WO2022016316A1 - 光学镜头、取像模组、电子装置及驾驶装置 - Google Patents

光学镜头、取像模组、电子装置及驾驶装置 Download PDF

Info

Publication number
WO2022016316A1
WO2022016316A1 PCT/CN2020/103011 CN2020103011W WO2022016316A1 WO 2022016316 A1 WO2022016316 A1 WO 2022016316A1 CN 2020103011 W CN2020103011 W CN 2020103011W WO 2022016316 A1 WO2022016316 A1 WO 2022016316A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical axis
image side
object side
Prior art date
Application number
PCT/CN2020/103011
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
兰宾利
赵迪
周芮
Original Assignee
欧菲光集团股份有限公司
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 天津欧菲光电有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2020/103011 priority Critical patent/WO2022016316A1/zh
Publication of WO2022016316A1 publication Critical patent/WO2022016316A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets

Definitions

  • the present application relates to the technical field of optical imaging, and in particular, to an optical lens, an imaging module, an electronic device and a driving device.
  • ADAS Advanced Driving Assistance System
  • Advanced Driving Assistance System Advanced Driving Assistance System
  • driverless market more and more vehicle-mounted lenses are used in In the car assisted driving system.
  • people have put forward higher requirements for the imaging quality of the vehicle lens and the comfort of the picture.
  • the bird's-eye view of the top of the car is stitched together in all directions, so that the driver can see the image around the car, so as to effectively avoid rolling over, scratching bumpers and wheels
  • the surround-view camera can also identify parking lane signs, curbs and nearby vehicles, which greatly ensures the driving safety of the car.
  • optical lens it is difficult for traditional optical lenses to simultaneously satisfy the shooting with a large viewing angle range and clear imaging, so it is difficult to make early warnings in real time and accurately, resulting in the existence of driving risks.
  • the optical lens in order to obtain a larger field of view, the optical lens often needs to be assembled with multiple lenses, so that the size of the lens is larger, the price is higher, and it is difficult to meet the market demand.
  • an optical lens is provided.
  • An optical lens the optical lens includes sequentially from an object side to an image side along an optical axis,
  • the first lens with negative refractive power, the object side near optical axis of the first lens is convex, and the image side near optical axis is concave;
  • the image side of the second lens is concave at the near optical axis
  • the object side surface of the fifth lens is a convex surface at the near optical axis
  • the image side near optical axis of the sixth lens is a convex surface
  • the sixth lens and the fifth lens are cemented
  • the optical lens further includes a diaphragm, the diaphragm is arranged on the object side of the first lens or between the first lens and the sixth lens, and the first lens to the sixth lens
  • the object side and/or the image side of at least one of the lenses is aspheric;
  • optical lens satisfies the following relationship:
  • R56 represents the radius of curvature of the cemented surface of the fifth lens and the sixth lens at the optical axis.
  • An image capturing module includes the optical lens described in the above embodiments and a photosensitive element, wherein the photosensitive element is arranged on the image side of the optical lens.
  • An electronic device includes a casing and the imaging module described in the above embodiments, wherein the imaging module is mounted on the casing.
  • a driving device includes a vehicle body and the imaging module described in the above embodiments, wherein the imaging module is arranged on the vehicle body to acquire environmental information inside the vehicle body or around the vehicle body.
  • FIG. 1 shows a schematic structural diagram of an optical lens according to Embodiment 1 of the present application
  • FIG. 2 shows a longitudinal spherical aberration graph, an astigmatism graph, and a distortion graph of the optical lens of Embodiment 1, respectively;
  • FIG. 3 shows a schematic structural diagram of the optical lens according to Embodiment 2 of the present application.
  • Fig. 4 shows the longitudinal spherical aberration curve graph, astigmatism graph graph and distortion graph graph of the optical lens of Embodiment 2 respectively;
  • FIG. 5 shows a schematic structural diagram of the optical lens according to Embodiment 3 of the present application.
  • FIG. 6 shows a longitudinal spherical aberration graph, an astigmatism graph, and a distortion graph of the optical lens of Embodiment 3, respectively;
  • FIG. 7 shows a schematic structural diagram of the optical lens according to Embodiment 4 of the present application.
  • FIG. 8 shows a longitudinal spherical aberration graph, an astigmatism graph, and a distortion graph of the optical lens of Embodiment 4, respectively;
  • FIG. 9 shows a schematic structural diagram of the optical lens according to Embodiment 5 of the present application.
  • FIG. 10 respectively shows a longitudinal spherical aberration graph, an astigmatism graph and a distortion graph of the optical lens of Embodiment 5;
  • FIG. 11 shows a schematic structural diagram of the optical lens according to Embodiment 6 of the present application.
  • FIG. 12 shows a longitudinal spherical aberration graph, an astigmatism graph, and a distortion graph of the optical lens of Embodiment 6, respectively;
  • FIG. 13 shows a schematic diagram of an imaging module according to an embodiment of the present application.
  • FIG. 14 shows a schematic diagram of a driving device using an imaging module according to an embodiment of the present application.
  • FIG. 15 shows a schematic diagram of an electronic device using an imaging module according to an embodiment of the present application.
  • the expressions first, second, third, etc. are only used to distinguish one feature from another feature and do not imply any limitation on the feature. Accordingly, the first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the spherical or aspherical shapes shown in the drawings are shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings.
  • the drawings are examples only and are not drawn strictly to scale.
  • the space on the side where the object is located relative to the optical element is called the object side of the optical element.
  • the image formed by the object relative to the side space where the optical element is located is called the image of the optical element. side.
  • the surface of each lens closest to the object is called the object side, and the surface of each lens closest to the imaging surface is called the image side. And define the positive direction of the distance from the object side to the image side.
  • the lens surface is convex and the position of the convex surface is not defined, it means that the surface of the lens is convex at least near the optical axis; if the surface of the lens is concave and the position of the concave surface is not defined, it means that the surface is convex.
  • the lens surface is concave at least near the optical axis.
  • near the optical axis refers to an area near the optical axis.
  • the concavity and convexity of the surface area of the lens are determined by the intersection of the light rays passing through the area in parallel with the optical axis on the image side or the object side.
  • the lens includes a region near the optical axis, a region near the circumference, and an extension for fixing the lens.
  • the imaging light does not pass through the extension, so the range from the area near the optical axis to the area near the circumference can be defined as the effective aperture range of the lens.
  • the following embodiments omit part of the extension part for the sake of brevity of the drawings.
  • the method for determining the area near the optical axis, the area near the circumference or the range of multiple areas is as follows:
  • a center point as an intersection point on the surface of the lens and the optical axis
  • the distance from the center point to the boundary of the effective aperture range of the lens is the effective semi-aperture of the lens
  • an inflection point is located on the surface of the lens and not located in
  • the tangent line passing through the inflection point is perpendicular to the optical axis (that is, the surface types on both sides of the inflexion point on the lens surface are opposite).
  • inflection points outward from the center point in the radial direction of the lens, they are the first inflection point and the second inflection point in sequence, and the inflexion point farthest from the center point within the effective aperture range of the lens is the Nth inflection point. Inflection point.
  • the range between the center point and the first inflection point as the area near the optical axis
  • the area radially outward from the Nth inflection point is the area near the circumference
  • the area between the first inflection point and the Nth inflection point According to each inflection point, it is divided into different areas; if there is no inflection point on the lens surface, the area near the optical axis is defined as the area corresponding to 0% to 50% of the effective semi-aperture, and the area near the circumference is defined as 50% of the effective semi-aperture. The area corresponding to % to 100%.
  • An embodiment of the present application provides an optical lens that can take into account a wide viewing angle, high pixel size, and miniaturization.
  • the optical lens includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens.
  • the six lenses are sequentially arranged from the first lens to the sixth lens along the optical axis from the object side to the image side, and the imaging surface of the optical lens is located on the image side of the sixth lens.
  • the optical lens is also provided with a diaphragm, and the diaphragm is arranged on the object side of the first lens or between the first lens and the sixth lens, so as to better control the size of the incident light beam and improve the imaging quality of the optical lens. Further, the diaphragm is arranged between the third lens and the fourth lens. Specifically, the diaphragm includes an aperture diaphragm and a field diaphragm. Preferably, the diaphragm is an aperture diaphragm.
  • the aperture stop can be located on the surface of the lens (eg, the object side and the image side) and is in operative relationship with the lens, for example, by applying a light-blocking coating to the surface of the lens to form the aperture stop on that surface; or by clamping
  • the holder is fixed to hold the surface of the lens, and the holder structure located on the surface can limit the width of the imaging beam of the object point on the axis, thereby forming an aperture stop on the surface.
  • the first lens has a negative refractive power, and its object side is convex at the near-optical axis, and the image side is concave at the near-optical axis, which is conducive to enabling light incident from a large angle to enter the lens, thereby helping to expand the
  • the field of view of the optical lens is also conducive to suppressing the reduction of the achromatic effect of the lens and improving the resolution of the lens;
  • the second lens has a negative refractive power, and its image side near the optical axis is concave, which is beneficial to increase the width of the incident light, so that the light incident at a large angle is further expanded after being refracted by the first lens, thereby filling the pupil, It is fully transmitted to the high-pixel image surface to obtain a wider field of view, and at the same time, it is also beneficial to suppress the reduction of the achromatic effect of the lens and realize the high-pixel characteristics of the lens.
  • the third lens has positive refractive power. After the light is emitted from the first lens and the second lens with strong negative refractive power, the incident image surface of the edge field of view light is prone to produce a large field curvature. Therefore, by setting a third lens with positive refractive power , which can balance the negative refractive power of the lens at the front of the lens, correct edge aberration, improve the imaging resolution of the lens, reduce the probability of ghosting, and help reduce the distance between the third lens and the diaphragm. There is a balance between improving resolution.
  • the fourth lens has positive refractive power or negative refractive power, and its object side surface near the optical axis is concave, which can effectively disperse the configuration of refractive power, avoid excessive aberrations, and further improve imaging quality.
  • the fifth lens has positive refractive power, and the object side of the fifth lens is convex at the near-optical axis, the sixth lens has negative refractive power, and the image side of the sixth lens is convex at the near-optical axis.
  • the sensitivity of the lens system can be reduced, and the lens chromatic aberration and astigmatism caused by the refraction of the light through the front lens group can be corrected, so as to further correct the aberration and improve the lens Image resolution capabilities.
  • the image side of the fifth lens and the object side of the sixth lens can be glued together, so that the overall structure of the optical lens can be more compact, which is conducive to correcting aberrations, and achieves the goal of reducing the size of the lens and improving the resolution of the lens. At the same time, it can also reduce the tolerance sensitivity problems such as tilt or eccentricity caused by the lens assembly process, and improve the assembly yield of the lens.
  • the use of a cemented lens can effectively reduce the sensitivity of the lens.
  • the use of a cemented lens in the present application can not only effectively reduce the sensitivity of the lens, shorten the overall length of the lens, but also share the correction of the overall chromatic aberration and aberration of the lens, and improve the resolution capability of the optical lens.
  • the cemented lens may include one lens with negative refractive power and one lens with positive refractive power. As the fifth lens has positive refractive power, the sixth lens has negative refractive power.
  • the object side and/or the image side of at least one lens are aspherical.
  • the flexibility of lens design can be improved, aberrations can be corrected effectively, and the imaging quality of the optical lens can be improved.
  • the object side surface and the image side surface of the second lens to the sixth lens are all set as aspherical surfaces, so that aberrations generated during light transmission can be better corrected.
  • the surface of each lens in the optical lens may also be any combination of spherical and aspherical surfaces, which is not limited in this application.
  • the optical lens satisfies the following relationship: 1/R56 ⁇ -1mm -1 .
  • R56 represents the radius of curvature of the cemented surface of the fifth lens and the sixth lens at the optical axis. 1 / R56 may be -1.8mm -1, -1.6mm -1, -1.5mm -1 , -1.45mm -1, -1.4mm -1, -1.35mm -1, -1.3mm -1, -1.2mm -1 or -1.1mm -1 .
