WO2021223137A1 - 光学成像镜头、取像模组、电子装置及驾驶装置 - Google Patents

光学成像镜头、取像模组、电子装置及驾驶装置 Download PDF

Info

Publication number
WO2021223137A1
WO2021223137A1 PCT/CN2020/088899 CN2020088899W WO2021223137A1 WO 2021223137 A1 WO2021223137 A1 WO 2021223137A1 CN 2020088899 W CN2020088899 W CN 2020088899W WO 2021223137 A1 WO2021223137 A1 WO 2021223137A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
imaging lens
image side
optical axis
Prior art date
Application number
PCT/CN2020/088899
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
兰宾利
赵迪
周芮
Original Assignee
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津欧菲光电有限公司 filed Critical 天津欧菲光电有限公司
Priority to PCT/CN2020/088899 priority Critical patent/WO2021223137A1/zh
Publication of WO2021223137A1 publication Critical patent/WO2021223137A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • This application relates to the field of optical imaging technology, and in particular to an optical imaging lens, an imaging module, an electronic device, and a driving device.
  • the front-view or side-view camera device can be used as the camera system in the advanced driver assistance system to analyze the video content to realize lane departure warning (LDW), automatic lane keeping assist (LKA), high beam/low beam control and traffic Logo recognition (TSR).
  • LDW lane departure warning
  • LKA automatic lane keeping assist
  • TSR traffic Logo recognition
  • the driver when parking, control the front-view or side-view camera device to turn on, the driver can intuitively see the obstacles in front of the car, thereby facilitating the parking operation; and when the car passes through special places (such as roadblocks, parking lots, etc.), the front
  • the side-view or side-view camera device can also be automatically turned on to obtain information about the environment around the vehicle and feed it back to the central system of the car to make correct instructions to avoid driving accidents.
  • the traditional front-view or side-view lens captures images with low resolution and a small depth of field. It is unable to present long-distance details while shooting at a large angle range, so that the driving assistance system cannot accurately monitor the surrounding area of the vehicle in real time. Environmental information is used to make judgments and make timely warnings or evasions, and there is a certain driving risk.
  • an optical imaging lens is provided.
  • An optical imaging lens includes in order from the object side to the image side along the optical axis:
  • a first lens group with refractive power including a first lens with negative refractive power in sequence from the object side to the image side along the optical axis; a second lens with negative refractive power, the second lens
  • the object side of the lens is a concave surface near the optical axis; a third lens with positive refractive power, the image side of the third lens is a convex surface near the optical axis; and,
  • a second lens group with refractive power includes a fourth lens with positive refractive power in sequence from the object side to the image side along the optical axis, and the object side of the fourth lens near the optical axis is Convex or concave; the fifth lens with positive refractive power; the sixth lens with negative refractive power;
  • the fifth lens and the sixth lens are cemented to form a cemented lens, and the optical imaging lens satisfies the following relationship:
  • R56 represents the radius of curvature of the cemented surface of the fifth lens and the sixth lens at the optical axis
  • CT5 represents the thickness of the fifth lens on the optical axis
  • CT6 represents the sixth lens on the optical axis.
  • the thickness above, a5 represents the thermal expansion coefficient of the fifth lens in the temperature range of -30°C to 70°C, and a6 represents the thermal expansion coefficient of the sixth lens in the temperature range of -30°C to 70°C.
  • An image capturing module includes the optical imaging lens described in the above embodiment and a photosensitive element, the photosensitive element being arranged on the image side of the optical imaging lens.
  • An electronic device includes a housing and the imaging module described in the above embodiments, and the imaging module is installed on the housing.
  • a driving device includes a vehicle body and the image capturing module described in the above-mentioned embodiments, the image capturing module being arranged on the vehicle body to obtain environmental information inside the vehicle body or around the vehicle body.
  • FIG. 1 shows a schematic structural diagram of an optical imaging lens according to Embodiment 1 of the present application
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens according to Embodiment 2 of the present application
  • FIG. 4 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical imaging lens of Embodiment 2 respectively;
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens according to Embodiment 3 of the present application.
  • FIG. 6 respectively shows a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the optical imaging lens of Embodiment 3;
  • FIG. 7 shows a schematic structural diagram of an optical imaging lens according to Embodiment 4 of the present application.
  • FIG. 8 shows the longitudinal spherical aberration curve, the astigmatism curve and the distortion curve of the optical imaging lens of Embodiment 4 respectively;
  • FIG. 9 shows a schematic structural diagram of an optical imaging lens according to Embodiment 5 of the present application.
  • Fig. 10 shows the longitudinal spherical aberration curve, the astigmatism curve and the distortion curve of the optical imaging lens of the embodiment 5;
  • FIG. 11 shows a schematic structural diagram of an optical imaging lens according to Embodiment 6 of the present application.
  • FIG. 12 respectively shows a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the optical imaging lens of Embodiment 6;
  • FIG. 13 shows a schematic structural diagram of an optical imaging lens according to Embodiment 7 of the present application.
  • FIG. 14 respectively shows a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the optical imaging lens of Embodiment 7;
  • FIG. 15 shows a schematic diagram of an image capturing module according to an embodiment of the present application.
  • FIG. 16 shows a schematic diagram of a driving device applying an image capturing module according to an embodiment of the present application
  • FIG. 17 shows a schematic diagram of an electronic device applying an image capturing module according to an embodiment of the present application.
  • first lens discussed below may also be referred to as a second lens or a third lens.
  • shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the space on the side of the object relative to the optical element is called the object side of the optical element.
  • the space on the side of the object relative to the optical element is called the image of the optical element. side.
  • the surface of each lens closest to the object is called the object side, and the surface of each lens closest to the imaging surface is called the image side. And define the positive direction of the distance from the object side to the image side.
  • the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least near the optical axis; if the lens surface is concave and the position of the concave surface is not defined, it means The lens surface is concave at least near the optical axis.
  • the near optical axis here refers to the area near the optical axis. Specifically, the unevenness of the lens surface area is determined based on the intersection of the light rays passing through the area parallel to the optical axis on the image side or the object side.
  • the lens includes an area near the optical axis, an area near the circumference, and an extension for fixing the lens.
  • the imaging light does not pass through the extension, so the range from the area near the optical axis to the area near the circumference can be defined as the effective aperture range of the lens.
  • the following embodiments omit part of the extension for the sake of simplicity of the drawings.
  • the method for determining the area near the optical axis, the area near the circumference, or the range of multiple areas is as follows:
  • a center point as an intersection point on the surface of the lens with the optical axis
  • the distance from the center point to the boundary of the effective aperture range of the lens is the effective half aperture of the lens
  • a reflex point is located on the surface of the lens and not at
  • the tangent line passing through the inflection point is perpendicular to the optical axis (that is, the surface shape on both sides of the inflection point on the lens surface is opposite).
  • inflection points outwards from the center point in the radial direction of the lens, they are the first inflection point and the second inflection point in sequence, and the inflection point farthest from the center point in the effective aperture of the lens is the Nth inflection point Recurve point.
  • the radially outward area of the Nth inflection point is the area near the circumference
  • the area between the first inflection point and the Nth inflection point Divided into different areas according to each reflex point; if there is no reflex point on the lens surface, the area near the optical axis is defined as the area corresponding to 0-50% of the effective half-aperture, and the area near the circumference is defined as 50% of the effective half-aperture % ⁇ 100% corresponds to the area.
  • the optical imaging lens includes:
  • the first lens group (also called the front lens group) has positive refractive power.
  • the first lens group includes three lenses with refractive power, namely the first lens, the second lens and the third lens.
  • the one closest to the image side of the lens The image side surface of the lens may be convex; and,
  • the second lens group (also called the rear lens group) has positive refractive power.
  • the second lens group includes three lenses with refractive power, namely the fourth lens, the fifth lens and the sixth lens.
  • the one closest to the object side of the lens The object side of the lens can be convex or concave.
  • the six lenses are arranged in sequence from the first lens to the sixth lens along the optical axis from the object side to the image side, and the imaging surface of the optical imaging lens is located on the image side of the sixth lens.
  • Both the first lens group and the second lens group are configured to have positive refractive power, which can focus the light beam, thereby facilitating the transmission of the light carrying image information to the imaging surface, and also conducive to shortening the total length of the lens; in addition, through reasonable configuration
  • the surface shape of the relevant lens can enhance the imaging resolution of the lens and effectively correct aberrations, thereby improving the resolution of the lens and ensuring the clarity of the image.
  • the first lens has a negative refractive power, which is conducive to allowing light incident at a large angle to also enter the lens, thereby helping to expand the field of view of the optical imaging lens;
  • the second lens has a negative refractive power, and its object side is concave near the optical axis, which is beneficial to increase the width of the incident light, so that the light incident at a large angle is further expanded after being refracted by the first lens, thereby filling the pupil. It is fully transmitted to the high-pixel image surface to obtain a wider field of view and at the same time reflect the high-pixel characteristics of the lens.
  • the third lens has positive refractive power, and its image side surface is convex near the optical axis. Since the light is emitted by the first lens and the second lens with strong negative refractive power, the edge field of view light enters the image surface easily to produce a large field curvature, therefore, by setting a third lens with positive refractive power , Can balance the negative refractive power of the lens at the object side of the lens, correct edge aberrations, and improve the imaging resolution of the lens.
  • the fourth lens has a positive refractive power, which can effectively disperse the configuration of the refractive power, avoid excessive aberrations, and thereby improve the image quality.
  • the object side surface of the fourth lens can be convex or concave near the optical axis.
  • the fourth lens can be a biconvex structure, which is conducive to further condensing light.
  • the surface is smooth, which can reduce the deviation of the incident angle and the exit angle of light from different fields of view, and reduce the sensitivity of the lens; when the object side of the fourth lens is concave near the optical axis, it is conducive to grasp the large angle of incidence The light, further expand the field of view of the lens.
  • the fifth lens has positive refractive power and the sixth lens has negative refractive power, so that the cooperation of the fifth lens and the sixth lens can correct the chromatic aberration of the lens and the astigmatism generated by the refraction of the front lens group, thereby further correcting the aberration , Improve the imaging and resolution capabilities of the lens.
  • the image side surface of the fifth lens and the object side surface of the sixth lens can be glued together, so that the overall structure of the optical imaging lens can be more compact, which is beneficial to correct aberrations, and is between reducing the volume of the lens and improving the resolution of the lens. Achieve balance, and at the same time can reduce the tolerance sensitivity problems such as tilt or eccentricity of the lens during the assembly process, and improve the assembly yield of the lens.
  • the discrete lenses at the turning points of light are easily sensitive due to processing errors and/or assembly errors, and the use of cemented lenses can effectively reduce the sensitivity of the lens.
  • the cemented lens used in this application can not only effectively reduce the sensitivity of the lens and shorten the overall length of the lens, but also can share the correction of the overall chromatic aberration and aberration of the lens, and improve the resolution capability of the optical imaging lens.
  • the cemented lens may include a lens with negative refractive power and a lens with positive refractive power, for example, the fifth lens has positive refractive power and the sixth lens has negative refractive power.
  • the optical imaging lens is also provided with a diaphragm, which is arranged between the first lens group and the second lens group to better control the size of the incident light beam and improve the imaging quality of the optical imaging lens. Further, the diaphragm is arranged between the third lens and the fourth lens. Specifically, the diaphragm includes an aperture diaphragm and a field diaphragm. Preferably, the diaphragm is an aperture diaphragm.
  • the aperture stop can be located on the surface of the lens (for example, the object side and the image side) and form an functional relationship with the lens, for example, by coating a light-blocking coating on the surface of the lens to form an aperture stop on the surface; or by clamping
  • the holder fixedly clamps the surface of the lens, and the holder structure on the surface can limit the width of the imaging beam of the object point on the axis, thereby forming an aperture stop on the surface.
  • the optical imaging lens satisfies the following relationship: R56 ⁇ 0, where R56 represents the radius of curvature of the cemented surface of the fifth lens and the sixth lens at the optical axis, and the unit is mm.
  • R56 can be -3.9mm, -3.8mm, -3.7mm, -3.6mm, -3.5mm, -3.4mm, -3.3mm, -3.2mm, -3mm, -2mm, or -1mm.
