WO2021184212A1 - 光学镜头、成像模组、电子装置及驾驶装置 - Google Patents

光学镜头、成像模组、电子装置及驾驶装置 Download PDF

Info

Publication number
WO2021184212A1
WO2021184212A1 PCT/CN2020/079768 CN2020079768W WO2021184212A1 WO 2021184212 A1 WO2021184212 A1 WO 2021184212A1 CN 2020079768 W CN2020079768 W CN 2020079768W WO 2021184212 A1 WO2021184212 A1 WO 2021184212A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical lens
optical
object side
image side
Prior art date
Application number
PCT/CN2020/079768
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
兰宾利
赵迪
周芮
Original Assignee
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津欧菲光电有限公司 filed Critical 天津欧菲光电有限公司
Priority to PCT/CN2020/079768 priority Critical patent/WO2021184212A1/zh
Publication of WO2021184212A1 publication Critical patent/WO2021184212A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • This application relates to the field of optical imaging technology, in particular to an optical lens, an imaging module, an electronic device, and a driving device.
  • the front-view or side-view camera device can be used as the camera system in the advanced driver assistance system to analyze the video content to realize lane departure warning (LDW), automatic lane keeping assist (LKA), high beam/low beam control and traffic Logo recognition (TSR).
  • LDW lane departure warning
  • LKA automatic lane keeping assist
  • TSR traffic Logo recognition
  • the driver when parking, control the front-view or side-view camera device to turn on, the driver can intuitively see the obstacles in front of the car, thereby facilitating the parking operation; and when the car passes through special places (such as roadblocks, parking lots, etc.), the front
  • the side-view or side-view camera device can also be automatically turned on to obtain information about the environment around the vehicle and feed it back to the central system of the car to make correct instructions to avoid driving accidents.
  • the traditional front-view or side-view lens captures images with low resolution and a small depth of field. It is unable to present long-distance details while shooting at a large angle range, so that the driving assistance system cannot accurately monitor the surrounding area of the vehicle in real time. Environmental information is used to make judgments and make timely warnings or evasions, and there is a certain driving risk.
  • an optical lens is provided.
  • An optical lens which includes in order from the object side to the image side along the optical axis:
  • the first lens with negative refractive power
  • a second lens with negative refractive power, the object side of the second lens is concave;
  • a third lens with positive refractive power the object side of the third lens is convex, and the image side is convex;
  • the fourth lens with positive refractive power
  • the fifth lens with positive refractive power
  • a sixth lens with negative refractive power is provided.
  • the diaphragm is arranged on the object side of the optical lens or between the first lens and the sixth lens.
  • An imaging module includes the optical lens described in the above embodiment; and a photosensitive element, the photosensitive element is arranged on the image side of the optical lens.
  • An electronic device includes a housing and the imaging module described in the above embodiments, and the imaging module is installed on the housing.
  • a driving device includes a vehicle body and the imaging module described in the above embodiments, and the imaging module is provided on the vehicle body to obtain environmental information around the vehicle body.
  • FIG. 1 shows a schematic diagram of the structure of an optical lens according to Embodiment 1 of the present application
  • Fig. 2 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical lens of embodiment 1 respectively;
  • FIG. 3 shows a schematic structural diagram of an optical lens according to Embodiment 2 of the present application.
  • Fig. 4 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical lens of embodiment 2 respectively;
  • FIG. 5 shows a schematic structural diagram of an optical lens according to Embodiment 3 of the present application.
  • Fig. 6 respectively shows a longitudinal spherical aberration curve, an astigmatism curve and a distortion curve of the optical lens of Embodiment 3;
  • FIG. 7 shows a schematic structural diagram of an optical lens according to Embodiment 4 of the present application.
  • FIG. 8 respectively shows a longitudinal spherical aberration curve, an astigmatism curve, and a distortion curve of the optical lens of Embodiment 4;
  • FIG. 9 shows a schematic structural diagram of an optical lens according to Embodiment 5 of the present application.
  • FIG. 10 respectively shows a longitudinal spherical aberration curve, an astigmatism curve, and a distortion curve of the optical lens of Embodiment 5;
  • FIG. 11 shows a schematic structural diagram of an optical lens according to Embodiment 6 of the present application.
  • Fig. 12 respectively shows a longitudinal spherical aberration curve, an astigmatism curve and a distortion curve of the optical lens of Embodiment 6;
  • FIG. 13 shows a schematic structural diagram of an optical lens according to Embodiment 7 of the present application.
  • FIG. 14 respectively shows a longitudinal spherical aberration curve, an astigmatism curve, and a distortion curve of the optical lens of Embodiment 7;
  • FIG. 15 shows a schematic structural diagram of an optical lens according to Embodiment 8 of the present application.
  • FIG. 17 shows a schematic structural diagram of an optical lens according to Embodiment 9 of the present application.
  • FIG. 19 shows a schematic diagram of an imaging module according to an embodiment of the present application.
  • FIG. 20 shows a schematic diagram of a driving device using an imaging module according to an embodiment of the present application
  • FIG. 21 shows a schematic diagram of an electronic device applying an imaging module according to an embodiment of the present application.
  • first lens discussed below may also be referred to as a second lens or a third lens.
  • shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the space on the side of the object relative to the optical element is called the object side of the optical element.
  • the space on the side of the object relative to the optical element is called the image of the optical element. side.
  • the surface of each lens closest to the object is called the object side, and the surface of each lens closest to the imaging surface is called the image side. And define the positive direction of the distance from the object side to the image side.
  • the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least near the optical axis; if the lens surface is concave and the position of the concave surface is not defined, it means The lens surface is concave at least near the optical axis.
  • the near optical axis here refers to the area near the optical axis.
  • the optical lens includes six lenses with refractive power, namely, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the six lenses are arranged in order from the object side to the image side along the optical axis, and the imaging surface of the optical lens is located on the image side of the sixth lens.
  • the first lens has a negative refractive power, which is conducive to allowing large-angle light to enter the optical lens, and through the refraction of other lenses in the optical lens, the light is condensed to the imaging surface of the lens, thereby improving the imaging quality.
  • the second lens has a negative refractive power, and its object side surface is concave, which is beneficial to correct the astigmatism caused by the refraction of the light by the first lens, thereby further improving the imaging quality.
  • the third lens has positive refractive power, its object side is convex, and the image side is convex, which can converge the light diverged due to the strong negative refractive power of the first lens and the second lens, reducing the distance between the third lens and the diaphragm. Small, so that the structure of the lens is more compact, easy to achieve miniaturization.
  • the fourth lens has a positive refractive power, which is conducive to further converging the light deflected by the third lens to ensure the image quality.
  • the fifth lens has a positive refractive power
  • the sixth lens has a negative refractive power
  • the fifth lens can cooperate with the sixth lens to correct lens chromatic aberration and further correct aberrations to improve the imaging resolution capability of the lens.
  • the image side surface of the fifth lens and the object side surface of the sixth lens can be glued together, so that the overall structure of the optical lens can be more compact, which is beneficial to correct aberrations, and strike a balance between reducing the size of the lens and improving the resolution of the lens At the same time, it can also reduce the tolerance sensitivity problems such as tilt or eccentricity of the lens during the assembly process, and improve the assembly yield of the lens.
  • the discrete lenses at the turning points of light are easily sensitive due to processing errors and/or assembly errors, and the use of cemented lenses can effectively reduce the sensitivity of the lens.
  • the cemented lens used in this application can not only effectively reduce the sensitivity of the lens and shorten the overall length of the lens, but also can share the correction of the overall chromatic aberration and aberration of the lens, and improve the resolution capability of the optical lens.
  • the cemented lens may include a lens with negative refractive power and a lens with positive refractive power, for example, the fifth lens has positive refractive power and the sixth lens has negative refractive power.
  • the optical lens is also provided with a diaphragm, which is arranged on the object side of the optical lens or between the first lens and the sixth lens to better control the size of the incident light beam and improve the imaging quality of the optical lens.
  • the diaphragm is arranged between the third lens and the fourth lens.
  • the diaphragm includes an aperture diaphragm and a field diaphragm.
  • the diaphragm is an aperture diaphragm.
  • the aperture stop can be located on the surface of the lens (for example, the object side and the image side) and form an functional relationship with the lens, for example, by coating a light-blocking coating on the surface of the lens to form an aperture stop on the surface; or by clamping
  • the holder fixedly clamps the surface of the lens, and the holder structure on the surface can limit the width of the imaging beam of the object point on the axis, thereby forming an aperture stop on the surface.
  • the light emitted or reflected by the subject enters the optical lens from the object side direction, and passes through the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the first lens in sequence.
  • the six lenses finally converge on the imaging surface.
  • the above-mentioned optical lens by selecting an appropriate number of lenses and reasonably distributing the refractive power, surface shape, and effective focal length of each lens, can ensure the wide-angle shooting performance of the optical lens while enhancing the imaging resolution capability of the lens and effectively correct it.
  • the aberration makes it possible to capture the details of the scene more accurately; in addition, the optical lens also has the characteristics of a miniaturized structure, which is convenient to adapt to a thin and light electronic product.
  • the fifth lens and the sixth lens are cemented, and the optical lens satisfies the following relationship: R56 ⁇ 0; where R56 represents the radius of curvature of the cemented surface of the fifth lens and the sixth lens at the optical axis,
  • the unit is mm.
  • R56 can be -3mm, -2.9mm, -2.8mm, -2.7mm, -2.6mm, -2.5mm, -2.4mm, -2.3mm, -2.2mm, or -2.1mm.
  • the overall structure of the optical lens can be made more compact, and the tolerance sensitivity problems such as tilt or eccentricity generated during the assembly process of the lens can be reduced, and the lens can be improved
  • the assembly yield rate at the same time, it is helpful to correct the chromatic aberration and further improve the image quality.
  • the optical lens satisfies the following relationship: -2 ⁇ f1/f ⁇ -0.5; where f1 represents the effective focal length of the first lens, and f represents the effective focal length of the optical lens.
  • f1/f can be -1.9, -1.6, -1.5, -1.4, -1.35, -1.3, -1.25, -1.2, or -1.1.
  • negative refractive power can be provided for the optical lens, and the negative refractive power of the first lens is not too strong, so that the lens has a wider shooting angle of view; when the lower limit of the relational expression is satisfied, The negative refractive power of the first lens can be ensured, thereby helping to reduce the sensitivity of the lens and making the lens have the characteristics of miniaturization.
  • the lens cannot provide negative refractive power and cannot guarantee wide-angle; when f1/f is less than or equal to -2, the negative refractive power of the first lens is small or the effective focal length of the lens is too long , It is not conducive to reducing the sensitivity of the lens, and it is not conducive to achieving the miniaturization and wide-angle of the lens.
  • the optical lens satisfies the following relationship: RS1/CT1>30; where RS1 represents the radius of curvature of the object side surface of the first lens on the optical axis, and CT1 represents the thickness of the first lens on the optical axis.
  • RS1/CT1 can be 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80.
  • the radius of curvature of the object side surface of the first lens on the optical axis and the thickness of the first lens on the optical axis can be reasonably allocated, so that the degree of curvature of the object side surface of the first lens can be controlled;
  • the lower limit of the relational expression is beneficial to suppress the occurrence of lens central aberration, making the lens easier to widen, and at the same time avoiding the risk of decentering due to the small curvature of the first lens object side surface at the optical axis. , Reduce the processing difficulty of the lens.
  • the optical lens satisfies the following relationship: RS1/CT1 ⁇ 70.
  • RS1/CT1 can be 70, 80, 90, 100, 110, 120 or unlimited.
  • the curvature radius of the first lens object side surface at the optical axis can be greater than or equal to 70 or even tends to infinity, the object side surface of the first lens tends to be flat.
  • the lens can be better restrained while ensuring the wide-angle lens. Aberrations reduce the sensitivity of the optical lens.
  • the optical lens satisfies the following relationship: 0.5 ⁇ f23/f ⁇ 3; where f23 represents the combined focal length of the second lens and the third lens, and f represents the effective focal length of the optical lens.
  • f23/f can be 1, 1.2, 1.4, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 2, 2.5, or 2.8.
  • the third lens makes it easier to miniaturize the lens. At the same time, it can also reduce the burden of converging light on the fourth lens and the fifth lens; when the lower limit of the above relational expression is satisfied, the overall positive refraction of the second lens and the third lens The force will not be too strong, so that the angle between the normal on the object side surface and the image side surface of the third lens and the incident light will not become too large, which is beneficial to suppress the occurrence of high-order aberrations.
  • the optical lens satisfies the following relationship: 1 ⁇
  • /D12 can be 2, 2.2, 2.4, 2.6, 2.8, 3, 3.1, 3.2, 3.5 or 3.8.
  • the curvature radii of the object side surface of the first lens and the image side surface of the second lens at the optical axis can be set reasonably, so that the difference in the radii of curvature of the two surfaces will not be too large, and the first lens and the second lens can be reduced.
  • the optical lens satisfies the following relationship:
  • RS3 represents the curvature radius of the second lens object side surface at the optical axis
  • RS4 represents the curvature radius of the second lens image side surface at the optical axis.
