WO2018090938A1 - 光学镜头 - Google Patents

光学镜头 Download PDF

Info

Publication number
WO2018090938A1
WO2018090938A1 PCT/CN2017/111193 CN2017111193W WO2018090938A1 WO 2018090938 A1 WO2018090938 A1 WO 2018090938A1 CN 2017111193 W CN2017111193 W CN 2017111193W WO 2018090938 A1 WO2018090938 A1 WO 2018090938A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image
optical
convex
faces
Prior art date
Application number
PCT/CN2017/111193
Other languages
English (en)
French (fr)
Inventor
姚波
谢前森
王东方
Original Assignee
宁波舜宇车载光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇车载光学技术有限公司 filed Critical 宁波舜宇车载光学技术有限公司
Priority to US16/349,891 priority Critical patent/US11275233B2/en
Publication of WO2018090938A1 publication Critical patent/WO2018090938A1/zh
Priority to US17/580,188 priority patent/US11921265B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses

Definitions

  • the present invention relates to the field of optical imaging technology, and still further relates to an optical lens for optical imaging.
  • the application range of the camera is becoming wider and wider, and the in-vehicle camera is one of the important aspects, and the optical lens is an important component in the in-vehicle camera.
  • a forward-looking camera usually needs to observe objects at a long distance, so the focal length of the optical lens is required to be long, but this makes the lens angle of view limited, and the angle of view is small, and it is difficult to observe a large angle range around the vehicle.
  • an optical lens with a large angle of view such as a wide-angle lens.
  • the conventional driving assistance system uses a front-view camera to capture and observe distant objects, and cooperates with a wide-angle lens with a short focal angle and a wide angle of view to observe the environment of a large angle range around the vehicle, and then combines the images taken by the two lenses with software.
  • the entire driving assistance system needs to use two or more optical lenses to cooperate with each other, so that the cost of the lens increases, the space occupied by the vehicle body increases, and the image image also needs to be stitched by software, so that the components of the auxiliary system and the operation are performed. The steps will increase.
  • An advantage of the present invention is to provide an optical lens in which the optical lens combines a combination of telephoto and wide-angle features to achieve both conventional telephoto and wide-angle functions through a single lens.
  • An advantage of the present invention is to provide an optical lens in which the focal length of the optical lens is smaller in the range of smaller field of view near the center, and the viewing distance is large.
  • One advantage of the present invention is to provide an optical lens in which the overall field of view of the optical lens is large and the viewing range is wide.
  • One advantage of the present invention is to provide an optical lens in which the resolution of the optical lens is high.
  • One advantage of the present invention is to provide an optical lens in which the aperture of the optical lens is large.
  • An advantage of the present invention is to provide an optical lens in which the optical lens is suitable for an in-vehicle environment, and a telephoto and wide-angle function can be simultaneously realized by one lens, thereby reducing the lens cost of the driving system.
  • An advantage of the present invention is to provide an optical lens in which the central region of the optical lens has high angular resolution and high environmental recognition.
  • the present invention provides an optical lens comprising: a first lens; a second lens; a third lens; a fourth lens; a fifth lens; and a sixth lens;
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens are sequentially disposed from an object side to an image side direction; wherein the first The lens has an object surface facing the object side, the image surface of the first lens faces the image side, and the object surface of the first lens is convex
  • the first lens has a negative refractive power, and the image surface of the first lens is a concave surface;
  • the second lens has an object surface and an image surface, and the object surface of the second lens Oriented toward the object side, the image plane of the second lens faces the image side, the object surface of the second lens is a concave surface, and the image surface of the second lens is a convex surface;
  • the third lens Having a surface and an image surface, the object surface of the third lens is
  • the second lens of the optical lens has a negative power.
  • the fourth lens of the optical lens has an object surface and an image surface, the object surface of the fourth lens faces the object side, and the image surface orientation image of the fourth lens
  • the object surface of the fourth lens is a convex surface, and the image surface of the fourth lens is a concave surface.
  • the fifth lens has an object surface and an image surface, the object surface of the fifth lens faces the object side, and the image surface orientation of the fifth lens In the image side, the object surface of the fifth lens is a convex surface, and the image surface of the fifth lens is a convex surface.
  • the sixth lens of the optical lens has an object surface and an image surface, the object surface of the sixth lens faces an object side, and the image plane orientation of the sixth lens In the image side, the object surface of the sixth lens is a convex surface, the image surface of the sixth lens is a convex surface, and the sixth lens has a positive power.
  • the second lens of the optical lens has positive power.
  • the fourth lens has an object surface and an image surface, the object surface of the fourth lens faces the object side, and the image surface orientation of the fourth lens In the image side, the object surface of the fourth lens is a concave surface, and the image surface of the fourth lens is a concave surface, wherein the fifth lens has an object surface and an image surface, and the fifth lens The object surface faces the object side, the image surface of the fifth lens faces the image side, wherein the object surface of the fifth lens is a convex surface, and the image surface of the fifth lens is a convex surface.
  • the sixth lens has positive power.
  • the sixth lens of the optical lens has an object surface and an image surface, the object surface of the sixth lens faces an object side, and the image plane orientation of the sixth lens In the image side, the object surface of the sixth lens is a convex surface, and the image surface of the sixth lens of the sixth lens is a convex surface.
  • the sixth lens of the optical lens has an object surface and an image surface, the object surface of the sixth lens faces an object side, and the image plane orientation of the sixth lens In the image side, the object surface of the sixth lens is a convex surface, and the image surface of the sixth lens is a concave surface.
  • the fourth lens has an object surface and an image surface, the object surface of the fourth lens faces the object side, and the image surface orientation of the fourth lens In the image side, the object surface of the fourth lens is a convex surface, the image surface of the fourth lens is a concave surface, and the fifth lens has an object surface and an image surface, and the fifth lens The object surface faces the object side, the image surface of the fifth lens faces the image side, the object surface of the fifth lens is a convex surface, and the image surface of the fifth lens is a convex surface, the The six lens has an object surface facing the object side, the image surface facing the image side, the object surface of the sixth lens being a convex surface, the sixth surface The image plane of the lens is a convex surface, and the sixth lens has a positive power.
  • the fifth lens has an object surface and an image surface
  • the object surface of the fifth lens faces the object side
  • the image surface orientation of the fifth lens In the image side, the object surface of the fifth lens is a convex surface
  • the image surface of the fifth lens is a concave surface
  • the sixth lens has an object surface and an image surface
  • the sixth lens The object surface faces the object side
  • the image surface of the sixth lens faces the image side
  • the object surface of the sixth lens is a convex surface
  • the image surface of the sixth lens is a convex surface
  • the image surface of the sixth lens is a convex surface
  • the The six lenses have positive power.
  • the sixth lens of the optical lens has an object surface and an image surface, the object surface of the sixth lens faces an object side, and the image plane orientation of the sixth lens In the image side, the object surface of the sixth lens is a convex surface, the image surface of the sixth lens is a concave surface, and the sixth lens has a positive power.
  • the fourth lens has an object surface and an image surface, the object surface of the fourth lens faces the object side, and the image surface orientation of the fourth lens In the image side, the object surface of the fourth lens is a convex surface, the image surface of the fourth lens is a concave surface, and the fifth lens has an object surface and an image surface, and the fifth lens The object surface faces the object side, the image surface of the fifth lens faces the image side, the object surface of the fifth lens is a convex surface, and the image surface of the fifth lens is a convex surface, the The six lenses have a negative power.
  • the sixth lens of the optical lens has an object surface and an image surface, the object surface of the sixth lens faces an object side, and the image plane orientation of the sixth lens In the image side, the object surface of the sixth lens is a concave surface, and the image surface of the sixth lens is a convex surface.
  • the sixth lens of the optical lens has an object surface and an image surface, the object surface of the sixth lens faces an object side, and the image plane orientation of the sixth lens In the image side, the object surface of the sixth lens is a concave surface, and the image surface of the sixth lens is a concave surface.
  • the fourth lens has an object surface and an image surface, the object surface of the fourth lens faces the object side, and the image surface orientation of the fourth lens In the image side, the object surface of the fourth lens is a convex surface, the image surface of the fourth lens is a convex surface, and the fifth lens has an object surface and an image surface, and the fifth lens The object surface faces the object side, the image surface of the fifth lens faces the image side, the object surface of the fifth lens is a concave surface, and the image surface of the fifth lens is a convex surface, the The six lens has an object surface facing the object side, the image surface of the sixth lens facing the image side, and the object surface of the sixth lens is The convex surface, the image plane of the sixth lens is a convex surface, and the sixth lens has a positive power.
  • the fourth lens has an object surface and an image surface, the object surface of the fourth lens faces the object side, and the image surface orientation of the fourth lens In the image side, the object surface of the fourth lens is a convex surface, the image surface of the fourth lens is a concave surface, and the fifth lens has an object surface and an image surface, and the fifth lens The object surface faces the object side, the image surface of the fifth lens faces the image side, the object surface of the fifth lens is a convex surface, and the image surface of the fifth lens is a convex surface, the The six lens has an object surface facing the object side, the image surface of the sixth lens facing the image side, and the object surface of the sixth lens is The convex surface, the image surface of the sixth lens is a concave surface, and the sixth lens has a positive power.
  • the fourth lens and the fifth lens are glued in the optical lens.
  • the radius of curvature of the object surface of the first lens in the optical lens R1, a radius of curvature R2 of the image plane of the first lens and a center thickness d1 of the first lens satisfy:
  • the curvature radius R3 of the image plane of the second lens in the optical lens, the radius of curvature R4 of the image plane of the second lens, and the center thickness d2 of the first lens Satisfy:
  • the focal length F1 of the first lens and the entire set of focal length F of the optical lens in the optical lens satisfy:
  • the focal length F2 of the second lens and the entire set of focal length F of the optical lens in the optical lens satisfy:
  • the optical system total length TTL of the optical lens and the entire set of focal lengths F of the optical lens in the optical lens satisfy:
  • the maximum angle of view FOVm of the optical lens and the image height Ym corresponding to the maximum field of view of the optical lens in the optical lens satisfy:
  • the first lens in the optical lens is an aspherical mirror
  • the object mask of the first lens has a central area and an edge area extending outward from the central area
  • the central area of the object surface of the first lens is a convex surface
  • the edge area of the object surface of the first lens is a concave surface.
  • the first lens and the second lens in the optical lens are aspherical mirrors.
  • Figure 1 is a schematic view showing the structure of an optical lens according to a first embodiment of the present invention.
  • Fig. 3 is a schematic structural view of an optical lens according to a second embodiment of the present invention.
  • Fig. 5 is a schematic structural view of an optical lens according to a third embodiment of the present invention.
  • Figure 6 is an MTF curve of an optical lens according to a third embodiment of the present invention.
  • Fig. 7 is a schematic structural view of an optical lens according to a fourth embodiment of the present invention.
  • Figure 8 is an MTF curve of an optical lens according to a fourth embodiment of the present invention.
  • Figure 9 is a schematic structural view of an optical lens according to a fifth embodiment of the present invention.
  • Figure 10 is an MTF curve of an optical lens according to a fifth embodiment of the present invention.
  • Figure 11 is a schematic structural view of an optical lens according to a sixth embodiment of the present invention.
  • Figure 12 is an MTF curve of an optical lens according to a sixth embodiment of the present invention.
  • Figure 13 is a schematic structural view of an optical lens according to a seventh embodiment of the present invention.
  • Figure 14 is an MTF curve of an optical lens according to a seventh embodiment of the present invention.
  • Figure 15 is a schematic structural view of an optical lens according to an eighth embodiment of the present invention.
  • Figure 16 is an MTF curve of an optical lens according to an eighth embodiment of the present invention.
  • Figure 17 is a schematic structural view of an optical lens according to a ninth embodiment of the present invention.
  • Figure 18 is an MTF curve of an optical lens according to a ninth embodiment of the present invention.
  • Figure 19 is a schematic structural view of an optical lens according to a tenth embodiment of the present invention.
  • Figure 20 is an MTF curve of an optical lens according to a tenth embodiment of the present invention.
  • Figure 21 is a schematic structural view of an optical lens according to an eleventh embodiment of the present invention.
  • Figure 22 is an MTF curve of an optical lens according to an eleventh embodiment of the present invention.
  • an optical lens according to a first embodiment of the present invention is illustrated, wherein the optical lens includes at least a first lens L1, at least a second lens L2, and a third lens L3. , A fourth lens L4, a fifth lens L5 and a sixth lens L6.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are in an object-to-image direction Arrange in order.
  • the first lens L1 has a negative refractive power, and the first lens L1 has an object surface S1 facing the object side and an image surface S2 facing the image side.
  • the object plane S1 of the first lens L1 is convex in order to increase the luminous flux of the optical lens. That is, the object surface S1 of the convex surface of the first lens L1 converges a large angle of light to increase the luminous flux entering the optical lens by the object side.
  • the object surface S1 of the first lens L1 is an aspherical mirror in order to reduce the processing difficulty.
  • the first lens L1 may be a spherical mirror.
  • the image plane S2 of the first lens L1 is a concave surface. That is, the first lens L1 includes two faces S1, S2, one of which is a convex surface and the other of which is a concave surface, the concave surface and the convex surface form a meniscus shape, and the meniscus is convex toward the object side. In order to increase the light entering the optical lens.
  • the lens surface when the lens surface is convex and the position of the convex surface is not defined, it indicates that the near-optical axis of the surface of the lens is convex;
  • the lens surface When the lens surface is concave and does not define the position of the concave surface, it indicates that the lens surface is concave at the near optical axis.
  • the second lens L2 has an object surface S3 facing the object side and an image surface S4 facing the image side.
  • the image plane S4 of the second lens L2 is convex to facilitate proper divergence of light passing through the first lens L1 to the rear of the optical lens.
  • the second lens L2 has a negative power.
  • the second lens L2 has a function of a transition light to smoothly transition the light of the first lens L1 to the third lens L3.
  • the second lens L2 is an aspherical mirror in order to reduce the processing difficulty.
  • the second lens L2 may be a spherical mirror.
  • the object plane S3 of the second lens L2 is convex. That is, the second lens L2 includes two faces S3, S4, one of which is a convex surface and the other of which is a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the image side. In order to transmit the light transmitted by the first lens L1 to the rear.
  • the meniscus shapes of the first lens L1 and the second lens L2 are oppositely arranged, Close to the concentric circle structure, the center of the optical lens has a larger focal length while achieving a larger overall field of view angle, that is, a higher central angle resolution.
  • the third lens L3 has an object surface S5 facing the object side, and an image surface S6 facing the image side.
  • the object plane S5 and the image plane S6 of the third lens L3 are both convex to facilitate concentrating the light transmitted by the second lens L2 and being transmitted to the rear of the optical lens.
  • the third lens L3 is a lenticular lens having a light transition and a converging effect.
  • the third lens L3 has a positive power.
  • the fourth lens L4 and the fifth lens L5 constitute an achromatic lens group in order to reduce the chromatic aberration of light transmitted by the front member of the optical lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 form a front lens group.
  • a rear lens group wherein the front lens group includes the first lens L1, the second lens L2, and the third lens L3, and the rear lens group includes the fourth lens L4, the first The fifth lens L5 and the sixth lens L6.
  • the front lens group and the rear lens group are disposed in order from the object side to the image side direction.
  • the fifth lens L5 and the sixth lens L6 are coaxial with each other.
  • the main optical axis is the same.
  • the optical lens further includes a diaphragm L7, wherein the front lens group and the rear lens group are respectively disposed on both sides of the aperture L7 Wherein the optical center of the aperture L7 and the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth
  • the optical center of the lens L6 is coaxial.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4 to reduce the optical lens.
  • the stray light makes the optical lens have a good imaging effect.
  • the aperture L7 may be disposed at other positions, such as between the second lens L2 and the third lens L3, between the fourth lens L4 and the fifth lens L5, and the fifth lens L5.
  • the position of the aperture L7 is not a limitation of the present invention.
  • the front through The mirror group is not limited to being composed of the first lens L1, the second lens L2, and the third lens L3, and the rear lens group is not limited to being the fourth lens L4, the fifth lens L5, and the sixth lens.
  • the L6 is composed, and when the aperture L7 is disposed at different positions, the optical lens may constitute different of the front lens group and the rear lens group.
  • the fourth lens L4 has an object plane S7 and an image plane S8, the object plane S7 faces the object side, and the image plane S8 faces the image side. .
  • the object surface S7 of the fourth lens L4 is a convex surface
  • the image surface S8 of the fourth lens L4 is a concave surface.
  • the fourth lens L4 has two faces S7, S8, which are respectively a convex surface and a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the object side.
  • the fourth lens L4 has a negative power.
  • the fifth lens L5 has an object surface S9 facing the object side, and an image surface S10 facing the image side. Further, the object surface S9 of the fifth lens L5 is a convex surface, and the image surface S10 of the fifth lens L5 is a convex surface. In other words, the fifth lens L5 is a lenticular lens. Further, according to this embodiment of the invention, the fifth lens L5 has positive power.
  • the image surface S8 of the fourth lens L4 and the object surface S9 of the fifth lens L5 are disposed to face each other.
  • the image plane S8 of the fourth lens L4 and the object plane S9 of the fifth lens L5 are oppositely disposed, in this embodiment, that is, the concave surface of the fourth lens L4 and the The convex surfaces of the fifth lens L5 are disposed to face each other.
  • the sixth lens L6 has an object surface S11 facing the object side, and an image surface S12 facing the image side. Further, the object surface S11 of the sixth lens L6 is a convex surface, and the image surface S12 of the sixth lens L6 is a convex surface. In other words, the sixth lens L6 is a lenticular lens. further. The sixth lens L6 has a positive power. The aberration and distortion are further trimmed by the sixth lens L6, so that the imaging quality of the optical lens is better.
  • the sixth lens L6 is used to appropriately increase the distortion of the lens edge of the front lens of the optical lens, so that a large angle of light can reach a predetermined size.
  • the imaging surface L10 such as the photosensitive chip surface, can be continuously corrected by software processing in the later stage, so that the image formed by the light after the sixth lens L6 is restored to normal, that is, the image is obtained at a large angle.
  • the optical lens further includes a planar lens L9 for protecting the optical lens from isolation.
  • a planar lens L9 for protecting the optical lens from isolation.
  • the planar lens L9 may not be provided, and the present invention is not limited in this respect.
  • the first lens L1 of the optical lens has a convex surface and a concave surface
  • the second lens L2 has a concave surface and a convex surface
  • the first lens L1 The convex surface is disposed toward the object side
  • the concave surface of the first lens L1 is disposed toward the image side
  • the concave surface of the second lens L2 is disposed toward the object side
  • the convex surface of the second lens L2 Set to face the image side.
  • the third lens L3 has two convex surfaces facing the object side and the image side, respectively.
  • the fourth lens L4 has a convex surface and a concave surface facing the object side and the image side, respectively, and the fifth lens L5 has two convex surfaces facing the object side and the image side, respectively, wherein the concave surface of the fourth lens L4
  • the convex surface of the fifth lens L5 is disposed face to face.
  • the sixth lens L6 has two convex surfaces which are respectively disposed toward the object side and the image side.
  • the achromatic lens group of the optical lens is preferably a cemented lens.
  • the fourth lens L4 and the fifth lens L5 are glued together to form the achromatic lens group.
  • the image surface S8 of the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are The object surface S9 is placed face to face in a glued manner.
  • the achromatic lens group may also be a separate achromatic lens group. It is to be understood that when the achromatic lens group is a separate achromatic lens group, the fourth lens L4 and the fifth lens L5 are disposed separately.
  • the first lens L1 and the second lens L2 may be made of a glass material, or may be made of other materials having good light transmission properties, such as plastics and resins. It will be understood by those skilled in the art that in the optical lens of the present invention, light is entered by the first lens L1, and transmitted to the second lens L2 after being concentrated by the first lens L1. Therefore, a large angle of light can be collected by the first lens L1, and further, after the light passes through the first lens L1, the second lens L2 is reached, and the light concentrated by the first lens L1 is The two lenses L2 are appropriately diverged and transmitted to the rear of the optical lens.
  • the refractive indices Nd of the first lens L1 and the second lens L2 need to cooperate with each other, but those skilled in the art should understand that The refractive index Nd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • the first lens L1 and the second lens L2 are provided with an Abbe constant Vd such that the lens has Good imaging quality, but it will be understood by those skilled in the art that the Abbe constant Vd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • the optical lens includes, in order from the object side to the image side, a front lens group, a diaphragm L7, a rear lens group, a filter element L8, a plane lens L9, and an imaging surface L10.
  • the front lens group includes: a first lens L1, a second lens L2, and a third lens L3 from the object side to the image side, the first lens L1 being a meniscus lens having a negative refractive power,
  • the second lens L2 is a meniscus lens having a negative refractive power, the concave surfaces of the first lens L1 and the second lens L2 are opposite, and the third lens L3 is a lenticular lens having positive refractive power;
  • the rear lens group includes, from the object side to the image side, a fourth lens L4, a fifth lens L5, and a sixth lens L6, the fourth lens L4 being a meniscus lens having a negative power, the fifth lens L5
  • the concave surface of the fourth lens L4 is opposite to the convex surface of the fifth lens L5. Further, the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are glued.
  • the sixth lens L6 is a lenticular lens having positive power
  • the first lens L1 satisfies the following conditions:
  • R1 is a radius of curvature of the object surface S1 of the first lens L1
  • R2 is a radius of curvature of the image plane S2 of the first lens L1
  • d1 is a center thickness of the first lens L1.
  • the second lens L2 satisfies the following conditions:
  • R3 is a radius of curvature of the object surface S3 of the second lens L2
  • R4 is a radius of curvature of the image plane S4 of the second lens L2
  • d2 is a center thickness of the second lens L2.
  • the relationship between the respective curvature radii and the thickness of the first lens L1 and the second lens L2 is restricted such that the first lens L1 and the second lens L2 are close to a concentric circle, thereby When the concave surfaces of the first lens L1 and the second lens L2 are oppositely disposed, a larger angle of light can be collected into the optical lens, and is transmitted backward by proper diffusion of the second lens L2.
  • the focal length F1 of the first lens L1 and the combined focal length F of the optical lens satisfy the following conditions:
  • the focal length F2 of the second lens L2 and the entire set of focal lengths F of the optical lens satisfy the following conditions:
  • the optical system has an overall length of TTL, and the entire set of focal lengths of the optical lens is F, and then 2.0 ⁇ TTL/F ⁇ 6.0.
  • the maximum angle of view of the optical lens is FOVm
  • the image height corresponding to the maximum angle of view of the optical lens is Ym, then (FOVm ⁇ F)/Ym ⁇ 45.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are glass aspherical mirrors
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are not limited to a glass aspherical mirror, and may be a plastic aspherical or spherical mirror, etc.
  • the three lenses L3, the fourth lens L4, and the fifth lens L5 are not limited to the glass spherical mirror, and may be a glass aspheric surface, a plastic aspheric surface, or a resin aspheric surface. The present invention is not limited in this respect.
  • the optical lens is constructed using six lenses consisting of three glass spheres and three glass aspheric surfaces, for example, the first lens L1, the second lens L2, and
  • the sixth lens L6 is a glass aspherical lens
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are glass spherical lenses, so that the optical lens has a long focal length and a large angle of view, and passes through
  • the glass aspherical lens ensures the resolution of the optical lens and reduces chromatic aberration.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1 and the second lens L2 are close to the concentric lens, and are aspherical, so that a large angle of light can be effectively and smoothly concentrated, and due to the aspherical setting, the conventional spherical concentric lens processing is avoided. problem.
  • the object surface S1 of the first lens L1 has a central area S101 and an edge area S102 extending outward from the central area S101, the first lens L1
  • the central region S101 of the object surface S1 is a convex surface
  • the edge region S102 of the object surface S1 of the first lens L1 is a concave surface.
  • the aspherical mirror surfaces of the first lens L1, the second lens L2, and the sixth lens L6 satisfy the following formula:
  • Z(h) is the position of the aspherical surface at height h in the optical axis direction
  • the distance vector from the aspherical vertex is high
  • c 1/r
  • r represents the radius of curvature of the aspherical mirror surface
  • k is the conic coefficient conic
  • A, B, C, D, and E are high-order aspheric coefficients.
  • the optical performance curve of this embodiment of the present invention is seen by the MTF curve of the optical lens, which has a higher resolution and better optical performance.
  • the two surfaces of the first lens L1 that is, the object surface and the image surface are S1 and S2, respectively
  • the two surfaces of the second lens L2 that is, the object surface and the image surface are S3 and S4, respectively.
  • the two faces of the three lenses L3, that is, the object plane and the image plane are S5 and S6, respectively
  • the two faces of the fourth lens L4 that is, the object surface and the image plane are S7 and S8, respectively, and both sides of the fifth lens L5 are objects.
  • the surface and the image surface are respectively S9 and S10, and the two surfaces of the sixth lens L6, that is, the object surface and the image surface are S11 and S12, respectively, and the two sides of the filter element L8 are respectively S13 and S14, and the plane lens L9 is respectively The two sides are respectively S15 and S16, and the image plane is S17; the S1-S17 are in one-to-one correspondence with the surface numbers in Tables 1 and 2 below.
  • the optical lens of the present invention can meet the requirements of miniaturization, realize long focal length, large angle of view, and large aperture through the design of six lens structures and aspherical lenses close to concentric circles. It meets the high definition requirements and effectively corrects various aberrations of the optical system. It is especially suitable for in-vehicle camera systems, capturing distant objects, and the overall viewing field is enlarged.
  • a traditional telephoto lens can be realized by one lens. The functions of the two lenses and the wide-angle lens reduce the cost of the in-vehicle camera system and improve the actual performance of the lens.
  • an optical lens according to a second embodiment of the present invention is described, wherein the optical lens includes at least a first lens L1, at least a second lens L2, a third lens L3, and a first lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are in an object-to-image direction Arrange in order.
  • the first lens L1 has a negative refractive power, and the first lens L1 has an object surface S1 facing the object side and an image surface S2 facing the image side.
  • the object plane S1 of the first lens L1 is convex in order to increase the luminous flux of the optical lens. That is, the object surface S1 of the convex surface of the first lens L1 converges a large angle of light to increase the luminous flux entering the optical lens by the object side.
  • the object surface S1 of the first lens L1 is an aspherical mirror in order to reduce the processing difficulty.
  • the first lens L1 may be a spherical mirror.
  • the image plane S2 of the first lens L1 is a concave surface. That is, the first lens L1 includes two faces S1, S2, one of which is convex, and the other The face is a concave surface, the concave surface and the convex surface form a meniscus shape, and the meniscus is convex toward the object side in order to increase the light entering the optical level lens.
  • the lens surface when the lens surface is convex and the position of the convex surface is not defined, it indicates that the near-optical axis of the surface of the lens is convex;
  • the lens surface When the lens surface is concave and does not define the position of the concave surface, it indicates that the lens surface is concave at the near optical axis.
  • the second lens L2 has an object surface S3 facing the object side and an image surface S4 facing the image side.
  • the image plane S4 of the second lens L2 is convex to facilitate proper divergence of light passing through the first lens L1 to the rear of the optical lens.
  • the second lens L2 has a positive power. That is, the second lens L2 functions as a transition light to smoothly transition the light of the first lens L1 to the third lens L3.
  • the second lens L2 is an aspherical mirror in order to reduce the processing difficulty.
  • the second lens L2 may be a spherical mirror.
  • the object plane S3 of the second lens L2 is convex. That is, the second lens L2 includes two faces S3, S4, one of which is a convex surface and the other of which is a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the image side. In order to transmit the light transmitted by the first lens L1 to the rear.
  • the meniscus shapes of the first lens L1 and the second lens L2 are oppositely arranged, close to the concentric circle structure, so that the optical lens near the center has a smaller angle of view, a larger focal length, and a larger High angular resolution.
  • the third lens L3 has an object surface S5 facing the object side, and an image surface S6 facing the image side.
  • the object plane S5 and the image plane S6 of the third lens L3 are both convex to facilitate concentrating the light transmitted by the second lens L2 and being transmitted to the rear of the optical lens.
  • the third lens L3 is a lenticular lens having a light transition and a converging effect.
  • the third lens L3 has a positive power.
  • the fourth lens L4 and the fifth lens L5 constitute an achromatic lens group in order to reduce the chromatic aberration of light transmitted by the front member of the optical lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 form a front lens group.
  • a rear lens group wherein the front lens group includes the first lens L1, the second lens L2, and the third lens L3,
  • the rear lens group includes the fourth lens L4, the fifth lens L5, and the sixth lens L6.
  • the front lens group and the rear lens group are disposed in order from the object side to the image side direction.
  • the fifth lens L5 and the sixth lens L6 are coaxial with each other.
  • the main optical axis is the same.
  • the optical lens further includes a stop L7, wherein the front lens group and the rear lens group are respectively disposed on both sides of the aperture L7 Wherein the optical center of the aperture L7 and the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth
  • the optical center of the lens L6 is coaxial.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4 to reduce the optical lens.
  • the stray light makes the optical lens have a good imaging effect.
  • the aperture L7 may be disposed at other positions, such as between the second lens L2 and the third lens L3, between the fourth lens L4 and the fifth lens L5, and the fifth lens L5.
  • the position of the aperture L7 is not a limitation of the present invention.