  • the curvature radius of the cemented surface of the fifth lens and the sixth lens at the optical axis can be reasonably configured, which is conducive to further converging the light, reducing the deviation of the incident angle and the exit angle of the light in different fields of view, and improving the lens Resolution.
  • 1/R56 exceeds the range, the glued surface is too flat or curved, which will easily increase the deviation of the incident angle and output angle of light in different fields of view, which is not conducive to improving the resolution of the lens.
  • the light emitted or reflected by the subject enters the optical lens from the object side direction, and passes through the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the first lens in sequence. Six lenses, which finally converge on the imaging surface.
  • the above optical lens by selecting an appropriate number of lenses and rationally distributing the refractive power and surface shape of each lens, can enhance the imaging resolution of the lens and effectively correct aberrations, thereby improving the resolution of the lens and ensuring the clarity of the image; at the same time, in the fifth When the cemented surface of the lens and the sixth lens satisfies a specific relationship, it is beneficial to further condense the light, reduce the deviation of the incident angle and the exit angle of the light in different fields of view, and improve the resolution of the lens.
  • the optical lens satisfies the following relationship: 3mm ⁇ f56 ⁇ 4mm.
  • f56 represents the combined focal length of the fifth lens and the sixth lens.
  • the f56 can be 3.02mm, 3.1mm, 3.2mm, 3.3mm, 3.4mm, 3.5mm, 3.6mm, 3.7mm, 3.8mm or 3.9mm.
  • it is beneficial to reasonably configure the combined focal length of the fifth lens and the sixth lens, thereby avoiding astigmatism in the lens system and further improving the imaging quality of the lens.
  • f56 exceeds the range, the refractive power provided by the fifth lens and the sixth lens as a whole is too strong or too weak, which is not conducive to suppressing the astigmatism phenomenon and reduces the imaging quality of the lens.
  • the optical lens satisfies the following relationship:
  • f1 represents the effective focal length of the first lens
  • f represents the effective focal length of the optical lens.
  • f1/f can be -9, -8.7, -8.4, -8.1, -7.8, -7.5, -7.2, -6.9, or -6.6.
  • the negative refractive power of the first lens does not become too strong, which is beneficial to suppress the high-order aberration caused by the light beam at the peripheral part of the imaging area; when the lower limit of the above relationship is satisfied , which can ensure that the first lens provides sufficient negative refractive power for the lens, thereby helping to suppress the reduction of the achromatic effect and enabling the lens to have high resolution performance.
  • the negative refractive power of the first lens is too strong, which is not conducive to suppressing edge aberration; and when f1/f is lower than the lower limit, the negative refractive power of the first lens is weak, which is not conducive to suppressing the extinction
  • the reduction of the chromatic aberration effect will easily reduce the resolution of the lens.
  • the optical lens satisfies the following relationship: -5 ⁇ f2/CT2 ⁇ -2; where f2 represents the effective focal length of the second lens, and CT2 represents the lens thickness of the second lens on the optical axis.
  • f2/CT2 can be -4.8, -4.4, -4, -3.8, -3.6, -3.4, -3.2, -3, -2.8, or -2.5.
  • the thickness of the second lens can be reasonably configured to make the arrangement structure of the lens system more compact, thereby realizing miniaturization and reducing the sensitivity of the rear lens group;
  • the time is limited, it can be ensured that the second lens provides sufficient negative refractive power for the lens, thereby helping to suppress the reduction of the achromatic effect and enabling the lens to have high-resolution performance.
  • f2/CT2 exceeds the upper limit, the center thickness of the second lens is too large, which is not conducive to miniaturization; and when f2/CT2 is lower than the lower limit, the negative refractive power of the second lens is weak, which is not conducive to suppressing the achromatic effect. It is easy to reduce the resolution of the lens.
  • the optical lens satisfies the following relationship:
  • f3 represents the effective focal length of the third lens
  • f represents the effective focal length of the optical lens.
  • f3/f can be 4.1, 4.2, 4.3, 4.4, 4.5, 5, 6, 7, 8, 9, 10, 11 or 11.5.
  • the third lens provides the lens with positive refractive power, so that the light rays diverged by the negative refractive power of the first lens and the second lens can be converged, thereby reducing the distance between the third lens and the diaphragm , to achieve the miniaturization of the lens.
  • the light converging burden of the fourth lens can be reduced.
  • the third lens provides sufficient positive refractive power for the lens, which is conducive to correcting aberrations, and achieving a balance between reducing the size of the lens and improving the resolution of the lens;
  • the positive refractive power of the third lens will not be too strong, so the incident angle of the light on the object side and the image side of the third lens will not become too large, which is conducive to suppressing the generation of high-order aberrations .
  • the positive refractive power of the third lens is weak, which is not conducive to aberration correction; and when f3/f is lower than the lower limit, the positive refractive power of the third lens is strong, and it is easy to increase the third lens.
  • the incident angle of light on the object side and image side of the lens is not conducive to suppressing the generation of high-order aberrations.
  • the optical lens satisfies the following relationship: -14 ⁇ f4/f ⁇ 43; wherein, f4 represents the effective focal length of the fourth lens, and f represents the effective focal length of the optical lens.
  • f4/f can be -13.7, -13.5, -12, -11.5, -11, -5, 5, 10, 20, 30, 40, or 42.5.
  • the fourth lens provides positive or negative refractive power to the lens.
  • the fourth lens when -14 ⁇ f4/f ⁇ 0, the fourth lens provides negative refractive power for the lens, which helps to reduce the distance between the third lens and the diaphragm, thereby facilitating the entry of large-angle light into the lens , expand the object space imaging range of the optical lens, and when f4/f is lower than the lower limit, it is not conducive to the correction of the optical lens aberration, which is easy to reduce the imaging quality; when 0 ⁇ f4/f ⁇ 43, the fourth lens provides positive The refractive power helps to further condense the light and reduce the burden of the fifth lens to condense the light. When the f4/f exceeds the upper limit, serious astigmatism is likely to occur, which is not conducive to the improvement of imaging quality.
  • the optical lens satisfies the following relationship:
  • CT5 represents the thickness of the lens of the fifth lens on the optical axis
  • CT6 represents the thickness of the lens of the sixth lens on the optical axis.
  • f56/(CT5-CT6) can be 3.5, 4, 4.1, 4.2, 4.3, 4.4, 4.6, 4.9, 5.2, 5.5, or 5.8.
  • the thicknesses of the fifth lens and the sixth lens can be reasonably configured, which is beneficial to reasonably match the refractive power of the fifth lens and the sixth lens when one positive and one negative lens are used, so as to reduce the aberrations. Correct each other and make the fifth lens and sixth lens provide the smallest aberration contribution ratio to the lens system.
  • f56/(CT5-CT6) When f56/(CT5-CT6) is lower than the lower limit, the difference in the center thickness of the fifth lens and the sixth lens is too large, which is not conducive to the gluing process. will be larger, and then it is easy to produce glue cracking or degumming.
  • f56/(CT5-CT6) exceeds the upper limit, the combined focal length of the fifth lens and the sixth lens is too large, making the fifth lens and the sixth lens as a whole. If the provided refractive power is too small, the lens system is prone to serious astigmatism, which is not conducive to improving the imaging quality.
  • the optical lens satisfies the following relationship:
  • RS5 represents the radius of curvature of the object side of the third lens at the optical axis
  • RS6 represents the radius of curvature of the image side of the third lens at the optical axis
  • (RS5+RS6)/(RS5-RS6) can be -1.95, -1.5, -1, 1, 1.4, 1.8, 2.2, 2.6 or 2.9.
  • the curvature radius of the object side and the image side of the third lens at the optical axis can be reasonably configured, so as to control the degree of curvature of the third lens, reduce the generation rate of ghost images, and improve the resolution capability of the lens.
  • the optical lens satisfies the following relationship:
  • the parameter relationship between the fifth lens and the sixth lens can be reasonably configured, thereby reducing the ratio of ghost images, improving the imaging quality, and making the lens have high resolution.
  • /(CT5-CT6) exceeds the upper limit, the larger the sagittal value of the image side of the fifth lens, the more curved the cemented surface, which is not conducive to the cementation process, and it is easy to increase the difference between the fifth lens and the sixth lens after cementation.
  • Decentration reduces the resolution of the lens system; and when
  • the optical lens satisfies the following relationship:
  • TTL represents the distance on the optical axis from the object side of the first lens to the imaging surface of the optical lens
  • f represents the effective focal length of the optical lens.
  • TTL/f can be 15.05, 15.1, 15.2, 15.3, 15.4, 15.6, 16, 17, 18, 18.5 or 18.7.
  • the TTL/f exceeds the upper limit, the total length of the optical lens is too long, which is not conducive to miniaturization; when the TTL/f is lower than the lower limit, the effective focal length of the optical lens is too long, which is not conducive to satisfying the range of the lens’s field of view (that is, it does not Conducive to wide-angle), can not obtain enough object space information.
  • the optical lens satisfies the following relationship:
  • ⁇ CT16 represents the sum of the lens thicknesses on the optical axis of the first to sixth lenses
  • ⁇ D16 represents the thickness of the previous lens among the adjacent lenses of the first to sixth lenses.
  • ⁇ CT16/ ⁇ D16 can be 2.2, 2.4, 2.5, 2.55, 2.6, 2.65, 2.7, 2.8 or 2.9.
  • ⁇ CT16/ ⁇ D16 exceeds the upper limit or is lower than the lower limit, it is easy to cause the center thickness of each lens of the lens to be too large or the air interval between adjacent lenses to be too large, which is not conducive to the realization of the miniaturization of the lens.
  • a filter is further arranged between the sixth lens and the imaging surface of the optical lens, which is used to filter the light in the non-working wavelength band, so as to prevent false color or ripples from being generated due to the interference of the non-working wavelength light. phenomenon to avoid image color distortion.
  • the filter can be an infrared filter, and its material is glass.
  • each lens in the optical lens can be made of glass or all of plastic.
  • the lens made of plastic can reduce the weight of the optical lens and the production cost, while the lens made of glass can make the optical lens have better performance. excellent temperature tolerance and excellent optical properties.
  • the material of each lens is preferably glass, so that the vehicle lens can have better optical performance in different environments. It should be noted that the material of each lens in the optical lens can also be any combination of glass and plastic, not necessarily all glass or all plastic.
  • the optical lens may further include protective glass.
  • the protective glass is arranged on the image side of the sixth lens or the image side of the filter, which protects the photosensitive element, and can also prevent the photosensitive element from being contaminated with dust, thereby further ensuring the image quality. It should be pointed out that when the optical lens is applied to electronic devices such as mobile phones and tablets, protective glass may not be provided to further reduce the weight of the electronic devices.
  • the optical lens of the above-mentioned embodiments of the present application may employ multiple lenses, for example, the above-mentioned six lenses.
  • the above-mentioned optical lens can have the characteristics of large field of view, small total length, and high resolution, as well as large Aperture (FNO can be 2.06) and lighter weight, so as to better meet the application requirements of electronic devices such as mobile phones, tablets, and car lenses.
  • FNO large Aperture
  • lighter weight so as to better meet the application requirements of electronic devices such as mobile phones, tablets, and car lenses.
  • FNO large Aperture
  • those skilled in the art should understand that the number of lenses constituting the optical lens can be changed to obtain various results and advantages described in this specification without departing from the technical solutions claimed in the present application.
  • the optical lens 100 of Embodiment 1 of the present application will be described below with reference to FIGS. 1 to 2 .
  • FIG. 1 shows a schematic structural diagram of the optical lens 100 of the first embodiment.
  • the optical lens 100 includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , and a sixth lens in sequence from the object side to the image side along the optical axis L6 and imaging plane S17.
  • the first lens L1 has negative refractive power
  • the object side S1 and the image side S2 are spherical, wherein the object side S1 is convex at the near-optical axis, and the image side S2 is concave at the near-optical axis.
  • the second lens L2 has negative refractive power
  • the object side S3 and the image side S4 are both aspherical, wherein the object side S3 is concave near the optical axis, and the image side S4 is concave near the optical axis.
  • the third lens L3 has a positive refractive power, and both the object side S5 and the image side S6 are aspherical, wherein the object side S5 is convex near the optical axis, and the image side S6 is convex near the optical axis.
  • the fourth lens L4 has a positive refractive power, and both the object side S7 and the image side S8 are aspherical, wherein the object side S7 is concave at the near-optical axis, and the image side S8 is convex at the near-optical axis.
  • the fifth lens L5 has a positive refractive power, and both the object side S9 and the image side S10 are aspherical, wherein the object side S9 is convex near the optical axis, and the image side S10 is convex near the optical axis.
  • the sixth lens L6 has negative refractive power, the object side S11 and the image side S12 are both aspherical, wherein the object side S11 is concave near the optical axis, and the image side S12 is convex near the optical axis.
  • the object side and the image side of the second lens L2 to the sixth lens L6 are set as aspherical surfaces, which is conducive to correcting aberrations and solving the problem of image surface distortion, and can also make the lenses smaller, thinner and flatter. In this way, excellent optical imaging effects can be achieved, so that the optical lens 100 has the characteristics of miniaturization.
