WO2021184208A1 - 摄像镜头、取像装置、电子装置及驾驶装置 - Google Patents

摄像镜头、取像装置、电子装置及驾驶装置 Download PDF

Info

Publication number
WO2021184208A1
WO2021184208A1 PCT/CN2020/079757 CN2020079757W WO2021184208A1 WO 2021184208 A1 WO2021184208 A1 WO 2021184208A1 CN 2020079757 W CN2020079757 W CN 2020079757W WO 2021184208 A1 WO2021184208 A1 WO 2021184208A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
imaging lens
object side
optical axis
Prior art date
Application number
PCT/CN2020/079757
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
兰宾利
周芮
Original Assignee
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津欧菲光电有限公司 filed Critical 天津欧菲光电有限公司
Priority to PCT/CN2020/079757 priority Critical patent/WO2021184208A1/zh
Publication of WO2021184208A1 publication Critical patent/WO2021184208A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • This application relates to the field of optical imaging technology, in particular to a camera lens, an image capturing device, an electronic device, and a driving device.
  • the front-view camera device can be used as the camera system in the advanced driver assistance system to analyze the video content, realize lane departure warning (LDW), automatic lane keeping assist (LKA), high beam/low beam control and traffic sign recognition ( TSR).
  • LDW lane departure warning
  • LKA automatic lane keeping assist
  • TSR traffic sign recognition
  • the front-view camera device when parking, the front-view camera device is automatically turned on, and the driver can intuitively see the obstacles in front of the car, thereby facilitating the parking operation; and when the car passes through special places (such as roadblocks, parking lots, etc.), the front-view camera device It can also be automatically turned on to obtain information about the environment around the vehicle and feed it back to the central system of the car to make correct instructions to avoid driving accidents.
  • special places such as roadblocks, parking lots, etc.
  • the traditional front-view camera lens captures images with low resolution, small depth of field, and cannot achieve long-distance details while shooting at a wide range of angles, and cannot make the driving assistance system accurately monitor the environment around the vehicle in real time. To make judgments and then make timely warnings or avoidances, there are driving risks.
  • an imaging lens is provided.
  • An imaging lens comprising a first lens with negative refractive power along the optical axis from the object side to the image side.
  • the object side of the first lens has a convex surface near the optical axis, and the image side has a low beam.
  • the axis is concave;
  • the second lens has refractive power, the object side of the second lens is concave;
  • the third lens has positive refractive power;
  • the fourth lens has negative refractive power;
  • the fifth lens has positive refractive power
  • the camera lens satisfies the following relationship:
  • Ym represents the half-image height corresponding to the m-degree field of view of the camera lens in the effective pixel area of the imaging surface
  • FOVm represents the size of the m-degree field of view
  • P is the unit pixel size of the effective pixel area on the imaging surface of the imaging lens.
  • An image capturing device includes the imaging lens described in the above embodiment; and a photosensitive element, the photosensitive element being arranged on the image side of the imaging lens.
  • An electronic device includes a housing and the imaging device described in the above embodiments, and the imaging device is installed on the housing.
  • a driving device includes a vehicle body and the image capturing device described in the above-mentioned embodiments, and the image capturing device is provided on the vehicle body to obtain environmental information around the vehicle body.
  • FIG. 1 shows a schematic diagram of a range corresponding to an m-degree field of view angle according to an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a camera lens in Embodiment 1 of the present application
  • FIG. 3 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the imaging lens of Embodiment 1 respectively;
  • FIG. 4 shows a schematic structural diagram of a camera lens according to Embodiment 2 of the present application.
  • FIG. 5 respectively shows a longitudinal spherical aberration curve, an astigmatism curve, and a distortion curve of the imaging lens of Embodiment 2;
  • FIG. 6 shows a schematic structural diagram of a camera lens according to Embodiment 3 of the present application.
  • FIG. 7 respectively shows a longitudinal spherical aberration curve diagram, an astigmatism curve diagram, and a distortion curve diagram of the imaging lens of Embodiment 3;
  • FIG. 8 shows a schematic structural diagram of a camera lens according to Embodiment 4 of the present application.
  • FIG. 9 shows the longitudinal spherical aberration curve, the astigmatism curve and the distortion curve of the imaging lens of Embodiment 4 respectively;
  • FIG. 10 shows a schematic structural diagram of a camera lens according to Embodiment 5 of the present application.
  • FIG. 11 shows the longitudinal spherical aberration curve, the astigmatism curve and the distortion curve of the imaging lens of Embodiment 5 respectively;
  • FIG. 12 shows a schematic diagram of an image capturing device according to an embodiment of the present application.
  • FIG. 13 shows a schematic diagram of a driving device using an image capturing device according to an embodiment of the present application
  • FIG. 14 shows a schematic diagram of an electronic device using an image capturing device according to an embodiment of the present application.
  • first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any restriction on the feature. Therefore, without departing from the teachings of the present application, the first lens discussed below may also be referred to as a second lens or a third lens.
  • the shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the imaging lens of the embodiment of the present application includes six lenses with refractive power, namely the first lens, the second lens, the third lens, and the fourth lens. Lens, fifth lens, and sixth lens.
  • the six lenses are arranged in order from the object side to the image side along the optical axis, and an aperture can be set on the object side of the imaging lens or between the first lens and the fourth lens to effectively limit the beam size and further improve the imaging quality.
  • the first lens has a negative refractive power, and its object side is convex at the near optical axis, and its image side is concave at the near optical axis, so that light incident at a large angle can also be focused on the imaging surface of the imaging lens to ensure the lens Viewing angle and image quality.
  • the second lens has refractive power, and the refractive power of the second lens can be adjusted by adjusting the radius of curvature of the object side surface and the image side surface and the center thickness of the second lens. Further, when it has a negative refractive power, it is beneficial to correct the edge aberrations generated after the light is refracted by the first lens, and improve the resolution ability of the lens.
  • the third lens has a positive refractive power, which is beneficial for correcting the curvature of field generated on the edge image surface after the light passes through the first and second lenses, thereby improving the imaging quality of the lens.
  • the fourth lens has negative refractive power
  • the fifth lens has positive refractive power
  • the fifth lens can cooperate with the fourth lens to provide positive refractive power for the lens as a whole, which is beneficial to correct lens aberrations and reduce the sensitivity of lens decentering. Improve image quality.
  • the image side surface of the fourth lens is a concave surface
  • the object side surface of the fifth lens is a convex surface.
  • the image side surface of the fourth lens and the object side surface of the fifth lens can be cemented, so that the overall structure of the imaging lens can be more compact. Reduce the tolerance sensitivity problems such as tilt or eccentricity in the assembly process of the lens, and improve the assembly yield of the lens.
  • the discrete lenses at the turning points of light are easily sensitive due to processing errors and/or assembly errors, and the use of cemented lenses can effectively reduce the sensitivity of the lens.
  • the use of a cemented lens in this application can not only effectively reduce the sensitivity of the lens and shorten the overall length of the lens, but also can share the correction of the overall chromatic aberration and aberration of the lens, and improve the resolution capability of the imaging lens.
  • the cemented lens may include a lens with negative refractive power and a lens with positive refractive power.
  • the fourth lens has negative refractive power and the fifth lens has positive refractive power.
  • the sixth lens has refractive power.
  • the sixth lens may have a negative refractive power to diverge the light passing through the fifth lens, so that the light will smoothly transition to the imaging surface, which is beneficial to shorten the total length of the lens; in other embodiments, the sixth lens It can have a positive refractive power, which is beneficial to obtain a smaller chief ray incident angle, so as to further improve the imaging resolution of the lens and make the brightness of the image surface more uniform.
  • the diaphragm may be arranged between the third lens and the fourth lens.
  • the diaphragm may include an aperture diaphragm and a field diaphragm.
  • the diaphragm is an aperture diaphragm.
  • the aperture stop can be located on the surface of the lens (for example, the object side and the image side) and form an functional relationship with the lens, for example, by coating a light-blocking coating on the surface of the lens to form an aperture stop on the surface; or by clamping
  • the holder fixedly clamps the surface of the lens, and the holder structure on the surface can limit the width of the imaging beam of the object point on the axis, thereby forming an aperture stop on the surface.
  • the camera lens also satisfies the following relational expression: 9 pixels/degree ⁇ Ym/[(1/2)*FOVm*P] ⁇ 35 pixels/degree; among them, Ym represents the m degree view of the camera lens in the effective pixel area of its imaging surface
  • the half image height corresponding to the field angle, FOVm represents the field angle of m degrees
  • the value of m ranges from an integer from 1 to 100
  • P is the unit pixel size of the effective pixel area on the imaging surface of the camera lens
  • the unit of P It is mm/pixel.
  • the field of view corresponding to the m-degree field of view is a circular area in the effective pixel area on the imaging surface (as shown in Figure 1), and the center of the circular area is located on the optical axis.
  • the size of Ym is the radius of the circular area.
  • P can be 3um
  • m can be 2, 20, 40, 60, 80 or 100
  • the corresponding FOVm can be 2°, 20°, 40°, 60°, 80° or 100°, combined with m-degree vision
  • the half-image height Ym corresponding to the field angle, Ym/[(1/2)*FOVm*P] can be 10, 13, 16, 19, 20, 21, 22, 23, 24, 25, 28, 31 or 34
  • Its unit is pixel/degree, and this ratio is used to characterize the number of pixels per degree of field of view of the camera lens.
  • the number of pixels per degree of field of view can be adjusted through the above relationship to ensure that when the lens is shooting in a wide range of angles, the incident light within each degree of field of view can become a clear image, thereby improving the imaging of the lens in the entire field of view Analyzing ability, so that the image has a better visual effect.
  • the light emitted or reflected by the subject enters the imaging lens from the object side, and passes through the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the first lens in sequence.
  • the six lenses finally converge on the imaging surface.
  • the above-mentioned camera lens by selecting an appropriate number of lenses and reasonably distributing the refractive power, surface shape, and effective focal length of each lens, can enhance the imaging resolution capability of the camera lens and effectively correct aberrations, so that it can be more precise Capture the details of the scene; at the same time, by adjusting the number of pixels in each degree of field of view of the lens, the incident light in each degree of field of view can be formed into a clear image, thus taking into account the characteristics of the large wide angle and deep depth of field of the lens, and improving the visual effect of the image .
  • the imaging lens satisfies the following relational expression: among the first lens to the sixth lens, the object side surface and/or the image side surface of at least one lens is aspherical.
  • the object side surface and the image side surface of each lens of the imaging lens may also be spherical surfaces. It should be noted that the above-mentioned embodiments are only examples of some embodiments of the present application.
  • the surface of each lens in the camera lens may be an aspheric surface or any combination of spherical surfaces.
  • the camera lens satisfies the following relationship:
  • Y 10 means that the camera lens has a 10 degree field of view within the effective pixel area of its imaging surface (ie camera The center field of view of the lens corresponds to the half-image height, and FOV 10 indicates the size of the field of view of 10 degrees. Specifically, the center field of view indicated by FOV 10 is shown in FIG. 1.
  • Y 10 /[(1/2)*FOV 10 *P] can be 26, 27, 28, 29, 30, 31, 32, 33, or 34, and its unit is pixel/degree.
  • the number of pixels allocated per degree of field of view within the range of the central field of view ( ⁇ 5 degrees of field of view) of the camera lens can be controlled to ensure that the central field of view has sufficiently high pixels and imaging resolution capabilities to make the central field of view
  • the information of the subject inside is clearly displayed; at the same time, when the above-mentioned camera lens is used for telephoto shooting, because the imaging field of view is small, the detailed information of the scene can be better presented, so that the picture has better Visual effect.
  • the camera lens satisfies the following relationship:
  • (Y 50 -Y 10 )/[(1/2)*(FOV 50 -FOV 10 )*P] can be 20, 21, 22, 23, 24, 25, or 26, and the unit is pixel/degree.
  • the camera lens satisfies the following relationship:
  • (Y 100 -Y 50 )/[(1/2)*(FOV 100 -FOV 50 )*P] can be 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 or 19, which The unit is pixels/degree.
  • the imaging lens satisfies the following relationship: -25 ⁇ f1/sagS1 ⁇ -10; where f1 represents the effective focal length of the first lens, and sagS1 represents the vector height of the object side of the first lens.
  • f1/sagS1 can be -24, -22, -20, -18, -16, -15, -14, -13, -12, or -11.
