WO2021189457A1 - 透镜系统、取像模组、电子装置及驾驶装置 - Google Patents

透镜系统、取像模组、电子装置及驾驶装置 Download PDF

Info

Publication number
WO2021189457A1
WO2021189457A1 PCT/CN2020/081803 CN2020081803W WO2021189457A1 WO 2021189457 A1 WO2021189457 A1 WO 2021189457A1 CN 2020081803 W CN2020081803 W CN 2020081803W WO 2021189457 A1 WO2021189457 A1 WO 2021189457A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens system
image side
object side
optical axis
Prior art date
Application number
PCT/CN2020/081803
Other languages
English (en)
French (fr)
Inventor
蔡雄宇
兰宾利
周芮
赵迪
Original Assignee
天津欧菲光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津欧菲光电有限公司 filed Critical 天津欧菲光电有限公司
Priority to PCT/CN2020/081803 priority Critical patent/WO2021189457A1/zh
Publication of WO2021189457A1 publication Critical patent/WO2021189457A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -

Definitions

  • This application relates to the field of optical imaging technology, in particular to a lens system, an imaging module, an electronic device, and a driving device.
  • the front-view or side-view camera device can be used as the camera system in the advanced driver assistance system to analyze the video content to realize lane departure warning (LDW), automatic lane keeping assist (LKA), high beam/low beam control and traffic Logo recognition (TSR).
  • LDW lane departure warning
  • LKA automatic lane keeping assist
  • TSR traffic Logo recognition
  • the driver when parking, control the front-view or side-view camera device to turn on, the driver can intuitively see the obstacles in front of the car, thereby facilitating the parking operation; and when the car passes through special places (such as roadblocks, parking lots, etc.), the front
  • the side-view or side-view camera device can also be automatically turned on to obtain information about the environment around the vehicle and feed it back to the central system of the car to make correct instructions to avoid driving accidents.
  • the traditional front-view or side-view lens has a low resolution and a small depth of field, which cannot provide a clear image for the driving assistance system so that the driving assistance system can accurately judge the environment information around the vehicle in real time and make timely warnings. Or avoid, there is a certain driving risk.
  • a lens system is provided.
  • a lens system which includes in order from the object side to the image side along the optical axis:
  • a first lens with negative refractive power, the image side surface of the first lens is concave;
  • a third lens with negative refractive power the object side of the third lens is concave, and the image side is concave;
  • a fourth lens with positive refractive power, the image side surface of the fourth lens is convex
  • a fifth lens with positive refractive power is provided.
  • An aperture the aperture being arranged on the object side of the lens system or between the first lens and the fifth lens;
  • the lens system satisfies the following relationship:
  • f12 represents the combined focal length of the first lens and the second lens
  • f represents the effective focal length of the lens system
  • An image capturing module includes the lens system described in the above embodiment and a photosensitive element, and the photosensitive element is arranged on the image side of the lens system.
  • An electronic device includes a housing and the imaging module described in the above embodiments, and the imaging module is installed on the housing.
  • a driving device includes a vehicle body and the image capturing module described in the above-mentioned embodiments, and the image capturing module is provided on the vehicle body to obtain environmental information around the vehicle body.
  • FIG. 1 shows a schematic diagram of the structure of the lens system of Embodiment 1 of the present application
  • Fig. 2 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the lens system of Example 1 respectively;
  • FIG. 3 shows a schematic diagram of the structure of the lens system of Embodiment 2 of the present application
  • FIG. 5 shows a schematic structural diagram of a lens system according to Embodiment 3 of the present application.
  • Fig. 6 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the lens system of Example 3 respectively;
  • FIG. 7 shows a schematic structural diagram of a lens system according to Embodiment 4 of the present application.
  • FIG. 8 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the lens system of Embodiment 4 respectively;
  • FIG. 9 shows a schematic structural diagram of a lens system according to Embodiment 5 of the present application.
  • Fig. 10 shows the longitudinal spherical aberration curve, the astigmatism curve and the distortion curve of the lens system of Example 5 respectively;
  • FIG. 11 shows a schematic structural diagram of a lens system according to Embodiment 6 of the present application.
  • FIG. 12 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the lens system of Example 6 respectively;
  • FIG. 13 shows a schematic structural diagram of a lens system according to Embodiment 7 of the present application.
  • Fig. 14 shows the longitudinal spherical aberration curve, the astigmatism curve and the distortion curve of the lens system of Example 7 respectively;
  • FIG. 15 shows a schematic structural diagram of a lens system according to Embodiment 8 of the present application.
  • FIG. 17 shows a schematic structural diagram of a lens system according to Embodiment 9 of the present application.
  • FIG. 18 shows a longitudinal spherical aberration graph, an astigmatism graph, and a distortion graph of the lens system of Example 9;
  • FIG. 19 shows a schematic diagram of an image capturing module according to an embodiment of the present application.
  • FIG. 20 shows a schematic diagram of a driving device applying an image capturing module according to an embodiment of the present application
  • FIG. 21 shows a schematic diagram of an electronic device applying an image capturing module according to an embodiment of the present application.
  • first lens discussed below may also be referred to as a second lens or a third lens.
  • shape of the spherical or aspherical surface shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspheric surface is not limited to the shape of the spherical surface or the aspheric surface shown in the drawings.
  • the drawings are only examples and are not drawn strictly to scale.
  • the space on the side of the object relative to the optical element is called the object side of the optical element.
  • the space on the side of the object relative to the optical element is called the image of the optical element. side.
  • the surface of each lens closest to the object is called the object side, and the surface of each lens closest to the imaging surface is called the image side. And define the positive direction of the distance from the object side to the image side.
  • the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least near the optical axis; if the lens surface is concave and the position of the concave surface is not defined, it means The lens surface is concave at least near the optical axis.
  • the near optical axis here refers to the area near the optical axis.
  • the lens system includes five lenses with refractive power, namely, a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • the five lenses are arranged in order from the object side to the image side along the optical axis, and the imaging surface of the lens system is located on the image side of the fifth lens.
  • the first lens has a negative refractive power, which is conducive to allowing large-angle light to enter the lens system, and through the refraction of other lenses in the lens system, the light is condensed to the imaging surface of the lens, and the imaging quality is improved.
  • the image side surface is set as a concave surface, which is beneficial to correct aberrations and improve imaging quality.
  • the second lens has positive refractive power, and can be used with the first lens with negative refractive power to correct system aberrations, reduce system sensitivity, and achieve miniaturization characteristics.
  • the third lens has negative refractive power, which can effectively eliminate the chromatic aberration of the system and obtain high resolution performance.
  • the object side and image side of the third lens are set to be concave, which is beneficial to correct system aberrations and reduce the assembly sensitivity of the lens It can improve production yield and reduce production cost.
  • the fourth lens has a positive refractive power, which is conducive to further converging the light deflected by the third lens, ensuring the imaging quality, and making the system compact and miniaturized.
  • the fifth lens has a positive refractive power, which is beneficial to reduce the angle of the chief ray incident on the imaging surface of the system, improve the photosensitive performance of the photosensitive element, and improve the resolution; at the same time, it is also beneficial to correct the image produced by the front lens of the system. Poor, guarantee the image quality.
  • the lens system is also provided with a diaphragm, which is arranged on the object side of the lens system or between the first lens and the fifth lens to better control the size of the incident light beam and improve the imaging quality of the lens system.
  • the diaphragm is arranged between the second lens and the third lens.
  • the diaphragm includes an aperture diaphragm and a field diaphragm.
  • the diaphragm is an aperture diaphragm.
  • the aperture stop can be located on the surface of the lens (for example, the object side and the image side) and form an functional relationship with the lens, for example, by coating a light-blocking coating on the surface of the lens to form an aperture stop on the surface; or by clamping
  • the holder fixedly clamps the surface of the lens, and the holder structure on the surface can limit the width of the imaging beam of the object point on the axis, thereby forming an aperture stop on the surface.
  • the lens system also satisfies the following relationship: 0.5 ⁇ f12/f ⁇ 2.5; where f12 represents the combined focal length of the first lens and the second lens, and f represents the effective focal length of the lens system.
  • f12/f can be 0.6, 0.8, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 2 or 2.3.
  • the incident light is conducive to focusing, so that the image information collected by the lens system can be effectively transmitted to the imaging surface.
  • the overall refractive power provided by the first lens and the second lens for the system is insufficient, and it is difficult for large-angle light to enter the lens system, which is not conducive to expanding the field of view of the system; and when f12/ When f is less than or equal to 0.5, the overall refractive power provided by the first lens and the second lens is too strong, which easily leads to an excessively large turning angle of the light, resulting in strong astigmatism and chromatic aberration, which is not conducive to improving the resolution of the system.
  • the light emitted or reflected by the subject enters the lens system from the object side, and passes through the first lens, the second lens, the third lens, the fourth lens, and the fifth lens in sequence, and finally Converge on the imaging surface.
  • the above-mentioned lens system by selecting an appropriate number of lenses and reasonably distributing the refractive power, surface shape and effective focal length of each lens, can enhance the imaging resolution capability of the lens and effectively correct aberrations, so that it can more accurately capture the details of the scene , Improve image clarity; at the same time, by rationally configuring the combined focal length of the first lens and the second lens, chromatic aberration can be effectively eliminated, and the occurrence of high-order aberrations in the imaging edge area can be suppressed, and the imaging resolution capability of the system can be improved.
  • the object side surface and/or the image side surface of at least one lens are aspherical.
  • the surface of each lens in the lens system can also be any combination of spherical and aspherical surfaces, and not necessarily all spherical surfaces or all aspherical surfaces.
  • an infrared filter is provided between the fifth lens and the imaging surface of the lens system; or the object side or image side of one of the first lens to the fifth lens is coated with an infrared filter film.
  • infrared filter or coating infrared filter film By setting infrared filter or coating infrared filter film, it is used to filter incident light to isolate infrared light and prevent infrared light from being absorbed by photosensitive elements, so as to avoid false colors or ripples caused by the interference of light in non-operating bands.
  • the imaging color is distorted, and the imaging quality of the lens system is improved.
  • the lens system satisfies the following relationship: -2 ⁇ f3/f ⁇ -0.5; where f represents the effective focal length of the lens system, and f3 represents the effective focal length of the third lens.
  • f3/f can be -1.5, -1.4, -1.3, -1.2, -1.1, -1, -0.9, -0.8, -0.7, -0.6, or -0.5.
  • the refractive power of the third lens can be controlled within a reasonable range, which can effectively suppress the reduction of the achromatic effect, and suppress the occurrence of high-order aberrations in the imaging edge area, so that the system has a relatively high High imaging resolution performance.
  • the negative refractive power of the third lens is too strong, which easily makes the incident angle of light on the object side and image side of the third lens too large, resulting in high-order aberrations in the imaging edge area;
  • f3/f is less than or equal to -2, the negative refractive power of the third lens is small and the achromatic effect is not obvious, and it is difficult to ensure the sharpness of the image.
  • the lens system satisfies the following relationship: 2 ⁇ f4/CT4 ⁇ 5; where f4 represents the effective focal length of the fourth lens, and CT4 represents the thickness of the fourth lens on the optical axis.
  • f4/CT4 can be 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2, 4.4, 4.6, or 4.8.
  • the effective focal length of the fourth lens and the center thickness of the fourth lens can be configured reasonably, which is beneficial to reduce the tolerance sensitivity of the system, reduce the difficulty of lens processing, and improve the assembly yield of the lens group. , Further reduce production costs.
  • f4/CT4 is greater than or equal to 5
  • the lens system is too sensitive to the center thickness of the fourth lens, and the processing of the fourth lens is difficult to meet the required tolerance requirements, which easily reduces the assembly yield of the lens group, resulting in production costs Increase; and when f4/CT4 is less than or equal to 2, under the premise of satisfying the optical performance of the system, the center thickness of the fourth lens is too large, and due to the high density of the glass lens, the weight of the lens system will also increase. It is not conducive to meeting the system's lightweight design requirements.
  • the lens system satisfies the following relationship: 1 ⁇ f5/f ⁇ 4; where f represents the effective focal length of the lens system, and f5 represents the effective focal length of the fifth lens.
  • f5/f can be 1.5, 1.8, 2.1, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.4, or 3.7.
  • sufficient refractive power can be configured at the end of the system, which is beneficial to reduce the angle of the chief ray incident on the imaging surface of the lens system, improve the photosensitive performance of the photosensitive element, and improve the resolution; at the same time, there are also It is helpful to correct the aberrations caused by the light deflected by the front lens of the system to ensure the image quality.
  • f5/f is less than or equal to 1
  • the lens system satisfies the following relationship: -3.5 ⁇ f1/RS2 ⁇ 0; where f1 represents the effective focal length of the first lens, and RS2 represents the radius of curvature of the image side surface of the first lens at the optical axis.
  • f1/RS2 can be -3, -2.5, -2.4, -2.3, -2.2, -2, -1.8, -1.6, -1.4, -1.2, or -1.
  • the first lens provides negative refractive power for the system, which is beneficial to fully diverging the light to the object side of the second lens, ensuring the integrity of imaging; at the same time, it is also beneficial to control the first lens The degree of curvature to correct aberrations and further reduce the rate of ghosting.
  • f1/RS2 is greater than or equal to 0, the first lens cannot provide negative refractive power, which is not conducive to the wide-angle of the system, and is not conducive to light imaging; and when f1/RS2 is less than or equal to -3.5, it is easy to cause the image of the first lens. Curving the side is not conducive to correcting aberrations and avoiding ghost images.
  • the lens system satisfies the following relationship: 0 ⁇ (D12+D23)/f ⁇ 3; where D12 represents the distance from the image side surface of the first lens to the object side surface of the second lens on the optical axis, D23 represents the distance from the image side of the second lens to the object side of the third lens on the optical axis, and f represents the effective focal length of the lens system.
  • (D12+D23)/f can be 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 2 or 2.5.
  • the air space between the first lens and the second lens and the air space between the second lens and the third lens can be reasonably configured, so as to avoid excessively long focal length, which is conducive to the compact structure of the system
  • the setting meets the characteristics of miniaturization; at the same time, it is also conducive to improving the imaging quality of the system.
  • the lens system satisfies the following relationship:
  • the first lens provides negative refractive power for the system
