quality.
  • the entrance pupil diameter of the system is too small, which is not conducive to the large aperture design of the optical system 10 and the improvement of the image surface brightness of the optical system 10; Therefore, the astigmatism of the light in the edge field of view will be increased, and the image plane will be curved, which is not conducive to the improvement of the imaging quality of the optical system 10 .
  • ⁇ CT is the sum of the thicknesses of the lenses in the optical system 10 on the optical axis
  • f is the effective focal length of the optical system 10 .
  • ⁇ CT/f in some embodiments may be 7.6, 7.8, 8, 8.3, 8.6, 9, 9.1 or 9.2.
  • the lens thickness and focal length of the optical system 10 can be well configured, which is conducive to making the optical system 10 compact, shortening the overall length of the system, and enabling the optical system 10 to meet the wide-angle design and further realize the miniaturization design.
  • the focal length of the optical system 10 is too long, which is not conducive to the ultra-wide-angle design of the system; when the upper limit of the relationship is exceeded, the thickness distribution of each lens of the optical system 10 is too much, which is not conducive to the tolerance distribution of each lens, thereby increasing the The eccentric sensitivity of the lens assembly process is not conducive to the improvement of production yield.
  • f*tan(FOV/2) in some embodiments may be -7.1, -7, -6.8, -6.5, -6.3, -6.2, -6.15, or -6.1.
  • the field of view of the optical system 10 can be effectively improved to achieve an ultra-wide-angle design, and at the same time, it is also beneficial to reduce the angle of light entering the photosensitive element and improve the photosensitive performance of the photosensitive element.
  • the upper limit of the relational expression is exceeded, the field of view of the system is insufficient, and sufficient object space information cannot be obtained; when the lower limit of the relational expression is lower than the lower limit of the relational expression, large image surface deformation will occur, which is not conducive to the improvement of imaging quality.
  • Nd4 is the d-line refractive index of the fourth lens L
  • Nd5 is the d-line refractive index of the fifth lens L5
  • both Nd4 and Nd5 are lenses under d light (587.56nm) d-line refractive index.
  • *100 in some embodiments may be 4.3, 4.5, 4.8, 5, 6, 7, 9, 9.5, 9.8, 10, or 10.2.
  • the d-line refractive index of the fourth lens L4 and the fifth lens L5 can be reasonably configured, which is beneficial to optimize the system aberration and improve the imaging analysis capability of the system.
  • the d-line refractive index difference between the fourth lens L4 and the fifth lens L5 will be too large, increasing the amount of light in the first lens. Risk of ghosting caused by reflection between the cemented surface between the fourth lens L4 and the fifth lens L5 and other lens surfaces.
  • optical system 10 can have the effects described by the corresponding relationship.
  • the optical system 10 sequentially includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a third lens with positive refractive power from the object side to the image side.
  • FIG. 2 includes longitudinal spherical aberration diagrams, astigmatism diagrams, and distortion diagrams of the optical system 10 in the first embodiment.
  • the reference wavelengths of the astigmatism diagrams and the distortion diagrams of the following examples (the first to fifth examples) are all 546.07 nm.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and the image side surface S2 is a concave surface at the paraxial position.
  • the object side S3 of the second lens L2 is concave at the paraxial position, and the image side S4 is concave at the paraxial position.
  • the object side S5 of the third lens L3 is convex at the paraxial position, and the image side S6 is concave at the paraxial position.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 is convex at the paraxial position.
  • the object side S9 of the fifth lens L5 is concave at the paraxial position, and the image side S10 is concave at the paraxial position.
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position
  • the image side surface S12 is a convex surface at the paraxial position.
  • the image side S8 of the fourth lens L4 is cemented with the object side S9 of the fifth lens L5.
  • the first lens L1 can have a negative refractive power, and the object side S1 of the first lens L1 is convex at the paraxial position, and the image side S2 is concave at the paraxial position, so that the field angle of the system can be effectively enlarged, so that the optical system can be effectively expanded. 10 is capable of collecting light incident from large angles.
  • the second lens L2 has a negative refractive power, and both the object side S3 and the image side S4 of the second lens L2 are concave at the paraxial position, so the light from the first lens L1 can be adjusted so that the light can be incident at a small angle To the image-side lens group (the lens group composed of the third lens L3 to the sixth lens L6 ), which is beneficial to the improvement of the imaging illuminance.
  • the third lens L3 has a positive refractive power and can condense the light rays from the first lens L1 and the second lens L2, so that the divergent light rays can be restrained and completely enter the image system. Since both the first lens L1 and the second lens L2 are negative lenses, the third lens L3 having a positive refractive power can balance spherical aberration and positional chromatic aberration generated by the first lens L1 and the second lens L2.
  • the fourth lens L4 and the fifth lens L5 form a cemented lens, which can effectively reduce the system chromatic aberration and reduce the tolerance sensitivity of the system.
  • the fourth lens L4 has a positive refractive power
  • the fifth lens L5 has a negative refractive power
  • the sixth lens L6 has a positive refractive power, so the sixth lens L6 can effectively condense the light, so that the light diverged by the fifth lens L5 can be incident on the imaging surface of the system at a small incident angle, which is beneficial to improve the light sensitivity of the photosensitive element performance.
  • the object and image sides of the first lens L1 and the third lens L3 are spherical, and the object and image sides of the second lens L2, the fourth lens L4, the fifth lens L5 and the sixth lens L6 are aspheric.
  • the aberration of the system can also be effectively eliminated by the cooperation of the spherical surface and the aspherical surface, so that the optical system 10 has good imaging quality, and at the same time, the flexibility of lens design and assembly is improved, so that the system can achieve a balance between high image quality and low cost .
  • the first lens L1 and the third lens L3 are all made of glass
  • the second lens L2, the fourth lens L4, the fifth lens L5 and the sixth lens L6 are all made of plastic.
  • the optical system 10 satisfies the following relationships:
  • f1/(Rs2-SAGs2) -6.01; f1 is the focal length of the first lens L1, Rs2 is the radius of curvature of the image side S2 of the first lens L1 at the optical axis, SAGs2 is the image side S2 of the first lens L1 at the maximum The vector height at the effective caliber.
  • the sag is the distance from the center of the image side S2 of the first lens L1 to the maximum effective clear aperture of the surface in the direction parallel to the optical axis; when the value is positive, in the direction parallel to the optical axis of the system, the surface The maximum effective clear aperture is closer to the image side of the system than the center of the surface; when the value is negative, in the direction parallel to the optical axis of the system, the maximum effective clear aperture of the surface is The object side of the system is closer to the center of the face.
  • the image side surface S2 of the first lens L1 can be prevented from being too curved, thereby preventing the incident light from inter-reflecting on the image side surface S2 of the first lens L1 and the surfaces of the lenses on the image side, resulting in serious ghosting phenomenon, and then Improve the clarity of the imaging image; in addition, the negative refractive power of the first lens L1 can also be controlled within a reasonable range, which is conducive to the large-angle light entering the optical system 10, thereby expanding the range of the field of view of the optical system 10. , to achieve ultra-wide-angle design.
  • f1*f2/f3 3.66mm; f1 is the focal length of the first lens L1, f2 is the focal length of the second lens L2, and f3 is the focal length of the third lens L3.
  • the refractive power of the first lens L1, the second lens L2 and the third lens L3 can be reasonably distributed, so that the refractive power of the lens group formed by the first lens L1 to the third lens L3 can be controlled within a reasonable range, It will not be too strong, thereby preventing excessive correction of aberrations to the system, effectively reducing the aberrations of the entire system, and helping to reduce the tolerance sensitivity of the first lens L1 to the third lens L3.
  • the refractive power of the lens group can be prevented from being too weak to properly correct systematic aberrations.
  • f2/CT2 -4.15; f2 is the focal length of the second lens L2, and CT2 is the thickness of the second lens L2 on the optical axis.
  • f3/CT3 1.63; f3 is the focal length of the third lens L3, and CT3 is the thickness of the third lens L3 on the optical axis.
  • the lens group formed by the fourth lens L4 and the fifth lens L5 has a positive refractive power as a whole, so that aberrations can be corrected for the system.
  • the cumulative tolerance of the two elements can be set to the tolerance of one integrated element, which can effectively reduce the eccentricity sensitivity, reduce the assembly sensitivity of the system, and solve the problem of the lens. Process production and lens assembly problems, improve yield.
  • the aberrations between the fourth lens L4 and the fifth lens L5 constituting the cemented lens group can be mutually corrected, which is beneficial to improve the imaging resolution of the optical system 10 .
  • CT4 is the thickness of the fourth lens L4 on the optical axis
  • CT5 is the thickness of the fifth lens L5 on the optical axis
  • ⁇ 4 is the thickness of the fourth lens L4 on the optical axis
  • the thermal expansion coefficient of the fourth lens L4, ⁇ 5 is the thermal expansion coefficient of the fifth lens L5.
  • f6/CT6 1.23; f6 is the focal length of the sixth lens L6, and CT6 is the thickness of the sixth lens L6 on the optical axis.
  • the refractive power and the central thickness of the third lens L3 can be reasonably configured, which is beneficial to reduce the exit angle of the light when it exits the sixth lens L6, and therefore also helps to reduce the incident angle when the light enters the photosensitive element. In this way, the photosensitive performance of the photosensitive element is improved.
  • Imgh/EPD 9.11; Imgh is the length of the effective imaging area on the imaging plane S13 of the optical system 10 in the horizontal direction, and EPD is the diameter of the entrance pupil of the optical system 10 .
  • the effective imaging area of the imaging surface S13 of the optical system 10 coincides with the rectangular photosensitive surface of the photosensitive element, and the horizontal direction of the effective imaging area can be understood as the length direction of the rectangular photosensitive surface.
  • the size of the image plane and the diameter of the entrance pupil of the optical system 10 can be reasonably configured, so that the optical system 10 has the characteristics of a large image plane, which is beneficial to the ultra-wide-angle design of the system, and at the same time enables the optical system 10 to have a large image plane and an ultra-wide angle.
  • the characteristic optical system 10 has sufficient image plane brightness in the fringe field of view, so that the system has excellent imaging quality.
  • ⁇ CT/f 7.59; ⁇ CT is the sum of the thicknesses of the lenses in the optical system 10 on the optical axis, and f is the effective focal length of the optical system 10 .
  • the lens thickness and focal length of the optical system 10 can be well configured, which is beneficial to make the optical system 10 compact, shorten the overall length of the system, and further realize the miniaturization design while satisfying the wide-angle design of the optical system 10 .
  • f*tan(FOV/2) -7.15mm; f is the effective focal length of the optical system 10, and FOV is the maximum field angle of the optical system 10 in the horizontal direction of the effective imaging area on the imaging plane S13.
  • the effective imaging area of the imaging surface S13 of the optical system 10 coincides with the rectangular photosensitive surface of the photosensitive element, and the horizontal direction of the optical system 10 can be understood as the length direction of the rectangular photosensitive surface.
  • Nd4 is the d-line (587.56 nm) refractive index of the fourth lens L
  • Nd5 is the d-line (587.56 nm) refractive index of the fifth lens L5.
  • the d-line refractive index of the fourth lens L4 and the fifth lens L5 can be reasonably configured, which is beneficial to optimize the system aberration and improve the imaging analysis capability of the system.
  • each lens parameter of the optical system 10 in the first embodiment is given by Table 1 and Table 2.
  • Table 2 shows the aspheric coefficients of the corresponding lens surfaces in Table 1, wherein K is the conic coefficient, and Ai is the coefficient corresponding to the i-th higher-order term in the aspheric surface type formula.
  • the elements from the object side to the image side are arranged in the order of the elements from top to bottom in Table 1.