  • the first lens As a negative lens, negative refractive power can be provided for the imaging lens, which is conducive to making large-angle incident light enter the lens, expanding the field of view of the lens; at the same time, under the conditions of satisfying the above relationship Therefore, the object side of the first lens can be prevented from being bent, thereby reducing the sensitivity of lens assembly eccentricity, improving the assembly yield of the lens, and at the same time, it is beneficial to realize the miniaturization of the lens.
  • the effective focal length of the first lens is too large, which is not conducive to light reversal, and it is easy to increase the total length of the lens; when f1/sagS1 is higher than the upper limit, the first lens will bend and increase It is difficult to process and assemble the first lens.
  • the imaging lens satisfies the following relationship: -20 ⁇ f2/f ⁇ 25; where f2 represents the effective focal length of the second lens, and f represents the effective focal length of the imaging lens.
  • f2/f can be -18, -16, -14, 4, 8, 10, 12, 14, 16, 20, or 24.
  • it is beneficial to expand the width of the beam contracted by the first lens, thereby correcting the edge aberration caused by the light refraction of the first lens, and at the same time suppressing the generation of astigmatism and improving the resolution of the lens.
  • f2/f is lower than the lower limit or higher than the upper limit, it is not conducive to the correction of the edge aberration of the lens.
  • the imaging lens satisfies the following relational expression: 0.5 ⁇
  • can be 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 1.0, 1.1, 1.2, or 1.4. Under the condition of satisfying the above relationship, it is beneficial to reduce the processing difficulty of the second lens and improve the processing accuracy of the second lens surface.
  • the two surfaces have similar radii of curvature to avoid eccentricity.
  • is higher than the upper limit or lower than the lower limit, the curvature of the two surfaces will differ greatly, which will easily increase the processing difficulty and cause greater eccentricity problems during assembly.
  • the imaging lens satisfies the following relational expression: 0 ⁇ D23/f ⁇ 0.5; where D23 represents the distance from the image side surface of the second lens to the object side surface of the third lens on the optical axis, and f represents the effectiveness of the imaging lens focal length.
  • D23/f can be 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 or 0.45.
  • the imaging lens satisfies the following relationship: 0 ⁇ f3/f ⁇ 2; where f3 represents the effective focal length of the third lens, and f represents the effective focal length of the imaging lens.
  • f3/f can be 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, or 1.9.
  • the third lens can provide positive refractive power for the lens, thereby correcting the curvature of field generated by the edge rays passing through the first and second lenses, correcting edge aberrations, and improving the imaging resolution capability of the lens.
  • f3/f is lower than the lower limit, the lens cannot provide positive refractive power; when f3/f is higher than the upper limit, the effective focal length of the third lens is too large to provide sufficient refractive power for aberration correction.
  • the imaging lens satisfies the following relationship: 0 ⁇ f45/f ⁇ 10; where f45 represents the combined focal length of the fourth lens and the fifth lens, and f represents the effective focal length of the imaging lens.
  • f45/f can be 1, 2, 2.1, 2.2, 2.3, 2.4, 2.8, 3.2, 3.6, 4, 5, 6, 7, 8, or 9.
  • the fourth lens and the fifth lens can provide positive refractive power for the lens as a whole, thereby helping to correct lens aberrations, reduce the decentering sensitivity of the lens, and improve the imaging quality of the lens.
  • the lens cannot provide positive refractive power; when f45/f is higher than the upper limit, the combined focal length of the fourth lens and the fifth lens is too large and the refractive power is small, which is not conducive to correction Lens aberration.
  • the camera lens satisfies the following relationship: 0.2 ⁇ EPL/TTL ⁇ 0.5; where EPL represents the distance from the diaphragm to the imaging surface of the camera lens on the optical axis, and TTL represents the object side of the first lens to The distance of the imaging surface of the camera lens on the optical axis.
  • EPL/TTL can be 0.25, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4 or 0.45.
  • Satisfying the upper limit of the above relational expression is conducive to making the incident light in each field of view fill the pupil, which is conducive to enhancing the brightness and clarity of the picture; while meeting the lower limit of the relational expression can make the lens structure arrangement more Compact to shorten the total length of the lens and realize the miniaturization of the lens.
  • the camera lens satisfies the following relationship:
  • f/tan(DFOV/2) can be 2.2mm, 2.4mm, 2.6mm, 2.7mm, 2.72mm, 2.74mm, 2.76mm, 2.78mm, 2.8mm, 3mm, or 3.1mm. Under the condition of satisfying the above relationship, it is beneficial to provide a sufficient field of view for the camera lens to meet the shooting needs of the camera in a wide range of angles in electronic products such as mobile phones, cameras, vehicles, surveillance, and medical.
  • the material of each lens in the camera lens may be glass or plastic.
  • the plastic lens can reduce the weight of the camera lens and reduce the production cost, while the glass lens can make the camera lens better.
  • the temperature tolerance characteristics and excellent optical performance can also be any combination of glass and plastic, and it does not have to be all glass or all plastic.
  • the imaging lens further includes an infrared filter.
  • the infrared filter is set on the image side of the sixth lens, used to filter incident light, specifically to isolate infrared light, prevent infrared light from being absorbed by the photosensitive element, so as to prevent infrared light from affecting the color and clarity of normal images, and improve The imaging quality of the camera lens.
  • the imaging lens further includes a protective glass.
  • the protective glass is arranged on the image side of the infrared filter to protect the photosensitive element.
  • the photosensitive element is located on the imaging surface of the imaging lens. Further, the imaging surface may be the photosensitive surface of the photosensitive element.
  • the imaging lens of the above-mentioned embodiment of the present application may use multiple lenses, for example, the above-mentioned six lenses.
  • FNO can be 1.6
  • the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least near the optical axis; if the lens surface is concave and the position of the concave surface is not defined, it means the lens surface At least the near optical axis is concave.
  • the near optical axis here refers to the area near the optical axis.
  • the surface of each lens closest to the object is called the object side, and the surface of each lens closest to the imaging surface is called the image side.
  • FIG. 2 shows a schematic diagram of the structure of the imaging lens 100 of Embodiment 1.
  • the imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both aspherical surfaces, wherein the object side surface S1 is a convex surface near the optical axis, and the image side surface S2 is a concave surface near the optical axis.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 and the image side surface S4 are both aspherical, wherein the object side surface S3 is a concave surface near the optical axis, and the image side surface S4 is a convex surface near the optical axis.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface near the optical axis, and the image side surface S6 is a convex surface near the optical axis.
  • the fourth lens L4 has a negative refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a concave surface near the optical axis.
  • the fifth lens L5 has a positive refractive power
  • the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a convex surface near the optical axis, and the image side surface S10 is a convex surface near the optical axis.
  • the sixth lens L6 has a positive refractive power, and the object side surface S11 and the image side surface S12 are both aspherical, wherein the object side surface S11 is a concave surface near the optical axis, and the image side surface S12 is a convex surface near the optical axis.
  • the materials of the first lens L1 to the sixth lens L6 are all set to glass.
  • the use of a glass lens can make the camera lens 100 have a small temperature drift under different temperature changes, so that it has better temperature tolerance characteristics; it can also make the camera lens 100 have a better optical transfer function, thereby improving the camera lens 100 imaging resolution.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the imaging lens 100.
  • the imaging lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the camera lens 100 to avoid image color distortion.
  • the material of the filter 110 is glass.
  • the filter 110 and the protective glass 120 may be part of the imaging lens 100 and assembled together with each lens, or may also be installed together when the imaging lens 100 is assembled with the photosensitive element.
  • Table 1 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient), and effective focal length of the lens of the imaging lens 100 of Example 1, where the radius of curvature, thickness, lens The effective focal length is in millimeters (mm).
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the direction from the image side to the image side of the lens.
  • the value of the stop ST0 in the "thickness" parameter column is from the stop ST0 to the apex of the object side of the latter lens (the apex refers to the intersection of the lens and the optical axis) in the light
  • the distance on the axis we default that the direction from the object side of the first lens L1 to the image side of the last lens is the positive direction of the optical axis.
  • the value is negative, it means that the stop ST0 is set to the right of the vertex of the object side of the lens.
  • the thickness of the diaphragm STO is positive, the diaphragm is on the left side of the vertex of the object side of the lens; the reference wavelength in Table 1 is 587.56 nm.
  • the aspheric surface type of each lens is defined by the following formula:
  • x is the distance vector height of the aspheric surface from the apex of the aspheric surface when the height is h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 2 below shows the higher order term coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for the lens aspheric surfaces S1-S4, S11-S12 in Example 1.
  • the total length TTL of the camera lens 100 is 24.0mm, and the camera lens 100 in Embodiment 1 satisfies:
  • Ym/[(1/2)*FOVm*P] varies with the value of m, and the corresponding values are respectively,
  • Y 10 /[(1/2)*FOV 10 *P] 30 pixels/degree, where Y 10 represents the half image height corresponding to the 10-degree field of view of the camera lens 100 in the effective pixel area on the imaging surface S17, FOV 10 represents the size of the field of view of 10 degrees;
  • f1/sagS1 -16.16, where f1 represents the effective focal length of the first lens L1, and sagS1 represents the vector height of the object side of the first lens L1;
  • f2/f 20.37, where f2 represents the effective focal length of the second lens L2, and f represents the effective focal length of the camera lens 100;
  • D23/f 0.27, where D23 represents the distance on the optical axis from the image side surface S4 of the second lens L2 to the object side surface S5 of the third lens L3;
  • f3/f 1.38, where f3 represents the effective focal length of the third lens L3;
  • f45/f 7.16, where f45 represents the combined focal length of the fourth lens L4 and the fifth lens L5;
  • EPL/TTL 0.37, where EPL represents the distance from the stop STO to the imaging surface S17 of the imaging lens 100 on the optical axis, and TTL represents the object side S1 of the first lens L1 to the imaging surface S17 of the imaging lens 100 on the optical axis the distance;
  • DFOV represents the angle of view of the imaging lens 100 in the diagonal direction.
  • the longitudinal spherical aberration curve shows the deviation of the focal point of light with wavelengths of 430nm, 479.99nm, 546.07nm, 587.56nm, and 656.27nm after passing through the imaging lens 100;
  • the astigmatism graph shows the light passing through with a wavelength of 546.07nm Meridional field curvature (T) and sagittal field curvature (S) behind the imaging lens 100;
  • the distortion curve diagram shows the distortion corresponding to different field angles of light with a wavelength of 546.07 nm after passing through the imaging lens 100.
  • T Meridional field curvature
  • S sagittal field curvature
  • FIG. 4 shows a schematic structural diagram of an imaging lens 100 according to Embodiment 2 of the present application.
  • the imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both aspherical, wherein the object side surface S1 is a convex surface near the optical axis, and the image side surface S2 is a concave surface near the optical axis.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 and the image side surface S4 are both aspherical, wherein the object side surface S3 is a concave surface near the optical axis, and the image side surface S4 is a convex surface near the optical axis.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface near the optical axis, and the image side surface S6 is a convex surface near the optical axis.
  • the fourth lens L4 has a negative refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a concave surface near the optical axis.
  • the fifth lens L5 has a positive refractive power
  • the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a convex surface near the optical axis, and the image side surface S10 is a convex surface near the optical axis.
  • the sixth lens L6 has a positive refractive power, and the object side surface S11 and the image side surface S12 are both aspherical, wherein the object side surface S11 is a concave surface near the optical axis, and the image side surface S12 is a convex surface near the optical axis.
  • the materials of the first lens L1 to the sixth lens L6 are all set to glass, which can make the camera lens 100 have better temperature tolerance characteristics under different temperature change environments; it can also make the camera lens 100 have a better optical transfer function, Thus, the imaging resolution of the camera lens 100 is improved.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the imaging lens 100.
  • the imaging lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the camera lens 100 to avoid image color distortion.