  • the second lens provides positive refractive power for the system, so that the lens thickness can be controlled by the combination of positive and negative lenses, so that the lens system has low sensitivity and The feature of miniaturization; in addition, the object side and the image side of the second lens can be set as aspherical surfaces to correct aberrations and improve the resolution capability of the system.
  • the lens system satisfies the following relationship: 18 ⁇
  • /CT3 can be 18.1, 18.6, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 27.5. Under the condition of satisfying the above relationship, the curvature radius of the object side and the image side of the third lens can be reasonably configured.
  • the radius of curvature is infinite, the object side of the third lens
  • the side surface or the image side surface is flat, which can reduce the processing difficulty of the lens while correcting aberrations, thereby reducing the assembly sensitivity of the lens, improving the production yield, and reducing the production cost; in addition, it is also conducive to controlling the third lens
  • the thickness of the center is within a reasonable range, so that while ensuring the high-pixel imaging quality of the system, the system structure is more compact and meets the needs of miniaturization.
  • the lens system satisfies the following relationship: Vd5-Vd3>30; where Vd3 represents the d-light Abbe number of the third lens, and Vd5 represents the d-light Abbe number of the fifth lens.
  • Vd5-Vd3 can be 30.5, 30.7, 40, 45, 47, 49, or 50.
  • the lens system satisfies the following relationship: 0 ⁇ BFL/TTL ⁇ 1; where BFL represents the optical back focus of the lens system, and TTL represents the distance from the first lens to the imaging surface of the lens system on the optical axis .
  • BFL/TTL can be 0.1, 0.2, 0.25, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.4, 0.6, or 0.8.
  • the material of each lens in the lens system may be glass or plastic.
  • the plastic lens can reduce the weight and production cost of the lens system, while the glass lens can make the lens system better.
  • the material of each lens is preferably glass. It should be noted that the material of each lens in the lens system can also be any combination of glass and plastic, and not necessarily all glass or plastic.
  • the lens system further includes a protective glass.
  • the protective glass is arranged on the image side of the fifth lens or the image side of the infrared filter to protect the photosensitive element, and at the same time, it can prevent the photosensitive element from being contaminated with dust and further ensure the image quality.
  • the lens system of the above-mentioned embodiment of the present application may use multiple lenses, for example, the above-mentioned five lenses.
  • By reasonably distributing the focal length, refractive power, surface shape, thickness of each lens, and the on-axis distance between each lens it can ensure that the total length of the above-mentioned lens system is small, the weight is lighter, and the imaging resolution is high, and it also has A larger aperture (FNO can be 2.3) and a larger field of view, so as to better meet the application needs of lightweight electronic devices such as lenses for vehicle-mounted auxiliary systems, mobile phones, and tablets.
  • FNO can be 2.3
  • a larger field of view so as to better meet the application needs of lightweight electronic devices such as lenses for vehicle-mounted auxiliary systems, mobile phones, and tablets.
  • the number of lenses constituting the lens system can be changed to obtain the various results and advantages described in this specification.
  • FIG. 1 shows a schematic diagram of the structure of the lens system 100 of Embodiment 1.
  • the lens system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a negative refractive power
  • the object side surface S1 is a flat surface
  • the image side surface S2 is a spherical surface
  • the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 and the image side surface S4 are both aspherical, wherein the object side surface S3 is a convex surface near the optical axis, and the image side surface S4 is a convex surface near the optical axis.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the object side surface S3 and the image side surface S4 of the second lens L2 as aspherical surfaces is beneficial to correct aberrations and solve the problem of image surface distortion. It can also make the lens smaller, thinner, and flatter.
  • the optical imaging effect of the lens system 100 has the characteristics of miniaturization.
  • the materials of the first lens L1 to the fifth lens L5 are all glass, and the use of glass lenses can enable the lens system 100 to have better temperature tolerance characteristics and excellent optical performance, thereby further ensuring the imaging quality.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to limit the size of the incident light beam and further improve the imaging quality of the lens system 100.
  • the lens system 100 further includes a protective glass 120 provided on the image side of the fifth lens L5 and having an object side surface S11 and an image side surface S12. The light from the object OBJ sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the image side surface S10 of the fifth lens L5 is plated with an infrared filter film to filter out infrared light in the external light incident to the lens system 100, and to avoid false colors or ripples caused by the interference of light in the non-operating band. This phenomenon prevents image color distortion.
  • Table 1 shows the lens surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient), and effective focal length of the lens of the lens system 100 of Example 1, where the radius of curvature, thickness, lens The effective focal length is in millimeters (mm).
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the direction from the image side to the image side of the lens.
  • the value of the stop ST0 in the "thickness" parameter column is from the stop ST0 to the apex of the object side of the latter lens (the apex refers to the intersection of the lens and the optical axis) in the light
  • the distance on the axis we assume that the direction from the object side of the first lens L1 to the image side of the last lens is the positive direction of the optical axis.
  • the value is negative, it means that the stop ST0 is set on the object side of the lens in Figure 1 On the right side of the vertex, if the thickness of the diaphragm STO is positive, the diaphragm is on the left side of the vertex on the object side of the lens.
  • the aspheric surface type in the lens is defined by the following formula:
  • x is the distance vector height of the aspheric surface from the apex of the aspheric surface when the height is h along the optical axis direction;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 2 below shows the higher order term coefficients A4, A6, A8, A10, A12, A14, A16, A18, and A20 that can be used for the lens aspheric surface S3-S4 in Example 1.
  • the distance TTL from the object side surface S1 of the first lens L1 to the imaging surface S13 of the lens system 100 on the optical axis is 22.957 mm, and the diagonal length ImgH of the effective pixel area on the imaging surface S13 of the lens system 100 is 6 mm.
  • f12/f 1.47, where f12 represents the combined focal length of the first lens L1 and the second lens L2, and f represents the effective focal length of the lens system 100;
  • f4/CT4 3.437, where f4 represents the effective focal length of the fourth lens L4, and CT4 represents the thickness of the fourth lens L4 on the optical axis;
  • f5/f 2.469, where f represents the effective focal length of the lens system 100, and f5 represents the effective focal length of the fifth lens L5;
  • f1/RS2 -1.69, where f1 represents the effective focal length of the first lens L1, and RS2 represents the radius of curvature of the image side surface S2 of the first lens L1 at the optical axis;
  • D12 represents the distance on the optical axis from the image side surface S2 of the first lens L1 to the object side surface S3 of the second lens L2, and D23 represents the image side surface S4 to the second lens L2.
  • the distance of the object side surface S5 of the three lens L3 on the optical axis, f represents the effective focal length of the lens system 100;
  • CT3+CT4)/CT5 1.442, where CT3 represents the thickness of the third lens L3 on the optical axis, CT4 represents the thickness of the fourth lens L4 on the optical axis, and CT5 represents the thickness of the fifth lens L5 on the optical axis ;
  • FOV*f the diagonal field angle of the lens system 100
  • f the effective focal length of the lens system 100
  • ImgH the effective pixel area on the imaging surface S13 of the lens system 100 Diagonal length
  • BFL/TTL 0.325, where BFL represents the optical back focus of the lens system 100, and TTL represents the distance from the first lens L1 to the imaging surface S13 of the lens system 100 on the optical axis.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 435.83nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the lens system 100;
  • the astigmatism graph shows the light with a wavelength of 546.07nm Meridional field curvature and sagittal field curvature after passing through the lens system 100;
  • the distortion curve diagram shows the distortion of light with a wavelength of 546.07 nm after passing through the lens system 100 at different image heights.
  • FIG. 2 it can be seen that the lens system 100 given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 shows a schematic structural diagram of a lens system 100 according to Embodiment 2 of the present application.
  • the lens system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the second lens L2 has a positive refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a positive refractive power
  • the object side surface S9 and the image side surface S10 are both aspherical, wherein the object side surface S9 is a convex surface near the optical axis, and the image side surface S10 is a concave surface near the optical axis.
  • Both the object side surface S9 and the image side surface S10 of the fifth lens L5 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the fifth lens L5 are all glass.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to limit the size of the incident light beam and further improve the imaging quality of the lens system 100.
  • the lens system 100 further includes a protective glass 120 provided on the image side of the fifth lens L5 and having an object side surface S11 and an image side surface S12.
  • an infrared filter film is plated on the object side S7 of the fourth lens L4 to filter out the infrared light in the external light incident to the lens system 100, and avoid false colors or ripples caused by the interference of light in the non-operating band. This phenomenon prevents image color distortion.
  • Table 3 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (that is, dispersion coefficient) and effective focal length of each lens of the lens system 100 of Example 2, where the radius of curvature and thickness , The effective focal length of each lens is in millimeters (mm);
  • Table 4 shows the higher order term coefficients that can be used in the aspheric surface S9-S10 of the lens in Example 2, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 5 shows the relevant parameter values of the lens system 100 given in Example 2.
  • FIG. 4 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the lens system 100 of Embodiment 2 respectively, and the reference wavelength of the lens system 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 435.83nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the lens system 100;
  • the astigmatism graph shows the light with a wavelength of 587.56nm Meridional field curvature and sagittal field curvature after passing through the lens system 100;
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm passing through the lens system 100 under different image heights. According to FIG. 4, it can be seen that the lens system 100 given in Embodiment 2 can achieve good imaging quality.
  • the lens system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a positive refractive power
  • the object side surface S9 is an aspheric surface
  • the image side surface S10 is a spherical surface
  • the object side surface S9 is a convex surface near the optical axis
  • the image side surface S10 is a concave surface.
  • the object side surface S9 of the fifth lens L5 is set to be an aspherical surface.
  • the materials of the first lens L1 to the fifth lens L5 are all glass.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to limit the size of the incident light beam and further improve the imaging quality of the lens system 100.
  • the lens system 100 further includes a protective glass 120 provided on the image side of the fifth lens L5 and having an object side surface S11 and an image side surface S12.
  • the image side surface S4 of the second lens L2 is coated with an infrared filter film to filter out infrared light in the external light incident to the lens system 100, and to avoid false colors or ripples caused by the interference of light in the non-operating band. This phenomenon prevents image color distortion.
  • Table 6 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the lens system 100 of Example 3, where the radius of curvature and thickness The unit of the effective focal length of each lens is millimeter (mm);
  • Table 7 shows the coefficients of the higher order term that can be used for the aspheric surface S9 of the lens in Example 3, where the aspheric surface type can be determined by the formula given in Example 1. (1) Limitation;
  • Table 8 shows the relevant parameter values of the lens system 100 given in Example 3.
  • the reference wavelength of the lens system 100 is 546.07 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 435.83nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the lens system 100;
  • the astigmatism graph shows the light with a wavelength of 546.07nm Meridional field curvature and sagittal field curvature after passing through the lens system 100;
  • the distortion curve diagram shows the distortion of light with a wavelength of 546.07 nm after passing through the lens system 100 at different image heights. It can be seen from FIG. 6 that the lens system 100 provided in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 shows a schematic structural diagram of a lens system 100 according to Embodiment 4 of the present application.
  • the lens system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the second lens L2 has a positive refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a positive refractive power
  • the object side surface S9 is an aspherical surface
  • the image side surface S10 is a flat surface
  • the object side surface S9 is a convex surface near the optical axis.
  • the object side surface S9 of the fifth lens L5 is set to be an aspherical surface.
  • the materials of the first lens L1 to the fifth lens L5 are all glass.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to limit the size of the incident light beam and further improve the imaging quality of the lens system 100.
  • the lens system 100 further includes a protective glass 120 provided on the image side of the fifth lens L5 and having an object side surface S11 and an image side surface S12.
  • the image side surface S10 of the fifth lens L5 is plated with an infrared filter film to filter out infrared light in the external light incident to the lens system 100, and to avoid false colors or ripples caused by the interference of light in the non-operating band. This phenomenon prevents image color distortion.
  • Table 9 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient) and effective focal length of each lens of the lens system 100 of Example 4, where the radius of curvature and thickness , The unit of the effective focal length of each lens is millimeter (mm);
  • Table 10 shows the higher order term coefficients that can be used for the aspheric surface S9 of the lens in Example 4, where the aspheric surface type can be determined by the formula given in Example 1. (1) Limitation;
  • Table 11 shows the relevant parameter values of the lens system 100 given in Example 4.
  • the lens system 100 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the lens system 100 of Embodiment 4, respectively.
  • the reference wavelength of the lens system 100 is 546.07 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 435.83nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the lens system 100;
  • the astigmatism graph shows the light with a wavelength of 546.07nm Meridional field curvature and sagittal field curvature after passing through the lens system 100;
  • the distortion curve diagram shows the distortion of light with a wavelength of 546.07 nm after passing through the lens system 100 at different image heights. According to FIG. 8, it can be seen that the lens system 100 provided in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 shows a schematic structural diagram of a lens system 100 according to Embodiment 5 of the present application.
  • the lens system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a convex surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a positive refractive power
  • the object side surface S9 and the image side surface S10 are both aspherical, wherein the object side surface S9 is a convex surface near the optical axis, and the image side surface S10 is a concave surface near the optical axis.
  • Both the object side surface S9 and the image side surface S10 of the fifth lens L5 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the fifth lens L5 are all glass.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to limit the size of the incident light beam and further improve the imaging quality of the lens system 100.
  • the lens system 100 further includes a protective glass 120 provided on the image side of the fifth lens L5 and having an object side surface S11 and an image side surface S12.