  • the image plane (imaging plane S13) can be understood as the photosensitive surface of the photosensitive element when it is assembled with the photosensitive element later.
  • Surface numbers 1 and 2 correspond to the object side S1 and the image side S2 of the first lens L1 respectively, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the surface number 8 represents the object side surface S7 of the fourth lens L4.
  • the Y radius in Table 1 is the curvature radius of the object side or image side of the corresponding surface number at the optical axis.
  • the first value of the lens in the "Thickness" parameter column is the thickness of the lens on the optical axis
  • the second value is the distance from the image side of the lens to the object side of the following optical element on the optical axis.
  • the second value represents the distance from the image side of the lens to the center of the diaphragm STO on the optical axis.
  • the value of the stop ST0 in the "thickness" parameter column is the distance from the center of the stop STO to the object side of the latter lens on the optical axis.
  • the optical axes of the lenses in the embodiments of the present application are on the same straight line, and the straight line serves as the optical axis of the optical system 10 .
  • the reference wavelength of the refractive index, Abbe number and focal length in the following embodiments is 587.56 nm.
  • the relational formula calculation and lens structure of each embodiment are based on the data in the parameter tables (Table 1, Table 2, Table 3, Table 4, etc.).
  • the 2 includes a longitudinal spherical aberration diagram (Longitudinal Spherical Aberration) of the optical system 10, which represents the deviation of the converging focus of light of different wavelengths after passing through the lens.
  • the ordinate of the longitudinal spherical aberration map represents the normalized pupil coordinate (Normalized Pupil Coordinator) from the pupil center to the pupil edge, and the abscissa represents the distance from the imaging plane to the intersection of the light and the optical axis (unit is mm). It can be seen from the longitudinal spherical aberration diagram that in the first embodiment, the degree of deviation of the converging focus of light of each wavelength tends to be consistent, and the smear or color halo in the imaging picture is effectively suppressed.
  • Figure 2 also includes a field curvature diagram (ASTIGMATIC FIELD CURVES) of the optical system 10, wherein the S curve represents the sagittal field curvature at 546.07 nm and the T curve represents the meridional field curvature at 546.07 nm. It can be seen from the figure that the field curvature of the system is small, and the center and edge of the field of view have clear images.
  • ASIGMATIC FIELD CURVES field curvature diagram
  • Fig. 2 also includes a distortion diagram (DISTORTION) of the optical system 10. It can be seen from the diagram that the image distortion caused by the main beam is small, and the imaging quality of the system is excellent.
  • DISTORTION distortion diagram
  • the optical system 10 includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a third lens with positive refractive power in sequence from the object side to the image side L3, diaphragm STO, fourth lens L4 with positive refractive power, fifth lens L5 with negative refractive power, and sixth lens L6 with positive refractive power.
  • FIG. 4 includes longitudinal spherical aberration diagrams, astigmatism diagrams, and distortion diagrams of the optical system 10 in the second embodiment.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and the image side surface S2 is a concave surface at the paraxial position.
  • the object side S3 of the second lens L2 is concave at the paraxial position, and the image side S4 is concave at the paraxial position.
  • the object side S5 of the third lens L3 is convex at the paraxial position, and the image side S6 is concave at the paraxial position.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 is convex at the paraxial position.
  • the object side S9 of the fifth lens L5 is concave at the paraxial position, and the image side S10 is concave at the paraxial position.
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position
  • the image side surface S12 is a convex surface at the paraxial position.
  • the image side S8 of the fourth lens L4 is cemented with the object side S9 of the fifth lens L5.
  • the camera module 10 in this embodiment satisfies the following relationship:
  • the optical system 10 includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a third lens with positive refractive power in sequence from the object side to the image side L3, diaphragm STO, fourth lens L4 with positive refractive power, fifth lens L5 with negative refractive power, and sixth lens L6 with positive refractive power.
  • FIG. 6 includes longitudinal spherical aberration diagrams, astigmatism diagrams, and distortion diagrams of the optical system 10 in the third embodiment.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and the image side surface S2 is a concave surface at the paraxial position.
  • the object side S3 of the second lens L2 is concave at the paraxial position, and the image side S4 is concave at the paraxial position.
  • the object side S5 of the third lens L3 is convex at the paraxial position, and the image side S6 is concave at the paraxial position.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 is convex at the paraxial position.
  • the object side S9 of the fifth lens L5 is concave at the paraxial position, and the image side S10 is concave at the paraxial position.
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position
  • the image side surface S12 is a convex surface at the paraxial position.
  • the image side S8 of the fourth lens L4 is cemented with the object side S9 of the fifth lens L5.
  • the camera module 10 in this embodiment satisfies the following relationship:
  • the optical system 10 includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a third lens with positive refractive power in sequence from the object side to the image side L3, diaphragm STO, fourth lens L4 with positive refractive power, fifth lens L5 with negative refractive power, and sixth lens L6 with positive refractive power.
  • FIG. 8 includes longitudinal spherical aberration diagrams, astigmatism diagrams, and distortion diagrams of the optical system 10 in the fourth embodiment.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and the image side surface S2 is a concave surface at the paraxial position.
  • the object side S3 of the second lens L2 is concave at the paraxial position, and the image side S4 is concave at the paraxial position.
  • the object side S5 of the third lens L3 is convex at the paraxial position, and the image side S6 is concave at the paraxial position.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 is convex at the paraxial position.
  • the object side S9 of the fifth lens L5 is concave at the paraxial position, and the image side S10 is concave at the paraxial position.
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position
  • the image side surface S12 is a convex surface at the paraxial position.
  • the image side S8 of the fourth lens L4 is cemented with the object side S9 of the fifth lens L5.
  • the camera module 10 in this embodiment satisfies the following relationship:
  • the optical system 10 includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a third lens with positive refractive power in sequence from the object side to the image side L3, diaphragm STO, fourth lens L4 with positive refractive power, fifth lens L5 with negative refractive power, and sixth lens L6 with positive refractive power.
  • 10 includes longitudinal spherical aberration diagrams, astigmatism diagrams, and distortion diagrams of the optical system 10 in the fifth embodiment.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and the image side surface S2 is a concave surface at the paraxial position.
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, and the image side surface S4 is concave at the paraxial position.
  • the object side S5 of the third lens L3 is convex at the paraxial position, and the image side S6 is concave at the paraxial position.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 is convex at the paraxial position.
  • the object side surface S9 of the fifth lens L5 is concave at the paraxial position, and the image side surface S10 is concave at the paraxial position.
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position
  • the image side surface S12 is a convex surface at the paraxial position.
  • the image side S8 of the fourth lens L4 is cemented with the object side S9 of the fifth lens L5.
  • the camera module 10 in this embodiment satisfies the following relationship:
  • the optical system 10 includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a third lens with positive refractive power in sequence from the object side to the image side L3, diaphragm STO, fourth lens L4 with positive refractive power, fifth lens L5 with negative refractive power, and sixth lens L6 with positive refractive power.
  • FIG. 12 includes longitudinal spherical aberration diagrams, astigmatism diagrams, and distortion diagrams of the optical system 10 in the sixth embodiment.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and the image side surface S2 is a concave surface at the paraxial position.
  • the object side S3 of the second lens L2 is concave at the paraxial position, and the image side S4 is concave at the paraxial position.
  • the object side S5 of the third lens L3 is convex at the paraxial position, and the image side S6 is concave at the paraxial position.
  • the object side S7 of the fourth lens L4 is convex at the paraxial position, and the image side S8 is convex at the paraxial position.
  • the object side S9 of the fifth lens L5 is concave at the paraxial position, and the image side S10 is concave at the paraxial position.
  • the object side surface S11 of the sixth lens L6 is a convex surface at the paraxial position
  • the image side surface S12 is a convex surface at the paraxial position.
  • the image side S8 of the fourth lens L4 is cemented with the object side S9 of the fifth lens L5.
  • the camera module 10 in this embodiment satisfies the following relationship:
  • the camera module 20 includes the optical system 10 and the photosensitive element 210 described in any one of the above embodiments, and the photosensitive element 210 is disposed on the optical system 10 . like side.
  • the photosensitive element 210 may be a CCD (Charge Coupled Device, charge coupled device) or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor).
  • CCD Charge Coupled Device, charge coupled device
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • the camera module 20 includes a filter 110 disposed between the sixth lens L6 and the photosensitive element 210 , and the filter 110 is used to filter out infrared light.
  • the filter 110 may be installed at the image end of the lens, that is, the object side of the first lens L1 , or may be installed between any two adjacent lenses in the optical system 10 .
  • the camera module 20 further includes a protective glass 120 , the protective glass 120 is disposed between the filter 110 and the photosensitive element 210 , and the protective glass 120 is used to protect the photosensitive element 210 .
  • some embodiments of the present application further provide an electronic device 30 , and the camera module 20 is applied to the electronic device 30 to enable the electronic device 30 to have a camera function.
  • the electronic device 30 includes a fixing member 310 , and the camera module 20 is mounted on the fixing member 310 , and the fixing member 310 may be a circuit board, a middle frame, a protective shell and other components.
  • the electronic device 30 can be, but is not limited to, a smartphone, a smart watch, an e-book reader, a vehicle camera device, a monitoring device, a medical device (such as an endoscope), a tablet computer, a biometric device (such as a fingerprint recognition device or a pupil recognition device) etc.), PDA (Personal Digital Assistant, personal digital assistant), drone, etc.
  • the electronic device 30 is a vehicle-mounted camera device (refer to FIG.
  • the camera module 20 is arranged in a housing of the vehicle-mounted camera device, and the housing is the fixing member 310 , and the fixing member 310 It is rotatably connected with the mounting plate 320, and the mounting plate 320 is used to be fixed on the body of the automobile.
  • some embodiments of the present application also provide an automobile 40 .
  • the electronic device 30 is a vehicle-mounted camera device
  • the electronic device 30 can be used as a front-view camera device, a rear-view camera device, or a side-view camera device of the automobile 40 .
  • the automobile 40 includes a mounting portion 410 on which the fixing member 310 of the electronic device 30 is mounted.
  • the mounting portion 410 may be a part of the vehicle body, such as an air intake grille, side mirror, rear view mirror, rear tail Box cover, roof, center console.
  • the electronic device 30 is provided with the rotatable mounting plate 320
  • the electronic device 30 is mounted on the mounting portion 410 of the automobile 40 through the mounting plate 320 .
  • the electronic device 30 can be installed in any position on the front side of the vehicle body (eg, at the air intake grille), the left headlight, the right headlight, the left rearview mirror, the right rearview mirror, the trunk cover, and the roof.
  • a display device can also be installed in the car 40, and the electronic device 30 is connected to the display device in communication, so that the image obtained by the electronic device 30 on the installation part 410 can be displayed on the display device in real time, so that the driver can obtain the installation part 410.
  • a wider range of environmental information around the 410 makes it more convenient and safer for drivers to drive.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Abstract