  • (RS3+RS4)/(RS3-RS4) can be -8.5, -8, -7, -6.8, -6.6, -6.4, -6.2, -6, -5.5, -5, or -4.5.
  • the optical lens satisfies the following relationship:
  • RS7 represents the curvature radius of the fourth lens at the optical axis
  • RS8 represents the curvature radius of the fourth lens at the optical axis
  • CT4 represents the fourth lens at the The thickness on the optical axis.
  • S7 (RS8+CT4) can be 4.5, 5, 5.3, 5.6, 5.9, 6.2, 6.5, 6.8, 7.1, 7.4 or 7.7.
  • the radius of curvature of the object side and image side of the fourth lens at the optical axis and the thickness of the fourth lens on the optical axis can be set reasonably, so that the curvature of the fourth lens can be effectively controlled while suppressing
  • the occurrence of aberration makes the lens easier to widen; and when RS7/(RS8+CT4) is lower than the lower limit or higher than the upper limit, it is easy to reduce the ability of the fourth lens to converge the light emitted by the third lens, which is not conducive to suppressing the lens Aberrations make it difficult to ensure the image quality of the lens.
  • the optical lens satisfies the following relationship: 0.5 ⁇ f4/f ⁇ 3; where f4 represents the effective focal length of the fourth lens, and f represents the effective focal length of the optical lens.
  • f4/f can be 1, 1.3, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.5, or 2.8.
  • the fourth lens provides positive refractive power for the lens, so that the light emitted by the third lens can be further converged to ensure imaging quality; by satisfying the lower limit of the relational expression, the positive refractive power can be kept unchanged To be too strong can suppress the occurrence of high-order aberrations, and at the same time can reduce the sensitivity of the rear part of the lens group and improve the production yield.
  • the optical lens satisfies the following relationship: -13 ⁇ f56/f ⁇ -4; where f56 represents the combined focal length of the fifth lens and the sixth lens, and f represents the effective focal length of the optical lens.
  • f56/f can be -12.5, -12, -11.5, -11, -10.5, -10, -9.5, -9, -8, -7, -6, -5, or -4.1.
  • the overall negative refractive power of the fifth lens and the sixth lens will not be too strong, and thus the refractive power of the cemented surface of the fifth lens and the sixth lens will not be too strong, which is beneficial to suppress imaging High-order aberrations caused by light beams around the area; by satisfying the lower limit of the relationship, the fifth lens and the sixth lens can be guaranteed to have a certain negative refractive power as a whole, so as to ensure the achromatic effect and improve the detailed resolution of the lens.
  • the overall negative refractive power of the fifth lens and the sixth lens is too strong, which is not conducive to suppressing the aberration of the edge field of view; and when f56/f is less than or equal to -13, the fifth lens The overall negative refractive power of the sixth lens is small, which tends to weaken the achromatic effect, and the resolution performance of the lens is not high.
  • the optical lens satisfies the following relationship: 0 ⁇ BFL/f ⁇ 2; where BFL represents the back focal length of the optical lens, and f represents the effective focal length of the optical lens.
  • BFL/f can be 1.1, 1.2, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.7, 1.8, or 1.9.
  • the optical lens satisfies the following relationship: Nd6-Nd5>0; where Nd6 represents the d-light refractive index of the sixth lens, and Nd5 represents the d-light refractive index of the fifth lens.
  • d light refers to light with a wavelength of 587.56 nm.
  • Nd6-Nd5 can be 0.03, 0.1, 0.13, 0.16, 0.2, 0.23, 0.25, 0.27, 0.29, or 0.3.
  • the optical lens satisfies the following relationship: 50 degrees ⁇ (FOV ⁇ f)/ImgH ⁇ 70 degrees; where f represents the effective focal length of the optical lens, and FOV represents the field angle of the optical lens in the diagonal direction , ImgH represents the diagonal length of the effective pixel area on the imaging surface of the optical lens.
  • (FOV ⁇ f)/ImgH can be 55, 60.2, 60.9, 61, 61.5, 62, 62.5, 63, 63.5, or 64, and the unit is degree.
  • (FOV ⁇ f)/ImgH is lower than the lower limit or higher than the upper limit, it is difficult to strike a balance between ensuring the wide-angle of the lens and improving the resolution.
  • the optical lens satisfies the following relational expression: 2 ⁇ TTL/f ⁇ 6; where TTL represents the distance from the object side of the first lens to the imaging surface of the optical lens on the optical axis, and f represents the distance of the optical lens Effective focal length.
  • TTL/f can be 3, 4, 4.5, 4.8, 4.85, 4.9, 4.95, 5, 5.4, or 5.8.
  • the object side surface and/or the image side surface of at least one lens are aspherical.
  • the surface of each lens in the optical lens can also be any combination of spherical and aspherical surfaces, and not necessarily all spherical surfaces or all aspherical surfaces.
  • the material of each lens in the optical lens may be glass or plastic.
  • the plastic lens can reduce the weight and production cost of the optical lens, while the glass lens can make the optical lens have better performance.
  • the material of each lens is preferably glass. It should be noted that the material of each lens in the optical lens can also be any combination of glass and plastic, and it does not have to be all glass or all plastic.
  • the optical lens further includes an infrared filter.
  • the infrared filter is set on the image side of the sixth lens, used to filter incident light, specifically to isolate infrared light, prevent infrared light from being absorbed by the photosensitive element, so as to prevent infrared light from affecting the color and clarity of normal images, and improve The imaging quality of the optical lens.
  • the optical lens further includes a protective glass.
  • the protective glass is arranged on the image side of the infrared filter to protect the photosensitive element, and at the same time, it can also prevent the photosensitive element from being contaminated with dust and further ensure the image quality.
  • the optical lens of the above-mentioned embodiment of the present application may use multiple lenses, for example, the above-mentioned six lenses.
  • FNO can be 2.0
  • larger field of view so as to better meet the application needs of lightweight electronic devices such as lenses for vehicle-mounted auxiliary systems, mobile phones, and tablets.
  • the number of lenses constituting the optical lens can be changed to obtain the various results and advantages described in this specification.
  • FIG. 1 shows a schematic diagram of the structure of the optical lens 100 of Embodiment 1.
  • the optical lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a convex surface near the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • the image side surface S10 of the fifth lens L5 and the object side surface S11 of the sixth lens L6 are cemented to form a cemented lens, thereby making the overall structure of the optical lens 100 more compact and reducing tolerances such as tilt or eccentricity generated during the assembly process of the lens Sensitivity issues improve the assembly yield of the lens.
  • the object side surface S7 and the image side surface S8 of the fourth lens L4 as aspherical surfaces is beneficial to correct aberrations and solve the problem of image surface distortion. It can also make the lens smaller, thinner, and flatter.
  • the optical imaging effect of the optical lens 100 has the characteristics of miniaturization.
  • the materials of the first lens L1 to the sixth lens L6 are all glass, and the use of glass lenses can enable the optical lens 100 to have better temperature tolerance characteristics and excellent optical performance, thereby further ensuring the imaging quality.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100.
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the optical lens 100 to avoid distortion of the imaging color.
  • the material of the filter 110 is glass.
  • Table 1 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of the lens of the optical lens 100 of Example 1, where the radius of curvature, thickness, lens The effective focal length is in millimeters (mm).
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the direction from the image side to the image side of the lens.
  • the value of the stop ST0 in the "thickness" parameter column is from the stop ST0 to the apex of the object side of the latter lens (the apex refers to the intersection of the lens and the optical axis) in the light
  • the distance on the axis we default that the direction from the object side of the first lens L1 to the image side of the last lens is the positive direction of the optical axis.
  • the value is negative, it means that the stop ST0 is set on the object side of the lens in Figure 1 On the right side of the vertex, if the thickness of the diaphragm STO is positive, the diaphragm is on the left side of the vertex on the object side of the lens.
  • the aspheric surface type in the lens is defined by the following formula:
  • x is the distance vector height of the aspheric surface from the apex of the aspheric surface when the height is h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 2 below shows the higher order term coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the lens aspheric surfaces S7-S8 in Example 1.
  • the distance TTL from the object side surface S1 of the first lens L1 to the imaging surface S17 of the optical lens 100 on the optical axis is 17.1 mm, and the diagonal length ImgH of the effective pixel area on the imaging surface S17 of the optical lens 100 is 6.61 mm.
  • R56 -2.48mm, where R56 represents the radius of curvature of the bonding surface of the fifth lens L5 and the sixth lens L6 at the optical axis;
  • f1/f -1.456, where f1 represents the effective focal length of the first lens L1, and f represents the effective focal length of the optical lens 100;
  • RS1/CT1 37.8, where RS1 represents the radius of curvature of the object side surface S1 of the first lens L1 on the optical axis, and CT1 represents the thickness of the first lens L1 on the optical axis;
  • f23/f 1.827, where f23 represents the combined focal length of the second lens L2 and the third lens L3, and f represents the effective focal length of the optical lens 100;
  • RS3+RS4)/(RS3-RS4) -6.711, where RS3 represents the radius of curvature of the second lens L2 on the object side surface S3 at the optical axis, and RS4 represents the curvature radius of the second lens L2 on the image side surface S4 at the optical axis , CT4 represents the thickness of the fourth lens L4 on the optical axis;
  • RS7/(RS8+CT4) 5.79, where RS7 represents the radius of curvature of the fourth lens L4 on the object side surface S7 at the optical axis, RS8 represents the curvature radius of the fourth lens L4 on the image side surface S8 at the optical axis, and CT4 represents the fourth lens The thickness of lens L4 on the optical axis;
  • f4/f 1.684, where f4 represents the effective focal length of the fourth lens L4, and f represents the effective focal length of the optical lens 100;
  • f56/f -5.141, where f56 represents the combined focal length of the fifth lens L5 and the sixth lens L6, and f represents the effective focal length of the optical lens 100;
  • BFL/f 1.348, where BFL represents the back focal length of the optical lens 100, and f represents the effective focal length of the optical lens 100;
  • Nd6-Nd5 0.133, where Nd6 represents the d-ray refractive index of the sixth lens L6, and Nd5 represents the d-ray refractive index of the fifth lens L5;
  • TTL/f 4.985, where TTL represents the distance from the object side S1 of the first lens L1 to the imaging surface S17 of the optical lens 100 on the optical axis, and f represents the effective focal length of the optical lens 100.
  • Fig. 2 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical lens 100 of Embodiment 1.
  • the reference wavelength of the optical lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm and 656.27nm will deviate from the focal point after passing through the optical lens 100;
  • the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optical lens.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical lens 100 at different image heights. According to FIG. 2, it can be seen that the optical lens 100 given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of an optical lens 100 according to Embodiment 2 of the present application.
  • the optical lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a convex surface near the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • the image side surface S10 of the fifth lens L5 and the object side surface S11 of the sixth lens L6 are cemented to form a cemented lens, thereby making the overall structure of the optical lens 100 more compact and reducing tolerances such as tilt or eccentricity generated during the assembly process of the lens Sensitivity issues improve the assembly yield of the lens.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100.
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the optical lens 100 to avoid distortion of the imaging color.
  • Table 3 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical lens 100 of Example 2, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • Table 4 shows the coefficients of higher-order terms that can be used for the lens aspheric surfaces S7-S8 in Example 2, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 5 shows Example 2 The relevant parameter values of the optical lens 100 are given in.
  • the optical lens 100 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical lens 100 of Embodiment 2, respectively, and the reference wavelength of the optical lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm and 656.27nm will deviate from the focal point after passing through the optical lens 100;
  • the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optical lens.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical lens 100 at different image heights. It can be seen from FIG. 4 that the optical lens 100 provided in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 shows a schematic structural diagram of an optical lens 100 according to Embodiment 3 of the present application.
  • the optical lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a convex surface near the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • the image side surface S10 of the fifth lens L5 and the object side surface S11 of the sixth lens L6 are cemented to form a cemented lens, thereby making the overall structure of the optical lens 100 more compact and reducing tolerances such as tilt or eccentricity generated during the assembly process of the lens Sensitivity issues improve the assembly yield of the lens.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100.
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the optical lens 100 to avoid distortion of the imaging color.
  • Table 6 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient), and effective focal length of each lens of the optical lens 100 of Example 3.
  • the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • Table 7 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S7-S8 in Example 3, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 8 shows Example 3
  • the relevant parameter values of the optical lens 100 are given in.
  • FIG. 6 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical lens 100 of Embodiment 3, respectively, and the reference wavelength of the optical lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm and 656.27nm will deviate from the focal point after passing through the optical lens 100;
  • the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optical lens.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical lens 100 at different image heights. It can be seen from FIG. 6 that the optical lens 100 provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of an optical lens 100 according to Embodiment 4 of the present application.