  • an infrared filter film is plated on the object side S7 of the fourth lens L4 to filter out the infrared light in the external light incident to the lens system 100, and avoid false colors or ripples caused by the interference of light in the non-operating band. This phenomenon prevents image color distortion.
  • Table 12 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the lens system 100 of Example 5, where the radius of curvature and thickness , The unit of effective focal length of each lens is millimeter (mm);
  • Table 13 shows the higher order term coefficients that can be used for the lens aspheric surface S9-S10 in Example 5, and the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 14 shows the relevant parameter values of the lens system 100 given in Embodiment 5.
  • FIG. 10 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the lens system 100 of Embodiment 5, respectively.
  • the reference wavelength of the lens system 100 is 546.07 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 435.83nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the lens system 100;
  • the astigmatism graph shows the light with a wavelength of 546.07nm Meridional field curvature and sagittal field curvature after passing through the lens system 100;
  • the distortion curve diagram shows the distortion of light with a wavelength of 546.07 nm after passing through the lens system 100 at different image heights. According to FIG. 10, it can be seen that the lens system 100 given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 shows a schematic structural diagram of a lens system 100 according to Embodiment 6 of the present application.
  • the lens system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S15 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power, and the object side surface S3 and the image side surface S4 are both aspherical, and the object side surface S3 is convex near the optical axis, and the image side S4 is convex near the optical axis.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a flat surface
  • the image side surface S8 is a spherical surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a positive refractive power
  • the object side surface S9 is a spherical surface
  • the image side surface S10 is a flat surface
  • the object side surface S9 is a convex surface.
  • Both the object side surface S3 and the image side surface S4 of the second lens L2 are set to be aspherical surfaces.
  • the materials of the first lens L1 to the fifth lens L5 are all glass.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to limit the size of the incident light beam and further improve the imaging quality of the lens system 100.
  • the lens system 100 further includes an infrared filter 110 provided on the image side of the fifth lens L5 and having an object side surface S11 and an image side surface S12, and a protective glass provided on the image side of the infrared filter 110 and having an object side surface S13 and an image side surface S14 120.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the infrared filter 110 is used to filter out the infrared light in the external light incident to the lens system 100, to avoid the phenomenon of false colors or ripples caused by the interference of the light in the non-operating band, and to prevent the distortion of the imaged color.
  • the material of the infrared filter 110 is glass.
  • Table 15 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the lens system 100 of Example 6, where the radius of curvature and thickness , The effective focal length of each lens is in millimeters (mm);
  • Table 16 shows the higher order term coefficients that can be used for the aspheric surface S3-S4 of the lens in Example 6, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 17 shows the relevant parameter values of the lens system 100 given in Example 6.
  • FIG. 12 shows the longitudinal spherical aberration curve, astigmatism curve, and distortion curve of the lens system 100 of Example 6, respectively, and the reference wavelength of the lens system 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 435.83nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the lens system 100;
  • the astigmatism graph shows the light with a wavelength of 587.56nm Meridional field curvature and sagittal field curvature after passing through the lens system 100;
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm passing through the lens system 100 under different image heights. According to FIG. 12, it can be seen that the lens system 100 given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 shows a schematic structural diagram of a lens system 100 according to Embodiment 7 of the present application.
  • the lens system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S15 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power
  • the object side surface S3 is a flat surface
  • the image side surface S4 is an aspheric surface
  • the image side surface S4 is a convex surface near the optical axis.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a flat surface
  • the image side surface S8 is a spherical surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a convex surface, and the image side surface S10 is a concave surface.
  • the image side surface S4 of the second lens L2 is set to be aspherical.
  • the materials of the first lens L1 to the fifth lens L5 are all glass.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to limit the size of the incident light beam and further improve the imaging quality of the lens system 100.
  • the lens system 100 further includes an infrared filter 110 provided on the image side of the fifth lens L5 and having an object side surface S11 and an image side surface S12, and a protective glass provided on the image side of the infrared filter 110 and having an object side surface S13 and an image side surface S14 120.
  • the light from the object OBJ sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the infrared filter 110 is used to filter out the infrared light in the external light incident to the lens system 100, to avoid the phenomenon of false colors or ripples caused by the interference of the light in the non-operating band, and to prevent the distortion of the imaged color.
  • the material of the infrared filter 110 is glass.
  • Table 18 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie, dispersion coefficient), and effective focal length of each lens of the lens system 100 of Example 7, where the radius of curvature and thickness The unit of the effective focal length of each lens is millimeter (mm);
  • Table 19 shows the higher order term coefficients that can be used for the aspheric surface S4 of the lens in Example 7, where the aspheric surface type can be determined by the formula given in Example 1. (1) Limitation;
  • Table 20 shows the relevant parameter values of the lens system 100 given in Example 7.
  • FIG. 14 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the lens system 100 of Example 7, respectively, and the reference wavelength of the lens system 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 435.83nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the lens system 100;
  • the astigmatism graph shows the light with a wavelength of 587.56nm Meridional field curvature and sagittal field curvature after passing through the lens system 100;
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm passing through the lens system 100 under different image heights. According to FIG. 14, it can be seen that the lens system 100 given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 shows a schematic structural diagram of a lens system 100 according to Embodiment 8 of the present application.
  • the lens system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power
  • the object side surface S7 is a flat surface
  • the image side surface S8 is a spherical surface
  • the image side surface S8 is a convex surface.
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface S10 are both spherical surfaces, wherein the object side surface S9 is a convex surface, and the image side surface S10 is a convex surface.
  • the materials of the first lens L1 to the fifth lens L5 are all glass.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to limit the size of the incident light beam and further improve the imaging quality of the lens system 100.
  • the lens system 100 further includes a protective glass 120 provided on the image side of the fifth lens L5 and having an object side surface S11 and an image side surface S12.
  • an infrared filter film is plated on the object side S7 of the fourth lens L4 to filter out the infrared light in the external light incident to the lens system 100, and avoid false colors or ripples caused by the interference of light in the non-operating band. This phenomenon prevents image color distortion.
  • Table 21 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the lens system 100 of Example 8, where the radius of curvature and thickness The unit of the effective focal length of each lens is millimeter (mm);
  • Table 22 shows the relevant parameter values of the lens system 100 given in Embodiment 8.
  • FIG. 16 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the lens system 100 of Example 8, respectively.
  • the reference wavelength of the lens system 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 435.83nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the lens system 100;
  • the astigmatism graph shows the light with a wavelength of 587.56nm Meridional field curvature and sagittal field curvature after passing through the lens system 100;
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm passing through the lens system 100 under different image heights. According to FIG. 16, it can be seen that the lens system 100 given in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 shows a schematic structural diagram of a lens system 100 according to Embodiment 9 of the present application.
  • the lens system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and an imaging surface S13 in order from the object side to the image side along the optical axis. .
  • the first lens L1 has a negative refractive power
  • the object side surface S1 and the image side surface S2 are both spherical surfaces, wherein the object side surface S1 is a convex surface, and the image side surface S2 is a concave surface.
  • the second lens L2 has a positive refractive power, and the object side surface S3 and the image side surface S4 are both spherical surfaces, wherein the object side surface S3 is a convex surface, and the image side surface S4 is a convex surface.
  • the third lens L3 has a negative refractive power, and the object side surface S5 and the image side surface S6 are both spherical surfaces, wherein the object side surface S5 is a concave surface, and the image side surface S6 is a concave surface.
  • the fourth lens L4 has a positive refractive power, and the object side surface S7 and the image side surface S8 are both spherical surfaces, wherein the object side surface S7 is a concave surface, and the image side surface S8 is a convex surface.
  • the fifth lens L5 has a positive refractive power
  • the object side surface S9 and the image side surface S10 are both aspherical, wherein the object side surface S9 is a convex surface near the optical axis, and the image side surface S10 is a convex surface near the optical axis.
  • the materials of the first lens L1 to the fifth lens L5 are all glass.
  • a stop STO is also provided between the second lens L2 and the third lens L3 to limit the size of the incident light beam and further improve the imaging quality of the lens system 100.
  • the lens system 100 further includes a protective glass 120 provided on the image side of the fifth lens L5 and having an object side surface S11 and an image side surface S12.
  • an infrared filter film is plated on the object side S7 of the fourth lens L4 to filter out the infrared light in the external light incident to the lens system 100, and avoid false colors or ripples caused by the interference of light in the non-operating band. This phenomenon prevents image color distortion.
  • Table 23 shows the surface type, radius of curvature, thickness, material, refractive index, Abbe number (ie dispersion coefficient) and effective focal length of each lens of the lens system 100 of Example 9, where the radius of curvature and thickness , The effective focal length of each lens is in millimeters (mm);
  • Table 24 shows the higher order term coefficients that can be used for the lens aspheric surface S9-S10 in Example 9, where the aspheric surface type can be given in Example 1.
  • the formula (1) is defined;
  • Table 25 shows the relevant parameter values of the lens system 100 given in Example 9.
  • FIG. 18 shows the longitudinal spherical aberration curve, astigmatism curve and distortion curve of the lens system 100 of Example 9 respectively.
  • the reference wavelength of the lens system 100 is 587.56 nm.
  • the longitudinal spherical aberration graph shows the deviation of the focal point of light with wavelengths of 435.83nm, 479.99nm, 546.07nm, 587.56nm and 656.27nm after passing through the lens system 100;
  • the astigmatism graph shows the light with a wavelength of 587.56nm Meridional field curvature and sagittal field curvature after passing through the lens system 100;
  • the distortion curve diagram shows the distortion of light with a wavelength of 587.56 nm passing through the lens system 100 under different image heights. According to FIG. 18, it can be seen that the lens system 100 given in Embodiment 9 can achieve good imaging quality.
  • the present application also provides an imaging module 200, which includes the lens system 100 as described above (as shown in FIG. 1);
  • the photosensitive surface of the photosensitive element 210 coincides with the imaging surface S13.
  • the light sensing element 210 may adopt a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device) image sensor.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the imaging module 200 can use the aforementioned lens system 100 to capture images with a large depth of field, high pixels, and a wide viewing angle. At the same time, the imaging module 200 also has the characteristics of miniaturization and light weight.
  • the image capturing module 200 can be applied to fields such as mobile phones, automobiles, surveillance, and medical treatment. Specifically, it can be used as a mobile phone camera, a car camera, a surveillance camera or an endoscope, etc.
  • the above-mentioned image capturing module 200 can be used as a vehicle-mounted camera in a driving device 300.
  • the driving device 300 may be an autonomous vehicle or a non-autonomous vehicle.
  • the image capturing module 200 can be used as a front-view camera, a rear-view camera or a side-view camera of the driving device 300.
  • the driving device 300 includes a car body 310, and the imaging module 200 is installed at any position of the left rearview mirror, right rearview mirror, rear trunk, front headlights, rear headlights, etc. of the car body 310 to obtain A clear image of the environment around the vehicle body 310.
  • the driving device 300 is also provided with a display screen 320, the display screen 320 is installed in the vehicle body 310, and the imaging module 200 is in communication with the display screen 320, and the image information obtained by the imaging module 200 can be transmitted to the display It is displayed on the screen 320, so that the driver can obtain more complete surrounding image information and improve the safety guarantee during driving.
  • the image capturing module 200 can be applied to an autonomous vehicle.
  • the image capturing module 200 is installed at any position on the body of the autonomous vehicle.
  • the image capturing module 200 can also be installed on the top of the vehicle body.
  • the imaging module 200 by installing multiple imaging modules 200 on the autonomous vehicle to obtain the 360° view of the environment information around the vehicle body 310, the environmental information obtained by the imaging module 200 will be transmitted to the analysis and processing unit of the autonomous vehicle In order to perform real-time analysis on the road conditions around the vehicle body 310.
  • the accuracy of the identification and analysis of the analysis and processing unit can be improved, thereby improving the safety performance during automatic driving.
  • the present application also provides an electronic device 400, which includes a housing 410 and the imaging module 200 as described above, and the imaging module 200 is installed on the housing 410.
  • the imaging module 200 is disposed in the housing 410 and is exposed from the housing 410 to acquire images.
  • the housing 410 can provide the imaging module 200 with protection from dust, water and drop, etc.
  • the housing 410 is provided with The hole corresponding to the image capturing module 200 allows the light to penetrate into or out of the housing from the hole.
  • the electronic device 400 described above can use the aforementioned imaging module 200 to capture images with a wide viewing angle, high pixels, and a wide range of depth of field.
  • the above-mentioned electronic device 400 is further provided with a corresponding processing system, and the electronic device 400 can transmit the image to the corresponding processing system in time after taking an image of the object, so that the system can make accurate analysis and judgment.
  • the "electronic device” used may also include, but is not limited to, a device configured to be connected via a wired line and/or receive or send a communication signal via a wireless interface.
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, notebook, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种透镜系统,沿着光轴由物侧至像侧依序包括:具有负屈折力的第一透镜(L1),其像侧面为凹面;具有正屈折力的第二透镜(L2);具有负屈折力的第三透镜(L3),其物侧面为凹面,像侧面为凹面;具有正屈折力的第四透镜(L4),其像侧面为凸面;具有正屈折力的第五透镜(L5);以及光阑(STO),设于透镜系统的物侧或者第一透镜(L1)和第五透镜(L5)之间。还提供一种取像模组、电子装置及驾驶装置。