  • Table 3 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the imaging lens 100 of Example 2, where the radius of curvature and thickness The effective focal length of each lens is in millimeters (mm); the reference wavelength in Table 3 is 587.56 nm; Table 4 shows the coefficients of higher order terms that can be used for the aspheric surfaces S1-S4 and S11-S12 of the lens in Example 2. , Where the aspheric surface type can be defined by the formula (1) given in the first embodiment; Table 5 shows the relevant parameter values of the camera lens 100 given in the second embodiment.
  • FIG. 5 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the imaging lens 100 of Embodiment 2 respectively, and the reference wavelength of the imaging lens 100 is 546.07 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 430nm, 479.99nm, 546.07nm, 587.56nm, and 656.27nm after passing through the imaging lens 100;
  • the astigmatism graph shows the light passing through with a wavelength of 546.07nm Meridional field curvature (T) and sagittal field curvature (S) behind the imaging lens 100;
  • the distortion curve diagram shows the distortion corresponding to different field angles of light with a wavelength of 546.07 nm after passing through the imaging lens 100. It can be seen from FIG. 5 that the imaging lens 100 provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 6 shows a schematic structural diagram of an imaging lens 100 according to Embodiment 3 of the present application.
  • the imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both aspherical, wherein the object side surface S1 is a convex surface near the optical axis, and the image side surface S2 is a concave surface near the optical axis.
  • the second lens L2 has a negative refractive power
  • the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface near the optical axis, and the image side surface S4 is a convex surface near the optical axis.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface near the optical axis, and the image side surface S6 is a concave surface near the optical axis.
  • the fourth lens L4 has a negative refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface near the optical axis, and the image side surface S8 is a concave surface near the optical axis.
  • the fifth lens L5 has a positive refractive power
  • the object side surface S9 is a spherical surface
  • the image side surface S10 is a flat surface
  • the object side surface S9 is a convex surface near the optical axis.
  • the sixth lens L6 has a positive refractive power, and the object side surface S11 and the image side surface S12 are both aspherical, wherein the object side surface S11 is a concave surface near the optical axis, and the image side surface S12 is a convex surface near the optical axis.
  • Both the object side surface and the image side surface of the first lens L1 and the sixth lens L6 are set to be aspherical surfaces, which is beneficial to correct aberrations and solve the problem of image surface distortion.
  • the materials of the first lens L1 to the sixth lens L6 are all set to glass, which can make the camera lens 100 have better temperature tolerance characteristics under different temperature change environments; it can also make the camera lens 100 have a better optical transfer function, Thus, the imaging resolution of the camera lens 100 is improved.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the imaging lens 100.
  • the imaging lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the camera lens 100 to avoid image color distortion.
  • Table 6 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient), and effective focal length of each lens of the imaging lens 100 of Example 3.
  • the radius of curvature, thickness The effective focal length of each lens is in millimeters (mm); the reference wavelength in Table 6 is 587.56nm;
  • Table 7 shows the coefficients of higher order terms that can be used in the lens aspheric surface S1-S2, S11-S12 in Example 3. , Where the aspheric surface type can be defined by the formula (1) given in the first embodiment;
  • Table 8 shows the relevant parameter values of the camera lens 100 given in the third embodiment.
  • FIG. 7 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the imaging lens 100 of Embodiment 3, respectively, and the reference wavelength of the imaging lens 100 is 546.07 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 430nm, 479.99nm, 546.07nm, 587.56nm, and 656.27nm after passing through the imaging lens 100;
  • the astigmatism graph shows the light passing through with a wavelength of 546.07nm Meridional field curvature (T) and sagittal field curvature (S) behind the imaging lens 100;
  • the distortion curve diagram shows the distortion corresponding to different field angles of light with a wavelength of 546.07 nm after passing through the imaging lens 100.
  • T Meridional field curvature
  • S sagittal field curvature
  • FIG. 8 shows a schematic structural diagram of an imaging lens 100 according to Embodiment 4 of the present application.
  • the imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both aspherical, wherein the object side surface S1 is a convex surface near the optical axis, and the image side surface S2 is a concave surface near the optical axis.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 and the image side surface S4 are both aspherical, wherein the object side surface S3 is a concave surface near the optical axis, and the image side surface S4 is a convex surface near the optical axis.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface near the optical axis, and the image side surface S6 is a concave surface near the optical axis.
  • the fourth lens L4 has a negative refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface near the optical axis, and the image side surface S8 is a concave surface near the optical axis.
  • the fifth lens L5 has a positive refractive power
  • the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a convex surface near the optical axis, and the image side surface S10 is a convex surface near the optical axis.
  • the sixth lens L6 has a positive refractive power, and the object side surface S11 and the image side surface S12 are both aspherical, wherein the object side surface S11 is a concave surface near the optical axis, and the image side surface S12 is a convex surface near the optical axis.
  • the materials of the first lens L1 to the sixth lens L6 are all set to glass, which can make the camera lens 100 have better temperature tolerance characteristics under different temperature change environments; it can also make the camera lens 100 have a better optical transfer function, Thus, the imaging resolution of the camera lens 100 is improved.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the imaging lens 100.
  • the imaging lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the camera lens 100 to avoid image color distortion.
  • Table 9 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (that is, dispersion coefficient), and effective focal length of each lens of the imaging lens 100 of Example 4, where the radius of curvature, thickness , The effective focal length of each lens is in millimeters (mm); the reference wavelength in Table 9 is 587.56nm; Table 10 shows the coefficients of higher order terms that can be used for the aspheric surfaces S1-S4 and S11-S12 of the lens in Example 4. , Where the aspheric surface type can be defined by the formula (1) given in the first embodiment; Table 11 shows the relevant parameter values of the camera lens 100 given in the fourth embodiment.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 430nm, 479.99nm, 546.07nm, 587.56nm, and 656.27nm after passing through the imaging lens 100;
  • the astigmatism graph shows the light passing through with a wavelength of 546.07nm Meridional field curvature (T) and sagittal field curvature (S) behind the imaging lens 100;
  • the distortion curve diagram shows the distortion corresponding to different field angles of light with a wavelength of 546.07 nm after passing through the imaging lens 100.
  • T Meridional field curvature
  • S sagittal field curvature
  • FIG. 10 shows a schematic structural diagram of an imaging lens 100 according to Embodiment 5 of the present application.
  • the imaging lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both aspherical, wherein the object side surface S1 is a convex surface near the optical axis, and the image side surface S2 is a concave surface near the optical axis.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 and the image side surface S4 are both aspherical, wherein the object side surface S3 is a concave surface near the optical axis, and the image side surface S4 is a convex surface near the optical axis.
  • the third lens L3 has a positive refractive power
  • the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface near the optical axis, and the image side surface S6 is a concave surface near the optical axis.
  • the fourth lens L4 has a negative refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface near the optical axis, and the image side surface S8 is a concave surface near the optical axis.
  • the fifth lens L5 has a positive refractive power
  • the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a convex surface near the optical axis, and the image side surface S10 is a convex surface near the optical axis.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both aspherical, wherein the object side surface S11 is a concave surface near the optical axis, and the image side surface S12 is a convex surface near the optical axis.
  • the materials of the first lens L1 to the sixth lens L6 are all set to glass, which can make the camera lens 100 have better temperature tolerance characteristics under different temperature change environments; it can also make the camera lens 100 have a better optical transfer function, Thus, the imaging resolution of the camera lens 100 is improved.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the imaging lens 100.
  • the imaging lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16. .
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light from the external light incident on the camera lens 100 to avoid image color distortion.
  • Table 12 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient), and effective focal length of each lens of the imaging lens 100 of Example 5, where the radius of curvature and thickness , The effective focal length of each lens is in millimeters (mm); the reference wavelength in Table 12 is 587.56nm; Table 13 shows the coefficients of higher order terms that can be used for the aspheric surfaces S1-S4 and S11-S12 of the lens in Example 5. , Where the aspheric surface type can be defined by the formula (1) given in the first embodiment; Table 14 shows the relevant parameter values of the camera lens 100 given in the fifth embodiment.
  • FIG. 11 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the imaging lens 100 of Embodiment 5, and the reference wavelength of the imaging lens 100 is 546.07 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 430nm, 479.99nm, 546.07nm, 587.56nm, and 656.27nm after passing through the imaging lens 100;
  • the astigmatism graph shows the light passing through with a wavelength of 546.07nm Meridional field curvature (T) and sagittal field curvature (S) behind the imaging lens 100;
  • the distortion curve diagram shows the distortion corresponding to different field angles of light with a wavelength of 546.07 nm after passing through the imaging lens 100.
  • T Meridional field curvature
  • S sagittal field curvature
  • the present application also provides an imaging device 200, which includes the imaging lens 100 as described above; It coincides with the imaging surface S17.
  • the photosensitive element 210 may adopt a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device) image sensor.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the above-mentioned imaging device 200 can capture images with high resolution and wide viewing angle by using the aforementioned imaging lens 100. At the same time, the imaging device 200 also has the structural characteristics of miniaturization and light weight.
  • the image capturing device 200 can be applied to fields such as mobile phones, automobiles, monitoring, and medical treatment. Specifically, it can be used as a mobile phone camera, a car camera, a surveillance camera or an endoscope, etc.
  • the above-mentioned imaging device 200 can be used as a vehicle-mounted camera in the driving device 300.
  • the driving device 300 may be an autonomous vehicle or a non-autonomous vehicle.
  • the image capturing device 200 can be used as a front-view camera, a rear-view camera or a side-view camera of the driving device 300.
  • the driving device 300 includes a vehicle body 310, and the imaging device 200 is installed at any position of the left rearview mirror, right rearview mirror, rear trunk, headlights, and rear headlights of 310 of the vehicle body to obtain the vehicle.
  • the driving device 300 is also provided with a display screen 320, the display screen 320 is installed in the vehicle body 310, and the imaging device 200 is communicatively connected with the display screen 320, and the image information obtained by the imaging device 200 can be transmitted to the display screen 320 In the display, so that the driver can obtain more complete surrounding image information, improve safety while driving.
  • the imaging device 200 may be applied to an autonomous vehicle.
  • the imaging device 200 is installed at any position on the body of the autonomous vehicle.
  • the image capturing device 200 can also be installed on the top of the car body.
  • the environmental information obtained by the imaging device 200 will be transmitted to the analysis and processing unit of the self-driving car for comparison.
  • the road conditions around the vehicle body 310 are analyzed in real time.
  • the present application also provides an electronic device 400, which includes a housing 410 and the imaging device 200 as described above, and the imaging device 200 is installed on the housing 410. Specifically, the imaging device 200 is disposed in the housing 410 and exposed from the housing 410 to acquire images.
  • the housing 410 can provide the imaging device 200 with protection from dust, water, and drop.
  • the corresponding hole of the imaging device 200 allows light to penetrate into or out of the housing from the hole.
  • the aforementioned electronic device 400 can capture images with higher resolution by using the aforementioned imaging device 200.
  • the above-mentioned electronic device 400 is further provided with a corresponding processing system, and the electronic device 400 can transmit the image to the corresponding processing system in time after taking an image of the object, so that the system can make accurate analysis and judgment.
  • the "electronic device” used may also include, but is not limited to, a device configured to be connected via a wired line and/or receive or send a communication signal via a wireless interface.
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, notebook, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system
  • the above-mentioned electronic devices also include devices that need to obtain large-angle clear images, such as electronic monitoring equipment.