  • the optical lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a convex surface near the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • the image side surface S10 of the fifth lens L5 and the object side surface S11 of the sixth lens L6 are cemented to form a cemented lens, thereby making the overall structure of the optical lens 100 more compact and reducing tolerances such as tilt or eccentricity generated during the assembly process of the lens Sensitivity issues improve the assembly yield of the lens.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100.
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the optical lens 100 to avoid distortion of the imaging color.
  • Table 9 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical lens 100 of Example 4, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • Table 10 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S7-S8 in Example 4, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 11 shows Example 4 The relevant parameter values of the optical lens 100 are given in.
  • FIG. 8 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical lens 100 of Embodiment 4, respectively, and the reference wavelength of the optical lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm and 656.27nm will deviate from the focal point after passing through the optical lens 100; the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optical lens.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical lens 100 at different image heights. According to FIG. 8, it can be seen that the optical lens 100 provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of an optical lens 100 according to Embodiment 5 of the present application.
  • the optical lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a convex surface near the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • the image side surface S10 of the fifth lens L5 and the object side surface S11 of the sixth lens L6 are cemented to form a cemented lens, thereby making the overall structure of the optical lens 100 more compact and reducing tolerances such as tilt or eccentricity generated during the assembly process of the lens Sensitivity issues improve the assembly yield of the lens.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100.
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the optical lens 100 to avoid distortion of the imaging color.
  • Table 12 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical lens 100 of Example 5, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • Table 13 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S7-S8 in Example 5, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 14 shows Example 5 The relevant parameter values of the optical lens 100 are given in.
  • FIG. 10 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical lens 100 of Embodiment 5, and the reference wavelength of the optical lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm and 656.27nm will deviate from the focal point after passing through the optical lens 100;
  • the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optical lens.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical lens 100 at different image heights. According to FIG. 10, it can be seen that the optical lens 100 provided in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of an optical lens 100 according to Embodiment 6 of the present application.
  • the optical lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a convex surface near the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • the image side surface S10 of the fifth lens L5 and the object side surface S11 of the sixth lens L6 are cemented to form a cemented lens, thereby making the overall structure of the optical lens 100 more compact and reducing tolerances such as tilt or eccentricity generated during the assembly process of the lens Sensitivity issues improve the assembly yield of the lens.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100.
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the optical lens 100 to avoid distortion of the imaging color.
  • Table 15 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical lens 100 of Example 6, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • Table 16 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S7-S8 in Example 6, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 17 shows Example 6 The relevant parameter values of the optical lens 100 are given in.
  • FIG. 12 respectively shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical lens 100 of Embodiment 6, and the reference wavelength of the optical lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm and 656.27nm will deviate from the focal point after passing through the optical lens 100;
  • the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optical lens.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical lens 100 at different image heights. According to FIG. 12, it can be seen that the optical lens 100 provided in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 shows a schematic structural diagram of an optical lens 100 according to Embodiment 7 of the present application.
  • the optical lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a flat surface
  • the image side surface S2 is a spherical surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a convex surface near the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • the image side surface S10 of the fifth lens L5 and the object side surface S11 of the sixth lens L6 are cemented to form a cemented lens, thereby making the overall structure of the optical lens 100 more compact and reducing tolerances such as tilt or eccentricity generated during the assembly process of the lens Sensitivity issues improve the assembly yield of the lens.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100.
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the optical lens 100 to avoid distortion of the imaging color.
  • Table 18 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient), and effective focal length of each lens of the optical lens 100 of Example 7, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • Table 19 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S7-S8 in Example 7, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 20 shows Example 7 The relevant parameter values of the optical lens 100 are given in.
  • FIG. 14 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical lens 100 of Embodiment 7, respectively, and the reference wavelength of the optical lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm and 656.27nm will deviate from the focal point after passing through the optical lens 100; the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optical lens.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical lens 100 at different image heights. According to FIG. 14, it can be seen that the optical lens 100 given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 shows a schematic structural diagram of an optical lens 100 according to Embodiment 8 of the present application.
  • the optical lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a flat surface
  • the image side surface S2 is a spherical surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a convex surface near the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • the image side surface S10 of the fifth lens L5 and the object side surface S11 of the sixth lens L6 are cemented to form a cemented lens, thereby making the overall structure of the optical lens 100 more compact and reducing tolerances such as tilt or eccentricity generated during the assembly process of the lens Sensitivity issues improve the assembly yield of the lens.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100.
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the optical lens 100 to avoid distortion of the imaging color.
  • Table 21 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical lens 100 of Example 8, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • Table 22 shows the coefficients of the higher order terms that can be used for the lens aspheric surfaces S7-S8 in Example 8, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 23 shows Example 8 The relevant parameter values of the optical lens 100 are given in.
  • FIG. 16 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the optical lens 100 of Embodiment 8, respectively, and the reference wavelength of the optical lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm and 656.27nm will deviate from the focal point after passing through the optical lens 100;
  • the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optical lens.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical lens 100 at different image heights. According to FIG. 16, it can be seen that the optical lens 100 provided in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 shows a schematic structural diagram of an optical lens 100 according to Embodiment 9 of the present application.
  • the optical lens 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens in order from the object side to the image side along the optical axis. L6 and imaging surface S17.
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a flat surface
  • the image side surface S2 is a spherical surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a negative refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a concave surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a positive refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a convex surface, and the image side surface S6 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both aspherical, wherein the object side surface S7 is a concave surface near the optical axis, and the image side surface S8 is a convex surface near the optical axis.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a concave surface, and the image side surface S10 is a convex surface.
  • the sixth lens L6 has a negative refractive power, and the object side surface S11 and the image side surface S12 are both spherical surfaces, wherein the object side surface S11 is a concave surface, and the image side surface S12 is a convex surface.
  • the image side surface S10 of the fifth lens L5 and the object side surface S11 of the sixth lens L6 are cemented to form a cemented lens, thereby making the overall structure of the optical lens 100 more compact and reducing tolerances such as tilt or eccentricity generated during the assembly process of the lens Sensitivity issues improve the assembly yield of the lens.
  • Both the object side surface S7 and the image side surface S8 of the fourth lens L4 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the sixth lens L6 are all glass.
  • a stop STO is also provided between the third lens L3 and the fourth lens L4 to limit the size of the incident light beam and further improve the imaging quality of the optical lens 100.
  • the optical lens 100 further includes a filter 110 disposed on the image side of the sixth lens L6 and having an object side surface S13 and an image side surface S14, and a protective glass 120 disposed on the image side of the filter 110 and having an object side surface S15 and an image side surface S16.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging surface S17.
  • the filter 110 is an infrared filter, which is used to filter the infrared light in the external light incident to the optical lens 100 to avoid distortion of the imaging color.
  • Table 24 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the optical lens 100 of Example 9, where the radius of curvature and thickness The unit of effective focal length of each lens is millimeter (mm).
  • Table 25 shows the coefficients of the higher order term that can be used for the lens aspheric surfaces S7-S8 in Example 9, where the aspheric surface type can be defined by the formula (1) given in Example 1;
  • Table 26 shows Example 9 The relevant parameter values of the optical lens 100 are given in.
  • FIG. 18 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the optical lens 100 of Embodiment 9 respectively, and the reference wavelength of the optical lens 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows that the light with wavelengths of 479.99nm, 546.07nm, 587.56nm and 656.27nm will deviate from the focal point after passing through the optical lens 100; the astigmatism graph shows that the light with a wavelength of 587.56nm passes through the optical lens.
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm after passing through the optical lens 100 at different image heights. According to FIG. 18, it can be seen that the optical lens 100 provided in Embodiment 9 can achieve good imaging quality.
  • the present application also provides an imaging module 200, including the optical lens 100 as described above; and a photosensitive element 210, the photosensitive element 210 is arranged on the image side of the optical lens 100, and the photosensitive surface It coincides with the imaging surface S17.
  • the photosensitive element 210 may adopt a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device) image sensor.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the aforementioned imaging module 200 can use the aforementioned optical lens 100 to capture images with a large depth of field, high pixels, and wide viewing angles. At the same time, the imaging module 200 also has the structural characteristics of miniaturization and light weight.
  • the imaging module 200 can be applied to fields such as mobile phones, automobiles, surveillance, and medical treatment. Specifically, it can be used as a mobile phone camera, a car camera, a surveillance camera or an endoscope, etc.
  • the aforementioned imaging module 200 can be used as a vehicle-mounted camera in a driving device 300.
  • the driving device 300 may be an autonomous vehicle or a non-autonomous vehicle.
  • the imaging module 200 can be used as a front-view camera, a rear-view camera or a side-view camera of the driving device 300.
  • the driving device 300 includes a vehicle body 310, and the imaging module 200 is installed at any position of the left rearview mirror, right rearview mirror, rear trunk, front headlights, rear headlights, etc. of the vehicle body 310 to obtain the vehicle A clear image of the environment around the body 310.
  • the driving device 300 is also provided with a display screen 320, the display screen 320 is installed in the vehicle body 310, and the imaging module 200 is communicatively connected with the display screen 320, and the image information obtained by the imaging module 200 can be transmitted to the display screen 320.
  • the display so that the driver can obtain more complete surrounding image information, improve safety while driving.
  • the imaging module 200 may be applied to an autonomous vehicle.
  • the imaging module 200 is installed at any position on the body of the self-driving car.
  • the imaging module 200 can also be installed on the top of the vehicle body.
  • the imaging module 200 by installing multiple imaging modules 200 on the self-driving car to obtain environmental information with a 360° angle of view around the car body 310, the environmental information obtained by the imaging module 200 will be transmitted to the analysis and processing unit of the self-driving car for comparison.
  • the road conditions around the vehicle body 310 are analyzed in real time.
  • the present application also provides an electronic device 400 including a housing 410 and the imaging module 200 as described above, and the imaging module 200 is installed on the housing 410.
  • the imaging module 200 is disposed in the housing 410 and is exposed from the housing 410 to obtain images.
  • the housing 410 can provide the imaging module 200 with protection from dust, water, and drop.
  • the corresponding hole of the module 200 allows light to penetrate into or out of the housing from the hole.
  • the above-mentioned electronic device 400 can use the aforementioned imaging module 200 to capture images with a wide viewing angle, high pixels, and a wide range of depth of field.
  • the above-mentioned electronic device 400 is further provided with a corresponding processing system, and the electronic device 400 can transmit the image to the corresponding processing system in time after taking an image of the object, so that the system can make accurate analysis and judgment.
  • the "electronic device” used may also include, but is not limited to, a device configured to be connected via a wired line and/or receive or send a communication signal via a wireless interface.
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, notebook, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system