一种光学系统(10),由物侧至像侧依次包括:负的第一透镜(L1),其物侧面(S1)于近轴处为凸面,像侧面(S2)于近轴处为凹面;负的第二透镜(L2),其物侧面(S3)和像侧面(S4)于近轴处均为凹面;正的第三透镜(L3),其物侧面(S5)于近轴处为凸面,像侧面(S6)于近轴处为凹面;正的第四透镜(L4);负的第五透镜(L5),其与第四透镜(L4)胶合;及正的第六透镜(L6)。光学系统(10)满足:-7≤f1/(Rs2-SAGs2)≤-4;f1为第一透镜(L1)的焦距,Rs2为第一透镜(L1)的像侧面(S2)于光轴处的曲率半径,SAGs2为第一透镜(L1)的像侧面(S2)于最大有效口径处的矢高。

Description

光学系统、摄像模组、电子设备及汽车 技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、摄像模组、电子设备及汽车。
背景技术
在摄像镜头应用至智能手机、平板电脑等电子设备以来,设备的拍摄性能也随着用户对高品质摄像需求的提高而发生翻天覆地的变化。特别是对于汽车而言,当摄像镜头应用于汽车以监测汽车周边的道路信息时,摄像画面的优劣将直接影响驾驶者在借住摄像画面进行变道、倒车甚至自动驾驶等方面的安全系数。而对于一般的摄像镜头而言,在入射光线的强度较大的情况下,成像画面容易出现鬼影现象,从而降低摄像画面的清晰度,导致系统无法获得清晰的成像画面。
发明内容
根据本申请的各种实施例,提供一种光学系统、摄像模组、电子设备及汽车。
一种光学系统,由物侧至像侧依次包括:
具有负屈折力的第一透镜,所述第一透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
具有负屈折力的第二透镜,所述第二透镜的物侧面和像侧面于近轴处均为凹面;
具有正屈折力的第三透镜,所述第三透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
具有正屈折力的第四透镜;
具有负屈折力的第五透镜,与所述第四透镜胶合;及
具有正屈折力的第六透镜;
且所述光学系统满足关系:
-7≤f1/(Rs2-SAGs2)≤-4;
f1为所述第一透镜的焦距,Rs2为所述第一透镜的像侧面于光轴处的曲率半径,SAGs2为所述第一透镜的像侧面于最大有效口径处的矢高。
一种摄像模组,包括感光元件及上述任意一个实施例所述的光学系统,所述感光元件设置于所述光学系统的像侧。
一种电子设备,包括固定件及上述的摄像模组,所述摄像模组设置于所述固定件。
一种汽车,包括安装部及上述的电子设备,所述电子设备设置于所述安装部。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例提供的光学系统的结构示意图;
图2包括第一实施例中光学系统的纵向球差图、像散图和畸变图;
图3为本申请第二实施例提供的光学系统的结构示意图;
图4包括第二实施例中光学系统的纵向球差图、像散图和畸变图;
图5为本申请第三实施例提供的光学系统的结构示意图;
图6包括第三实施例中光学系统的纵向球差图、像散图和畸变图;
图7为本申请第四实施例提供的光学系统的结构示意图;
图8包括第四实施例中光学系统的纵向球差图、像散图和畸变图;
图9为本申请第五实施例提供的光学系统的结构示意图;
图10包括第五实施例中光学系统的纵向球差图、像散图和畸变图;
图11为本申请第六实施例提供的光学系统的结构示意图;
图12包括第六实施例中光学系统的纵向球差图、像散图和畸变图;
图13为本申请一实施例提供的摄像模组的示意图;
图14为本申请一实施例提供的电子设备的示意图;
图15为本申请一实施例提供的汽车的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
参考图1,本申请的一些实施例提供了一种光学系统10,光学系统10由物侧至像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6,其中第四透镜L4与第五透镜L5组成胶合透镜。其中,第一透镜L1具有负屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力,第六透镜L6具有正屈折力。光学系统10中各透镜同轴设置,即各透镜的光轴均处于同一直线,该直线可称为光学系统10的光轴。
在一些实施例中,光学系统10还包括光阑STO,光阑STO可设置于任意两个透镜之间或设置于第一透镜L1的物侧或第二透镜L2的像侧,光阑STO的中心位于所述光学系统10的光轴上。光学系统10的各透镜及光阑STO可安装于镜筒。在另一些实施例中,光学系统10中的至少一个透镜的物侧面或像侧面上可涂覆遮光涂层,遮光涂层在透镜的涂覆表面上保留通光区域以允许入射光通过,而遮光材料所在区域则能够阻挡光线通过,从而使遮光涂层起到光阑的作用。
第一透镜L1包括物侧面S1和像侧面S2,第二透镜L2包括物侧面S3和像侧面S4,第三透镜L3包括物侧面S5和像侧面S6,第四透镜L4包括物侧面S7和像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11和像侧面S12。另外,光学系统10还有一虚拟的成像面S13,成像面S13位于第六透镜L6的像侧。一般地,光学系统10的成像面S13与感光元件的感光表面重合,为方便理解,可将感光元件的感光表面视为光学系统10的成像面S13。
在上述实施例中,第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面;第二透镜L2的物侧面S3和像侧面S4于近轴处均为凹面;第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面。透镜的物侧面和像侧面于近轴处的面型为相应表面于光轴附近区域的面型。
第一透镜L1可具有负屈折力,且第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面,从而能够有效地扩大系统的视场角,使光学系统10能够收集由大角度入射的光线。
第二透镜L2具有负屈折力,且第二透镜L2的物侧面S3和像侧面S4于近轴处均为凹面,因此可对来自第一透镜L1的光线进行调节,使得光线能够以小角度入射至像方透镜组(第三透镜L3至第六透镜L6所组成的透镜组),从而有利于成像照度的提升。
第三透镜L3具有正屈折力,能够会聚来自第一透镜L1和第二透镜L2的光线,使发散的光线能够被约束并完整进入像方系统。由于第一透镜L1和第二透镜L2均为负透镜,因此具有正屈折力的第三透镜L3能够平衡由第一透镜L1和第二透镜L2产生的球差和位置色差。
第四透镜L4和第五透镜L5组成胶合透镜,可有效减少系统色差,且能够减小系统的公差敏感度。另外,由于第四透镜L4具有正屈折力,而第五透镜L5具有负屈折力,这样的设置有利于将入射光线进一步会聚后过渡至后方光学系统,从而可减小系统像端的口径。
第六透镜L6具有正屈折力,因此第六透镜L6能够有效会聚光线,使经第五透镜L5发散的光线能够以较小的入射角度入射至系统的成像面,从而有利于提升感光元件的感光性能。
另外,在本申请的实施例中,光学系统10满足关系:
-7≤f1/(Rs2-SAGs2)≤-4;f1为第一透镜L1的焦距,Rs2为第一透镜L1的像侧面S2于光轴处的曲率半径,SAGs2为第一透镜L1的像侧面S2于最大有效口径处的矢高。矢高为第一透镜L1的像侧面S2中心至该面的最大有效通光口径处于平行光轴方向上的距离;当该值为正值时,在平行于系统的光轴的方向上,该面的最大有效通光口径处相较于该面的中心处更靠近系统的像侧;当该值为负值时,在平行于系统的光轴的方向上,该面的最大有效通光口径处相较于该面的中心处更靠近系统的物侧。具体地,一些实施例中的f1/(Rs2-SAGs2)可以为-6.1、-6、-5.9、-5.8、-5.7或-5.6。满足上述关系时,可避免第一透镜L1的像侧面S2过于弯曲,从而避免造成入射光线在第一透镜L1的像侧面S2与像方各透镜表面发生相互反射而产生严重的鬼影现象,进而提高成像画面的清晰度;另外,也能使第一透镜L1的负屈折力被控制在合理范围内,从而有利于大角度的光线射入光学系统10,进而扩大光学系统10的视场角范围,实现超广角化设计。超过关系式上限时,则第一透镜L1的焦距太小,透镜屈折力过强,则像面成像会因第一透镜L1的变化而变得过于敏感,从而容易产生较大的像差;低于关系式下限时,则第一透镜L1的像侧面S2过于弯曲而不利于加工制造,且易于导致入射光线在第一透镜L1的像侧面S2与像方各透镜之间相互反射而产生鬼影,从而降低光学系统10的成像质量,另外也会使得第一透镜L1的屈折力不足,不利于大角度的光线进入光学系统10,从而不利于系统的广角化和小型化设计。
在一些实施例中第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凸面。第五透镜L5的物侧面S9于近轴处为凹面,像侧面S10于近轴处为凹面。
在一些实施例中,光学系统10中至少一个透镜的物侧面及/或像侧面为非球面,非球面设计能够使透镜的物侧面及/或像侧面拥有更灵活的设计,使透镜在较小、较薄的情况下便能良好地解决成像不清,视界歪曲、视野狭小等不良现象,无需设置过多的透镜便能使系统拥有良好的成像品质,且有助于缩短光学系统10的长度。在一些实施例中,光学系统10中至少一个透镜的物侧面及/或像侧面为球面,球面透镜的制作工艺简单,生产成本较低。具体地,在一些实施例中,第一透镜L1和第三透镜L3中的物侧面和像侧面均为球面,第二透镜L2、第四透镜L4、第五透镜L5及第六透镜L6中的物侧面和像侧面均为非球面。在一些实施例中,各透镜之间具体的球面及非球面的配置根据实际设计需求而定,此处不加以赘述。通过球面与非球面的配合也可有效消除系统的像差,使光学系统10具有良好的成像品质,且同时提高透镜设计及组装的灵活性,使系统在高像质与低成本之间取得平衡。需注意的是,实施例中的球面和非球面的具体形状并不限于附图中示出的球面和非球面的形状,附图主要为示例参考而非严格按比例绘制。
非球面的面型计算可参考非球面公式:
Figure PCTCN2020108905-appb-000001
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
在一些实施例中,光学系统10中各透镜的材质均为塑料。在另一些实施例中,光学系统10中各透镜的材质均为玻璃。塑料材质的透镜能够减少光学系统10的重量并降低制备成本,而玻璃材质的透镜能够耐受较高的温度且具有优良的光学效果。在另一些实施例中,第一透镜L1和第四透镜L4的材质均为玻璃,而光学系统10中其他透镜的材质均为塑料,此时,由于光学系统10中位于物方的透镜的材质为玻璃,因此这些位于物方的玻璃透镜对极端环境具有很好耐受效果,不易受物方环境的影响而出现老化等情况,从而当光学系统10处于暴晒高温等极端环境下时,这种结构能够较好地平衡系统的光学性能与成本。当然,光学系统10中透镜材质配置关系并不限于上述实施例,任意一个透镜的材质可以为塑料,也可以为玻璃,具体配置关系根据实际设计需求而定,此处不加以赘述。