Abstract

本申请涉及一种摄像镜头、取像装置、电子装置及驾驶装置。摄像镜头沿着光轴由物侧至像侧依序包括具有负屈折力的第一透镜,第一透镜的物侧面近光轴处为凸面,像侧面近光轴处为凹面;具有屈折力的第二透镜,第二透镜的物侧面为凹面;具有正屈折力的第三透镜;具有负屈折力的第四透镜;具有正屈折力的第五透镜;具有屈折力的第六透镜;以及光阑,光阑设于摄像镜头的物侧或第一透镜与第四透镜之间。上述摄像镜头在满足特定关系时,具备高像素、大视角以及景深范围广的特点。

Description

摄像镜头、取像装置、电子装置及驾驶装置 技术领域
本申请涉及光学成像技术领域,特别是涉及一种摄像镜头、取像装置、电子装置及驾驶装置。
背景技术
近年来,随着车载技术的发展,前视摄像装置、自动巡航仪、行车记录仪、倒车影像仪对车载用摄像头的技术要求越来越高。其中,前视摄像装置可作为高级驾驶员辅助系统中的摄像头系统分析视频内容,实现车道偏离警告(LDW)、自动车道保持辅助(LKA)、远光灯/近光灯控制和交通标志识别(TSR)。例如在停车时,前视摄像装置自动开启,驾驶员可直观地看到车前面的障碍物,从而方便停车操作;而当汽车通过特殊地方(如路障,停车场等)时,前视摄像装置也会可自动打开从而获取车辆周围的环境信息,并反馈给汽车中央系统使其做出正确的指令,避免驾驶事故的发生。
然而,传统的前视摄像镜头拍摄的图像分辨率较低,景深范围小,且无法在呈现远距离细节的同时实现大角度范围的拍摄,不能使驾驶辅助系统实时准确地对车辆周围的环境信息进行判断进而做出及时的预警或规避,存在驾驶风险。
发明内容
根据本申请的各种实施例,提供一种摄像镜头。
一种摄像镜头,所述摄像镜头沿着光轴由物侧至像侧依序包括具有负屈折力的第一透镜,所述第一透镜的物侧面近光轴处为凸面,像侧面近光轴处为凹面;具有屈折力的第二透镜,所述第二透镜的物侧面为凹面;具有正屈折力的第三透镜;具有负屈折力的第四透镜;具有正屈折力的第五透镜;具有屈折力的第六透镜;以及光阑,所述光阑设于所述摄像镜头的物侧或所述第一透镜与所述第四透镜之间;
所述摄像镜头满足下列关系式:
9像素/度≤Ym/[(1/2)*FOVm*P]<35像素/度;
其中,Ym表示所述摄像镜头在其成像面上有效像素区域内m度视场角对应的半像高,FOVm表示m度视场角的大小,m的取值范围为1至100的整数,P为所述摄像镜头的成像面上有效像素区域的单位像素尺寸大小。
一种取像装置,包括上述实施例所述的摄像镜头;以及感光元件,所述感光元件设于所述摄像镜头的像侧。
一种电子装置,包括壳体以及上述实施例所述的取像装置,所述取像装置安装在所述壳体上。
一种驾驶装置,包括车体以及上述实施例所述的取像装置,所述取像装置设于所述车体以获取所述车体周围的环境信息。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1示出了本申请一实施例的m度视场角对应的范围示意图;
图2示出了本申请实施例1的摄像镜头的结构示意图;
图3分别示出了实施例1的摄像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图4示出了本申请实施例2的摄像镜头的结构示意图;
图5分别示出了实施例2的摄像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图6示出了本申请实施例3的摄像镜头的结构示意图;
图7分别示出了实施例3的摄像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图8示出了本申请实施例4的摄像镜头的结构示意图;
图9分别示出了实施例4的摄像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图10示出了本申请实施例5的摄像镜头的结构示意图;
图11分别示出了实施例5的摄像镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图12示出了本申请一实施例的取像装置的示意图;
图13示出了本申请一实施例应用取像装置的驾驶装置的示意图;
图14示出了本申请一实施例应用取像装置的电子装置的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
为了便于说明,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请一并参阅图1、图3、图5、图7和图9,本申请实施例的摄像镜头包括六片具有屈折力的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。该六片透镜沿着光轴从物侧至像侧依序排列,摄像镜头的物侧或第一透镜和第四透镜之间还可以设置光阑,以有效限制光束大小,进一步提高成像质量。
第一透镜具有负屈折力,且其物侧面近光轴处为凸面,其像侧面近光轴处为凹面,从而有利于使大角度入射的光线也能聚焦至摄像镜头的成像面,保证镜头视角和成像质量。
第二透镜具有屈折力,可以通过调控第二透镜物侧面和像侧面的曲率半径及其中心厚度来调控其屈折力的大小。进一步的,当其具有负屈折力时,有利于校正光线经第一透镜折转后产生的边缘像差,提升镜头的解像能力。
第三透镜具有正屈折力,有利于校正光线经第一、第二透镜后在边缘像面产生的场曲,进而提升镜头的成像质量。
第四透镜具有负屈折力,第五透镜具有正屈折力,第五透镜可与第四透镜配合,从而整体为镜头提供正屈折力,有利于校正镜头像差,减小镜头的偏心敏感度,提升成像质量。进一步的,第四透镜的像侧面为凹面, 第五透镜的物侧面为凸面,可将第四透镜的像侧面和第五透镜的物侧面胶合,如此可使摄像镜头的整体结构更为紧凑,降低镜片在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
如本领域技术人员已知的,在光线转折处的离散透镜,容易因加工误差和/或组立误差造成敏感,而胶合透镜的使用可有效地降低镜头的敏感度。在本申请中使用胶合透镜,不仅能够有效地降低镜头的敏感度、缩短镜头的整体长度,还能够分担镜头的整体色差、像差的矫正,提高摄像镜头的解像能力。进一步的,胶合透镜可包括一枚具有负屈折力的透镜和一枚具有正屈折力的透镜,如第四透镜具有负屈折力,第五透镜具有正屈折力。
第六透镜具有屈折力。在一些实施方式中,第六透镜可具有负屈折力,以将经过第五透镜的光线进行发散,使光线平稳过渡至成像面,有利于缩短镜头总长;在另一些实施方式中,第六透镜可具有正屈折力,从而有利于获得较小的主光线入射角,以进一步提高镜头的成像分辨率,并使像面亮度较为均匀。
本实施例中,光阑可设于第三透镜和第四透镜之间。具体的,光阑可以包括孔径光阑和视场光阑。优选的,光阑为孔径光阑。孔径光阑可位于透镜的表面上(例如物侧面和像侧面),并与透镜形成作用关系,例如,通过在透镜的表面涂覆阻光涂层以在该表面形成孔径光阑;或通过夹持件固定夹持透镜的表面,位于该表面的夹持件结构能够限制轴上物点成像光束的宽度,从而在该表面上形成孔径光阑。
摄像镜头还满足下列关系式:9像素/度≤Ym/[(1/2)*FOVm*P]<35像素/度;其中,Ym表示摄像镜头在其成像面上有效像素区域内m度视场角对应的半像高,FOVm表示m度视场角的大小,m的取值范围为1至100的整数,P为摄像镜头的成像面上有效像素区域的单位像素尺寸大小,P的单位为mm/像素。需要说明的是,此处的m度视场角对应的视场范围在成像面上的有效像素区域内是一个圆形区域(如图1所示),该圆形区域的圆心位于光轴,Ym的大小即为该圆形区域的半径大小。具体的,P可以取3um,m可以取2、20、40、60、80或100,对应的FOVm可以是2°、20°、40°、60°、80°或100°,结合m度视场角对应的半像高Ym,Ym/[(1/2)*FOVm*P]可以取10、13、16、19、20、21、22、23、24、25、28、31或34,其单位为像素/度,该比值用于表征摄像镜头每度视场角内的像素数。通过上述关系式可以调节每度视场角的像素数,以保证镜头在大角度范围拍摄时,每度视场角内入射的光线均能成清晰的像,进而提高镜头在整个视场内的成像解析能力,使图像具备更好的视觉效果。
当上述摄像镜头用于成像时,被摄物体发出或者反射的光线从物侧方向进入摄像镜头,并依次穿过第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,最终汇聚到成像面上。
上述摄像镜头,通过选取合适数量的透镜并合理分配各透镜的屈折力、面型以及各透镜的有效焦距,可以增强所述摄像镜头的成像解析能力并有效修正像差,使其能够更精准地捕捉景物细节;同时通过调节镜头各度视场角内的像素数,使得各度视场角内入射的光线均能成清晰的像,从而兼顾镜头的大广角和深景深特性,提升图像的视觉效果。
在示例性实施方式中,摄像镜头满足下列关系式:第一透镜至第六透镜中,至少一个透镜的物侧面和/或像侧面为非球面。通过上述方式,可以提高透镜设计的灵活性,并有效地校正像差,提高摄像镜头的成像质量。在另一些实施方式中,摄像镜头的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施方式仅是对本申请的一些实施方式的举例,在一些实施方式中,摄像镜头中各透镜的表面可以是非球面或球面的任意组合。
在示例性实施方式中,摄像镜头满足下列关系式:
26像素/度≤Y 10/[(1/2)*FOV 10*P]<35像素/度;其中,Y 10表示摄像镜头在其成像面上有效像素区域内10度视场角(即摄像镜头的中心视场范围)对应的半像高,FOV 10则表示10度视场角的大小,具体的,FOV 10表示的中心视场范围由图1示出。Y 10/[(1/2)*FOV 10*P]可以是26、27、28、29、30、31、32、33或34,其单位为像素/度。通过上述关系式可以控制摄像镜头中心视场(±5度视场角)范围内每度视场角的像素数分配,进而保证中心视场具备足够高的像素和成像解析能力,使得中心视场内的被摄物体信息清晰地显现出来;同时在利用上述摄像镜头进行长焦拍摄时,由于成像的视场范围小,因此能够更好地将景物的细节信息呈现出来,使画面具备较佳的视觉效果。
在示例性实施方式中,摄像镜头满足下列关系式:
20像素/度≤(Y 50-Y 10)/[(1/2)*(FOV 50-FOV 10)*P]≤26像素/度;其中,Y 50表示摄像镜头在其成像面上有效像素区域内50度视场角对应的半像高,FOV 50表示50度视场角的大小,从而(FOV 50-FOV 10)表示摄像镜头靠近中心视场的视场范围,而(Y 50-Y 10)表示摄像镜头靠近中心视场的视场范围对应的半像高,具体的,(FOV 50-FOV 10)表示的靠近中心视场的视场范围由图1示出。(Y 50-Y 10)/[(1/2)*(FOV 50-FOV 10)*P]可以是20、21、22、23、24、25或26,其单位为像素/度。通过上述关系式可以控制摄像镜头靠近中心视场的视场范围内每度视场角的像素数分配,进而保证靠近中心视场的视场范围 具有足够高的像素和成像解析能力,使得该视场范围内被摄物体信息清晰地显现出来,提升画面的视觉效果。
在示例性实施方式中,摄像镜头满足下列关系式:
9像素/度≤(Y 100-Y 50)/[(1/2)*(FOV 100-FOV 50)*P]<20像素/度;其中,Y 100表示所述摄像镜头在其成像面上有效像素区域内100度视场角对应的半像高,FOV 100表示100度视场角的大小。从而(FOV 100-FOV 50)表示摄像镜头的边缘视场范围,而(Y 100-Y 50)表示摄像镜头的边缘视场范围对应的半像高,具体的,(FOV 100-FOV 50)表示的边缘视场范围由图1示出。(Y 100-Y 50)/[(1/2)*(FOV 100-FOV 50)*P]可以是9、10、11、12、13、14、15、16、17、18或19,其单位为像素/度。通过上述关系式可以控制摄像镜头边缘视场范围内每度视场角的像素数分配,进而保证边缘视场的像素和成像解析能力,使得摄像镜头进行大角度范围拍摄时,在其边缘视场内也可以成清晰的像,从而扩大了镜头的景深范围,优化了镜头的广角拍摄特性。
在示例性实施方式中,摄像镜头满足下列关系式:-25<f1/sagS1<-10;其中,f1表示第一透镜的有效焦距,sagS1表示第一透镜的物侧面矢高。f1/sagS1可以是-24、-22、-20、-18、-16、-15、-14、-13、-12或-11。通过将第一透镜设置为负透镜,可以为摄像镜头提供负的屈折力,有利于使大角度入射的光线射入进镜头,扩大镜头的视场角范围;同时,在满足上述关系的条件下,可以避免第一透镜的物侧面过弯,从而降低镜头的组装偏心敏感度,提升镜头的组装良率,同时也有利于实现镜头的小型化。而当f1/sagS1低于下限时,第一透镜的有效焦距过大,不利于光线折转,容易增加镜头总长;而当f1/sagS1高于上限时,则会使第一透镜过弯,增加第一透镜的加工和组装难度。
在示例性实施方式中,摄像镜头满足下列关系式:-20<f2/f<25;其中,f2表示第二透镜的有效焦距,f表示摄像镜头的有效焦距。f2/f可以是-18、-16、-14、4、8、10、12、14、16、20或24。在满足上述关系的条件下,有利于扩展经第一透镜收缩的光束宽度,从而校正因第一透镜的光线折转而产生的边缘像差,同时还可以抑制像散的产生,提升镜头的解像能力。而当f2/f低于下限或高于上限时,不利于镜头的边缘像差修正。
在示例性实施方式中,摄像镜头满足下列关系式:0.5<|RS3|/|RS4|<1.5;其中,RS3表示第二透镜的物侧面于光轴处的曲率半径,RS4表示第二透镜的像侧面于光轴处的曲率半径。|RS3|/|RS4|可以是0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、1.0、1.1、1.2或1.4。在满足上述关系的条件下,有利于降低第二透镜的加工难度并提升第二透镜表面的加工精度,同时两个表面的曲率半径相近也可以避免偏心的产生。而当 |RS3|/|RS4|高于上限或低于下限时,会使得两个表面的曲率相差较大,容易增加加工难度并在组装时引起较大的偏心问题。
在示例性实施方式中,摄像镜头满足下列关系式:0<D23/f<0.5;其中,D23表示第二透镜像侧面至第三透镜物侧面在光轴上的距离,f表示摄像镜头的有效焦距。D23/f可以是0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4或0.45。在满足上述关系的条件下,当二者的比值满足下限时,有利于在校正镜头边缘像差的同时,保持镜头的小型化;而当二者的比值满足上限时,有利于降低因第三透镜过强的屈折力而产生的色差,并有利于抑制像散,降低鬼影的产生几率。
在示例性实施方式中,摄像镜头满足下列关系式:0<f3/f<2;其中,f3表示第三透镜的有效焦距,f表示摄像镜头的有效焦距。f3/f可以是1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8或1.9。在满足上述关系的条件下,可以使第三透镜为镜头提供正屈折力,从而校正边缘光线经第一、第二透镜后产生的场曲,修正边缘像差,提升镜头的成像解析能力。而当f3/f低于下限时,则无法为镜头提供正屈折力;而当f3/f高于上限时,第三透镜的有效焦距过大,无法为像差的校正提供足够的屈折力。