Abstract

一种光学镜头,沿着光轴由物侧至像侧依序包括具有负屈折力的第一透镜(L1);具有负屈折力的第二透镜(L2),第二透镜(L2)的物侧面(S3)为凹面;具有正屈折力的第三透镜(L3),第三透镜(L3)的物侧面(S5)为凸面,像侧面(S6)为凸面;具有正屈折力的第四透镜(L4);具有正屈折力的第五透镜(L5);具有负屈折力的第六透镜(L6);以及光阑(STO),光阑(STO)设于光学镜头的物侧或第一透镜(L1)和第六透镜(L6)之间。光学镜头具备广视角、较大的景深范围、高解像能力、小型化的特点。还提供一种成像模组、电子装置及驾驶装置。

Description

光学镜头、成像模组、电子装置及驾驶装置 技术领域
本申请涉及光学成像技术领域,特别是涉及一种光学镜头、成像模组、电子装置及驾驶装置。
背景技术
近年来,随着车载技术的发展,前视或侧视摄像装置、自动巡航仪、行车记录仪、倒车影像仪对车载用摄像头的技术要求越来越高。其中,前视或侧视摄像装置可作为高级驾驶员辅助系统中的摄像头系统分析视频内容,实现车道偏离警告(LDW)、自动车道保持辅助(LKA)、远光灯/近光灯控制和交通标志识别(TSR)。例如在停车时,控制前视或侧视摄像装置开启,驾驶员可直观地看到车前面的障碍物,从而方便停车操作;而当汽车通过特殊地方(如路障,停车场等)时,前视或侧视摄像装置也可自动打开从而获取车辆周围的环境信息,并反馈给汽车中央系统使其做出正确的指令,避免驾驶事故的发生。
然而,传统的前视或侧视镜头拍摄的图像分辨率较低,景深范围小,无法在呈现远距离细节的同时实现大角度范围的拍摄,从而不能使驾驶辅助系统实时准确地对车辆周围的环境信息进行判断进而做出及时的预警或规避,存在一定的驾驶风险。
发明内容
根据本申请的各种实施例,提供一种光学镜头。
一种光学镜头,所述光学镜头沿着光轴由物侧至像侧依序包括:
具有负屈折力的第一透镜;
具有负屈折力的第二透镜,所述第二透镜的物侧面为凹面;
具有正屈折力的第三透镜,所述第三透镜的物侧面为凸面,像侧面为凸面;
具有正屈折力的第四透镜;
具有正屈折力的第五透镜;
具有负屈折力的第六透镜;以及,
光阑,所述光阑设于所述光学镜头的物侧或所述第一透镜和所述第六透镜之间。
一种成像模组,包括上述实施例所述的光学镜头;以及感光元件,所 述感光元件设于所述光学镜头的像侧。
一种电子装置,包括壳体以及上述实施例所述的成像模组,所述成像模组安装在所述壳体上。
一种驾驶装置,包括车体以及上述实施例所述的成像模组,所述成像模组设于所述车体以获取所述车体周围的环境信息。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1示出了本申请实施例1的光学镜头的结构示意图;
图2分别示出了实施例1的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图3示出了本申请实施例2的光学镜头的结构示意图;
图4分别示出了实施例2的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图5示出了本申请实施例3的光学镜头的结构示意图;
图6分别示出了实施例3的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图7示出了本申请实施例4的光学镜头的结构示意图;
图8分别示出了实施例4的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图9示出了本申请实施例5的光学镜头的结构示意图;
图10分别示出了实施例5的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图11示出了本申请实施例6的光学镜头的结构示意图;
图12分别示出了实施例6的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图13示出了本申请实施例7的光学镜头的结构示意图;
图14分别示出了实施例7的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图15示出了本申请实施例8的光学镜头的结构示意图;
图16示出了实施例8的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图17示出了本申请实施例9的光学镜头的结构示意图;
图18示出了实施例9的光学镜头的纵向球差曲线图、像散曲线图以及畸变曲线图;
图19示出了本申请一实施例的成像模组的示意图;
图20示出了本申请一实施例的应用成像模组的驾驶装置示意图;
图21示出了本申请一实施例的应用成像模组的电子装置示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。为了便于说明,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本说明书中,物体相对于光学元件所处的一侧空间称为该光学元件的物侧,对应的,物体所成的像相对于光学元件所处的一侧空间称为该光学元件的像侧。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。并定义物侧至像侧为距离的正向。
另外,在下文的描述中,若出现透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少近光轴处为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少近光轴处为凹面。此处近光轴处是指光轴附近的区域。
以下将对本申请的特征、原理和其他方面进行详细描述。
请一并参阅图1、图3、图5、图7、图9、图11、图13、图15和图 17,本申请实施例提供一种可兼顾广视角、高像素以及小型化的光学镜头。具体的,该光学镜头包括六片具有屈折力的透镜,即第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜。该六片透镜沿着光轴从物侧至像侧依序排列,光学镜头的成像面位于第六透镜的像侧。
第一透镜具有负屈折力,有利于使大角度的光线也能入射到光学镜头中,并通过光学镜头中其他透镜的折射从而使光线会聚至镜头的成像面,提高成像质量。
第二透镜具有负屈折力,其物侧面为凹面,有利于校正光线经第一透镜的折转而产生的像散现象,从而进一步提升成像品质。
第三透镜具有正屈折力,其物侧面为凸面,像侧面为凸面,能够使由于第一透镜和第二透镜的强负屈折力所发散的光线得以会聚,使第三透镜和光阑的距离减小,从而使镜头的结构更为紧凑,容易实现小型化。
第四透镜具有正屈折力,有利于使经第三透镜折转的光线进一步得以会聚,确保成像质量。
第五透镜具有正屈折力,第六透镜具有负屈折力,从而第五透镜可与第六透镜配合以校正镜头色差,并进一步修正像差,提升镜头的成像解析能力。进一步的,可将第五透镜的像侧面和第六透镜的物侧面胶合,如此可使光学镜头的整体结构更为紧凑,有利于修正像差,在缩小镜头体积和提高镜头解像力之间取得平衡,同时还可以降低镜片在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
如本领域技术人员已知的,在光线转折处的离散透镜,容易因加工误差和/或组立误差造成敏感,而胶合透镜的使用可有效地降低镜头的敏感度。在本申请中使用胶合透镜,不仅能够有效地降低镜头的敏感度、缩短镜头的整体长度,还能够分担镜头的整体色差、像差的矫正,提高光学镜头的解像能力。进一步的,胶合透镜可包括一枚具有负屈折力的透镜和一枚具有正屈折力的透镜,如第五透镜具有正屈折力,第六透镜具有负屈折力。
光学镜头中还设置有光阑,光阑设于光学镜头的物侧或者第一透镜与第六透镜之间,以更好地控制入射光束的大小,提升光学镜头的成像质量。进一步的,光阑设于第三透镜和第四透镜之间。具体的,光阑包括孔径光阑和视场光阑。优选的,光阑为孔径光阑。孔径光阑可位于透镜的表面上(例如物侧面和像侧面),并与透镜形成作用关系,例如,通过在透镜的表面涂覆阻光涂层以在该表面形成孔径光阑;或通过夹持件固定夹持透镜的表面,位于该表面的夹持件结构能够限制轴上物点成像光束的宽度,从而在该表面上形成孔径光阑。
当上述光学镜头用于成像时,被摄物体发出或者反射的光线从物侧方向进入光学镜头,并依次穿过第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜,最终汇聚到成像面上。
上述光学镜头,通过选取合适数量的透镜并合理分配各透镜的屈折力、面型以及各透镜的有效焦距,可以在保证所述光学镜头广角拍摄性能的同时,增强镜头的成像解析能力并有效修正像差,使其能够更精准地捕捉景物细节;除此之外,所述光学镜头还具备小型化的结构特点,方便适配至轻薄型的电子产品。
在示例性实施方式中,第五透镜和第六透镜胶合,且光学镜头满足下列关系式:R56<0;其中,R56表示第五透镜和第六透镜的胶合面于光轴处的曲率半径,单位为mm。R56可以是-3mm、-2.9mm、-2.8mm、-2.7mm、-2.6mm、-2.5mm、-2.4mm、-2.3mm、-2.2mm或-2.1mm。通过将第五透镜和第六透镜胶合并使胶合面凹向物侧,可以使光学镜头的整体结构更为紧凑,降低镜片在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率;同时也有利于修正色差,进一步提升成像品质。
在示例性实施方式中,光学镜头满足下列关系式:-2<f1/f<-0.5;其中,f1表示第一透镜的有效焦距,f表示光学镜头的有效焦距。f1/f可以是-1.9、-1.6、-1.5、-1.4、-1.35、-1.3、-1.25、-1.2或-1.1。在满足上述关系式的上限时,可以为光学镜头提供负的屈折力,且第一透镜的负屈折力不会过强,从而使镜头具备较广的拍摄视角;当满足关系式的下限时,可以确保第一透镜的负屈折力,从而有利于降低镜头的敏感度,并使镜头具备小型化的特征。当f1/f大于等于0时,则无法为镜头提供负屈折力,无法保证广角化;而当f1/f小于等于-2时,第一透镜的负屈折力较小或镜头的有效焦距过长,不利于降低镜头的敏感度,也不利于实现镜头的小型化和广角化。
在示例性实施方式中,光学镜头满足下列关系式:RS1/CT1>30;其中,RS1表示第一透镜物侧面于光轴处的曲率半径,CT1表示第一透镜在光轴上的厚度。RS1/CT1可以是35、40、45、50、55、60、65、70、75或80。在满足上述关系时,可以对第一透镜物侧面于光轴处的曲率半径和第一透镜在光轴上的厚度进行合理分配,从而可以对第一透镜物侧面的弯曲程度进行控制;当满足关系式的下限时,有利于抑制透镜中心像差的发生,使镜头容易广角化,同时还可以避免因第一透镜物侧面于光轴处的曲率半径过小导致第一透镜过弯产生偏心风险,降低透镜的加工难度。
进一步的,光学镜头满足下列关系式:RS1/CT1≥70。RS1/CT1可以是70、80、90、100、110、120或无限。通过控制第一透镜物侧面于光轴处 的曲率半径大于等于70甚至趋于无穷大时,第一透镜的物侧面趋近于平面,此时可以在保证镜头广角化的同时,更好地抑制镜头像差,降低光学镜头的敏感度。
在示例性实施方式中,光学镜头满足下列关系式:0.5<f23/f<3;其中,f23表示第二透镜和第三透镜的组合焦距,f表示光学镜头的有效焦距。f23/f可以是1、1.2、1.4、1.5、1.55、1.6、1.65、1.7、1.75、1.8、1.85、1.9、2、2.5或2.8。在满足上述关系式的上限时,能够确保第二透镜和第三透镜整体为镜头提供正屈折力,从而使由第一透镜的负屈折力所发散的光线得以会聚,光阑能够更靠近第二、第三透镜,进而使镜头更容易小型化,同时,还能够减轻第四透镜和第五透镜的会聚光线负担;在满足上述关系式的下限时,第二透镜和第三透镜整体的正屈折力不会过强,从而可使第三透镜物侧面和像侧面两个表面上的法线与入射光线的夹角不会变得过大,有利于抑制高阶像差的发生。
在示例性实施方式中,光学镜头满足下列关系式:1<|RS2-RS3|/D12<4;其中,RS2表示第一透镜像侧面于光轴处的曲率半径,RS3表示第二透镜物侧面于光轴处的曲率半径,D12表示第一透镜像侧面至所述第二透镜物侧面在光轴上的距离。|RS2-RS3|/D12可以是2、2.2、2.4、2.6、2.8、3、3.1、3.2、3.5或3.8。在满足上述关系时,可以对第一透镜的物侧面和第二透镜的像侧面于光轴处的曲率半径合理设置,使两个表面的曲率半径差异不会过大,降低第一透镜和第二透镜的加工组装难度;而当|RS2-RS3|/D12低于下限或高于上限时,容易在加工或组装时产生较大的偏心问题,从而增加加工难度,同时也会导致两个表面的面精度稳定性较差。