  • the optical imaging lens satisfies the following relationship: 0 ⁇ (CT5-CT6)*(a5-a6) ⁇ 4*10 -6 mm/°C, where CT5 represents the thickness of the fifth lens on the optical axis, and CT6 represents The thickness of the sixth lens on the optical axis, a5 represents the thermal expansion coefficient of the fifth lens in the temperature range of -30°C to 70°C, and a6 represents the thermal expansion coefficient of the sixth lens in the temperature range of -30°C to 70°C.
  • CT5-CT6*(a5-a6) can be 0, 1, 1.5, 2, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.5 or 3.9, and the unit is 10 -6 mm/°C.
  • the refractive power distribution of the lens can be made more reasonable, which is beneficial to reduce the sensitivity of the second lens group, improve the production yield of the lens, and ensure the miniaturization of the lens.
  • the thermal expansion coefficient difference between the sixth lens and the sixth lens is too large, resulting in degumming.
  • the light emitted or reflected by the subject enters the optical imaging lens from the object side, and passes through the first lens, the second lens, the third lens, the fourth lens, and the fifth lens in sequence And the sixth lens, finally converge on the imaging surface.
  • the above-mentioned optical imaging lens can enhance the imaging resolution ability of the lens and effectively correct aberrations by selecting an appropriate number of lenses and reasonably distributing the refractive power, surface shape and effective focal length of each lens, thereby improving the resolution of the lens and ensuring the image quality. Sharpness; At the same time, by controlling the cemented surface of the cemented lens and the respective center thickness and thermal expansion coefficient of the cemented lens to meet the above relationship, it is beneficial to realize the miniaturization of the lens while reducing the sensitivity of the lens while ensuring the high resolution of the lens. , Improve production yield.
  • the object side surface and/or the image side surface of at least one lens are aspherical.
  • the flexibility of lens design can be improved, aberration can be corrected effectively, and the imaging quality of the optical imaging lens can be improved.
  • the object side surface and the image side surface of the fourth lens are set as aspherical surfaces, so that aberrations generated by the front lens group can be better corrected during the light transmission process.
  • the surface of each lens in the optical imaging lens can also be any combination of spherical and aspherical surfaces, which is not limited in this application.
  • the optical imaging lens satisfies the following relationship: -3 ⁇ f1/RS2 ⁇ 0; where f1 represents the effective focal length of the first lens, and RS2 represents the radius of curvature of the image side surface of the first lens at the optical axis .
  • f1/RS2 can be -2.5, -2, -1.5, -1.3, -1.25, -1.2, -1, or -0.5.
  • the refractive power of the first lens can be reasonably configured to provide negative refractive power for the lens, which can better correct aberrations, reduce the generation of stray light, and further reduce the rate of ghost images.
  • f1/RS2 is greater than or equal to 0, it cannot provide positive refractive power for the lens, which is not conducive to correcting aberrations; when f1/RS2 is less than or equal to -3, it is easy to cause the image side of the first lens to bend and increase the lens The processing technology is difficult and the production yield is reduced.
  • the optical imaging lens satisfies the following relationship: -7 ⁇ f2/f ⁇ -5; where f2 represents the effective focal length of the second lens, and f represents the effective focal length of the optical imaging lens.
  • f2/f can be -6.9, -6.85, -6.8, -6.75, -6.7, -6.6, -6.5, -6.4, -6, -5.6, or -5.2.
  • the refractive power of the second lens can be reasonably configured so that it will not become too strong, which is beneficial to prevent excessive light deflection and suppress high-order images caused by the light beam at the periphery of the imaging area.
  • the second lens provides sufficient negative refractive power for the lens, thereby helping to suppress the reduction of the achromatic effect and making the lens have high-resolution performance.
  • f2/f is greater than or equal to -5
  • the refractive power of the second lens is too large, resulting in greater deflection of light after passing through the second lens, which is not conducive to suppressing high-order aberrations; and when f2/f is less than or equal to -7 If the refractive power of the second lens is too small, it is easy to reduce the achromatic effect of the lens, which is not conducive to improving the image quality.
  • the optical imaging lens satisfies the following relationship: -15mm ⁇ f5*f6/f ⁇ -10mm; where f5 represents the effective focal length of the fifth lens, f6 represents the effective focal length of the sixth lens, and f represents optical The effective focal length of the imaging lens.
  • f5*f6/f can be -14.5mm, -14mm, -13.5mm, -13mm, -12.5mm, -12mm, -11.5mm, -11mm, -10.5mm, or -10.2mm.
  • f5*f6/f When f5*f6/f is greater than or equal to -10mm, the refractive power of the fifth lens and the sixth lens is likely to be too large, which is not conducive to suppressing high-order aberrations caused by the light beam at the periphery of the imaging area; and when f5*f6/ When f is less than or equal to -15mm, it is not conducive to suppressing lens astigmatism, and it is easy to reduce the resolution of the edge field of view.
  • the optical imaging lens satisfies the following relationship: -13 ⁇ RS4/CT2 ⁇ -8; where RS4 represents the radius of curvature of the image side surface of the second lens at the optical axis, and CT2 represents the second lens in the optical axis.
  • RS4/CT2 can be -12.5, -12, -11.5, -11, -10.5, -10, -9.5, -9, -8.5, or -8.
  • RS4/CT2 When RS4/CT2 is greater than or equal to -8, the image side of the second lens is curved, which is not conducive to lens processing, and it is also easy to increase the probability of ghosting; when RS4/CT2 ⁇ -13, the center of the second lens If the thickness is too small, the sensitivity of the lens increases, and it is also not conducive to suppressing lens aberrations.
  • the optical imaging lens satisfies the following relationship: 3.8 ⁇ f/D34 ⁇ 5; where f represents the effective focal length of the optical imaging lens, and D34 represents the image side of the third lens to the object side of the fourth lens.
  • the distance on the optical axis. f/D34 can be 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, or 4.95.
  • the academic imaging lens satisfies the following relationship: 1 ⁇ f/CT4 ⁇ 2; where f represents the effective focal length of the optical imaging lens, and CT4 represents the thickness of the fourth lens on the optical axis.
  • f/CT4 can be 1.1, 1.2, 1.3, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, or 1.8.
  • the change in the center thickness of the fourth lens will affect the effective focal length of the optical imaging lens. Therefore, by controlling the effective focal length of the optical imaging lens and the center thickness of the fourth lens to satisfy the above relationship, it is beneficial to reduce the tolerance sensitivity of the center thickness of the fourth lens.
  • f/CT4 is greater than or equal to 2
  • f/CT4 is less than or equal to 1
  • the center thickness of the fourth lens is too large, and the weight of the lens will increase, which is not conducive to the lightweight of the lens.
  • the optical imaging lens satisfies the following relationship:
  • Sagf4 represents the height of the object side vector of the fourth lens, that is, the edge of the maximum effective aperture of the fourth lens is on the optical axis
  • can be 10.5, 11, 11.5, 12, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, or 120, and the unit is mm -1 .
  • exceeds the range the vector height of the object side of the fourth lens is likely to be too large, and the object side of the fourth lens is bent, which increases the sensitivity of lens decentering tolerance and reduces the production yield.
  • the optical imaging lens satisfies the following relationship:
  • the tolerance sensitivity of the fourth lens can be further reduced, thereby improving the lens yield and reducing the production cost.
  • the optical imaging lens satisfies the following relationship:
  • RS7-RS8)/(RS7+RS8) can be 0.8, 1, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 2 or 2.5.
  • the optical imaging lens satisfies the following relationship: Nd6-Nd5>0; where Nd5 represents the d-light refractive index of the fifth lens, and Nd6 represents the d-light refractive index of the sixth lens.
  • d light refers to yellow light with a wavelength of 587.56 nm.
  • Nd6-Nd5 can be 0.2, 0.21, 0.22, 0.25, 0.28, 0.3 or 0.35.
  • a filter is also provided between the sixth lens and the imaging surface of the optical imaging lens to filter light in the non-operating wavelength band, thereby preventing false colors or ripples caused by the interference of the light in the non-operating wavelength band.
  • the filter may be an infrared filter, and its material is glass.
  • the material of each lens in the optical imaging lens may be glass or plastic.
  • the plastic lens can reduce the weight and production cost of the optical imaging lens, while the glass lens can make the optical imaging lens. It has good temperature tolerance and excellent optical performance.
  • the material of each lens is preferably glass, so that the vehicle-mounted lens can have better optical performance in different environments. It should be noted that the material of each lens in the optical imaging lens can also be any combination of glass and plastic, and not necessarily all glass or plastic.
  • the optical imaging lens may further include a protective glass.
  • the protective glass is arranged on the image side of the sixth lens or the image side of the filter to protect the photosensitive element, and at the same time, it can prevent the photosensitive element from being contaminated with dust and further ensure the image quality. It should be pointed out that when the optical imaging lens is applied to electronic devices such as mobile phones and tablets, the protective glass may not be provided to further reduce the weight of the electronic devices.
  • the optical imaging lens of the above-mentioned embodiment of the present application may use multiple lenses, for example, the above-mentioned six lenses.
  • It has a larger aperture (FNO can be 2.0) and a larger field of view, so as to better meet the application requirements of electronic devices such as mobile phones, tablets, and car lenses.
  • FNO can be 2.0
  • the number of lenses constituting the optical imaging lens can be changed to obtain the various results and advantages described in this specification.
  • FIG. 1 shows a schematic structural diagram of an optical imaging lens 100 of Embodiment 1.
  • the optical imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a flat surface
  • the image side surface S2 is a spherical surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is convex at the optical axis, and the image side surface S8 is convex at the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • the object side surface S7 and the image side surface S8 of the fourth lens L4 as aspherical surfaces is beneficial to correct aberrations and solve the problem of image surface distortion. It can also make the lens smaller, thinner, and flatter.
  • the optical imaging effect of the optical imaging lens 100 makes the optical imaging lens 100 have the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all glass, and the use of a glass lens can enable the optical imaging lens 100 to have better temperature tolerance characteristics and excellent optical performance.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical imaging lens 100.
  • the optical imaging lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S17.
  • the filter 110 is used to filter the light in the non-operating wavelength band, thereby preventing the phenomenon of false colors or ripples caused by the interference of the light in the non-operating wavelength band, and avoiding the distortion of the imaging color.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 1 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and effective focal length of the lens of the optical imaging lens 100 of Example 1, where the radius of curvature, thickness, The unit of the effective focal length of the lens is millimeter (mm).
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the direction from the image side to the image side of the lens.
  • the value of the stop ST0 in the "thickness" parameter column is from the stop ST0 to the apex of the object side of the latter lens (the apex refers to the intersection of the lens surface and the optical axis)
  • the direction from the object side of the first lens L1 to the image side of the last lens is the positive direction of the optical axis.
  • the diaphragm STO is positive, the diaphragm is on the left side of the apex of the object side of the lens.
  • the aspheric surface type in the lens is defined by the following formula:
  • x is the distance vector height of the aspheric surface from the apex of the aspheric surface when the height is h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 2 below shows the higher order term coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the lens aspheric surfaces S7-S8 in Example 1.
  • R56 -3.745 mm, where R56 represents the radius of curvature of the bonding surface of the fifth lens L5 and the sixth lens L6 at the optical axis;
  • CT5-CT6*(a5-a6) 0, the unit is 10 -6 mm/°C, where CT5 represents the thickness of the fifth lens L5 on the optical axis, and CT6 represents the thickness of the sixth lens L6 on the optical axis , A5 represents the thermal expansion coefficient of the fifth lens L5 in the temperature range of -30°C to 70°C, and a6 represents the thermal expansion coefficient of the sixth lens L6 in the temperature range of -30°C to 70°C;
  • f1/RS2 -1.294, where f1 represents the effective focal length of the first lens L1, and RS2 represents the radius of curvature of the image side surface S2 of the first lens L1 at the optical axis;
  • f2/f -6.842, where f2 represents the effective focal length of the second lens L2, and f represents the effective focal length of the optical imaging lens 100;
  • RS4/CT2 -8.203, where RS4 represents the radius of curvature of the image side surface S4 of the second lens L2 on the optical axis, and CT2 represents the thickness of the second lens L2 on the optical axis;
  • f/D34 4.607, where f represents the effective focal length of the optical imaging lens 100, and D34 represents the distance on the optical axis from the image side surface S6 of the third lens L3 to the object side surface S7 of the fourth lens L4;
  • f/CT4 1.442, where f represents the effective focal length of the optical imaging lens 100, and CT4 represents the thickness of the fourth lens L4 on the optical axis;
  • RS7-RS8)/(RS7+RS8) 1.211, where RS7 represents the curvature radius of the object side surface S7 of the fourth lens L4 at the optical axis, and RS8 represents the curvature radius of the image side surface S8 of the fourth lens L4 at the optical axis radius;
  • Nd6-Nd5 0.302, where Nd5 represents the d-light refractive index of the fifth lens L5, and Nd6 represents the d-light refractive index of the sixth lens L6.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm, and 656.27nm will deviate from the focal point after passing through the optical imaging lens 100; the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optics.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical imaging lens 100 at different image heights. According to FIG. 2, it can be seen that the optical imaging lens 100 provided in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an optical imaging lens 100 according to Embodiment 2 of the present application.
  • the optical imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a flat surface