在示例性实施方式中,摄像镜头满足下列关系式:0<f45/f<10;其中,f45表示第四透镜和第五透镜的组合焦距,f表示摄像镜头的有效焦距。f45/f可以是1、2、2.1、2.2、2.3、2.4、2.8、3.2、3.6、4、5、6、7、8或9。在满足上述关系的条件下,可以使第四透镜和第五透镜整体为镜头提供正屈折力,从而有利于校正镜头像差,降低镜头的偏心敏感度,提升镜头的成像质量。而当f45/f低于下限时,则无法为镜头提供正屈折力;而当f45/f高于上限时,第四透镜和第五透镜的组合焦距过大,屈折力较小,不利于校正镜头像差。
在示例性实施方式中,摄像镜头满足下列关系式:0.2<EPL/TTL<0.5;其中,EPL表示光阑至摄像镜头的成像面在光轴上的距离,TTL表示第一透镜的物侧面至摄像镜头的成像面在光轴上的距离。EPL/TTL可以是0.25、0.3、0.32、0.34、0.36、0.38、0.4或0.45。通过满足上述关系式上限有利于使各视场角内的入射光线均能充满光瞳,从而有利于增强画面的明亮度和清晰度;而满足关系式下限则可以使镜头的结构排布更为紧凑,以缩短镜头总长,实现镜头的小型化。
在示例性实施方式中,摄像镜头满足下列关系式:
2.0mm<f/tan(DFOV/2)<3.2mm;其中,DFOV表示摄像镜头的对角线方向视场角,f表示摄像镜头的有效焦距。f/tan(DFOV/2)可以是2.2mm、2.4mm、2.6mm、2.7mm、2.72mm、2.74mm、2.76mm、2.78mm、2.8mm、3mm 或3.1mm。在满足上述关系的条件下,有利于为摄像镜头提供充足的视场角,以满足摄像头在手机、相机、车载、监控、医疗等电子产品中大角度范围的拍摄需求。
在示例性实施方式中,摄像镜头中各透镜的材质可以均为玻璃或均为塑料,塑料材质的透镜能够减少摄像镜头的重量并降低生产成本,而玻璃材质的透镜可使摄像镜头具备较好的温度耐受特性以及优良的光学性能。需要注意的是,摄像镜头中各透镜的材质也可以玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
在示例性实施方式中,摄像镜头还包括红外滤光片。红外滤光片设于第六透镜的像侧,用于过滤入射光线,具体用于隔绝红外光,防止红外光被感光元件吸收,从而避免红外光对正常影像的色彩与清晰度造成影响,提高摄像镜头的成像品质。
在示例性实施方式中,摄像镜头还包括保护玻璃。保护玻璃设于红外滤光片的像侧,起到保护感光元件的作用。感光元件位于摄像镜头的成像面上。进一步的,该成像面可以为感光元件的感光表面。
本申请的上述实施方式的摄像镜头可采用多片镜片,例如上文所述的六片。通过合理分配各透镜焦距、屈折力、面型、厚度以及各透镜之间的轴上间距等,可以保证上述摄像镜头具备较大视场角的同时,景深范围广、镜头总长较小且具备较高的成像质量,并且还具备较大的光圈(FNO可以为1.6),从而可以更好地满足如手机、平板等轻量化电子设备的应用需求。然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成摄像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。
下面参照附图进一步描述可适用于上述实施方式的摄像镜头的具体实施例。在下述实施例中,若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少近光轴处为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少近光轴处为凹面。此处近光轴处是指光轴附近的区域。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
实施例1
以下参照图2至图3描述本申请实施例1的摄像镜头100。
图2示出了实施例1的摄像镜头100的结构示意图。如图2所示,摄像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为非球面,其 中物侧面S1近光轴处为凸面,像侧面S2近光轴处为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为非球面,其中物侧面S3近光轴处为凹面,像侧面S4近光轴处为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5近光轴处为凸面,像侧面S6近光轴处为凸面。
第四透镜L4具有负屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凹面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凸面。
第六透镜L6具有正屈折力,其物侧面S11和像侧面S12均为非球面,其中物侧面S11近光轴处为凹面,像侧面S12近光轴处为凸面。
将第一透镜L1、第二透镜L2和第六透镜L6的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使摄像镜头100具备小型化特性。
第一透镜L1至第六透镜L6的材质均设置为玻璃。使用玻璃材质的透镜可使摄像镜头100在不同温度变化环境下,温漂变化小,从而具备较好的温度耐受特性;还可以使摄像镜头100具备较优的光学传递函数,从而提升摄像镜头100的成像分辨率。
第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升摄像镜头100的成像质量。摄像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110,以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至摄像镜头100的外界光线中的红外光线,避免成像色彩失真。具体的,滤光片110的材质为玻璃。滤光片110和保护玻璃120可以属于摄像镜头100的一部分,与各透镜一同装配,或者也可在摄像镜头100与感光元件装配时一同安装。
表1示出了实施例1的摄像镜头100的透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的有效焦距,其中,曲率半径、厚度、透镜的有效焦距的单位均为毫米(mm)。另外,以第一透镜L1为例,第一透镜L1的“厚度”参数列中的第一个数值为该透镜在光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面在光轴上的距离;光阑ST0于“厚度”参数列中的数值为光阑ST0至后一透镜的物侧面顶点(顶点指透镜与光轴的交点)于光轴上的距离,我 们默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴的正方向,当该值为负时,表明光阑ST0设置于该透镜的物侧面顶点的右侧,若光阑STO厚度为正值时,光阑在该透镜物侧面顶点的左侧;表1的参考波长为587.56nm。
表1
Figure PCTCN2020079757-appb-000001
各透镜的非球面面型由以下公式限定:
Figure PCTCN2020079757-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表2给出了可用于实施例1中透镜非球面S1-S4、S11-S12的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2020079757-appb-000003
Figure PCTCN2020079757-appb-000004
结合表1中的数据可知,摄像镜头100的总长TTL为24.0mm,实施例1中的摄像镜头100满足:
9像素/度≤Ym/[(1/2)*FOVm*P]<35像素/度,其中,Ym表示摄像镜头100在成像面S17上有效像素区域内m度视场角对应的半像高,FOVm表示m度视场角的大小,m的取值范围为1至100的整数,P为摄像镜头100的成像面S17上有效像素区域的单位像素尺寸大小;
本实施例中,Ym/[(1/2)*FOVm*P]随m的取值变化,其对应的取值分别是,
m=2时,FOV 2=2°,Y 2=0.09mm,P=0.003mm/像素,Y 2/[(1/2)*FOV 2*P]=30.38像素/度;
m=20时,FOV 20=20°,Y 20=0.87mm,P=0.003mm/像素,
Y 20/[(1/2)*FOV 20*P]=28.86像素/度;
m=40时,FOV 40=40°,Y 40=1.55mm,P=0.003mm/像素,
Y 40/[(1/2)*FOV 40*P]=25.83像素/度;
m=60时,FOV 60=60°,Y 60=2.07mm,P=0.003mm/像素,
Y 60/[(1/2)*FOV 60*P]=23.05像素/度;
m=80时,FOV 80=80°,Y 80=2.51mm,P=0.003mm/像素,
Y 80/[(1/2)*FOV 80*P]=20.88像素/度;
m=100时,FOV 100=100°,Y 100=2.88mm,P=0.003mm/像素,
Y 100/[(1/2)*FOV 100*P]=19.21像素/度;
Y 10/[(1/2)*FOV 10*P]=30像素/度,其中,Y 10表示摄像镜头100在其成像面S17上有效像素区域内10度视场角对应的半像高,FOV 10表示10度视场角的大小;
(Y 50-Y 10)/[(1/2)*(FOV 50-FOV 10)*P]=22.93像素/度,其中,Y 50表示摄像镜头100在其成像面S17上有效像素区域内50度视场角对应的半像高,FOV 50表示50度视场角的大小;
(Y 100-Y 50)/[(1/2)*(FOV 100-FOV 50)*P]=14.07像素/度,其中,Y 100表示摄像镜头100在其成像面S17上有效像素区域内100度视场角对应的半像高,FOV 100表示100度视场角的大小;
f1/sagS1=-16.16,其中,f1表示第一透镜L1的有效焦距,sagS1表示第一透镜L1的物侧面矢高;
f2/f=20.37,其中,f2表示第二透镜L2的有效焦距,f表示摄像镜头100的有效焦距;
|RS3|/|RS4|=0.79,其中,RS3表示第二透镜L2的物侧面S3于光轴处的曲率半径,RS4表示第二透镜L2的像侧面S4于光轴处的曲率半径;
D23/f=0.27,其中,D23表示第二透镜L2像侧面S4至第三透镜L3物侧面S5在光轴上的距离;
f3/f=1.38,其中,f3表示第三透镜L3的有效焦距;
f45/f=7.16,其中,f45表示第四透镜L4和第五透镜L5的组合焦距;
EPL/TTL=0.37,其中,EPL表示光阑STO至100摄像镜头的成像面S17在光轴上的距离,TTL表示第一透镜L1的物侧面S1至摄像镜头100的成像面S17在光轴上的距离;
f/tan(DFOV/2)=2.72mm,其中,DFOV表示摄像镜头100的对角线方向视场角。
图3分别示出了实施例1的摄像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,摄像镜头100的参考波长为546.07nm。其中纵向球差曲线图示出了波长为430nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由摄像镜头100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由摄像镜头100后的子午像面弯曲(T)和弧矢像面弯曲(S);畸变曲线图示出了波长为546.07nm的光线经由摄像镜头100后不同视场角角度对应的畸变。根据图3可知,实施例1给出的摄像镜头100能够实现良好的成像品质。
实施例2
以下参照图4至图5描述本申请实施例2的摄像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图4示出了本申请实施例2的摄像镜头100的结构示意图。
如图4所示,摄像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为非球面,其中物侧面S1近光轴处为凸面,像侧面S2近光轴处为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为非球面,其中物侧面S3近光轴处为凹面,像侧面S4近光轴处为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5近光轴处为凸面,像侧面S6近光轴处为凸面。
第四透镜L4具有负屈折力,其物侧面S7和像侧面S8均为球面,其中 物侧面S7近光轴处为凹面,像侧面S8近光轴处为凹面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凸面。
第六透镜L6具有正屈折力,其物侧面S11和像侧面S12均为非球面,其中物侧面S11近光轴处为凹面,像侧面S12近光轴处为凸面。
将第一透镜L1、第二透镜L2和第六透镜L6的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题。第一透镜L1至第六透镜L6的材质均设置为玻璃,可以使摄像镜头100在不同温度变化环境下具备较好的温度耐受特性;还可以使摄像镜头100具备较优的光学传递函数,从而提升摄像镜头100的成像分辨率。
第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升摄像镜头100的成像质量。摄像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110,以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至摄像镜头100的外界光线中的红外光线,避免成像色彩失真。
表3示出了实施例2的摄像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表3的参考波长为587.56nm;表4示出了可用于实施例2中透镜非球面S1-S4、S11-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表5示出了实施例2中给出的摄像镜头100的相关参数数值。
表3
Figure PCTCN2020079757-appb-000005
Figure PCTCN2020079757-appb-000006
表4
Figure PCTCN2020079757-appb-000007
表5
Figure PCTCN2020079757-appb-000008