Description

透镜系统、取像模组、电子装置及驾驶装置 技术领域
本申请涉及光学成像技术领域,特别是涉及一种透镜系统、取像模组、电子装置及驾驶装置。
背景技术
近年来,随着车载技术的发展,前视或侧视摄像装置、自动巡航仪、行车记录仪、倒车影像仪对车载用摄像头的技术要求越来越高。其中,前视或侧视摄像装置可作为高级驾驶员辅助系统中的摄像头系统分析视频内容,实现车道偏离警告(LDW)、自动车道保持辅助(LKA)、远光灯/近光灯控制和交通标志识别(TSR)。例如在停车时,控制前视或侧视摄像装置开启,驾驶员可直观地看到车前面的障碍物,从而方便停车操作;而当汽车通过特殊地方(如路障,停车场等)时,前视或侧视摄像装置也可自动打开从而获取车辆周围的环境信息,并反馈给汽车中央系统使其做出正确的指令,避免驾驶事故的发生。
然而,传统的前视或侧视镜头分辨率较低,景深范围小,不能为驾驶辅助系统提供清晰的图像以使驾驶辅助系统实时准确地对车辆周围的环境信息进行判断进而做出及时的预警或规避,存在一定的驾驶风险。
发明内容
根据本申请的各种实施例,提供一种透镜系统。
一种透镜系统,所述透镜系统沿着光轴由物侧至像侧依序包括:
具有负屈折力的第一透镜,所述第一透镜的像侧面为凹面;
具有正屈折力的第二透镜;
具有负屈折力的第三透镜,所述第三透镜的物侧面为凹面,像侧面为凹面;
具有正屈折力的第四透镜,所述第四透镜的像侧面为凸面;
具有正屈折力的第五透镜;以及,
光阑,所述光阑设于所述透镜系统的物侧或者所述第一透镜和所述第五透镜之间;
所述透镜系统满足下列关系式:
0.5<f12/f<2.5;其中,f12表示所述第一透镜和所述第二透镜的组合焦距,f表示所述透镜系统的有效焦距。
一种取像模组,包括上述实施例所述的透镜系统以及感光元件,所述感光元件设于所述透镜系统的像侧。
一种电子装置,包括壳体以及上述实施例所述的取像模组,所述取像模组安装在所述壳体上。
一种驾驶装置,包括车体以及上述实施例所述的取像模组,所述取像模组设于所述车体以获取所述车体周围的环境信息。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1示出了本申请实施例1的透镜系统的结构示意图;
图2分别示出了实施例1的透镜系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图3示出了本申请实施例2的透镜系统的结构示意图;
图4分别示出了实施例2的透镜系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图5示出了本申请实施例3的透镜系统的结构示意图;
图6分别示出了实施例3的透镜系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图7示出了本申请实施例4的透镜系统的结构示意图;
图8分别示出了实施例4的透镜系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图9示出了本申请实施例5的透镜系统的结构示意图;
图10分别示出了实施例5的透镜系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图11示出了本申请实施例6的透镜系统的结构示意图;
图12分别示出了实施例6的透镜系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图13示出了本申请实施例7的透镜系统的结构示意图;
图14分别示出了实施例7的透镜系统的纵向球差曲线图、像散曲线图 以及畸变曲线图;
图15示出了本申请实施例8的透镜系统的结构示意图;
图16示出了实施例8的透镜系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图17示出了本申请实施例9的透镜系统的结构示意图;
图18示出了实施例9的透镜系统的纵向球差曲线图、像散曲线图以及畸变曲线图;
图19示出了本申请一实施例的取像模组的示意图;
图20示出了本申请一实施例的应用取像模组的驾驶装置示意图;
图21示出了本申请一实施例的应用取像模组的电子装置示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。为了便于说明,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本说明书中,物体相对于光学元件所处的一侧空间称为该光学元件的物侧,对应的,物体所成的像相对于光学元件所处的一侧空间称为该光学元件的像侧。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。并定义物侧至像侧为距离的正向。
另外,在下文的描述中,若出现透镜表面为凸面且未界定该凸面位置 时,则表示该透镜表面至少近光轴处为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少近光轴处为凹面。此处近光轴处是指光轴附近的区域。
以下将对本申请的特征、原理和其他方面进行详细描述。
请一并参阅图1、图3、图5、图7、图9、图11、图13、图15和图17,本申请实施例提供一种可兼顾广视角、高像素以及小型化的透镜系统。具体的,该透镜系统包括五片具有屈折力的透镜,即第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜。该五片透镜沿着光轴从物侧至像侧依序排列,透镜系统的成像面位于第五透镜的像侧。
第一透镜具有负屈折力,有利于使大角度的光线也能入射到透镜系统中,并通过透镜系统中其他透镜的折射从而使光线会聚至镜头的成像面,提高成像质量,并且第一透镜的像侧面设置为凹面,有利于校正像差,提升成像品质。
第二透镜具有正屈折力,可与具有负屈折力的第一透镜搭配校正系统像差,并降低系统敏感度,实现小型化特性。
第三透镜具有负屈折力,可以有效的消除系统色差,获得高分辨性能,同时将第三透镜的物侧面和像侧面均设置为为凹面,有利于校正系统像差,并降低透镜的组装敏感度,提高生产良率,降低生产成本。
第四透镜具有正屈折力,有利于使经第三透镜折转的光线进一步得以会聚,确保成像质量,并使系统结构紧凑,实现小型化。
第五透镜具有正屈折力,有利于缩小主光线入射至系统成像面的角度,提高感光元件的感光性能,提升解析度;同时,也有利于校正因系统前部透镜折转光线而产生的像差,保证成像品质。
透镜系统中还设置有光阑,光阑设于透镜系统的物侧或者第一透镜与第五透镜之间,以更好地控制入射光束的大小,提升透镜系统的成像质量。进一步的,光阑设于第二透镜和第三透镜之间。具体的,光阑包括孔径光阑和视场光阑。优选的,光阑为孔径光阑。孔径光阑可位于透镜的表面上(例如物侧面和像侧面),并与透镜形成作用关系,例如,通过在透镜的表面涂覆阻光涂层以在该表面形成孔径光阑;或通过夹持件固定夹持透镜的表面,位于该表面的夹持件结构能够限制轴上物点成像光束的宽度,从而在该表面上形成孔径光阑。
具体的,透镜系统还满足下列关系式:0.5<f12/f<2.5;其中,f12表示第一透镜和第二透镜的组合焦距,f表示透镜系统的有效焦距。f12/f可以是0.6、0.8、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、2或2.3。在满足上述关系式的条件下,有利于入射光线聚焦,从而使透镜系统采集 的图像信息有效传递至成像面。而当f12/f大于等于2.5时,第一透镜和第二透镜为系统提供的整体屈折力不足,则大角度光线难以入射至透镜系统,不利于扩大系统的视场角范围;而当f12/f小于等于0.5时,则第一透镜和第二透镜提供的整体屈折力过强,容易导致光线的折转角度过大而产生较强的像散和色差,不利于提高系统的分辨率。
当上述透镜系统用于成像时,被摄物体发出或者反射的光线从物侧方向进入透镜系统,并依次穿过第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,最终汇聚到成像面上。
上述透镜系统,通过选取合适数量的透镜并合理分配各透镜的屈折力、面型以及各透镜的有效焦距,可以增强镜头的成像解析能力并有效修正像差,使其能够更精准地捕捉景物细节,提升图像清晰度;同时通过合理配置第一透镜、第二透镜的组合焦距,可以有效地消除色差,并抑制成像边缘区域高阶像差的发生,提升系统的成像分辨能力。
在示例性实施方式中,第一透镜至第五透镜中,至少一个透镜的物侧面和/或像侧面为非球面。通过上述方式,可以提高透镜设计的灵活性,并有效地校正像差,提高透镜系统的成像质量。需要注意的是,透镜系统中各透镜的表面也可以是球面和非球面的任意组合,并不一定要是均为球面或均为非球面。
在示例性实施方式中,第五透镜和透镜系统的成像面之间设置有红外滤光片;或者第一透镜至第五透镜中的一个透镜的物侧面或像侧面镀有红外滤光膜。
通过设置红外滤光片或者镀覆红外滤光膜,用于过滤入射光线隔绝红外光,防止红外光被感光元件吸收,从而避免因非工作波段光线的干扰而产生伪色或波纹的现象,防止成像色彩失真,提高透镜系统的成像品质。
在示例性实施方式中,透镜系统满足下列关系式:-2<f3/f<-0.5;其中,f表示透镜系统的有效焦距,f3表示第三透镜的有效焦距。f3/f可以是-1.5、-1.4、-1.3、-1.2、-1.1、-1、-0.9、-0.8、-0.7、-0.6或-0.5。在满足上述关系式的条件下,可以控制第三透镜的屈折力在合理范围内,从而可以有效地抑制消色差效果的减小,并抑制成像边缘区域高阶像差的发生,使系统具备较高的成像分辨性能。而当f3/f大于等于-0.5时,第三透镜的负屈折力过强,容易使得第三透镜物侧面和像侧面的光线入射角过大而导致成像边缘区域高阶像差的产生;而当f3/f小于等于-2时,第三透镜的负屈折力较小而导致消色差效果不明显,较难保证成像的清晰度。
在示例性实施方式中,透镜系统满足下列关系式:2<f4/CT4<5;其中,f4表示第四透镜的有效焦距,CT4表示第四透镜在光轴上的厚度。 f4/CT4可以是2.4、2.6、2.8、3、3.2、3.4、3.6、3.8、4、4.2、4.4、4.6或4.8。在满足上述关系式的条件下,可以合理配置第四透镜的有效焦距和第四透镜的中心厚度,从而有利于降低系统的公差敏感度,并降低透镜的加工难度,提升镜头组的组装良率,进一步的降低生产成本。而当f4/CT4大于等于5时,透镜系统对第四透镜的中心厚度过于敏感,且第四透镜的加工也很难满足所需的公差要求,容易降低透镜组的组装良率,导致生产成本增加;而当f4/CT4小于等于2时,在满足系统光学性能的前提下,第四透镜的中心厚度过大,而由于玻璃透镜的密度较大,因此也会导致透镜系统的重量增大,不利于满足系统的轻量化设计需求。
在示例性实施方式中,透镜系统满足下列关系式:1<f5/f<4;其中,f表示透镜系统的有效焦距,f5表示第五透镜的有效焦距。f5/f可以是1.5、1.8、2.1、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.4或3.7。在满足上述关系式的条件下,可以在系统的末端配置足够的屈折力,从而有利于缩小主光线入射至透镜系统成像面的角度,提高感光元件的感光性能,提升解析度;同时,也有利于校正因系统前部透镜折转光线而产生的像差,保证成像品质。而当f5/f小于等于1时,容易使得透镜的有效焦距较大,不利于系统的广角化和小型化;而当f5/f大于等于4时,第五透镜无法提供足够的正屈折力,不利于缩小成像面上的主光线入射角度,容易导致系统的解析度不高。
在示例性实施方式中,透镜系统满足下列关系式:-3.5<f1/RS2<0;其中,f1表示第一透镜的有效焦距,RS2表示第一透镜的像侧面于光轴处的曲率半径。f1/RS2可以是-3、-2.5、-2.4、-2.3、-2.2、-2、-1.8、-1.6、-1.4、-1.2或-1。在满足上述关系式的条件下,可以保证第一透镜为系统提供负屈折力,从而有利于使光线充分发散至第二透镜的物侧面,保证成像的完整性;同时也有利于控制第一透镜的弯曲程度,以校正像差,并进一步降低鬼影的产生比率。而当f1/RS2大于等于0时,第一透镜无法提供负屈折力,不利于系统的广角化,也不利于光线成像;而当f1/RS2小于等于-3.5时,容易导致第一透镜的像侧面过弯,不利于修正像差和避免鬼影产生。
在示例性实施方式中,透镜系统满足下列关系式:0<(D12+D23)/f<3;其中,D12表示第一透镜的像侧面至第二透镜的物侧面在光轴上的距离,D23表示第二透镜的像侧面至第三透镜的物侧面在光轴上的距离,f表示透镜系统的有效焦距。(D12+D23)/f可以是0.5、0.7、0.9、1.1、1.3、1.5、1.7、2或2.5。在满足上述关系式的条件下,可以合理配置第一透镜与第二透镜之间的空气间隔以及第二透镜与第三透镜之间的空气间隔,从而避 免焦距过长,有利于系统结构的紧凑设置,满足小型化的特点;同时也有利于提升系统的成像品质。
在示例性实施方式中,透镜系统满足下列关系式:
5<|f1/CT1-f2/CT2|<12;其中,f1表示第一透镜的有效焦距,f2表示第二透镜的有效焦距,CT1表示第一透镜在光轴上的厚度,CT2表示第二透镜在光轴上的厚度。|f1/CT1-f2/CT2|可以是6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11或11.5。在满足上述关系式的条件下,第一透镜为系统提供负屈折力,第二透镜为系统提供正屈折力,从而可以通过正负透镜的搭配来控制透镜厚度,使透镜系统具备低敏感度以及小型化的特征;除此之外,还可将第二透镜物侧面和像侧面均设置为非球面,以校正像差,提升系统的解像能力。
在示例性实施方式中,透镜系统满足下列关系式:18<|RS5-RS6|/CT3<28;其中,RS5表示第三透镜的物侧面于光轴处的曲率半径,RS6表示第三透镜的像侧面于光轴处的曲率半径,CT3表示第三透镜在光轴上的厚度。|RS5-RS6|/CT3可以是18.1、18.6、19、20、21、22、23、24、25、26、27或27.5。在满足上述关系式的条件下,可以合理配置第三透镜物侧面和像侧面的曲率半径,曲率半径越大,透镜的表面越趋于平面,当曲率半径为无限大时,第三透镜的物侧面或像侧面为平面,能够在校正像差的同时减小透镜的加工难度,进而降低透镜的组装敏感度,提高生产良率,降低生产成本;除此之外,也有利于控制第三透镜的中心厚度处于合理范围内,从而在保证系统高像素成像质量的同时,使系统结构更为紧凑,满足小型化的需求。