  • the image side surface S2 is a spherical surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is convex at the optical axis, and the image side surface S8 is convex at the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical imaging lens 100.
  • the optical imaging lens 100 further includes a filter 110 provided on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 3 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical imaging lens 100 of Example 2, where the radius of curvature, The units of thickness and effective focal length of each lens are millimeters (mm);
  • Table 4 shows the higher order term coefficients that can be used for the aspheric surface S7-S8 of the lens in Example 2, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 5 shows the relevant parameter values of the optical imaging lens 100 given in Embodiment 2.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm, and 656.27nm will deviate from the focal point after passing through the optical imaging lens 100; the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optics.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical imaging lens 100 at different image heights. It can be seen from FIG. 4 that the optical imaging lens 100 provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical imaging lens 100 according to Embodiment 3 of the present application.
  • the optical imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a flat surface
  • the image side surface S2 is a spherical surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is convex at the optical axis, and the image side surface S8 is convex at the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical imaging lens 100.
  • the optical imaging lens 100 further includes a filter 110 provided on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 6 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and effective focal length of each lens of the optical imaging lens 100 of Example 3, where the radius of curvature, The units of thickness and effective focal length of each lens are millimeters (mm);
  • Table 7 shows the higher order term coefficients that can be used for the lens aspheric surface S7-S8 in Example 3, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 8 shows the relevant parameter values of the optical imaging lens 100 given in Embodiment 3.
  • FIG. 6 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical imaging lens 100 of Embodiment 3, and the reference wavelength of the optical imaging lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm, and 656.27nm will deviate from the focal point after passing through the optical imaging lens 100; the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optics.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical imaging lens 100 at different image heights. It can be seen from FIG. 6 that the optical imaging lens 100 provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of an optical imaging lens 100 according to Embodiment 4 of the present application.
  • the optical imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a flat surface
  • the image side surface S2 is a spherical surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is convex at the optical axis, and the image side surface S8 is convex at the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical imaging lens 100.
  • the optical imaging lens 100 further includes a filter 110 provided on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 9 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical imaging lens 100 of Example 4, where the radius of curvature, The units of thickness and effective focal length of each lens are millimeters (mm);
  • Table 10 shows the higher order term coefficients that can be used for the lens aspheric surface S7-S8 in Example 4, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 11 shows the relevant parameter values of the optical imaging lens 100 given in Embodiment 4.
  • FIG. 8 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical imaging lens 100 of Embodiment 4, respectively, and the reference wavelength of the optical imaging lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm, and 656.27nm will deviate from the focal point after passing through the optical imaging lens 100; the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optics.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical imaging lens 100 at different image heights. According to FIG. 8, it can be seen that the optical imaging lens 100 provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of an optical imaging lens 100 according to Embodiment 5 of the present application.
  • the optical imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a flat surface
  • the image side surface S2 is a spherical surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical surfaces, wherein the object side surface S7 is concave at the optical axis, and the image side S8 is convex at the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical imaging lens 100.
  • the optical imaging lens 100 further includes a filter 110 provided on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 12 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical imaging lens 100 of Example 5, where the radius of curvature, The units of thickness and effective focal length of each lens are millimeters (mm);
  • Table 13 shows the higher order term coefficients that can be used for the lens aspheric surface S7-S8 in Example 5, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 14 shows the relevant parameter values of the optical imaging lens 100 given in Embodiment 5.
  • FIG. 10 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical imaging lens 100 of Embodiment 5, and the reference wavelength of the optical imaging lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm, and 656.27nm will deviate from the focal point after passing through the optical imaging lens 100; the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optics.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical imaging lens 100 at different image heights. It can be seen from FIG. 10 that the optical imaging lens 100 provided in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an optical imaging lens 100 according to Embodiment 6 of the present application.
  • the optical imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a flat surface
  • the image side surface S2 is a spherical surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is convex at the optical axis, and the image side surface S8 is convex at the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical imaging lens 100.
  • the optical imaging lens 100 further includes a filter 110 provided on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 15 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical imaging lens 100 of Example 6, where the radius of curvature, The units of thickness and effective focal length of each lens are millimeters (mm);
  • Table 16 shows the higher order term coefficients that can be used for the lens aspheric surface S7-S8 in Example 6, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 17 shows the relevant parameter values of the optical imaging lens 100 given in Embodiment 6.
  • FIG. 12 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical imaging lens 100 of Embodiment 6, respectively, and the reference wavelength of the optical imaging lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm, and 656.27nm will deviate from the focal point after passing through the optical imaging lens 100; the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optics.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical imaging lens 100 at different image heights. It can be seen from FIG. 12 that the optical imaging lens 100 provided in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 shows a schematic structural diagram of an optical imaging lens 100 according to Embodiment 7 of the present application.
  • the optical imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a flat surface
  • the image side surface S2 is a spherical surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is convex at the optical axis, and the image side surface S8 is convex at the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical imaging lens 100.
  • the optical imaging lens 100 further includes a filter 110 provided on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 provided on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, and its material is glass.
  • Table 18 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical imaging lens 100 of Example 7, where the radius of curvature, The units of thickness and effective focal length of each lens are millimeters (mm);
  • Table 19 shows the higher order term coefficients that can be used for the lens aspheric surface S7-S8 in Example 7, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 20 shows the relevant parameter values of the optical imaging lens 100 given in Embodiment 7.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm, and 656.27nm will deviate from the focal point after passing through the optical imaging lens 100; the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optics.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical imaging lens 100 at different image heights. According to FIG. 14, it can be seen that the optical imaging lens 100 provided in Embodiment 7 can achieve good imaging quality.
  • the present application also provides an imaging module 200, which includes the optical imaging lens 100 as described above (as shown in FIG. 1); and a photosensitive element 210, which is provided on the optical imaging lens 100 On the image side of the photosensitive element 210, the photosensitive surface of the photosensitive element 210 coincides with the imaging surface S17.
  • the photosensitive element 210 may adopt a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device) image sensor, and the imaging surface S17 depends on the corresponding photosensitive element 210.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the imaging module 200 further includes a lens barrel (not shown in the figure) for carrying the optical imaging lens 100 and a corresponding supporting device (not shown in the figure).
  • the image capturing module 200 also includes a driving device (not shown in the figure) and an image stabilization module (not shown in the figure).
  • the driving device can have an auto-focus (Auto-Foucus) function, and its driving method can be such as Voice Coil Motor (VCM), Micro-Electro-Mechanical Systems (MEMS), Piezoelectric System (Piezoelectric) , And drive systems such as Shape Memory Alloy.
  • VCM Voice Coil Motor
  • MEMS Micro-Electro-Mechanical Systems
  • Piezoelectric System Piezoelectric
  • the driving device can allow the optical imaging lens 100 to obtain a better imaging position, so that the subject can be photographed and obtained clear images at different object distances
  • the image stabilization module can be an accelerometer, a gyroscope or a Hall element ( Hall Effect Sensor).
  • the driving device and the image stabilization module work together as an optical image stabilization (OIS), which adjusts the displacement of the optical imaging lens 100 on the optical axis to compensate for the blurred image produced by the shaking at the moment of shooting, or use the Image compensation technology to provide electronic image stabilization (EIS) to further improve the imaging quality of dynamic and low-light scenes.
  • OIS optical image stabilization
  • EIS electronic image stabilization
  • the above-mentioned image capturing module 200 can use the aforementioned optical imaging lens 100 to capture images with a large depth of field, high pixels, and wide viewing angle. At the same time, the image capturing module 200 also has the characteristics of miniaturization and light weight.
  • the image capturing module 200 can be applied to fields such as mobile phones, automobiles, surveillance, and medical treatment. Specifically, it can be used as a mobile phone camera, a car camera, a surveillance camera or an endoscope, etc.
  • the above-mentioned image capturing module 200 can be used as a vehicle-mounted camera in the driving device 300.
  • the driving device 300 may be an autonomous vehicle or a non-autonomous vehicle.
  • the image capturing module 200 can be used as a front-view camera, a rear-view camera, a side-view camera or an internal camera of the driving device 300.
  • the driving device 300 includes a vehicle body 310, and the imaging module 200 is installed at any position of the left rearview mirror, right rearview mirror, rear trunk, front headlights, rear headlights, etc. of the vehicle body 310 to obtain Clear images around the car body 310.
  • the driving device 300 is also provided with a display screen 320, the display screen 320 is installed in the vehicle body 310, and the imaging module 200 is in communication with the display screen 320, and the image information obtained by the imaging module 200 can be transmitted to the display It is displayed on the screen 320, so that the driver can obtain more complete surrounding image information and improve the safety guarantee during driving.
  • the imaging module 200 can be installed inside the vehicle body 310 to obtain the driving state of the driver, so as to remind the driver to pay attention to fatigue driving, and further improve driving safety. sex.
  • the image capturing module 200 can be applied to an autonomous vehicle.
  • the imaging module 200 is installed at any position on the body of the autonomous vehicle.
  • the image capturing module 200 can also be installed on the top of the vehicle body.
  • the imaging module 200 by installing multiple imaging modules 200 on the autonomous vehicle to obtain the 360° view of the environment information around the vehicle body 310, the environmental information obtained by the imaging module 200 will be transmitted to the analysis and processing unit of the autonomous vehicle In order to perform real-time analysis on the road conditions around the vehicle body 310.
  • the accuracy of the identification and analysis of the analysis and processing unit can be improved, thereby improving the safety performance during automatic driving.
  • the present application also provides an electronic device 400, which includes a housing 410 and the imaging module 200 as described above, and the imaging module 200 is installed on the housing 410.
  • the imaging module 200 is disposed in the housing 410 and is exposed from the housing 410 to acquire images.
  • the housing 410 can provide the imaging module 200 with protection from dust, water and drop, etc.
  • the housing 410 is provided with The hole corresponding to the image capturing module 200 allows the light to penetrate into or out of the housing from the hole.
  • the electronic device 400 described above can use the aforementioned imaging module 200 to capture images with a wide viewing angle, high pixels, and a wide range of depth of field.
  • the above-mentioned electronic device 400 is further provided with a corresponding processing system, and the electronic device 400 can transmit the image to the corresponding processing system in time after taking an image of the object, so that the system can make accurate analysis and judgment.
  • the "electronic device” used may also include, but is not limited to, a device configured to be connected via a wired line and/or receive or send a communication signal via a wireless interface.
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, notebook, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system
  • electronic devices can also include 3D image capture devices, digital cameras, tablet computers, smart TVs, network monitoring equipment, driving recorders, reversing imaging devices, multi-lens devices, identification systems, somatosensory game consoles, and Wearable devices, etc.
  • the above-mentioned electronic device is merely illustrative of practical application examples of the present invention, and does not limit the application scope of the imaging module of the present application.