在一些实施例中,光学系统10包括滤光片110,滤光片110设置于第六透镜L6的像侧,并与光学系统10中的各透镜相对固定设置。滤光片110为用于滤除红外光的红外截止滤光片,防止红外光到达 系统的成像面S13,从而防止红外光干扰正常成像。滤光片110可与各透镜一同装配以作为光学系统10中的一部分。例如,在一些实施例中,光学系统10中的各透镜安装于镜筒内,滤光片110安装于镜筒的像端。在另一些实施例中,滤光片110并不属于光学系统10的元件,此时滤光片110可以在光学系统10与感光元件装配成摄像模组时,一并安装至光学系统10与感光元件之间。在一些实施例中,滤光片110也可设置在第一透镜L1的物侧。另外,在一些实施例中也可不设置滤光片110,而是通过在第一透镜L1至第六透镜L6中的至少一个透镜的物侧面或像侧面上设置红外滤光膜,以实现滤除红外光的作用。
在一些实施例中,光学系统10还满足以下至少一条关系:
3mm≤f1*f2/f3≤4.5mm;f1为第一透镜L1的焦距,f2为第二透镜L2的焦距,f3为第三透镜L3的焦距。具体地,一些实施例中的f1*f2/f3可以为3.55mm、3.58mm、3.6mm、3.65mm、3.68mm、3.7mm或3.72mm。满足上述关系时,可合理分配第一透镜L1、第二透镜L2和第三透镜L3的屈折力,使第一透镜L1至第三透镜L3所构成的透镜组的屈折力控制在合理范围内,不会过强,从而可防止对系统的像差校正过度,可以有效地减小整个系统的像差,且有利于降低第一透镜L1至第三透镜L3的公差敏感度。另外,满足上述关系时还能防止该透镜组的屈折力过弱而无法良好地校正系统像差。超过关系式上限时,第一透镜L1与第二透镜L2的整体屈折力不足,大角度的光线难以进入光学系统10,从而无法获得足够的物方视场范围,不利于光学系统10的广角设计。低于关系式下限时,则第三透镜L3的屈折力不足,不利于校正由第一透镜L1和第二透镜L2折射大角度入射光线而产生的像差,从而降低成像质量。
-5≤f2/CT2≤-1;f2为第二透镜L2的焦距,CT2为第二透镜L2于光轴上的厚度。具体地,一些实施例中的f2/CT2可以为-4.2、-4.1、-4、-3.7、-3.5、-3.2、-3或-2.9。屈折力满足上述关系时,第二透镜L2的屈折力与中心厚度能够得到合理配置,有利于校正入射光线经第一透镜L1折射而产生的像差,进而提升光学系统10成像质量。超过关系式范围时,则不利于对光学系统10的像差进行校正,难以拥有成像质量。
1.3≤f3/CT3≤2.1;f3为第三透镜L3的焦距,CT3为第三透镜L3于光轴上的厚度。具体地,一些实施例中的f3/CT3可以为1.5、1.55、1.6、1.8、1.9、1.95或2。满足上述关系时,第三透镜L3的屈折力与中心厚度能够得到合理配置,可以降低第三透镜L3的中心厚度的公差敏感度,降低透镜的加工工艺难度,有利于提升系统的组装良率,进一步的降低生产成本。超过关系式上限时,第三透镜L3的中心厚度过薄,系统对于第三透镜L3的中心厚度过于敏感,导致透镜的加工很难满足所需的公差要求,从而降低系统的组装良率,不利于降低生产成本;低于关系式下限时,第三透镜L3的中心厚度过大,不利于缩短光学系统10的长度。
5≤f45/f≤14;f45为第四透镜L4与第五透镜L5的组合焦距,f为光学系统10的有效焦距。具体地,一些实施例中的f45/f可以为6.8、7、7.2、7.6、8、8.5、9、10、10.5、11、11.5或12。满足上述关系时,第四透镜L4和第五透镜L5所组成的透镜组整体具有正屈折力,从而能够为系统校正像差。且通过胶合设计,可以将两个元件(第四透镜L4和第五透镜L5)的累加公差设置成一个整合元件的公差,从而可有效减小偏心敏感度,降低系统的组装敏感度,解决透镜工艺制作及透镜组装问题,提高良率。另一方面,组成胶合透镜组的第四透镜L4和第五透镜L5之间的像差能够相互校正,有利于提升光学系统10的成像解析度。超过关系式范围时,则不利校正光学系统10的像差,从而降低成像品质。
|CT4-CT5|*|α4-α5|≤20mm·10 -6/K;CT4为第四透镜L4于光轴上的厚度,CT5为第五透镜L5于光轴上的厚度,α4为第四透镜L4的热膨胀系数,α5为第五透镜L5的热膨胀系数。具体地,一些实施例中的|CT4-CT5|*|α4-α5|可以为6.2、6.5、6.8、7、7.5、8、9、11、11.5、12、12.5或13。满足上述关系时,第四透镜L4和第五透镜L5的中心厚度及热膨胀系数能够得到良好的控制,可有效避免第四透镜L4和第五透镜L5在热胀冷缩的效应下因形变量不同而导致胶合处开裂的问题,以此确保光学系统10在高温或低温环境下仍能拥有稳定且良好的成像质量。
0.5≤f6/CT6≤1.5;f6为第六透镜L6的焦距,CT6为第六透镜L6于光轴上的厚度。具体地,一 些实施例中的f6/CT6可以为0.95、1、1.15、1.2、1.25或1.3。满足上述关系时,第三透镜L3的屈折力与中心厚度能够得到合理配置,从而有利于降低光线射出第六透镜L6时的出射角度,因此也有利于降低光线射入感光元件时的入射角度,以此提高感光元件的感光性能。超过关系式上限时,第六透镜L6的焦距过长,透镜屈折力不足,则光线射入感光元件时的入射角度较大,从而导致感光元件无法良好地获取入射信息,进而造成成像失真的现象;低于关系式下限时,第三透镜L3中心厚度过大,透镜的热胀冷缩现象将变得过于明显,导致光学系统10的热稳定性下降。
7≤Imgh/EPD≤10;Imgh为光学系统10的成像面S13上有效成像区域于水平方向的长度,EPD为光学系统10的入瞳直径。具体地,一些实施例中的Imgh/EPD可以为8.85、8.9、9、9.15、9.2、9.25、9.3、9.5、9.55或9.6。一般地,光学系统10的成像面S13的有效成像区域与感光元件的矩形感光表面重合,有效成像区域的水平方向可理解为矩形感光表面的长度方向。满足上述关系时,光学系统10的像面大小与入瞳直径能够得到合理配置,使得光学系统10具有大像面特性,有利于系统的超广角设计,同时还能使具有大像面和超广角特性的光学系统10于边缘视场拥有充足的像面亮度,从而使系统拥有优良的成像品质。超过关系式上限时,系统的入瞳直径过小,不利于光学系统10的大光圈设计,不利于提升光学系统10的像面亮度;低于关系式下限时,系统的入瞳直径过大,从而会增加边缘视场光线的像散,使得像面弯曲,不利于光学系统10的成像质量的提升。
6≤ΣCT/f≤10;ΣCT为光学系统10中各透镜于光轴上的厚度之和,f为光学系统10的有效焦距。具体地,一些实施例中的ΣCT/f可以为7.6、7.8、8、8.3、8.6、9、9.1或9.2。满足上述关系时,光学系统10的透镜厚度与焦距能够得到良好配置,有利于使光学系统10结构变得紧凑,缩短系统总长,且在光学系统10满足广角设计的同时能够进一步实现小型化设计。低于关系式下限时,光学系统10的焦距过长,不利于系统的超广角设计;超过关系式上限时,光学系统10各透镜的厚度分配过多,不利于各透镜的公差分配,从而增加了透镜组装过程的偏心敏感度,不利于生产良率的提升。
-8mm≤f*tan(FOV/2)≤-5mm;f为光学系统10的有效焦距,FOV为光学系统10于成像面S13上有效成像区域的水平方向的最大视场角。一般地,光学系统10的成像面S13的有效成像区域与感光元件的矩形感光表面重合,光学系统10的水平方向可理解为矩形感光表面的长度方向。具体地,一些实施例中的f*tan(FOV/2)可以为-7.1、-7、-6.8、-6.5、-6.3、-6.2、-6.15或-6.1。满足上述关系时,光学系统10的视场角能够得到有效提升,以实现超广角设计,同时还有利于减小光线射入感光元件的角度,提高感光元件的感光性能。超过关系式上限时,则系统的视场角不足,无法获得足够的物空间信息;低于关系式下限时,则会产生较大的像面变形现象,不利于成像质量的提升。
0≤|Nd5-Nd4|*100≤15;Nd4为第四透镜L4的d线折射率,Nd5为第五透镜L5的d线折射率,Nd4和Nd5均为透镜于d光(587.56nm)下的d线折射率。具体地,一些实施例中的|Nd5-Nd4|*100可以为4.3、4.5、4.8、5、6、7、9、9.5、9.8、10或10.2。满足上述关系的上限条件时,第四透镜L4和第五透镜L5的d线折射率能够得到合理配置,从而有利于优化系统像差,提高系统的成像解析能力。超过关系式范围时,则不利于校正光学系统10的像差,从而降低系统的成像品质,另外还会使得第四透镜L4和第五透镜L5的d线折射率差异过大,增加光线在第四透镜L4和第五透镜L5之间的胶合面与其他透镜表面之间反射而产生鬼影的风险。
需要注意的是,当满足上述任一关系时,光学系统10均能够拥有相应关系所描述的效果。
接下来以更为具体详细的实施例来对本申请的光学系统10进行说明:
第一实施例
参考图1,在第一实施例中,光学系统10由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有正屈折力的第六透镜L6。图2包括第一实施例中光学系统10的纵向球差图、像散图和畸变图。以下各实施例(第一实施例至第五实施例)的像散图和畸变图的参考波长均为546.07nm。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凸面。
第五透镜L5的物侧面S9于近轴处为凹面,像侧面S10于近轴处为凹面。
第六透镜L6的物侧面S11于近轴处为凸面,像侧面S12于近轴处为凸面。
其中第四透镜L4的像侧面S8与第五透镜L5的物侧面S9胶合。
第一透镜L1可具有负屈折力,且第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面,从而能够有效地扩大系统的视场角,使光学系统10能够收集由大角度入射的光线。
第二透镜L2具有负屈折力,且第二透镜L2的物侧面S3和像侧面S4均于近轴处为凹面,因此可对来自第一透镜L1的光线进行调节,使得光线能够以小角度入射至像方透镜组(第三透镜L3至第六透镜L6所组成的透镜组),从而有利于成像照度的提升。
第三透镜L3具有正屈折力,能够会聚来自第一透镜L1和第二透镜L2的光线,使发散的光线能够被约束并完整进入像方系统。由于第一透镜L1和第二透镜L2均为负透镜,因此具有正屈折力的第三透镜L3能够平衡由第一透镜L1和第二透镜L2产生的球差和位置色差。
第四透镜L4和第五透镜L5组成胶合透镜,可有效减少系统色差,且能够减小系统的公差敏感度。另外,由于第四透镜L4具有正屈折力,而第五透镜L5具有负屈折力,这样的设置有利于将入射光线进一步会聚后过渡至后方光学系统,从而可减小系统像端的口径。