  • the first lens L1 and the fourth lens L4 are both made of glass, and the use of glass lenses can enable the optical lens 100 to have better temperature tolerance characteristics and excellent optical performance.
  • the second lens L2 , the third lens L3 , the fifth lens L5 and the sixth lens L6 are all made of plastic, and the use of plastic lenses can reduce the weight of the optical lens 100 and the production cost.
  • a diaphragm STO is also arranged between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100 .
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side S13 and an image side S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side S15 and an image side S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is used to filter out the light in the non-working wavelength band, so as to prevent the phenomenon of false color or ripple caused by the interference of the non-working wavelength band, and avoid the color distortion of the image.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 1 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and effective focal length of the lens of the optical lens 100 of Embodiment 1, where the refractive index and Abbe number correspond to
  • the reference wavelength of the lens is 587.56nm, and the reference wavelength corresponding to the effective focal length is 546.07nm.
  • the units of curvature radius, thickness and effective focal length of the lens are all millimeters (mm).
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the image side to the image side of the lens
  • the value of the aperture ST0 in the "thickness” parameter column is the vertex of the aperture ST0 to the object side of the latter lens (the vertex refers to the intersection of the lens surface and the optical axis)
  • the direction from the object side of the first lens L1 to the image side of the last lens is the positive direction of the optical axis.
  • the aperture ST0 is set at the position of the lens in Figure 1.
  • the diaphragm STO is positive, the diaphragm is to the left of the vertex of the object side of the lens.
  • the aspheric surface type in a lens is defined by the following formula:
  • x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 2 below gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the lens aspheric surfaces S3-S12 in Example 1.
  • the distance TTL on the optical axis from the object side surface S1 of the first lens L1 to the imaging surface S17 of the optical lens 100 is 17.365 mm.
  • f56 3.431mm, where f56 represents the combined focal length of the fifth lens and the sixth lens;
  • f1/f -7.102, where f1 represents the effective focal length of the first lens, and f represents the effective focal length of the optical lens;
  • f2/CT2 -3.614, where f2 represents the effective focal length of the second lens, and CT2 represents the lens thickness of the second lens on the optical axis;
  • f3/f 5.858, where f3 represents the effective focal length of the third lens
  • f4/f 42.381, where f4 represents the effective focal length of the fourth lens
  • CT5 represents the lens thickness of the fifth lens on the optical axis
  • CT6 represents the lens thickness of the sixth lens on the optical axis
  • RS5+RS6)/(RS5-RS6) -1.947, wherein, RS5 represents the radius of curvature of the object side of the third lens at the optical axis, and RS6 represents the radius of curvature of the image side of the third lens at the optical axis;
  • Sagf5 represents the vertical projection point of the edge of the image side S10 of the fifth lens L5 on the optical axis to the intersection of the image side 10 of the fifth lens L5 and the optical axis distance;
  • TTL/f 15.644, where TTL represents the distance on the optical axis from the object side of the first lens to the imaging plane of the optical lens;
  • ⁇ CT16/ ⁇ D16 2.625
  • ⁇ CT16 represents the sum of the lens thicknesses on the optical axis of the first to sixth lenses
  • ⁇ D16 represents the thickness of the previous lens among the adjacent lenses of the first to sixth lenses. The sum of the air distances on the optical axis from the image side to the object side of the latter lens.
  • FIG. 2 shows a longitudinal spherical aberration graph, an astigmatism graph, and a distortion graph of the optical lens 100 of Embodiment 1, respectively.
  • the longitudinal spherical aberration graph shows the focus point deviation of the light with wavelengths of 435.83nm, 486.13nm, 546.07nm, 587.56nm and 656.27nm after passing through the optical lens 100;
  • the astigmatism graph shows the light with a wavelength of 546.07nm
  • the distortion graph shows the distortion of light with a wavelength of 546.07 nm passing through the optical lens 100 at different angles of view. It can be seen from FIG. 2 that the optical lens 100 provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of the optical lens 100 according to Embodiment 2 of the present application.
  • the optical lens 100 includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , and a sixth lens in sequence from the object side to the image side along the optical axis L6 and imaging plane S17.
  • the first lens L1 has negative refractive power
  • the object side S1 and the image side S2 are spherical, wherein the object side S1 is convex at the near-optical axis, and the image side S2 is concave at the near-optical axis.
  • the second lens L2 has negative refractive power
  • the object side S3 and the image side S4 are both aspherical, wherein the object side S3 is concave near the optical axis, and the image side S4 is concave near the optical axis.
  • the third lens L3 has a positive refractive power, and both the object side S5 and the image side S6 are aspherical, wherein the object side S5 is convex near the optical axis, and the image side S6 is convex near the optical axis.
  • the fourth lens L4 has a negative refractive power, and both the object side S7 and the image side S8 are aspherical, wherein the object side S7 is concave at the near-optical axis, and the image side S8 is convex at the near-optical axis.
  • the fifth lens L5 has a positive refractive power, and both the object side S9 and the image side S10 are aspherical, wherein the object side S9 is convex near the optical axis, and the image side S10 is convex near the optical axis.
  • the sixth lens L6 has negative refractive power, the object side S11 and the image side S12 are both aspherical, wherein the object side S11 is concave near the optical axis, and the image side S12 is convex near the optical axis.
  • the object side surface and the image side surface of the second lens L2 to the sixth lens L6 are all set as aspherical surfaces.
  • the first lens L1 and the fourth lens L4 are all made of glass, and the second lens L2, the third lens L3, the fifth lens L5 and the sixth lens L6 are all made of plastic.
  • a diaphragm STO is also disposed between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100 .
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side S13 and an image side S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side S15 and an image side S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 3 shows the surface type, curvature radius, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) of each lens of the optical lens 100 of Embodiment 2, and the effective focal length of each lens, where the refractive index and Abbe
  • the reference wavelength corresponding to the number is 587.56nm
  • the reference wavelength corresponding to the effective focal length is 546.07nm
  • the units of the radius of curvature, thickness and effective focal length of the lens are all millimeters (mm);
  • the coefficients of the higher-order terms of the spherical surface S3-S12, wherein the aspherical surface type can be defined by the formula (1) given in the embodiment 1.
  • FIG. 4 respectively shows a longitudinal spherical aberration graph, an astigmatism graph, and a distortion graph of the optical lens 100 of the second embodiment.
  • the longitudinal spherical aberration graph shows the focus point deviation of the light with wavelengths of 435.83nm, 486.13nm, 546.07nm, 587.56nm and 656.27nm after passing through the optical lens 100;
  • the astigmatism graph shows the light with a wavelength of 546.07nm
  • the distortion graph shows the distortion of light with a wavelength of 546.07 nm passing through the optical lens 100 at different angles of view. It can be seen from FIG. 4 that the optical lens 100 provided in the second embodiment can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of the optical lens 100 according to Embodiment 3 of the present application.
  • the optical lens 100 includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , and a sixth lens in sequence from the object side to the image side along the optical axis L6 and imaging plane S17.
  • the first lens L1 has negative refractive power
  • the object side S1 and the image side S2 are spherical, wherein the object side S1 is convex at the near-optical axis, and the image side S2 is concave at the near-optical axis.
  • the second lens L2 has negative refractive power
  • the object side S3 and the image side S4 are both aspherical, wherein the object side S3 is concave near the optical axis, and the image side S4 is concave near the optical axis.
  • the third lens L3 has a positive refractive power, and both the object side S5 and the image side S6 are aspherical, wherein the object side S5 is convex near the optical axis, and the image side S6 is convex near the optical axis.
  • the fourth lens L4 has a positive refractive power, and both the object side S7 and the image side S8 are aspherical, wherein the object side S7 is concave at the near-optical axis, and the image side S8 is convex at the near-optical axis.
  • the fifth lens L5 has a positive refractive power, and both the object side S9 and the image side S10 are aspherical, wherein the object side S9 is convex near the optical axis, and the image side S10 is convex near the optical axis.
  • the sixth lens L6 has negative refractive power, the object side S11 and the image side S12 are both aspherical, wherein the object side S11 is concave near the optical axis, and the image side S12 is convex near the optical axis.
  • the object side surface and the image side surface of the second lens L2 to the sixth lens L6 are all set as aspherical surfaces.
  • the first lens L1 and the fourth lens L4 are all made of glass, and the second lens L2, the third lens L3, the fifth lens L5 and the sixth lens L6 are all made of plastic.
  • a diaphragm STO is also arranged between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100 .
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side S13 and an image side S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side S15 and an image side S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 5 shows the surface type, curvature radius, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) of each lens of the optical lens 100 of Embodiment 3, and the effective focal length of each lens, where the refractive index and Abbe
  • the reference wavelength corresponding to the number is 587.56nm
  • the reference wavelength corresponding to the effective focal length is 546.07nm
  • the units of curvature radius, thickness and effective focal length of the lens are all millimeters (mm);
  • the coefficients of the higher-order terms of the spherical surface S3-S12, wherein the aspherical surface type can be defined by the formula (1) given in the embodiment 1.
  • FIG. 6 respectively shows a longitudinal spherical aberration graph, an astigmatism graph, and a distortion graph of the optical lens 100 of the third embodiment.
  • the longitudinal spherical aberration graph shows the focus point deviation of the light with wavelengths of 435.83nm, 486.13nm, 546.07nm, 587.56nm and 656.27nm after passing through the optical lens 100;
  • the astigmatism graph shows the light with a wavelength of 546.07nm
  • the distortion graph shows the distortion of light with a wavelength of 546.07 nm passing through the optical lens 100 at different angles of view. It can be seen from FIG. 6 that the optical lens 100 provided in the third embodiment can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of the optical lens 100 according to Embodiment 4 of the present application.
  • the optical lens 100 includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , and a sixth lens in sequence from the object side to the image side along the optical axis L6 and imaging plane S17.
  • the first lens L1 has negative refractive power
  • the object side S1 and the image side S2 are spherical, wherein the object side S1 is convex at the near-optical axis, and the image side S2 is concave at the near-optical axis.
  • the second lens L2 has negative refractive power
  • the object side S3 and the image side S4 are both aspherical, wherein the object side S3 is concave near the optical axis, and the image side S4 is concave near the optical axis.
  • the third lens L3 has a positive refractive power, and both the object side S5 and the image side S6 are aspherical, wherein the object side S5 is convex near the optical axis, and the image side S6 is convex near the optical axis.
  • the fourth lens L4 has a negative refractive power, and both the object side S7 and the image side S8 are aspherical, wherein the object side S7 is concave at the near-optical axis, and the image side S8 is convex at the near-optical axis.
  • the fifth lens L5 has a positive refractive power, and both the object side S9 and the image side S10 are aspherical, wherein the object side S9 is convex near the optical axis, and the image side S10 is convex near the optical axis.
  • the sixth lens L6 has negative refractive power, the object side S11 and the image side S12 are both aspherical, wherein the object side S11 is concave near the optical axis, and the image side S12 is convex near the optical axis.
  • the object side surface and the image side surface of the second lens L2 to the sixth lens L6 are all set as aspherical surfaces.
  • the first lens L1 and the fourth lens L4 are all made of glass, and the second lens L2, the third lens L3, the fifth lens L5 and the sixth lens L6 are all made of plastic.
  • a diaphragm STO is also arranged between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100 .
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side S13 and an image side S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side S15 and an image side S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 7 shows the surface type, curvature radius, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) of each lens of the optical lens 100 of Embodiment 4, and the effective focal length of each lens, where the refractive index and Abbe
  • the reference wavelength corresponding to the number is 587.56nm
  • the reference wavelength corresponding to the effective focal length is 546.07nm
  • the units of curvature radius, thickness and effective focal length of the lens are all millimeters (mm);
  • the coefficients of the higher-order terms of the spherical surface S3-S12, wherein the aspherical surface type can be defined by the formula (1) given in the embodiment 1.
  • FIG. 8 respectively shows a longitudinal spherical aberration graph, an astigmatism graph, and a distortion graph of the optical lens 100 of the fourth embodiment.