  • the front lens group is not limited to being composed of the first lens L1, the second lens L2, and the third lens L3, and the rear lens group is not limited to being the fourth lens L4, the fifth lens L5, the sixth lens L6 is composed, and when the diaphragm L7 is disposed at different positions, the optical lens may constitute different front lens groups and rear lens groups.
  • the fourth lens L4 has an object plane S7 and an image plane S8, the object plane S7 faces the object side, and the image plane S8 faces the image side. .
  • the object surface S7 of the fourth lens L4 is a concave surface
  • the image surface S8 of the fourth lens L4 is a concave surface.
  • the fourth lens L4 has two faces S7, S8, respectively two concave faces, and the fourth lens is a double concave lens.
  • the fourth lens L4 has a negative power.
  • the fifth lens L5 has an object surface S9 facing the object side, and an image surface S10 facing the image side. Further, the fifth lens L5 The object surface S9 is a convex surface, and the image surface S10 of the fifth lens L5 is a convex surface. In other words, the fifth lens L5 is a lenticular lens. Further, the fifth lens L5 has a positive power.
  • the image surface S8 of the fourth lens L4 and the object surface S9 of the fifth lens L5 are disposed to face each other.
  • the image plane S8 of the fourth lens L4 and the object plane S9 of the fifth lens L5 are disposed face to face, in this embodiment, that is, the concave surface of the fourth lens L4 and the The convex surface of the fifth lens L5 is disposed face to face.
  • the sixth lens L6 has an object surface S11 facing the object side, and an image surface S12 facing the image side. Further, the object surface S11 of the sixth lens L6 is a convex surface, and the image surface S12 of the sixth lens L6 is a convex surface. In other words, the sixth lens L6 is a lenticular lens. further. The sixth lens L6 has a positive power. The aberration and distortion are further corrected by the sixth lens L6, so that the imaging quality of the optical lens is better.
  • the sixth lens L6 is used to appropriately increase the distortion of the lens edge of the front lens of the optical lens, so that a large angle of light can reach a predetermined size.
  • the imaging surface L10 such as the photographic chip surface, can continue to revise the image by post-software processing, and also causes the image formed by the light after the sixth lens L6 to return to normal, that is, to obtain a large angle of imaging.
  • the optical lens further includes a planar lens L9 for protecting the optical lens from isolation.
  • a planar lens L9 for protecting the optical lens from isolation.
  • the planar lens L9 may not be provided, and the present invention is not limited in this respect.
  • the first lens L1 of the optical lens has a convex surface and a concave surface
  • the second lens L2 has a concave surface and a convex surface
  • the first lens L1 The convex surface is disposed toward the object side
  • the concave surface of the first lens L1 is disposed toward the image side
  • the concave surface of the second lens L2 is disposed toward the object side
  • the convex surface of the second lens L2 Set to face the image side.
  • the third lens L3 has two convex surfaces facing the object side and the image side, respectively.
  • the fourth lens L4 has two concave surfaces facing the object side and the image side, respectively, and the fifth lens L5 has two convex surfaces facing the object side and the image side, respectively, wherein the concave surface and the surface of the fourth lens L4
  • the convex surfaces of the fifth lens L5 are disposed opposite to each other.
  • the sixth lens L6 has two convex surfaces which are respectively disposed toward the object side and the image side.
  • the achromatic lens group of the optical lens is preferably a cemented lens.
  • the fourth lens L4 and the fifth lens L5 are glued together to form a The achromatic lens group is described.
  • the image surface S8 of the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are The object surface S9 is placed face to face in a glued manner.
  • the achromatic lens group may also be a separate achromatic lens group. It is to be understood that when the achromatic lens group is a separate achromatic lens group, the fourth lens L4 and the fifth lens L5 are disposed separately.
  • the first lens L1 and the second lens L2 may be made of a glass material, or may be made of other materials having good light transmission properties, such as plastics and resins. It will be understood by those skilled in the art that in the optical lens of the present invention, light is entered by the first lens L1, and transmitted to the second lens L2 after being concentrated by the first lens L1. Therefore, a large angle of light can be collected by the first lens L1, and further, after the light passes through the first lens L1, the second lens L2 is reached, and the light concentrated by the first lens L1 is The two lenses L2 are appropriately diverged and transmitted to the rear of the optical lens.
  • the refractive indices Nd of the first lens L1 and the second lens L2 need to cooperate with each other, but those skilled in the art should understand that The refractive index Nd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • the first lens L1 and the second lens L2 are provided with an Abbe constant Vd, so that the lens has better image quality, but it should be understood by those skilled in the art that The Abbe constant Vd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • the optical lens includes, in order from the object side to the image side, a front lens group, a diaphragm L7, a rear lens group, a filter element L8, a plane lens L9, and an imaging surface L10.
  • the front lens group includes: a first lens L1, a second lens L2, and a third lens L3 from the object side to the image side, the first lens L1 being a meniscus lens having a negative refractive power,
  • the second lens L2 is a meniscus lens having positive refractive power, the concave surfaces of the first lens L1 and the second lens L2 are opposite, and the third lens L3 is a lenticular lens having positive refractive power;
  • the lens group includes, from the object side to the image side, a fourth lens L4, a fifth lens L5, and a sixth lens L6, the fourth lens L4 being a biconcave lens having a negative refractive power, and the fifth lens L5 having a positive light
  • the lenticular lens has a concave surface of the fourth lens L4 and a convex surface of the fifth lens L5. Further, the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are glued.
  • the sixth lens L6 is
  • the first lens L1 satisfies the following conditions:
  • R1 is a radius of curvature of the object surface S1 of the first lens L1
  • R2 is a radius of curvature of the image plane S2 of the first lens L1
  • d1 is a center thickness of the first lens L1.
  • the second lens L2 satisfies the following conditions:
  • R3 is a radius of curvature of the object surface S3 of the second lens L2
  • R4 is a radius of curvature of the image plane S4 of the second lens L2
  • d2 is a center thickness of the second lens L2.
  • the relationship between the respective curvature radii and the thickness of the first lens L1 and the second lens L2 is restricted such that the first lens L1 and the second lens L2 are close to a concentric circle, thereby When the concave surfaces of the first lens L1 and the second lens L2 are oppositely disposed, a larger angle of light can be collected into the optical lens, and is transmitted backward by proper diffusion of the second lens L2.
  • the focal length F1 of the first lens L1 and the combined focal length F of the optical lens satisfy the following conditions:
  • the focal length F2 of the second lens L2 and the entire set of focal lengths F of the optical lens satisfy the following conditions:
  • the maximum angle of view of the optical lens is FOVm
  • the image height corresponding to the maximum angle of view of the optical lens is Ym, then (FOVm ⁇ F)/Ym ⁇ 45.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are glass aspherical mirrors
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are not limited to a glass aspherical mirror, and may be a plastic aspherical or a glass spherical mirror or the like.
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are not limited to the glass spherical mirror, and may be a glass aspherical surface, a plastic aspherical surface, or a resin aspherical surface. The present invention is not limited in this respect.
  • six lenses consisting of three glass spheres and three glass aspherical surfaces constitute the optical lens, for example, the first lens L1, the second lens L2, and the
  • the sixth lens L6 is a glass aspherical lens
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are glass spheres, so that the optical lens has a long focal length, a large angle of view, and is passed through the glass.
  • Spherical lens guarantees the said The resolution of the optical lens is reduced, and the chromatic aberration is reduced.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1 and the second lens L2 are close to the concentric lens, and are aspherical, so that a large angle of light can be effectively and smoothly concentrated, and due to the aspherical setting, the conventional spherical concentric lens processing is avoided. problem.
  • the object surface S1 of the first lens L1 has a central area S101 and an edge area S102 extending outward from the central area S101, the first lens L1
  • the central region S101 of the object surface S1 is a convex surface
  • the edge region S102 of the object surface S1 of the first lens L1 is a concave surface.
  • the aspherical mirror surfaces of the first lens L1, the second lens L2, and the sixth lens L6 satisfy the following formula:
  • Z(h) is the position of the aspherical surface at height h in the optical axis direction
  • the distance vector from the aspherical vertex is high
  • c 1/r
  • r represents the radius of curvature of the aspherical mirror surface
  • k is the conic coefficient conic
  • A, B, C, D, and E are high-order aspheric coefficients.
  • the optical performance curve of this embodiment of the present invention is seen by the MTF curve of the optical lens, which has a higher resolution and better optical performance.
  • the parameters of the optical lens of this embodiment of the present invention are shown in Tables 3 and 4 below. It should be noted that the two surfaces of the first lens L1, that is, the object surface and the image surface are S1 and S2, respectively, and the two surfaces of the second lens L2, that is, the object surface and the image surface are S3 and S4, respectively.
  • the two faces of the three lenses L3, that is, the object plane and the image plane are S5 and S6, respectively, and the two faces of the fourth lens L4, that is, the object surface and the image plane are S7 and S8, respectively, and both sides of the fifth lens L5 are objects.
  • the surface and the image surface are respectively S9 and S10, and the two surfaces of the sixth lens L6, that is, the object surface and the image surface are S11 and S12, respectively, and the two sides of the filter element L8 are respectively S13 and S14, and the plane lens L9 is respectively The two sides are respectively S15 and S16, and the image plane is S17; the S1-S17 are in one-to-one correspondence with the surface numbers in Tables 3 and 4 below.
  • the optical lens of the present invention can meet the requirements of miniaturization, realize long focal length, large angle of view, and large aperture through the design of six lens structures and aspherical lenses close to concentric circles. It meets the high definition requirements and effectively corrects various aberrations of the optical system. It is especially suitable for in-vehicle camera systems, capturing distant objects, and the overall viewing field is enlarged.
  • a traditional telephoto lens can be realized by a lens. The wide-angle lens function of these two lenses reduces the cost of the car camera system and improves the actual performance of the lens.
  • the difference between this embodiment and the first embodiment is that the power of the second lens in this embodiment is different, and the structure of the fourth lens is different.
  • an optical lens according to a third embodiment of the present invention is illustrated, wherein the optical lens includes at least a first lens L1, at least a second lens L2, a third lens L3, and a first lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are in an object-to-image direction Arrange in order.
  • the first lens L1 has a negative refractive power, and the first lens L1 has an object surface S1 facing the object side and an image surface S2 facing the image side.
  • the object plane S1 of the first lens L1 is convex in order to increase the luminous flux of the optical lens. That is, the object surface S1 of the convex surface of the first lens L1 converges a large angle of light to increase the luminous flux entering the optical lens by the object side.
  • the object surface S1 of the first lens L1 is an aspherical mirror in order to reduce the processing difficulty.
  • the first lens L1 may be a spherical mirror.
  • the image plane S2 of the first lens L1 is a concave surface. That is, the first lens L1 includes two faces S1, S2, one of which is a convex surface and the other of which is a concave surface, the concave surface and the convex surface form a meniscus shape, and the meniscus is convex toward the object side. In order to increase the light entering the optical stage lens.
  • the lens surface when the lens surface is convex and the position of the convex surface is not defined, it indicates that the near-optical axis of the surface of the lens is convex;
  • the lens surface When the lens surface is concave and does not define the position of the concave surface, it indicates that the lens surface is concave at the near optical axis.
  • the second lens L2 has an object surface S3 facing the object side and an image surface S4 facing the image side.
  • the image plane S4 of the second lens L2 is convex to facilitate proper divergence of light passing through the first lens L1 to the rear of the optical lens.
  • the second lens L2 has a positive power. That is, the second lens L2 functions as a transition light to smoothly transition the light of the first lens L1 to the third lens L3.
  • the second lens L2 is an aspherical mirror in order to reduce the processing difficulty.
  • the second lens L2 may be a spherical mirror.
  • the object plane S3 of the second lens L2 is convex. That is, the second lens L2 includes two faces S3, S4, one of which is a convex surface and the other of which is a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the image side.
  • the light transmitted by a lens L1 is diverged and transmitted to the rear.
  • the meniscus shapes of the first lens L1 and the second lens L2 are oppositely arranged, close to the concentric circle structure, so that the optical lens near the center has a smaller angle of view, a larger focal length, and a larger High angular resolution.
  • the third lens L3 has an object surface S5 facing the object side, and an image surface S6 facing the image side.
  • the object plane S5 and the image plane S6 of the third lens L3 are both convex to facilitate concentrating the light transmitted by the second lens L2 and being transmitted to the rear of the optical lens.
  • the third lens L3 is a lenticular lens having a light transition and a converging effect.
  • the third lens L3 has a positive power.
  • the fourth lens L4 and the fifth lens L5 constitute an achromatic lens group in order to reduce the chromatic aberration of light transmitted by the front member of the optical lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 form a front lens group.
  • a rear lens group wherein the front lens group includes the first lens L1, the second lens L2, and the third lens L3, and the rear lens group includes the fourth lens L4, the first The fifth lens L5 and the sixth lens L6.
  • the front lens group and the rear lens group are disposed in order from the object side to the image side direction.
  • the fifth lens L5 and the sixth lens L6 are coaxial with each other.
  • the main optical axis is the same.
  • the optical lens further includes a diaphragm L7, wherein the front lens group and the rear lens group are respectively disposed on both sides of the aperture L7 Wherein the optical center of the aperture L7 and the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth
  • the optical center of the lens L6 is coaxial.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4 to reduce the optical lens.
  • the stray light makes the optical lens have a good imaging effect.
  • the aperture L7 may be disposed at other positions, such as between the second lens L2 and the third lens L3, and the fourth lens L4. Between the fifth lens L5 and the fifth lens L5 and the sixth lens L6, etc., it will be understood by those skilled in the art that the position of the aperture L7 is not a limitation of the present invention.
  • the front lens group is not limited to being composed of the first lens L1, the second lens L2, and the third lens L3, and the rear lens group is not limited to being the fourth lens L4, the fifth lens L5, the sixth lens L6 is composed, and when the diaphragm L7 is disposed at different positions, the optical lens may constitute different front lens groups and rear lens groups.
  • the fourth lens L4 has an object surface S7 and an image plane S8, the object plane S7 faces the object side, and the image plane S8 faces the image side. .
  • the object surface S7 of the fourth lens L4 is a convex surface
  • the image surface S8 of the fourth lens L4 is a concave surface.
  • the fourth lens L4 has two faces S7, S8, respectively two concave faces. That is, the fourth lens is a double concave lens.
  • the fourth lens L4 has a negative power.
  • the fifth lens L5 has an object surface S9 facing the object side, and an image surface S10 facing the image side. Further, the object surface S9 of the fifth lens L5 is a convex surface, and the image surface S10 of the fifth lens L5 is a convex surface. In other words, the fifth lens L5 is a lenticular lens. Further, according to this embodiment of the invention, the fifth lens L5 has positive power.
  • the image surface S8 of the fourth lens L4 and the object surface S9 of the fifth lens L5 are disposed to face each other.
  • the image plane S8 of the fourth lens L4 and the object plane S9 of the fifth lens L5 are disposed face to face, in this embodiment, that is, the concave surface of the fourth lens L4 and the The convex surface of the fifth lens L5 is disposed face to face.
  • the sixth lens L6 has an object surface S11 facing the object side, and an image surface S12 facing the image side. Further, the object surface S11 of the sixth lens L6 is a convex surface, and the image surface S12 of the sixth lens L6 is a concave surface. In other words, the sixth lens L6 is a meniscus lens. further. The sixth lens L6 has a positive power. The aberration and distortion are further corrected by the sixth lens L6, so that the imaging quality of the optical lens is better.
  • the sixth lens L6 is used to appropriately increase the distortion of the lens edge of the front lens of the optical lens, so that a large angle of light can reach a predetermined size.
  • the imaging surface L10 such as the sensor chip surface, can be revised by the later software processing For example, the image formed by the light rays after the sixth lens L6 is returned to normal, that is, a large angle of imaging is obtained.
  • the optical lens further includes a planar lens L9 for protecting the optical lens from isolation.
  • a planar lens L9 for protecting the optical lens from isolation.
  • the planar lens L9 may not be provided, and the present invention is not limited in this respect.
  • the first lens L1 of the optical lens has a convex surface and a concave surface
  • the second lens L2 has a concave surface and a convex surface
  • the first lens L1 The convex surface is disposed toward the object side
  • the concave surface of the first lens L1 is disposed toward the image side
  • the concave surface of the second lens L2 is disposed toward the object side
  • the convex surface of the second lens L2 Set to face the image side.
  • the third lens L3 has two convex surfaces facing the object side and the image side, respectively.
  • the fourth lens L4 has two concave surfaces facing the object side and the image side, respectively, and the fifth lens L5 has two convex surfaces facing the object side and the image side, respectively, wherein the concave surface and the surface of the fourth lens L4
  • the convex surfaces of the fifth lens L5 are disposed opposite to each other.
  • the sixth lens L6 has a convex surface and a concave surface which are respectively disposed toward the object side and the image side.
  • the achromatic lens group of the optical lens is preferably a cemented lens.
  • the fourth lens L4 and the fifth lens L5 are glued together to form the achromatic lens group.
  • the image surface S8 of the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are The object surface S9 is placed face to face in a glued manner.
  • the achromatic lens group may also be a separate achromatic lens group. It is to be understood that when the achromatic lens group is a separate achromatic lens group, the fourth lens L4 and the fifth lens L5 are disposed separately.
  • the first lens L1 and the second lens L2 may be made of a glass material, or may be made of other materials having good light transmission properties, such as plastics and resins. It will be understood by those skilled in the art that in the optical lens of the present invention, light is entered by the first lens L1, and transmitted to the second lens L2 after being concentrated by the first lens L1. Therefore, a large angle of light can be collected by the first lens L1, and further, after the light passes through the first lens L1, the second lens L2 is reached, and the light concentrated by the first lens L1 is The two lenses L2 are appropriately diverged and transmitted to the rear of the optical lens.
  • the refractive indices Nd of the first lens L1 and the second lens L2 need to cooperate with each other, but those skilled in the art should understand that First through The refractive index Nd of the mirror L1 and the second lens L2 is not a limitation of the present invention.
  • the first lens L1 and the second lens L2 are provided with an Abbe constant Vd, so that the lens has better image quality, but it should be understood by those skilled in the art that The Abbe constant Vd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • FIG. 5 is a schematic view showing the structure of an optical lens according to a third embodiment of the present invention.
  • the optical lens includes, in order from the object side to the image side, a front lens group, a diaphragm L7, a rear lens group, a filter element L8, a plane lens L9, and an imaging surface L10.
  • the front lens group includes: a first lens L1, a second lens L2, and a third lens L3 from the object side to the image side, the first lens L1 being a meniscus lens having a negative refractive power,
  • the second lens L2 is a meniscus lens having positive refractive power, the concave surfaces of the first lens L1 and the second lens L2 are opposite, and the third lens L3 is a lenticular lens having positive refractive power;
  • the lens group includes, from the object side to the image side, a fourth lens L4, a fifth lens L5, and a sixth lens L6, the fourth lens L4 being a biconcave lens having a negative refractive power, and the fifth lens L5 having a positive light
  • the lenticular lens has a concave surface of the fourth lens L4 and a convex surface of the fifth lens L5. Further, the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are glued.
  • the sixth lens L6 is
  • the first lens L1 satisfies the following conditions:
  • R1 is a radius of curvature of the object surface S1 of the first lens L1
  • R2 is a radius of curvature of the image plane S2 of the first lens L1
  • d1 is a center thickness of the first lens L1.
  • the second lens L2 satisfies the following conditions:
  • R3 is a radius of curvature of the object surface S3 of the second lens L2
  • R4 is a radius of curvature of the image plane S4 of the second lens L2
  • d2 is a center thickness of the second lens L2.
  • the relationship between the respective curvature radii and the thickness of the first lens L1 and the second lens L2 is restricted such that the first lens L1 and the second lens L2 are close to a concentric circle, thereby When the concave surfaces of the first lens L1 and the second lens L2 are oppositely disposed, a larger angle of light can be collected into the optical lens, and is transmitted backward by proper diffusion of the second lens L2.
  • the focal length F1 of the first lens L1 and the combined focal length F of the optical lens satisfy the following conditions:
  • the focal length F2 of the second lens L2 and the entire set of focal lengths F of the optical lens satisfy the following conditions:
  • the maximum angle of view of the optical lens is FOVm
  • the image height corresponding to the maximum angle of view of the optical lens is Ym, then (FOVm ⁇ F)/Ym ⁇ 45.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are glass aspherical mirrors
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are not limited to a glass aspherical mirror, and may be a plastic aspherical or spherical mirror, etc.
  • the three lenses L3, the fourth lens L4, and the fifth lens L5 are not limited to the glass spherical mirror, and may be a glass aspheric surface, a plastic aspheric surface, or a resin aspheric surface. The present invention is not limited in this respect.
  • six lenses consisting of three glass spheres and three glass aspherical surfaces constitute the optical lens, for example, the first lens L1, the second lens L2, and the
  • the sixth lens L6 is a glass aspherical lens
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are glass spheres, so that the optical lens has a long focal length, a large angle of view, and is passed through the glass.
  • the spherical lens ensures the resolution of the optical lens and reduces chromatic aberration.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1 and the second lens L2 are close to the concentric lens, and are aspherical, so that a large angle of light can be effectively and smoothly concentrated, and due to the aspherical setting, the conventional spherical concentric lens processing is avoided. problem.
  • the object surface S1 of the first lens L1 has a central area S101 and an edge area S102 extending outward from the central area S101, the first lens L1
  • the central region S101 of the object surface S1 is a convex surface
  • the edge region S102 of the object surface S1 of the first lens L1 is a concave surface.
  • the aspherical mirror surfaces of the first lens L1, the second lens L2, and the sixth lens L6 satisfy the following formula:
  • Z(h) is the position of the aspherical surface at height h in the optical axis direction
  • the distance vector from the aspherical vertex is high
  • c 1/r
  • r represents the radius of curvature of the aspherical mirror surface
  • k is the conic coefficient conic
  • A, B, C, D, and E are high-order aspheric coefficients.
  • the optical performance curve of this embodiment of the present invention is seen by the MTF curve of the optical lens, which has a higher resolution and better optical performance.
  • the parameters of the optical lens of this embodiment of the present invention are shown in Tables 5 and 6 below.
  • the two surfaces of the first lens L1, that is, the object surface and the image surface are respectively S1 and S2
  • the two transparent surfaces, that is, the object surface and the image surface are respectively S3 and S4
  • the third surface is respectively Both sides of the lens L3, that is, the object surface and the image surface are S5 and S6, respectively, and both sides of the fourth lens L4, that is, the object surface and the image surface are S7 and S8, respectively, and both sides of the fifth lens L5, that is, the object surface And the image planes are respectively S9 and S10
  • the two sides of the sixth lens L6, that is, the object surface and the image plane are S11 and S12, respectively
  • the two sides of the filter element L8 are respectively S13 and S14
  • the plane lens L9 is The two sides are respectively S15 and S16, and the image plane is S17; the S1-S17 are in one-to-one correspondence with the surface numbers in
  • the optical lens of the present invention can meet the requirements of miniaturization, realize long focal length, large angle of view, and large aperture through the design of six lens structures and aspherical lenses close to concentric circles. It meets the high definition requirements and effectively corrects various aberrations of the optical system. It is especially suitable for in-vehicle camera systems, capturing distant objects, and the overall viewing field is enlarged.
  • a traditional telephoto lens can be realized by a lens. The wide-angle lens function of these two lenses reduces the cost of the car camera system and improves the actual performance of the lens.
  • the difference between this embodiment and the first embodiment is that the power of the second lens in the embodiment is different, and the structures of the fourth lens and the sixth lens are different.
  • an optical lens according to a fourth embodiment of the present invention is illustrated, wherein the optical lens includes at least a first lens L1, at least a second lens L2, a third lens L3, and a first lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are in an object-to-image direction Arrange in order.
  • the first lens L1 has a negative refractive power, and the first lens L1 has an object surface S1 facing the object side and an image surface S2 facing the image side.
  • the object plane S1 of the first lens L1 is convex in order to increase the luminous flux of the optical lens. That is, the object surface S1 of the convex surface of the first lens L1 converges a large angle of light to increase the luminous flux entering the optical lens by the object side.
  • the object surface S1 of the first lens L1 is an aspherical mirror in order to reduce the processing difficulty.
  • the first lens L1 may be a spherical mirror.
  • the image plane S2 of the first lens L1 is concave surface. That is, the first lens L1 includes two faces S1, S2, one of which is a convex surface and the other of which is a concave surface, the concave surface and the convex surface form a meniscus shape, and the meniscus is convex toward the object side. In order to increase the light entering the optical stage lens.
  • the lens surface when the lens surface is convex and the position of the convex surface is not defined, it indicates that the near-optical axis of the surface of the lens is convex;
  • the lens surface When the lens surface is concave and does not define the position of the concave surface, it indicates that the lens surface is concave at the near optical axis.
  • the second lens L2 has an object surface S3 facing the object side and an image surface S4 facing the image side.
  • the image plane S4 of the second lens L2 is convex to facilitate proper divergence of light passing through the first lens L1 to the rear of the optical lens.
  • the second lens L2 has a positive power. That is, the second lens L2 functions as a transition light to smoothly transition the light of the first lens L1 to the third lens L3.
  • the second lens L2 is an aspherical mirror in order to reduce the processing difficulty.
  • the second lens L2 may be a spherical mirror.
  • the object plane S3 of the second lens L2 is convex. That is, the second lens L2 includes two faces S3, S4, one of which is a convex surface and the other of which is a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the image side. In order to transmit the light transmitted by the first lens L1 to the rear.
  • the meniscus shapes of the first lens L1 and the second lens L2 are oppositely arranged, close to the concentric circle structure, so that the optical lens near the center has a smaller angle of view, a larger focal length, and a larger High angular resolution.
  • the third lens L3 has an object surface S5 facing the object side, and an image surface S6 facing the image side.
  • the object plane S5 and the image plane S6 of the third lens L3 are both convex to facilitate concentrating the light transmitted by the second lens L2 and being transmitted to the rear of the optical lens.
  • the third lens L3 is a lenticular lens having a light transition and a converging effect.
  • the third lens L3 has a positive power.
  • the fourth lens L4 and the fifth lens L5 constitute an achromatic lens group in order to reduce the chromatic aberration of light transmitted by the front member of the optical lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 form a front lens group.
  • a rear lens group wherein the front lens group includes the first lens L1, the second lens L2, and the third lens L3, the rear lens group including the fourth lens L4, the fifth lens L5, and the The sixth lens L6.
  • the front lens group and the rear lens group are disposed in order from the object side to the image side direction.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens of the optical lens L5 and the sixth lens L6 are coaxial with each other.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 of the optical lens The main optical axis is the same.
  • the optical lens further includes an aperture L7, wherein the front lens group and the rear lens group are respectively disposed on two sides of the aperture L7, wherein The optical center of the aperture L7 and the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 The optical center is coaxial.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4 to reduce the optical lens.
  • the stray light makes the optical lens have a good imaging effect.
  • the aperture L7 may be disposed at other positions, such as between the second lens L2 and the third lens L3, between the fourth lens L4 and the fifth lens L5, and the fifth lens L5.
  • the position of the aperture L7 is not a limitation of the present invention.
  • the front lens group is not limited to being composed of the first lens L1, the second lens L2, and the third lens L3, and the rear lens group is not limited to being the fourth lens L4, the fifth lens L5, the sixth lens L6 is composed, and when the diaphragm L7 is disposed at different positions, the optical lens may constitute different front lens groups and rear lens groups.
  • the fourth lens L4 has an object surface S7 facing the object side, and an image surface S8 facing the image side. Further, the object surface S7 of the fourth lens L4 is a convex surface, and the image surface S8 of the fourth lens L4 is a concave surface.
  • the fourth lens L4 has two faces S7, S8, which are respectively a convex surface and a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the object side. Further, according to this embodiment of the invention, the fourth lens L4 has a negative power.
  • the fifth lens L5 has an object surface S9 and an image surface S10.
  • the object surface S9 faces the object side
  • the image plane S10 faces the image side.
  • the object surface S9 of the fifth lens L5 is a convex surface
  • the image surface S10 of the fifth lens L5 is a convex surface.
  • the fifth lens L5 is a lenticular lens.
  • the fifth lens L5 has positive power.
  • the image surface S8 of the fourth lens L4 and the object surface S9 of the fifth lens L5 are disposed to face each other.
  • the image plane S8 of the fourth lens L4 and the object plane S9 of the fifth lens L5 are disposed face to face, in this embodiment, that is, the concave surface of the fourth lens L4 and the The convex surface of the fifth lens L5 is disposed face to face.
  • the sixth lens L6 has an object surface S11 facing the object side, and an image surface S12 facing the image side. Further, the object surface S11 of the sixth lens L6 is a convex surface, and the image surface S12 of the sixth lens L6 is a convex surface. In other words, the sixth lens L6 is a lenticular lens. further. The sixth lens L6 has a positive power. The aberration and distortion are further corrected by the sixth lens L6, so that the imaging quality of the optical lens is better.
  • the sixth lens L6 is used to appropriately increase the distortion of the lens edge of the front lens of the optical lens, so that a large angle of light can reach a predetermined size.
  • the imaging surface L10 such as the photographic chip surface, can continue to revise the image by post-software processing, and also causes the image formed by the light after the sixth lens L6 to return to normal, that is, to obtain a large angle of imaging.