第六透镜L6具有正屈折力,因此第六透镜L6能够有效会聚光线,使经第五透镜L5发散的光线能够以较小的入射角度入射至系统的成像面,从而有利于提升感光元件的感光性能。
第一透镜L1和第三透镜L3的物侧面和像侧面均为球面,第二透镜L2、第四透镜L4、第五透镜L5及第六透镜L6的物侧面和像侧面均为非球面。通过球面与非球面的配合也可有效消除系统的像差,使光学系统10具有良好的成像品质,且同时提高透镜设计及组装的灵活性,使系统在高像质与低成本之间取得平衡。另外,第一透镜L1和第三透镜L3的材质均为玻璃,第二透镜L2、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料。
在第一实施例中,光学系统10满足以下各关系:
f1/(Rs2-SAGs2)=-6.01;f1为第一透镜L1的焦距,Rs2为第一透镜L1的像侧面S2于光轴处的曲率半径,SAGs2为第一透镜L1的像侧面S2于最大有效口径处的矢高。矢高为第一透镜L1的像侧面S2中心至该面的最大有效通光口径处于平行光轴方向上的距离;当该值为正值时,在平行于系统的光轴的方向上,该面的最大有效通光口径处相较于该面的中心处更靠近系统的像侧;当该值为负值时,在平行于系统的光轴的方向上,该面的最大有效通光口径处相较于该面的中心处更靠近系统的物侧。满足上述关系时,可避免第一透镜L1的像侧面S2过于弯曲,从而避免造成入射光线在第一透镜L1的像侧面S2与像方各透镜表面发生相互反射而产生严重的鬼影现象,进而提高成像画面的清晰度;另外,也能使第一透镜L1的负屈折力被控制在合理范围内,从而有利于大角度的光线射入光学系统10,进而扩大光学系统10的视场角范围,实现超广角化设计。
f1*f2/f3=3.66mm;f1为第一透镜L1的焦距,f2为第二透镜L2的焦距,f3为第三透镜L3的焦距。满足上述关系时,可合理分配第一透镜L1、第二透镜L2和第三透镜L3的屈折力,使第一透镜L1至第三透镜L3所构成的透镜组的屈折力控制在合理范围内,不会过强,从而可防止对系统的像差校正过度,可以有效地减小整个系统的像差,且有利于降低第一透镜L1至第三透镜L3的公差敏感度。另外,满足上述关系时还能防止该透镜组的屈折力过弱而无法良好地校正系统像差。
f2/CT2=-4.15;f2为第二透镜L2的焦距,CT2为第二透镜L2于光轴上的厚度。屈折力满足上述关系时,第二透镜L2的屈折力与中心厚度能够得到合理配置,有利于校正入射光线经第一透镜L1折射而产生的像差,进而提升光学系统10成像质量。
f3/CT3=1.63;f3为第三透镜L3的焦距,CT3为第三透镜L3于光轴上的厚度。满足上述关系时,第三透镜L3的屈折力与中心厚度能够得到合理配置,可以降低第三透镜L3的中心厚度的公差敏感度,降低透镜的加工工艺难度,有利于提升系统的组装良率,进一步的降低生产成本。
f45/f=6.6;f45为第四透镜L4与第五透镜L5的组合焦距,f为光学系统10的有效焦距。满足上 述关系时,第四透镜L4和第五透镜L5所组成的透镜组整体具有正屈折力,从而能够为系统校正像差。且通过胶合设计,可以将两个元件(第四透镜L4和第五透镜L5)的累加公差设置成一个整合元件的公差,从而可有效减小偏心敏感度,降低系统的组装敏感度,解决透镜工艺制作及透镜组装问题,提高良率。另一方面,组成胶合透镜组的第四透镜L4和第五透镜L5之间的像差能够相互校正,有利于提升光学系统10的成像解析度。
|CT4-CT5|*|α4-α5|=7.87mm·10-6/K;CT4为第四透镜L4于光轴上的厚度,CT5为第五透镜L5于光轴上的厚度,α4为第四透镜L4的热膨胀系数,α5为第五透镜L5的热膨胀系数。满足上述关系时,第四透镜L4和第五透镜L5的中心厚度及热膨胀系数能够得到良好的控制,可有效避免第四透镜L4和第五透镜L5在热胀冷缩的效应下因形变量不同而导致胶合处开裂的问题,以此确保光学系统10在高温或低温环境下仍能拥有稳定且良好的成像质量。
f6/CT6=1.23;f6为第六透镜L6的焦距,CT6为第六透镜L6于光轴上的厚度。满足上述关系时,第三透镜L3的屈折力与中心厚度能够得到合理配置,从而有利于降低光线射出第六透镜L6时的出射角度,因此也有利于降低光线射入感光元件时的入射角度,以此提高感光元件的感光性能。
Imgh/EPD=9.11;Imgh为光学系统10的成像面S13上有效成像区域于水平方向的长度,EPD为光学系统10的入瞳直径。一般地,光学系统10的成像面S13的有效成像区域与感光元件的矩形感光表面重合,有效成像区域的水平方向可理解为矩形感光表面的长度方向。满足上述关系时,光学系统10的像面大小与入瞳直径能够得到合理配置,使得光学系统10具有大像面特性,有利于系统的超广角设计,同时还能使具有大像面和超广角特性的光学系统10于边缘视场拥有充足的像面亮度,从而使系统拥有优良的成像品质。
ΣCT/f=7.59;ΣCT为光学系统10中各透镜于光轴上的厚度之和,f为光学系统10的有效焦距。满足上述关系时,光学系统10的透镜厚度与焦距能够得到良好配置,有利于使光学系统10结构变得紧凑,缩短系统总长,且在光学系统10满足广角设计的同时能够进一步实现小型化设计。
f*tan(FOV/2)=-7.15mm;f为光学系统10的有效焦距,FOV为光学系统10于成像面S13上有效成像区域的水平方向的最大视场角。一般地,光学系统10的成像面S13的有效成像区域与感光元件的矩形感光表面重合,光学系统10的水平方向可理解为矩形感光表面的长度方向。满足上述关系时,光学系统10的视场角能够得到有效提升,以实现超广角设计,同时还有利于减小光线射入感光元件的角度,提高感光元件的感光性能。
|Nd5-Nd4|*100=10.3;Nd4为第四透镜L4的d线(587.56nm)折射率,Nd5为第五透镜L5的d线(587.56nm)折射率。满足上述关系的上限条件时,第四透镜L4和第五透镜L5的d线折射率能够得到合理配置,从而有利于优化系统像差,提高系统的成像解析能力。
另外,第一实施例中光学系统10的各透镜参数由表1和表2给出。表2为表1中相应透镜表面的非球面系数,其中K为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。由物侧至像侧的各元件依次按照表1从上至下的各元件的顺序排列,像面(成像面S13)可理解为后期与感光元件装配时的感光元件的感光表面。面序号1和2分别对应第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。特别地,面序号8代表第四透镜L4的物侧面S7。表1中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。透镜于“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至后一光学元件的物侧面于光轴上的距离,当该透镜的后一光学元件为光阑时,该第二个数值则代表透镜的像侧面至光阑STO的中心于光轴上的距离。光阑ST0于“厚度”参数列中的数值为光阑STO的中心至后一透镜的物侧面于光轴上的距离。本申请实施例中的各透镜的光轴处于同一直线上,该直线作为光学系统10的光轴。以下各实施例中的折射率、阿贝数及焦距的参考波长为587.56nm。另外,各实施例的关系式计算和透镜结构以参数表格(表1、表2、表3、表4等)中的数据为准。
在第一实施例中,光学系统10的有效焦距f=1.26mm,光圈数FNO=2.1,光学系统10于成像面S13上有效成像区域的水平方向最大视角FOV=200°。
表1
Figure PCTCN2020108905-appb-000002
表2
面序号 3 4 8 9 10 11 12
K -5.70E+00 -9.71E-01 4.02E+00 1.12E+00 -9.79E+01 -1.51E+00 -2.78E-01
A4 1.54E-04 -1.54E-03 -2.46E-02 -2.38E-01 -4.18E-02 -3.37E-02 1.82E-02
A6 -5.98E-06 3.47E-03 2.78E-02 7.31E-02 2.62E-02 9.31E-03 -4.70E-03
A8 0.00E+00 -7.53E-04 -5.22E-02 1.71E-02 -6.11E-03 -2.88E-03 1.32E-03
A10 0.00E+00 1.30E-04 3.79E-02 -7.42E-03 1.00E-03 5.92E-04 -2.12E-04
A12 0.00E+00 -9.45E-06 -1.23E-02 -6.09E-03 2.67E-05 -4.56E-05 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -3.31E-05 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
图2包括光学系统10的纵向球面像差图(Longitudinal Spherical Aberration),其表示不同波长的光线经由镜头后的汇聚焦点偏离。纵向球面像差图的纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示成像面到光线与光轴交点的距离(单位为mm)。由纵向球面像差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。
图2还包括光学系统10的场曲图(ASTIGMATIC FIELD CURVES),其中S曲线代表546.07nm下的弧矢场曲,T曲线代表546.07nm下的子午场曲。由图中可知,系统的场曲较小,视场中心和边缘均拥有清晰的成像。
另外,图2还包括光学系统10的畸变图(DISTORTION),由图中可知,由主光束引起的图像变形 较小,系统的成像质量优良。
第二实施例
参考图3,在第二实施例中,光学系统10由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有正屈折力的第六透镜L6。图4包括第二实施例中光学系统10的纵向球差图、像散图和畸变图。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凸面。
第五透镜L5的物侧面S9于近轴处为凹面,像侧面S10于近轴处为凹面。
第六透镜L6的物侧面S11于近轴处为凸面,像侧面S12于近轴处为凸面。
其中第四透镜L4的像侧面S8与第五透镜L5的物侧面S9胶合。
另外,第二实施例中的各透镜参数由表3和表4给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表3