  • the longitudinal spherical aberration graph shows the focus point deviation of the light with wavelengths of 435.83nm, 486.13nm, 546.07nm, 587.56nm and 656.27nm after passing through the optical lens 100;
  • the astigmatism graph shows the light with a wavelength of 546.07nm
  • the distortion graph shows the distortion of light with a wavelength of 546.07 nm passing through the optical lens 100 at different angles of view. It can be seen from FIG. 8 that the optical lens 100 provided in the fourth embodiment can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of the optical lens 100 according to Embodiment 5 of the present application.
  • the optical lens 100 includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , and a sixth lens in sequence from the object side to the image side along the optical axis L6 and imaging plane S17.
  • the first lens L1 has negative refractive power
  • the object side S1 and the image side S2 are spherical, wherein the object side S1 is convex at the near-optical axis, and the image side S2 is concave at the near-optical axis.
  • the second lens L2 has negative refractive power
  • the object side S3 and the image side S4 are both aspherical, wherein the object side S3 is concave near the optical axis, and the image side S4 is concave near the optical axis.
  • the third lens L3 has a positive refractive power, and both the object side S5 and the image side S6 are aspherical, wherein the object side S5 is convex near the optical axis, and the image side S6 is convex near the optical axis.
  • the fourth lens L4 has a negative refractive power, and both the object side S7 and the image side S8 are aspherical, wherein the object side S7 is concave at the near-optical axis, and the image side S8 is convex at the near-optical axis.
  • the fifth lens L5 has a positive refractive power, and both the object side S9 and the image side S10 are aspherical, wherein the object side S9 is convex near the optical axis, and the image side S10 is convex near the optical axis.
  • the sixth lens L6 has negative refractive power, the object side S11 and the image side S12 are both aspherical, wherein the object side S11 is concave near the optical axis, and the image side S12 is convex near the optical axis.
  • the object side surface and the image side surface of the second lens L2 to the sixth lens L6 are all set as aspherical surfaces.
  • the first lens L1 and the fourth lens L4 are all made of glass, and the second lens L2, the third lens L3, the fifth lens L5 and the sixth lens L6 are all made of plastic.
  • a diaphragm STO is also disposed between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100 .
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side S13 and an image side S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side S15 and an image side S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 9 shows the surface type, curvature radius, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) of each lens of the optical lens 100 of Embodiment 5, and the effective focal length of each lens, where the refractive index and Abbe
  • the reference wavelength corresponding to the number is 587.56nm
  • the reference wavelength corresponding to the effective focal length is 546.07nm
  • the units of curvature radius, thickness and effective focal length of the lens are all millimeters (mm);
  • the coefficients of the higher-order terms of the spherical surface S3-S12, wherein the aspherical surface type can be defined by the formula (1) given in the embodiment 1.
  • FIG. 10 respectively shows a longitudinal spherical aberration graph, an astigmatism graph, and a distortion graph of the optical lens 100 of the fifth embodiment.
  • the longitudinal spherical aberration graph shows the focus point deviation of the light with wavelengths of 435.83nm, 486.13nm, 546.07nm, 587.56nm and 656.27nm after passing through the optical lens 100;
  • the astigmatism graph shows the light with a wavelength of 546.07nm
  • the distortion graph shows the distortion of light with a wavelength of 546.07 nm passing through the optical lens 100 at different angles of view. It can be seen from FIG. 10 that the optical lens 100 given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of the optical lens 100 according to Embodiment 6 of the present application.
  • the optical lens 100 includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , and a sixth lens in sequence from the object side to the image side along the optical axis L6 and imaging plane S17.
  • the first lens L1 has negative refractive power
  • the object side S1 and the image side S2 are spherical, wherein the object side S1 is convex at the near-optical axis, and the image side S2 is concave at the near-optical axis.
  • the second lens L2 has negative refractive power
  • the object side S3 and the image side S4 are both aspherical, wherein the object side S3 is concave near the optical axis, and the image side S4 is concave near the optical axis.
  • the third lens L3 has a positive refractive power, and both the object side S5 and the image side S6 are aspherical, wherein the object side S5 is convex near the optical axis, and the image side S6 is convex near the optical axis.
  • the fourth lens L4 has a negative refractive power, and both the object side S7 and the image side S8 are aspherical, wherein the object side S7 is concave at the near-optical axis, and the image side S8 is convex at the near-optical axis.
  • the fifth lens L5 has a positive refractive power, and both the object side S9 and the image side S10 are aspherical, wherein the object side S9 is convex near the optical axis, and the image side S10 is convex near the optical axis.
  • the sixth lens L6 has negative refractive power, the object side S11 and the image side S12 are both aspherical, wherein the object side S11 is concave near the optical axis, and the image side S12 is convex near the optical axis.
  • the object side surface and the image side surface of the second lens L2 to the sixth lens L6 are all set as aspherical surfaces.
  • the first lens L1 and the fourth lens L4 are all made of glass, and the second lens L2, the third lens L3, the fifth lens L5 and the sixth lens L6 are all made of plastic.
  • a diaphragm STO is also arranged between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100.
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side S13 and an image side S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side S15 and an image side S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 11 shows the surface type, curvature radius, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) of each lens of the optical lens 100 of Embodiment 6, and the effective focal length of each lens, where the refractive index and Abbe
  • the reference wavelength corresponding to the number is 587.56nm
  • the reference wavelength corresponding to the effective focal length is 546.07nm
  • the units of curvature radius, thickness and effective focal length of the lens are all millimeters (mm);
  • the coefficients of the higher-order terms of the spherical surface S3-S12, wherein the aspherical surface type can be defined by the formula (1) given in the embodiment 1.
  • FIG. 12 respectively shows a longitudinal spherical aberration graph, an astigmatism graph, and a distortion graph of the optical lens 100 of the sixth embodiment.
  • the longitudinal spherical aberration graph shows the focus point deviation of the light with wavelengths of 435.83nm, 486.13nm, 546.07nm, 587.56nm and 656.27nm after passing through the optical lens 100;
  • the astigmatism graph shows the light with a wavelength of 546.07nm
  • the distortion graph shows the distortion of light with a wavelength of 546.07 nm passing through the optical lens 100 at different angles of view. According to FIG. 12 , it can be seen that the optical lens 100 given in Embodiment 6 can achieve good imaging quality.
  • Table 13 shows the numerical values of the correlation expressions of the present invention corresponding to the above embodiments.
  • Example 1 Example 2 Example 3 Example 4 Example 5
  • Example 6 f(mm) 1.11 1.13 0.9 1.15 1.15 1.14
  • the present application further provides an imaging module 200 , which includes the optical lens 100 (as shown in FIG. 1 ) as described above; side, the photosensitive surface of the photosensitive element 210 coincides with the imaging surface S17.
  • the photosensitive element 210 can be a Complementary Metal Oxide Semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device) image sensor, and the imaging surface S17 is different according to the corresponding photosensitive element 210.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the imaging module 200 further includes a lens barrel (not shown in the figure) for carrying the optical lens 100 and a corresponding support device (not shown in the figure).
  • the image capturing module 200 further includes a driving device (not shown in the figure) and an image stabilization module (not shown in the figure).
  • the driving device can have an Auto-Focus function, and the driving method can use a voice coil motor (Voice Coil Motor, VCM), a Micro Electro-Mechanical Systems (MEMS), a piezoelectric system (Piezoelectric) , and drive systems such as Shape Memory Alloy.
  • the driving device can make the optical lens 100 obtain a better imaging position, so that the subject can be photographed to obtain clear images under different object distances;
  • the image stabilization module can be an accelerometer, a gyroscope or a Hall element (Hall). Effect Sensor).
  • the driving device and the image stabilization module work together as an Optical Image Stabilization (OIS), by adjusting the displacement of the optical lens 100 on the optical axis to compensate for the blurred image caused by shaking at the moment of shooting, or using the image in the image software Compensation technology to provide Electronic Image Stabilization (EIS) to further improve the imaging quality of dynamic and low-light scenes.
  • OIS Optical Image Stabilization
  • EIS Electronic Image Stabilization
  • the image capturing module 200 can use the aforementioned optical lens 100 to capture an image with high pixels and a wide viewing angle, and at the same time, the image capturing module 200 also has the structural features of miniaturization and light weight.
  • the imaging module 200 can be applied to fields such as mobile phones, automobiles, monitoring, and medical treatment. Specifically, it can be used as a mobile phone camera, a car camera, a surveillance camera or an endoscope, etc., and has a broad market application range.
  • the above-mentioned imaging module 200 can be applied to the driving device 300 as a vehicle-mounted camera.
  • the driving device 300 may be an autonomous vehicle or a non-autonomous vehicle.
  • the imaging module 200 can be used as a front-view camera, a rear-view camera, a side-view camera or an interior camera of the driving device 300 .
  • the driving device 300 includes a vehicle body 310, and the imaging module 200 is installed at any position of the left rearview mirror, right rearview mirror, rear trunk, headlights, rear headlights, etc. of the vehicle body 310 to obtain the A clear image of the surroundings of the vehicle body 310 .
  • the driving device 300 is also provided with a display screen 320, the display screen 320 is installed in the vehicle body 310, and the imaging module 200 is connected to the display screen 320 in communication, and the image information obtained by the imaging module 200 can be transmitted to the display It can be displayed on the screen 320, so that the driver can obtain more complete surrounding image information and improve the safety guarantee when driving.
  • the image capturing module 200 is applied to the driving assistance system, the image capturing module 200 can be installed inside the vehicle body 310 to obtain the driving state of the driver, so as to remind the driver to pay attention when driving fatigued, and further improve the driving safety sex.
  • the imaging module 200 may be applied to an autonomous vehicle.
  • the imaging module 200 is installed at any position on the body of the autonomous vehicle.
  • the imaging module 200 can also be installed on the top of the vehicle body.
  • the imaging module 200 by installing a plurality of imaging modules 200 on the autonomous vehicle to obtain the environmental information of the 360° angle of view around the vehicle body 310, the environmental information obtained by the imaging modules 200 will be transmitted to the analysis and processing unit of the autonomous vehicle In order to analyze the road conditions around the vehicle body 310 in real time.
  • the image capturing module 200 the accuracy of identification and analysis of the analysis processing unit can be improved, thereby improving the safety performance during automatic driving.
  • the above-mentioned image capturing module 200 can also be used as a light and thin camera in an electronic device 400 .
  • the electronic device 400 includes a casing 410 and the imaging module 200 as described above, and the imaging module 200 is mounted on the casing 410 .
  • the imaging module 200 is disposed in the casing 410 and exposed from the casing 410 to acquire images.
  • the casing 410 can provide the imaging module 200 with protection from dust, water, and drop.
  • the casing 410 is provided with a A hole corresponding to the image capturing module 200, so that the light can pass through the hole or pass through the casing.
  • the above-mentioned electronic device 400 has the characteristics of light weight, and the aforementioned image capturing module 200 can be used to capture images with a wide viewing angle and high pixels.
  • the electronic device 400 is further provided with a corresponding processing system, and the electronic device 400 can transmit the image to the corresponding processing system in time after capturing the image of the object, so that the system can make accurate analysis and judgment.
  • the term "electronic device” may also include, but is not limited to, a device configured to be connected via a wired line and/or to receive or transmit communication signals via a wireless interface.
  • An electronic device configured to communicate via a wireless interface may be referred to as a "wireless communication terminal",
  • Wireless Terminal or "Mobile Terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; personal communication system (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communication capabilities; may include radio telephones, pagers, Internet/ Personal digital assistants (PDAs) with intranet access, web browsers, memo pads, calendars, and/or global positioning system (GPS) receivers; and conventional laptops and/or palmtops A receiver or other electronic device including a radiotelephone transceiver.
  • PCS personal communication system
  • PDAs Internet/ Personal digital assistants
  • GPS global positioning system
  • electronic devices may also include 3D image capture devices, digital cameras, tablet computers, smart TVs, network monitoring equipment, driving recorders, reversing developing devices, multi-lens devices, identification systems, somatosensory game consoles and wearable devices, etc.
  • 3D image capture devices digital cameras, tablet computers, smart TVs, network monitoring equipment, driving recorders, reversing developing devices, multi-lens devices, identification systems, somatosensory game consoles and wearable devices, etc.