在示例性实施方式中,透镜系统满足下列关系式:0<(CT3+CT4)/CT5<3;CT3表示第三透镜在光轴上的厚度,CT4表示第四透镜在光轴上的厚度,CT5表示第五透镜在光轴上的厚度。(CT3+CT4)/CT5可以是1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.5或2.9。在满足上述关系式的条件下,可以合理配置第三、第四和第五透镜的中心厚度,从而有利于降低系统后组透镜的敏感度,提高生产良率,保证系统的小型化。
在示例性实施方式中,透镜系统满足下列关系式:50deg<(FOV*f)/ImgH<70deg;其中,FOV表示透镜系统的对角线方向视场角,f表示透镜系统的有效焦距,ImgH表示透镜系统的成像面上有效像素区域的对角线方向长度。(FOV*f)/ImgH可以是55deg、56deg、57deg、58deg、59deg、60deg、64deg或68deg。在满足上述关系式的条件下,有利于在扩大系统的视场角以及提高系统解像能力保证像素像质之间取得平衡。
在示例性实施方式中,透镜系统满足下列关系式:Nd3-Nd5>0;其中, Nd3表示第三透镜的d光折射率,Nd5表示第五透镜的d光折射率。Nd3-Nd5可以是0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45或0.5。通过控制第三透镜和第五透镜的d光折射率满足上述关系,有利于校正系统的轴外色差,从而提高系统的分辨率,保证成像清晰度。
在示例性实施方式中,透镜系统满足下列关系式:Vd5-Vd3>30;其中,Vd3表示第三透镜的d光阿贝数,Vd5表示第五透镜的d光阿贝数。Vd5-Vd3可以是30.5、30.7、40、45、47、49或50。通过控制第三透镜和第五透镜的d光阿贝数满足上述关系,有利于校正系统轴上色差以及倍率色差,提升成像解析度;同时,也有利于降低系统敏感度,提高生产良率,降低生产成本。
在示例性实施方式中,透镜系统满足下列关系式:0<BFL/TTL<1;其中,BFL表示透镜系统的光学后焦,TTL表示第一透镜至透镜系统的成像面在光轴上的距离。BFL/TTL可以是0.1、0.2、0.25、0.28、0.29、0.3、0.31、0.32、0.33、0.4、0.6或0.8。在满足上述关系式的条件下,有利于获得较大的光学后焦,从而使系统具备远心效果,减小系统的敏感度,同时也有利于获得较短的系统总长,实现小型化。
在示例性实施方式中,透镜系统中各透镜的材质可以均为玻璃或均为塑料,塑料材质的透镜能够减少透镜系统的重量并降低生产成本,而玻璃材质的透镜可使透镜系统具备较好的温度耐受特性以及优良的光学性能。进一步的,用于车载系统时,各透镜的材质优选为玻璃。需要注意的是,透镜系统中各透镜的材质也可以是玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
在示例性实施方式中,透镜系统还包括保护玻璃。保护玻璃设于第五透镜的像侧或红外滤光片的像侧,起到保护感光元件的作用,同时也可避免感光元件沾染落尘,进一步保证成像品质。
本申请的上述实施方式的透镜系统可采用多片镜片,例如上文所述的五片。通过合理分配各透镜焦距、屈折力、面型、厚度以及各透镜之间的轴上间距等,可以保证上述透镜系统的总长较小、重量较轻且具备较高的成像分辨率,同时还具备较大的光圈(FNO可以为2.3)以及较大的视场角,从而更好地满足如车载辅助系统的镜头、手机、平板等轻量化电子设备的应用需求。然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成透镜系统的透镜数量,来获得本说明书中描述的各个结果和优点。
下面参照附图进一步描述可适用于上述实施方式的透镜系统的具体实施例。
实施例1
以下参照图1至图2描述本申请实施例1的透镜系统100。
图1示出了实施例1的透镜系统100的结构示意图。如图1所示,透镜系统100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负屈折力,其物侧面S1为平面,像侧面S2均为球面,其中像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为非球面,其中物侧面S3近光轴处为凸面,像侧面S4近光轴处为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凸面,像侧面S10为凸面。
将第二透镜L2的物侧面S3和像侧面S4均设置为非球面,有利于修正像差、解决像面歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学成像效果,进而使透镜系统100具备小型化特性。
第一透镜L1至第五透镜L5的材质均为玻璃,使用玻璃材质的透镜可使透镜系统100具备较好的温度耐受特性以及优良的光学性能,从而进一步保证成像质量。
第二透镜L2和第三透镜L3之间还设置有光阑STO,以限制入射光束的大小,进一步提升透镜系统100的成像质量。透镜系统100还包括设于第五透镜L5像侧且具有物侧面S11和像侧面S12的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S12并最终成像在成像面S13上。
进一步的,第五透镜L5的像侧面S10上镀有红外滤光膜,用以滤除入射至透镜系统100的外界光线中的红外光线,避免因非工作波段光线的干扰而产生伪色或波纹的现象,防止成像色彩失真。
表1示出了实施例1的透镜系统100的透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和透镜的有效焦距,其中,曲率半径、厚度、透镜的有效焦距的单位均为毫米(mm)。另外,以第一透镜L1为例,第一透镜L1的“厚度”参数列中的第一个数值为该透镜在光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面在光轴上的距离;光阑ST0于“厚度”参数列中的数值为光阑ST0至后一透镜的物侧面顶点(顶点指透镜与光轴的交点)于光轴上的距离,我 们默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴的正方向,当该值为负时,表明光阑ST0设置于图1中该透镜的物侧面顶点的右侧,若光阑STO厚度为正值时,光阑在该透镜物侧面顶点的左侧。
表1
Figure PCTCN2020081803-appb-000001
透镜中的非球面面型由以下公式限定:
Figure PCTCN2020081803-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。下表2给出了可用于实施例1中透镜非球面S3-S4的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2020081803-appb-000003
Figure PCTCN2020081803-appb-000004
第一透镜L1的物侧面S1至透镜系统100的成像面S13在光轴上的距离TTL为22.957mm,透镜系统100的成像面S13上有效像素区域的对角线长度ImgH为6mm。结合表1和表2中的数据可知,实施例1中的透镜系统100满足:
f12/f=1.47,其中,f12表示第一透镜L1和第二透镜L2的组合焦距,f表示透镜系统100的有效焦距;
f3/f=-0.99,其中,f表示透镜系统100的有效焦距,f3表示第三透镜L3的有效焦距;
f4/CT4=3.437,其中,f4表示第四透镜L4的有效焦距,CT4表示第四透镜L4在光轴上的厚度;
f5/f=2.469,其中,f表示透镜系统100的有效焦距,f5表示第五透镜L5的有效焦距;
f1/RS2=-1.69,其中,f1表示第一透镜L1的有效焦距,RS2表示第一透镜L1的像侧面S2于光轴处的曲率半径;
(D12+D23)/f=1.19,其中,D12表示第一透镜L1的像侧面S2至第二透镜L2的物侧面S3在光轴上的距离,D23表示第二透镜L2的像侧面S4至第三透镜L3的物侧面S5在光轴上的距离,f表示透镜系统100的有效焦距;
|f1/CT1-f2/CT2|=8.547,其中,f1表示第一透镜L1的有效焦距,f2表示第二透镜L2的有效焦距,CT1表示第一透镜L1在光轴上的厚度,CT2表示第二透镜L2在光轴上的厚度;
|RS5-RS6|/CT3=27.02,其中,RS5表示第三透镜L3的物侧面S5于光轴处的曲率半径,RS6表示第三透镜L3的像侧面S6于光轴处的曲率半径,CT3表示第三透镜L3在光轴上的厚度;
(CT3+CT4)/CT5=1.442,其中,CT3表示第三透镜L3在光轴上的厚度,CT4表示第四透镜L4在光轴上的厚度,CT5表示第五透镜L5在光轴上的厚度;
(FOV*f)/ImgH=58.769deg,其中,FOV表示透镜系统100的对角线方向视场角,f表示透镜系统100的有效焦距,ImgH表示透镜系统100的成像面S13上有效像素区域的对角线方向长度;
Nd3-Nd5=0.436,其中,Nd3表示第三透镜L3的d光折射率,Nd5表示第五透镜L5的d光折射率;
Vd5-Vd3=49.5,其中,Vd3表示第三透镜L3的d光阿贝数,Vd5表示第五透镜L5的d光阿贝数;
BFL/TTL=0.325,其中,BFL表示透镜系统100的光学后焦,TTL表示第一透镜L1至透镜系统100的成像面S13在光轴上的距离。
图2分别示出了实施例1的透镜系统100的纵向球差曲线图、像散曲线图以及畸变曲线图,透镜系统100的参考波长为546.07nm。其中纵向球差曲线图示出了波长为435.83nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由透镜系统100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由透镜系统100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为546.07nm的光线经由透镜系统100后不同像高情况下的畸变。根据图2可知,实施例1给出的透镜系统100能够实现良好的成像品质。
实施例2
以下参照图3至图4描述本申请实施例2的透镜系统100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了本申请实施例2的透镜系统100的结构示意图。
如图3所示,透镜系统100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凸面,像侧面S4为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为非球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凹面。
第五透镜L5的物侧面S9和像侧面S10均设置为非球面。第一透镜L1至第五透镜L5的材质均为玻璃。第二透镜L2和第三透镜L3之间还设置有光阑STO,以限制入射光束的大小,进一步提升透镜系统100的成像质量。透镜系统100还包括设于第五透镜L5像侧且具有物侧面S11和像侧面S12的保护玻璃120。
进一步的,第四透镜L4的物侧面S7上镀有红外滤光膜,用以滤除入射至透镜系统100的外界光线中的红外光线,避免因非工作波段光线的干扰而产生伪色或波纹的现象,防止成像色彩失真。
表3示出了实施例2的透镜系统100的各透镜的表面类型、曲率半径、 厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表4示出了可用于实施例2中透镜非球面S9-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表5示出了实施例2中给出的透镜系统100的相关参数数值。
表3
Figure PCTCN2020081803-appb-000005
表4
Figure PCTCN2020081803-appb-000006
表5
Figure PCTCN2020081803-appb-000007
Figure PCTCN2020081803-appb-000008
图4分别示出了实施例2的透镜系统100的纵向球差曲线图、像散曲线图以及畸变曲线图,透镜系统100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为435.83nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由透镜系统100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由透镜系统100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由透镜系统100后不同像高情况下的畸变。根据图4可知,实施例2给出的透镜系统100能够实现良好的成像品质。
实施例3
以下参照图5至图6描述本申请实施例3的透镜系统100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图5示出了本申请实施例3的透镜系统100的结构示意图。
如图5所示,透镜系统100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凸面,像侧面S4为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9为非球面,像侧面S10为球面,其中物侧面S9近光轴处为凸面,像侧面S10为凹面。
第五透镜L5的物侧面S9设置为非球面。第一透镜L1至第五透镜L5的材质均为玻璃。第二透镜L2和第三透镜L3之间还设置有光阑STO,以限制入射光束的大小,进一步提升透镜系统100的成像质量。透镜系统100还包括设于第五透镜L5像侧且具有物侧面S11和像侧面S12的保护玻璃120。