Abstract

一种光学成像镜头(100),沿着光轴由物侧至像侧依序包括具有屈折力的第一透镜组,第一透镜组沿着光轴由物侧至像侧依序包括具有负屈折力的第一透镜(L1);具有负屈折力的第二透镜(L2),其物侧面(S3)近光轴处为凹面;具有正屈折力的第三透镜(L3),其像侧面(S6)近光轴处为凸面;以及具有屈折力的第二透镜组,第二透镜组沿着光轴由物侧至像侧依序包括具有正屈折力的第四透镜(L4),其物侧面(S7)近光轴处为凸面或凹面;具有正屈折力的第五透镜(L5);具有负屈折力的第六透镜(L6)。这种光学成像镜头(100)在满足特定关系时能够在扩大视场角范围、实现小型化、保证高像素方面取得平衡。还公开了一种取像模组(200),电子装置(400)及驾驶装置(300)。

Description

光学成像镜头、取像模组、电子装置及驾驶装置 技术领域
本申请涉及光学成像技术领域,特别是涉及一种光学成像镜头、取像模组、电子装置及驾驶装置。
背景技术
近年来,随着车载技术的发展,前视或侧视摄像装置、自动巡航仪、行车记录仪、倒车影像仪对车载用摄像头的技术要求越来越高。其中,前视或侧视摄像装置可作为高级驾驶员辅助系统中的摄像头系统分析视频内容,实现车道偏离警告(LDW)、自动车道保持辅助(LKA)、远光灯/近光灯控制和交通标志识别(TSR)。例如在停车时,控制前视或侧视摄像装置开启,驾驶员可直观地看到车前面的障碍物,从而方便停车操作;而当汽车通过特殊地方(如路障,停车场等)时,前视或侧视摄像装置也可自动打开从而获取车辆周围的环境信息,并反馈给汽车中央系统使其做出正确的指令,避免驾驶事故的发生。
然而,传统的前视或侧视镜头拍摄的图像分辨率较低,景深范围小,无法在呈现远距离细节的同时实现大角度范围的拍摄,从而不能使驾驶辅助系统实时准确地对车辆周围的环境信息进行判断进而做出及时的预警或规避,存在一定的驾驶风险。
发明内容
根据本申请的各种实施例,提供一种光学成像镜头。
一种光学成像镜头,所述光学成像镜头沿着光轴由物侧至像侧依序包括:
具有屈折力的第一透镜组,所述第一透镜组沿着光轴由物侧至像侧依序包括具有负屈折力的第一透镜;具有负屈折力的第二透镜,所述第二透镜的物侧面近光轴处为凹面;具有正屈折力的第三透镜,所述第三透镜的像侧面近光轴处为凸面;以及,
具有屈折力的第二透镜组,所述第二透镜组沿着光轴由物侧至像侧依序包括具有正屈折力的第四透镜,所述第四透镜的物侧面近光轴处为凸面或凹面;具有正屈折力的第五透镜;具有负屈折力的第六透镜;
其中,所述第五透镜和所述第六透镜胶合形成胶合透镜,所述光学成像镜头满足下列关系式:
R56<0,
0≤(CT5-CT6)*(a5-a6)<4*10 -6mm/℃;
其中,R56表示所述第五透镜和所述第六透镜的胶合面于光轴处的曲率半径,CT5表示所述第五透镜在光轴上的厚度,CT6表示所述第六透镜在光轴上的厚度,a5表示所述第五透镜在-30℃~70℃温度范围内的热膨胀系数,a6表示所述第六透镜在-30℃~70℃温度范围内的热膨胀系数。
一种取像模组,包括上述实施例所述的光学成像镜头以及感光元件,所述感光元件设于所述光学成像镜头的像侧。
一种电子装置,包括壳体以及上述实施例所述的取像模组,所述取像模组安装在所述壳体上。
一种驾驶装置,包括车体以及上述实施例所述的取像模组,所述取像模组设于所述车体以获取所述车体内部或所述车体周围的环境信息。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1示出了本申请实施例1的光学成像镜头的结构示意图;
图2分别示出了实施例1的光学成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图3示出了本申请实施例2的光学成像镜头的结构示意图;
图4分别示出了实施例2的光学成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图5示出了本申请实施例3的光学成像镜头的结构示意图;
图6分别示出了实施例3的光学成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图7示出了本申请实施例4的光学成像镜头的结构示意图;
图8分别示出了实施例4的光学成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图9示出了本申请实施例5的光学成像镜头的结构示意图;
图10分别示出了实施例5的光学成像镜头的纵向球差曲线图、像散曲 线图以及畸变曲线图;
图11示出了本申请实施例6的光学成像镜头的结构示意图;
图12分别示出了实施例6的光学成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图13示出了本申请实施例7的光学成像镜头的结构示意图;
图14分别示出了实施例7的光学成像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图15示出了本申请一实施例的取像模组的示意图;
图16示出了本申请一实施例的应用取像模组的驾驶装置示意图;
图17示出了本申请一实施例的应用取像模组的电子装置示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。为了便于说明,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本说明书中,物体相对于光学元件所处的一侧空间称为该光学元件的物侧,对应的,物体所成的像相对于光学元件所处的一侧空间称为该光学元件的像侧。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。并定义物侧至像侧为距离的正向。
另外,在下文的描述中,若出现透镜表面为凸面且未界定该凸面位置 时,则表示该透镜表面至少近光轴处为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少近光轴处为凹面。此处近光轴处是指光轴附近的区域。具体的,透镜表面区域的凹凸系以平行通过该区域的光线与光轴的交点在像侧或物侧来判定。举例言之,当平行光线通过该区域后,光线会朝像侧聚焦且与光轴的交点位于像侧,则该区域为凸面;反之,若光线通过该区域后,光线发散且光线的延伸线与光轴的交点在物侧,则该区域为凹面。另外,透镜包括光轴附近区域、圆周附近区域以及用于固定透镜的延伸部。理想的情况下,成像光线并不会通过延伸部,因此可以将光轴附近区域至圆周附近区域的区域范围定义为透镜的有效口径范围。下述实施例为求附图简洁均省略了部分的延伸部。进一步的,判定光轴附近区域、圆周附近区域或多个区域的范围的方法如下:
首先定义一中心点为该透镜表面上与光轴的一交点,自该中心点至透镜有效口径范围边界的距离为透镜的有效半口径,而一反曲点是位于该透镜表面上且并非位于光轴上的一点,通过反曲点的一切线与光轴垂直(即该透镜表面上反曲点两侧的面型相反)。如果透镜的径向上自中心点向外有数个反曲点,则依序为第一反曲点、第二反曲点,而透镜有效口径范围内距中心点最远的反曲点为第N反曲点。定义中心点和第一反曲点之间的范围为光轴附近区域,第N反曲点径向上向外的区域为圆周附近区域,第一反曲点至第N反曲点之间的区域依各反曲点分为不同的区域;若透镜表面上无反曲点,该光轴附近的区域定义为有效半口径的0~50%对应的区域,圆周附近区域定义为有效半口径的50%~100%对应的区域。
以下将对本申请的特征、原理和其他方面进行详细描述。
请一并参阅图1、图3、图5、图7、图9、图11和图13,本申请实施例提供一种可兼顾大景深范围、广视角、高像素以及小型化的光学成像镜头。该光学成像镜头包括:
第一透镜组(也称前透镜组),具有正屈折力,第一透镜组包括三片具有屈折力的透镜,即第一透镜、第二透镜以及第三透镜,其中最靠近镜头像侧的透镜的像侧面可为凸面;以及,
第二透镜组(也称后透镜组),具有正屈折力,第二透镜组包括三片具有屈折力的透镜,即第四透镜、第五透镜以及第六透镜,其中最靠近镜头物侧的透镜的物侧面可为凸面或凹面。
该六片透镜自第一透镜至第六透镜沿着光轴从物侧至像侧依序排列,光学成像镜头的成像面位于第六透镜的像侧。将第一透镜组和第二透镜组均配置为具有正屈折力,可以使光束聚焦,从而有利于携带有图像信息的光线传递至成像面,同时也有利于缩短镜头总长;另外,通过合理配置相 关透镜的面型,可以增强镜头的成像解析能力并有效修正像差,从而提升镜头分辨率,保证图像的清晰度。
具体的,第一透镜具有负屈折力,有利于使大角度入射的光线也能射入镜头,从而有助于扩大光学成像镜头的视场范围;
第二透镜具有负屈折力,且其物侧面近光轴处为凹面,有利于增加入射光线的宽度,以使大角度入射的光线经第一透镜折转后进一步扩宽,从而充满光瞳,充分传递至高像素像面,获得更宽的视场范围,同时体现镜头的高像素特点。
第三透镜具有正屈折力,其像侧面近光轴处为凸面。由于光线由较强负屈折力的第一透镜与第二透镜射出后,边缘视场光线的射入像面易产生较大的场曲,因此,通过设置一枚具有正屈折力的第三透镜,可平衡镜头物侧端透镜的负屈折力,校正边缘像差,提升镜头的成像解析度。
第四透镜具有正屈折力,可以有效分散屈折力的配置,避免产生过多像差,进而改善成像品质。第四透镜的物侧面近光轴处可为凸面或凹面,当第四透镜的物侧面近光轴处为凸面时,则第四透镜可为双凸结构,有利于进一步会聚光线,且其两个表面面型平滑,可降低不同视场光线的入射角及出射角的偏差,降低镜头的敏感度;当第四透镜的物侧面近光轴处为凹面时,则有利于抓住大角度入射的光线,进一步扩大镜头的视场角范围。
第五透镜具有正屈折力,第六透镜具有负屈折力,从而通过第五透镜与第六透镜配合可以校正镜头色差以及光线经前面透镜组的折转而产生的像散,从而进一步修正像差,提升镜头的成像解析能力。进一步的,可将第五透镜的像侧面和第六透镜的物侧面胶合,如此可使光学成像镜头的整体结构更为紧凑,有利于修正像差,并在缩小镜头体积和提高镜头解像力之间取得平衡,同时还可以降低镜片在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
如本领域技术人员已知的,在光线转折处的离散透镜,容易因加工误差和/或组立误差造成敏感,而胶合透镜的使用可有效地降低镜头的敏感度。在本申请中使用胶合透镜,不仅能够有效地降低镜头的敏感度、缩短镜头的整体长度,还能够分担镜头的整体色差、像差的校正,提高光学成像镜头的解像能力。进一步的,胶合透镜可包括一枚具有负屈折力的透镜和一枚具有正屈折力的透镜,如第五透镜具有正屈折力,第六透镜具有负屈折力。
光学成像镜头中还设置有光阑,光阑设于第一透镜组和第二透镜组之间,以更好地控制入射光束的大小,提升光学成像镜头的成像质量。进一步的,光阑设于第三透镜和第四透镜之间。具体的,光阑包括孔径光阑和 视场光阑。优选的,光阑为孔径光阑。孔径光阑可位于透镜的表面上(例如物侧面和像侧面),并与透镜形成作用关系,例如,通过在透镜的表面涂覆阻光涂层以在该表面形成孔径光阑;或通过夹持件固定夹持透镜的表面,位于该表面的夹持件结构能够限制轴上物点成像光束的宽度,从而在该表面上形成孔径光阑。
具体的,光学成像镜头满足下列关系式:R56<0,其中,R56表示第五透镜和第六透镜的胶合面于光轴处的曲率半径,单位为mm。R56可以是-3.9mm、-3.8mm、-3.7mm、-3.6mm、-3.5mm、-3.4mm、-3.3mm、-3.2mm、-3mm、-2mm或-1mm。通过将第五透镜和第六透镜胶合并使胶合面凹向物侧,可以使光学成像镜头的整体结构更为紧凑,降低镜片在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率;同时也有利于修正色差,进一步提升成像品质。
具体的,光学成像镜头满足下列关系式:0≤(CT5-CT6)*(a5-a6)<4*10 -6mm/℃,其中,CT5表示第五透镜在光轴上的厚度,CT6表示第六透镜在光轴上的厚度,a5表示第五透镜在-30℃~70℃温度范围内的热膨胀系数,a6表示第六透镜在-30℃~70℃温度范围内的热膨胀系数。
(CT5-CT6)*(a5-a6)可以是0、1、1.5、2、2.5、2.6、2.7、2.8、2.9、3、3.1、3.5或3.9,单位为10 -6mm/℃。在满足上述关系式时,可使镜头的屈折力分布更为合理,有利于降低第二透镜组的敏感度,提高镜头的生产良率,保证镜头的小型化,同时还可以防止因第五透镜和第六透镜的热膨胀系数差异过大而导致脱胶的情况。
当上述光学成像镜头用于成像时,被摄物体发出或者反射的光线从物侧方向进入光学成像镜头,并依次穿过第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,最终汇聚到成像面上。
上述光学成像镜头,通过选取合适数量的透镜并合理分配各透镜的屈折力、面型以及各透镜的有效焦距可以增强镜头的成像解析能力并有效修正像差,从而提升镜头分辨率,保证图像的清晰度;同时通过控制胶合透镜的胶合面以及胶合透镜各自的中心厚度和热膨胀系数满足上述关系,有利于在保证镜头高解像能力的前提下,实现镜头的小型化,同时降低镜头的敏感度,提升生产良率。