Abstract

一种光学镜头(100)、取像模组(200)、电子装置及驾驶装置(300)。光学镜头(100)沿着光轴由物侧至像侧依序包括具有负屈折力的第一透镜(L1),其物侧面(S1)近光轴处为凸面,像侧面(S2)近光轴处为凹面;具有负屈折力的第二透镜(L2),其像侧面(S4)近光轴处为凹面;具有正屈折力的第三透镜(L3);具有屈折力的第四透镜(L4);具有正屈折力的第五透镜(L5),其物侧面(S9)近光轴处为凸面;具有负屈折力的第六透镜(L6),其像侧面(S12)近光轴处为凸面;第六透镜(L6)和第五透镜(L5)胶合;光学镜头(100)还包括一光阑(ST0),光阑(ST0)设于第一透镜(L1)的物侧(S1)或者第一透镜(L1)和第六透镜(L6)之间,且第一透镜(L1)至第六透镜(L6)中至少一个透镜的物侧面和/或像侧面为非球面。在满足特定关系时能在扩大视场角范围、保证高成像性能以及实现小型化方面取得平衡。

Description

光学镜头、取像模组、电子装置及驾驶装置 技术领域
本申请涉及光学成像技术领域,特别是涉及一种光学镜头、取像模组、电子装置及驾驶装置。
背景技术
目前,随着国家对于道路交通安全和汽车安全的要求不断提高,以及环视摄像头、ADAS(Advanced Driving Assistance System,高级驾驶辅助系统)和无人驾驶市场的兴起,车载镜头越来越多的应用于汽车辅助驾驶系统中。与此同时,人们对车载镜头的成像质量、画面的舒适度等方面也提出了更高的要求。环视摄像头,通过将多个光学镜头于车身的合理分布,将汽车顶部各个方向的鸟瞰画面拼接到一起,使驾驶员看清汽车四周的图像,以有效避免倒车碾压、刮蹭保险杠和轮毂等事故的发生,同时环视摄像头还能识别停车通道标识、路缘和附近车辆,大大保证了汽车的驾驶安全性。
传统的光学镜头较难同时满足大视角范围的拍摄以及清晰成像,从而难以实时准确地做出预警,导致驾驶风险的存在。除此之外,光学镜头为了获得较大的视场角往往需要多个透镜配合组装而成,从而使得镜头的尺寸较大、价格较高,较难满足市场需求。
发明内容
根据本申请的各种实施例,提供一种光学镜头。
一种光学镜头,所述光学镜头沿着光轴由物侧至像侧依序包括,
具有负屈折力的第一透镜,所述第一透镜的物侧面近光轴处为凸面,像侧面近光轴处为凹面;
具有负屈折力的第二透镜,所述第二透镜的像侧面近光轴处为凹面;
具有正屈折力的第三透镜;
具有屈折力的第四透镜;
具有正屈折力的第五透镜,所述第五透镜的物侧面近光轴处为凸面;
具有负屈折力的第六透镜,所述第六透镜的像侧面近光轴处为凸面;
所述第六透镜和所述第五透镜胶合;
所述光学镜头还包括一光阑,所述光阑设于所述第一透镜的物侧或者 所述第一透镜和所述第六透镜之间,且所述第一透镜至所述第六透镜中至少一个透镜的物侧面和/或像侧面为非球面;
所述光学镜头满足下列关系式:
1/R56<-1mm -1
其中,R56表示所述第五透镜和所述第六透镜的胶合面于光轴处的曲率半径。
一种取像模组,包括上述实施例所述的光学镜头以及感光元件,所述感光元件设于所述光学镜头的像侧。
一种电子装置,包括壳体以及上述实施例所述的取像模组,所述取像模组安装在所述壳体上。
一种驾驶装置,包括车体以及上述实施例所述的取像模组,所述取像模组设于所述车体以获取所述车体内部或所述车体周围的环境信息。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1示出了本申请实施例1的光学镜头的结构示意图;
图2分别示出了实施例1的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图3示出了本申请实施例2的光学镜头的结构示意图;
图4分别示出了实施例2的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图5示出了本申请实施例3的光学镜头的结构示意图;
图6分别示出了实施例3的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图7示出了本申请实施例4的光学镜头的结构示意图;
图8分别示出了实施例4的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图9示出了本申请实施例5的光学镜头的结构示意图;
图10分别示出了实施例5的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图11示出了本申请实施例6的光学镜头的结构示意图;
图12分别示出了实施例6的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图13示出了本申请一实施例的取像模组的示意图;
图14示出了本申请一实施例的应用取像模组的驾驶装置示意图;
图15示出了本申请一实施例的应用取像模组的电子装置示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。为了便于说明,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本说明书中,物体相对于光学元件所处的一侧空间称为该光学元件的物侧,对应的,物体所成的像相对于光学元件所处的一侧空间称为该光学元件的像侧。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。并定义物侧至像侧为距离的正向。
另外,在下文的描述中,若出现透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少近光轴处为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少近光轴处为凹面。此处近光轴处是指光轴附近的区域。具体的,透镜表面区域的凹凸系以平行通过该区域的光线与光轴的交点在像侧或物侧来判定。举例言之,当平行光线通过该区域后,光线会朝像侧聚焦且与光轴的交点位于像侧,则该区域为凸面;反 之,若光线通过该区域后,光线发散且光线的延伸线与光轴的交点在物侧,则该区域为凹面。另外,透镜包括光轴附近区域、圆周附近区域以及用于固定透镜的延伸部。理想的情况下,成像光线并不会通过延伸部,因此可以将光轴附近区域至圆周附近区域的区域范围定义为透镜的有效口径范围。下述实施例为求附图简洁均省略了部分的延伸部。进一步的,判定光轴附近区域、圆周附近区域或多个区域的范围的方法如下:
首先定义一中心点为该透镜表面上与光轴的一交点,自该中心点至透镜有效口径范围边界的距离为透镜的有效半口径,而一反曲点是位于该透镜表面上且并非位于光轴上的一点,通过反曲点的一切线与光轴垂直(即该透镜表面上反曲点两侧的面型相反)。如果透镜的径向上自中心点向外有数个反曲点,则依序为第一反曲点、第二反曲点,而透镜有效口径范围内距中心点最远的反曲点为第N反曲点。定义中心点和第一反曲点之间的范围为光轴附近区域,第N反曲点径向上向外的区域为圆周附近区域,第一反曲点至第N反曲点之间的区域依各反曲点分为不同的区域;若透镜表面上无反曲点,该光轴附近的区域定义为有效半口径的0~50%对应的区域,圆周附近区域定义为有效半口径的50%~100%对应的区域。
以下将对本申请的特征、原理和其他方面进行详细描述。
请一并参阅图1、图3、图5、图7、图9和图11,本申请实施例提供一种可兼顾广视角、高像素以及小型化的光学镜头。该光学镜头包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜。该六片透镜自第一透镜至第六透镜沿着光轴从物侧至像侧依序排列,光学镜头的成像面位于第六透镜的像侧。
光学镜头中还设置有光阑,光阑设于第一透镜的物侧或者第一透镜和第六透镜之间,以更好地控制入射光束的大小,提升光学镜头的成像质量。进一步的,光阑设于第三透镜和第四透镜之间。具体的,光阑包括孔径光阑和视场光阑。优选的,光阑为孔径光阑。孔径光阑可位于透镜的表面上(例如物侧面和像侧面),并与透镜形成作用关系,例如,通过在透镜的表面涂覆阻光涂层以在该表面形成孔径光阑;或通过夹持件固定夹持透镜的表面,位于该表面的夹持件结构能够限制轴上物点成像光束的宽度,从而在该表面上形成孔径光阑。
具体的,第一透镜具有负屈折力,且其物侧面近光轴处为凸面,像侧面近光轴处为凹面,有利于使大角度入射的光线也能射入镜头,从而有助于扩大光学镜头的视场范围,同时也有利于抑制镜头消色差效果的减小,提升镜头的分辨率;
第二透镜具有负屈折力,且其像侧面近光轴处为凹面,有利于增加入 射光线的宽度,以使大角度入射的光线经第一透镜折转后进一步扩宽,从而充满光瞳,充分传递至高像素像面,获得更宽的视场范围,同时也有利于抑制镜头消色差效果的减小,实现镜头的高像素特性。
第三透镜具有正屈折力。由于光线由较强负屈折力的第一透镜与第二透镜射出后,边缘视场光线的射入像面易产生较大的场曲,因此,通过设置一枚具有正屈折力的第三透镜,可平衡镜头前端透镜的负屈折力,校正边缘像差,提升镜头的成像解析度,降低鬼影的产生几率,并有利于缩小第三透镜与光阑之间的距离,在实现小型化和提高解像力之间取得平衡。
第四透镜具有正屈折力或负屈折力,且其物侧面近光轴处为凹面,从而可以有效分散屈折力的配置,避免产生过多像差,进一步改善成像品质。
第五透镜具有正屈折力,且第五透镜的物侧面近光轴处为凸面,第六透镜具有负屈折力,且第六透镜的像侧面近光轴处为凸面。通过第五透镜与第六透镜的正负屈折力配合可以降低透镜系统的敏感度,并校正镜头色差以及光线经前面透镜组的折转而产生的像散,从而进一步修正像差,提升镜头的成像解析能力。进一步的,可将第五透镜的像侧面和第六透镜的物侧面胶合,如此可使光学镜头的整体结构更为紧凑,有利于修正像差,并在缩小镜头体积和提高镜头解像力之间取得平衡,同时还可以降低镜片在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
如本领域技术人员已知的,在光线转折处的离散透镜,容易因加工误差和/或组立误差造成敏感,而胶合透镜的使用可有效地降低镜头的敏感度。在本申请中使用胶合透镜,不仅能够有效地降低镜头的敏感度、缩短镜头的整体长度,还能够分担镜头的整体色差、像差的校正,提高光学镜头的解像能力。进一步的,胶合透镜可包括一枚具有负屈折力的透镜和一枚具有正屈折力的透镜。如第五透镜具有正屈折力,第六透镜具有负屈折力。
除此之外,第一透镜至第六透镜中,至少一个透镜的物侧面和/或像侧面为非球面。通过上述方式,可以提高透镜设计的灵活性,并有效地校正像差,提高光学镜头的成像质量。具体的,第二透镜至第六透镜的物侧面和像侧面均设置为非球面,从而可更好地校正在光线传递过程中产生的像差。需要注意的是,光学镜头中各透镜的表面也可以是球面和非球面的任意组合,本申请对此不做限制。
进一步的,光学镜头满足下列关系式:1/R56<-1mm -1。其中,R56表示第五透镜和第六透镜的胶合面于光轴处的曲率半径。1/R56可以是-1.8mm -1、-1.6mm -1、-1.5mm -1、-1.45mm -1、-1.4mm -1、-1.35mm -1、-1.3mm -1、-1.2mm -1或-1.1mm -1。在满足上述关系时,可以合理配置第五透镜和第六透 镜的胶合面于光轴处的曲率半径,从而有利于进一步会聚光线,降低不同视场光线入射角及出射角的偏差,提升镜头的解像力。而当1/R56超出范围时,胶合面过平或过弯,容易加大不同视场光线的入射角及出射角的偏差,不利于提升镜头的解像力。
当上述光学镜头用于成像时,被摄物体发出或者反射的光线从物侧方向进入光学镜头,并依次穿过第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,最终汇聚到成像面上。
上述光学镜头,通过选取合适数量的透镜并合理分配各透镜的屈折力以及面型可以增强镜头的成像解析能力并有效修正像差,从而提升镜头分辨率,保证图像的清晰度;同时在第五透镜和第六透镜的胶合面满足特定关系时,有利于进一步会聚光线,降低不同视场光线入射角及出射角的偏差,提升镜头的解像力。
在示例性实施方式中,光学镜头满足下列关系式:3mm<f56<4mm。其中,f56表示第五透镜和第六透镜的组合焦距。f56可以是3.02mm、3.1mm、3.2mm、3.3mm、3.4mm、3.5mm、3.6mm、3.7mm、3.8mm或3.9mm。在满足上述关系时,有利于合理配置第五透镜和第六透镜的组合焦距,从而避免透镜系统产生像散,进一步提升镜头的成像品质。而当f56超出范围时,第五透镜和第六透镜整体为镜头提供的屈折力过强或过弱,不利于抑制像散现象,使得镜头的成像品质降低。
在示例性实施方式中,光学镜头满足下列关系式:
-9.5<f1/f<-6.5;其中,f1表示第一透镜的有效焦距,f表示光学镜头的有效焦距。f1/f可以是-9、-8.7、-8.4、-8.1、-7.8、-7.5、-7.2、-6.9或-6.6。在满足上述关系式的上限时,可以保证第一透镜的负屈折力不会变得过强,从而有利于抑制成像区域周边部的光束造成的高阶像差;在满足上述关系式的下限时,可以确保第一透镜为镜头提供足够的负屈折力,从而有利于抑制消色差效果的减小,使镜头具备高分辨性能。而当f1/f超出上限时,第一透镜的负屈折力过强,不利于抑制边缘像差;而当f1/f低于下限时,第一透镜的负屈折力较弱,不利于抑制消色差效果的减小,易降低镜头的分辨率。
在示例性实施方式中,光学镜头满足下列关系式:-5<f2/CT2<-2;其中,f2表示第二透镜的有效焦距,CT2表示第二透镜在光轴上的镜片厚度。f2/CT2可以是-4.8、-4.4、-4、-3.8、-3.6、-3.4、-3.2、-3、-2.8或-2.5。在满足上述关系式的上限时,可以合理配置第二透镜的厚度,使透镜系统的排布结构更为紧凑,从而实现小型化,并降低后透镜组的敏感度;在满足上述关系式的下限时,可以确保第二透镜为镜头提供足够的负 屈折力,从而有利于抑制消色差效果的减小,使镜头具备高分辨性能。而当f2/CT2超出上限时,第二透镜的中心厚度过大,不利于小型化;而当f2/CT2低于下限时,第二透镜的负屈折力较弱,不利于抑制消色差效果的减小,易降低镜头的分辨率。
在示例性实施方式中,光学镜头满足下列关系式:
4<f3/f<12;其中,f3表示第三透镜的有效焦距,f表示光学镜头的有效焦距。f3/f可以是4.1、4.2、4.3、4.4、4.5、5、6、7、8、9、10、11或11.5。在满足上述关系时,第三透镜为镜头提供正屈折力,从而可以使因第一透镜和第二透镜的负屈折力所发散的光线得以会聚,进而减小第三透镜和光阑之间的距离,实现镜头的小型化。除此之外,还能减轻第四透镜的光线会聚负担。具体的,在满足上述关系式的上限时,能够确保第三透镜为镜头提供足够的正屈折力,从而有利于修正像差,并在缩小镜头体积和提高镜头解像力之间取得平衡;在满足上述关系式的下限时,第三透镜的正屈折力不会过强,因此第三透镜的物侧面和像侧面上光线的入射角不会变得过大,从而有利于抑制高阶像差的产生。而当f3/f超出上限时,第三透镜的正屈折力较弱,不利于像差修正;而当f3/f低于下限时,第三透镜的正屈折力较强,容易增大第三透镜物侧面和像侧面上的光线入射角,不利于抑制高阶像差的产生。
在示例性实施方式中,光学镜头满足下列关系式:-14<f4/f<43;其中,f4表示第四透镜的有效焦距,f表示光学镜头的有效焦距。f4/f可以是-13.7、-13.5、-12、-11.5、-11、-5、5、10、20、30、40或42.5。在满足上述关系时,第四透镜为镜头提供正屈折力或负屈折力。具体的,当-14<f4/f<0时,第四透镜为镜头提供负屈折力,有助于减小第三透镜与光阑之间的距离,从而有利于大角度光线射入进镜头,扩大光学镜头的物空间成像范围,而当f4/f低于下限时则不利光学镜头像差的校正,易降低成像品质;当0<f4/f<43时,第四透镜为镜头提供正屈折力,有助于进一步会聚光线,降低第五透镜会聚光线的负担,而当f4/f超出上限时,容易产生较严重的像散现象,不利于成像品质的提升。
在示例性实施方式中,光学镜头满足下列关系式:
3<f56/(CT5-CT6)<6;其中,CT5表示第五透镜在光轴上的镜片厚度,CT6表示第六透镜在光轴上的镜片厚度。f56/(CT5-CT6)可以是3.5、4、4.1、4.2、4.3、4.4、4.6、4.9、5.2、5.5或5.8。在满足上述关系时,可以合理配置第五透镜和第六透镜的厚度,有利于使第五透镜和第六透镜采用一正一负两个透镜时的屈折力也得到合理搭配,从而进行像差的相互校正,并使第五透镜和第六透镜为透镜系统提供最小的像差贡献比。当 f56/(CT5-CT6)低于下限时,第五透镜和第六透镜的中心厚度差异过大,不利于胶合工艺,并且在环境高低温变化较大的情况下,冷热形变量差异也会较大,进而容易产生胶裂或脱胶等现象;当f56/(CT5-CT6)超过上限时,第五透镜与第六透镜的组合焦距过大,使得第五透镜和第六透镜整体为镜头提供的屈折力过小,透镜系统易产生较严重的像散现象,不利于提升成像品质。
在示例性实施方式中,光学镜头满足下列关系式:
-2<(RS5+RS6)/(RS5-RS6)<3;其中,RS5表示第三透镜的物侧面于光轴处的曲率半径,RS6表示第三透镜的像侧面于光轴处的曲率半径。(RS5+RS6)/(RS5-RS6)可以是-1.95、-1.5、-1、1、1.4、1.8、2.2、2.6或2.9。在满足上述关系时,可以合理配置第三透镜的物侧面和像侧面于光轴处的曲率半径,从而控制第三透镜的弯曲程度,降低鬼影的产生比率,并提升镜头的解像能力。而当(RS5+RS6)/(RS5-RS6)超出上限或低于下限时,容易导致第三透镜物侧面过弯或像侧面过弯,从而增加鬼影产生几率,不利于提升成像品质。
在示例性实施方式中,光学镜头满足下列关系式:
1<|Sagf5|/(CT5-CT6)<4;其中,Sagf5表示第五透镜的像侧面的边缘于光轴上的垂直投影点至第五透镜的像侧面与光轴交点之间的距离,CT5表示第五透镜在光轴上的镜片厚度,CT6表示第六透镜在光轴上的镜片厚度。|Sagf5|/(CT5-CT6)可以是1.2、1.4、1.6、1.8、2、2.2、2.4、2.6、2.8、3、3.2或3.4。在满足上述关系时,可以合理配置第五透镜和第六透镜的参数关系,从而降低鬼影产生的比率,提升成像品质,使镜头具备高解像力。当|Sagf5|/(CT5-CT6)超过上限时,第五透镜像侧面的矢高值越大,胶合面越弯曲,从而越不利于胶合工艺,容易增大胶合后第五透镜与第六透镜的偏心,降低透镜系统的解像力;而当|Sagf5|/(CT5-CT6)低于下限时,第五透镜和第六透镜的中心厚度差异较大,不利于胶合工艺,容易产生胶裂或脱胶等现象。
在示例性实施方式中,光学镜头满足下列关系式:
15<TTL/f<19;其中,TTL表示第一透镜的物侧面至光学镜头的成像面在光轴上的距离,f表示光学镜头的有效焦距。TTL/f可以是15.05、15.1、15.2、15.3、15.4、15.6、16、17、18、18.5或18.7。通过限定光学镜头的总长与镜头的有效焦距满足上述关系,有利于在保证镜头广视角的同时,控制镜头的光学总长,实现小型化特征。当TTL/f超过上限时,光学镜头的总长过长,不利于小型化;当TTL/f低于下限时,光学镜头的有效焦距过长,则不利于满足镜头的视场角范围(即不利于广角化),无法获得足 够的物方空间信息。
在示例性实施方式中,光学镜头满足下列关系式:
2<∑CT16/∑D16<3;∑CT16表示第一透镜至第六透镜在光轴上的镜片厚度之和,∑D16表示第一透镜至第六透镜的各相邻透镜中前一透镜的像侧面至后一透镜的物侧面在光轴上的空气距离之和。∑CT16/∑D16可以是2.2、2.4、2.5、2.55、2.6、2.65、2.7、2.8或2.9。在满足上述关系时,可以合理配置各透镜的中心厚度以及相邻透镜间的空气间隔,从而有利于在降低光学镜头的制造敏感度的同时有效降低光学镜头的总长,实现小型化。而当∑CT16/∑D16超出上限或低于下限时,容易导致镜头各透镜的中心厚度过大或者相邻透镜间的空气间隔过大,均不利于镜头小型化的实现。
在示例性实施方式中,第六透镜和光学镜头的成像面之间还设置有滤光片,用于滤除非工作波段的光线,从而防止因非工作波段光线的干扰而产生伪色或波纹的现象,避免成像色彩失真。具体的,滤光片可以是红外滤光片,其材质为玻璃。
在示例性实施方式中,光学镜头中各透镜的材质可以均为玻璃或均为塑料,塑料材质的透镜能够减少光学镜头的重量并降低生产成本,而玻璃材质的透镜可使光学镜头具备较好的温度耐受特性以及优良的光学性能。进一步的,在光学镜头应用于车载镜头时,各透镜的材质优选为玻璃,以使车载镜头在不同环境中均能具备较佳的光学性能。需要注意的是,光学镜头中各透镜的材质也可以是玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
在示例性实施方式中,光学镜头还可以包括保护玻璃。保护玻璃设于第六透镜的像侧或滤光片的像侧,起到保护感光元件的作用,同时也可避免感光元件沾染落尘,进一步保证成像品质。需要指出的是,在光学镜头应用于手机、平板等电子设备时,也可以不设置保护玻璃,以进一步减轻电子设备的重量。
本申请的上述实施方式的光学镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜焦距、屈折力、面型、厚度以及各透镜之间的轴上间距等,可以使上述光学镜头具备大视场角、小总长以及高分辨率特性,同时还具备较大的光圈(FNO可以为2.06)以及较轻的重量,从而更好地满足如手机、平板、车载镜头等电子设备的应用需求。然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学镜头的透镜数量,来获得本说明书中描述的各个结果和优点。
下面参照附图进一步描述可适用于上述实施方式的光学镜头的具体实 施例。
实施例1
以下参照图1至图2描述本申请实施例1的光学镜头100。
图1示出了实施例1的光学镜头100的结构示意图。如图1所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1近光轴处为凸面,像侧面S2近光轴处为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为非球面,其中物侧面S3近光轴处为凹面,像侧面S4近光轴处为凹面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为非球面,其中物侧面S5近光轴处为凸面,像侧面S6近光轴处为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为非球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为非球面,其中物侧面S11近光轴处为凹面,像侧面S12近光轴处为凸面。
将第二透镜L2至第六透镜L6的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使光学镜头100具备小型化特性。
第一透镜L1和第四透镜L4的材质均为玻璃,使用玻璃材质的透镜可使光学镜头100具备较好的温度耐受特性以及优良的光学性能。第二透镜L2、第三透镜L3、第五透镜L5和第六透镜L6的材质均为塑料,使用塑料材质的透镜能够减少光学镜头100的重量并降低生产成本。
第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。滤光片110用于滤除非工作波段的光线,从而防止因非工作波段光线的干扰而产生伪色或波纹的现象,避免成像色彩失真。具体的,滤光片110为红外滤光片,其材质为玻璃。
表1示出了实施例1的光学镜头100的透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的有效焦距,其中折 射率和阿贝数对应的参考波长为587.56nm,有效焦距对应的参考波长为546.07nm,曲率半径、厚度以及透镜的有效焦距的单位均为毫米(mm)。另外,以第一透镜L1为例,第一透镜L1的“厚度”参数列中的第一个数值为该透镜在光轴上的镜片厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面在光轴上的距离;光阑ST0于“厚度”参数列中的数值为光阑ST0至后一透镜的物侧面顶点(顶点指透镜表面与光轴的交点)在光轴上的距离,我们默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴的正方向,当该值为负时,表明光阑ST0设置于图1中该透镜的物侧面顶点的右侧,若光阑STO厚度为正值时,光阑在该透镜物侧面顶点的左侧。
表1
Figure PCTCN2020103011-appb-000001
透镜中的非球面面型由以下公式限定:
Figure PCTCN2020103011-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表2给出了可用于实施例1中透镜非球面S3-S12的高次项系数A4、A6、A8、A10、A12、A14、A16、 A18和A20。
表2
Figure PCTCN2020103011-appb-000003
第一透镜L1的物侧面S1至光学镜头100的成像面S17在光轴上的距离TTL为17.365mm。结合表1和表2中的数据可知,实施例1中的光学镜头100满足:
1/R56=-1.391mm -1,其中,R56表示第五透镜和第六透镜的胶合面于光轴处的曲率半径;
f56=3.431mm,其中,f56表示第五透镜和第六透镜的组合焦距;
f1/f=-7.102,其中,f1表示第一透镜的有效焦距,f表示光学镜头的有效焦距;
f2/CT2=-3.614,其中,f2表示第二透镜的有效焦距,CT2表示第二透镜在光轴上的镜片厚度;
f3/f=5.858,其中,f3表示第三透镜的有效焦距;
f4/f=42.381,其中,f4表示第四透镜的有效焦距;
f56/(CT5-CT6)=4.32,其中,CT5表示第五透镜在光轴上的镜片厚度,CT6表示第六透镜在光轴上的镜片厚度;
(RS5+RS6)/(RS5-RS6)=-1.947,其中,RS5表示第三透镜的物侧面于 光轴处的曲率半径,RS6表示第三透镜的像侧面于光轴处的曲率半径;
|Sagf5|/(CT5-CT6)=1.64,其中,Sagf5表示第五透镜L5的像侧面S10的边缘于光轴上的垂直投影点至第五透镜L5的像侧面10与光轴交点之间的距离;
TTL/f=15.644,其中,TTL表示第一透镜的物侧面至光学镜头的成像面在光轴上的距离;
∑CT16/∑D16=2.625,其中,∑CT16表示第一透镜至第六透镜在光轴上的镜片厚度之和,∑D16表示第一透镜至第六透镜的各相邻透镜中前一透镜的像侧面至后一透镜的物侧面在光轴上的空气距离之和。
图2分别示出了实施例1的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为435.83nm、486.13nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为546.07nm的光线经由光学镜头100后不同视场角下的畸变。根据图2可知,实施例1给出的光学镜头100能够实现良好的成像品质。
实施例2
以下参照图3至图4描述本申请实施例2的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了本申请实施例2的光学镜头100的结构示意图。
如图3所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1近光轴处为凸面,像侧面S2近光轴处为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为非球面,其中物侧面S3近光轴处为凹面,像侧面S4近光轴处为凹面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为非球面,其中物侧面S5近光轴处为凸面,像侧面S6近光轴处为凸面。
第四透镜L4具有负屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为非球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为非球面,其中物侧面S11近光轴处为凹面,像侧面S12近光轴处为凸面。
第二透镜L2至第六透镜L6的物侧面和像侧面均设置为非球面。第一透镜L1和第四透镜L4的材质均为玻璃,第二透镜L2、第三透镜L3、第五透镜L5和第六透镜L6的材质均为塑料。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。具体的,滤光片110为红外滤光片,其材质为玻璃。
表3示出了实施例2的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中折射率和阿贝数对应的参考波长为587.56nm,有效焦距对应的参考波长为546.07nm,曲率半径、厚度以及透镜的有效焦距的单位均为毫米(mm);表4示出了可用于实施例2中透镜非球面S3-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定。
表3
Figure PCTCN2020103011-appb-000004
表4
Figure PCTCN2020103011-appb-000005
Figure PCTCN2020103011-appb-000006
图4分别示出了实施例2的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为435.83nm、486.13nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为546.07nm的光线经由光学镜头100后不同视场角下的畸变。根据图4可知,实施例2给出的光学镜头100能够实现良好的成像品质。
实施例3
以下参照图5至图6描述本申请实施例3的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图5示出了本申请实施例3的光学镜头100的结构示意图。
如图5所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1近光轴处为凸面,像侧面S2近光轴处为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为非球面,其中物侧面S3近光轴处为凹面,像侧面S4近光轴处为凹面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为非球面,其中物侧面S5近光轴处为凸面,像侧面S6近光轴处为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为非球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为非球面,其中物侧面S11近光轴处为凹面,像侧面S12近光轴处为凸面。
第二透镜L2至第六透镜L6的物侧面和像侧面均设置为非球面。第一透镜L1和第四透镜L4的材质均为玻璃,第二透镜L2、第三透镜L3、第五透镜L5和第六透镜L6的材质均为塑料。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。具体的,滤光片110为红外滤光片,其材质为玻璃。
表5示出了实施例3的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中折射率和阿贝数对应的参考波长为587.56nm,有效焦距对应的参考波长为546.07nm,曲率半径、厚度以及透镜的有效焦距的单位均为毫米(mm);表6示出了可用于实施例3中透镜非球面S3-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定。
表5
Figure PCTCN2020103011-appb-000007
Figure PCTCN2020103011-appb-000008
表6
Figure PCTCN2020103011-appb-000009
图6分别示出了实施例3的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为435.83nm、486.13nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为546.07nm的光线经由光学镜头100后不同视场角下的畸变。根据图6可知,实施例3给出的光学镜头100能够实现良好的成像品质。
实施例4
以下参照图7至图8描述本申请实施例4的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图7示出了本申 请实施例4的光学镜头100的结构示意图。
如图7所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1近光轴处为凸面,像侧面S2近光轴处为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为非球面,其中物侧面S3近光轴处为凹面,像侧面S4近光轴处为凹面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为非球面,其中物侧面S5近光轴处为凸面,像侧面S6近光轴处为凸面。
第四透镜L4具有负屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为非球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为非球面,其中物侧面S11近光轴处为凹面,像侧面S12近光轴处为凸面。
第二透镜L2至第六透镜L6的物侧面和像侧面均设置为非球面。第一透镜L1和第四透镜L4的材质均为玻璃,第二透镜L2、第三透镜L3、第五透镜L5和第六透镜L6的材质均为塑料。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。具体的,滤光片110为红外滤光片,其材质为玻璃。
表7示出了实施例4的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中折射率和阿贝数对应的参考波长为587.56nm,有效焦距对应的参考波长为546.07nm,曲率半径、厚度以及透镜的有效焦距的单位均为毫米(mm);表8示出了可用于实施例4中透镜非球面S3-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定。
表7
Figure PCTCN2020103011-appb-000010
Figure PCTCN2020103011-appb-000011
表8
Figure PCTCN2020103011-appb-000012
图8分别示出了实施例4的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为435.83nm、 486.13nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为546.07nm的光线经由光学镜头100后不同视场角下的畸变。根据图8可知,实施例4给出的光学镜头100能够实现良好的成像品质。
实施例5