进一步的,第二透镜L2的像侧面S4上镀有红外滤光膜,用以滤除入射至透镜系统100的外界光线中的红外光线,避免因非工作波段光线的干扰而产生伪色或波纹的现象,防止成像色彩失真。
表6示出了实施例3的透镜系统100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表7示出了可用于实施例3中透镜非球面S9的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表8示出了实施例3中给出的透镜系统100的相关参数数值。
表6
Figure PCTCN2020081803-appb-000009
表7
Figure PCTCN2020081803-appb-000010
表8
Figure PCTCN2020081803-appb-000011
图6分别示出了实施例3的透镜系统100的纵向球差曲线图、像散曲线图以及畸变曲线图,透镜系统100的参考波长为546.07nm。其中纵向球差曲线图示出了波长为435.83nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由透镜系统100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由透镜系统100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为546.07nm的光线经由透镜系统100后不同像高情况下的畸变。根据图6可知,实施例3给出的透镜系统100能够实现良好的成像品质。
实施例4
以下参照图7至图8描述本申请实施例4的透镜系统100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图7示出了本申请实施例4的透镜系统100的结构示意图。
如图7所示,透镜系统100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凸面,像侧面S4为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9为非球面,像侧面S10为平面,其中物侧面S9近光轴处为凸面。
第五透镜L5的物侧面S9设置为非球面。第一透镜L1至第五透镜L5 的材质均为玻璃。第二透镜L2和第三透镜L3之间还设置有光阑STO,以限制入射光束的大小,进一步提升透镜系统100的成像质量。透镜系统100还包括设于第五透镜L5像侧且具有物侧面S11和像侧面S12的保护玻璃120。
进一步的,第五透镜L5的像侧面S10上镀有红外滤光膜,用以滤除入射至透镜系统100的外界光线中的红外光线,避免因非工作波段光线的干扰而产生伪色或波纹的现象,防止成像色彩失真。
表9示出了实施例4的透镜系统100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表10示出了可用于实施例4中透镜非球面S9的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表11示出了实施例4中给出的透镜系统100的相关参数数值。
表9
Figure PCTCN2020081803-appb-000012
表10
Figure PCTCN2020081803-appb-000013
Figure PCTCN2020081803-appb-000014
表11
Figure PCTCN2020081803-appb-000015
图8分别示出了实施例4的透镜系统100的纵向球差曲线图、像散曲线图以及畸变曲线图,透镜系统100的参考波长为546.07nm。其中纵向球差曲线图示出了波长为435.83nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由透镜系统100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由透镜系统100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为546.07nm的光线经由透镜系统100后不同像高情况下的畸变。根据图8可知,实施例4给出的透镜系统100能够实现良好的成像品质。
实施例5
以下参照图9至图10描述本申请实施例5的透镜系统100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图9示出了本申请实施例5的透镜系统100的结构示意图。
如图9所示,透镜系统100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凸面,像侧面S4为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中 物侧面S7为凸面,像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为非球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凹面。
第五透镜L5的物侧面S9和像侧面S10均设置为非球面。第一透镜L1至第五透镜L5的材质均为玻璃。第二透镜L2和第三透镜L3之间还设置有光阑STO,以限制入射光束的大小,进一步提升透镜系统100的成像质量。透镜系统100还包括设于第五透镜L5像侧且具有物侧面S11和像侧面S12的保护玻璃120。
进一步的,第四透镜L4的物侧面S7上镀有红外滤光膜,用以滤除入射至透镜系统100的外界光线中的红外光线,避免因非工作波段光线的干扰而产生伪色或波纹的现象,防止成像色彩失真。
表12示出了实施例5的透镜系统100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表13示出了可用于实施例5中透镜非球面S9-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表14示出了实施例5中给出的透镜系统100的相关参数数值。
表12
Figure PCTCN2020081803-appb-000016
表13
Figure PCTCN2020081803-appb-000017
Figure PCTCN2020081803-appb-000018
表14
Figure PCTCN2020081803-appb-000019
图10分别示出了实施例5的透镜系统100的纵向球差曲线图、像散曲线图以及畸变曲线图,透镜系统100的参考波长为546.07nm。其中纵向球差曲线图示出了波长为435.83nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由透镜系统100后的会聚焦点偏离;像散曲线图示出了波长为546.07nm的光线经由透镜系统100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为546.07nm的光线经由透镜系统100后不同像高情况下的畸变。根据图10可知,实施例5给出的透镜系统100能够实现良好的成像品质。
实施例6
以下参照图11至图12描述本申请实施例6的透镜系统100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图11示出了本申请实施例6的透镜系统100的结构示意图。
如图11所示,透镜系统100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S15。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为非球面,其 中物侧面S3近光轴处为凸面,像侧面S4近光轴处为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7为平面,像侧面S8均为球面,其中像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9为球面,像侧面S10为平面,其中物侧面S9为凸面。
第二透镜L2的物侧面S3和像侧面S4均设置为非球面。第一透镜L1至第五透镜L5的材质均为玻璃。第二透镜L2和第三透镜L3之间还设置有光阑STO,以限制入射光束的大小,进一步提升透镜系统100的成像质量。透镜系统100还包括设于第五透镜L5像侧且具有物侧面S11和像侧面S12的红外滤光片110以及设于红外滤光片110像侧且具有物侧面S13和像侧面S14的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S15上。红外滤光片110用以滤除入射至透镜系统100的外界光线中的红外光线,避免因非工作波段光线的干扰而产生伪色或波纹的现象,防止成像色彩失真。具体的,红外滤光片110的材质为玻璃。
表15示出了实施例6的透镜系统100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表16示出了可用于实施例6中透镜非球面S3-S4的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表17示出了实施例6中给出的透镜系统100的相关参数数值。
表15
Figure PCTCN2020081803-appb-000020
Figure PCTCN2020081803-appb-000021
表16
Figure PCTCN2020081803-appb-000022
表17
Figure PCTCN2020081803-appb-000023
图12分别示出了实施例6的透镜系统100的纵向球差曲线图、像散曲线图以及畸变曲线图,透镜系统100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为435.83nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由透镜系统100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由透镜系统100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由透镜系统100后不同像高情况下的畸变。根据图12可知,实施例6给出的透镜系统100能够实现良好的成像品质。
实施例7
以下参照图13至图14描述本申请实施例7的透镜系统100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图13示出了本 申请实施例7的透镜系统100的结构示意图。
如图13所示,透镜系统100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S15。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3为平面,像侧面S4为非球面,其中像侧面S4近光轴处为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7为平面,像侧面S8为球面,其中像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凸面,像侧面S10为凹面。
第二透镜L2的像侧面S4均设置为非球面。第一透镜L1至第五透镜L5的材质均为玻璃。第二透镜L2和第三透镜L3之间还设置有光阑STO,以限制入射光束的大小,进一步提升透镜系统100的成像质量。透镜系统100还包括设于第五透镜L5像侧且具有物侧面S11和像侧面S12的红外滤光片110以及设于红外滤光片110像侧且具有物侧面S13和像侧面S14的保护玻璃120。来自物体OBJ的光依序穿过各表面S1至S14并最终成像在成像面S15上。红外滤光片110用以滤除入射至透镜系统100的外界光线中的红外光线,避免因非工作波段光线的干扰而产生伪色或波纹的现象,防止成像色彩失真。具体的,红外滤光片110的材质为玻璃。
表18示出了实施例7的透镜系统100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表19示出了可用于实施例7中透镜非球面S4的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表20示出了实施例7中给出的透镜系统100的相关参数数值。
表18
Figure PCTCN2020081803-appb-000024
Figure PCTCN2020081803-appb-000025
表19
Figure PCTCN2020081803-appb-000026
表20
Figure PCTCN2020081803-appb-000027
图14分别示出了实施例7的透镜系统100的纵向球差曲线图、像散曲线图以及畸变曲线图,透镜系统100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为435.83nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由透镜系统100后的会聚焦点偏离;像散曲线图示出了 波长为587.56nm的光线经由透镜系统100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由透镜系统100后不同像高情况下的畸变。根据图14可知,实施例7给出的透镜系统100能够实现良好的成像品质。
实施例8
以下参照图15至图16描述本申请实施例8的透镜系统100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图15示出了本申请实施例8的透镜系统100的结构示意图。