图5分别示出了实施例2的摄像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,摄像镜头100的参考波长为546.07nm。其中纵向球差曲线图示出了波长为430nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由摄像镜头100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由摄像镜头100后的子午像面弯曲(T)和弧矢像面弯曲(S);畸变曲线图示出了波长为546.07nm的光线经由摄像镜头100后不同视场角角度对应的畸变。根据图5可知,实施例2给出的摄像镜头100能够实现良好的成像品质。
实施例3
以下参照图6至图7描述本申请实施例3的摄像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图6示出了本申请实施例3的摄像镜头100的结构示意图。
如图6所示,摄像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为非球面,其中物侧面S1近光轴处为凸面,像侧面S2近光轴处为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3近光轴处为凹面,像侧面S4近光轴处为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5近光轴处为凸面,像侧面S6近光轴处为凹面。
第四透镜L4具有负屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7近光轴处为凸面,像侧面S8近光轴处为凹面。
第五透镜L5具有正屈折力,其物侧面S9为球面,像侧面S10为平面,其中物侧面S9近光轴处为凸面。
第六透镜L6具有正屈折力,其物侧面S11和像侧面S12均为非球面,其中物侧面S11近光轴处为凹面,像侧面S12近光轴处为凸面。
将第一透镜L1和第六透镜L6的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题。第一透镜L1至第六透镜L6的材质均设置为玻璃,可以使摄像镜头100在不同温度变化环境下具备较好的温度耐受特性;还可以使摄像镜头100具备较优的光学传递函数,从而提升摄像镜头100的成像分辨率。
第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升摄像镜头100的成像质量。摄像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110,以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至摄像镜头100的外界光线中的红外光线,避免成像色彩失真。
表6示出了实施例3的摄像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表6的参考波长为587.56nm;表7示出了可用于实施例3中透镜非球面S1-S2、S11-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表 8示出了实施例3中给出的摄像镜头100的相关参数数值。
表6
Figure PCTCN2020079757-appb-000009
表7
Figure PCTCN2020079757-appb-000010
表8
Figure PCTCN2020079757-appb-000011
Figure PCTCN2020079757-appb-000012
图7分别示出了实施例3的摄像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,摄像镜头100的参考波长为546.07nm。其中纵向球差曲线图示出了波长为430nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由摄像镜头100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由摄像镜头100后的子午像面弯曲(T)和弧矢像面弯曲(S);畸变曲线图示出了波长为546.07nm的光线经由摄像镜头100后不同视场角角度对应的畸变。根据图7可知,实施例3给出的摄像镜头100能够实现良好的成像品质。
实施例4
以下参照图8至图9描述本申请实施例4的摄像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图8示出了本申请实施例4的摄像镜头100的结构示意图。
如图8所示,摄像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为非球面,其中物侧面S1近光轴处为凸面,像侧面S2近光轴处为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为非球面,其中物侧面S3近光轴处为凹面,像侧面S4近光轴处为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5近光轴处为凸面,像侧面S6近光轴处为凹面。
第四透镜L4具有负屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7近光轴处为凸面,像侧面S8近光轴处为凹面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凸面。
第六透镜L6具有正屈折力,其物侧面S11和像侧面S12均为非球面,其中物侧面S11近光轴处为凹面,像侧面S12近光轴处为凸面。
将第一透镜L1、第二透镜L2和第六透镜L6的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题。第一透镜L1至第六透镜L6的材质均设置为玻璃,可以使摄像镜头100在不同温度变化环境下具备较好的温度耐受特性;还可以使摄像镜头100具备较优的光学传递函数, 从而提升摄像镜头100的成像分辨率。
第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升摄像镜头100的成像质量。摄像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110,以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至摄像镜头100的外界光线中的红外光线,避免成像色彩失真。
表9示出了实施例4的摄像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表9的参考波长为587.56nm;表10示出了可用于实施例4中透镜非球面S1-S4、S11-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表11示出了实施例4中给出的摄像镜头100的相关参数数值。
表9
Figure PCTCN2020079757-appb-000013
表10
Figure PCTCN2020079757-appb-000014
Figure PCTCN2020079757-appb-000015
表11
Figure PCTCN2020079757-appb-000016
图9分别示出了实施例4的摄像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,摄像镜头100的参考波长为546.07nm。其中纵向球差曲线图示出了波长为430nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由摄像镜头100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由摄像镜头100后的子午像面弯曲(T)和弧矢像面弯曲(S);畸变曲线图示出了波长为546.07nm的光线经由摄像镜头100后不同视场角角度对应的畸变。根据图9可知,实施例4给出的摄像镜头100能够实现良好的成像品质。
实施例5
以下参照图10至图11描述本申请实施例5的摄像镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图10示出了本申请实施例5的摄像镜头100的结构示意图。
如图10所示,摄像镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为非球面,其中物侧面S1近光轴处为凸面,像侧面S2近光轴处为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为非球面,其 中物侧面S3近光轴处为凹面,像侧面S4近光轴处为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5近光轴处为凸面,像侧面S6近光轴处为凹面。
第四透镜L4具有负屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7近光轴处为凸面,像侧面S8近光轴处为凹面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为非球面,其中物侧面S11近光轴处为凹面,像侧面S12近光轴处为凸面。
将第一透镜L1、第二透镜L2和第六透镜L6的物侧面和像侧面均设置为非球面,有利于修正像差、解决像面歪曲的问题。第一透镜L1至第六透镜L6的材质均设置为玻璃,可以使摄像镜头100在不同温度变化环境下具备较好的温度耐受特性;还可以使摄像镜头100具备较优的光学传递函数,从而提升摄像镜头100的成像分辨率。
第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升摄像镜头100的成像质量。摄像镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110,以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至摄像镜头100的外界光线中的红外光线,避免成像色彩失真。
表12示出了实施例5的摄像镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表12的参考波长为587.56nm;表13示出了可用于实施例5中透镜非球面S1-S4、S11-S12的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表14示出了实施例5中给出的摄像镜头100的相关参数数值。
表12
Figure PCTCN2020079757-appb-000017
Figure PCTCN2020079757-appb-000018
表13
Figure PCTCN2020079757-appb-000019
表14
Figure PCTCN2020079757-appb-000020
图11分别示出了实施例5的摄像镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,摄像镜头100的参考波长为546.07nm。其中纵向球差曲线图示出了波长为430nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由摄像镜头100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由摄像镜头100后的子午像面弯曲(T)和弧矢 像面弯曲(S);畸变曲线图示出了波长为546.07nm的光线经由摄像镜头100后不同视场角角度对应的畸变。根据图11可知,实施例5给出的摄像镜头100能够实现良好的成像品质。
如图12所示,本申请还提供一种取像装置200,包括如前文所述的摄像镜头100;以及感光元件210,感光元件210设于摄像镜头100的像侧,感光元件210的感光表面与成像面S17重合。具体的,感光元件210可以采用互补金属氧化物半导体(CMOS,ComplementaryMetalOxide Semiconductor)图像传感器或者电荷耦合元件(CCD,Charge-coupled Device)图像传感器。
上述取像装置200利用前述的摄像镜头100能够拍摄得到高分辨率、视角广的图像,同时取像装置200还具有小型化、轻量化的结构特点。取像装置200可应用于手机、汽车、监控、医疗等领域。具体可作为手机摄像头、车载摄像头、监控摄像头或内窥镜等。
如图13所示,上述取像装置200可作为车载摄像头应用于驾驶装置300中。驾驶装置300可以为自动驾驶汽车或非自动驾驶汽车。取像装置200可作为驾驶装置300的前视摄像头、后视摄像头或侧视摄像头。具体的,驾驶装置300包括车体310,取像装置200安装于车体的310的左后视镜、右后视镜、后尾箱、前大灯、后大灯等任意位置,以获取车体310周围的清晰的环境图像。此外,驾驶装置300中还设置有显示屏320,显示屏320安装于车体310内,且取像装置200与显示屏320通信连接,取像装置200所获得的影像信息能够传输至显示屏320中显示,从而使司机能够获得更完整的周边影像信息,提高驾驶时的安全保障。
特别地,在一些实施例中,取像装置200可应用于自动驾驶汽车上。继续参考图13,取像装置200安装于自动驾驶汽车车体上的任意位置,具体可参考上述实施例驾驶装置300中取像装置200的安装位置。对于自动驾驶汽车而言,取像装置200还可安装于车体的顶部。此时,通过在自动驾驶汽车上安装多个取像装置200以获得车体310周围360°视角的环境信息,取像装置200获得的环境信息将被传递至自动驾驶汽车的分析处理单元以对车体310周围的道路状况进行实时分析。通过采用取像装置200,可提高分析处理单元识别分析的准确性,从而提升自动驾驶时的安全性能。
如图14所示,本申请还提供一种电子装置400,包括壳体410以及如前文所述的取像装置200,取像装置200安装在壳体410上。具体的,取像装置200设置在壳体410内并从壳体410暴露以获取图像,壳体410可以给取像装置200提供防尘、防水防摔等保护,壳体410上开设有与取像装置200对应的孔,以使光线从孔中穿入或穿出壳体。
上述电子装置400,利用前述的取像装置200能够拍摄得到分辨率较高的图像。在另一些实施方式中,上述电子装置400还设置有对应的处理系统,电子装置400在拍摄物体图像后可及时地将图像传送至对应的处理系统,以便系统做出准确的分析和判断。
另一些实施方式中,所使用到的“电子装置”还可包括,但不限于被设置成经由有线线路连接和/或经由无线接口接收或发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。除此之外,上述电子装置还包括电子监控仪器等需要获得大角度清晰图像的装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (17)