  • the optical lens further includes a planar lens L9 for protecting the optical lens from isolation.
  • a planar lens L9 for protecting the optical lens from isolation.
  • the planar lens L9 may not be provided, and the present invention is not limited in this respect.
  • the first lens L1 of the optical lens has a convex surface and a concave surface
  • the second lens L2 has a concave surface and a convex surface
  • the first lens L1 The convex surface is disposed toward the object side
  • the concave surface of the first lens L1 is disposed toward the image side
  • the concave surface of the second lens L2 is disposed toward the object side
  • the convex surface of the second lens L2 Set to face the image side.
  • the third lens L3 has two convex surfaces facing the object side and the image side, respectively.
  • the fourth lens L4 has a convex surface and a concave surface facing the object side and the image side, respectively, and the fifth lens L5 has two convex surfaces facing the object side and the image side, respectively, wherein the concave surface of the fourth lens L4
  • the convex surface of the fifth lens L5 is disposed opposite to the surface.
  • the sixth lens L6 has two convex surfaces, which are respectively set Set toward the object side and the image side.
  • the achromatic lens group of the optical lens is preferably a cemented lens.
  • the fourth lens L4 and the fifth lens L5 are glued together to form the achromatic lens group.
  • the image surface S8 of the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are The object surface S9 is placed face to face in a glued manner.
  • the achromatic lens group may also be a separate achromatic lens group. It is to be understood that when the achromatic lens group is a separate achromatic lens group, the fourth lens L4 and the fifth lens L5 are disposed separately.
  • the first lens L1 and the second lens L2 may be made of a glass material, or may be made of other materials having good light transmission properties, such as plastics and resins. It will be understood by those skilled in the art that in the optical lens of the present invention, light is entered by the first lens L1, and transmitted to the second lens L2 after being concentrated by the first lens L1. Therefore, a large angle of light can be collected by the first lens L1, and further, after the light passes through the first lens L1, the second lens L2 is reached, and the light concentrated by the first lens L1 is The two lenses L2 are appropriately diverged and transmitted to the rear of the optical lens.
  • Fig. 7 is a schematic view showing the structure of an optical lens according to a fourth embodiment of the present invention.
  • the optical lens includes, in order from the object side to the image side, a front lens group, a diaphragm L7, a rear lens group, a filter element L8, a plane lens L9, and an imaging surface L10.
  • the front lens group includes: a first lens L1, a second lens L2, and a third lens L3 from the object side to the image side, the first lens L1 being a meniscus lens having a negative refractive power,
  • the second lens L2 is a meniscus lens having positive refractive power, the concave surfaces of the first lens L1 and the second lens L2 are opposite, and the third lens L3 is a lenticular lens having positive refractive power;
  • the lens group includes, from the object side to the image side, a fourth lens L4, a fifth lens L5, and a sixth lens L6, the fourth lens L4 being a meniscus lens having a negative refractive power, and the fifth lens L5 being a lenticular lens having positive power, the fourth lens L4
  • the concave surface is opposite to the convex surface of the fifth lens L5. Further, the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are glued.
  • the sixth lens L6 is a
  • the first lens L1 satisfies the following conditions:
  • R1 is a radius of curvature of the object surface S1 of the first lens L1
  • R2 is a radius of curvature of the image plane S2 of the first lens L1
  • d1 is a center thickness of the first lens L1.
  • the second lens L2 satisfies the following conditions:
  • R3 is a radius of curvature of the object surface S3 of the second lens L2
  • R4 is a radius of curvature of the image plane S4 of the second lens L2
  • d2 is a center thickness of the second lens L2.
  • the relationship between the respective curvature radii and the thickness of the first lens L1 and the second lens L2 is restricted such that the first lens L1 and the second lens L2 are close to a concentric circle, thereby When the concave surfaces of the first lens L1 and the second lens L2 are oppositely disposed, a larger angle of light can be collected into the optical lens, and is transmitted backward by proper diffusion of the second lens L2.
  • the focal length F1 of the first lens L1 and the combined focal length F of the optical lens satisfy the following conditions:
  • the focal length F2 of the second lens L2 and the entire set of focal lengths F of the optical lens satisfy the following conditions:
  • the maximum angle of view of the optical lens is FOVm
  • the image height corresponding to the maximum angle of view of the optical lens is Ym, then (FOVm ⁇ F)/Ym ⁇ 45.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are glass aspherical mirrors
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are not limited to a glass aspherical mirror, and may be a plastic aspherical or spherical mirror, etc.
  • the three lenses L3, the fourth lens L4, and the fifth lens L5 are not limited to the glass spherical mirror, and may be a glass aspheric surface, a plastic aspheric surface, or a resin aspheric surface. The present invention is not limited in this respect.
  • the optical lens has the characteristics of a long focal length and a large angle of view, and the resolution of the optical lens and the chromatic aberration are reduced by the glass aspherical lens.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1 and the second lens L2 are close to the concentric lens, and are aspherical, so that a large angle of light can be effectively and smoothly concentrated, and due to the aspherical setting, the conventional spherical concentric lens processing is avoided. problem.
  • the object surface S1 of the first lens L1 has a central area S101 and an edge area S102 extending outward from the central area S101, the first lens L1
  • the central region S101 of the object surface S1 is a convex surface
  • the edge region S102 of the object surface S1 of the first lens L1 is a concave surface.
  • the aspherical mirror surfaces of the first lens L1, the second lens L2, and the sixth lens L6 satisfy the following formula:
  • Z(h) is the position of the aspherical surface at height h in the optical axis direction
  • the distance vector from the aspherical vertex is high
  • c 1/r
  • r represents the radius of curvature of the aspherical mirror surface
  • k is the conic coefficient conic
  • A, B, C, D, and E are high-order aspheric coefficients.
  • the optical lens of the present invention can meet the requirements of miniaturization, realize long focal length, large angle of view, and large aperture through the design of six lens structures and aspherical lenses close to concentric circles. It meets the high definition requirements and effectively corrects various aberrations of the optical system. It is especially suitable for in-vehicle camera systems, capturing objects at long distances, and the overall viewing field is enlarged, which can be realized by a lens.
  • the functions of the two lenses, the telephoto lens and the wide-angle lens reduce the cost of the in-vehicle camera system and improve the actual performance of the lens.
  • This embodiment of the invention differs from the first embodiment in that the power of the second lens L2 is different.
  • an optical lens according to a fifth embodiment of the present invention is described, wherein the optical lens includes at least a first lens L1, at least a second lens L2, a third lens L3, and a first lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are in an object-to-image direction Arrange in order.
  • the first lens L1 has a negative refractive power, and the first lens L1 has an object surface S1 facing the object side and an image surface S2 facing the image side.
  • the object plane S1 of the first lens L1 is convex in order to increase the luminous flux of the optical lens. That is, the object surface S1 of the convex surface of the first lens L1 converges a large angle of light to increase the luminous flux entering the optical lens by the object side.
  • the object surface S1 of the first lens L1 is an aspherical mirror in order to reduce the processing difficulty.
  • the first lens L1 may be a spherical mirror.
  • the image plane S2 of the first lens L1 is a concave surface. That is, the first lens L1 includes two faces S1, S2, one of which is a convex surface and the other of which is a concave surface, the concave surface and the convex surface form a meniscus shape, and the meniscus is convex toward the object side. In order to increase the light entering the optical stage lens.
  • the lens surface when the lens surface is convex and the position of the convex surface is not defined, it indicates that the near-optical axis of the surface of the lens is convex;
  • the lens surface When the lens surface is concave and does not define the position of the concave surface, it indicates that the lens surface is concave at the near optical axis.
  • the second lens L2 has an object surface S3 facing the object side and an image surface S4 facing the image side.
  • the image plane S4 of the second lens L2 is convex to facilitate proper divergence of light passing through the first lens L1 to the rear of the optical lens.
  • the second lens L2 has a negative power. That is, the second lens L2 functions as a transition light to smoothly transition the light of the first lens L1 to the third lens L3.
  • the second lens L2 is an aspherical mirror in order to reduce the processing difficulty.
  • the second lens L2 may be a spherical mirror.
  • the object plane S3 of the second lens L2 is convex. That is, the second lens L2 includes two faces S3, S4, one of which is a convex surface and the other of which is a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the image side. In order to transmit the light transmitted by the first lens L1 to the rear.
  • the meniscus shapes of the first lens L1 and the second lens L2 are oppositely arranged, close to the concentric circle structure, so that the optical lens near the center has a smaller angle of view, a larger focal length, and a larger High angular resolution.
  • the third lens L3 has an object surface S5 facing the object side, and an image surface S6 facing the image side.
  • the object plane S5 and the image plane S6 of the third lens L3 are both convex to facilitate concentrating the light transmitted by the second lens L2 and being transmitted to the rear of the optical lens.
  • the third lens L3 is a lenticular lens having a light transition and a converging effect.
  • the third lens L3 has a positive power.
  • the fourth lens L4 and the fifth lens L5 constitute an achromatic lens group in order to reduce the chromatic aberration of light transmitted by the front member of the optical lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 form a front lens group.
  • a rear lens group wherein the front lens group includes the first lens L1, the second lens L2, and the third lens L3, and the rear lens group includes the fourth lens L4, the first The fifth lens L5 and the sixth lens L6.
  • the front lens group and the rear lens group are disposed in order from the object side to the image side direction.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens of the optical lens L5 and the sixth lens L6 are coaxial with each other.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 of the optical lens The main optical axis is the same.
  • the optical lens further includes a diaphragm L7, wherein the front lens group and the rear lens group are respectively disposed on both sides of the aperture L7.
  • the optical center of the aperture L7 and the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth is coaxial.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4 to reduce the optical lens.
  • the stray light makes the optical lens have a good imaging effect.
  • the aperture L7 may be disposed at other positions, such as between the second lens L2 and the third lens L3, between the fourth lens L4 and the fifth lens L5, and the fifth lens L5.
  • the position of the aperture L7 is not a limitation of the present invention.
  • the front lens group is not limited to being composed of the first lens L1, the second lens L2, and the third lens L3, and the rear lens group is not limited to being the fourth lens L4, the fifth lens L5, the sixth lens L6 is composed, and when the diaphragm L7 is disposed at different positions, the optical lens may constitute different front lens groups and rear lens groups.
  • the fourth lens L4 has an object plane S7 facing the object side, and an image plane S8 facing the image side. Further, the object surface S7 of the fourth lens L4 is a convex surface, and the image surface S8 of the fourth lens L4 is a concave surface.
  • the fourth lens L4 has two faces S7, S8, which are respectively a convex surface and a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the object side. Further, according to this embodiment of the invention, the fourth lens L4 has a negative power.
  • the fifth lens L5 has an object surface S9 facing the object side, and an image surface S10 facing the image side. Further, the object surface S9 of the fifth lens L5 is a convex surface, and the image surface S10 of the fifth lens L5 is a concave surface. In other words, the fifth lens L5 is a meniscus lens, and the meniscus is convex toward the object side. Further, according to this embodiment of the invention, the fifth lens L5 has positive power.
  • the image surface S8 of the fourth lens L4 and the object surface S9 of the fifth lens L5 are disposed to face each other.
  • the image plane S8 of the fourth lens L4 and the object plane S9 of the fifth lens L5 are disposed face to face, in this embodiment, that is, the concave surface of the fourth lens L4 and the The convex surface of the fifth lens L5 is disposed face to face.
  • the sixth lens L6 has an object surface S11 facing the object side, and an image surface S12 facing the image side. Further, the object surface S11 of the sixth lens L6 is a convex surface, and the image surface S12 of the sixth lens L6 is a convex surface. In other words, the sixth lens L6 is a lenticular lens. further. The sixth lens L6 has a positive power. Further correcting aberrations and distortion by the sixth lens L6, so that the imaging quality of the optical lens is more good.
  • the sixth lens L6 is used to appropriately increase the distortion of the lens edge of the front lens of the optical lens, so that a large angle of light can reach a predetermined size.
  • the imaging surface L10 such as the photographic chip surface, can continue to revise the image by post-software processing, and also causes the image formed by the light after the sixth lens L6 to return to normal, that is, to obtain a large angle of imaging.
  • the optical lens further includes a planar lens L9 for protecting the optical lens from isolation.
  • a planar lens L9 for protecting the optical lens from isolation.
  • the planar lens L9 may not be provided, and the present invention is not limited in this respect.
  • the first lens L1 of the optical lens has a convex surface and a concave surface
  • the second lens L2 has a concave surface and a convex surface
  • the first lens L1 The convex surface is disposed toward the object side
  • the concave surface of the first lens L1 is disposed toward the image side
  • the concave surface of the second lens L2 is disposed toward the object side
  • the convex surface of the second lens L2 Set to face the image side.
  • the third lens L3 has two convex surfaces facing the object side and the image side, respectively.
  • the fourth lens L4 has a convex surface and a concave surface facing the object side and the image side, respectively, and the fifth lens L5 has two convex surfaces facing the object side and the image side, respectively, wherein the concave surface of the fourth lens L4
  • the convex surface of the fifth lens L5 is disposed opposite to the surface.
  • the sixth lens L6 has two convex surfaces which are respectively disposed toward the object side and the image side.
  • the achromatic lens group of the optical lens is preferably a cemented lens.
  • the fourth lens L4 and the fifth lens L5 are glued together to form the achromatic lens group.
  • the image surface S8 of the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are The object surface S9 is placed face to face in a glued manner.
  • the achromatic lens group may also be a separate achromatic lens group. It is to be understood that when the achromatic lens group is a separate achromatic lens group, the fourth lens L4 and the fifth lens L5 are disposed separately.
  • the first lens L1 and the second lens L2 may be made of a glass material, or may be made of other materials having good light transmission properties, such as plastics and resins. It will be understood by those skilled in the art that in the optical lens of the present invention, light is entered by the first lens L1, and transmitted to the second lens L2 after being concentrated by the first lens L1. To pass the first The lens L1 can collect light of a large angle. Further, after the light passes through the first lens L1, the light reaches the second lens L2, and the light concentrated by the first lens L1 is appropriately dispersed by the second lens L2 and transmitted.
  • the refractive indices Nd of the first lens L1 and the second lens L2 need to cooperate with each other, but those skilled in the art should understand that the first lens L1 and the The refractive index Nd of the second lens L2 is not a limitation of the present invention.
  • the first lens L1 and the second lens L2 are provided with an Abbe constant Vd, so that the lens has better image quality, but it should be understood by those skilled in the art that The Abbe constant Vd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • FIG. 9 is a schematic structural view of an optical lens according to a fifth embodiment of the present invention.
  • the optical lens includes, in order from the object side to the image side, a front lens group, a diaphragm L7, a rear lens group, a filter element L8, a plane lens L9, and an imaging surface L10.
  • the front lens group includes: a first lens L1, a second lens L2, and a third lens L3 from the object side to the image side, the first lens L1 being a meniscus lens having a negative refractive power,
  • the second lens L2 is a meniscus lens having a negative refractive power, the concave surfaces of the first lens L1 and the second lens L2 are opposite, and the third lens L3 is a lenticular lens having positive refractive power;
  • the rear lens group includes, from the object side to the image side, a fourth lens L4, a fifth lens L5, and a sixth lens L6, the fourth lens L4 being a meniscus lens having a negative power, the fifth lens L5 In the meniscus lens having positive refractive power, the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are opposed to each other. Further, the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are glued.
  • the sixth lens L6 is
  • the first lens L1 satisfies the following conditions:
  • R1 is a radius of curvature of the object surface S1 of the first lens L1
  • R2 is a radius of curvature of the image plane S2 of the first lens L1
  • d1 is a center thickness of the first lens L1.
  • the second lens L2 satisfies the following conditions:
  • R3 is a radius of curvature of the object surface S3 of the second lens L2
  • R4 is a radius of curvature of the image plane S4 of the second lens L2
  • d2 is a center thickness of the second lens L2.
  • the relationship between the respective curvature radii and the thickness of the first lens L1 and the second lens L2 is restricted such that the first lens L1 and the second lens L2 are close to a concentric circle, thereby When the first lens L1 and the second lens L2 are oppositely disposed, a larger angle can be collected. Light enters the optical lens and is transmitted backward by proper diffusion of the second lens L2.
  • the focal length F1 of the first lens L1 and the combined focal length F of the optical lens satisfy the following conditions:
  • the focal length F2 of the second lens L2 and the entire set of focal lengths F of the optical lens satisfy the following conditions:
  • the maximum angle of view of the optical lens is FOVm
  • the image height corresponding to the maximum angle of view of the optical lens is Ym, then (FOVm ⁇ F)/Ym ⁇ 45.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are glass aspherical mirrors
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are not limited to a glass aspherical mirror, and may be a plastic aspherical or spherical mirror, etc.
  • the three lenses L3, the fourth lens L4, and the fifth lens L5 are not limited to the glass spherical mirror, and may be a glass aspheric surface, a plastic aspheric surface, or a resin aspheric surface. The present invention is not limited in this respect.
  • six lenses consisting of three glass spheres and three glass aspherical surfaces constitute the optical lens, for example, the first lens L1, the second lens L2, and the
  • the sixth lens L6 is a glass aspherical lens
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are glass spheres, so that the optical lens has a long focal length, a large angle of view, and is passed through the glass.
  • the spherical lens ensures the resolution of the optical lens and reduces chromatic aberration.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1 and the second lens L2 are close to the concentric lens, and are aspherical, so that a large angle of light can be effectively and smoothly concentrated, and due to the aspherical setting, the conventional spherical concentric lens processing is avoided. problem.
  • the object surface S1 of the first lens L1 has a central area S101 and an edge area S102 extending outward from the central area S101, the first lens L1
  • the central region S101 of the object surface S1 is a convex surface
  • the edge region S102 of the object surface S1 of the first lens L1 is a concave surface.
  • the aspherical mirror surfaces of the first lens L1, the second lens L2, and the sixth lens L6 satisfy the following formula:
  • Z(h) is the position of the aspherical surface at height h in the optical axis direction
  • the distance vector from the aspherical vertex is high
  • c 1/r
  • r represents the radius of curvature of the aspherical mirror surface
  • k is the conic coefficient conic
  • A, B, C, D, and E are high-order aspheric coefficients.
  • the optical performance curve of this embodiment of the present invention is seen by the MTF curve of the optical lens, which has a higher resolution and better optical performance.
  • the parameters of the optical lens of this embodiment of the present invention are shown in Tables 9 and 10 below.
  • the two surfaces of the first lens L1, that is, the object surface and the image surface are respectively S1 and S2
  • the two transparent surfaces, that is, the object surface and the image surface are respectively S3 and S4
  • the third surface is respectively Both sides of the lens L3, that is, the object surface and the image surface are S5 and S6, respectively, and both sides of the fourth lens L4, that is, the object surface and the image surface are S7 and S8, respectively, and both sides of the fifth lens L5, that is, the object surface And the image planes are respectively S9 and S10
  • the two sides of the sixth lens L6, that is, the object surface and the image plane are S11 and S12, respectively
  • the two sides of the filter element L8 are respectively S13 and S14
  • the plane lens L9 is The two sides are respectively S15 and S16, and the image plane is S17; the S1-S17 are in one-to-one correspondence with the surface numbers in
  • the optical lens of the present invention can meet the requirements of miniaturization, realize long focal length, large angle of view, and large aperture through the design of six lens structures and aspherical lenses close to concentric circles. It meets the high definition requirements and effectively corrects various aberrations of the optical system. It is especially suitable for in-vehicle camera systems, capturing distant objects, and the overall viewing field is enlarged.
  • a traditional telephoto lens can be realized by a lens. The wide-angle lens function of these two lenses reduces the cost of the car camera system and improves the actual performance of the lens.
  • This embodiment of the present invention is different from the first embodiment in that the structure of the fifth lens L5 is different.
  • an optical lens according to a sixth embodiment of the present invention is described, wherein the optical lens includes at least a first lens L1, at least a second lens L2, a third lens L3, and a first lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are in an object-to-image direction Arrange in order.
  • the first lens L1 has a negative refractive power
  • the first lens L1 has an object surface S1 facing the object side and an image surface S2 facing the image side.
  • the object plane S1 of the first lens L1 is convex in order to increase the luminous flux of the optical lens. That is, the object surface S1 of the convex surface of the first lens L1 converges a large angle of light to increase the luminous flux entering the optical lens by the object side.
  • said said first lens L1 is an aspherical mirror in order to reduce the processing difficulty.
  • the first lens L1 may be a spherical mirror.
  • the image plane S2 of the first lens L1 is a concave surface. That is, the first lens L1 includes two faces S1, S2, one of which is a convex surface and the other of which is a concave surface, the concave surface and the convex surface form a meniscus shape, and the meniscus is convex toward the object side. In order to increase the light entering the optical stage lens.
  • the lens surface when the lens surface is convex and the position of the convex surface is not defined, it indicates that the near-optical axis of the surface of the lens is convex;
  • the lens surface When the lens surface is concave and does not define the position of the concave surface, it indicates that the lens surface is concave at the near optical axis.
  • the second lens L2 has an object surface S3 facing the object side and an image surface S4 facing the image side.
  • the image plane S4 of the second lens L2 is convex to facilitate proper divergence of light passing through the first lens L1 to the rear of the optical lens.
  • the second lens L2 has a negative power. That is, the second lens L2 functions as a transition light to smoothly transition the light of the first lens L1 to the third lens L3.
  • the second lens L2 is an aspherical mirror in order to reduce the processing difficulty.
  • the second lens L2 may be a spherical mirror.
  • the object plane S3 of the second lens L2 is convex. That is, the second lens L2 includes two faces S3, S4, one of which is a convex surface and the other of which is a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the image side. In order to transmit the light transmitted by the first lens L1 to the rear.
  • the meniscus shapes of the first lens L1 and the second lens L2 are oppositely arranged, close to the concentric circle structure, so that the optical lens near the center has a smaller angle of view, a larger focal length, and a larger High angular resolution.
  • the third lens L3 has an object surface S5 facing the object side, and an image surface S6 facing the image side.
  • the object plane S5 and the image plane S6 of the third lens L3 are both convex to facilitate concentrating the light transmitted by the second lens L2 and being transmitted to the rear of the optical lens.
  • the third lens L3 is a lenticular lens having a light transition and a converging effect.
  • the third lens L3 has a positive power.
  • the fourth lens L4 and the fifth lens L5 constitute an achromatic lens group to facilitate subtraction The chromatic aberration of light transmitted by the front member of the optical lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 form a front lens group.
  • a rear lens group wherein the front lens group includes the first lens L1, the second lens L2, and the third lens L3, and the rear lens group includes the fourth lens L4, the first The fifth lens L5 and the sixth lens L6.
  • the front lens group and the rear lens group are disposed in order from the object side to the image side direction.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens of the optical lens L5 and the sixth lens L6 are coaxial with each other.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 of the optical lens The main optical axis is the same.
  • the optical lens further includes a diaphragm L7, wherein the front lens group and the rear lens group are respectively disposed on two sides of the aperture L7, wherein The optical center of the aperture L7 and the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 The optical center is coaxial.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4 to reduce the optical lens.
  • the stray light makes the optical lens have a good imaging effect.
  • the aperture L7 may be disposed at other positions, such as between the second lens L2 and the third lens L3, between the fourth lens L4 and the fifth lens L5, and the fifth lens L5.
  • the position of the aperture L7 is not a limitation of the present invention.
  • the front lens group is not limited to being composed of the first lens L1, the second lens L2, and the third lens L3, and the rear lens group is not limited to being the fourth lens L4, the fifth lens L5, the sixth lens L6 is composed, and when the diaphragm L7 is disposed at different positions, the optical lens may constitute different front lens groups and rear lens groups.
  • the fourth lens L4 has an object surface S7 facing the object side, and an image surface S8 facing the image side. Further, the object surface S7 of the fourth lens L4 is a convex surface, and the image surface S8 of the fourth lens L4 is a concave surface.
  • the fourth lens L4 has two sides S7, S8, which are respectively a convex surface and a concave surface, the convex surface And the concave surface forms a meniscus shape, and the meniscus is convex toward the object side. Further, according to this embodiment of the invention, the fourth lens L4 has a negative power.
  • the fifth lens L5 has an object surface S9 facing the object side, and an image surface S10 facing the image side. Further, the object surface S9 of the fifth lens L5 is a convex surface, and the image surface S10 of the fifth lens L5 is a convex surface. In other words, the fifth lens L5 is a lenticular lens. Further, according to this embodiment of the invention, the fifth lens L5 has positive power.
  • the image surface S8 of the fourth lens L4 and the object surface S9 of the fifth lens L5 are disposed to face each other.
  • the image plane S8 of the fourth lens L4 and the object plane S9 of the fifth lens L5 face each other, in this embodiment, the concave surface of the fourth lens L4 and the first The convex surfaces of the five lenses L5 are oppositely disposed.
  • the sixth lens L6 has an object surface S11 facing the object side, and an image surface S12 facing the image side. Further, the object surface S11 of the sixth lens L6 is a convex surface, and the image surface S12 of the sixth lens L6 is a convex surface. In other words, the sixth lens L6 is a lenticular lens. further. The sixth lens L6 has a positive power. The aberration and distortion are further corrected by the sixth lens L6, so that the imaging quality of the optical lens is better.
  • the sixth lens L6 is used to appropriately increase the distortion of the lens edge of the front lens of the optical lens, so that a large angle of light can reach a predetermined size.
  • the imaging surface L10 such as the photographic chip surface, can continue to revise the image by post-software processing, and also causes the image formed by the light after the sixth lens L6 to return to normal, that is, to obtain a large angle of imaging.
  • the optical lens further includes a planar lens L9 for protecting the optical lens from isolation.
  • a planar lens L9 for protecting the optical lens from isolation.
  • the planar lens L9 may not be provided, and the present invention is not limited in this respect.
  • the first lens L1 of the optical lens has a convex surface and a concave surface
  • the second lens L2 has a concave surface and a convex surface
  • the first lens L1 The convex surface is disposed toward the object side
  • the concave surface of the first lens L1 is disposed toward the image side
  • the concave surface of the second lens L2 is disposed toward the object side
  • the convex surface of the second lens L2 Set to face the image side.
  • the third lens L3 has two convex surfaces facing the object side and the image side, respectively.
  • the fourth lens L4 has a convex surface and a concave surface facing the object side and the image side, respectively, and the fifth lens L5 has two convex surfaces facing the object side and the image side, respectively, wherein the concave surface and the surface of the fourth lens L4
  • the convex surfaces of the fifth lens L5 are disposed opposite to each other.
  • the sixth lens L6 has two convex surfaces which are respectively disposed toward the object side and the image side.
  • the achromatic lens group of the optical lens is preferably a cemented lens.
  • the fourth lens L4 and the fifth lens L5 are glued together to form the achromatic lens group.
  • the image surface S8 of the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are The object surface S9 is placed face to face in a glued manner.
  • the achromatic lens group may also be a separate achromatic lens group. It is to be understood that when the achromatic lens group is a separate achromatic lens group, the fourth lens L4 and the fifth lens L5 are disposed separately.
  • the first lens L1 and the second lens L2 may be made of a glass material, or may be made of other materials having good light transmission properties, such as plastics and resins. It will be understood by those skilled in the art that in the optical lens of the present invention, light is entered by the first lens L1, and transmitted to the second lens L2 after being concentrated by the first lens L1. Therefore, a large angle of light can be collected by the first lens L1, and further, after the light passes through the first lens L1, the second lens L2 is reached, and the light concentrated by the first lens L1 is The two lenses L2 are appropriately diverged and transmitted to the rear of the optical lens.
  • the refractive indices Nd of the first lens L1 and the second lens L2 need to cooperate with each other, but those skilled in the art should understand that The refractive index Nd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • the first lens L1 and the second lens L2 are provided with an Abbe constant Vd, so that the lens has better image quality, but it should be understood by those skilled in the art that The Abbe constant Vd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • Figure 11 is a schematic view showing the structure of an optical lens according to a sixth embodiment of the present invention.
  • the optical lens includes, in order from the object side to the image side, a front lens group, a diaphragm L7, a rear lens group, a filter element L8, a plane lens L9, and an imaging surface L10.
  • the front lens group includes: a first lens L1, a second lens L2, and a third lens L3 from the object side to the image side, the first lens L1 being a meniscus lens having a negative refractive power,
  • the second lens L2 is a meniscus lens having a negative refractive power, and the concave surfaces of the first lens L1 and the second lens L2 are opposite,
  • the third lens L3 is a lenticular lens having positive refractive power;
  • the rear lens group includes: a fourth lens L4, a fifth lens L5, and a sixth lens L6 from the object side to the image side, and the fourth lens L4 is A meniscus lens having a negative power,
  • the fifth lens L5 is a lenticular lens having a positive power, and a concave surface of the fourth lens L4 is opposite to a convex surface of the fifth lens L5. Further, the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are glued.
  • the first lens L1 satisfies the following conditions:
  • R1 is a radius of curvature of the object surface S1 of the first lens L1
  • R2 is a radius of curvature of the image plane S2 of the first lens L1
  • d1 is a center thickness of the first lens L1.
  • the second lens L2 satisfies the following conditions:
  • R3 is a radius of curvature of the object surface S3 of the second lens L2
  • R4 is a radius of curvature of the image plane S4 of the second lens L2
  • d2 is a center thickness of the second lens L2.