在示例性实施方式中,光学镜头满足下列关系式:
-9<(RS3+RS4)/(RS3-RS4)<-4;其中,RS3表示第二透镜物侧面于光轴处的曲率半径,RS4表示第二透镜像侧面于光轴处的曲率半径。(RS3+RS4)/(RS3-RS4)可以是-8.5、-8、-7、-6.8、-6.6、-6.4、-6.2、-6、-5.5、-5或-4.5。通过满足关系式的上限,有利于减小周边视角的主光线入射角度,从而使感光元件边缘位置的像素单元能够更有效地接收光线,提升图像的解析度;通过满足关系式的下限,则有利于抑制镜头像散的产生。
在示例性实施方式中,光学镜头满足下列关系式:
4<RS7/(RS8+CT4)<8;其中,RS7表示第四透镜物侧面于光轴处的曲率半径,RS8表示第四透镜像侧面于光轴处的曲率半径,CT4表示第四透镜在光轴上的厚度。S7(RS8+CT4)可以是4.5、5、5.3、5.6、5.9、6.2、6.5、 6.8、7.1、7.4或7.7。在满足上述关系时,可以对第四透镜物侧面和像侧面于光轴处的曲率半径以及第四透镜在光轴上的厚度合理设置,从而能够在有效控制第四透镜弯曲程度的同时,抑制像差的发生,使镜头更容易广角化;而当RS7/(RS8+CT4)低于下限或高于上限时,容易降低第四透镜对第三透镜出射的光线的会聚能力,不利于抑制镜头像差,较难保证镜头的成像质量。
在示例性实施方式中,光学镜头满足下列关系式:0.5<f4/f<3;其中,f4表示第四透镜的有效焦距,f表示光学镜头的有效焦距。f4/f可以是1、1.3、1.5、1.6、1.7、1.8、1.9、2.0、2.2、2.5或2.8。通过满足关系式的上限可以确保第四透镜为镜头提供正屈折力,从而可以进一步使第三透镜出射的光线得以会聚,保证成像质量;通过满足关系式的下限,可以使得正屈折力不会变得过强,从而抑制高阶像差的发生,同时还可以降低后部分透镜组的敏感度,提高生产良率。
在示例性实施方式中,光学镜头满足下列关系式:-13<f56/f<-4;其中,f56表示第五透镜和第六透镜的组合焦距,f表示光学镜头的有效焦距。f56/f可以是-12.5、-12、-11.5、-11、-10.5、-10、-9.5、-9、-8、-7、-6、-5或-4.1。通过满足关系式的上限,可以使得第五透镜和第六透镜整体的负屈折力不会过强,进而使得第五透镜和第六透镜胶合面的屈折力不会过强,从而有利于抑制成像区域周边光束造成的高阶像差;通过满足关系式的下限,可以确保第五透镜和第六透镜整体具备一定的负屈折力,从而保证消色差效果,提升镜头的细节分辨能力。而当f56/f大于等于-4时,第五透镜和第六透镜整体的负屈折力过强,不利于抑制边缘视场的像差;而当f56/f小于等于-13时,第五透镜和第六透镜整体的负屈折力较小,容易减弱消色差效果,镜头的分辨性能不高。
在示例性实施方式中,光学镜头满足下列关系式:0<BFL/f<2;其中,BFL表示光学镜头的后焦距,f表示光学镜头的有效焦距。BFL/f可以是1.1、1.2、1.3、1.35、1.4、1.45、1.5、1.55、1.6、1.7、1.8或1.9。通过控制光学镜头的后焦距和光学镜头的有效焦距满足上述关系,有利于获得较大的光学后焦,从而使镜头具备远心效果,同时也有利于减小光学镜头的敏感度,并缩短镜头总长,实现镜头的小型化。
在示例性实施方式中,光学镜头满足下列关系式:Nd6-Nd5>0;其中,Nd6表示第六透镜的d光折射率,Nd5表示第五透镜的d光折射率。具体的,d光指波长为587.56nm的光线。Nd6-Nd5可以是0.03、0.1、0.13、0.16、0.2、0.23、0.25、0.27、0.29或0.3。通过控制第五透镜和第六透镜的d光折射率满足上述关系,有利于校正轴外色差,从而提高镜头的分辨率, 保证图像的清晰度。
在示例性实施方式中,光学镜头满足下列关系式:50度<(FOV×f)/ImgH<70度;其中,f表示光学镜头的有效焦距,FOV表示光学镜头对角线方向的视场角,ImgH表示光学镜头的成像面上有效像素区域的对角线长度。(FOV×f)/ImgH可以是55、60.2、60.9、61、61.5、62、62.5、63、63.5或64,单位为度。在满足上述关系时,既有利于保证镜头的大广角特性,同时还可以提高光学镜头的解像能力,提升成像品质。而当(FOV×f)/ImgH低于下限或高于上限时,较难在保证镜头广角化和提升解像能力之间取得平衡。
在示例性实施方式中,光学镜头满足下列关系式:2<TTL/f<6;其中,TTL表示第一透镜的物侧面至光学镜头的成像面在光轴上的距离,f表示光学镜头的有效焦距。TTL/f可以是3、4、4.5、4.8、4.85、4.9、4.95、5、5.4或5.8。在满足上述关系时,有利于对镜头总长和镜头的有效焦距合理配置,进而同时实现镜头的广角化和小型化;而当TTL/f低于下限时,容易使得焦距过长,不利于广角化,而当TTL/f高于上限时,容易使得镜头总长过长,不利于小型化。
在示例性实施方式中,第一透镜至第六透镜中,至少一个透镜的物侧面和/或像侧面为非球面。通过上述方式,可以提高透镜设计的灵活性,并有效地校正像差,提高光学镜头的成像质量。需要注意的是,光学镜头中各透镜的表面也可以是球面和非球面的任意组合,并不一定要是均为球面或均为非球面。
在示例性实施方式中,光学镜头中各透镜的材质可以均为玻璃或均为塑料,塑料材质的透镜能够减少光学镜头的重量并降低生产成本,而玻璃材质的透镜可使光学镜头具备较好的温度耐受特性以及优良的光学性能。进一步的,用于车载系统时,各透镜的材质优选为玻璃。需要注意的是,光学镜头中各透镜的材质也可以是玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
在示例性实施方式中,光学镜头还包括红外滤光片。红外滤光片设于第六透镜的像侧,用于过滤入射光线,具体用于隔绝红外光,防止红外光被感光元件吸收,从而避免红外光对正常影像的色彩与清晰度造成影响,提高光学镜头的成像品质。
在示例性实施方式中,光学镜头还包括保护玻璃。保护玻璃设于红外滤光片的像侧,起到保护感光元件的作用,同时也可避免感光元件沾染落尘,进一步保证成像品质。
本申请的上述实施方式的光学镜头可采用多片镜片,例如上文所述的 六片。通过合理分配各透镜焦距、屈折力、面型、厚度以及各透镜之间的轴上间距等,可以保证上述光学镜头的总长较小、重量较轻且具备较高的成像分辨率,同时还具备较大的光圈(FNO可以为2.0)以及较大的视场角,从而更好地满足如车载辅助系统的镜头、手机、平板等轻量化电子设备的应用需求。然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学镜头的透镜数量,来获得本说明书中描述的各个结果和优点。
下面参照附图进一步描述可适用于上述实施方式的光学镜头的具体实施例。
实施例1
以下参照图1至图2描述本申请实施例1的光学镜头100。
图1示出了实施例1的光学镜头100的结构示意图。如图1所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
其中,第五透镜L5的像侧面S10和第六透镜L6的物侧面S11胶合形成胶合透镜,从而使光学镜头100的整体结构更为紧凑,降低透镜在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
将第四透镜L4的物侧面S7和像侧面S8均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使光学镜头100具备小型化特性。
第一透镜L1至第六透镜L6的材质均为玻璃,使用玻璃材质的透镜可使光学镜头100具备较好的温度耐受特性以及优良的光学性能,从而进一步保证成像质量。
第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至光学镜头100的外界光线中的红外光线,避免成像色彩失真。具体的,滤光片110的材质为玻璃。
表1示出了实施例1的光学镜头100的透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的有效焦距,其中,曲率半径、厚度、透镜的有效焦距的单位均为毫米(mm)。另外,以第一透镜L1为例,第一透镜L1的“厚度”参数列中的第一个数值为该透镜在光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面在光轴上的距离;光阑ST0于“厚度”参数列中的数值为光阑ST0至后一透镜的物侧面顶点(顶点指透镜与光轴的交点)于光轴上的距离,我们默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴的正方向,当该值为负时,表明光阑ST0设置于图1中该透镜的物侧面顶点的右侧,若光阑STO厚度为正值时,光阑在该透镜物侧面顶点的左侧。
表1
Figure PCTCN2020079768-appb-000001
透镜中的非球面面型由以下公式限定:
Figure PCTCN2020079768-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表2给出了可用于实施例1中透镜非球面S7-S8的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
第一透镜L1的物侧面S1至光学镜头100的成像面S17在光轴上的距离TTL为17.1mm,光学镜头100的成像面S17上有效像素区域的对角线长度ImgH为6.61mm。结合表1和表2中的数据可知,实施例1中的光学镜头100满足:
R56=-2.48mm,其中,R56表示第五透镜L5和第六透镜L6的胶合面于光轴处的曲率半径;
f1/f=-1.456,其中,f1表示第一透镜L1的有效焦距,f表示光学镜头100的有效焦距;
RS1/CT1=37.8,其中,RS1表示第一透镜L1物侧面S1于光轴处的曲率半径,CT1表示第一透镜L1在光轴上的厚度;
f23/f=1.827,其中,f23表示第二透镜L2和第三透镜L3的组合焦距,f表示光学镜头100的有效焦距;
|RS2-RS3|/D12=2.852,其中,RS2表示第一透镜L1像侧面S2于光轴处的曲率半径,RS3表示第二透镜L2物侧面S3于光轴处的曲率半径,D12表示第一透镜L1像侧面S2至第二透镜L2物侧面S3在光轴上的距离;
(RS3+RS4)/(RS3-RS4)=-6.711,其中,RS3表示第二透镜L2物侧面S3于光轴处的曲率半径,RS4表示第二透镜L2像侧面S4于光轴处的曲率半径,CT4表示第四透镜L4在光轴上的厚度;
RS7/(RS8+CT4)=5.79,其中,RS7表示第四透镜L4物侧面S7于光轴处的曲率半径,RS8表示第四透镜L4像侧面S8于光轴处的曲率半径,CT4表示第四透镜L4在光轴上的厚度;
f4/f=1.684,其中,f4表示第四透镜L4的有效焦距,f表示光学镜头100的有效焦距;
f56/f=-5.141,其中,f56表示第五透镜L5和第六透镜L6的组合焦距,f表示光学镜头100的有效焦距;
BFL/f=1.348,其中,BFL表示光学镜头100的后焦距,f表示光学镜头100的有效焦距;
Nd6-Nd5=0.133,其中,Nd6表示第六透镜L6的d光折射率,Nd5表示 第五透镜L5的d光折射率;
(FOV×f)/ImgH=60.297,其中,f表示光学镜头100的有效焦距,FOV表示光学镜头100对角线方向的视场角,ImgH表示光学镜头100的成像面S17上有效像素区域的对角线长度;
TTL/f=4.985,其中,TTL表示第一透镜L1的物侧面S1至光学镜头100的成像面S17在光轴上的距离,f表示光学镜头100的有效焦距。
图2分别示出了实施例1的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学镜头100后不同像高情况下的畸变。根据图2可知,实施例1给出的光学镜头100能够实现良好的成像品质。
实施例2
以下参照图3至图4描述本申请实施例2的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了本申请实施例2的光学镜头100的结构示意图。
如图3所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
其中,第五透镜L5的像侧面S10和第六透镜L6的物侧面S11胶合形成胶合透镜,从而使光学镜头100的整体结构更为紧凑,降低透镜在组立 过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至光学镜头100的外界光线中的红外光线,避免成像色彩失真。