  1. 一种摄像镜头,其特征在于,所述摄像镜头沿着光轴由物侧至像侧依序包括:
    具有负屈折力的第一透镜,所述第一透镜的物侧面近光轴处为凸面,像侧面近光轴处为凹面;
    具有屈折力的第二透镜,所述第二透镜的物侧面为凹面;
    具有正屈折力的第三透镜;
    具有负屈折力的第四透镜;
    具有正屈折力的第五透镜;
    具有屈折力的第六透镜;以及,
    光阑,所述光阑设于所述摄像镜头的物侧或所述第一透镜与所述第四透镜之间;
    所述摄像镜头满足下列关系式:
    9像素/度≤Ym/[(1/2)*FOVm*P]<35像素/度;
    其中,Ym表示所述摄像镜头在其成像面上有效像素区域内m度视场角对应的半像高,FOVm表示m度视场角的大小,m的取值范围为1至100的整数,P为所述摄像镜头的成像面上有效像素区域的单位像素尺寸大小。
  2. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜至所述第六透镜中,至少一个透镜的物侧面和/或像侧面为非球面。
  3. 根据权利要求1所述的摄像镜头,其特征在于,所述第四透镜的像侧面和所述第五透镜的物侧面胶合,且所述第四透镜的像侧面为凹面,所述第五透镜的物侧面为凸面。
  4. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    26像素/度≤Y 10/[(1/2)*FOV 10*P]<35像素/度;
    其中,Y 10表示所述摄像镜头在其成像面上有效像素区域内10度视场角对应的半像高,FOV 10表示10度视场角的大小。
  5. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    20像素/度≤(Y 50-Y 10)/[(1/2)*(FOV 50-FOV 10)*P]≤26像素/度;
    其中,Y 50表示所述摄像镜头在其成像面上有效像素区域内50度视场角对应的半像高,FOV 50表示50度视场角的大小。
  6. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    9像素/度≤(Y 100-Y 50)/[(1/2)*(FOV 100-FOV 50)*P]<20像素/度;
    其中,Y 100表示所述摄像镜头在其成像面上有效像素区域内100度视场角对应的半像高,FOV 100表示100度视场角的大小。
  7. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    -25<f1/sag S1<-10;
    其中,f1表示所述第一透镜的有效焦距,sag S1表示所述第一透镜的物侧面矢高。
  8. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    -20<f2/f<25;
    其中,f2表示所述第二透镜的有效焦距,f表示所述摄像镜头的有效焦距。
  9. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    0.5<|RS3|/|RS4|<1.5;
    其中,RS3表示所述第二透镜的物侧面于光轴处的曲率半径,RS4表示所述第二透镜的像侧面于光轴处的曲率半径。
  10. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    0<D23/f<0.5;
    其中,D23表示所述第二透镜像侧面至所述第三透镜物侧面在光轴上的距离,f表示所述摄像镜头的有效焦距。
  11. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    0<f3/f<2;
    其中,f3表示所述第三透镜的有效焦距,f表示所述摄像镜头的有效焦距。
  12. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    0<f45/f<10;
    其中,f45表示所述第四透镜和所述第五透镜的组合焦距,f表示所述摄像镜头的有效焦距。
  13. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    0.2<EPL/TTL<0.5;
    其中,EPL表示所述光阑至所述摄像镜头的成像面在光轴上的距离,TTL表示所述第一透镜的物侧面至所述摄像镜头的成像面在光轴上的距离。
  14. 根据权利要求1所述的摄像镜头,其特征在于,所述摄像镜头满足下列关系式:
    2.0mm<f/tan(DFOV/2)<3.2mm;
    其中,DFOV表示所述摄像镜头的对角线方向视场角,f表示所述摄像镜头的有效焦距。
  15. 一种取像装置,其特征在于,包括如权利要求1-14任一项所述的摄像镜头以及感光元件,所述感光元件设于所述摄像镜头的像侧。
  16. 一种电子装置,其特征在于,包括壳体以及如权利要求15所述的取像装置,所述取像装置安装在所述壳体上
  17. 一种驾驶装置,其特征在于,包括车体以及如权利要求15所述的取像装置,所述取像装置设于所述车体以获取所述车体周围的环境信息。
PCT/CN2020/079757 2020-03-17 2020-03-17 摄像镜头、取像装置、电子装置及驾驶装置 WO2021184208A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079757 WO2021184208A1 (zh) 2020-03-17 2020-03-17 摄像镜头、取像装置、电子装置及驾驶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079757 WO2021184208A1 (zh) 2020-03-17 2020-03-17 摄像镜头、取像装置、电子装置及驾驶装置