  • the relationship between the respective curvature radii and the thickness of the first lens L1 and the second lens L2 is restricted such that the first lens L1 and the second lens L2 are close to a concentric circle, thereby When the concave surfaces of the first lens L1 and the second lens L2 are oppositely disposed, a larger angle of light can be collected into the optical lens, and is transmitted backward by proper diffusion of the second lens L2.
  • the focal length F1 of the first lens L1 and the combined focal length F of the optical lens satisfy the following conditions:
  • the focal length F2 of the second lens L2 and the entire set of focal lengths F of the optical lens satisfy the following conditions:
  • the maximum angle of view of the optical lens is FOVm
  • the image height corresponding to the maximum angle of view of the optical lens is Ym, then (FOVm ⁇ F)/Ym ⁇ 45.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are glass aspherical mirrors
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are not limited to a glass aspherical mirror, and may be a plastic aspherical or spherical mirror, etc.
  • Three lens L3, The fourth lens L4 and the fifth lens L5 are not limited to a glass spherical mirror, and may be a glass aspherical surface, a plastic aspherical surface, or a resin aspherical surface. The present invention is not limited in this respect.
  • six lenses consisting of three glass spheres and three glass aspherical surfaces constitute the optical lens, for example, the first lens L1, the second lens L2, and the
  • the sixth lens L6 is a glass aspherical lens
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are glass spheres, so that the optical lens has a long focal length, a large angle of view, and is passed through the glass.
  • the spherical lens ensures the resolution of the optical lens and reduces chromatic aberration.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1 and the second lens L2 are close to the concentric lens, and are aspherical, so that a large angle of light can be effectively and smoothly concentrated, and due to the aspherical setting, the conventional spherical concentric lens processing is avoided. problem.
  • the object surface S1 of the first lens L1 has a central area S101 and an edge area S102 extending outward from the central area S101, the first lens L1
  • the central region S101 of the object surface S1 is a convex surface
  • the edge region S102 of the object surface S1 of the first lens L1 is a concave surface.
  • the aspherical mirror surfaces of the first lens L1, the second lens L2, and the sixth lens L6 satisfy the following formula:
  • Z(h) is the position of the aspherical surface at height h in the optical axis direction
  • the distance vector from the aspherical vertex is high
  • c 1/r
  • r represents the radius of curvature of the aspherical mirror surface
  • k is the conic coefficient conic
  • A, B, C, D, and E are high-order aspheric coefficients.
  • the optical performance curve of this embodiment of the present invention is seen by the MTF curve of the optical lens, which has a higher resolution and better optical performance.
  • the parameters of the optical lens of this embodiment of the present invention are shown in Tables 11 and 12 below. It should be noted that the two surfaces of the first lens L1, that is, the object surface and the image surface are respectively S1 and S2, and the two transparent surfaces, that is, the object surface and the image surface are respectively S3 and S4, and the third surface is respectively The two sides of the lens L3, that is, the object surface and the image surface are S5 and S6, respectively, and the two surfaces of the fourth lens L4, that is, the object surface and the image surface are S7 and S8, respectively.
  • the two faces of the five lenses L5, that is, the object plane and the image plane are S9 and S10, respectively, and the two faces of the sixth lens L6, that is, the object plane and the image plane are S11 and S12, respectively, and the two sides of the filter element L8 are respectively S13.
  • S14, the two sides of the plane lens L9 are S15 and S16, respectively, and the image surface is S17; and the S1-S17 are in one-to-one correspondence with the surface numbers in Table 11 and Table 12 below.
  • the optical lens of the present invention passes through 6 lens structures and is close to concentric circles.
  • the aspherical lens is designed to meet the requirements of miniaturization, achieve long focal length, large field of view, large aperture and meet high definition requirements, and effectively correct various aberrations of the optical system, especially suitable for in-vehicle camera systems, capturing
  • the long-distance object and the overall observation field of view are enlarged, and the functions of the conventional telephoto lens and the wide-angle lens can be realized by one lens, the cost of the on-vehicle camera system can be reduced, and the actual performance of the lens can be improved.
  • an optical lens according to a seventh embodiment of the present invention is illustrated, wherein the optical lens includes at least a first lens L1, at least a second lens L2, a third lens L3, and a first lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are in an object-to-image direction Arrange in order.
  • the first lens L1 has a negative refractive power, and the first lens L1 has an object surface S1 facing the object side and an image surface S2 facing the image side.
  • the object plane S1 of the first lens L1 is convex in order to increase the luminous flux of the optical lens. That is, the object surface S1 of the convex surface of the first lens L1 converges a large angle of light to increase the luminous flux entering the optical lens by the object side.
  • the object surface S1 of the first lens L1 is an aspherical mirror in order to reduce the processing difficulty.
  • the first lens L1 may be a spherical mirror.
  • the image plane S2 of the first lens L1 is a concave surface. That is, the first lens L1 includes two faces S1, S2, one of which is a convex surface and the other of which is a concave surface, the concave surface and the convex surface form a meniscus shape, and the meniscus is convex toward the object side. In order to increase the light entering the optical stage lens.
  • the lens surface when the lens surface is convex and the position of the convex surface is not defined, it indicates that the near-optical axis of the surface of the lens is convex;
  • the lens surface When the lens surface is concave and does not define the position of the concave surface, it indicates that the lens surface is concave at the near optical axis.
  • the second lens L2 has an object surface S3 facing the object side and an image surface S4 facing the image side.
  • the image plane S4 of the second lens L2 is convex to facilitate proper divergence of light passing through the first lens L1 to the rear of the optical lens.
  • the second lens L2 has a negative power. That is, the second lens L2 functions as a transition light to smoothly transition the light of the first lens L1 to the third lens L3.
  • Optimal The second lens L2 is an aspherical mirror in order to reduce the processing difficulty.
  • the second lens L2 may be a spherical mirror.
  • the object plane S3 of the second lens L2 is convex. That is, the second lens L2 includes two faces S3, S4, one of which is a convex surface and the other of which is a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the image side. In order to transmit the light transmitted by the first lens L1 to the rear.
  • the meniscus shapes of the first lens L1 and the second lens L2 are oppositely arranged, close to the concentric circle structure, so that the optical lens near the center has a smaller angle of view, a larger focal length, and a larger High angular resolution.
  • the third lens L3 has an object surface S5 facing the object side, and an image surface S6 facing the image side.
  • the object plane S5 and the image plane S6 of the third lens L3 are both convex to facilitate concentrating the light transmitted by the second lens L2 and being transmitted to the rear of the optical lens.
  • the third lens L3 is a lenticular lens having a light transition and a converging effect.
  • the third lens L3 has a positive power.
  • the fourth lens L4 and the fifth lens L5 constitute an achromatic lens group in order to reduce the chromatic aberration of light transmitted by the front member of the optical lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 form a front lens group.
  • a rear lens group wherein the front lens group includes the first lens L1, the second lens L2, and the third lens L3, and the rear lens group includes the fourth lens L4, the first The fifth lens L5 and the sixth lens L6.
  • the front lens group and the rear lens group are disposed in order from the object side to the image side direction.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens of the optical lens L5 and the sixth lens L6 are coaxial with each other.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 of the optical lens The main optical axis is the same.
  • the optical lens further includes a diaphragm L7, wherein the front lens group and the rear lens group are respectively disposed on two sides of the aperture L7, wherein The optical center of the aperture L7 and the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 The optical center is coaxial.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4 to reduce the optical lens.
  • the stray light makes the optical lens have a good imaging effect.
  • the aperture L7 may be disposed at other positions, such as between the second lens L2 and the third lens L3, between the fourth lens L4 and the fifth lens L5, and the fifth lens L5.
  • the position of the aperture L7 is not a limitation of the present invention.
  • the front lens group is not limited to being composed of the first lens L1, the second lens L2, and the third lens L3, and the rear lens group is not limited to being the fourth lens L4, the fifth lens L5, the sixth lens L6 is composed, and when the diaphragm L7 is disposed at different positions, the optical lens may constitute different front lens groups and rear lens groups.
  • the fourth lens L4 has an object plane S7 facing the object side and an image plane S8 facing the image side. Further, the object surface S7 of the fourth lens L4 is a convex surface, and the image surface S8 of the fourth lens L4 is a concave surface.
  • the fourth lens L4 has two faces S7, S8, which are respectively a convex surface and a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the object side. Further, according to this embodiment of the invention, the fourth lens L4 has a negative power.
  • the fifth lens L5 has an object surface S9 facing the object side, and an image surface S10 facing the image side. Further, the object surface S9 of the fifth lens L5 is a convex surface, and the image surface S10 of the fifth lens L5 is a convex surface. In other words, the fifth lens L5 is a lenticular lens. Further, according to this embodiment of the invention, the fifth lens L5 has positive power.
  • the image surface S8 of the fourth lens L4 and the object surface S9 of the fifth lens L5 are disposed to face each other.
  • the image plane S8 of the fourth lens L4 and the object plane S9 of the fifth lens L5 are disposed face to face, in this embodiment, that is, the concave surface of the fourth lens L4 and the The convex surface of the fifth lens L5 is disposed face to face.
  • the sixth lens L6 has an object surface S11 facing the object side, and an image surface S12 facing the image side. Further, the object surface S11 of the sixth lens L6 is a convex surface, and the image surface S12 of the sixth lens L6 is a concave surface. In other words, the sixth lens L6 is a meniscus lens, and the meniscus is convex toward the object side. further. The sixth lens L6 has positive power. The aberration and distortion are further corrected by the sixth lens L6, so that the imaging quality of the optical lens is better.
  • the sixth lens L6 is used to appropriately increase the distortion of the lens edge of the front lens of the optical lens, so that a large angle of light can reach a predetermined size.
  • the imaging surface L10 such as the photographic chip surface, can continue to revise the image by post-software processing, and also causes the image formed by the light after the sixth lens L6 to return to normal, that is, to obtain a large angle of imaging.
  • the optical lens further includes a planar lens L9 for protecting the optical lens from isolation.
  • a planar lens L9 for protecting the optical lens from isolation.
  • the planar lens L9 may not be provided, and the present invention is not limited in this respect.
  • the first lens L1 of the optical lens has a convex surface and a concave surface
  • the second lens L2 has a concave surface and a convex surface
  • the first lens L1 The convex surface is disposed toward the object side
  • the concave surface of the first lens L1 is disposed toward the image side
  • the concave surface of the second lens L2 is disposed toward the object side
  • the convex surface of the second lens L2 Set to face the image side.
  • the third lens L3 has two convex surfaces facing the object side and the image side, respectively.
  • the fourth lens L4 has a convex surface and a concave surface facing the object side and the image side, respectively, and the fifth lens L5 has two convex surfaces facing the object side and the image side, respectively, wherein the concave surface of the fourth lens L4
  • the convex surface of the fifth lens L5 is disposed opposite to the surface.
  • the sixth lens L6 has a convex surface and a concave surface which are respectively disposed toward the object side and the image side.
  • the achromatic lens group of the optical lens is preferably a cemented lens.
  • the fourth lens L4 and the fifth lens L5 are glued together to form the achromatic lens group.
  • the image surface S8 of the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are The object surface S9 is placed face to face in a glued manner.
  • the achromatic lens group may also be a separate achromatic lens group. It is to be understood that when the achromatic lens group is a separate achromatic lens group, the fourth lens L4 and the fifth lens L5 are disposed separately.
  • first lens L1 and the second lens L2 may be made of a glass material, or may be made of other materials having good light transmission properties, such as plastics and resins. It will be understood by those skilled in the art that in the optical lens of the present invention, light is entered by the first lens L1.
  • the first lens L1 and the second lens L2 After being concentrated by the first lens L1, it is transmitted to the second lens L2, so that a large angle of light can be collected by the first lens L1, and further, after the light passes through the first lens L1, the light reaches the The second lens L2, the light condensed by the first lens L1 is appropriately diverged by the second lens L2 and transmitted to the rear of the optical lens, and therefore, the first lens L1 and the second lens L2
  • the refractive index Nd needs to cooperate with each other, but it will be understood by those skilled in the art that the refractive index Nd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • the first lens L1 and the second lens L2 are provided with an Abbe constant Vd, so that the lens has better image quality, but it should be understood by those skilled in the art that The Abbe constant Vd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • FIG. 13 is a schematic structural view of an optical lens according to a seventh embodiment of the present invention.
  • the optical lens includes, in order from the object side to the image side, a front lens group, a diaphragm L7, a rear lens group, a filter element L8, a plane lens L9, and an imaging surface L10.
  • the front lens group includes: a first lens L1, a second lens L2, and a third lens L3 from the object side to the image side, the first lens L1 being a meniscus lens having a negative refractive power,
  • the second lens L2 is a meniscus lens having a negative refractive power, the concave surfaces of the first lens L1 and the second lens L2 are opposite, and the third lens L3 is a lenticular lens having positive refractive power;
  • the rear lens group includes, from the object side to the image side, a fourth lens L4, a fifth lens L5, and a sixth lens L6, the fourth lens L4 being a meniscus lens having a negative power, the fifth lens L5
  • the concave surface of the fourth lens L4 is opposite to the convex surface of the fifth lens L5. Further, the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are glued.
  • the sixth lens L6 is a meniscus lens having positive refr
  • the first lens L1 satisfies the following conditions:
  • R1 is a radius of curvature of the object surface S1 of the first lens L1
  • R2 is a radius of curvature of the image plane S2 of the first lens L1
  • d1 is a center thickness of the first lens L1.
  • the second lens L2 satisfies the following conditions:
  • R3 is a radius of curvature of the object surface S3 of the second lens L2
  • R4 is a radius of curvature of the image plane S4 of the second lens L2
  • d2 is a center thickness of the second lens L2.
  • the relationship between the respective curvature radii and the thickness of the first lens L1 and the second lens L2 is restricted such that the first lens L1 and the second lens L2 are close to a concentric circle,
  • the first lens L1 and the second lens L2 are oppositely disposed concavely, a larger angle of light can be collected into the optical lens, and is transmitted backward by proper diffusion of the second lens L2.
  • the focal length F1 of the first lens L1 and the combined focal length F of the optical lens satisfy the following conditions:
  • the focal length F2 of the second lens L2 and the entire set of focal lengths F of the optical lens satisfy the following conditions:
  • the optical system has an overall length of TTL, and the entire set of focal lengths of the optical lens is F, and then 2.0 ⁇ TTL/F ⁇ 6.0.
  • the maximum angle of view of the optical lens is FOVm
  • the image height corresponding to the maximum angle of view of the optical lens is Ym, then (FOVm ⁇ F)/Ym ⁇ 45.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are glass aspherical mirrors
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are not limited to a glass aspherical mirror, and may be a plastic aspherical or spherical mirror, etc.
  • the three lenses L3, the fourth lens L4, and the fifth lens L5 are not limited to the glass spherical mirror, and may be a glass aspheric surface, a plastic aspheric surface, or a resin aspheric surface. The present invention is not limited in this respect.
  • six lenses consisting of three glass spheres and three glass aspherical surfaces constitute the optical lens, for example, the first lens L1, the second lens L2, and the
  • the sixth lens L6 is a glass aspherical lens
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are glass spheres, so that the optical lens has a long focal length, a large angle of view, and is passed through the glass.
  • the spherical lens ensures the resolution of the optical lens and reduces chromatic aberration.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1 and the second lens L2 are close to the concentric lens, and are aspherical, so that a large angle of light can be effectively and smoothly concentrated, and due to the aspherical setting, the conventional spherical concentric lens processing is avoided. problem.
  • the object plane S1 of the first lens L1 has a central area S101 and an edge area S102 extending outward from the central area S101, the first lens L1
  • the central region S101 of the object surface S1 is a convex surface
  • the edge region S102 of the object surface S1 of the first lens L1 is a concave surface. It will be understood by those skilled in the art that the specific structure of the aspherical surface of the first lens L1 and the specific structure and range of the central and edge regions are not limited by the present invention.
  • the aspherical mirror surfaces of the first lens L1, the second lens L2, and the sixth lens L6 satisfy the following formula:
  • Z(h) is the position of the aspherical surface at height h in the optical axis direction
  • the distance vector from the aspherical vertex is high
  • c 1/r
  • r represents the radius of curvature of the aspherical mirror surface
  • k is the conic coefficient conic
  • A, B, C, D, and E are high-order aspheric coefficients.
  • the optical performance curve of this embodiment of the present invention is seen by the MTF curve of the optical lens, which has a higher resolution and better optical performance.
  • the parameters of the optical lens of this embodiment of the present invention are shown in Table 13 and Table 14 below.
  • the two surfaces of the first lens L1, that is, the object surface and the image surface are respectively S1 and S2
  • the two transparent surfaces, that is, the object surface and the image surface are respectively S3 and S4
  • the third surface is respectively Both sides of the lens L3, that is, the object surface and the image surface are S5 and S6, respectively, and both sides of the fourth lens L4, that is, the object surface and the image surface are S7 and S8, respectively, and both sides of the fifth lens L5, that is, the object surface And the image planes are respectively S9 and S10
  • the two sides of the sixth lens L6, that is, the object surface and the image plane are S11 and S12, respectively
  • the two sides of the filter element L8 are respectively S13 and S14
  • the plane lens L9 is The two sides are respectively S15 and S16, and the image plane is S17; the S1-S17 are in one-to-one correspondence with the surface numbers in
  • the optical lens of the present invention can satisfy the requirements of miniaturization, long focal length, large field of view, and large size through the design of six lens structures and aspherical lenses close to concentric circles. Aperture, and meets high definition requirements and effectively corrects various aberrations of the optical system. It is especially suitable for in-vehicle camera systems, capturing distant objects, and the overall viewing field is enlarged.
  • the traditional telephoto can be realized by a lens.
  • the functions of the lens and the wide-angle lens reduce the cost of the in-vehicle camera system and improve the actual performance of the lens.
  • This embodiment of the present invention is different from the first embodiment in that the structure of the sixth lens L6 is different.
  • an optical lens according to an eighth embodiment of the present invention is described, wherein the optical lens includes at least a first lens L1, at least a second lens L2, a third lens L3, and a first lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are in an object-to-image direction Arrange in order.
  • the first lens L1 has a negative refractive power
  • the first lens L1 has an object surface S1 facing the object side and an image surface S2 facing the image side.
  • the object surface S1 of the first lens L1 is convex to facilitate increasing the luminous flux of the optical lens. That is, the object surface S1 of the convex surface of the first lens L1 converges a large angle of light to increase the luminous flux entering the optical lens by the object side.
  • the object surface S1 of the first lens L1 is an aspherical mirror in order to reduce the processing difficulty.
  • the first lens L1 may be a spherical mirror.
  • the image plane S2 of the first lens L1 is a concave surface. That is, the first lens L1 includes two faces S1, S2, one of which is a convex surface and the other of which is a concave surface, the concave surface and the convex surface form a meniscus shape, and the meniscus is convex toward the object side. In order to increase the light entering the optical stage lens.
  • the lens surface when the lens surface is convex and the position of the convex surface is not defined, it indicates that the near-optical axis of the surface of the lens is convex;
  • the lens surface When the lens surface is concave and does not define the position of the concave surface, it indicates that the lens surface is concave at the near optical axis.
  • the second lens L2 has an object surface S3 facing the object side and an image surface S4 facing the image side.
  • the image plane S4 of the second lens L2 is convex to facilitate proper divergence of light passing through the first lens L1 to the rear of the optical lens.
  • the second lens L2 has a positive power. That is, the second lens L2 functions as a transition light to smoothly transition the light of the first lens L1 to the third lens L3.
  • the second lens L2 is an aspherical mirror in order to reduce the processing difficulty.
  • the second lens L2 may be a spherical mirror.
  • the object plane S3 of the second lens L2 is convex. That is, the second lens L2 includes two faces S3, S4, one of which is a convex surface and the other of which is a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the image side. In order to transmit the light transmitted by the first lens L1 to the rear.
  • the meniscus shapes of the first lens L1 and the second lens L2 are oppositely arranged, close to the concentric circle structure, so that the optical lens near the center has a smaller angle of view, a larger focal length, and a larger High angular resolution.
  • the third lens L3 has an object surface S5 facing the object side, and an image surface S6 facing the image side.
  • the object plane S5 and the image plane S6 of the third lens L3 are both convex to facilitate concentrating the light transmitted by the second lens L2 and being transmitted to the rear of the optical lens.
  • the third lens L3 is a lenticular lens having a light transition and a converging effect.
  • the third lens L3 has a positive power.
  • the fourth lens L4 and the fifth lens L5 constitute an achromatic lens group in order to reduce the chromatic aberration of light transmitted by the front member of the optical lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 form a front lens group.
  • a rear lens group wherein the front lens group includes the first lens L1, the second lens L2, and the third lens L3, and the rear lens group includes the fourth lens L4, the first The fifth lens L5 and the sixth lens L6.
  • the front lens group and the rear lens group are disposed in order from the object side to the image side direction.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens of the optical lens L5 and the sixth lens L6 are coaxial with each other.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 of the optical lens The main optical axis is the same.
  • the optical lens further includes a diaphragm L7, wherein the front lens group and the rear lens group are respectively disposed on two sides of the aperture L7, wherein The optical center of the aperture L7 and the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 The optical center is coaxial.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4 to reduce the optical lens.
  • the stray light makes the optical lens have a good imaging effect.
  • the aperture L7 may be disposed at other positions, such as between the second lens L2 and the third lens L3, between the fourth lens L4 and the fifth lens L5, and the fifth lens L5.
  • the position of the aperture L7 is not a limitation of the present invention.
  • the front lens group is not limited to being composed of the first lens L1, the second lens L2, and the third lens L3, and the rear lens group is not limited to being the fourth lens L4, the fifth lens L5, the sixth lens L6 is composed, and when the diaphragm L7 is disposed at different positions, the optical lens may constitute different front lens groups and rear lens groups.
  • the fourth lens L4 has an object surface S7. And the image plane S8, the object plane S7 faces the object side, and the image plane S8 faces the image side. Further, the object surface S7 of the fourth lens L4 is a convex surface, and the image surface S8 of the fourth lens L4 is a concave surface. In other words, the fourth lens L4 has two faces S7, S8, which are respectively a convex surface and a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the object side. Further, according to this embodiment of the invention, the fourth lens L4 has a negative power.
  • the fifth lens L5 has an object surface S9 facing the object side, and an image surface S10 facing the image side. Further, the object surface S9 of the fifth lens L5 is a convex surface, and the image surface S10 of the fifth lens L5 is a convex surface. In other words, the fifth lens L5 is a lenticular lens. Further, according to this embodiment of the invention, the fifth lens L5 has positive power.
  • the image surface S8 of the fourth lens L4 and the object surface S9 of the fifth lens L5 are disposed to face each other.
  • the image plane S8 of the fourth lens L4 and the object plane S9 of the fifth lens L5 are disposed face to face, in this embodiment, that is, the concave surface of the fourth lens L4 and the The convex surface of the fifth lens L5 is disposed face to face.
  • the sixth lens L6 has an object surface S11 facing the object side, and an image surface S12 facing the image side. Further, the object surface S11 of the sixth lens L6 is a concave surface, and the image surface S12 of the sixth lens L6 is a convex surface. In other words, the sixth lens L6 is a meniscus lens, and the meniscus is convex toward the image side. further. The sixth lens L6 has a negative power. The aberration and distortion are further corrected by the sixth lens L6, so that the imaging quality of the optical lens is better.
  • the sixth lens L6 is used to appropriately increase the distortion of the lens edge of the front lens of the optical lens, so that a large angle of light can reach a predetermined size.
  • the imaging surface L10 such as the photographic chip surface, can continue to revise the image by post-software processing, and also causes the image formed by the light after the sixth lens L6 to return to normal, that is, to obtain a large angle of imaging.
  • the optical lens further includes a planar lens L9 for protecting the optical lens from isolation.
  • a planar lens L9 for protecting the optical lens from isolation.
  • the planar lens L9 may not be provided, and the present invention is not limited in this respect.
  • the first lens L1 of the optical lens has a convex surface and a concave surface
  • the second lens L2 has a concave surface and a convex surface
  • the first The convex surface of the lens L1 is disposed toward the object side
  • the concave surface of the first lens L1 is disposed toward the image side
  • the concave surface of the second lens L2 is disposed toward the object side
  • the second lens L2 is disposed
  • the convex surface is set toward the image side.
  • the third lens L3 has two convex surfaces facing the object side and the image side, respectively.
  • the fourth lens L4 has a convex surface and a concave surface facing the object side and the image side, respectively, and the fifth lens L5 has two convex surfaces facing the object side and the image side, respectively, wherein the concave surface of the fourth lens L4
  • the convex surface of the fifth lens L5 is disposed opposite to the surface.
  • the sixth lens L6 has two convex surfaces which are respectively disposed toward the object side and the image side.
  • the achromatic lens group of the optical lens is preferably a cemented lens.
  • the fourth lens L4 and the fifth lens L5 are glued together to form the achromatic lens group.
  • the image surface S8 of the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are The object surface S9 is placed face to face in a glued manner.
  • the achromatic lens group may also be a separate achromatic lens group. It is to be understood that when the achromatic lens group is a separate achromatic lens group, the fourth lens L4 and the fifth lens L5 are disposed separately.
  • the first lens L1 and the second lens L2 may be made of a glass material, or may be made of other materials having good light transmission properties, such as plastics and resins. It will be understood by those skilled in the art that in the optical lens of the present invention, light is entered by the first lens L1, and transmitted to the second lens L2 after being concentrated by the first lens L1. Therefore, a large angle of light can be collected by the first lens L1, and further, after the light passes through the first lens L1, the second lens L2 is reached, and the light concentrated by the first lens L1 is The two lenses L2 are appropriately diverged and transmitted to the rear of the optical lens.
  • the refractive indices Nd of the first lens L1 and the second lens L2 need to cooperate with each other, but those skilled in the art should understand that The refractive index Nd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • the first lens L1 and the second lens L2 are provided with an Abbe constant Vd, so that the lens has better image quality, but it should be understood by those skilled in the art that The Abbe constant Vd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • Figure 15 is a schematic view showing the structure of an optical lens according to an eighth embodiment of the present invention.
  • the optical lens includes, in order from the object side to the image side, a front lens group, a diaphragm L7, a rear lens group, a filter element L8, a plane lens L9, and an imaging surface L10.
  • the front lens group includes: a first lens L1, a second lens L2, and a third lens L3 from the object side to the image side, the first lens L1 being a meniscus lens having a negative refractive power,
  • the second lens L2 is a meniscus lens having a negative refractive power, the concave surfaces of the first lens L1 and the second lens L2 are opposite, and the third lens L3 is a lenticular lens having positive refractive power;
  • the rear lens group includes, from the object side to the image side, a fourth lens L4, a fifth lens L5, and a sixth lens L6, the fourth lens L4 being a meniscus lens having a negative power, the fifth lens L5
  • the concave surface of the fourth lens L4 is opposite to the convex surface of the fifth lens L5. Further, the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are glued.
  • the sixth lens L6 is a meniscus lens having a negative
  • the first lens L1 satisfies the following conditions:
  • R1 is a radius of curvature of the object surface S1 of the first lens L1
  • R2 is a radius of curvature of the image plane S2 of the first lens L1
  • d1 is a center thickness of the first lens L1.
  • the second lens L2 satisfies the following conditions:
  • R3 is a radius of curvature of the object surface S3 of the second lens L2
  • R4 is a radius of curvature of the image plane S4 of the second lens L2
  • d2 is a center thickness of the second lens L2.
  • the relationship between the respective curvature radii and the thickness of the first lens L1 and the second lens L2 is restricted such that the first lens L1 and the second lens L2 are close to a concentric circle, thereby When the concave surfaces of the first lens L1 and the second lens L2 are oppositely disposed, a larger angle of light can be collected into the optical lens, and is transmitted backward by proper diffusion of the second lens L2.
  • the focal length F1 of the first lens L1 and the combined focal length F of the optical lens satisfy the following conditions:
  • the focal length F2 of the second lens L2 and the entire set of focal lengths F of the optical lens satisfy the following conditions:
  • the optical system has an overall length of TTL, and the entire set of focal lengths of the optical lens is F, and then 2.0 ⁇ TTL/F ⁇ 6.0.
  • the maximum angle of view of the optical lens is FOVm
  • the image height corresponding to the maximum angle of view of the optical lens is Ym, then (FOVm ⁇ F)/Ym ⁇ 45.
  • the first lens L1, the second lens L2, and the sixth The lens L6 is an aspherical mirror.
  • the first lens L1, the second lens L2, and the sixth lens L6 are glass aspherical mirrors
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are not limited to a glass aspherical mirror, and may be a plastic aspherical or spherical mirror, etc.
  • the three lenses L3, the fourth lens L4, and the fifth lens L5 are not limited to the glass spherical mirror, and may be a glass aspheric surface, a plastic aspheric surface, or a resin aspheric surface. The present invention is not limited in this respect.
  • six lenses consisting of three glass spheres and three glass aspherical surfaces constitute the optical lens, for example, the first lens L1, the second lens L2, and the
  • the sixth lens L6 is a glass aspherical lens
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are glass spheres, so that the optical lens has a long focal length, a large angle of view, and is passed through the glass.
  • the spherical lens ensures the resolution of the optical lens and reduces chromatic aberration.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1 and the second lens L2 are close to the concentric lens, and are aspherical, so that a large angle of light can be effectively and smoothly concentrated, and due to the aspherical setting, the conventional spherical concentric lens processing is avoided. problem.