Figure PCTCN2020108905-appb-000003
表4
面序号 3 4 8 9 10 11 12
K 9.90E+01 -9.79E-01 3.11E+00 7.55E-01 -9.90E+01 -1.84E+00 -2.48E-01
A4 -6.79E-05 -3.90E-03 -3.11E-02 -2.05E-01 -4.08E-02 -3.51E-02 1.69E-02
A6 1.83E-06 5.04E-03 4.65E-02 9.31E-03 2.90E-02 8.83E-03 -4.68E-03
A8 0.00E+00 -1.51E-03 -6.62E-02 1.24E-01 -6.29E-03 -2.70E-03 1.26E-03
A10 0.00E+00 2.61E-04 4.10E-02 -7.66E-02 8.96E-04 6.08E-04 -2.10E-04
A12 0.00E+00 -1.85E-05 -1.10E-02 8.84E-03 -6.70E-06 -4.99E-05 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -1.74E-05 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
该实施例中的摄像模组10满足以下关系:
f1*f2/f3 3.56 f6/CT6 1.32
f1/(Rs2-SAGs2) -6.10 Imgh/EPD 9.24
f2/CT2 -4.25 ΣCT/f 7.69
f3/CT3 1.72 f*tan(FOV/2) -6.98
f45/f 6.79 |Nd5-Nd4|*100 10.30
|CT4-CT5|*|α4-α5| 8.23    
由图4中的像差图可知,光学系统10的纵向球差、场曲和畸变均得到良好的控制,从而光学系统10拥有良好的成像品质。
第三实施例
参考图5,在第三实施例中,光学系统10由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有正屈折力的第六透镜L6。图6包括第三实施例中光学系统10的纵向球差图、像散图和畸变图。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凸面。
第五透镜L5的物侧面S9于近轴处为凹面,像侧面S10于近轴处为凹面。
第六透镜L6的物侧面S11于近轴处为凸面,像侧面S12于近轴处为凸面。
其中第四透镜L4的像侧面S8与第五透镜L5的物侧面S9胶合。
另外,第三实施例中的各透镜参数由表5和表6给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表5
Figure PCTCN2020108905-appb-000004
Figure PCTCN2020108905-appb-000005
表6
面序号 3 4 8 9 10 11 12
K 9.65E+01 -9.75E-01 4.95E+00 -1.42E+00 4.87E+01 -5.38E+00 -6.16E-01
A4 -7.02E-04 -4.30E-03 -1.40E-02 -1.65E-01 -4.38E-02 -2.38E-02 1.86E-02
A6 2.31E-05 4.44E-03 1.33E-02 -9.83E-02 2.32E-02 1.02E-02 -4.88E-03
A8 0.00E+00 -1.30E-03 -3.21E-02 1.72E-01 -6.31E-03 -3.47E-03 1.27E-03
A10 0.00E+00 2.28E-04 2.74E-02 -1.22E-01 1.25E-03 6.55E-04 -2.12E-04
A12 0.00E+00 -1.47E-05 -1.04E-02 2.31E-02 -5.81E-05 -4.45E-05 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
该实施例中的摄像模组10满足以下关系:
f1*f2/f3 3.73 f6/CT6 1.13
f1/(Rs2-SAGs2) -5.99 Imgh/EPD 9.26
f2/CT2 -4.15 ΣCT/f 7.97
f3/CT3 1.45 f*tan(FOV/2) -7.03
f45/f 9.43 |Nd5-Nd4|*100 10.30
|CT4-CT5|*|α4-α5| 6.02    
由图6中的像差图可知,光学系统10的纵向球差、场曲和畸变均得到良好的控制,从而光学系统10拥有良好的成像品质。
第四实施例
参考图7,在第四实施例中,光学系统10由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有正屈折力的第六透镜L6。图8包括第四实施例中光学系统10的纵向球差图、像散图和畸变图。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凸面。
第五透镜L5的物侧面S9于近轴处为凹面,像侧面S10于近轴处为凹面。
第六透镜L6的物侧面S11于近轴处为凸面,像侧面S12于近轴处为凸面。
其中第四透镜L4的像侧面S8与第五透镜L5的物侧面S9胶合。
另外,第四实施例中的各透镜参数由表7和表8给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表7
Figure PCTCN2020108905-appb-000006
表8
面序号 3 4 8 9 10 11 12
K -9.90E+01 -1.02E+00 3.51E+00 -3.30E-01 4.69E+01 -6.28E+00 -6.98E-01
A4 -2.29E-04 -9.34E-03 -1.90E-02 -1.94E-01 -5.18E-02 -2.22E-02 2.18E-02
A6 1.14E-05 8.24E-03 1.69E-02 -1.14E-01 2.43E-02 9.87E-03 -5.50E-03
A8 0.00E+00 -2.69E-03 -3.91E-02 2.33E-01 -6.14E-03 -3.52E-03 1.38E-03
A10 0.00E+00 5.15E-04 3.11E-02 -1.65E-01 1.11E-03 6.56E-04 -2.37E-04
A12 0.00E+00 -3.78E-05 -1.08E-02 3.65E-02 -5.58E-05 -4.30E-05 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
该实施例中的摄像模组10满足以下关系:
f1*f2/f3 3.54 f6/CT6 1.17
f1/(Rs2-SAGs2) -5.99 Imgh/EPD 9.41
f2/CT2 -4.12 ΣCT/f 7.99
f3/CT3 1.66 f*tan(FOV/2) -6.92
f45/f 7.12 |Nd5-Nd4|*100 10.30
|CT4-CT5|*|α4-α5| 6.83    
由图8中的像差图可知,光学系统10的纵向球差、场曲和畸变均得到良好的控制,从而光学系统10拥有良好的成像品质。
第五实施例
参考图9,在第五实施例中,光学系统10由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有正屈折力的第六透镜L6。图10包括第五实施例中光学系统10的纵向球差图、像散图和畸变图。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凸面。
第五透镜L5的物侧面S9于近轴处为凹面,像侧面S10于近轴处为凹面。
第六透镜L6的物侧面S11于近轴处为凸面,像侧面S12于近轴处为凸面。
其中第四透镜L4的像侧面S8与第五透镜L5的物侧面S9胶合。
另外,第五实施例中的各透镜参数由表9和表10给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表9
Figure PCTCN2020108905-appb-000007
表10
面序号 3 4 8 9 10 11 12
K 9.90E+01 -1.04E+00 6.23E+00 -5.52E+00 -3.25E+01 -6.37E+00 -9.64E-01
A4 -1.10E-03 -1.15E-02 -1.78E-02 -1.60E-01 -6.03E-02 -1.80E-02 2.74E-02
A6 3.63E-05 9.44E-03 1.64E-02 -1.76E-01 2.39E-02 9.69E-03 -5.67E-03
A8 0.00E+00 -3.23E-03 -3.77E-02 2.55E-01 -6.43E-03 -3.56E-03 1.29E-03
A10 0.00E+00 5.68E-04 3.01E-02 -1.59E-01 1.12E-03 6.60E-04 -2.23E-04
A12 0.00E+00 -3.78E-05 -1.08E-02 3.65E-02 -5.58E-05 -4.30E-05 0.00E+00
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
该实施例中的摄像模组10满足以下关系:
f1*f2/f3 3.53 f6/CT6 0.92
f1/(Rs2-SAGs2) -5.55 Imgh/EPD 8.80
f2/CT2 -2.89 ΣCT/f 9.20
f3/CT3 2.02 f*tan(FOV/2) -6.07
f45/f 11.66 |Nd5-Nd4|*100 4.00
|CT4-CT5|*|α4-α5| 13.31    
由图10中的像差图可知,光学系统10的纵向球差、场曲和畸变均得到良好的控制,从而光学系统10拥有良好的成像品质。
第六实施例
参考图11,在第六实施例中,光学系统10由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5以及具有正屈折力的第六透镜L6。图12包括第六实施例中光学系统10的纵向球差图、像散图和畸变图。
第一透镜L1的物侧面S1于近轴处为凸面,像侧面S2于近轴处为凹面。
第二透镜L2的物侧面S3于近轴处为凹面,像侧面S4于近轴处为凹面。
第三透镜L3的物侧面S5于近轴处为凸面,像侧面S6于近轴处为凹面。
第四透镜L4的物侧面S7于近轴处为凸面,像侧面S8于近轴处为凸面。
第五透镜L5的物侧面S9于近轴处为凹面,像侧面S10于近轴处为凹面。
第六透镜L6的物侧面S11于近轴处为凸面,像侧面S12于近轴处为凸面。