在示例性实施方式中,第一透镜至第六透镜中,至少一个透镜的物侧面和/或像侧面为非球面。通过上述方式,可以提高透镜设计的灵活性,并有效地校正像差,提高光学成像镜头的成像质量。具体的,第四透镜的物侧面和像侧面设置为非球面,从而可更好地在光线传递过程中修正前透镜组产生的像差。需要注意的是,光学成像镜头中各透镜的表面也可以是球 面和非球面的任意组合,本申请对此不做限制。
在示例性实施方式中,光学成像镜头满足下列关系式:-3<f1/RS2<0;其中,f1表示第一透镜的有效焦距,RS2表示第一透镜的像侧面于光轴处的曲率半径。f1/RS2可以是-2.5、-2、-1.5、-1.3、-1.25、-1.2、-1或-0.5。在满足上述关系式的上限时,可以合理配置第一透镜的屈折力使其为镜头提供负屈折力,从而可以更好地校正像差,并减少杂散光的产生,进一步降低鬼影的产生比率;在满足关系式的下限时,可以避免第一透镜的像侧面过弯,降低透镜的偏心公差敏感度,提升生产良率。而当f1/RS2大于等于0时,则无法为镜头提供正屈折力,不利于修正像差;而当f1/RS2小于等于-3时,容易导致第一透镜的像侧面过弯,增加透镜的加工工艺难度,降低生产良率。
在示例性实施方式中,光学成像镜头满足下列关系式:-7<f2/f<-5;其中,f2表示第二透镜的有效焦距,f表示光学成像镜头的有效焦距。f2/f可以是-6.9、-6.85、-6.8、-6.75、-6.7、-6.6、-6.5、-6.4、-6、-5.6或-5.2。在满足上述关系式的上限时,可以合理配置第二透镜的屈折力,使其不会变得过强,从而有利于防止光线偏折过大,抑制成像区域周边部的光束造成的高阶像差;在满足上述关系式的下限时,可以确保第二透镜为镜头提供足够的负屈折力,从而有利于抑制消色差效果的减小,使镜头具备高分辨性能。而当f2/f大于等于-5时,第二透镜的屈折力过大导致光线经第二透镜后的偏折较大,不利于抑制高阶像差;而当f2/f小于等于-7时,第二透镜的屈折力过小,容易导致透镜消色差效果的减小,不利于提升成像品质。
在示例性实施方式中,光学成像镜头满足下列关系式:-15mm<f5*f6/f<-10mm;其中,f5表示第五透镜的有效焦距,f6表示第六透镜的有效焦距,f表示光学成像镜头的有效焦距。f5*f6/f可以是-14.5mm、-14mm、-13.5mm、-13mm、-12.5mm、-12mm、-11.5mm、-11mm、-10.5mm或-10.2mm。在满足上述关系式时,有利于消除胶合透镜之间的像差,同时也有利于校正光线经前组透镜折转而产生的像散。而当f5*f6/f大于等于-10mm时,容易导致第五透镜和第六透镜的屈折力过大,不利于抑制成像区域周边部的光束造成的高阶像差;而当f5*f6/f小于等于-15mm时,则不利于抑制镜头像散,容易降低边缘视场的分辨率。
在示例性实施方式中,光学成像镜头满足下列关系式:-13<RS4/CT2<-8;其中,RS4表示第二透镜的像侧面于光轴处的曲率半径,CT2表示第二透镜在光轴上的厚度。RS4/CT2可以是-12.5、-12、-11.5、-11、-10.5、-10、-9.5、-9、-8.5或-8。在满足上述关系式的上限时,有利于控制第 二透镜的弯曲程度,防止第二透镜的像侧面过弯,从而使镜头容易广角化,且透镜表面过弯也不利于透镜加工,容易导致透镜表面镀膜不均以及鬼影现象严重;在满足上述关系式的下限时,可以避免第二透镜的中心厚度过小,从而有利于抑制像差发生。而当RS4/CT2大于等于-8时,第二透镜的像侧面过弯,不利于透镜加工,同时也容易增加鬼影的产生几率;而当RS4/CT2≤-13时,第二透镜的中心厚度过小,使得透镜的敏感度增加,并且也不利于抑制镜头像差。
在示例性实施方式中,光学成像镜头满足下列关系式:3.8<f/D34<5;其中,f表示光学成像镜头的有效焦距,D34表示第三透镜的像侧面至第四透镜的物侧面在光轴上的距离。f/D34可以是4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9或4.95。在满足上述关系式的上限时,有利于校正镜头像差,提升光学成像镜头的解像能力,保证镜头的高像素特性;在满足上述关系式的下限时,第三透镜和第四透镜光轴上的空气间隔越大,越有利于提升镜头的组装良率。而当f/D34大于等于5时,镜头的有效焦距过大,不利于广角化;而当f/D34小于等于3.8时,第三透镜和第四透镜光轴上的空气间隔过大,不利于镜头的小型化。
在示例性实施方式中,学成像镜头满足下列关系式:1<f/CT4<2;其中,f表示光学成像镜头的有效焦距,CT4表示第四透镜在光轴上的厚度。f/CT4可以是1.1、1.2、1.3、1.4、1.45、1.5、1.55、1.6、1.65、1.7或1.8。第四透镜的中心厚度的变化会影响光学成像镜头的有效焦距,因此通过控制光学成像镜头的有效焦距与第四透镜的中心厚度满足上述关系,有利于降低第四透镜中心厚度的公差敏感度,从而降低单透镜的加工工艺难度,提升镜头模组的组装良率,进一步降低生产成本。而当f/CT4大于等于2时,容易导致镜头对第四透镜的中心厚度过于敏感,使得对单透镜的加工很难满足所需的公差要求,从而降低镜头模组的组装良率,不利于降低生产成本;而当f/CT4小于等于1时,在满足镜头光学性能的前提下,第四透镜的中心厚度过大,透镜的重量也会增加,不利于镜头的轻量化。
在示例性实施方式中,光学成像镜头满足下列关系式:|1/Sagf4|>10mm -1;其中,Sagf4表示第四透镜的物侧面矢高,即第四透镜的最大有效口径边缘在光轴上的投影到第四透镜物侧面与光轴交点的距离。|1/Sagf4|可以是10.5、11、11.5、12、20、30、40、50、60、70、80、90、100、110或120,单位为mm -1。在满足上述关系式时,有利于降低鬼影的产生几率,保证镜头的高解像力,提升成像品质。而当|1/Sagf4|超出范围时,容易导致第四透镜物侧面的矢高值过大,第四透镜物侧面过弯,进而使得透 镜的偏心公差敏感度增加,生产良率下降。
进一步的,光学成像镜头满足下列关系式:|1/Sagf4|>100mm -1。在满足上述关系式时,可以进一步降低第四透镜的公差敏感度,从而提升镜头良率,降低生产成本。
在示例性实施方式中,光学成像镜头满足下列关系式:
0<(RS7-RS8)/(RS7+RS8)<3;其中,RS7表示第四透镜的物侧面于光轴处的曲率半径,RS8表示第四透镜的像侧面于光轴处的曲率半径。(RS7-RS8)/(RS7+RS8)可以是0.8、1、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5、2或2.5。在满足上述关系式的上限时,有利于减小成像面上周边视场的主光线入射角度,提高感光元件边缘区域像素单元的感光性能,提升镜头的解析度;在满足上述关系式的下限时,有利于抑制镜头像散。而当(RS7-RS8)/(RS7+RS8)大于等于3时,不利于减小边缘视场的主光线入射角度,较难保证镜头的解析度;而当(RS7-RS8)/(RS7+RS8)小于等于0时,不利于抑制镜头像散。
在示例性实施方式中,光学成像镜头满足下列关系式:Nd6-Nd5>0;其中,Nd5表示第五透镜的d光折射率,Nd6表示第六透镜的d光折射率。具体的,d光指波长为587.56nm的黄光。Nd6-Nd5可以是0.2、0.21、0.22、0.25、0.28、0.3或0.35。在满足上述关系式时,有利于校正透镜系统的轴外色差,从而提高镜头的分辨率,保证像面清晰。
在示例性实施方式中,第六透镜和光学成像镜头的成像面之间还设置有滤光片,用于滤除非工作波段的光线,从而防止因非工作波段光线的干扰而产生伪色或波纹的现象,避免成像色彩失真。具体的,滤光片可以是红外滤光片,其材质为玻璃。
在示例性实施方式中,光学成像镜头中各透镜的材质可以均为玻璃或均为塑料,塑料材质的透镜能够减少光学成像镜头的重量并降低生产成本,而玻璃材质的透镜可使光学成像镜头具备较好的温度耐受特性以及优良的光学性能。进一步的,在光学成像镜头应用于车载镜头时,各透镜的材质优选为玻璃,以使车载镜头在不同环境中均能具备较佳的光学性能。需要注意的是,光学成像镜头中各透镜的材质也可以是玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
在示例性实施方式中,光学成像镜头还可以包括保护玻璃。保护玻璃设于第六透镜的像侧或滤光片的像侧,起到保护感光元件的作用,同时也可避免感光元件沾染落尘,进一步保证成像品质。需要指出的是,在光学成像镜头应用于手机、平板等电子设备时,也可以不设置保护玻璃,以进一步减轻电子设备的重量。
本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜焦距、屈折力、面型、厚度以及各透镜之间的轴上间距等,可以保证上述光学成像镜头的总长较小、重量较轻且具备较高的成像分辨率,同时还具备较大的光圈(FNO可以为2.0)以及较大的视场角,从而更好地满足如手机、平板、车载镜头等电子设备的应用需求。然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2描述本申请实施例1的光学成像镜头100。
图1示出了实施例1的光学成像镜头100的结构示意图。如图1所示,光学成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1为平面,像侧面S2为球面,其中像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
将第四透镜L4的物侧面S7和像侧面S8均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使光学成像镜头100具备小型化特性。
第一透镜L1至第六透镜L6的材质均为玻璃,使用玻璃材质的透镜可使光学成像镜头100具备较好的温度耐受特性以及优良的光学性能。
第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学成像镜头100的成像质量。光学成像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110 以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S17上。滤光片110用于滤除非工作波段的光线,从而防止因非工作波段光线的干扰而产生伪色或波纹的现象,避免成像色彩失真。具体的,滤光片110为红外滤光片,其材质为玻璃。
表1示出了实施例1的光学成像镜头100的透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的有效焦距,其中,曲率半径、厚度、透镜的有效焦距的单位均为毫米(mm)。另外,以第一透镜L1为例,第一透镜L1的“厚度”参数列中的第一个数值为该透镜在光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面在光轴上的距离;光阑ST0于“厚度”参数列中的数值为光阑ST0至后一透镜的物侧面顶点(顶点指透镜表面与光轴的交点)在光轴上的距离,我们默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴的正方向,当该值为负时,表明光阑ST0设置于图1中该透镜的物侧面顶点的右侧,若光阑STO厚度为正值时,光阑在该透镜物侧面顶点的左侧。
表1
Figure PCTCN2020088899-appb-000001
透镜中的非球面面型由以下公式限定:
Figure PCTCN2020088899-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表2给出了可用于实施例1中透镜非球面S7-S8的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2020088899-appb-000003
结合表1和表2中的数据可知,实施例1中的光学成像镜头100满足:
R56=-3.745mm,其中,R56表示第五透镜L5和第六透镜L6的胶合面于光轴处的曲率半径;
(CT5-CT6)*(a5-a6)=0,单位为10 -6mm/℃,其中,CT5表示第五透镜L5在光轴上的厚度,CT6表示第六透镜L6在光轴上的厚度,a5表示第五透镜L5在-30℃~70℃温度范围内的热膨胀系数,a6表示第六透镜L6在-30℃~70℃温度范围内的热膨胀系数;
f1/RS2=-1.294,其中,f1表示第一透镜L1的有效焦距,RS2表示第一透镜L1的像侧面S2于光轴处的曲率半径;
f2/f=-6.842,其中,f2表示第二透镜L2的有效焦距,f表示光学成像镜头100的有效焦距;
f5*f6/f=-13.581mm,其中,f5表示第五透镜L5的有效焦距,f6表示第六透镜L6的有效焦距,f表示光学成像镜头100的有效焦距;