  • the object surface S1 of the first lens L1 has a central area S101 and an edge area S102 extending outward from the central area S101, the first lens L1
  • the central region S101 of the object surface S1 is a convex surface
  • the edge region S102 of the object surface S1 of the first lens L1 is a concave surface.
  • the aspherical mirror surfaces of the first lens L1, the second lens L2, and the sixth lens L6 satisfy the following formula:
  • Z(h) is the position of the aspherical surface at height h in the optical axis direction
  • the distance vector from the aspherical vertex is high
  • c 1/r
  • r represents the radius of curvature of the aspherical mirror surface
  • k is the conic coefficient conic
  • A, B, C, D, and E are high-order aspheric coefficients.
  • Figure 16 is an optical performance curve of this embodiment of the present invention, by the optical lens
  • the MTF curve shows that the optical lens has a higher resolution and better optical performance.
  • the parameters of the optical lens of this embodiment of the present invention are shown in Tables 15 and 16 below.
  • the two surfaces of the first lens L1, that is, the object surface and the image surface are respectively S1 and S2
  • the two transparent surfaces, that is, the object surface and the image surface are respectively S3 and S4
  • the third surface is respectively Both sides of the lens L3, that is, the object surface and the image surface are S5 and S6, respectively, and both sides of the fourth lens L4, that is, the object surface and the image surface are S7 and S8, respectively, and both sides of the fifth lens L5, that is, the object surface And the image planes are respectively S9 and S10
  • the two sides of the sixth lens L6, that is, the object surface and the image plane are S11 and S12, respectively
  • the two sides of the filter element L8 are respectively S13 and S14
  • the plane lens L9 is The two sides are respectively S15 and S16, and the image plane is S17; the S1-S17 are in one-to-one correspondence with the surface numbers in
  • the optical lens of the present invention can meet the requirements of miniaturization, realize long focal length, large angle of view, and large aperture through the design of six lens structures and aspherical lenses close to concentric circles. It meets the high definition requirements and effectively corrects various aberrations of the optical system. It is especially suitable for in-vehicle camera systems, capturing distant objects, and the overall viewing field is enlarged.
  • a traditional telephoto lens can be realized by a lens. The wide-angle lens function of these two lenses reduces the cost of the car camera system and improves the actual performance of the lens.
  • This embodiment of the invention differs from the first embodiment in the power of the second lens and the power and structure of the sixth lens.
  • an optical lens according to a ninth embodiment of the present invention is illustrated, wherein the optical lens includes at least a first lens L1, at least a second lens L2, a third lens L3, and a first lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are in an object-to-image direction Arrange in order.
  • the first lens L1 has a negative refractive power, and the first lens L1 has an object surface S1 facing the object side and an image surface S2 facing the image side.
  • the object plane S1 of the first lens L1 is convex in order to increase the luminous flux of the optical lens. That is, the object surface S1 of the convex surface of the first lens L1 converges a large angle of light to increase the luminous flux entering the optical lens by the object side.
  • the object surface S1 of the first lens L1 is an aspherical mirror in order to reduce the processing difficulty.
  • the first lens L1 may be a spherical mirror.
  • the image plane S2 of the first lens L1 is a concave surface. That is, the first lens L1 includes two faces S1, S2, one of which is a convex surface and the other of which is a concave surface, the concave surface and the convex surface form a meniscus shape, and the meniscus is convex toward the object side. In order to increase the light entering the optical stage lens.
  • the surface of the lens when the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the near-optical axis of the surface of the lens is convex;
  • the lens surface when the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is concave at the near optical axis.
  • the second lens L2 has an object surface S3 facing the object side and an image surface S4 facing the image side.
  • the image plane S4 of the second lens L2 is convex to facilitate proper divergence of light passing through the first lens L1 to the rear of the optical lens.
  • the second lens L2 has a positive power. That is, the second lens L2 functions as a transition light to smoothly transition the light of the first lens L1 to the third lens L3.
  • the second lens L2 is an aspherical mirror in order to reduce the processing difficulty.
  • the second lens L2 may be a spherical mirror.
  • the object plane S3 of the second lens L2 is convex. That is, the second lens L2 includes two faces S3, S4, one of which is a convex surface and the other of which is a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the image side. In order to transmit the light transmitted by the first lens L1 to the rear.
  • the meniscus shapes of the first lens L1 and the second lens L2 are oppositely arranged, close to the concentric circle structure, so that the optical lens near the center has a smaller angle of view, a larger focal length, and a larger High angular resolution.
  • the third lens L3 has an object surface S5 facing the object side, and an image surface S6 facing the image side.
  • the object plane S5 and the image plane S6 of the third lens L3 are both convex to facilitate concentrating the light transmitted by the second lens L2 and being transmitted to the rear of the optical lens.
  • the third lens L3 is a lenticular lens having a light transition and a converging effect.
  • the third lens L3 has a positive power.
  • the fourth lens L4 and the fifth lens L5 constitute an achromatic lens group in order to reduce the chromatic aberration of light transmitted by the front member of the optical lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 form a front lens group.
  • a rear lens group wherein the front lens group includes the first lens L1, the second lens L2, and the third lens L3, and the rear lens group includes the fourth lens L4, the first The fifth lens L5 and the sixth lens L6.
  • the front lens group and the rear lens group are disposed in order from the object side to the image side direction.
  • the sixth lens L6 is coaxial with the optical center.
  • the main optical axis is the same.
  • the optical lens further includes a diaphragm L7, wherein the front lens group and the rear lens group are respectively disposed on two sides of the aperture L7, wherein The optical center of the aperture L7 and the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 The optical center is coaxial.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4 to reduce the optical lens.
  • the stray light makes the optical lens have a good imaging effect.
  • the aperture L7 may be disposed at other positions, such as between the second lens L2 and the third lens L3, between the fourth lens L4 and the fifth lens L5, and the fifth lens L5.
  • the position of the aperture L7 is not a limitation of the present invention.
  • the front lens group is not limited to being composed of the first lens L1, the second lens L2, and the third lens L3, and the rear lens group is not limited to being the fourth lens L4, the fifth lens L5, the sixth lens L6 is composed, and when the diaphragm L7 is disposed at different positions, the optical lens may constitute different front lens groups and rear lens groups.
  • the fourth lens L4 has an object surface S7 facing the object side, and an image surface S8 facing the image side. Further, the object surface S7 of the fourth lens L4 is a convex surface, and the image surface S8 of the fourth lens L4 is a concave surface.
  • the fourth lens L4 has two faces S7, S8, which are respectively a convex surface and a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the object side. Further, according to this embodiment of the invention, the fourth lens L4 has a negative power.
  • the fifth lens L5 has an object surface S9 facing the object side, and an image surface S10 facing the image side. Further, the object surface S9 of the fifth lens L5 is a convex surface, and the image surface S10 of the fifth lens L5 is a convex surface. In other words, the fifth lens L5 is a lenticular lens. Further, according to this embodiment of the invention, the fifth lens L5 has positive power.
  • the image surface S8 of the fourth lens L4 and the object surface of the fifth lens L5 S9 is set to face each other.
  • the image plane S8 of the fourth lens L4 and the object plane S9 of the fifth lens L5 are disposed face to face, in this embodiment, that is, the concave surface of the fourth lens L4 and the The convex surface of the fifth lens L5 is disposed face to face.
  • the sixth lens L6 has an object surface S11 facing the object side, and an image surface S12 facing the image side. Further, the object surface S11 of the sixth lens L6 is a concave surface, and the image surface S12 of the sixth lens L6 is a concave surface. In other words, the sixth lens L6 is a double concave lens. further. The sixth lens L6 has a negative power. The aberration and distortion are further corrected by the sixth lens L6, so that the imaging quality of the optical lens is better.
  • the sixth lens L6 is used to appropriately increase the distortion of the lens edge of the front lens of the optical lens, so that a large angle of light can reach a predetermined size.
  • the imaging surface L10 such as the photographic chip surface, can continue to revise the image by post-software processing, and also causes the image formed by the light after the sixth lens L6 to return to normal, that is, to obtain a large angle of imaging.
  • the optical lens further includes a planar lens L9 for protecting the optical lens from isolation.
  • a planar lens L9 for protecting the optical lens from isolation.
  • the planar lens L9 may not be provided, and the present invention is not limited in this respect.
  • the first lens L1 of the optical lens has a convex surface and a concave surface
  • the second lens L2 has a concave surface and a convex surface
  • the first lens L1 The convex surface is disposed toward the object side
  • the concave surface of the first lens L1 is disposed toward the image side
  • the concave surface of the second lens L2 is disposed toward the object side
  • the convex surface of the second lens L2 Set to face the image side.
  • the third lens L3 has two convex surfaces facing the object side and the image side, respectively.
  • the fourth lens L4 has a convex surface and a concave surface facing the object side and the image side, respectively, and the fifth lens L5 has two convex surfaces facing the object side and the image side, respectively, wherein the concave surface of the fourth lens L4
  • the convex surface of the fifth lens L5 is disposed opposite to the surface.
  • the sixth lens L6 has two concave surfaces which are respectively disposed toward the object side and the image side.
  • the achromatic lens group of the optical lens is preferably a cemented lens.
  • the fourth lens L4 and the fifth lens L5 are glued together to form the achromatic lens group.
  • the image surface S8 of the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 The object surface S9 is disposed face to face in a glued manner.
  • the achromatic lens group may also be a separate achromatic lens group. It is to be understood that when the achromatic lens group is a separate achromatic lens group, the fourth lens L4 and the fifth lens L5 are disposed separately.
  • the first lens L1 and the second lens L2 may be made of a glass material, or may be made of other materials having good light transmission properties, such as plastics and resins. It will be understood by those skilled in the art that in the optical lens of the present invention, light is entered by the first lens L1, and transmitted to the second lens L2 after being concentrated by the first lens L1. Therefore, a large angle of light can be collected by the first lens L1, and further, after the light passes through the first lens L1, the second lens L2 is reached, and the light concentrated by the first lens L1 is The two lenses L2 are appropriately diverged and transmitted to the rear of the optical lens.
  • the refractive indices Nd of the first lens L1 and the second lens L2 need to cooperate with each other, but those skilled in the art should understand that The refractive index Nd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • the first lens L1 and the second lens L2 are provided with an Abbe constant Vd, so that the lens has better image quality, but it should be understood by those skilled in the art that The Abbe constant Vd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • Figure 17 is a schematic view showing the structure of an optical lens according to a ninth embodiment of the present invention.
  • the optical lens includes, in order from the object side to the image side, a front lens group, a diaphragm L7, a rear lens group, a filter element L8, a plane lens L9, and an imaging surface L10.
  • the front lens group includes: a first lens L1, a second lens L2, and a third lens L3 from the object side to the image side, the first lens L1 being a meniscus lens having a negative refractive power,
  • the second lens L2 is a meniscus lens having positive refractive power, the concave surfaces of the first lens L1 and the second lens L2 are opposite, and the third lens L3 is a lenticular lens having positive refractive power;
  • the lens group includes, from the object side to the image side, a fourth lens L4, a fifth lens L5, and a sixth lens L6, the fourth lens L4 being a meniscus lens having a negative refractive power, and the fifth lens L5 being A lenticular lens having a positive power, the concave surface of the fourth lens L4 being opposite to the convex surface of the fifth lens L5. Further, the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are glued.
  • the sixth lens L6 is a bi
  • the first lens L1 satisfies the following conditions:
  • R1 is a radius of curvature of the object surface S1 of the first lens L1
  • R2 is the first through
  • the radius of curvature of the image plane S2 of the mirror L1 is the center thickness of the first lens L1.
  • the second lens L2 satisfies the following conditions:
  • R3 is a radius of curvature of the object surface S3 of the second lens L2
  • R4 is a radius of curvature of the image plane S4 of the second lens L2
  • d2 is a center thickness of the second lens L2.
  • the relationship between the respective curvature radii and the thickness of the first lens L1 and the second lens L2 is restricted such that the first lens L1 and the second lens L2 are close to a concentric circle, thereby When the concave surfaces of the first lens L1 and the second lens L2 are oppositely disposed, a larger angle of light can be collected into the optical lens, and is transmitted backward by proper diffusion of the second lens L2.
  • the focal length F1 of the first lens L1 and the combined focal length F of the optical lens satisfy the following conditions:
  • the focal length F2 of the second lens L2 and the entire set of focal lengths F of the optical lens satisfy the following conditions:
  • the optical system has an overall length of TTL, and the entire set of focal lengths of the optical lens is F, and then 2.0 ⁇ TTL/F ⁇ 6.0.
  • the maximum angle of view of the optical lens is FOVm
  • the image height corresponding to the maximum angle of view of the optical lens is Ym, then (FOVm ⁇ F)/Ym ⁇ 45.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are glass aspherical mirrors
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are not limited to a glass aspherical mirror, and may be a plastic aspherical or spherical mirror, etc.
  • the three lenses L3, the fourth lens L4, and the fifth lens L5 are not limited to the glass spherical mirror, and may be a glass aspheric surface, a plastic aspheric surface, or a resin aspheric surface. The present invention is not limited in this respect.
  • six lenses consisting of three glass spheres and three glass aspherical surfaces constitute the optical lens, for example, the first lens L1, the second lens L2, and the
  • the sixth lens L6 is a glass aspherical lens
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are glass spheres, so that the optical lens has a long focal length, a large angle of view, and is passed through the glass.
  • Spherical lens guarantees the optical lens Resolution of resolution, reducing chromatic aberration.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1 and the second lens L2 are close to the concentric lens, and are aspherical, so that a large angle of light can be effectively and smoothly concentrated, and due to the aspherical setting, the conventional spherical concentric lens processing is avoided. problem.
  • the object surface S1 of the first lens L1 has a central area S101 and an edge area S102 extending outward from the central area S101, the first lens L1
  • the central region S101 of the object surface S1 is a convex surface
  • the edge region S102 of the object surface S1 of the first lens L1 is a concave surface.
  • the aspherical mirror surfaces of the first lens L1, the second lens L2, and the sixth lens L6 satisfy the following formula:
  • Z(h) is the position of the aspherical surface at height h in the optical axis direction
  • the distance vector from the aspherical vertex is high
  • c 1/r
  • r represents the radius of curvature of the aspherical mirror surface
  • k is the conic coefficient conic
  • A, B, C, D, and E are high-order aspheric coefficients.
  • the optical performance curve of this embodiment of the present invention is seen by the MTF curve of the optical lens, which has a higher resolution and better optical performance.
  • the parameters of the optical lens of this embodiment of the present invention are shown in Tables 17 and 18 below.
  • the two surfaces of the first lens L1, that is, the object surface and the image surface are respectively S1 and S2
  • the two transparent surfaces, that is, the object surface and the image surface are respectively S3 and S4
  • the third surface is respectively Both sides of the lens L3, that is, the object surface and the image surface are S5 and S6, respectively, and both sides of the fourth lens L4, that is, the object surface and the image surface are S7 and S8, respectively, and both sides of the fifth lens L5, that is, the object surface And the image planes are respectively S9 and S10
  • the two sides of the sixth lens L6, that is, the object surface and the image plane are S11 and S12, respectively
  • the two sides of the filter element L8 are respectively S13 and S14
  • the plane lens L9 is The two sides are respectively S15 and S16, and the image plane is S17; the S1-S17 are in one-to-one correspondence with the surface numbers in
  • the optical lens of the present invention can meet the requirements of miniaturization, realize long focal length, large angle of view, and large aperture through the design of six lens structures and aspherical lenses close to concentric circles. It meets the high definition requirements and effectively corrects various aberrations of the optical system. It is especially suitable for in-vehicle camera systems, capturing distant objects, and the overall viewing field is enlarged.
  • a traditional telephoto lens can be realized by a lens. The wide-angle lens function of these two lenses reduces the cost of the car camera system and improves the actual performance of the lens.
  • This embodiment of the present invention differs from the first embodiment in the power of the second lens L2 and the power and structure of the sixth lens L6.
  • an optical lens according to a tenth embodiment of the present invention is illustrated, wherein the optical lens includes at least a first lens L1, at least a second lens L2, a third lens L3, and a first lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are in an object-to-image direction Arrange in order.
  • the first lens L1 has a negative refractive power, and the first lens L1 has an object surface S1 facing the object side and an image surface S2 facing the image side.
  • the object plane S1 of the first lens L1 is convex in order to increase the luminous flux of the optical lens. That is, the object surface S1 of the convex surface of the first lens L1 converges a large angle of light to increase the luminous flux entering the optical lens by the object side.
  • the object surface S1 of the first lens L1 is an aspherical mirror in order to reduce the processing difficulty.
  • the first lens L1 may be a spherical mirror.
  • the image plane S2 of the first lens L1 is a concave surface. That is, the first lens L1 includes two faces S1, S2, one of which is a convex surface and the other of which is a concave surface, the concave surface and the convex surface form a meniscus shape, and the meniscus is convex toward the object side. In order to increase the light entering the optical stage lens.
  • the lens surface when the lens surface is convex and the position of the convex surface is not defined, it indicates that the near-optical axis of the surface of the lens is convex;
  • the lens surface When the lens surface is concave and does not define the position of the concave surface, it indicates that the lens surface is concave at the near optical axis.
  • the second lens L2 has an object surface S3 facing the object side and an image surface S4 facing the image side.
  • the image plane S4 of the second lens L2 is convex to facilitate proper divergence of light passing through the first lens L1 to the rear of the optical lens.
  • the second lens L2 has a negative power. That is, the second lens L2 functions as a transition light to smoothly transition the light of the first lens L1 to the third lens L3.
  • the second lens L2 is an aspherical mirror in order to reduce the processing difficulty.
  • the second lens L2 may be a spherical mirror.
  • the object plane S3 of the second lens L2 is convex. That is, the second lens L2 includes two faces S3, S4, one of which is a convex surface and the other of which is a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the image side.
  • the light transmitted by a lens L1 is diverged and transmitted to the rear.
  • the meniscus shapes of the first lens L1 and the second lens L2 are oppositely arranged, close to the concentric circle structure, so that the optical lens near the center has a smaller angle of view, a larger focal length, and a larger High angular resolution.
  • the third lens L3 has an object surface S5 facing the object side, and an image surface S6 facing the image side.
  • the object plane S5 and the image plane S6 of the third lens L3 are both convex to facilitate concentrating the light transmitted by the second lens L2 and being transmitted to the rear of the optical lens.
  • the third lens L3 is a lenticular lens having a light transition and a converging effect.
  • the third lens L3 has a positive power.
  • the fourth lens L4 and the fifth lens L5 constitute an achromatic lens group in order to reduce the chromatic aberration of light transmitted by the front member of the optical lens.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 form a front lens group.
  • a rear lens group wherein the front lens group includes the first lens L1, the second lens L2, and the third lens L3, and the rear lens group includes the fourth lens L4, the first The fifth lens L5 and the sixth lens L6.
  • the front lens group and the rear lens group are disposed in order from the object side to the image side direction.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens of the optical lens L5 and the sixth lens L6 are coaxial with each other.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 of the optical lens The main optical axis is the same.
  • the optical lens further includes a diaphragm L7, wherein the front lens group and the rear lens group are respectively disposed on two sides of the aperture L7, wherein The optical center of the aperture L7 and the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 The optical center is coaxial.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4 to reduce the optical lens.
  • the stray light makes the optical lens have a good imaging effect.
  • the aperture L7 may be disposed at other positions, such as between the second lens L2 and the third lens L3, and the fourth lens L4. Between the fifth lens L5 and the fifth lens L5 and the sixth lens L6, etc., it will be understood by those skilled in the art that the position of the aperture L7 is not a limitation of the present invention.
  • the front lens group is not limited to being composed of the first lens L1, the second lens L2, and the third lens L3, and the rear lens group is not limited to being the fourth lens L4, the fifth lens L5, the sixth lens L6 is composed, and when the diaphragm L7 is disposed at different positions, the optical lens may constitute different front lens groups and rear lens groups.
  • the fourth lens L4 has an object surface S7 facing the object side, and an image surface S8 facing the image side. Further, the object surface S7 of the fourth lens L4 is a convex surface, and the image surface S8 of the fourth lens L4 is a convex surface. In other words, the fourth lens L4 has two faces S7, S8, which are respectively two convex faces.
  • the fourth lens is a lenticular lens. Further, according to this embodiment of the invention, the fourth lens L4 has positive power.
  • the fifth lens L5 has an object surface S9 facing the object side, and an image surface S10 facing the image side. Further, the object surface S9 of the fifth lens L5 is a concave surface, and the image surface S10 of the fifth lens L5 is a convex surface. In other words, the fifth lens L5 is a meniscus lens, and the meniscus is convex toward the image side. Further, according to this embodiment of the invention, the fifth lens L5 has a negative power.
  • the image surface S8 of the fourth lens L4 and the object surface S9 of the fifth lens L5 are disposed to face each other.
  • the image plane S8 of the fourth lens L4 and the object plane S9 of the fifth lens L5 are disposed face to face, in this embodiment, that is, the convex surface of the fourth lens L4 and the The concave surfaces of the fifth lens L5 are disposed face to face.
  • the sixth lens L6 has an object surface S11 facing the object side, and an image surface S12 facing the image side. Further, the object surface S11 of the sixth lens L6 is a convex surface, and the image surface S12 of the sixth lens L6 is a convex surface. In other words, the sixth lens L6 is a lenticular lens. further. The sixth lens L6 has a positive power. The aberration and distortion are further corrected by the sixth lens L6, so that the imaging quality of the optical lens is better.
  • the sixth lens L6 is used to appropriately increase the distortion of the lens edge of the front lens of the optical lens, so that a large angle of light can reach a predetermined size.
  • the imaging surface L10 such as the sensor chip surface, can be revised by the later software processing For example, the image formed by the light rays after the sixth lens L6 is returned to normal, that is, a large angle of imaging is obtained.
  • the optical lens further includes a planar lens L9 for protecting the optical lens from isolation.
  • a planar lens L9 for protecting the optical lens from isolation.
  • the planar lens L9 may not be provided, and the present invention is not limited in this respect.
  • the first lens L1 of the optical lens has a convex surface and a concave surface
  • the second lens L2 has two convex surfaces, wherein the first lens L1 The convex surface is disposed toward the object side, the concave surface of the first lens L1 is disposed toward the image side, the concave surface of the second lens L2 is disposed toward the object side, and the convex surface of the second lens L2 is Set the orientation side.
  • the third lens L3 has two convex surfaces facing the object side and the image side, respectively.
  • the fourth lens L4 has two convex surfaces facing the object side and the image side, respectively, and the fifth lens L5 has a concave surface and a convex surface respectively facing the object side and the image side, wherein the fourth lens L4 is The convex surface and the concave surface of the fifth lens L5 are disposed opposite to each other.
  • the sixth lens L6 has two convex surfaces which are respectively disposed toward the object side and the image side.
  • the achromatic lens group of the optical lens is preferably a cemented lens.
  • the fourth lens L4 and the fifth lens L5 are glued together to form the achromatic lens group.
  • the image surface S8 of the convex surface of the fourth lens L4 and the concave surface of the fifth lens L5 are The object surface S9 is placed face to face in a glued manner.
  • the achromatic lens group may also be a separate achromatic lens group. It is to be understood that when the achromatic lens group is a separate achromatic lens group, the fourth lens L4 and the fifth lens L5 are disposed separately.
  • the first lens L1 and the second lens L2 may be made of a glass material, or may be made of other materials having good light transmission properties, such as plastics and resins. It will be understood by those skilled in the art that in the optical lens of the present invention, light is entered by the first lens L1, and transmitted to the second lens L2 after being concentrated by the first lens L1. Therefore, a large angle of light can be collected by the first lens L1, and further, after the light passes through the first lens L1, the second lens L2 is reached, and the light concentrated by the first lens L1 is The two lenses L2 are appropriately diverged and transmitted to the rear of the optical lens.
  • the refractive indices Nd of the first lens L1 and the second lens L2 need to cooperate with each other, but those skilled in the art should understand that First through The refractive index Nd of the mirror L1 and the second lens L2 is not a limitation of the present invention.
  • the first lens L1 and the second lens L2 are provided with an Abbe constant Vd, so that the lens has better image quality, but it should be understood by those skilled in the art that The Abbe constant Vd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • Figure 19 is a schematic view showing the structure of an optical lens according to a tenth embodiment of the present invention.
  • the optical lens includes, in order from the object side to the image side, a front lens group, a diaphragm L7, a rear lens group, a filter element L8, a plane lens L9, and an imaging surface L10.
  • the front lens group includes: a first lens L1, a second lens L2, and a third lens L3 from the object side to the image side, the first lens L1 being a meniscus lens having a negative refractive power,
  • the second lens L2 is a meniscus lens having a negative refractive power, the concave surfaces of the first lens L1 and the second lens L2 are opposite, and the third lens L3 is a lenticular lens having positive refractive power;
  • the rear lens group includes, from the object side to the image side, a fourth lens L4, a fifth lens L5, and a sixth lens L6, the fourth lens L4 being a meniscus lens having a negative power, the fifth lens L5
  • the concave surface of the fourth lens L4 is opposite to the convex surface of the fifth lens L5. Further, the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are glued.
  • the sixth lens L6 is a lenticular lens having positive power
  • the first lens L1 satisfies the following conditions:
  • R1 is a radius of curvature of the object surface S1 of the first lens L1
  • R2 is a radius of curvature of the image plane S2 of the first lens L1
  • d1 is a center thickness of the first lens L1.
  • the second lens L2 satisfies the following conditions:
  • R3 is a radius of curvature of the object surface S3 of the second lens L2
  • R4 is a radius of curvature of the image plane S4 of the second lens L2
  • d2 is a center thickness of the second lens L2.
  • the relationship between the respective curvature radii and the thickness of the first lens L1 and the second lens L2 is restricted such that the first lens L1 and the second lens L2 are close to a concentric circle, thereby When the concave surfaces of the first lens L1 and the second lens L2 are oppositely disposed, a larger angle of light can be collected into the optical lens, and is transmitted backward by proper diffusion of the second lens L2.
  • the focal length F1 of the first lens L1 and the combined focal length F of the optical lens satisfy the following conditions:
  • the focal length F2 of the second lens L2 and the entire set of focal lengths F of the optical lens satisfy the following conditions:
  • the optical system has an overall length of TTL, and the entire set of focal lengths of the optical lens is F, and then 2.0 ⁇ TTL/F ⁇ 6.0.
  • the maximum angle of view of the optical lens is FOVm
  • the image height corresponding to the maximum angle of view of the optical lens is Ym, then (FOVm ⁇ F)/Ym ⁇ 45.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are glass aspherical mirrors
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical mirrors.
  • the first lens L1, the second lens L2, and the sixth lens L6 are not limited to a glass aspherical mirror, and may be a plastic aspherical or spherical mirror, etc.
  • the three lenses L3, the fourth lens L4, and the fifth lens L5 are not limited to the glass spherical mirror, and may be a glass aspheric surface, a plastic aspheric surface, or a resin aspheric surface. The present invention is not limited in this respect.
  • six lenses consisting of three glass spheres and three glass aspherical surfaces constitute the optical lens, for example, the first lens L1, the second lens L2, and the
  • the sixth lens L6 is a glass aspherical lens
  • the third lens L3, the fourth lens L4, and the fifth lens L5 are glass spheres, so that the optical lens has a long focal length, a large angle of view, and is passed through the glass.
  • the spherical lens ensures the resolution of the optical lens and reduces chromatic aberration.
  • the first lens L1, the second lens L2, and the sixth lens L6 are aspherical mirrors.
  • the first lens L1 and the second lens L2 are close to the concentric lens, and are aspherical, so that a large angle of light can be effectively and smoothly concentrated, and due to the aspherical setting, the conventional spherical concentric lens processing is avoided. problem.
  • the object surface S1 of the first lens L1 has a central area S101 and an edge area S102 extending outward from the central area S101, the first lens L1
  • the central region S101 of the object surface S1 is a convex surface
  • the edge region S102 of the object surface S1 of the first lens L1 is a concave surface.
  • the aspherical mirror surfaces of the first lens L1, the second lens L2, and the sixth lens L6 satisfy The following formula:
  • Z(h) is the position of the aspherical surface at height h in the optical axis direction
  • the distance vector from the aspherical vertex is high
  • c 1/r
  • r represents the radius of curvature of the aspherical mirror surface
  • k is the conic coefficient conic
  • A, B, C, D, and E are high-order aspheric coefficients.
  • the optical performance curve of this embodiment of the present invention is seen by the MTF curve of the optical lens, which has a higher resolution and better optical performance.
  • the parameters of the optical lens of this embodiment of the present invention are shown in Tables 19 and 20 below.