表3示出了实施例2的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表4示出了可用于实施例2中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表5示出了实施例2中给出的光学镜头100的相关参数数值。
表3
Figure PCTCN2020079768-appb-000003
表4
实施例2
非球面系数
面序号 S7 S8
K 0.00E+00 -4.10E-01
A4 -8.83E-03 -2.07E-03
A6 -9.82E-04 -4.57E-04
A8 -2.89E-05 9.69E-06
A10 -2.34E-05 -5.31E-06
A12 0.00E+00 0.00E+00
A14 0.00E+00 0.00E+00
A16 0.00E+00 0.00E+00
A18 0.00E+00 0.00E+00
A20 0.00E+00 0.00E+00
表5
Figure PCTCN2020079768-appb-000004
图4分别示出了实施例2的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学镜头100后不同像高情况下的畸变。根据图4可知,实施例2给出的光学镜头100能够实现良好的成像品质。
实施例3
以下参照图5至图6描述本申请实施例3的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图5示出了本申请实施例3的光学镜头100的结构示意图。
如图5所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中 物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
其中,第五透镜L5的像侧面S10和第六透镜L6的物侧面S11胶合形成胶合透镜,从而使光学镜头100的整体结构更为紧凑,降低透镜在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至光学镜头100的外界光线中的红外光线,避免成像色彩失真。
表6示出了实施例3的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表7示出了可用于实施例3中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表8示出了实施例3中给出的光学镜头100的相关参数数值。
表6
Figure PCTCN2020079768-appb-000005
Figure PCTCN2020079768-appb-000006
表7
Figure PCTCN2020079768-appb-000007
表8
Figure PCTCN2020079768-appb-000008
图6分别示出了实施例3的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的 光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学镜头100后不同像高情况下的畸变。根据图6可知,实施例3给出的光学镜头100能够实现良好的成像品质。
实施例4
以下参照图7至图8描述本申请实施例4的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图7示出了本申请实施例4的光学镜头100的结构示意图。
如图7所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
其中,第五透镜L5的像侧面S10和第六透镜L6的物侧面S11胶合形成胶合透镜,从而使光学镜头100的整体结构更为紧凑,降低透镜在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至光学镜头100的外界光线中的红外光线,避免成像色彩失真。
表9示出了实施例4的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表10示出了可用于实施例4中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表11示出了实施例4中给出的光学镜头100的相关参数数值。
表9
Figure PCTCN2020079768-appb-000009
表10
Figure PCTCN2020079768-appb-000010
表11
Figure PCTCN2020079768-appb-000011
图8分别示出了实施例4的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学镜头100后不同像高情况下的畸变。根据图8可知,实施例4给出的光学镜头100能够实现良好的成像品质。
实施例5
以下参照图9至图10描述本申请实施例5的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图9示出了本申请实施例5的光学镜头100的结构示意图。
如图9所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
其中,第五透镜L5的像侧面S10和第六透镜L6的物侧面S11胶合形成胶合透镜,从而使光学镜头100的整体结构更为紧凑,降低透镜在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至光学镜头100的外界光线中的红外光线,避免成像色彩失真。
表12示出了实施例5的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表13示出了可用于实施例5中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表14示出了实施例5中给出的光学镜头100的相关参数数值。
表12
Figure PCTCN2020079768-appb-000012
Figure PCTCN2020079768-appb-000013
表13
Figure PCTCN2020079768-appb-000014
表14
Figure PCTCN2020079768-appb-000015
图10分别示出了实施例5的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学镜头100后不同像高情况下的畸变。根据图10可知,实施例5给出的光学镜头100能够实现良好的成像品质。
实施例6
以下参照图11至图12描述本申请实施例6的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图11示出了本申请实施例6的光学镜头100的结构示意图。
如图11所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
其中,第五透镜L5的像侧面S10和第六透镜L6的物侧面S11胶合形成胶合透镜,从而使光学镜头100的整体结构更为紧凑,降低透镜在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至光学镜头100的外界光线中的红外光线,避免成像色彩失真。
表15示出了实施例6的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表16示出了可用于实施例6中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表17示出了实施例6中给出的光学镜头100的相关参数数值。
表15
Figure PCTCN2020079768-appb-000016
Figure PCTCN2020079768-appb-000017
表16
Figure PCTCN2020079768-appb-000018
表17
Figure PCTCN2020079768-appb-000019
Figure PCTCN2020079768-appb-000020
图12分别示出了实施例6的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学镜头100后不同像高情况下的畸变。根据图12可知,实施例6给出的光学镜头100能够实现良好的成像品质。
实施例7
以下参照图13至图14描述本申请实施例7的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图13示出了本申请实施例7的光学镜头100的结构示意图。
如图13所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1为平面,像侧面S2为球面,其中,像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
其中,第五透镜L5的像侧面S10和第六透镜L6的物侧面S11胶合形成胶合透镜,从而使光学镜头100的整体结构更为紧凑,降低透镜在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14 的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至光学镜头100的外界光线中的红外光线,避免成像色彩失真。
表18示出了实施例7的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表19示出了可用于实施例7中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表20示出了实施例7中给出的光学镜头100的相关参数数值。
表18
Figure PCTCN2020079768-appb-000021
表19
Figure PCTCN2020079768-appb-000022
Figure PCTCN2020079768-appb-000023
表20
Figure PCTCN2020079768-appb-000024
图14分别示出了实施例7的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学镜头100后不同像高情况下的畸变。根据图14可知,实施例7给出的光学镜头100能够实现良好的成像品质。
实施例8
以下参照图15至图16描述本申请实施例8的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图15示出了本申请实施例8的光学镜头100的结构示意图。
如图15所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1为平面,像侧面S2为球面,其中,像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
其中,第五透镜L5的像侧面S10和第六透镜L6的物侧面S11胶合形成胶合透镜,从而使光学镜头100的整体结构更为紧凑,降低透镜在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至光学镜头100的外界光线中的红外光线,避免成像色彩失真。
表21示出了实施例8的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表22示出了可用于实施例8中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表23示出了实施例8中给出的光学镜头100的相关参数数值。
表21
Figure PCTCN2020079768-appb-000025
Figure PCTCN2020079768-appb-000026
表22
Figure PCTCN2020079768-appb-000027
表23
Figure PCTCN2020079768-appb-000028
图16分别示出了实施例8的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学镜头100后不同像高情况下的畸变。根据图16可知,实施例8给出的光学镜头100能够实现良好的成像品质。
实施例9