Publications (1)

Publication Number Publication Date
WO2021184208A1 true WO2021184208A1 (zh) 2021-09-23

Family

ID=77767950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079757 WO2021184208A1 (zh) 2020-03-17 2020-03-17 摄像镜头、取像装置、电子装置及驾驶装置

Country Status (1)

Country Link
WO (1) WO2021184208A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114578517A (zh) * 2022-03-14 2022-06-03 江西特莱斯光学有限公司 一种超短大靶面tof光学镜头

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597582A (zh) * 2015-01-06 2015-05-06 浙江舜宇光学有限公司 摄像镜头
CN105204143A (zh) * 2015-10-14 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN105204144A (zh) * 2015-10-20 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN107065125A (zh) * 2016-12-14 2017-08-18 瑞声科技(新加坡)有限公司 摄像光学镜头

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597582A (zh) * 2015-01-06 2015-05-06 浙江舜宇光学有限公司 摄像镜头
CN105204143A (zh) * 2015-10-14 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN105204144A (zh) * 2015-10-20 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN107065125A (zh) * 2016-12-14 2017-08-18 瑞声科技(新加坡)有限公司 摄像光学镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114578517A (zh) * 2022-03-14 2022-06-03 江西特莱斯光学有限公司 一种超短大靶面tof光学镜头
CN114578517B (zh) * 2022-03-14 2024-01-02 江西特莱斯光学有限公司 一种超短大靶面tof光学镜头

Similar Documents

Publication Publication Date Title
WO2022032573A1 (zh) 光学系统、摄像模组、电子设备及汽车
WO2022016316A1 (zh) 光学镜头、取像模组、电子装置及驾驶装置
WO2021217618A1 (zh) 光学系统、摄像模组、电子设备及汽车
CN112505883A (zh) 光学系统、取像模组、电子装置及驾驶装置
WO2021223137A1 (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
WO2022082512A1 (zh) 光学成像系统、取像模组及电子装置
WO2021184214A1 (zh) 广角镜头、成像模组、电子装置及驾驶装置
WO2021189463A1 (zh) 光学成像系统、成像模组、电子装置及驾驶装置
WO2021164013A1 (zh) 光学系统、摄像模组、电子装置及汽车
WO2021184208A1 (zh) 摄像镜头、取像装置、电子装置及驾驶装置
WO2021022500A1 (zh) 光学系统、摄像模组及汽车
CN111258031A (zh) 光学镜头、成像模组、电子装置及驾驶装置
WO2021184212A1 (zh) 光学镜头、成像模组、电子装置及驾驶装置
CN212181142U (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
CN211786336U (zh) 光学系统、摄像模组、电子设备及汽车
CN212364696U (zh) 光学镜头、取像模组、电子装置及驾驶装置
WO2021217446A1 (zh) 光学系统、摄像模组、电子设备及汽车
CN211698381U (zh) 光学系统、摄像模组、电子装置及汽车
CN111258029A (zh) 摄像镜头、取像装置、电子装置及驾驶装置
CN113625430A (zh) 光学系统、取像模组、电子设备及载具
WO2021189457A1 (zh) 透镜系统、取像模组、电子装置及驾驶装置
CN111273426A (zh) 广角镜头、成像模组、电子装置及驾驶装置
CN111562659A (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
CN211698389U (zh) 摄像镜头、取像装置、电子装置及驾驶装置
CN112099195A (zh) 光学成像系统、取像模组、电子装置及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925445

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 08.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20925445

Country of ref document: EP

Kind code of ref document: A1