  • the two surfaces of the first lens L1, that is, the object surface and the image surface are respectively S1 and S2
  • the two transparent surfaces, that is, the object surface and the image surface are respectively S3 and S4
  • the third surface is respectively Both sides of the lens L3, that is, the object surface and the image surface are S5 and S6, respectively, and both sides of the fourth lens L4, that is, the object surface and the image surface are S7 and S8, respectively, and both sides of the fifth lens L5, that is, the object surface And the image planes are respectively S9 and S10
  • the two sides of the sixth lens L6, that is, the object surface and the image plane are S11 and S12, respectively
  • the two sides of the filter element L8 are respectively S13 and S14
  • the plane lens L9 is The two sides are respectively S15 and S16, and the image plane is S17; the S1-S17 are in one-to-one correspondence with the surface numbers in
  • the optical lens of the present invention can meet the requirements of miniaturization, realize long focal length, large angle of view, and large aperture through the design of six lens structures and aspherical lenses close to concentric circles. It meets the high definition requirements and effectively corrects various aberrations of the optical system. It is especially suitable for in-vehicle camera systems, capturing distant objects, and the overall viewing field is enlarged.
  • a traditional telephoto lens can be realized by a lens. The wide-angle lens function of these two lenses reduces the cost of the car camera system and improves the actual performance of the lens.
  • This embodiment of the present invention differs from the first embodiment in the power and structure of the fourth lens L4 and the power and structure of the fifth lens L5.
  • an optical lens according to an eleventh embodiment of the present invention is illustrated, wherein the optical lens includes at least a first lens L1, at least a second lens L2, a third lens L3, and a The fourth lens L4, a fifth lens L5, and a sixth lens L6.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are in an object-to-image direction Arrange in order.
  • the first lens L1 has a negative refractive power, and the first lens L1 has an object surface S1 facing the object side and an image surface S2 facing the image side.
  • the object plane S1 of the first lens L1 is convex in order to increase the luminous flux of the optical lens. That is, the object surface S1 of the convex surface of the first lens L1 converges a large angle of light to increase the luminous flux entering the optical lens by the object side.
  • the object surface S1 of the first lens L1 is an aspherical mirror in order to reduce the processing difficulty.
  • the first lens L1 may be a spherical mirror.
  • the image plane S2 of the first lens L1 is a concave surface. That is, the first lens L1 includes two faces S1, S2, one of which is a convex surface and the other of which is a concave surface, the concave surface and the convex surface form a meniscus shape, and the meniscus is convex toward the object side. In order to increase the light entering the optical stage lens.
  • the lens surface when the lens surface is convex and the position of the convex surface is not defined, it indicates that the near-optical axis of the surface of the lens is convex;
  • the lens surface When the lens surface is concave and does not define the position of the concave surface, it indicates that the lens surface is concave at the near optical axis.
  • the second lens L2 has an object surface S3 facing the object side and an image surface S4 facing the image side.
  • the image plane S4 of the second lens L2 is convex to facilitate proper divergence of light passing through the first lens L1 to the rear of the optical lens.
  • the second lens L2 has a positive power. That is, the second lens L2 functions as a transition light to smoothly transition the light of the first lens L1 to the third lens L3.
  • the second lens L2 is an aspherical mirror in order to reduce the processing difficulty.
  • the second lens L2 may be a spherical mirror.
  • the object plane S3 of the second lens L2 is convex. That is, the second lens L2 includes two faces S3, S4, one of which is a convex surface and the other of which is a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the image side. In order to transmit the light transmitted by the first lens L1 to the rear.
  • the meniscus shapes of the first lens L1 and the second lens L2 are oppositely arranged, close to the concentric circle structure, so that the optical lens near the center has a smaller angle of view, a larger focal length, and a larger High angular resolution.
  • the third lens L3 has an object surface S5 facing the object side, and an image surface S6 facing the image side.
  • the object plane S5 and the image plane S6 of the third lens L3 are both convex to facilitate concentrating the light transmitted by the second lens L2 and being transmitted to the rear of the optical lens.
  • the third lens L3 is a lenticular lens having a light transition and a converging effect.
  • the third lens L3 has a positive power.
  • the fourth lens L4 and the fifth lens L5 constitute an achromatic lens group in order to reduce the chromatic aberration of light transmitted by the front member of the optical lens.
  • the first lens L1, the second lens L2, the third lens L3, the The fourth lens L4, the fifth lens L5, and the sixth lens L6 form a front lens group and a rear lens group, wherein the front lens group includes the first lens L1, the second lens L2, and The third lens L3 includes the fourth lens L4, the fifth lens L5, and the sixth lens L6.
  • the front lens group and the rear lens group are disposed in order from the object side to the image side direction.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens of the optical lens L5 and the sixth lens L6 are coaxial with each other.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 of the optical lens The main optical axis is the same.
  • the optical lens further includes a diaphragm L7, wherein the front lens group and the rear lens group are respectively disposed on two sides of the aperture L7, wherein The optical center of the aperture L7 and the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 The optical center is coaxial.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4.
  • the aperture L7 is disposed between the third lens L3 and the fourth lens L4 to reduce the optical lens.
  • the stray light makes the optical lens have a good imaging effect.
  • the aperture L7 may be disposed at other positions, such as between the second lens L2 and the third lens L3, between the fourth lens L4 and the fifth lens L5, and the fifth lens L5.
  • the position of the aperture L7 is not a limitation of the present invention.
  • the front lens group is not limited to being composed of the first lens L1, the second lens L2, and the third lens L3, and the rear lens group is not limited to being the fourth lens L4, the fifth lens L5, the sixth lens L6 is composed, and when the diaphragm L7 is disposed at different positions, the optical lens may constitute different front lens groups and rear lens groups.
  • the fourth lens L4 has an object plane S7 facing the object side, and an image plane S8 facing the image side. Further, the object surface S7 of the fourth lens L4 is a convex surface, and the image surface S8 of the fourth lens L4 is a concave surface.
  • the fourth lens L4 has two faces S7, S8, which are respectively a convex surface and a concave surface, the convex surface and the concave surface form a meniscus shape, and the meniscus is convex toward the object side. Further, according to this embodiment of the invention, the fourth lens L4 has a negative power.
  • the fifth lens L5 has an object surface S9 facing the object side, and an image surface S10 facing the image side. Further, the object surface S9 of the fifth lens L5 is a convex surface, and the image surface S10 of the fifth lens L5 is a convex surface. In other words, the fifth lens L5 is a lenticular lens. Further, according to this embodiment of the invention, the fifth lens L5 has positive power.
  • the image surface S8 of the fourth lens L4 and the object surface S9 of the fifth lens L5 are disposed to face each other.
  • the image plane S8 of the fourth lens L4 and the object plane S9 of the fifth lens L5 are disposed face to face, in this embodiment, that is, the concave surface of the fourth lens L4 and the The convex surface of the fifth lens L5 is disposed face to face.
  • the sixth lens L6 has an object surface S11 facing the object side, and an image surface S12 facing the image side. Further, the object surface S11 of the sixth lens L6 is a convex surface, and the image surface S12 of the sixth lens L6 is a concave surface. In other words, the sixth lens L6 is a meniscus lens, and the meniscus is convex toward the object side. further. The sixth lens L6 has a positive power. The aberration and distortion are further corrected by the sixth lens L6, so that the imaging quality of the optical lens is better.
  • the sixth lens L6 is used to appropriately increase the distortion of the lens edge of the front lens of the optical lens, so that a large angle of light can reach a predetermined size.
  • the imaging surface L10 such as the photographic chip surface, can continue to revise the image by post-software processing, and also causes the image formed by the light after the sixth lens L6 to return to normal, that is, to obtain a large angle of imaging.
  • the optical lens further includes a planar lens L9 for protecting the optical lens from isolation.
  • a planar lens L9 for protecting the optical lens from isolation.
  • the planar lens L9 may not be provided, and the present invention is not limited in this respect.
  • the first lens L1 of the optical lens has a convex surface and a concave surface
  • the second lens L2 has a concave surface and a convex surface
  • the first lens L1 The convex surface is disposed toward the object side
  • the concave surface of the first lens L1 is disposed toward the image side
  • the concave surface of the second lens L2 is disposed toward the object side
  • the convex surface of the second lens L2 Set to face the image side.
  • the third lens L3 has two convex surfaces facing the object side and the image side, respectively.
  • the fourth lens L4 has a convex surface and a concave surface facing the object side and the image side, respectively, and the fifth lens L5 has two convex surfaces facing the object side and the image side, respectively, wherein the concave surface of the fourth lens L4 And said The convex surfaces of the five lenses L5 are disposed opposite to each other.
  • the sixth lens L6 has a convex surface and a concave surface which are respectively disposed toward the object side and the image side.
  • the achromatic lens group of the optical lens is preferably a cemented lens.
  • the fourth lens L4 and the fifth lens L5 are glued together to form the achromatic lens group.
  • the image surface S8 of the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are The object surface S9 is placed face to face in a glued manner.
  • the achromatic lens group may also be a separate achromatic lens group. It is to be understood that when the achromatic lens group is a separate achromatic lens group, the fourth lens L4 and the fifth lens L5 are disposed separately.
  • the first lens L1 and the second lens L2 may be made of a glass material, or may be made of other materials having good light transmission properties, such as plastics and resins. It will be understood by those skilled in the art that in the optical lens of the present invention, light is entered by the first lens L1, and transmitted to the second lens L2 after being concentrated by the first lens L1. Therefore, a large angle of light can be collected by the first lens L1, and further, after the light passes through the first lens L1, the second lens L2 is reached, and the light concentrated by the first lens L1 is The two lenses L2 are appropriately diverged and transmitted to the rear of the optical lens.
  • the refractive indices Nd of the first lens L1 and the second lens L2 need to cooperate with each other, but those skilled in the art should understand that The refractive index Nd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • the first lens L1 and the second lens L2 are provided with an Abbe constant Vd, so that the optical lens has better image quality, but it should be understood by those skilled in the art that The Abbe constant Vd of the first lens L1 and the second lens L2 is not a limitation of the present invention.
  • Figure 21 is a schematic view showing the structure of an optical lens according to an eleventh embodiment of the present invention.
  • the optical lens includes, in order from the object side to the image side, a front lens group, a diaphragm L7, a rear lens group, a filter element L8, a plane lens L9, and an imaging surface L10.
  • the front lens group includes: a first lens L1, a second lens L2, and a third lens L3 from the object side to the image side, the first lens L1 being a meniscus lens having a negative refractive power,
  • the second lens L2 is a meniscus lens having positive refractive power, the concave surfaces of the first lens L1 and the second lens L2 are opposite, and the third lens L3 is a lenticular lens having positive refractive power;
  • the lens group includes, from the object side to the image side, a fourth lens L4, a fifth lens L5, and a sixth lens L6, the fourth lens L4 having a negative power
  • the fifth lens L5 is a lenticular lens having positive refractive power
  • a concave surface of the fourth lens L4 is opposite to a convex surface of the fifth lens L5.
  • the concave surface of the fourth lens L4 and the convex surface of the fifth lens L5 are glued.
  • the sixth lens L6 is a meniscus lens having positive
  • the first lens L1 satisfies the following conditions:
  • R1 is a radius of curvature of the object surface S1 of the first lens L1
  • R2 is a radius of curvature of the image plane S2 of the first lens L1
  • d1 is a center thickness of the first lens L1.
  • the second lens L2 satisfies the following conditions:
  • R3 is a radius of curvature of the object surface S3 of the second lens L2
  • R4 is a radius of curvature of the image plane S4 of the second lens L2
  • d2 is a center thickness of the second lens L2.
  • the relationship between the respective curvature radii and the thickness of the first lens L1 and the second lens L2 is restricted such that the first lens L1 and the second lens L2 are close to a concentric circle, thereby When the concave surfaces of the first lens L1 and the second lens L2 are oppositely disposed, a larger angle of light can be collected into the optical lens, and is transmitted backward by proper diffusion of the second lens L2.
  • the focal length F1 of the first lens L1 and the combined focal length F of the optical lens satisfy the following conditions:
  • the focal length F2 of the second lens L2 and the entire set of focal lengths F of the optical lens satisfy the following conditions:
  • the optical system has an overall length of TTL, and the entire set of focal lengths of the optical lens is F, and then 2.0 ⁇ TTL/F ⁇ 6.0.
  • the maximum angle of view of the optical lens is FOVm
  • the image height corresponding to the maximum angle of view of the optical lens is Ym, then (FOVm ⁇ F)/Ym ⁇ 45.
  • the first lens L1 and the second lens L2 are aspherical mirrors, and the sixth lens L6 is a spherical mirror.
  • the first lens L1 and the second lens L2 are glass aspherical mirrors
  • the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are spherical mirrors.
  • the first lens L1 and the second lens L2 are not limited to a glass aspherical mirror, and may be a plastic aspherical or spherical mirror, etc.
  • the third lens L3, the first Four lens L4, the fifth lens L5, and the sixth lens L6 are not limited to the glass spherical mirror, and may be a glass aspherical surface, a plastic aspherical surface, or a resin aspherical surface.
  • the present invention is not limited in this respect.
  • the optical lens consisting of four glass spheres and two glass aspherical surfaces constitute the optical lens.
  • the first lens L1 and the second lens L2 are glass.
  • the aspherical surface, the third lens L3, the fourth lens L4, and the fifth lens L5 and the sixth lens L6 are glass spheres, so that the optical lens has a long focal length, a large angle of view, and aspherical surface through the glass The lens ensures resolution of the optical lens and reduces chromatic aberration.
  • the first lens L1 and the second lens L2 are aspherical mirrors
  • the sixth lens L6 is a spherical mirror.
  • the first lens L1 and the second lens L2 are close to the concentric lens, and are aspherical, so that a large angle of light can be effectively and smoothly concentrated, and due to the aspherical setting, the conventional spherical concentric lens processing is avoided. problem.
  • the object surface S1 of the first lens L1 has a central area S101 and an edge area S102 extending outward from the central area S101, the first lens L1
  • the central region S101 of the object surface S1 is a convex surface
  • the edge region S102 of the object surface S1 of the first lens L1 is a concave surface.
  • the aspherical mirror surfaces of the first lens L1 and the second lens L2 satisfy the following formula:
  • Z(h) is the position of the aspherical surface at height h in the optical axis direction
  • the distance vector from the aspherical vertex is high