其中第四透镜L4的像侧面S8与第五透镜L5的物侧面S9胶合。
另外,第六实施例中的各透镜参数由表11和表12给出,其中各结构和参数的定义可由第一实施例中得出,此处不加以赘述。
表11
Figure PCTCN2020108905-appb-000008
Figure PCTCN2020108905-appb-000009
表12
面序号 3 4 8 9 10 11 12
K -9.90E+01 -1.11E+00 5.53E+00 -1.93E+00 -2.78E+01 -7.45E+00 -1.11E+00
A4 -3.55E-04 -1.08E-02 -1.93E-02 -1.71E-01 -5.93E-02 -1.73E-02 2.83E-02
A6 1.67E-05 1.06E-02 1.66E-02 -1.66E-01 2.41E-02 9.54E-03 -5.93E-03
A8 0.00E+00 -3.27E-03 -3.86E-02 2.63E-01 -6.37E-03 -3.59E-03 1.26E-03
A10 0.00E+00 5.67E-04 2.95E-02 -1.67E-01 1.08E-03 6.67E-04 -2.19E-04
A12 0.00E+00 -3.78E-05 -1.08E-02 3.65E-02 -5.58E-05 -4.30E-05 1.70E-05
A14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
该实施例中的摄像模组10满足以下关系:
f1*f2/f3 3.53 f6/CT6 0.91
f1/(Rs2-SAGs2) -5.87 Imgh/EPD 9.64
f2/CT2 -3.11 ΣCT/f 9.13
f3/CT3 2.06 f*tan(FOV/2) -6.07
f45/f 12.35 |Nd5-Nd4|*100 4.00
|CT4-CT5|*|α4-α5| 13.34    
由图12中的像差图可知,光学系统10的纵向球差、场曲和畸变均得到良好的控制,从而光学系统10拥有良好的成像品质。
参考图13,本申请的一些实施例还提供了一种摄像模组20,摄像模组20包括上述任意一个实施例所述的光学系统10及感光元件210,感光元件210设置于光学系统10的像侧。感光元件210可以为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。一般地,在装配时,光学系统10的成像面S13与感光元件210的感光表面重叠。
在一些实施例中,摄像模组20包括设于第六透镜L6与感光元件210之间的滤光片110,滤光片110用于滤除红外光。在一些实施例中,滤光片110可安装至镜头的像端,即第一透镜L1的物侧,或者也可设于光学系统10中任意两个相邻透镜之间。在一些实施例中,摄像模组20还包括保护玻璃120,保护玻璃120设于滤光片110与感光元件210之间,保护玻璃120用于保护感光元件210。
参考图14,本申请的一些实施例还提供了一种电子设备30,摄像模组20应用于电子设备30以使电子设备30具备摄像功能。具体地,电子设备30包括固定件310,摄像模组20安装于固定件310,固定件310可以为电路板、中框、保护壳等部件。电子设备30可以为但不限于智能手机、智能手表、电子书阅读器、车载摄像设备、监控设备、医疗设备(如内窥镜)、平板电脑、生物识别设备(如指纹 识别设备或瞳孔识别设备等)、PDA(Personal Digital Assistant,个人数字助理)、无人机等。具体地,在一些实施例中,电子设备30为车载摄像设备(具体结构可参考图14),摄像模组20设置于车载摄像设备的壳体内,该壳体即为固定件310,固定件310与安装板320转动连接,安装板320用于固定在汽车的车体上。
参考图15,本申请的一些实施例还提供了一种汽车40。当电子设备30为车载摄像设备时,电子设备30可作为汽车40的前视摄像设备、后视摄像设备或侧视摄像设备。具体地,汽车40包括安装部410,电子设备30的固定件310安装于安装部410上,安装部410可以是车体的一部分,如进气格栅、侧视镜、后视镜、后尾箱盖板、车顶、中控台。当电子设备30设有可转动的安装板320时,电子设备30通过安装板320安装至汽车40的安装部410上。电子设备30可安装于车体的前侧(如进气格栅处)、左前大灯、右前大灯、左后视镜、右后视镜、车尾箱盖板、车顶等任意位置。其次,也可在汽车40内设置显示设备,电子设备30与显示设备通信连接,从而,安装部410上的电子设备30所获得的影像能够在显示设备上实时显示,让驾驶者能够获得安装部410四周更大范围的环境信息,使驾驶者在驾驶时更为方便及安全。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学系统,由物侧至像侧依次包括:
    具有负屈折力的第一透镜,所述第一透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
    具有负屈折力的第二透镜,所述第二透镜的物侧面和像侧面于近轴处均为凹面;
    具有正屈折力的第三透镜,所述第三透镜的物侧面于近轴处为凸面,像侧面于近轴处为凹面;
    具有正屈折力的第四透镜;
    具有负屈折力的第五透镜,与所述第四透镜胶合;及
    具有正屈折力的第六透镜;
    且所述光学系统满足关系:
    -7≤f1/(Rs2-SAGs2)≤-4;
    f1为所述第一透镜的焦距,Rs2为所述第一透镜的像侧面于光轴处的曲率半径,SAGs2为所述第一透镜的像侧面于最大有效口径处的矢高。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    3mm≤f1*f2/f3≤4.5mm;
    f2为所述第二透镜的焦距,f3为所述第三透镜的焦距。
  3. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    -5≤f2/CT2≤-1;
    f2为所述第二透镜的焦距,CT2为所述第二透镜于光轴上的厚度。
  4. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    1.3≤f3/CT3≤2.1;
    f3为所述第三透镜的焦距,CT3为所述第三透镜于光轴上的厚度。
  5. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    5≤f45/f≤14;
    f45为所述第四透镜与所述第五透镜的组合焦距,f为所述光学系统的有效焦距。
  6. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    |CT4-CT5|*|α4-α5|≤20mm·10 -6/K;
    CT4为所述第四透镜于光轴上的厚度,CT5为所述第五透镜于光轴上的厚度,α4为所述第四透镜的热膨胀系数,α5为所述第五透镜的热膨胀系数。
  7. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0.5≤f6/CT6≤1.5;
    f6为所述第六透镜的焦距,CT6为所述第六透镜于光轴上的厚度。
  8. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    7≤Imgh/EPD≤10;
    Imgh为所述光学系统的成像面上有效成像区域于水平方向的长度,EPD为所述光学系统的入瞳直径。
  9. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    6≤ΣCT/f≤10;
    ΣCT为所述光学系统中各透镜于光轴上的厚度之和,f为所述光学系统的有效焦距。
  10. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    -8mm≤f*tan(FOV/2)≤-5mm;
    f为所述光学系统的有效焦距,FOV为所述光学系统于成像面上有效成像区域的水平方向的最大视场角。
  11. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    0≤|Nd5-Nd4|*100≤15;
    Nd4为所述第四透镜的d线折射率,Nd5为所述第五透镜的d线折射率。
  12. 根据权利要求1所述的光学系统,其特征在于,所述第四透镜的物侧面和像侧面均为凸面,所述第五透镜的物侧面和像侧面于近轴处均为凹面。
  13. 根据权利要求1所述的光学系统,其特征在于,所述光学系统进一步满足关系:-6.10≤f1/(Rs2-SAGs2)≤-5.55。
  14. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜和所述第三透镜的物侧面及像侧面均为球面。
  15. 根据权利要求1所述的光学系统,其特征在于,所述第二透镜、所述第四透镜、所述第五透镜及所述第六透镜的物侧面和像侧面均为非球面。
  16. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜和所述第三透镜的材质为玻璃,所述第二透镜、所述第四透镜、所述第五透镜及所述第六透镜的材质为塑料。
  17. 一种摄像模组,其特征在于,包括感光元件及权利要求1至16任意一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
  18. 根据权利要求17所述的摄像模组,其特征在于,包括用于滤除红外光的滤光片,所述滤光片设于所述第一透镜的物侧、所述光学系统中任意两个相邻透镜之间或所述第六透镜与所述感光元件之间。
  19. 一种电子设备,包括固定件及权利要求17或18所述的摄像模组,所述摄像模组设置于所述固定件。
  20. 一种汽车,包括安装部及权利要求19所述的电子设备,所述电子设备设置于所述安装部。
PCT/CN2020/108905 2020-08-13 2020-08-13 光学系统、摄像模组、电子设备及汽车 WO2022032573A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108905 WO2022032573A1 (zh) 2020-08-13 2020-08-13 光学系统、摄像模组、电子设备及汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108905 WO2022032573A1 (zh) 2020-08-13 2020-08-13 光学系统、摄像模组、电子设备及汽车