以下参照图17至图18描述本申请实施例9的光学镜头100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图17示出了本申请实施例9的光学镜头100的结构示意图。
如图17所示,光学镜头100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6和成像面S17。
第一透镜L1具有负屈折力,其物侧面S1为平面,像侧面S2为球面,其中,像侧面S2为凹面。
第二透镜L2具有负屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凹面,像侧面S4为凸面。
第三透镜L3具有正屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凸面,像侧面S6为凸面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为非球面,其中物侧面S7近光轴处为凹面,像侧面S8近光轴处为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凹面,像侧面S10为凸面。
第六透镜L6具有负屈折力,其物侧面S11和像侧面S12均为球面,其中物侧面S11为凹面,像侧面S12为凸面。
其中,第五透镜L5的像侧面S10和第六透镜L6的物侧面S11胶合形成胶合透镜,从而使光学镜头100的整体结构更为紧凑,降低透镜在组立过程中产生的倾斜或偏心等公差敏感度问题,提升镜头的组装良率。
第四透镜L4的物侧面S7和像侧面S8均设置为非球面。第一透镜L1至第六透镜L6的材质均为玻璃。第三透镜L3和第四透镜L4之间还设置有光阑STO,以限制入射光束的大小,进一步提升光学镜头100的成像质量。光学镜头100还包括设于第六透镜L6像侧且具有物侧面S13和像侧面S14的滤光片110以及设于滤光片110像侧且具有物侧面S15和像侧面S16的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S16并最终成像在成像面S17上。进一步的,滤光片110为红外滤光片,用以滤除入射至光学镜头100的外界光线中的红外光线,避免成像色彩失真。
表24示出了实施例9的光学镜头100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm)。表25示出了可用于实施例9中透镜非球面S7-S8的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表26示出了实施例9中给出的光学镜 头100的相关参数数值。
表24
Figure PCTCN2020079768-appb-000029
表25
Figure PCTCN2020079768-appb-000030
表26
Figure PCTCN2020079768-appb-000031
Figure PCTCN2020079768-appb-000032
图18分别示出了实施例9的光学镜头100的纵向球差曲线图、像散曲线图以及畸变曲线图,光学镜头100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为479.99nm、546.07nm、587.56nm以及656.27nm的光线经由光学镜头100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由光学镜头100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由光学镜头100后不同像高情况下的畸变。根据图18可知,实施例9给出的光学镜头100能够实现良好的成像品质。
如图19所示,本申请还提供一种成像模组200,包括如前文所述的光学镜头100;以及感光元件210,感光元件210设于光学镜头100的像侧,感光元件210的感光表面与成像面S17重合。具体的,感光元件210可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)图像传感器或者电荷耦合元件(CCD,Charge-coupled Device)图像传感器。
上述成像模组200利用前述的光学镜头100能够拍摄得到景深范围大、像素高、视角广的图像,同时成像模组200还具有小型化、轻量化的结构特点。成像模组200可应用于手机、汽车、监控、医疗等领域。具体可作为手机摄像头、车载摄像头、监控摄像头或内窥镜等。
如图20所示,上述成像模组200可作为车载摄像头应用于驾驶装置300中。驾驶装置300可以为自动驾驶汽车或非自动驾驶汽车。成像模组200可作为驾驶装置300的前视摄像头、后视摄像头或侧视摄像头。具体的,驾驶装置300包括车体310,成像模组200安装于车体的310的左后视镜、右后视镜、后尾箱、前大灯、后大灯等任意位置,以获取车体310周围的清晰的环境图像。此外,驾驶装置300中还设置有显示屏320,显示屏320安装于车体310内,且成像模组200与显示屏320通信连接,成像模组200所获得的影像信息能够传输至显示屏320中显示,从而使司机能够获得更完整的周边影像信息,提高驾驶时的安全保障。
特别地,在一些实施例中,成像模组200可应用于自动驾驶汽车上。继续参考图20,成像模组200安装于自动驾驶汽车车体上的任意位置,具体可参考上述实施例驾驶装置300中成像模组200的安装位置。对于自动驾驶汽车而言,成像模组200还可安装于车体的顶部。此时,通过在自动 驾驶汽车上安装多个成像模组200以获得车体310周围360°视角的环境信息,成像模组200获得的环境信息将被传递至自动驾驶汽车的分析处理单元以对车体310周围的道路状况进行实时分析。通过采用成像模组200,可提高分析处理单元识别分析的准确性,从而提升自动驾驶时的安全性能。
如图21所示,本申请还提供一种电子装置400,包括壳体410以及如前文所述的成像模组200,成像模组200安装在壳体410上。具体的,成像模组200设置在壳体410内并从壳体410暴露以获取图像,壳体410可以给成像模组200提供防尘、防水防摔等保护,壳体410上开设有与成像模组200对应的孔,以使光线从孔中穿入或穿出壳体。
上述电子装置400,利用前述的成像模组200能够拍摄得到视角广、像素高、景深范围大的图像。在另一些实施方式中,上述电子装置400还设置有对应的处理系统,电子装置400在拍摄物体图像后可及时地将图像传送至对应的处理系统,以便系统做出准确的分析和判断。
另一些实施方式中,所使用到的“电子装置”还可包括,但不限于被设置成经由有线线路连接和/或经由无线接口接收或发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种光学镜头,其特征在于,所述光学镜头沿着光轴由物侧至像侧依序包括:
    具有负屈折力的第一透镜;
    具有负屈折力的第二透镜,所述第二透镜的物侧面为凹面;
    具有正屈折力的第三透镜,所述第三透镜的物侧面为凸面,像侧面为凸面;
    具有正屈折力的第四透镜;
    具有正屈折力的第五透镜;
    具有负屈折力的第六透镜;以及,
    光阑,所述光阑设于所述光学镜头的物侧或所述第一透镜和所述第六透镜之间。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述第五透镜和所述第六透镜胶合,且所述光学镜头满足下列关系式:
    R56<0;
    其中,R56表示所述第五透镜和所述第六透镜的胶合面于光轴处的曲率半径,单位为mm。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    -2<f1/f<-0.5;
    其中,f1表示所述第一透镜的有效焦距,f表示所述光学镜头的有效焦距。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    RS1/CT1>30;
    其中,RS1表示所述第一透镜物侧面于光轴处的曲率半径,CT1表示所述第一透镜在光轴上的厚度。
  5. 根据权利要求4所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    RS1/CT1≥70。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    0.5<f23/f<3;
    其中,f23表示所述第二透镜和所述第三透镜的组合焦距,f表示所述光学镜头的有效焦距。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    1<|RS2-RS3|/D12<4;
    其中,RS2表示所述第一透镜像侧面于光轴处的曲率半径,RS3表示所述第二透镜物侧面于光轴处的曲率半径,D12表示所述第一透镜像侧面至所述第二透镜物侧面在光轴上的距离。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    -9<(RS3+RS4)/(RS3-RS4)<-4;
    其中,RS3表示所述第二透镜物侧面于光轴处的曲率半径,RS4表示所述第二透镜像侧面于光轴处的曲率半径。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    4<RS7/(RS8+CT4)<8;
    其中,RS7表示所述第四透镜物侧面于光轴处的曲率半径,RS8表示所述第四透镜像侧面于光轴处的曲率半径,CT4表示所述第四透镜在光轴上的厚度。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    0.5<f4/f<3;
    其中,f4表示所述第四透镜的有效焦距,f表示所述光学镜头的有效焦距。
  11. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    -13<f56/f<-4;
    其中,f56表示所述第五透镜和所述第六透镜的组合焦距,f表示所述光学镜头的有效焦距。
  12. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    0<BFL/f<2;
    其中,BFL表示所述光学镜头的后焦距,f表示所述光学镜头的有效焦距。
  13. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    Nd6-Nd5>0;
    其中,Nd6表示所述第六透镜的d光折射率,Nd5表示所述第五透镜的d光折射率。
  14. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    50度<(FOV×f)/ImgH<70度;
    其中,f表示所述光学镜头的有效焦距,FOV表示所述光学镜头对角线方向的视场角,ImgH表示所述光学镜头的成像面上有效像素区域的对角线长度。
  15. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足下列关系式:
    2<TTL/f<6;
    其中,TTL表示所述第一透镜的物侧面至所述光学镜头的成像面在光轴上的距离,f表示所述光学镜头的有效焦距。
  16. 一种成像模组,其特征在于,包括如权利要求1-15任一项所述的光学镜头以及感光元件,所述感光元件设于所述光学镜头的像侧。
  17. 一种电子装置,其特征在于,包括壳体以及如权利要求16所述的成像模组,所述成像模组安装在所述壳体上。
  18. 一种驾驶装置,其特征在于,包括车体以及如权利要求16所述的成像模组,所述成像模组设于所述车体以获取所述车体周围的环境信息。
PCT/CN2020/079768 2020-03-17 2020-03-17 光学镜头、成像模组、电子装置及驾驶装置 WO2021184212A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079768 WO2021184212A1 (zh) 2020-03-17 2020-03-17 光学镜头、成像模组、电子装置及驾驶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079768 WO2021184212A1 (zh) 2020-03-17 2020-03-17 光学镜头、成像模组、电子装置及驾驶装置