如图15所示,透镜系统100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凸面,像侧面S4为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7为平面,像侧面S8均为球面,其中像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为球面,其中物侧面S9为凸面,像侧面S10为凸面。
第一透镜L1至第五透镜L5的材质均为玻璃。第二透镜L2和第三透镜L3之间还设置有光阑STO,以限制入射光束的大小,进一步提升透镜系统100的成像质量。透镜系统100还包括设于第五透镜L5像侧且具有物侧面S11和像侧面S12的保护玻璃120。
进一步的,第四透镜L4的物侧面S7上镀有红外滤光膜,用以滤除入射至透镜系统100的外界光线中的红外光线,避免因非工作波段光线的干扰而产生伪色或波纹的现象,防止成像色彩失真。
表21示出了实施例8的透镜系统100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表22示出了实施例8中给出的透镜系统100的相关参数数值。
表21
Figure PCTCN2020081803-appb-000028
Figure PCTCN2020081803-appb-000029
表22
Figure PCTCN2020081803-appb-000030
图16分别示出了实施例8的透镜系统100的纵向球差曲线图、像散曲线图以及畸变曲线图,透镜系统100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为435.83nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由透镜系统100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由透镜系统100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由透镜系统100后不同像高情况下的畸变。根据图16可知,实施例8给出的透镜系统100能够实现良好的成像品质。
实施例9
以下参照图17至图18描述本申请实施例9的透镜系统100。在本实施例中,为简洁起见,将省略部分与实施例1相似的描述。图17示出了本申请实施例9的透镜系统100的结构示意图。
如图17所示,透镜系统100沿着光轴从物侧至像侧依序包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和成像面S13。
第一透镜L1具有负屈折力,其物侧面S1和像侧面S2均为球面,其中物侧面S1为凸面,像侧面S2为凹面。
第二透镜L2具有正屈折力,其物侧面S3和像侧面S4均为球面,其中物侧面S3为凸面,像侧面S4为凸面。
第三透镜L3具有负屈折力,其物侧面S5和像侧面S6均为球面,其中物侧面S5为凹面,像侧面S6为凹面。
第四透镜L4具有正屈折力,其物侧面S7和像侧面S8均为球面,其中物侧面S7为凹面,像侧面S8为凸面。
第五透镜L5具有正屈折力,其物侧面S9和像侧面S10均为非球面,其中物侧面S9近光轴处为凸面,像侧面S10近光轴处为凸面。
第一透镜L1至第五透镜L5的材质均为玻璃。第二透镜L2和第三透镜L3之间还设置有光阑STO,以限制入射光束的大小,进一步提升透镜系统100的成像质量。透镜系统100还包括设于第五透镜L5像侧且具有物侧面S11和像侧面S12的保护玻璃120。
进一步的,第四透镜L4的物侧面S7上镀有红外滤光膜,用以滤除入射至透镜系统100的外界光线中的红外光线,避免因非工作波段光线的干扰而产生伪色或波纹的现象,防止成像色彩失真。
表23示出了实施例9的透镜系统100的各透镜的表面类型、曲率半径、厚度、材质、折射率、阿贝数(即色散系数)和各透镜的有效焦距,其中,曲率半径、厚度、各透镜的有效焦距的单位均为毫米(mm);表24示出了可用于实施例9中透镜非球面S9-S10的高次项系数,其中非球面面型可由实施例1中给出的公式(1)限定;表25示出了实施例9中给出的透镜系统100的相关参数数值。
表23
Figure PCTCN2020081803-appb-000031
Figure PCTCN2020081803-appb-000032
表24
Figure PCTCN2020081803-appb-000033
表25
Figure PCTCN2020081803-appb-000034
图18分别示出了实施例9的透镜系统100的纵向球差曲线图、像散曲线图以及畸变曲线图,透镜系统100的参考波长为587.56nm。其中纵向球差曲线图示出了波长为435.83nm、479.99nm、546.07nm、587.56nm以及656.27nm的光线经由透镜系统100后的会聚焦点偏离;像散曲线图示出了波长为587.56nm的光线经由透镜系统100后的子午像面弯曲和弧矢像面弯曲;畸变曲线图示出了波长为587.56nm的光线经由透镜系统100后不同像高情况下的畸变。根据图18可知,实施例9给出的透镜系统100能够实现良好的成像品质。
如图19所示,本申请还提供一种取像模组200,包括如前文所述的透镜系统100(如图1所示);以及感光元件210,感光元件210设于透镜系统100的像侧,感光元件210的感光表面与成像面S13重合。具体的,感 光元件210可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)图像传感器或者电荷耦合元件(CCD,Charge-coupled Device)图像传感器。
上述取像模组200利用前述的透镜系统100能够拍摄得到景深范围大、像素高、视角广的图像,同时取像模组200还具有小型化、轻量化的结构特点。取像模组200可应用于手机、汽车、监控、医疗等领域。具体可作为手机摄像头、车载摄像头、监控摄像头或内窥镜等。
如图20所示,上述取像模组200可作为车载摄像头应用于驾驶装置300中。驾驶装置300可以为自动驾驶汽车或非自动驾驶汽车。取像模组200可作为驾驶装置300的前视摄像头、后视摄像头或侧视摄像头。具体的,驾驶装置300包括车体310,取像模组200安装于车体的310的左后视镜、右后视镜、后尾箱、前大灯、后大灯等任意位置,以获取车体310周围的清晰的环境图像。此外,驾驶装置300中还设置有显示屏320,显示屏320安装于车体310内,且取像模组200与显示屏320通信连接,取像模组200所获得的影像信息能够传输至显示屏320中显示,从而使司机能够获得更完整的周边影像信息,提高驾驶时的安全保障。
特别地,在一些实施例中,取像模组200可应用于自动驾驶汽车上。继续参考图20,取像模组200安装于自动驾驶汽车车体上的任意位置,具体可参考上述实施例驾驶装置300中取像模组200的安装位置。对于自动驾驶汽车而言,取像模组200还可安装于车体的顶部。此时,通过在自动驾驶汽车上安装多个取像模组200以获得车体310周围360°视角的环境信息,取像模组200获得的环境信息将被传递至自动驾驶汽车的分析处理单元以对车体310周围的道路状况进行实时分析。通过采用取像模组200,可提高分析处理单元识别分析的准确性,从而提升自动驾驶时的安全性能。
如图21所示,本申请还提供一种电子装置400,包括壳体410以及如前文所述的取像模组200,取像模组200安装在壳体410上。具体的,取像模组200设置在壳体410内并从壳体410暴露以获取图像,壳体410可以给取像模组200提供防尘、防水防摔等保护,壳体410上开设有与取像模组200对应的孔,以使光线从孔中穿入或穿出壳体。
上述电子装置400,利用前述的取像模组200能够拍摄得到视角广、像素高、景深范围大的图像。在另一些实施方式中,上述电子装置400还设置有对应的处理系统,电子装置400在拍摄物体图像后可及时地将图像传送至对应的处理系统,以便系统做出准确的分析和判断。
另一些实施方式中,所使用到的“电子装置”还可包括,但不限于被设置成经由有线线路连接和/或经由无线接口接收或发送通信信号的装置。 被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种透镜系统,其特征在于,所述透镜系统沿着光轴由物侧至像侧依序包括:
    具有负屈折力的第一透镜,所述第一透镜的像侧面为凹面;
    具有正屈折力的第二透镜;
    具有负屈折力的第三透镜,所述第三透镜的物侧面为凹面,像侧面为凹面;
    具有正屈折力的第四透镜,所述第四透镜的像侧面为凸面;
    具有正屈折力的第五透镜;以及,
    光阑,所述光阑设于所述透镜系统的物侧或者所述第一透镜和所述第五透镜之间;
    所述透镜系统满足下列关系式:
    0.5<f12/f<2.5;
    其中,f12表示所述第一透镜和所述第二透镜的组合焦距,f表示所述透镜系统的有效焦距。
  2. 根据权利要求1所述的透镜系统,其特征在于,所述第一透镜至所述第五透镜中,至少一个透镜的物侧面和/或像侧面为非球面。
  3. 根据权利要求1所述的透镜系统,其特征在于,
    所述第五透镜和所述透镜系统的成像面之间设置有红外滤光片;或者,
    所述第一透镜至所述第五透镜中的一个透镜的物侧面或像侧面镀有红外滤光膜。
  4. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足下列关系式:
    -2<f3/f<-0.5;
    其中,f3表示所述第三透镜的有效焦距。
  5. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足下列关系式:
    2<f4/CT4<5;
    其中,f4表示所述第四透镜的有效焦距,CT4表示所述第四透镜在光轴上的厚度。
  6. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足下列关系式:
    1<f5/f<4;
    其中,f5表示所述第五透镜的有效焦距。
  7. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足 下列关系式:
    -3.5<f1/RS2<0;
    其中,f1表示所述第一透镜的有效焦距,RS2表示所述第一透镜的像侧面于光轴处的曲率半径。
  8. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足下列关系式:
    0<(D12+D23)/f<3;
    其中,D12表示所述第一透镜的像侧面至所述第二透镜的物侧面在光轴上的距离,D23表示所述第二透镜的像侧面至所述第三透镜的物侧面在光轴上的距离。
  9. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足下列关系式:
    5<|f1/CT1-f2/CT2|<12;
    其中,f1表示所述第一透镜的有效焦距,f2表示所述第二透镜的有效焦距,CT1表示所述第一透镜在光轴上的厚度,CT2表示所述第二透镜在光轴上的厚度。
  10. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足下列关系式:
    18<|RS5-RS6|/CT3<28;
    其中,RS5表示所述第三透镜的物侧面于光轴处的曲率半径,RS6表示所述第三透镜的像侧面于光轴处的曲率半径,CT3表示所述第三透镜在光轴上的厚度。
  11. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足下列关系式:
    0<(CT3+CT4)/CT5<3;
    CT3表示所述第三透镜在光轴上的厚度,CT4表示所述第四透镜在光轴上的厚度,CT5表示所述第五透镜在光轴上的厚度。
  12. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足下列关系式:
    50deg<(FOV*f)/ImgH<70deg;
    其中,FOV表示所述透镜系统的对角线方向视场角,ImgH表示所述透镜系统的成像面上有效像素区域的对角线方向长度。
  13. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足下列关系式:
    Nd3-Nd5>0;
    其中,Nd3表示所述第三透镜的d光折射率,Nd5表示所述第五透镜的d光折射率。
  14. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足下列关系式:
    Vd5-Vd3>30;
    其中,Vd3表示所述第三透镜的d光阿贝数,Vd5表示所述第五透镜的d光阿贝数。
  15. 根据权利要求1所述的透镜系统,其特征在于,所述透镜系统满足下列关系式:
    0<BFL/TTL<1;
    其中,BFL表示所述透镜系统的光学后焦,TTL表示所述第一透镜至所述透镜系统的成像面在光轴上的距离。
  16. 一种取像模组,其特征在于,包括如权利要求1-15任一项所述的透镜系统以及感光元件,所述感光元件设于所述透镜系统的像侧。
  17. 一种电子装置,其特征在于,包括壳体以及如权利要求16所述的取像模组,所述取像模组安装在所述壳体上。
  18. 一种驾驶装置,其特征在于,包括车体以及如权利要求16所述的取像模组,所述取像模组设于所述车体以获取所述车体周围的环境信息。
PCT/CN2020/081803 2020-03-27 2020-03-27 透镜系统、取像模组、电子装置及驾驶装置 WO2021189457A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081803 WO2021189457A1 (zh) 2020-03-27 2020-03-27 透镜系统、取像模组、电子装置及驾驶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081803 WO2021189457A1 (zh) 2020-03-27 2020-03-27 透镜系统、取像模组、电子装置及驾驶装置