Publications (1)

Publication Number Publication Date
WO2022032573A1 true WO2022032573A1 (zh) 2022-02-17

Family

ID=80246785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108905 WO2022032573A1 (zh) 2020-08-13 2020-08-13 光学系统、摄像模组、电子设备及汽车

Country Status (1)

Country Link
WO (1) WO2022032573A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740600A (zh) * 2022-03-31 2022-07-12 歌尔光学科技有限公司 一种光学投影系统以及电子设备
CN114911040A (zh) * 2022-05-09 2022-08-16 惠州市星聚宇光学有限公司 红外镜头以及红外镜头模组
CN115047604A (zh) * 2022-08-17 2022-09-13 江西晶超光学有限公司 光学镜头、摄像模组及智能终端
CN115220186A (zh) * 2022-07-14 2022-10-21 福建福光天瞳光学有限公司 一种玻塑混合环视光学系统及其成像方法
CN115236842A (zh) * 2022-09-22 2022-10-25 江西联创电子有限公司 光学镜头
CN117233936A (zh) * 2023-11-10 2023-12-15 江西联创电子有限公司 光学镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201293863Y (zh) * 2007-10-05 2009-08-19 富士能株式会社 摄像透镜及摄像装置
CN103576290A (zh) * 2013-10-30 2014-02-12 宁波舜宇车载光学技术有限公司 一种广角镜头
KR20140019660A (ko) * 2012-08-07 2014-02-17 주식회사 세코닉스 차량 후방 카메라용 초광각 렌즈 시스템
JP2018116076A (ja) * 2017-01-16 2018-07-26 富士フイルム株式会社 撮像レンズおよび撮像装置
CN108490590A (zh) * 2018-05-02 2018-09-04 广东弘景光电科技股份有限公司 日夜共焦鱼眼监控光学系统及其应用的摄像模组
CN108873248A (zh) * 2017-05-15 2018-11-23 亚洲光学股份有限公司 广角镜头
CN111352222A (zh) * 2020-05-25 2020-06-30 宁波永新光学股份有限公司 一种高清小型车载广角成像系统
CN111856716A (zh) * 2020-08-13 2020-10-30 天津欧菲光电有限公司 光学系统、摄像模组、电子设备及汽车

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201293863Y (zh) * 2007-10-05 2009-08-19 富士能株式会社 摄像透镜及摄像装置
KR20140019660A (ko) * 2012-08-07 2014-02-17 주식회사 세코닉스 차량 후방 카메라용 초광각 렌즈 시스템
CN103576290A (zh) * 2013-10-30 2014-02-12 宁波舜宇车载光学技术有限公司 一种广角镜头
JP2018116076A (ja) * 2017-01-16 2018-07-26 富士フイルム株式会社 撮像レンズおよび撮像装置
CN108873248A (zh) * 2017-05-15 2018-11-23 亚洲光学股份有限公司 广角镜头
CN108490590A (zh) * 2018-05-02 2018-09-04 广东弘景光电科技股份有限公司 日夜共焦鱼眼监控光学系统及其应用的摄像模组
CN111352222A (zh) * 2020-05-25 2020-06-30 宁波永新光学股份有限公司 一种高清小型车载广角成像系统
CN111856716A (zh) * 2020-08-13 2020-10-30 天津欧菲光电有限公司 光学系统、摄像模组、电子设备及汽车

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740600A (zh) * 2022-03-31 2022-07-12 歌尔光学科技有限公司 一种光学投影系统以及电子设备
CN114911040A (zh) * 2022-05-09 2022-08-16 惠州市星聚宇光学有限公司 红外镜头以及红外镜头模组
CN114911040B (zh) * 2022-05-09 2024-04-05 广东省星聚宇光学股份有限公司 红外镜头以及红外镜头模组
CN115220186A (zh) * 2022-07-14 2022-10-21 福建福光天瞳光学有限公司 一种玻塑混合环视光学系统及其成像方法
CN115220186B (zh) * 2022-07-14 2024-01-12 福建福光天瞳光学有限公司 一种玻塑混合环视光学系统及其成像方法
CN115047604A (zh) * 2022-08-17 2022-09-13 江西晶超光学有限公司 光学镜头、摄像模组及智能终端
CN115236842A (zh) * 2022-09-22 2022-10-25 江西联创电子有限公司 光学镜头
CN115236842B (zh) * 2022-09-22 2023-02-24 江西联创电子有限公司 光学镜头
CN117233936A (zh) * 2023-11-10 2023-12-15 江西联创电子有限公司 光学镜头
CN117233936B (zh) * 2023-11-10 2024-03-29 江西联创电子有限公司 光学镜头

Similar Documents

Publication Publication Date Title
WO2022032573A1 (zh) 光学系统、摄像模组、电子设备及汽车
CN111856716A (zh) 光学系统、摄像模组、电子设备及汽车
CN113156627A (zh) 光学成像系统、成像模组和电子设备
WO2021217618A1 (zh) 光学系统、摄像模组、电子设备及汽车
CN113589486B (zh) 光学成像系统、取像模组以及电子设备
CN113433659B (zh) 光学镜头、摄像模组、电子设备及汽车
CN113433653B (zh) 光学镜头、摄像模组及电子设备
CN112835184A (zh) 光学系统、摄像模组、电子设备及汽车
CN112180560A (zh) 光学镜头、摄像模组及其电子设备、汽车
CN116149023B (zh) 光学镜头、摄像模组及电子设备
WO2022016316A1 (zh) 光学镜头、取像模组、电子装置及驾驶装置
CN111650723A (zh) 光学系统、摄像模组、电子设备及汽车
CN111239970A (zh) 光学系统、摄像模组、电子装置及汽车
CN211627919U (zh) 光学系统、摄像模组、电子装置及汽车
CN212623310U (zh) 光学系统、摄像模组、电子设备及汽车
CN214278527U (zh) 光学系统、摄像模组、电子设备及载具
CN213423581U (zh) 一种光学镜头、摄像模组及其电子设备、汽车
CN113625430B (zh) 光学系统、取像模组、电子设备及载具
CN113376809B (zh) 光学镜头、摄像模组、电子设备及汽车
CN212364695U (zh) 光学系统、摄像模组、电子设备及汽车
CN211786336U (zh) 光学系统、摄像模组、电子设备及汽车
CN112198628B (zh) 光学成像系统和具有其的取像模组、电子装置
WO2021217446A1 (zh) 光学系统、摄像模组、电子设备及汽车
CN115166938A (zh) 光学镜头、摄像模组及终端
CN114114655A (zh) 光学镜头、摄像模组、电子设备及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20949072

Country of ref document: EP

Kind code of ref document: A1