Publications (1)

Publication Number Publication Date
WO2021184212A1 true WO2021184212A1 (zh) 2021-09-23

Family

ID=77767963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079768 WO2021184212A1 (zh) 2020-03-17 2020-03-17 光学镜头、成像模组、电子装置及驾驶装置

Country Status (1)

Country Link
WO (1) WO2021184212A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220066143A1 (en) * 2020-08-25 2022-03-03 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950066A (zh) * 2010-09-17 2011-01-19 浙江舜宇光学有限公司 一种近红外广角镜头
CN201837770U (zh) * 2010-09-17 2011-05-18 浙江舜宇光学有限公司 一种近红外广角镜头
CN102323657A (zh) * 2011-10-12 2012-01-18 舜宇光学(中山)有限公司 监视镜头
CN202433590U (zh) * 2011-10-12 2012-09-12 舜宇光学(中山)有限公司 一种日、夜两用型高分辨率监视镜头
CN105892037A (zh) * 2015-02-17 2016-08-24 富士胶片株式会社 内窥镜用物镜以及内窥镜
CN106814435A (zh) * 2015-11-27 2017-06-09 大立光电股份有限公司 摄像用光学镜片组、取像装置及电子装置
CN107203030A (zh) * 2016-03-17 2017-09-26 先进光电科技股份有限公司 光学成像系统
KR20170115221A (ko) * 2016-04-06 2017-10-17 주식회사 세코닉스 소형 광각 렌즈 시스템
CN108333712A (zh) * 2017-01-19 2018-07-27 大立光电股份有限公司 光学影像系统组、取像装置及电子装置
CN110308539A (zh) * 2018-03-27 2019-10-08 先进光电科技股份有限公司 光学成像系统
CN110308538A (zh) * 2018-03-27 2019-10-08 先进光电科技股份有限公司 光学成像系统
CN111103672A (zh) * 2018-10-25 2020-05-05 宁波舜宇车载光学技术有限公司 光学镜头
CN111258031A (zh) * 2020-03-17 2020-06-09 天津欧菲光电有限公司 光学镜头、成像模组、电子装置及驾驶装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950066A (zh) * 2010-09-17 2011-01-19 浙江舜宇光学有限公司 一种近红外广角镜头
CN201837770U (zh) * 2010-09-17 2011-05-18 浙江舜宇光学有限公司 一种近红外广角镜头
CN102323657A (zh) * 2011-10-12 2012-01-18 舜宇光学(中山)有限公司 监视镜头
CN202433590U (zh) * 2011-10-12 2012-09-12 舜宇光学(中山)有限公司 一种日、夜两用型高分辨率监视镜头
CN105892037A (zh) * 2015-02-17 2016-08-24 富士胶片株式会社 内窥镜用物镜以及内窥镜
CN106814435A (zh) * 2015-11-27 2017-06-09 大立光电股份有限公司 摄像用光学镜片组、取像装置及电子装置
CN107203030A (zh) * 2016-03-17 2017-09-26 先进光电科技股份有限公司 光学成像系统
KR20170115221A (ko) * 2016-04-06 2017-10-17 주식회사 세코닉스 소형 광각 렌즈 시스템
CN108333712A (zh) * 2017-01-19 2018-07-27 大立光电股份有限公司 光学影像系统组、取像装置及电子装置
CN110308539A (zh) * 2018-03-27 2019-10-08 先进光电科技股份有限公司 光学成像系统
CN110308538A (zh) * 2018-03-27 2019-10-08 先进光电科技股份有限公司 光学成像系统
CN111103672A (zh) * 2018-10-25 2020-05-05 宁波舜宇车载光学技术有限公司 光学镜头
CN111258031A (zh) * 2020-03-17 2020-06-09 天津欧菲光电有限公司 光学镜头、成像模组、电子装置及驾驶装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220066143A1 (en) * 2020-08-25 2022-03-03 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
US11719916B2 (en) * 2020-08-25 2023-08-08 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens

Similar Documents

Publication Publication Date Title
WO2022032573A1 (zh) 光学系统、摄像模组、电子设备及汽车
WO2022016316A1 (zh) 光学镜头、取像模组、电子装置及驾驶装置
CN111258035A (zh) 光学成像系统、成像模组、电子装置及驾驶装置
CN112882204A (zh) 光学系统、摄像模组、摄像设备及汽车
CN111258030A (zh) 光学系统、摄像模组、电子装置及汽车
WO2021217618A1 (zh) 光学系统、摄像模组、电子设备及汽车
CN112505883A (zh) 光学系统、取像模组、电子装置及驾驶装置
WO2021184214A1 (zh) 广角镜头、成像模组、电子装置及驾驶装置
WO2021223137A1 (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
WO2021189463A1 (zh) 光学成像系统、成像模组、电子装置及驾驶装置
WO2022082512A1 (zh) 光学成像系统、取像模组及电子装置
CN211698392U (zh) 光学成像系统、成像模组、电子装置及驾驶装置
WO2021164013A1 (zh) 光学系统、摄像模组、电子装置及汽车
WO2021184212A1 (zh) 光学镜头、成像模组、电子装置及驾驶装置
CN111258031A (zh) 光学镜头、成像模组、电子装置及驾驶装置
CN211478743U (zh) 成像镜头、取像装置、电子装置及驾驶装置
CN211698386U (zh) 光学系统、摄像模组、电子装置及汽车
WO2021022500A1 (zh) 光学系统、摄像模组及汽车
CN111239967A (zh) 光学系统、摄像模组、电子装置及汽车
WO2021184208A1 (zh) 摄像镜头、取像装置、电子装置及驾驶装置
CN212364696U (zh) 光学镜头、取像模组、电子装置及驾驶装置
CN212873044U (zh) 光学成像系统、取像模组、电子装置及汽车
CN211698381U (zh) 光学系统、摄像模组、电子装置及汽车
CN212341570U (zh) 成像镜头、取像模组、电子装置及驾驶装置
WO2021189457A1 (zh) 透镜系统、取像模组、电子装置及驾驶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20926115

Country of ref document: EP

Kind code of ref document: A1