  • c 1/r
  • r represents the radius of curvature of the aspherical mirror surface
  • k is the conic coefficient conic
  • A, B, C, D, and E are high-order aspheric coefficients.
  • the optical performance curve of this embodiment of the present invention is seen by the MTF curve of the optical lens, which has a higher resolution and better optical performance.
  • the parameters of the optical lens of this embodiment of the present invention are shown in Tables 21 and 22 below.
  • the two surfaces of the first lens L1, that is, the object surface and the image surface are respectively S1 and S2
  • the two transparent surfaces, that is, the object surface and the image surface are respectively S3 and S4
  • the third surface is respectively Both sides of the lens L3, that is, the object surface and the image surface are S5 and S6, respectively, and both sides of the fourth lens L4, that is, the object surface and the image surface are S7 and S8, respectively, and both sides of the fifth lens L5, that is, the object surface And the image planes are S9 and S10, respectively, and the two sides of the sixth lens L6, That is, the object surface and the image surface are respectively S11 and S12, and the two sides of the filter element L8 are respectively S13 and S14, and the two sides of the plane lens L9 are respectively S15 and S16, and the image surface is S17; S17 corresponds one-to-one with the face numbers in Table 21 and Table 22
  • the optical lens of the present invention can meet the requirements of miniaturization, realize long focal length, large angle of view, and large aperture through the design of six lens structures and aspherical lenses close to concentric circles. It meets the high definition requirements and effectively corrects various aberrations of the optical system. It is especially suitable for in-vehicle camera systems, capturing objects at long distances, and the overall viewing field is enlarged, which can be realized by a lens.
  • the functions of the two lenses, the telephoto lens and the wide-angle lens reduce the cost of the in-vehicle camera system and improve the actual performance of the lens.
  • This embodiment of the invention differs from the first embodiment in the power of the second lens L2 and the structure of the sixth lens L6.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一光学镜头,其包括:一第一透镜(L1),第一透镜(L1)具有负光焦度;一第二透镜(L2);一第三透镜(L3);一第四透镜(L4);一第五透镜(L5),其中第四透镜(L4)和第五透镜(L5)组成一消色差透镜组;和一第六透镜(L6);其中第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5)和第六透镜(L6)沿从物方到像方方向依次设置,其中第一透镜(L1)具有至少一物面(S1),朝向物方,第一透镜(L1)的物面(S1)为凸面,其中第二透镜(L2)具有至少一像面(S4),朝向像方,第二透镜(L2)像面(S4)为凸面,以便于构成一同心圆结构。

Description

光学镜头 技术领域
本发明涉及光学成像技术领域,更进一步,涉及一用于光学成像的光学镜头。
背景技术
近些年,随着电子技术的发展,摄像头的应用范围越来越广,车载摄像头就是其中一个重要方面,而光学镜头是车载摄像头中的一个重要部件。
目前常规的车载摄像头,由于安装位置的不同注重的功能也不同。比如,前视摄像头通常需要观察远距离的物体,因此要求光学镜头的焦距较长,但是这会使得镜头视场角受限,而视场角较小难以观察到车辆周围较大角度范围的环境情况,为了能够同时观察到车辆周围较大角度范围内的环境情况,就需要配合一颗视场角较大的光学镜头,比如广角镜头。
目前常规的行车辅助系统就是利用前视摄像头,捕捉观察远距离物体,并且配合短焦大视场角的广角镜头观察车辆周围大角度范围的环境情况,然后借助软件将两种镜头摄取的画面进行结合才能得到整体的大范围远距离影像画面。但是这样整个行车辅助系统就需要使用两颗及以上的光学镜头相互配合,使得镜头的成本上升,占用车体的空间增大,而且得到影像画面还需要借助软件拼接,使得辅助系统的部件以及运行步骤都会增加。
发明内容
本发明的一个优势在于提供一光学镜头,其中所述光学镜头结合具备长焦和广角的综合特征,通过一颗镜头同时实现传统长焦和广角的功能。
本发明的一个优势在于提供一光学镜头,其中所述光学镜头靠近中心的较小视场角范围内焦距较长,观察距离大。
本发明的一个优势在于提供一光学镜头,其中所述光学镜头的整体视场角较大,观察范围广。
本发明的一个优势在于提供一光学镜头,其中所述光学镜头的解像力较高。
本发明的一个优势在于提供一光学镜头,其中所述光学镜头的孔径较大。
本发明的一个优势在于提供一光学镜头,其中所述光学镜头适于车载环境,且通过一颗镜头可以同时实现长焦和广角的功能,降低驾驶系统的镜头成本。
本发明的一个优势在于提供一光学镜头,其中所述光学镜头的中心区域具备高角分辨率,环境辨识度高。
为了实现以上至少一目的,本发明提供一光学镜头,其包括:一第一透镜;一第二透镜;一第三透镜;一第四透镜;一第五透镜;和一第六透镜;其中所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜沿从物方到像方方向依次设置;其中所述第一透镜具有一物面和一像面,所述第一透镜的所述物面朝向物方,所述第一透镜的所述像面朝向像方,所述第一透镜的所述物面为凸面,所述第一透镜具有负光焦度,所述第一透镜的所述像面为凹面;其中所述第二透镜具有一物面和一像面,所述第二透镜的所述物面朝向物方,所述第二透镜的所述像面朝向像方,所述第二透镜的所述物面为凹面,所述第二透镜的所述像面为凸面;其中所述第三透镜具有一物面和一像面,所述第三透镜的所述物面朝向物方,所述第三透镜的所述像面朝向像方,所述第三透镜的所述物面为凸面,所述第三透镜的所述像面为凸面,所述第三透镜具有正光焦度;其中所述第四透镜和所述第五透镜组成一消色差透镜组,且其中一为正光焦度,另一为负光焦度。
根据一些实施例,所述的光学镜头中所述第二透镜具有负光焦度。
根据一些实施例,所述的光学镜头所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凸面,所述第四透镜的所述像面为凹面。
根据一些实施例,所述的光学镜头中所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凸面。
根据一些实施例,所述的光学镜头中所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凸面,所述第六透镜具有正光焦度。
根据一些实施例,所述的光学镜头中所述第二透镜具有正光焦度。
根据一些实施例,所述的光学镜头中所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凹面,所述第四透镜的所述像面为凹面,其中所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,其中所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凸面,所述第六透镜具有正光焦度。
根据一些实施例,所述的光学镜头中所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述第六透镜的所述像面为凸面。
根据一些实施例,所述的光学镜头中所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凹面。
根据一些实施例,所述的光学镜头中所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凸面,所述第四透镜的所述像面为凹面,所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凸面,所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凸面,所述第六透镜具有正光焦度。
根据一些实施例,所述的光学镜头中所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凹面,所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凸面,所述第六透镜具有正光焦度。
根据一些实施例,所述的光学镜头中所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凹面,所述第六透镜具有正光焦度。
根据一些实施例,所述的光学镜头中所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凸面,所述第四透镜的所述像面为凹面,所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凸面,所述第六透镜具有负光焦度。
根据一些实施例,所述的光学镜头中所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凹面,所述第六透镜的所述像面为凸面。
根据一些实施例,所述的光学镜头中所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凹面,所述第六透镜的所述像面为凹面。
根据一些实施例,所述的光学镜头中所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凸面,所述第四透镜的所述像面为凸面,所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凹面,所述第五透镜的所述像面为凸面,所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凸面,所述第六透镜具有正光焦度。
根据一些实施例,所述的光学镜头中所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凸面,所述第四透镜的所述像面为凹面,所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凸面,所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凹面,所述第六透镜具有正光焦度。
根据一些实施例,所述的光学镜头中所述第四透镜和所述第五透镜相胶合。
根据一些实施例,所述的光学镜头中所述第一透镜的所述物面的曲率半径 R1、所述第一透镜的所述像面的曲率半径R2和第一透镜的中心厚度d1满足:
0.5≤R1/(R2+d1)≤1.5。
根据一些实施例,所述的光学镜头中所述第二透镜的所述像面的曲率半径R3、所述第二透镜的所述像面的曲率半径R4、所述第一透镜的中心厚度d2满足:
0.45≤|R4|/(|R3|+d3)≤1.3。
根据一些实施例,所述的光学镜头中所述第一透镜的焦距F1和所述光学镜头的整组焦距F满足:
-3.5≤F1/F≤-1。
根据一些实施例,所述的光学镜头中所述第二透镜的焦距F2和所述光学镜头的整组焦距F满足:
|F2/F|≥5。
根据一些实施例,所述的光学镜头中所述光学镜头的光学系统总长TTL和所述光学镜头的整组焦距F满足:
2.0≤TTL/F≤6.0。
根据一些实施例,所述的光学镜头中所述光学镜头的最大视场角FOVm和所述光学镜头的最大视场角对应的像高Ym满足:
(FOVm×F)/Ym≥45。
根据一些实施例,所述的光学镜头中所述第一透镜为非球面镜,所述第一透镜的所述物面具有一中心区域和一自所述中心区域向外延伸的边缘区域,所述第一透镜的所述物面的所述中心区域为凸面,所述第一透镜的所述物面的所述边缘区域为凹面。
根据一些实施例,所述的光学镜头中所述第一透镜和所述第二透镜为非球面镜。
附图说明
图1是根据本发明的第一个实施例的光学镜头的结构示意图。
图2是根据本发明的第一个实施例的光学镜头的MTF曲线。
图3是根据本发明的第二个实施例的光学镜头的结构示意图。
图4是根据本发明的第二个实施例的光学镜头的MTF曲线。
图5是根据本发明的第三个实施例的光学镜头的结构示意图。
图6是根据本发明的第三个实施例的光学镜头的MTF曲线。
图7是根据本发明的第四个实施例的光学镜头的结构示意图。
图8是根据本发明的第四个实施例的光学镜头的MTF曲线。
图9是根据本发明的第五个实施例的光学镜头的结构示意图。
图10是根据本发明的第五个实施例的光学镜头的MTF曲线。
图11是根据本发明的第六个实施例的光学镜头的结构示意图。
图12是根据本发明的第六个实施例的光学镜头的MTF曲线。
图13是根据本发明的第七个实施例的光学镜头的结构示意图。
图14是根据本发明的第七个实施例的光学镜头的MTF曲线。
图15是根据本发明的第八个实施例的光学镜头的结构示意图。
图16是根据本发明的第八个实施例的光学镜头的MTF曲线。
图17是根据本发明的第九个实施例的光学镜头的结构示意图。
图18是根据本发明的第九个实施例的光学镜头的MTF曲线。
图19是根据本发明的第十个实施例的光学镜头的结构示意图。
图20是根据本发明的第十个实施例的光学镜头的MTF曲线。
图21是根据本发明的第十一个实施例的光学镜头的结构示意图。
图22是根据本发明的第十一个实施例的光学镜头的MTF曲线。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
参照附图之图1和图2,根据本发明的第一个实施例的光学镜头被说明,其中所述光学镜头包括至少一第一透镜L1、至少一第二透镜L2、一第三透镜L3、 一第四透镜L4、一第五透镜L5和一第六透镜L6。所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6沿一物方至一像方方向依次排列。
所述第一透镜L1具有负光焦度,且所述第一透镜L1具有一物面S1和一像面S2,所述物面S1朝向物方,所述像面S2朝向像方。根据本发明的这个实施例,所述第一透镜L1的所述物面S1是凸面,以便于增大所述光学镜头的光通量。也就是说,通过所述第一透镜L1的凸面的所述物面S1汇聚较大角度的光线,增加由物方进入所述光学镜头的光通量。优选地,所述第一透镜L1的所述物面S1为非球面镜,以便于降低加工难度。当然,在本发明的其它实施例中,所述第一透镜L1可以为球面镜。
进一步,根据本发明的这个实施例,所述第一透镜L1的所述像面S2是凹面。也就是说,所述第一透镜L1包括两个面S1、S2,其中一个面为凸面,另一个面为凹面,所述凹面和所述凸面形成弯月形,且弯月形凸向物方,以便于增加进入所述光学镜头的光线。
需要说明的是,本发明提供的所述成像系统透镜组中,当所述透镜表面为凸面且未界定所述凸面的位置时,则表示所述透镜的表面的近光轴处为凸面;当所述透镜表面为凹面且未界定所述凹面的位置时,则表示所述透镜表面近光轴处为凹面。
所述第二透镜L2具有一物面S3和一像面S4,所述物面S3朝向物方,所述像面S4朝向像方。根据本发明的这个实施例,所述第二透镜L2的所述像面S4是凸面,以便于将通过所述第一透镜L1的光线进行适当发散传递至所述光学镜头的后方。所述第二透镜L2具有负光焦度。所述第二透镜L2具有过渡光线的作用,将所述第一透镜L1的光线平稳过渡至所述第三透镜L3。优选地,所述第二透镜L2为非球面镜,以便于降低加工难度。当然,在本发明的其他实施例中,所述第二透镜L2可以为球面镜。
进一步,根据本发明的这个实施例,所述第二透镜L2的所述物面S3是凸面。也就是说,所述第二透镜L2包括两个面S3、S4,其中一个面为凸面,另一个面为凹面,所述凸面和所述凹面形成弯月形,且弯月凸向像方,以便将所述第一透镜L1传递的光线进行发散传递至后方。
值得一提的是,所述第一透镜L1和所述第二透镜L2的弯月形相对设置, 接近同心圆结构,有助于所述光学镜头中心焦距较大的同时实现较大的整体视场角,即中心角分辨率较高。
所述第三透镜L3具有一物面S5和一像面S6,所述物面S5朝向物方,所述像面S6朝向像方。所述第三透镜L3的所述物面S5和所述像面S6都为凸面,以便于汇聚由所述第二透镜L2传递的光线并且向所述光学透镜后方传递。换句话说,所述第三透镜L3是一双凸透镜,具有光线过渡以及汇聚作用。
根据本发明的这个实施例,所述第三透镜L3具有正光焦度。
所述第四透镜L4和所述第五透镜L5组成一消色差透镜组,以便于消减由所述光学镜头的前方部件传递的光线色差。
参照图1,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6形成一前透镜组和一后透镜组,其中所述前透镜组包括所述第一透镜L1、所述第二透镜L2和所述第三透镜L3,所述后透镜组包括所述第四透镜L4、所述第五透镜L5和所述第六透镜L6。所述前透镜组和所述后透镜组沿从物方到像方方向依次被设置。
参照图1,根据本发明的第一个实施例,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6光心共轴。换句话说,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的主光轴一致。
参照图1,根据本发明的第一个实施例,所述光学镜头进一步包括一光阑L7,其中所述前透镜组和所述后透镜组可被分别设置于所述光阑L7的两侧,其中所述光阑L7的光心与所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的光心共轴。优选地,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间。
值得一提的是,参照图1,在本发明的这个实施例中,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间,以减少所述光学镜头中的杂散光,使得所述光学镜头具有良好的成像效果。在本发明的其它实施例中,所述光阑L7可以被设置于其他位置,比如第二透镜L2和第三透镜L3之间、第四透镜L4和第五透镜L5之间、第五透镜L5和第六透镜L6之间等等,本领域的技术人员应当理解的是,所述光阑L7的位置并不是本发明的限制。换句话说,所述前透 镜组不限于由所述第一透镜L1、第二透镜L2和第三透镜L3组成,所述后透镜组不限于由所述第四透镜L4、所述第五透镜L5、所述第六透镜L6组成,当所述光阑L7被设置于不同位置时,所述光学镜头可以组成不同的所述前透镜组和所述后透镜组。
如图1所示,根据本发明的第一个实施例,所述第四透镜L4具有一物面S7和一像面S8,所述物面S7朝向物方,所述像面S8朝向像方。进一步,所述第四透镜L4的所述物面S7为凸面,所述第四透镜L4的所述像面S8为凹面。换句话说,所述第四透镜L4具有两面S7、S8,分别为一凸面和一凹面,所述凸面和所述凹面形成一弯月形,且弯月凸向物方。进一步地,根据本发明的这个实施例,所述第四透镜L4具有负光焦度。
根据本发明的这个实施例,所述第五透镜L5具有一物面S9和一像面S10,所述物面S9朝向物方,所述像面S10朝向像方。进一步地,所述第五透镜L5的所述物面S9为凸面,所述第五透镜L5的所述像面S10为凸面。换句话说,所述第五透镜L5为一双凸透镜。进一步地,根据本发明的这个实施例,所述第五透镜L5具有正光焦度。
进一步地,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9被设置相面对面。换句话说,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9相对设置,在这个实施例中,即所述第四透镜L4的凹面和所述第五透镜L5的凸面相互面对面设置。
根据本发明的这个实施例,所述第六透镜L6具有一物面S11和一像面S12,所述物面S11朝向物方,所述像面S12朝向像方。进一步地,所述第六透镜L6的所述物面S11为凸面,所述第六透镜L6的所述像面S12为凸面。换句话说,所述第六透镜L6为一双凸透镜。进一步地。所述第六透镜L6具有正光焦度。通过所述第六透镜L6进一步修整像差和畸变,使得所述光学镜头的成像质量更佳。
值得一提的是,在本发明的这个实施例中,所述第六透镜L6用于适当增大所述光学镜头的前方透镜的镜片边缘的畸变,使得大角度的光线可以到达预定尺寸的所述成像面L10,比如感光芯片面,而通过后期的软件处理可以继续修正图像,使得经过所述第六透镜L6后的光线形成的图像恢复正常,即得到大角度的成像。
根据本发明的这个实施例,所述光学镜头还包括一平面镜片L9,用于保护隔离所述光学镜头。当然,在本发明的其他实施例中,还可以不设置所述平面镜片L9,本发明在这方面并不限制。
参照图1,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1具有一凸面和一凹面,所述第二透镜L2具有一个凹面和一个凸面,其中所述第一透镜L1的凸面被设置朝向物方,所述第一透镜L1的所述凹面被设置朝向像方,所述第二透镜L2的所述凹面被设置朝向物方,所述第二透镜L2的所述凸面被设置朝向像方。所述的第三透镜L3具有两个凸面,分别朝向物方和像方。所述第四透镜L4具有一个凸面和一个凹面,分别朝向物方和像方,所述第五透镜L5具有两凸面,分别朝向物方和像方,其中所述第四透镜L4的所述凹面和所述第五透镜L5的凸面面对面设置。所述第六透镜L6具有两个凸面,分别被设置朝向物方和像方。
根据本发明的这个实施例,所述光学镜头的所述消色差透镜组优选为胶合透镜。换句话说,所述第四透镜L4和所述第五透镜L5被胶合在一起,以形成所述消色差透镜组。此时,由于所述第四透镜L4和所述第五透镜L5被胶合在一起,因此,所述第四透镜L4的凹面的所述像面S8和所述第五透镜L5的凸面的所述物面S9以胶合的方式面对面设置。当然,在本发明的其它实施例中,所述消色差透镜组也可以是分离型消色差透镜组。可以理解的是,当所述消色差透镜组是分离型消色差透镜组时,所述第四透镜L4和所述第五透镜L5被相分离地设置。
值得一提的是,所述第一透镜L1和所述第二透镜L2可由玻璃材料构成,也可以由其他具有良好透光性能的材料制成,比如塑料、树脂。本领域的技术人员可以理解的是,在本发明中的所述光学镜头中,光线由所述第一透镜L1进入,经过所述第一透镜L1的汇聚作用后传递至所述第二透镜L2,从而通过所述第一透镜L1可以收集大角度的光线,进一步,光线经过所述第一透镜L1后,到达所述第二透镜L2,经过所述第一透镜L1汇聚的光线由所述第二透镜L2适当发散后传递至所述光学镜头的后方,因此,所述第一透镜L1和所述第二透镜L2的折射率Nd需要相互配合,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的折射率Nd并不是本发明的限制。另一方面,本发明中,所述第一透镜L1和所述第二透镜L2设置阿贝常数Vd,使得所述镜头具有 较好的成像质量,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的阿贝常数Vd并不是本发明的限制。
如图1所示是根据本发明的第一个实施例的光学镜头的结构示意图。所述光学镜头,从物方到像方依次包括:前透镜组、光阑L7、后透镜组、滤光元件L8、平面镜片L9、成像面L10。
其中,所述前透镜组从物方到像方包括:第一透镜L1、第二透镜L2和第三透镜L3,所述第一透镜L1为具有负光焦度的弯月形透镜,所述第二透镜L2为具有负光焦度的弯月形透镜,所述第一透镜L1和所述第二透镜L2的凹面相对,所述第三透镜L3为具有正光焦度的双凸透镜;所述后透镜组从物方到像方包括:第四透镜L4、第五透镜L5和第六透镜L6,所述第四透镜L4为具有负光焦度的弯月形透镜,所述第五透镜L5为具有正光焦度的双凸透镜,所述第四透镜L4的凹面和所述第五透镜L5的凸面相对。进一步,所述第四透镜L4的凹面和所述第五透镜L5的凸面相胶合。所述第六透镜L6为具有正光焦度的双凸透镜。
在这个实施例中,所述第一透镜L1满足以下条件:
0.5≤R1/(R2+d1)≤1.5;
其中,R1是所述第一透镜L1的所述物面S1的曲率半径,R2是所述第一透镜L1的所述像面S2的曲率半径,d1是所述第一透镜L1的中心厚度。
所述第二透镜L2满足以下条件:
0.45≤|R4|/(|R3|+d3)≤1.3;
其中,R3是所述第二透镜L2的所述物面S3的曲率半径,R4是所述第二透镜L2的所述像面S4的曲率半径,d2是所述第二透镜L2的中心厚度。
通过上述条件中,对所述第一透镜L1和所述第二透镜L2的各自曲率半径和厚度的关系限制,使得所述第一透镜L1和所述第二透镜L2接近同心圆,从而当所述第一透镜L1和所述第二透镜L2凹面相对设置时,可以采集更大角度光线进入所述光学镜头,并且通过所述第二透镜L2的适当扩散而向后传递。
本发明的这个实施例中,所述第一透镜L1的焦距F1和所述光学镜头的组合焦距F满足以下条件:
-3.5≤F1/F≤-1。
所述第二透镜L2的焦距F2和所述光学镜头的整组焦距F满足以下条件:
|F2/F|≥5.0。
所述光学透镜的光学系统总长为TTL,所述光学透镜的整组焦距为F,则2.0≤TTL/F≤6.0。
所述光学镜头的最大视场角为FOVm,所述光学镜头的最大视场角对应的像高为Ym,则(FOVm×F)/Ym≥45。
在本发明的这个实施例中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。
优选地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5为球面镜。本领域的技术人员应当理解的是,所述地第一透镜L1、所述第二透镜L2和所述第六透镜L6不限于玻璃非球面镜,也可以是塑料非球面或球面镜等,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5不限于玻璃球面镜,也可以为玻璃非球面、塑料非球面或树脂非球面等,本发明在这方面并不限制。特别地,在本发明的一些实施例中,采用由3个玻璃球面、3个玻璃非球面构成的6片镜片构成所述光学镜头,举例地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜片,第三透镜L3、第四透镜L4和第五透镜L5为玻璃球面镜片,从而使得所述光学镜头具备长焦距、大视场角的特性,且通过玻璃非球面镜片保证所述光学镜头的解像清晰度、减小色差。
在本发明的这个实施方式中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。所述第一透镜L1和所述第二透镜L2接近同心圆的镜片,并且是非球面,使得大角度的光线可以有效平稳的汇聚,且由于非球面的设置,避免传统的球面同心圆镜片加工的难题。
进一步,在一些实施例中,所述第一透镜L1的所述物面S1具有一中心区域S101和一自所述中心区域S101向外延伸的边缘区域S102,所述第一透镜L1的所述物面S1的所述中心区域S101为凸面,所述第一透镜L1的所述物面S1的所述边缘区域S102为凹面。本领域的技术人员应当理解的是,所述第一透镜L1的非球面的具体结构以及所述中心区域和边缘区域的具体结构以及范围大小并不是本发明的限制。
所述第一透镜L1、所述第二透镜L2和所述第六透镜L6的非球面镜面满足以下公式:
Figure PCTCN2017111193-appb-000001
其中,Z(h)为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高,c=1/r,r表示非球面镜面的曲率半径,k为圆锥系数conic,A、B、C、D、E为高次非球面系数。
如图2所示是本发明的这个实施例的光学性能曲线,由所述光学镜头的MTF曲线看到,所述光学镜头的解像较高,具有较好的光学性能。
如下表1所示,是本发明的这个实施例的光学镜头的参数。需要说明的是,所述第一透镜L1的两面,即物面和像面分别为S1、S2,所述第二透镜L2的两面,即物面和像面分别为S3、S4,所述第三透镜L3的两面,即物面和像面分别为S5、S6,所述第四透镜L4的两面,即物面和像面分别为S7、S8,所述第五透镜L5的两面,即物面和像面分别为S9和S10,所述第六透镜L6的两面,即物面和像面分别为S11和S12,所述滤光元件L8的两面分别为S13、S14,所述平面镜片L9的两面分别为S15、S16,所述像面为S17;所述S1-S17与下表1和表2中的面序号一一对应。
表1第一个实施例的光学镜头参数
面序号 R曲率半径R 中心厚度d 折射率Nd 阿贝常数Vd
1 4.9050 2.6367 1.80 40.9
2 2.4376 2.7259    
3 -8.0588 3.0953 1.80 40.9
4 -9.9674 0.1049    
5 14.1643 3.2000 1.90 37.1
6 -14.1643 -0.1049    
7 Infinity 1.4037    
8 23.0405 0.6500 1.92 20.9
9 6.1274 3.3500 1.51 81.6
10 -25.1704 0.1300    
11 7.5543 2.9378 1.50 81.6
12 -52.4602 1.5738    
13 Infinity 0.5500 1.52 64.1
14 Infinity 2.3236    
15 Infinity 0.4000 1.52 64.1
16 Infinity 0.2162    
17 Infinity      
表2第一个实施例的非球面系数
面序号 K A B C D E
1 -1.070362 -6.0341E-04 -1.2184E-04 1.2473E-06 1.4275E-07 -3.2004E-09
2 -1.94196 -1.3447E-03 -1.1271E-03 1.4246E-04 -9.3777E-06 3.2504E-07
3 0.405509 -1.0877E-04 -5.7325E-05 1.4179E-06 9.3500E-07 -4.4727E-09
4 0.157856 -8.1067E-05 -1.0152E-06 3.0806E-06 -1.3393E-07 -7.8945E-10
11 -4.928835 9.3393E-04 6.5361E-05 -5.7931E-06 2.4979E-07 -3.1287E-09
12 122.5036 -9.8038E-04 1.4311E-05 -3.8790E-06 1.2150E-07 2.5818E-09
根据上述数据,计算这个实施例中涉及的公式数值如下:
R1/(R2+d1)=0.967,|R4|/(|R3|+d3)=0.894,F1/F=-1.753,|F2|/F=28.922,TTL/F=3.848,(FOVm×F)/Ym=70.258。如表1和表2所示,在这个实施例中,作为一组具体的实施例参数,采用这些参数的光学镜头,能够达到较好的光学性能,具有较长的整体焦距,且具有较大的视场角。
综上所述,本发明所述的光学镜头,通过6片镜片结构,以及接近同心圆的非球面镜片的设计,能够满足在小型化的要求下,实现长焦距、大视场角、大孔径,且符合高清晰度要求以及有效矫正光学系统的各种像差,特别适于车载摄像头系统,捕捉远距离的物体,且整体的观察视场扩大,可以通过一种镜头实现传统的长焦镜头和广角镜头这两种镜头的功能,降低车载摄像头系统的成本,提高镜头的实际使用性能。
参照图3和图4,根据本发明的第二个实施例的光学镜头被说明,其中所述光学镜头包括至少一第一透镜L1、至少一第二透镜L2、一第三透镜L3、一第四透镜L4、一第五透镜L5和一第六透镜L6。所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6沿一物方至一像方方向依次排列。
所述第一透镜L1具有负光焦度,且所述第一透镜L1具有一物面S1和一像面S2,所述物面S1朝向物方,所述像面S2朝向像方。根据本发明的这个实施例,所述第一透镜L1的所述物面S1是凸面,以便于增大所述光学镜头的光通量。也就是说,通过所述第一透镜L1的凸面的所述物面S1汇聚较大角度的光线,增加由物方进入所述光学镜头的光通量。优选地,所述第一透镜L1的所述物面S1为非球面镜,以便于降低加工难度。当然,在本发明的其它实施例中,所述第一透镜L1可以为球面镜。
进一步,根据本发明的这个实施例,所述第一透镜L1的所述像面S2是凹面。也就是说,所述第一透镜L1包括两个面S1、S2,其中一个面为凸面,另一 个面为凹面,所述凹面和所述凸面形成弯月形,且弯月形凸向物方,以便于增加进入所述光学级镜头的光线。
需要说明的是,本发明提供的所述成像系统透镜组中,当所述透镜表面为凸面且未界定所述凸面的位置时,则表示所述透镜的表面的近光轴处为凸面;当所述透镜表面为凹面且未界定所述凹面的位置时,则表示所述透镜表面近光轴处为凹面。
所述第二透镜L2具有一物面S3和一像面S4,所述物面S3朝向物方,所述像面S4朝向像方。根据本发明的这个实施例,所述第二透镜L2的所述像面S4是凸面,以便于将通过所述第一透镜L1的光线进行适当发散传递至所述光学镜头的后方。所述第二透镜L2具有正光焦度。也就是说,所述第二透镜L2具有过渡光线的作用,将所述第一透镜L1的光线平稳过渡至所述第三透镜L3。优选地,所述第二透镜L2为非球面镜,以便于降低加工难度。当然,在本发明的其他实施例中,所述第二透镜L2可以为球面镜。
进一步,根据本发明的这个实施例,所述第二透镜L2的所述物面S3是凸面。也就是说,所述第二透镜L2包括两个面S3、S4,其中一个面为凸面,另一个面为凹面,所述凸面和所述凹面形成弯月形,且弯月凸向像方,以便将所述第一透镜L1传递的光线进行发散传递至后方。
值得一提的是,所述第一透镜L1和所述第二透镜L2的弯月形相对设置,接近同心圆结构,使得所述光学镜头靠近中心的视场角较小,焦距较大,大角度分辨率高。
所述第三透镜L3具有一物面S5和一像面S6,所述物面S5朝向物方,所述像面S6朝向像方。所述第三透镜L3的所述物面S5和所述像面S6都为凸面,以便于汇聚由所述第二透镜L2传递的光线并且向所述光学透镜后方传递。换句话说,所述第三透镜L3是一双凸透镜,具有光线过渡以及汇聚作用。
根据本发明的这个实施例,所述第三透镜L3具有正光焦度。
所述第四透镜L4和所述第五透镜L5组成一消色差透镜组,以便于消减由所述光学镜头的前方部件传递的光线色差。
参照图3,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6形成一前透镜组和一后透镜组,其中所述前透镜组包括所述第一透镜L1、所述第二透镜L2和所述第三透镜L3, 所述后透镜组包括所述第四透镜L4、所述第五透镜L5和所述第六透镜L6。所述前透镜组和所述后透镜组沿从物方到像方方向依次被设置。
参照图3,根据本发明的第二个实施例,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6光心共轴。换句话说,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的主光轴一致。
参照图3,根据本发明的第二个实施例,所述光学镜头进一步包括一光阑L7,其中所述前透镜组和所述后透镜组可被分别设置于所述光阑L7的两侧,其中所述光阑L7的光心与所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的光心共轴。优选地,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间。
值得一提的是,参照图3,在本发明的这个实施例中,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间,以减少所述光学镜头中的杂散光,使得所述光学镜头具有良好的成像效果。在本发明的其它实施例中,所述光阑L7可以被设置于其他位置,比如第二透镜L2和第三透镜L3之间、第四透镜L4和第五透镜L5之间、第五透镜L5和第六透镜L6之间等等,本领域的技术人员应当理解的是,所述光阑L7的位置并不是本发明的限制。换句话说,所述前透镜组不限于由所述第一透镜L1、第二透镜L2和第三透镜L3组成,所述后透镜组不限于由所述第四透镜L4、所述第五透镜L5、所述第六透镜L6组成,当所述光阑L7被设置于不同位置时,所述光学镜头可以组成不同的所述前透镜组和所述后透镜组。
如图3所示,根据本发明的第二个实施例,所述第四透镜L4具有一物面S7和一像面S8,所述物面S7朝向物方,所述像面S8朝向像方。进一步,所述第四透镜L4的所述物面S7为凹面,所述第四透镜L4的所述像面S8为凹面。换句话说,所述第四透镜L4具有两面S7、S8,分别为两个凹面,所述第四透镜是一双凹透镜。进一步地,根据本发明的这个实施例,所述第四透镜L4具有负光焦度。
根据本发明的这个实施例,所述第五透镜L5具有一物面S9和一像面S10,所述物面S9朝向物方,所述像面S10朝向像方。进一步地,所述第五透镜L5 的所述物面S9为凸面,所述第五透镜L5的所述像面S10为凸面。换句话说,所述第五透镜L5为一双凸透镜。进一步地,所述第五透镜L5具有正光焦度。
进一步地,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9被设置相面对面。换句话说,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9面对面设置,在这个实施例中,即所述第四透镜L4的凹面和所述第五透镜L5的凸面面对面设置。
根据本发明的这个实施例,所述第六透镜L6具有一物面S11和一像面S12,所述物面S11朝向物方,所述像面S12朝向像方。进一步地,所述第六透镜L6的所述物面S11为凸面,所述第六透镜L6的所述像面S12为凸面。换句话说,所述第六透镜L6为双凸透镜。进一步地。所述第六透镜L6具有正光焦度。通过所述第六透镜L6进一步修正像差和畸变,使得所述光学镜头的成像质量更佳。
值得一提的是,在本发明的这个实施例中,所述第六透镜L6用于适当增大所述光学镜头的前方透镜的镜片边缘的畸变,使得大角度的光线可以到达预定尺寸的所述成像面L10,比如感光芯片面,而通过后期的软件处理可以继续修订图像,还使得经过所述第六透镜L6后的光线形成的图像恢复正常,即得到大角度的成像。
根据本发明的这个实施例,所述光学镜头还包括一平面镜片L9,用于保护隔离所述光学镜头。当然,在本发明的其他实施例中,还可以不设置所述平面镜片L9,本发明在这方面并不限制。