RS4/CT2=-8.203,其中,RS4表示第二透镜L2的像侧面S4于光轴处的曲率半径,CT2表示第二透镜L2在光轴上的厚度;
f/D34=4.607,其中,f表示光学成像镜头100的有效焦距,D34表示第三透镜L3的像侧面S6至第四透镜L4的物侧面S7在光轴上的距离;
f/CT4=1.442,其中,f表示光学成像镜头100的有效焦距,CT4表示第 四透镜L4在光轴上的厚度;
|1/Sagf4|=31.546mm -1,其中,Sagf4表示第四透镜L4的物侧面矢高;
(RS7-RS8)/(RS7+RS8)=1.211,其中,RS7表示第四透镜L4的物侧面S7于光轴处的曲率半径,RS8表示第四透镜L4的像侧面S8于光轴处的曲率半径;
Nd6-Nd5=0.302,其中,Nd5表示第五透镜L5的d光折射率,Nd6表示第六透镜L6的d光折射率。
图2分别示出了实施例1的光学成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学成像镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学成像镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学成像镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学成像镜头100后不同像高下的畸变。根据图2可知,实施例1给出的光学成像镜头100能够实现良好的成像品质。
实施例2
以下参照图3至图4描述本申请实施例2的光学成像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了本申请实施例2的光学成像镜头100的结构示意图。
如图3所示,光学成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1为平面,像侧面S2为球面,其中像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学成像镜头100的成像质量。光学成像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像 面S17上。具体的,滤光片110为红外滤光片,其材质为玻璃。
表3示出了实施例2的光学成像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表4示出了可用于实施例2中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表5示出了实施例2中给出的光学成像镜头100的相关参数数值。
表3
Figure PCTCN2020088899-appb-000004
表4
Figure PCTCN2020088899-appb-000005
Figure PCTCN2020088899-appb-000006
表5
Figure PCTCN2020088899-appb-000007
图4分别示出了实施例2的光学成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学成像镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学成像镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学成像镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学成像镜头100后不同像高下的畸变。根据图4可知,实施例2给出的光学成像镜头100能够实现良好的成像品质。
实施例3
以下参照图5至图6描述本申请实施例3的光学成像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图5示出了本申请实施例3的光学成像镜头100的结构示意图。
如图5所示,光学成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1为平面,像侧面S2为球面,其中像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑 STO,以限制入射光束的大小,进一步提升光学成像镜头100的成像质量。光学成像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S17上。具体的,滤光片110为红外滤光片,其材质为玻璃。
表6示出了实施例3的光学成像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表7示出了可用于实施例3中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表8示出了实施例3中给出的光学成像镜头100的相关参数数值。
表6
Figure PCTCN2020088899-appb-000008
表7
Figure PCTCN2020088899-appb-000009
Figure PCTCN2020088899-appb-000010
表8
Figure PCTCN2020088899-appb-000011
图6分别示出了实施例3的光学成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学成像镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学成像镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学成像镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学成像镜头100后不同像高下的畸变。根据图6可知,实施例3给出的光学成像镜头100能够实现良好的成像品质。
实施例4
以下参照图7至图8描述本申请实施例4的光学成像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图7示出了本申请实施例4的光学成像镜头100的结构示意图。
如图7所示,光学成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1为平面,像侧面S2为球面,其中像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中 物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学成像镜头100的成像质量。光学成像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S17上。具体的,滤光片110为红外滤光片,其材质为玻璃。
表9示出了实施例4的光学成像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表10示出了可用于实施例4中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表11示出了实施例4中给出的光学成像镜头100的相关参数数值。
表9
Figure PCTCN2020088899-appb-000012
表10
Figure PCTCN2020088899-appb-000013
Figure PCTCN2020088899-appb-000014
表11
Figure PCTCN2020088899-appb-000015
图8分别示出了实施例4的光学成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学成像镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学成像镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学成像镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学成像镜头100后不同像高下的畸变。根据图8可知,实施例4给出的光学成像镜头100能够实现良好的成像品质。
实施例5
以下参照图9至图10描述本申请实施例5的光学成像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图9示出了本申请实施例5的光学成像镜头100的结构示意图。
如图9所示,光学成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1为平面,像侧面S2为球面,其中像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凹面,像侧面S8于光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学成像镜头100的成像质量。光学成像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S17上。具体的,滤光片110为红外滤光片,其材质为玻璃。
表12示出了实施例5的光学成像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表13示出了可用于实施例5中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表14示出了实施例5中给出的光学成像镜头100的相关参数数值。
表12
Figure PCTCN2020088899-appb-000016
Figure PCTCN2020088899-appb-000017
表13
Figure PCTCN2020088899-appb-000018
表14
Figure PCTCN2020088899-appb-000019
图10分别示出了实施例5的光学成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学成像镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学成像镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学成像镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学成像镜头100后不同像高下的畸变。根据图10可知,实施例5给出的光学成像镜头100能够实现良好的成像品质。
实施例6
以下参照图11至图12描述本申请实施例6的光学成像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图11示出了本申请实施例6的光学成像镜头100的结构示意图。
如图11所示,光学成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6 和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1为平面,像侧面S2为球面,其中像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学成像镜头100的成像质量。光学成像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S17上。具体的,滤光片110为红外滤光片,其材质为玻璃。
表15示出了实施例6的光学成像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表16示出了可用于实施例6中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表17示出了实施例6中给出的光学成像镜头100的相关参数数值。
表15
Figure PCTCN2020088899-appb-000020
Figure PCTCN2020088899-appb-000021
表16
Figure PCTCN2020088899-appb-000022
表17
Figure PCTCN2020088899-appb-000023
图12分别示出了实施例6的光学成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学成像镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学成像镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学成像镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学成像镜头100后不同像高下的畸变。根据图12可知,实施例6给出的光学成像镜头100能够实现良好的成像品质。