以下参照图9至图10描述本申请实施例5的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图9示出了本申请实施例5的光学镜头100的结构示意图。
如图9所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1近光轴处为凸面,像侧面S2近光轴处为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为非球面,其中物侧面S3近光轴处为凹面,像侧面S4近光轴处为凹面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为非球面,其中物侧面S5近光轴处为凸面,像侧面S6近光轴处为凸面。
第四透镜L4具有负屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为非球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为非球面,其中物侧面S11近光轴处为凹面,像侧面S12近光轴处为凸面。
第二透镜L2至第六透镜L6的物侧面和像侧面均设置为非球面。第一透镜L1和第四透镜L4的材质均为玻璃,第二透镜L2、第三透镜L3、第五透镜L5和第六透镜L6的材质均为塑料。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。具体的,滤光片110为红外滤光片,其材质为玻璃。
表9示出了实施例5的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中 折射率和阿贝数对应的参考波长为587.56nm,有效焦距对应的参考波长为546.07nm,曲率半径、厚度以及透镜的有效焦距的单位均为毫米(mm);表10示出了可用于实施例5中透镜非球面S3-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定。
表9
Figure PCTCN2020103011-appb-000013
表10
Figure PCTCN2020103011-appb-000014
Figure PCTCN2020103011-appb-000015
图10分别示出了实施例5的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为435.83nm、486.13nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为546.07nm的光线经由光学镜头100后不同视场角下的畸变。根据图10可知,实施例5给出的光学镜头100能够实现良好的成像品质。
实施例6
以下参照图11至图12描述本申请实施例6的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图11示出了本申请实施例6的光学镜头100的结构示意图。
如图11所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1近光轴处为凸面,像侧面S2近光轴处为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为非球面,其中物侧面S3近光轴处为凹面,像侧面S4近光轴处为凹面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为非球面,其中物侧面S5近光轴处为凸面,像侧面S6近光轴处为凸面。
第四透镜L4具有负屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为非球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为非球面,其中物侧面S11近光轴处为凹面,像侧面S12近光轴处为凸面。
第二透镜L2至第六透镜L6的物侧面和像侧面均设置为非球面。第一透镜L1和第四透镜L4的材质均为玻璃,第二透镜L2、第三透镜L3、第五透镜L5和第六透镜L6的材质均为塑料。第三透镜L3和第四透镜L4之间 还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。具体的,滤光片110为红外滤光片,其材质为玻璃。
表11示出了实施例6的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中折射率和阿贝数对应的参考波长为587.56nm,有效焦距对应的参考波长为546.07nm,曲率半径、厚度以及透镜的有效焦距的单位均为毫米(mm);表12示出了可用于实施例6中透镜非球面S3-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定。
表11
Figure PCTCN2020103011-appb-000016
表12
Figure PCTCN2020103011-appb-000017
Figure PCTCN2020103011-appb-000018
图12分别示出了实施例6的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图。其中纵向球差曲线图示出了波长为435.83nm、486.13nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为546.07nm的光线经由光学镜头100后不同视场角下的畸变。根据图12可知,实施例6给出的光学镜头100能够实现良好的成像品质。
表13示出了上述各实施例对应本发明相关关系式的数值。
表13
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
f(mm) 1.11 1.13 0.9 1.15 1.15 1.14
FNO 2.06 2.06 2.06 2.06 2.06 2.06
FOV(deg) 200 200 200 200 200 200
TTL(mm) 17.365 17.313 16.687 17.381 17.342 17.299
1/R56(mm -1) -1.391 -1.37 -1.42 -1.374 -1.374 -1.374
f56(mm) 3.431 3.521 3.058 3.49 3.472 3.474
f1/f -7.102 -7.028 -8.941 -7.635 -7.847 -7.919
f2/CT2 -3.614 -4.716 -3.42 -3.528 -3.313 -3.308
f3/f 5.858 4.55 11.401 4.245 4.108 4.145
f4/f 42.381 -13.616 18.137 -13.492 -11.612 -11.714
f56/(CT5-CT6) 4.32 4.299 3.693 5.557 4.901 4.903
(R5+R6)/(R5-R6) -1.947 2.184 -1.447 1.951 1.824 1.824
|Sagf5|/(CT5-CT6) 1.64 2.207 1.838 3.026 2.53 2.498
TTL/f 15.644 15.321 18.541 15.114 15.08 15.175
∑CT16/∑D16 2.625 2.654 2.656 2.637 2.537 2.537
如图13所示,本申请还提供一种取像模组200,包括如前文所述的光学镜头100(如图1所示);以及感光元件210,感光元件210设于光学镜头100的像侧,感光元件210的感光表面与成像面S17重合。具体的,感光元件210可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)图像传感器或者电荷耦合元件(CCD,Charge-coupled Device)图像传感器,成像面S17依其对应的感光元件210的不同,可为一平面或有任意曲率的曲面,特别是指凹面朝往物侧方向的曲面。
另一些实施方式中,取像模组200还包括用于承载光学镜头100的镜筒(图未示出)以及相应的支持装置(图未示出)。
除此之外,取像模组200还包括驱动装置(图未示出)以及影像稳定模块(图未示出)。其中驱动装置可具有自动对焦(Auto-Focus)功能,其驱动方式可使用如音圈马达(Voice Coil Motor,VCM)、微机电系统(Micro Electro-Mechanical Systems,MEMS)、压电系统(Piezoelectric)、以及记忆金属(Shape Memory Alloy)等驱动系统。驱动装置可让光学镜头100取得较佳的成像位置,从而使被摄物于不同物距状态下,均能拍摄得到清晰的影像;影像稳定模块可以为加速计、陀螺仪或霍尔元件(Hall Effect Sensor)。驱动装置搭配影像稳定模块共同作为一光学防抖装置(Optical Image Stabilization,OIS),通过调整光学镜头100于光轴的位移以补偿拍摄瞬间因晃动而产生的模糊影像,或利用影像软件中的影像补偿技术,来提供电子防抖功能(Electronic Image Stabilization,EIS),进一步提升动态以及低照度场景拍摄的成像品质。
上述取像模组200利用前述的光学镜头100能够拍摄得到像素高、视角广的图像,同时取像模组200还具有小型化、轻量化的结构特点。取像模组200可应用于手机、汽车、监控、医疗等领域。具体可作为手机摄像头、车载摄像头、监控摄像头或内窥镜等,具有广阔的市场应用范围。
如图14所示,上述取像模组200可作为车载摄像头应用于驾驶装置300中。驾驶装置300可以为自动驾驶汽车或非自动驾驶汽车。取像模组200可作为驾驶装置300的前视摄像头、后视摄像头、侧视摄像头或内部摄像头。具体的,驾驶装置300包括车体310,取像模组200安装于车体的310的左后视镜、右后视镜、后尾箱、前大灯、后大灯等任意位置,以获取车体310周围的清晰的图像。此外,驾驶装置300中还设置有显示屏320,显示屏320安装于车体310内,且取像模组200与显示屏320通信连接,取像模组200所获得的影像信息能够传输至显示屏320中显示,从而使司机能够获得更完整的周边影像信息,提高驾驶时的安全保障。而当取 像模组200应用于驾驶辅助系统时,取像模组200可设于车体310内部以获取驾驶员的驾驶状态,从而可在疲劳驾驶时提醒驾驶员注意,进一步提升驾驶的安全性。
特别地,在一些实施例中,取像模组200可应用于自动驾驶汽车上。继续参考图14,取像模组200安装于自动驾驶汽车车体上的任意位置,具体可参考上述实施例驾驶装置300中取像模组200的安装位置。对于自动驾驶汽车而言,取像模组200还可安装于车体的顶部。此时,通过在自动驾驶汽车上安装多个取像模组200以获得车体310周围360°视角的环境信息,取像模组200获得的环境信息将被传递至自动驾驶汽车的分析处理单元以对车体310周围的道路状况进行实时分析。通过采用取像模组200,可提高分析处理单元识别分析的准确性,从而提升自动驾驶时的安全性能。
如图15所示,上述取像模组200还可作为轻薄型摄像头应用于电子装置400中。电子装置400包括壳体410以及如前文所述的取像模组200,取像模组200安装在壳体410上。具体的,取像模组200设置在壳体410内并从壳体410暴露以获取图像,壳体410可以给取像模组200提供防尘、防水防摔等保护,壳体410上开设有与取像模组200对应的孔,以使光线从孔中穿入或穿出壳体。
上述电子装置400,具有轻量化的特点,且利用前述的取像模组200能够拍摄得到视角广、像素高的图像。在另一些实施方式中,上述电子装置400还设置有对应的处理系统,电子装置400在拍摄物体图像后可及时地将图像传送至对应的处理系统,以便系统做出准确的分析和判断。
另一些实施方式中,所使用到的“电子装置”还可包括,但不限于被设置成经由有线线路连接和/或经由无线接口接收或发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、
“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。除此之外,“电子装置”还可包括三维影像撷取装置、数码相机、平板计算机、智能电视、网络监控设备、行车记录仪、倒车显影装置、多镜头装置、辨识系统、体感游戏机与穿戴式装置等。上述电子装置仅是示范性地说明本发明的实际运用例子,并非限制本申请的取像模组的运用范围。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种光学镜头,其特征在于,所述光学镜头沿着光轴由物侧至像侧依序包括,
    具有负屈折力的第一透镜,所述第一透镜的物侧面近光轴处为凸面,像侧面近光轴处为凹面;
    具有负屈折力的第二透镜,所述第二透镜的像侧面近光轴处为凹面;
    具有正屈折力的第三透镜;
    具有屈折力的第四透镜;
    具有正屈折力的第五透镜,所述第五透镜的物侧面近光轴处为凸面;
    具有负屈折力的第六透镜,所述第六透镜的像侧面近光轴处为凸面;
    所述第六透镜和所述第五透镜胶合;
    所述光学镜头还包括一光阑,所述光阑设于所述第一透镜的物侧或者所述第一透镜和所述第六透镜之间,且所述第一透镜至所述第六透镜中至少一个透镜的物侧面和/或像侧面为非球面;
    所述光学镜头满足下列关系式:
    1/R56<-1mm -1
    其中,R56表示所述第五透镜和所述第六透镜的胶合面于光轴处的曲率半径。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    3mm<f56<4mm;
    其中,f56表示所述第五透镜和所述第六透镜的组合焦距。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    -9.5<f1/f<-6.5;
    其中,f1表示所述第一透镜的有效焦距,f表示所述光学镜头的有效焦距。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    -5<f2/CT2<-2;
    其中,f2表示所述第二透镜的有效焦距,CT2表示所述第二透镜在光轴上的镜片厚度。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    4<f3/f<12;
    其中,f3表示所述第三透镜的有效焦距,f表示所述光学镜头的有效焦距。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    -14<f4/f<43;
    其中,f4表示所述第四透镜的有效焦距,f表示所述光学镜头的有效焦距。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    3<f56/(CT5-CT6)<6;
    其中,f56表示所述第五透镜和所述第六透镜的组合焦距,CT5表示所述第五透镜在光轴上的镜片厚度,CT6表示所述第六透镜在光轴上的镜片厚度。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    -2<(RS5+RS6)/(RS5-RS6)<3;
    其中,RS5表示所述第三透镜的物侧面于光轴处的曲率半径,RS6表示所述第三透镜的像侧面于光轴处的曲率半径。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    1<|Sagf5|/(CT5-CT6)<4;
    其中,Sagf5表示所述第五透镜的像侧面的边缘于光轴上的垂直投影点至所述第五透镜的像侧面与光轴交点之间的距离,CT5表示所述第五透镜在光轴上的镜片厚度,CT6表示所述第六透镜在光轴上的镜片厚度。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    15<TTL/f<19;
    其中,TTL表示所述第一透镜的物侧面至所述光学镜头的成像面在光轴上的距离,f表示所述光学镜头的有效焦距。
  11. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    2<∑CT16/∑D16<3;
    其中,∑CT16表示所述第一透镜至所述第六透镜在光轴上的镜片厚度之和,∑D16表示所述第一透镜至所述第六透镜的各相邻透镜中前一透镜的像侧面至后一透镜的物侧面在光轴上的空气距离之和。
  12. 一种取像模组,其特征在于,包括如权利要求1-11任一项所述的光学镜头以及感光元件,所述感光元件设于所述光学镜头的像侧。
  13. 一种电子装置,其特征在于,包括壳体以及如权利要求12所述的取像模组,所述取像模组安装在所述壳体上。
  14. 一种驾驶装置,其特征在于,包括车体以及如权利要求12所述的取像模组,所述取像模组设于所述车体以获取所述车体内部或所述车体周围的环境信息。
PCT/CN2020/103011 2020-07-20 2020-07-20 光学镜头、取像模组、电子装置及驾驶装置 WO2022016316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103011 WO2022016316A1 (zh) 2020-07-20 2020-07-20 光学镜头、取像模组、电子装置及驾驶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103011 WO2022016316A1 (zh) 2020-07-20 2020-07-20 光学镜头、取像模组、电子装置及驾驶装置