Publications (1)

Publication Number Publication Date
WO2021189457A1 true WO2021189457A1 (zh) 2021-09-30

Family

ID=77890132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081803 WO2021189457A1 (zh) 2020-03-27 2020-03-27 透镜系统、取像模组、电子装置及驾驶装置

Country Status (1)

Country Link
WO (1) WO2021189457A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201508431U (zh) * 2008-10-29 2010-06-16 富士能株式会社 摄像透镜及摄像装置
CN102033302A (zh) * 2009-10-02 2011-04-27 株式会社尼康 广角镜头、光学设备,和用于制造广角镜头的方法
CN103492924A (zh) * 2010-12-21 2014-01-01 富士胶片株式会社 成像镜头和成像设备
CN104749744A (zh) * 2013-12-31 2015-07-01 大立光电股份有限公司 取像光学镜头、取像装置以及可携式装置
CN105074529A (zh) * 2013-02-28 2015-11-18 富士胶片株式会社 摄像透镜及摄像装置
US20180045921A1 (en) * 2015-05-01 2018-02-15 Nikon Corporation Imaging lens and image capturing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201508431U (zh) * 2008-10-29 2010-06-16 富士能株式会社 摄像透镜及摄像装置
CN102033302A (zh) * 2009-10-02 2011-04-27 株式会社尼康 广角镜头、光学设备,和用于制造广角镜头的方法
CN103492924A (zh) * 2010-12-21 2014-01-01 富士胶片株式会社 成像镜头和成像设备
CN105074529A (zh) * 2013-02-28 2015-11-18 富士胶片株式会社 摄像透镜及摄像装置
CN104749744A (zh) * 2013-12-31 2015-07-01 大立光电股份有限公司 取像光学镜头、取像装置以及可携式装置
US20180045921A1 (en) * 2015-05-01 2018-02-15 Nikon Corporation Imaging lens and image capturing device

Similar Documents

Publication Publication Date Title
WO2022016316A1 (zh) 光学镜头、取像模组、电子装置及驾驶装置
CN111258030A (zh) 光学系统、摄像模组、电子装置及汽车
CN112505883A (zh) 光学系统、取像模组、电子装置及驾驶装置
WO2021223137A1 (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
WO2021184214A1 (zh) 广角镜头、成像模组、电子装置及驾驶装置
WO2021189463A1 (zh) 光学成像系统、成像模组、电子装置及驾驶装置
CN211698386U (zh) 光学系统、摄像模组、电子装置及汽车
CN211698392U (zh) 光学成像系统、成像模组、电子装置及驾驶装置
CN211478743U (zh) 成像镜头、取像装置、电子装置及驾驶装置
WO2021164013A1 (zh) 光学系统、摄像模组、电子装置及汽车
CN111258031A (zh) 光学镜头、成像模组、电子装置及驾驶装置
WO2021022500A1 (zh) 光学系统、摄像模组及汽车
CN111239967A (zh) 光学系统、摄像模组、电子装置及汽车
WO2021184212A1 (zh) 光学镜头、成像模组、电子装置及驾驶装置
CN111708150A (zh) 成像镜头、取像模组、电子装置及驾驶装置
CN111856710A (zh) 光学镜头、取像模组、电子装置及驾驶装置
WO2021184208A1 (zh) 摄像镜头、取像装置、电子装置及驾驶装置
CN212181142U (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
CN211698381U (zh) 光学系统、摄像模组、电子装置及汽车
WO2021189457A1 (zh) 透镜系统、取像模组、电子装置及驾驶装置
CN213423582U (zh) 光学成像系统、镜头模组和电子设备
CN212364696U (zh) 光学镜头、取像模组、电子装置及驾驶装置
CN212341570U (zh) 成像镜头、取像模组、电子装置及驾驶装置
WO2022011498A1 (zh) 光学系统、取像模组及电子装置
CN111273426A (zh) 广角镜头、成像模组、电子装置及驾驶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.01.2023) .

122 Ep: pct application non-entry in european phase

Ref document number: 20926937

Country of ref document: EP

Kind code of ref document: A1