实施例7
以下参照图13至图14描述本申请实施例7的光学成像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图13示出了本申请实施例7的光学成像镜头100的结构示意图。
如图13所示,光学成像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1为平面,像侧面S2为球面,其中像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学成像镜头100的成像质量。光学成像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S17上。具体的,滤光片110为红外滤光片,其材质为玻璃。
表18示出了实施例7的光学成像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表19示出了可用于实施例7中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表20示出了实施例7中给出的光学成像镜头100的相关参数数值。
表18
Figure PCTCN2020088899-appb-000024
Figure PCTCN2020088899-appb-000025
表19
Figure PCTCN2020088899-appb-000026
表20
Figure PCTCN2020088899-appb-000027
图14分别示出了实施例7的光学成像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学成像镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学成像镜头100后的会聚焦点偏离;像散曲线图示出了波长为 587.56nm的光线经由光学成像镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学成像镜头100后不同像高下的畸变。根据图14可知,实施例7给出的光学成像镜头100能够实现良好的成像品质。
如图15所示,本申请还提供一种取像模组200,包括如前文所述的光学成像镜头100(如图1所示);以及感光元件210,感光元件210设于光学成像镜头100的像侧,感光元件210的感光表面与成像面S17重合。具体的,感光元件210可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)图像传感器或者电荷耦合元件(CCD,Charge-coupled Device)图像传感器,成像面S17依其对应的感光元件210的不同,可为一平面或有任意曲率的曲面,特别是指凹面朝往物侧方向的曲面。
另一些实施方式中,取像模组200还包括用于承载光学成像镜头100的镜筒(图未示出)以及相应的支持装置(图未示出)。
除此之外,取像模组200还包括驱动装置(图未示出)以及影像稳定模块(图未示出)。其中驱动装置可具有自动对焦(Auto-Foucus)功能,其驱动方式可使用如音圈马达(Voice Coil Motor,VCM)、微机电系统(Micro Electro-Mechanical Systems,MEMS)、压电系统(Piezoelectric)、以及记忆金属(Shape Memory Alloy)等驱动系统。驱动装置可让光学成像镜头100取得较佳的成像位置,从而使被摄物于不同物距状态下,均能拍摄得到清晰的影像;影像稳定模块可以为加速计、陀螺仪或霍尔元件(Hall Effect Sensor)。驱动装置搭配影像稳定模块共同作为一光学防抖装置(Optiacal Image Stabilization,OIS),通过调整光学成像镜头100于光轴的位移以补偿拍摄瞬间因晃动而产生的模糊影像,或利用影像软件中的影像补偿技术,来提供电子防抖功能(Electronic Image Stabilization,EIS),进一步提升动态以及低照度场景拍摄的成像品质。
上述取像模组200利用前述的光学成像镜头100能够拍摄得到景深范围大、像素高、视角广的图像,同时取像模组200还具有小型化、轻量化的结构特点。取像模组200可应用于手机、汽车、监控、医疗等领域。具体可作为手机摄像头、车载摄像头、监控摄像头或内窥镜等。
如图16所示,上述取像模组200可作为车载摄像头应用于驾驶装置300中。驾驶装置300可以为自动驾驶汽车或非自动驾驶汽车。取像模组200可作为驾驶装置300的前视摄像头、后视摄像头、侧视摄像头或内部摄像头。具体的,驾驶装置300包括车体310,取像模组200安装于车体的310的左后视镜、右后视镜、后尾箱、前大灯、后大灯等任意位置,以获取车体310周围的清晰的图像。此外,驾驶装置300中还设置有显示屏320,显示屏320安装于车体310内,且取像模组200与显示屏320通信连接,取像模组200所获得的影像信息能够传输至显示屏320中显示,从而使司机能够获得更完整的周边影像信息,提高驾驶时的安全保障。而当取像模组200应用于驾驶辅助系统时,取像模组200可设于车体310内部以获取驾驶员的驾驶状态,从 而可在疲劳驾驶时提醒驾驶员注意,进一步提升驾驶的安全性。
特别地,在一些实施例中,取像模组200可应用于自动驾驶汽车上。继续参考图16,取像模组200安装于自动驾驶汽车车体上的任意位置,具体可参考上述实施例驾驶装置300中取像模组200的安装位置。对于自动驾驶汽车而言,取像模组200还可安装于车体的顶部。此时,通过在自动驾驶汽车上安装多个取像模组200以获得车体310周围360°视角的环境信息,取像模组200获得的环境信息将被传递至自动驾驶汽车的分析处理单元以对车体310周围的道路状况进行实时分析。通过采用取像模组200,可提高分析处理单元识别分析的准确性,从而提升自动驾驶时的安全性能。
如图17所示,本申请还提供一种电子装置400,包括壳体410以及如前文所述的取像模组200,取像模组200安装在壳体410上。具体的,取像模组200设置在壳体410内并从壳体410暴露以获取图像,壳体410可以给取像模组200提供防尘、防水防摔等保护,壳体410上开设有与取像模组200对应的孔,以使光线从孔中穿入或穿出壳体。
上述电子装置400,利用前述的取像模组200能够拍摄得到视角广、像素高、景深范围大的图像。在另一些实施方式中,上述电子装置400还设置有对应的处理系统,电子装置400在拍摄物体图像后可及时地将图像传送至对应的处理系统,以便系统做出准确的分析和判断。
另一些实施方式中,所使用到的“电子装置”还可包括,但不限于被设置成经由有线线路连接和/或经由无线接口接收或发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。除此之外,“电子装置”还可包括三维影像撷取装置、数码相机、平板计算机、智能电视、网络监控设备、行车记录仪、倒车显影装置、多镜头装置、辨识系统、体感游戏机与穿戴式装置等。上述电子装置仅是示范性地说明本发明的实际运用例子,并非限制本申请的取像模组的运用范围。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本 领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种光学成像镜头,其特征在于,所述光学成像镜头沿着光轴由物侧至像侧依序包括:
    具有屈折力的第一透镜组,所述第一透镜组沿着光轴由物侧至像侧依序包括,
    具有负屈折力的第一透镜;
    具有负屈折力的第二透镜,所述第二透镜的物侧面近光轴处为凹面;
    具有正屈折力的第三透镜,所述第三透镜的像侧面近光轴处为凸面;
    以及,
    具有屈折力的第二透镜组,所述第二透镜组沿着光轴由物侧至像侧依序包括,
    具有正屈折力的第四透镜,所述第四透镜的物侧面近光轴处为凸面或凹面;
    具有正屈折力的第五透镜;
    具有负屈折力的第六透镜;
    其中,所述第五透镜和所述第六透镜胶合形成胶合透镜,所述光学成像镜头满足下列关系式:
    R56<0,
    0≤(CT5-CT6)*(a5-a6)<4*10 -6mm/℃;
    其中,R56表示所述第五透镜和所述第六透镜的胶合面于光轴处的曲率半径,CT5表示所述第五透镜在光轴上的厚度,CT6表示所述第六透镜在光轴上的厚度,a5表示所述第五透镜在-30℃~70℃温度范围内的热膨胀系数,a6表示所述第六透镜在-30℃~70℃温度范围内的热膨胀系数。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述第一透镜至所述第六透镜中,至少一个透镜的物侧面和/或像侧面为非球面。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足下列关系式:
    -3<f1/RS2<0;
    其中,f1表示所述第一透镜的有效焦距,RS2表示所述第一透镜的像侧面于光轴处的曲率半径。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足下列关系式:
    -7<f2/f<-5;
    其中,f2表示所述第二透镜的有效焦距,f表示所述光学成像镜头的有效焦距。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足下列关系式:
    -15mm<f5*f6/f<-10mm;
    其中,f5表示所述第五透镜的有效焦距,f6表示所述第六透镜的有效焦距,f表示所述光学成像镜头的有效焦距。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足下列关系式:
    -13<RS4/CT2<-8;
    其中,RS4表示所述第二透镜的像侧面于光轴处的曲率半径,CT2表示所述第二透镜在光轴上的厚度。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足下列关系式:
    3.8<f/D34<5;
    其中,f表示所述光学成像镜头的有效焦距,D34表示所述第三透镜的像侧面至所述第四透镜的物侧面在光轴上的距离。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足下列关系式:
    1<f/CT4<2;
    其中,f表示所述光学成像镜头的有效焦距,CT4表示所述第四透镜在光轴上的厚度。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足下列关系式:
    |1/Sagf4|>10mm -1
    其中,Sagf4表示所述第四透镜的物侧面矢高。
  10. 根据权利要求9所述的光学成像镜头,其特征在于,所述光学成像镜头满足下列关系式:
    |1/Sagf4|>100mm -1
  11. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足下列关系式:
    0<(RS7-RS8)/(RS7+RS8)<3;
    其中,RS7表示所述第四透镜的物侧面于光轴处的曲率半径,RS8表示所述第四透镜的像侧面于光轴处的曲率半径。
  12. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足下列关系式:
    Nd6-Nd5>0;
    其中,Nd5表示所述第五透镜的d光折射率,Nd6表示所述第六透镜的d光折射率。
  13. 一种取像模组,其特征在于,包括如权利要求1-12任一项所述的光学成像镜头以及感光元件,所述感光元件设于所述光学成像镜头的像侧。
  14. 一种电子装置,其特征在于,包括壳体以及如权利要求13所述的取像模组,所述取像模组安装在所述壳体上。
  15. 一种驾驶装置,其特征在于,包括车体以及如权利要求13所述的取像模组,所述取像模组设于所述车体以获取所述车体内部或所述车体周围的环境信息。
PCT/CN2020/088899 2020-05-07 2020-05-07 光学成像镜头、取像模组、电子装置及驾驶装置 WO2021223137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088899 WO2021223137A1 (zh) 2020-05-07 2020-05-07 光学成像镜头、取像模组、电子装置及驾驶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/088899 WO2021223137A1 (zh) 2020-05-07 2020-05-07 光学成像镜头、取像模组、电子装置及驾驶装置