Publications (1)

Publication Number Publication Date
WO2022016316A1 true WO2022016316A1 (zh) 2022-01-27

Family

ID=79729585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103011 WO2022016316A1 (zh) 2020-07-20 2020-07-20 光学镜头、取像模组、电子装置及驾驶装置

Country Status (1)

Country Link
WO (1) WO2022016316A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415347A (zh) * 2022-03-30 2022-04-29 江西联创电子有限公司 光学镜头
CN114967070A (zh) * 2022-04-27 2022-08-30 惠州市星聚宇光学有限公司 光学镜头以及摄像头模组
CN116643384A (zh) * 2023-07-27 2023-08-25 江西欧菲光学有限公司 光学系统、镜头模组和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291886A (zh) * 2015-05-12 2017-01-04 亚太精密工业(深圳)有限公司 广角镜头
US9759891B2 (en) * 2015-12-01 2017-09-12 Calin Technology Co., Ltd. Wide angle lens
CN107577031A (zh) * 2016-07-05 2018-01-12 大立光电股份有限公司 光学成像系统镜组、取像装置及电子装置
CN209028284U (zh) * 2018-09-10 2019-06-25 湖北华鑫光电有限公司 一种百万超广角镜头
CN111142234A (zh) * 2020-01-17 2020-05-12 天津欧菲光电有限公司 光学系统、镜头模组和电子设备
CN111258030A (zh) * 2020-03-17 2020-06-09 天津欧菲光电有限公司 光学系统、摄像模组、电子装置及汽车
CN111367046A (zh) * 2020-03-25 2020-07-03 天津欧菲光电有限公司 光学系统、高清摄像头模组及终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291886A (zh) * 2015-05-12 2017-01-04 亚太精密工业(深圳)有限公司 广角镜头
US9759891B2 (en) * 2015-12-01 2017-09-12 Calin Technology Co., Ltd. Wide angle lens
CN107577031A (zh) * 2016-07-05 2018-01-12 大立光电股份有限公司 光学成像系统镜组、取像装置及电子装置
CN209028284U (zh) * 2018-09-10 2019-06-25 湖北华鑫光电有限公司 一种百万超广角镜头
CN111142234A (zh) * 2020-01-17 2020-05-12 天津欧菲光电有限公司 光学系统、镜头模组和电子设备
CN111258030A (zh) * 2020-03-17 2020-06-09 天津欧菲光电有限公司 光学系统、摄像模组、电子装置及汽车
CN111367046A (zh) * 2020-03-25 2020-07-03 天津欧菲光电有限公司 光学系统、高清摄像头模组及终端

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415347A (zh) * 2022-03-30 2022-04-29 江西联创电子有限公司 光学镜头
CN114967070A (zh) * 2022-04-27 2022-08-30 惠州市星聚宇光学有限公司 光学镜头以及摄像头模组
CN114967070B (zh) * 2022-04-27 2023-12-15 广东省星聚宇光学股份有限公司 光学镜头以及摄像头模组
CN116643384A (zh) * 2023-07-27 2023-08-25 江西欧菲光学有限公司 光学系统、镜头模组和电子设备
CN116643384B (zh) * 2023-07-27 2023-11-07 江西欧菲光学有限公司 光学系统、镜头模组和电子设备

Similar Documents

Publication Publication Date Title
WO2022016316A1 (zh) 光学镜头、取像模组、电子装置及驾驶装置
WO2022032573A1 (zh) 光学系统、摄像模组、电子设备及汽车
CN113589486B (zh) 光学成像系统、取像模组以及电子设备
CN111239970A (zh) 光学系统、摄像模组、电子装置及汽车
CN111258035A (zh) 光学成像系统、成像模组、电子装置及驾驶装置
CN112505883A (zh) 光学系统、取像模组、电子装置及驾驶装置
CN211627919U (zh) 光学系统、摄像模组、电子装置及汽车
WO2021223137A1 (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
WO2021189463A1 (zh) 光学成像系统、成像模组、电子装置及驾驶装置
CN211698392U (zh) 光学成像系统、成像模组、电子装置及驾驶装置
WO2021184214A1 (zh) 广角镜头、成像模组、电子装置及驾驶装置
CN211478743U (zh) 成像镜头、取像装置、电子装置及驾驶装置
CN212623310U (zh) 光学系统、摄像模组、电子设备及汽车
WO2021164013A1 (zh) 光学系统、摄像模组、电子装置及汽车
CN211698386U (zh) 光学系统、摄像模组、电子装置及汽车
CN111708150A (zh) 成像镜头、取像模组、电子装置及驾驶装置
CN111258031A (zh) 光学镜头、成像模组、电子装置及驾驶装置
CN111239967A (zh) 光学系统、摄像模组、电子装置及汽车
CN212364696U (zh) 光学镜头、取像模组、电子装置及驾驶装置
CN212341570U (zh) 成像镜头、取像模组、电子装置及驾驶装置
WO2021184212A1 (zh) 光学镜头、成像模组、电子装置及驾驶装置
WO2022011498A1 (zh) 光学系统、取像模组及电子装置
WO2021184208A1 (zh) 摄像镜头、取像装置、电子装置及驾驶装置
CN111856710A (zh) 光学镜头、取像模组、电子装置及驾驶装置
CN211786336U (zh) 光学系统、摄像模组、电子设备及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20945842

Country of ref document: EP

Kind code of ref document: A1