Publications (1)

Publication Number Publication Date
WO2021223137A1 true WO2021223137A1 (zh) 2021-11-11

Family

ID=78468582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088899 WO2021223137A1 (zh) 2020-05-07 2020-05-07 光学成像镜头、取像模组、电子装置及驾驶装置

Country Status (1)

Country Link
WO (1) WO2021223137A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326027A (zh) * 2021-12-30 2022-04-12 北京经纬恒润科技股份有限公司 车载前视光学系统和车载摄像系统
CN114967070A (zh) * 2022-04-27 2022-08-30 惠州市星聚宇光学有限公司 光学镜头以及摄像头模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130063829A1 (en) * 2011-09-14 2013-03-14 Samsung Techwin Co., Ltd. Fixed focus lens system
CN105629438A (zh) * 2016-01-19 2016-06-01 舜宇光学(中山)有限公司 一种高像素监控镜头
CN208026984U (zh) * 2018-03-20 2018-10-30 嘉兴中润光学科技有限公司 广角定焦镜头
CN109541780A (zh) * 2018-11-16 2019-03-29 江西联创电子有限公司 光学镜头及成像设备
CN110095854A (zh) * 2018-01-31 2019-08-06 株式会社腾龙 摄像透镜及摄像装置
CN110554489A (zh) * 2018-06-04 2019-12-10 佳凌科技股份有限公司 广角镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130063829A1 (en) * 2011-09-14 2013-03-14 Samsung Techwin Co., Ltd. Fixed focus lens system
CN105629438A (zh) * 2016-01-19 2016-06-01 舜宇光学(中山)有限公司 一种高像素监控镜头
CN110095854A (zh) * 2018-01-31 2019-08-06 株式会社腾龙 摄像透镜及摄像装置
CN208026984U (zh) * 2018-03-20 2018-10-30 嘉兴中润光学科技有限公司 广角定焦镜头
CN110554489A (zh) * 2018-06-04 2019-12-10 佳凌科技股份有限公司 广角镜头
CN109541780A (zh) * 2018-11-16 2019-03-29 江西联创电子有限公司 光学镜头及成像设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114326027A (zh) * 2021-12-30 2022-04-12 北京经纬恒润科技股份有限公司 车载前视光学系统和车载摄像系统
CN114326027B (zh) * 2021-12-30 2024-04-09 北京经纬恒润科技股份有限公司 车载前视光学系统和车载摄像系统
CN114967070A (zh) * 2022-04-27 2022-08-30 惠州市星聚宇光学有限公司 光学镜头以及摄像头模组
CN114967070B (zh) * 2022-04-27 2023-12-15 广东省星聚宇光学股份有限公司 光学镜头以及摄像头模组

Similar Documents

Publication Publication Date Title
CN107783256B (zh) 摄像镜头、相机装置、车载相机装置、传感装置、车载传感装置
JP2019211598A (ja) 撮像レンズ及び撮像装置
WO2022016316A1 (zh) 光学镜头、取像模组、电子装置及驾驶装置
CN112505883A (zh) 光学系统、取像模组、电子装置及驾驶装置
WO2021223137A1 (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
WO2021189463A1 (zh) 光学成像系统、成像模组、电子装置及驾驶装置
WO2021184214A1 (zh) 广角镜头、成像模组、电子装置及驾驶装置
WO2022082512A1 (zh) 光学成像系统、取像模组及电子装置
CN211478743U (zh) 成像镜头、取像装置、电子装置及驾驶装置
CN211698386U (zh) 光学系统、摄像模组、电子装置及汽车
WO2021164013A1 (zh) 光学系统、摄像模组、电子装置及汽车
CN111708150A (zh) 成像镜头、取像模组、电子装置及驾驶装置
WO2021022500A1 (zh) 光学系统、摄像模组及汽车
CN111258031A (zh) 光学镜头、成像模组、电子装置及驾驶装置
WO2021184208A1 (zh) 摄像镜头、取像装置、电子装置及驾驶装置
CN111239967A (zh) 光学系统、摄像模组、电子装置及汽车
WO2021184212A1 (zh) 光学镜头、成像模组、电子装置及驾驶装置
TWI799016B (zh) 取像光學系統鏡組、取像裝置及電子裝置
CN212341570U (zh) 成像镜头、取像模组、电子装置及驾驶装置
WO2022011498A1 (zh) 光学系统、取像模组及电子装置
CN212364696U (zh) 光学镜头、取像模组、电子装置及驾驶装置
CN111562659A (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
CN211698381U (zh) 光学系统、摄像模组、电子装置及汽车
WO2021189457A1 (zh) 透镜系统、取像模组、电子装置及驾驶装置
CN111856710A (zh) 光学镜头、取像模组、电子装置及驾驶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934633

Country of ref document: EP

Kind code of ref document: A1