参照图3,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1具有一凸面和一凹面,所述第二透镜L2具有一个凹面和一个凸面,其中所述第一透镜L1的凸面被设置朝向物方,所述第一透镜L1的所述凹面被设置朝向像方,所述第二透镜L2的所述凹面被设置朝向物方,所述第二透镜L2的所述凸面被设置朝向像方。所述的第三透镜L3具有两个凸面,分别朝向物方和像方。所述第四透镜L4具有两个凹面,分别朝向物方和像方,所述第五透镜L5具有两凸面,分别朝向物方和像方,其中所述第四透镜L4的所述凹面和所述第五透镜L5的凸面面对面相对设置。所述第六透镜L6具有两个凸面,分别被设置朝向物方和像方。
根据本发明的这个实施例,所述光学镜头的所述消色差透镜组优选为胶合透镜。换句话说,所述第四透镜L4和所述第五透镜L5被胶合在一起,以形成所 述消色差透镜组。此时,由于所述第四透镜L4和所述第五透镜L5被胶合在一起,因此,所述第四透镜L4的凹面的所述像面S8和所述第五透镜L5的凸面的所述物面S9以胶合的方式面对面设置。当然,在本发明的其它实施例中,所述消色差透镜组也可以是分离型消色差透镜组。可以理解的是,当所述消色差透镜组是分离型消色差透镜组时,所述第四透镜L4和所述第五透镜L5被相分离地设置。
值得一提的是,所述第一透镜L1和所述第二透镜L2可由玻璃材料构成,也可以由其他具有良好透光性能的材料制成,比如塑料、树脂。本领域的技术人员可以理解的是,在本发明中的所述光学镜头中,光线由所述第一透镜L1进入,经过所述第一透镜L1的汇聚作用后传递至所述第二透镜L2,从而通过所述第一透镜L1可以收集大角度的光线,进一步,光线经过所述第一透镜L1后,到达所述第二透镜L2,经过所述第一透镜L1汇聚的光线由所述第二透镜L2适当发散后传递至所述光学镜头的后方,因此,所述第一透镜L1和所述第二透镜L2的折射率Nd需要相互配合,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的折射率Nd并不是本发明的限制。另一方面,本发明中,所述第一透镜L1和所述第二透镜L2设置阿贝常数Vd,使得所述镜头具有较好的成像质量,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的阿贝常数Vd并不是本发明的限制。
如图3所示是根据本发明的第二个实施例的光学镜头的结构示意图。所述光学镜头,从物方到像方依次包括:前透镜组、光阑L7、后透镜组、滤光元件L8、平面镜片L9、成像面L10。
其中,所述前透镜组从物方到像方包括:第一透镜L1、第二透镜L2和第三透镜L3,所述第一透镜L1为具有负光焦度的弯月形透镜,所述第二透镜L2为具有正光焦度的弯月形透镜,所述第一透镜L1和所述第二透镜L2的凹面相对,所述第三透镜L3为具有正光焦度的双凸透镜;所述后透镜组从物方到像方包括:第四透镜L4、第五透镜L5和第六透镜L6,所述第四透镜L4为具有负光焦度的双凹透镜,所述第五透镜L5为具有正光焦度的双凸透镜,所述第四透镜L4的凹面和所述第五透镜L5的凸面相对。进一步,所述第四透镜L4的凹面和所述第五透镜L5的凸面相胶合。所述第六透镜L6为具有正光焦度的双凸透镜。
在这个实施例中,所述第一透镜L1满足以下条件:
0.5≤R1/(R2+d1)≤1.5;
其中,R1是所述第一透镜L1的所述物面S1的曲率半径,R2是所述第一透镜L1的所述像面S2的曲率半径,d1是所述第一透镜L1的中心厚度。
所述第二透镜L2满足以下条件:
0.45≤|R4|/(|R3|+d3)≤1.3;
其中,R3是所述第二透镜L2的所述物面S3的曲率半径,R4是所述第二透镜L2的所述像面S4的曲率半径,d2是所述第二透镜L2的中心厚度。
通过上述条件中,对所述第一透镜L1和所述第二透镜L2的各自曲率半径和厚度的关系限制,使得所述第一透镜L1和所述第二透镜L2接近同心圆,从而当所述第一透镜L1和所述第二透镜L2凹面相对设置时,可以采集更大角度光线进入所述光学镜头,并且通过所述第二透镜L2的适当扩散而向后传递。
本发明的这个实施例中,所述第一透镜L1的焦距F1和所述光学镜头的组合焦距F满足以下条件:
-3.5≤F1/F≤-1。
所述第二透镜L2的焦距F2和所述光学镜头的整组焦距F满足以下条件:
|F2/F|≥5.0。
所述光学镜头的最大视场角为FOVm,所述光学镜头的最大视场角对应的像高为Ym,则(FOVm×F)/Ym≥45。
在本发明的这个实施例中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。
优选地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5为球面镜。本领域的技术人员应当理解的是,所述地第一透镜L1、所述第二透镜L2和所述第六透镜L6不限于玻璃非球面镜,也可以是塑料非球面或玻璃球面镜等,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5不限于玻璃球面镜,也可以为玻璃非球面、塑料非球面或树脂非球面等,本发明在这方面并不限制。特别地,在本发明的一些实施例中,由3个玻璃球面、3个玻璃非球面组成的6片镜片构成所述光学镜头,举例地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜片,第三透镜L3、第四透镜L4和第五透镜L5为玻璃球面,从而使得所述光学镜头具备长焦距、大视场角的特性,且通过玻璃非球面镜片保证所述 光学镜头的解像清晰度、减小色差。
在本发明的这个实施方式中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。所述第一透镜L1和所述第二透镜L2接近同心圆的镜片,并且是非球面,使得大角度的光线可以有效平稳的汇聚,且由于非球面的设置,避免传统的球面同心圆镜片加工的难题。
进一步,在一些实施例中,所述第一透镜L1的所述物面S1具有一中心区域S101和一自所述中心区域S101向外延伸的边缘区域S102,所述第一透镜L1的所述物面S1的所述中心区域S101为凸面,所述第一透镜L1的所述物面S1的所述边缘区域S102为凹面。本领域的技术人员应当理解的是,所述第一透镜L1的非球面的具体结构以及所述中心区域和边缘区域的具体结构以及范围大小并不是本发明的限制。
所述第一透镜L1、所述第二透镜L2和所述第六透镜L6的非球面镜面满足以下公式:
Figure PCTCN2017111193-appb-000002
其中,Z(h)为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高,c=1/r,r表示非球面镜面的曲率半径,k为圆锥系数conic,A、B、C、D、E为高次非球面系数。
如图4所示是本发明的这个实施例的光学性能曲线,由所述光学镜头的MTF曲线看到,所述光学镜头的解像较高,具有较好的光学性能。
如下表3和表4所示,是本发明的这个实施例的光学镜头的参数。需要说明的是,所述第一透镜L1的两面,即物面和像面分别为S1、S2,所述第二透镜L2的两面,即物面和像面分别为S3、S4,所述第三透镜L3的两面,即物面和像面分别为S5、S6,所述第四透镜L4的两面,即物面和像面分别为S7、S8,所述第五透镜L5的两面,即物面和像面分别为S9和S10,所述第六透镜L6的两面,即物面和像面分别为S11和S12,所述滤光元件L8的两面分别为S13、S14,所述平面镜片L9的两面分别为S15、S16,所述像面为S17;所述S1-S17与下表3和表4中的面序号一一对应。
表3第二个实施例的光学镜头参数
面序号 R曲率半径R 中心厚度d 折射率Nd 阿贝常数Vd
1 4.9664 2.8200 1.81 41.0
2 2.5583 3.6000    
3 -6.5060 1.8000 1.52 64.2
4 -6.6931 0.1303    
5 15.4290 2.3500 1.89 33.0
6 -24.9135 1.6743    
7 Infinity 0.3000    
8 -50.8376 0.6500 1.85 23.8
9 5.2969 2.5328 1.80 46.6
10 -16.8294 0.1000    
11 6.5203 3.5709 1.50 81.6
12 -129.0863 1.0000    
13 Infinity 0.5500 1.52 64.1
14 Infinity 1.0000    
15 Infinity 0.4000 1.52 64.1
16 Infinity 1.6349    
17 Infinity      
表4第二个实施例的非球面系数
面序号 K A B C D E
1 -0.974825 -7.1163E-04 -6.3087E-05 -1.0205E-06 1.1853E-07 -1.7272E-09
2 -1.929128 -3.6436E-03 -5.0598E-04 4.6798E-05 -1.7681E-06 4.6772E-08
3 0.454572 -8.7787E-04 1.1282E-05 -1.9950E-06 4.9797E-07 -1.9178E-09
4 1.091477 1.0287E-04 5.9728E-05 -8.2220E-07 3.1603E-08 1.0633E-09
11 -2.475537 6.9897E-04 1.1048E-04 -1.2620E-05 6.7442E-07 -1.5508E-09
12 0 -5.7655E-04 2.3999E-04 -1.3337E-05 5.9054E-07 1.4771E-09
根据上述数据,计算这个实施例中涉及的公式数值如下:
R1/(R2+d1)=0.923,|R4|/(|R3|+d3)=0.806,F1/F=-2.112,|F2|/F=30.457,TTL/F=3.742,(FOVm×F)/Ym=70.633。如表3和表4所示,在这个实施例中,作为一组具体的实施例参数,采用这些参数的光学镜头,能够达到较好的光学性能,具有较长的整体焦距,且具有较大的视场角。
综上所述,本发明所述的光学镜头,通过6片镜片结构,以及接近同心圆的非球面镜片的设计,能够满足在小型化的要求下,实现长焦距、大视场角、大孔径且符合高清晰度要求以及有效矫正光学系统的各种像差,特别适于车载摄像头系统,捕捉远距离的物体,且整体的观察视场扩大,可以通过一种镜头实现传统的长焦镜头和广角镜头这两种镜头的功能,降低车载摄像头系统的成本,提高镜头的实际使用性能。
本实施例与第一个实施例的区别在于,本实施例中的所述第二透镜的光焦度不同,以及所述第四透镜结构不同。
参照图5和图6,根据本发明的第三个实施例的光学镜头被说明,其中所述光学镜头包括至少一第一透镜L1、至少一第二透镜L2、一第三透镜L3、一第四透镜L4、一第五透镜L5和一第六透镜L6。所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6沿一物方至一像方方向依次排列。
所述第一透镜L1具有负光焦度,且所述第一透镜L1具有一物面S1和一像面S2,所述物面S1朝向物方,所述像面S2朝向像方。根据本发明的这个实施例,所述第一透镜L1的所述物面S1是凸面,以便于增大所述光学镜头的光通量。也就是说,通过所述第一透镜L1的凸面的所述物面S1汇聚较大角度的光线,增加由物方进入所述光学镜头的光通量。优选地,所述第一透镜L1的所述物面S1为非球面镜,以便于降低加工难度。当然,在本发明的其它实施例中,所述第一透镜L1可以为球面镜。
进一步,根据本发明的这个实施例,所述第一透镜L1的所述像面S2是凹面。也就是说,所述第一透镜L1包括两个面S1、S2,其中一个面为凸面,另一个面为凹面,所述凹面和所述凸面形成弯月形,且弯月形凸向物方,以便于增加进入所述光学级镜头的光线。
需要说明的是,本发明提供的所述成像系统透镜组中,当所述透镜表面为凸面且未界定所述凸面的位置时,则表示所述透镜的表面的近光轴处为凸面;当所述透镜表面为凹面且未界定所述凹面的位置时,则表示所述透镜表面近光轴处为凹面。
所述第二透镜L2具有一物面S3和一像面S4,所述物面S3朝向物方,所述像面S4朝向像方。根据本发明的这个实施例,所述第二透镜L2的所述像面S4是凸面,以便于将通过所述第一透镜L1的光线进行适当发散传递至所述光学镜头的后方。所述第二透镜L2具有正光焦度。也就是说,所述第二透镜L2具有过渡光线的作用,将所述第一透镜L1的光线平稳过渡至所述第三透镜L3。优选地,所述第二透镜L2为非球面镜,以便于降低加工难度。当然,在本发明的其他实施例中,所述第二透镜L2可以为球面镜。
进一步,根据本发明的这个实施例,所述第二透镜L2的所述物面S3是凸面。也就是说,所述第二透镜L2包括两个面S3、S4,其中一个面为凸面,另一个面为凹面,所述凸面和所述凹面形成弯月形,且弯月凸向像方,以便将所述第 一透镜L1传递的光线进行发散传递至后方。
值得一提的是,所述第一透镜L1和所述第二透镜L2的弯月形相对设置,接近同心圆结构,使得所述光学镜头靠近中心的视场角较小,焦距较大,大角度分辨率高。
所述第三透镜L3具有一物面S5和一像面S6,所述物面S5朝向物方,所述像面S6朝向像方。所述第三透镜L3的所述物面S5和所述像面S6都为凸面,以便于汇聚由所述第二透镜L2传递的光线并且向所述光学透镜后方传递。换句话说,所述第三透镜L3是一双凸透镜,具有光线过渡以及汇聚作用。
根据本发明的这个实施例,所述第三透镜L3具有正光焦度。
所述第四透镜L4和所述第五透镜L5组成一消色差透镜组,以便于消减由所述光学镜头的前方部件传递的光线色差。
参照图5,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6形成一前透镜组和一后透镜组,其中所述前透镜组包括所述第一透镜L1、所述第二透镜L2和所述第三透镜L3,所述后透镜组包括所述第四透镜L4、所述第五透镜L5和所述第六透镜L6。所述前透镜组和所述后透镜组沿从物方到像方方向依次被设置。
参照图5,根据本发明的第三个实施例,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6光心共轴。换句话说,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的主光轴一致。
参照图5,根据本发明的第三个实施例,所述光学镜头进一步包括一光阑L7,其中所述前透镜组和所述后透镜组可被分别设置于所述光阑L7的两侧,其中所述光阑L7的光心与所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的光心共轴。优选地,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间。
值得一提的是,参照图5,在本发明的这个实施例中,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间,以减少所述光学镜头中的杂散光,使得所述光学镜头具有良好的成像效果。在本发明的其它实施例中,所述光阑L7可以被设置于其他位置,比如第二透镜L2和第三透镜L3之间、第四透镜L4 和第五透镜L5之间、第五透镜L5和第六透镜L6之间等等,本领域的技术人员应当理解的是,所述光阑L7的位置并不是本发明的限制。换句话说,所述前透镜组不限于由所述第一透镜L1、第二透镜L2和第三透镜L3组成,所述后透镜组不限于由所述第四透镜L4、所述第五透镜L5、所述第六透镜L6组成,当所述光阑L7被设置于不同位置时,所述光学镜头可以组成不同的所述前透镜组和所述后透镜组。
如图5所示,根据本发明的第三个实施例,所述第四透镜L4具有一物面S7和一像面S8,所述物面S7朝向物方,所述像面S8朝向像方。进一步,所述第四透镜L4的所述物面S7为凸面,所述第四透镜L4的所述像面S8为凹面。换句话说,所述第四透镜L4具有两面S7、S8,分别两个凹面。也就是说,所述第四透镜为一双凹透镜。进一步地,根据本发明的这个实施例,所述第四透镜L4具有负光焦度。
根据本发明的这个实施例,所述第五透镜L5具有一物面S9和一像面S10,所述物面S9朝向物方,所述像面S10朝向像方。进一步地,所述第五透镜L5的所述物面S9为凸面,所述第五透镜L5的所述像面S10为凸面。换句话说,所述第五透镜L5为一双凸透镜。进一步地,根据本发明的这个实施例,所述第五透镜L5具有正光焦度。
进一步地,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9被设置相面对面。换句话说,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9面对面设置,在这个实施例中,即所述第四透镜L4的凹面和所述第五透镜L5的凸面面对面设置。
根据本发明的这个实施例,所述第六透镜L6具有一物面S11和一像面S12,所述物面S11朝向物方,所述像面S12朝向像方。进一步地,所述第六透镜L6的所述物面S11为凸面,所述第六透镜L6的所述像面S12为凹面。换句话说,所述第六透镜L6为一弯月形透镜。进一步地。所述第六透镜L6具有正光焦度。通过所述第六透镜L6进一步修正像差和畸变,使得所述光学镜头的成像质量更佳。
值得一提的是,在本发明的这个实施例中,所述第六透镜L6用于适当增大所述光学镜头的前方透镜的镜片边缘的畸变,使得大角度的光线可以到达预定尺寸的所述成像面L10,比如感光芯片面,而通过后期的软件处理可以继续修订图 像,还使得经过所述第六透镜L6后的光线形成的图像恢复正常,即得到大角度的成像。
根据本发明的这个实施例,所述光学镜头还包括一平面镜片L9,用于保护隔离所述光学镜头。当然,在本发明的其他实施例中,还可以不设置所述平面镜片L9,本发明在这方面并不限制。
参照图5,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1具有一凸面和一凹面,所述第二透镜L2具有一个凹面和一个凸面,其中所述第一透镜L1的凸面被设置朝向物方,所述第一透镜L1的所述凹面被设置朝向像方,所述第二透镜L2的所述凹面被设置朝向物方,所述第二透镜L2的所述凸面被设置朝向像方。所述的第三透镜L3具有两个凸面,分别朝向物方和像方。所述第四透镜L4具有两个凹面,分别朝向物方和像方,所述第五透镜L5具有两凸面,分别朝向物方和像方,其中所述第四透镜L4的所述凹面和所述第五透镜L5的凸面面对面相对设置。所述第六透镜L6具有一个凸面和一个凹面,分别被设置朝向物方和像方。
根据本发明的这个实施例,所述光学镜头的所述消色差透镜组优选为胶合透镜。换句话说,所述第四透镜L4和所述第五透镜L5被胶合在一起,以形成所述消色差透镜组。此时,由于所述第四透镜L4和所述第五透镜L5被胶合在一起,因此,所述第四透镜L4的凹面的所述像面S8和所述第五透镜L5的凸面的所述物面S9以胶合的方式面对面设置。当然,在本发明的其它实施例中,所述消色差透镜组也可以是分离型消色差透镜组。可以理解的是,当所述消色差透镜组是分离型消色差透镜组时,所述第四透镜L4和所述第五透镜L5被相分离地设置。
值得一提的是,所述第一透镜L1和所述第二透镜L2可由玻璃材料构成,也可以由其他具有良好透光性能的材料制成,比如塑料、树脂。本领域的技术人员可以理解的是,在本发明中的所述光学镜头中,光线由所述第一透镜L1进入,经过所述第一透镜L1的汇聚作用后传递至所述第二透镜L2,从而通过所述第一透镜L1可以收集大角度的光线,进一步,光线经过所述第一透镜L1后,到达所述第二透镜L2,经过所述第一透镜L1汇聚的光线由所述第二透镜L2适当发散后传递至所述光学镜头的后方,因此,所述第一透镜L1和所述第二透镜L2的折射率Nd需要相互配合,但是本领域的技术人员应当理解的是,所述第一透 镜L1和所述第二透镜L2的折射率Nd并不是本发明的限制。另一方面,本发明中,所述第一透镜L1和所述第二透镜L2设置阿贝常数Vd,使得所述镜头具有较好的成像质量,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的阿贝常数Vd并不是本发明的限制。
如图5所示是根据本发明的第三个实施例的光学镜头的结构示意图。所述光学镜头,从物方到像方依次包括:前透镜组、光阑L7、后透镜组、滤光元件L8、平面镜片L9、成像面L10。
其中,所述前透镜组从物方到像方包括:第一透镜L1、第二透镜L2和第三透镜L3,所述第一透镜L1为具有负光焦度的弯月形透镜,所述第二透镜L2为具有正光焦度的弯月形透镜,所述第一透镜L1和所述第二透镜L2的凹面相对,所述第三透镜L3为具有正光焦度的双凸透镜;所述后透镜组从物方到像方包括:第四透镜L4、第五透镜L5和第六透镜L6,所述第四透镜L4为具有负光焦度的双凹透镜,所述第五透镜L5为具有正光焦度的双凸透镜,所述第四透镜L4的凹面和所述第五透镜L5的凸面相对。进一步,所述第四透镜L4的凹面和所述第五透镜L5的凸面相胶合。所述第六透镜L6为具有正光焦度的弯月形透镜。
在这个实施例中,所述第一透镜L1满足以下条件:
0.5≤R1/(R2+d1)≤1.5;
其中,R1是所述第一透镜L1的所述物面S1的曲率半径,R2是所述第一透镜L1的所述像面S2的曲率半径,d1是所述第一透镜L1的中心厚度。
所述第二透镜L2满足以下条件:
0.45≤|R4|/(|R3|+d3)≤1.3;
其中,R3是所述第二透镜L2的所述物面S3的曲率半径,R4是所述第二透镜L2的所述像面S4的曲率半径,d2是所述第二透镜L2的中心厚度。
通过上述条件中,对所述第一透镜L1和所述第二透镜L2的各自曲率半径和厚度的关系限制,使得所述第一透镜L1和所述第二透镜L2接近同心圆,从而当所述第一透镜L1和所述第二透镜L2凹面相对设置时,可以采集更大角度光线进入所述光学镜头,并且通过所述第二透镜L2的适当扩散而向后传递。
本发明的这个实施例中,所述第一透镜L1的焦距F1和所述光学镜头的组合焦距F满足以下条件:
-3.5≤F1/F≤-1。
所述第二透镜L2的焦距F2和所述光学镜头的整组焦距F满足以下条件:
|F2/F|≥5.0。
所述光学镜头的最大视场角为FOVm,所述光学镜头的最大视场角对应的像高为Ym,则(FOVm×F)/Ym≥45。
在本发明的这个实施例中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。
优选地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5为球面镜。本领域的技术人员应当理解的是,所述地第一透镜L1、所述第二透镜L2和所述第六透镜L6不限于玻璃非球面镜,也可以是塑料非球面或球面镜等,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5不限于玻璃球面镜,也可以为玻璃非球面、塑料非球面或树脂非球面等,本发明在这方面并不限制。特别地,在本发明的一些实施例中,由3个玻璃球面、3个玻璃非球面构成的6片镜片构成所述光学镜头,举例地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜片,第三透镜L3、第四透镜L4和第五透镜L5为玻璃球面,从而使得所述光学镜头具备长焦距、大视场角的特性,且通过玻璃非球面镜片保证所述光学镜头的解像清晰度、减小色差。
在本发明的这个实施方式中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。所述第一透镜L1和所述第二透镜L2接近同心圆的镜片,并且是非球面,使得大角度的光线可以有效平稳的汇聚,且由于非球面的设置,避免传统的球面同心圆镜片加工的难题。
进一步,在一些实施例中,所述第一透镜L1的所述物面S1具有一中心区域S101和一自所述中心区域S101向外延伸的边缘区域S102,所述第一透镜L1的所述物面S1的所述中心区域S101为凸面,所述第一透镜L1的所述物面S1的所述边缘区域S102为凹面。本领域的技术人员应当理解的是,所述第一透镜L1的非球面的具体结构以及所述中心区域和边缘区域的具体结构以及范围大小并不是本发明的限制。
所述第一透镜L1、所述第二透镜L2和所述第六透镜L6的非球面镜面满足以下公式:
Figure PCTCN2017111193-appb-000003
其中,Z(h)为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高,c=1/r,r表示非球面镜面的曲率半径,k为圆锥系数conic,A、B、C、D、E为高次非球面系数。
如图6所示是本发明的这个实施例的光学性能曲线,由所述光学镜头的MTF曲线看到,所述光学镜头的解像较高,具有较好的光学性能。
如下表5和表6所示,是本发明的这个实施例的光学镜头的参数。需要说明的是,所述第一透镜L1的两面,即物面和像面分别为S1、S2,所述第二透明的两面,即物面和像面分别为S3、S4,所述第三透镜L3的两面,即物面和像面分别为S5、S6,所述第四透镜L4的两面,即物面和像面分别为S7、S8,所述第五透镜L5的两面,即物面和像面分别为S9和S10,所述第六透镜L6的两面,即物面和像面分别为S11和S12,所述滤光元件L8的两面分别为S13、S14,所述平面镜片L9的两面分别为S15、S16,所述像面为S17;所述S1-S17与下表5和表6中的面序号一一对应。
表5第三个实施例的光学镜头参数
面序号 R曲率半径R 中心厚度d 折射率Nd 阿贝常数Vd
1 3.8234 2.0812 1.81 40.9
2 2.0011 2.6659    
3 -9.2801 2.0559 1.59 61.3
4 -8.3799 0.1290    
5 12.1741 2.5518 1.90 31.3
6 -16.3170 -0.0430    
7 Infinity 1.4341    
8 -17.2801 0.5590 1.85 23.8
9 4.6385 2.3618 1.80 46.6
10 -11.1594 0.0860    
11 6.0172 2.4939 1.50 81.6
12 33.6275 0.8600    
13 Infinity 0.5000 1.52 64.2
14 Infinity 0.8600    
15 Infinity 0.4000 1.52 64.1
16 Infinity 1.6813    
17 Infinity      
表6第三个实施例的非球面系数
Figure PCTCN2017111193-appb-000004
Figure PCTCN2017111193-appb-000005
根据上述数据,计算这个实施例中涉及的公式数值如下:
R1/(R2+d1)=0.937,|R4|/(|R3|+d3)=0.739,F1/F=-1.815,|F2|/F=13.531,TTL/F=3.541,(FOVm×F)/Ym=91.490。如表5和表6所示,在这个实施例中,作为一组具体的实施例参数,采用这些参数的光学镜头,能够达到较好的光学性能,具有较长的整体焦距,且具有较大的视场角。
综上所述,本发明所述的光学镜头,通过6片镜片结构,以及接近同心圆的非球面镜片的设计,能够满足在小型化的要求下,实现长焦距、大视场角、大孔径且符合高清晰度要求以及有效矫正光学系统的各种像差,特别适于车载摄像头系统,捕捉远距离的物体,且整体的观察视场扩大,可以通过一种镜头实现传统的长焦镜头和广角镜头这两种镜头的功能,降低车载摄像头系统的成本,提高镜头的实际使用性能。
本实施例与第一个实施例的区别在于,本实施例中的所述第二透镜的光焦度不同,以及所述第四透镜和第六透镜的结构不同。
参照图7和图8,根据本发明的第四个实施例的光学镜头被说明,其中所述光学镜头包括至少一第一透镜L1、至少一第二透镜L2、一第三透镜L3、一第四透镜L4、一第五透镜L5和一第六透镜L6。所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6沿一物方至一像方方向依次排列。
所述第一透镜L1具有负光焦度,且所述第一透镜L1具有一物面S1和一像面S2,所述物面S1朝向物方,所述像面S2朝向像方。根据本发明的这个实施例,所述第一透镜L1的所述物面S1是凸面,以便于增大所述光学镜头的光通量。也就是说,通过所述第一透镜L1的凸面的所述物面S1汇聚较大角度的光线,增加由物方进入所述光学镜头的光通量。优选地,所述第一透镜L1的所述物面S1为非球面镜,以便于降低加工难度。当然,在本发明的其它实施例中,所述第一透镜L1可以为球面镜。
进一步,根据本发明的这个实施例,所述第一透镜L1的所述像面S2是凹 面。也就是说,所述第一透镜L1包括两个面S1、S2,其中一个面为凸面,另一个面为凹面,所述凹面和所述凸面形成弯月形,且弯月形凸向物方,以便于增加进入所述光学级镜头的光线。
需要说明的是,本发明提供的所述成像系统透镜组中,当所述透镜表面为凸面且未界定所述凸面的位置时,则表示所述透镜的表面的近光轴处为凸面;当所述透镜表面为凹面且未界定所述凹面的位置时,则表示所述透镜表面近光轴处为凹面。
所述第二透镜L2具有一物面S3和一像面S4,所述物面S3朝向物方,所述像面S4朝向像方。根据本发明的这个实施例,所述第二透镜L2的所述像面S4是凸面,以便于将通过所述第一透镜L1的光线进行适当发散传递至所述光学镜头的后方。所述第二透镜L2具有正光焦度。也就是说,所述第二透镜L2具有过渡光线的作用,将所述第一透镜L1的光线平稳过渡至所述第三透镜L3。优选地,所述第二透镜L2为非球面镜,以便于降低加工难度。当然,在本发明的其他实施例中,所述第二透镜L2可以为球面镜。
进一步,根据本发明的这个实施例,所述第二透镜L2的所述物面S3是凸面。也就是说,所述第二透镜L2包括两个面S3、S4,其中一个面为凸面,另一个面为凹面,所述凸面和所述凹面形成弯月形,且弯月凸向像方,以便将所述第一透镜L1传递的光线进行发散传递至后方。
值得一提的是,所述第一透镜L1和所述第二透镜L2的弯月形相对设置,接近同心圆结构,使得所述光学镜头靠近中心的视场角较小,焦距较大,大角度分辨率高。
所述第三透镜L3具有一物面S5和一像面S6,所述物面S5朝向物方,所述像面S6朝向像方。所述第三透镜L3的所述物面S5和所述像面S6都为凸面,以便于汇聚由所述第二透镜L2传递的光线并且向所述光学透镜后方传递。换句话说,所述第三透镜L3是一双凸透镜,具有光线过渡以及汇聚作用。
根据本发明的这个实施例,所述第三透镜L3具有正光焦度。
所述第四透镜L4和所述第五透镜L5组成一消色差透镜组,以便于消减由所述光学镜头的前方部件传递的光线色差。
参照图7,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6形成一前透镜组和一后透镜组, 其中所述前透镜组包括所述第一透镜L1、所述第二透镜L2和所述第三透镜L3,所述后透镜组包括所述第四透镜L4、所述第五透镜L5和所述第六透镜L6。所述前透镜组和所述后透镜组沿从物方到像方方向依次被设置。
参照图7,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6光心共轴。换句话说,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的主光轴一致。
参照图7,根据本发明的这个实施例,所述光学镜头进一步包括一光阑L7,其中所述前透镜组和所述后透镜组可被分别设置于所述光阑L7的两侧,其中所述光阑L7的光心与所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的光心共轴。优选地,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间。
值得一提的是,参照图7,在本发明的这个实施例中,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间,以减少所述光学镜头中的杂散光,使得所述光学镜头具有良好的成像效果。在本发明的其它实施例中,所述光阑L7可以被设置于其他位置,比如第二透镜L2和第三透镜L3之间、第四透镜L4和第五透镜L5之间、第五透镜L5和第六透镜L6之间等等,本领域的技术人员应当理解的是,所述光阑L7的位置并不是本发明的限制。换句话说,所述前透镜组不限于由所述第一透镜L1、第二透镜L2和第三透镜L3组成,所述后透镜组不限于由所述第四透镜L4、所述第五透镜L5、所述第六透镜L6组成,当所述光阑L7被设置于不同位置时,所述光学镜头可以组成不同的所述前透镜组和所述后透镜组。
如图7所示,根据本发明的这个实施例,所述第四透镜L4具有一物面S7和一像面S8,所述物面S7朝向物方,所述像面S8朝向像方。进一步,所述第四透镜L4的所述物面S7为凸面,所述第四透镜L4的所述像面S8为凹面。换句话说,所述第四透镜L4具有两面S7、S8,分别为一凸面和一凹面,所述凸面和所述凹面形成一弯月形,且弯月凸向物方。进一步地,根据本发明的这个实施例,所述第四透镜L4具有负光焦度。
根据本发明的这个实施例,所述第五透镜L5具有一物面S9和一像面S10, 所述物面S9朝向物方,所述像面S10朝向像方。进一步地,所述第五透镜L5的所述物面S9为凸面,所述第五透镜L5的所述像面S10为凸面。换句话说,所述第五透镜L5为一双凸透镜。进一步地,根据本发明的这个实施例,所述第五透镜L5具有正光焦度。
进一步地,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9被设置相面对面。换句话说,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9面对面设置,在这个实施例中,即所述第四透镜L4的凹面和所述第五透镜L5的凸面面对面设置。
根据本发明的这个实施例,所述第六透镜L6具有一物面S11和一像面S12,所述物面S11朝向物方,所述像面S12朝向像方。进一步地,所述第六透镜L6的所述物面S11为凸面,所述第六透镜L6的所述像面S12为凸面。换句话说,所述第六透镜L6为一双凸透镜。进一步地。所述第六透镜L6具有正光焦度。通过所述第六透镜L6进一步修正像差和畸变,使得所述光学镜头的成像质量更佳。
值得一提的是,在本发明的这个实施例中,所述第六透镜L6用于适当增大所述光学镜头的前方透镜的镜片边缘的畸变,使得大角度的光线可以到达预定尺寸的所述成像面L10,比如感光芯片面,而通过后期的软件处理可以继续修订图像,还使得经过所述第六透镜L6后的光线形成的图像恢复正常,即得到大角度的成像。
根据本发明的这个实施例,所述光学镜头还包括一平面镜片L9,用于保护隔离所述光学镜头。当然,在本发明的其他实施例中,还可以不设置所述平面镜片L9,本发明在这方面并不限制。
参照图7,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1具有一凸面和一凹面,所述第二透镜L2具有一个凹面和一个凸面,其中所述第一透镜L1的凸面被设置朝向物方,所述第一透镜L1的所述凹面被设置朝向像方,所述第二透镜L2的所述凹面被设置朝向物方,所述第二透镜L2的所述凸面被设置朝向像方。所述的第三透镜L3具有两个凸面,分别朝向物方和像方。所述第四透镜L4具有一个凸面和一个凹面,分别朝向物方和像方,所述第五透镜L5具有两凸面,分别朝向物方和像方,其中所述第四透镜L4的所述凹面和所述第五透镜L5的凸面面对面相对设置。所述第六透镜L6具有两个凸面,分别被设 置朝向物方和像方。
根据本发明的这个实施例,所述光学镜头的所述消色差透镜组优选为胶合透镜。换句话说,所述第四透镜L4和所述第五透镜L5被胶合在一起,以形成所述消色差透镜组。此时,由于所述第四透镜L4和所述第五透镜L5被胶合在一起,因此,所述第四透镜L4的凹面的所述像面S8和所述第五透镜L5的凸面的所述物面S9以胶合的方式面对面设置。当然,在本发明的其它实施例中,所述消色差透镜组也可以是分离型消色差透镜组。可以理解的是,当所述消色差透镜组是分离型消色差透镜组时,所述第四透镜L4和所述第五透镜L5被相分离地设置。
值得一提的是,所述第一透镜L1和所述第二透镜L2可由玻璃材料构成,也可以由其他具有良好透光性能的材料制成,比如塑料、树脂。本领域的技术人员可以理解的是,在本发明中的所述光学镜头中,光线由所述第一透镜L1进入,经过所述第一透镜L1的汇聚作用后传递至所述第二透镜L2,从而通过所述第一透镜L1可以收集大角度的光线,进一步,光线经过所述第一透镜L1后,到达所述第二透镜L2,经过所述第一透镜L1汇聚的光线由所述第二透镜L2适当发散后传递至所述光学镜头的后方,因此,所述第一透镜L1和所述第二透镜L2的折射率Nd需要相互配合,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的折射率Nd并不是本发明的限制。另一方面,本发明中,所述第一透镜L1和所述第二透镜L2设置阿贝常数Vd,使得所述镜头具有较好的成像质量,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的阿贝常数Vd并不是本发明的限制。
如图7所示是根据本发明的第四个实施例的光学镜头的结构示意图。所述光学镜头,从物方到像方依次包括:前透镜组、光阑L7、后透镜组、滤光元件L8、平面镜片L9、成像面L10。
其中,所述前透镜组从物方到像方包括:第一透镜L1、第二透镜L2和第三透镜L3,所述第一透镜L1为具有负光焦度的弯月形透镜,所述第二透镜L2为具有正光焦度的弯月形透镜,所述第一透镜L1和所述第二透镜L2的凹面相对,所述第三透镜L3为具有正光焦度的双凸透镜;所述后透镜组从物方到像方包括:第四透镜L4、第五透镜L5和第六透镜L6,所述第四透镜L4为具有负光焦度的弯月形透镜,所述第五透镜L5为具有正光焦度的双凸透镜,所述第四透镜L4 的凹面和所述第五透镜L5的凸面相对。进一步,所述第四透镜L4的凹面和所述第五透镜L5的凸面相胶合。所述第六透镜L6为具有正光焦度的双凸透镜。
在这个实施例中,所述第一透镜L1满足以下条件:
0.5≤R1/(R2+d1)≤1.5;
其中,R1是所述第一透镜L1的所述物面S1的曲率半径,R2是所述第一透镜L1的所述像面S2的曲率半径,d1是所述第一透镜L1的中心厚度。
所述第二透镜L2满足以下条件:
0.45≤|R4|/(|R3|+d3)≤1.3;
其中,R3是所述第二透镜L2的所述物面S3的曲率半径,R4是所述第二透镜L2的所述像面S4的曲率半径,d2是所述第二透镜L2的中心厚度。
通过上述条件中,对所述第一透镜L1和所述第二透镜L2的各自曲率半径和厚度的关系限制,使得所述第一透镜L1和所述第二透镜L2接近同心圆,从而当所述第一透镜L1和所述第二透镜L2凹面相对设置时,可以采集更大角度光线进入所述光学镜头,并且通过所述第二透镜L2的适当扩散而向后传递。
本发明的这个实施例中,所述第一透镜L1的焦距F1和所述光学镜头的组合焦距F满足以下条件:
-3.5≤F1/F≤-1。
所述第二透镜L2的焦距F2和所述光学镜头的整组焦距F满足以下条件:
|F2/F|≥5.0。
所述光学镜头的最大视场角为FOVm,所述光学镜头的最大视场角对应的像高为Ym,则(FOVm×F)/Ym≥45。
在本发明的这个实施例中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。
优选地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5为球面镜。本领域的技术人员应当理解的是,所述地第一透镜L1、所述第二透镜L2和所述第六透镜L6不限于玻璃非球面镜,也可以是塑料非球面或球面镜等,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5不限于玻璃球面镜,也可以为玻璃非球面、塑料非球面或树脂非球面等,本发明在这方面并不限制。特别地,在本发明的一些实施例中,由3个玻璃球面、3个玻璃非球面构成的6片镜片构成所述光学镜 头,举例地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜片,第三透镜L3、第四透镜L4和第五透镜L5为玻璃球面,从而使得所述光学镜头具备长焦距、大视场角的特性,且通过玻璃非球面镜片保证所述光学镜头的解像清晰度、减小色差。
在本发明的这个实施方式中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。所述第一透镜L1和所述第二透镜L2接近同心圆的镜片,并且是非球面,使得大角度的光线可以有效平稳的汇聚,且由于非球面的设置,避免传统的球面同心圆镜片加工的难题。
进一步,在一些实施例中,所述第一透镜L1的所述物面S1具有一中心区域S101和一自所述中心区域S101向外延伸的边缘区域S102,所述第一透镜L1的所述物面S1的所述中心区域S101为凸面,所述第一透镜L1的所述物面S1的所述边缘区域S102为凹面。本领域的技术人员应当理解的是,所述第一透镜L1的非球面的具体结构以及所述中心区域和边缘区域的具体结构以及范围大小并不是本发明的限制。
所述第一透镜L1、所述第二透镜L2和所述第六透镜L6的非球面镜面满足以下公式:
Figure PCTCN2017111193-appb-000006
其中,Z(h)为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高,c=1/r,r表示非球面镜面的曲率半径,k为圆锥系数conic,A、B、C、D、E为高次非球面系数。
如图8所示是本发明的这个实施例的光学性能曲线,由所述光学镜头的MTF曲线看到,所述光学镜头的解像较高,具有较好的光学性能。
如下表7和表8所示,是本发明的这个实施例的光学镜头的参数。需要说明的是,所述第一透镜L1的两面,即物面和像面分别为S1、S2,所述第二透明的两面,即物面和像面分别为S3、S4,所述第三透镜L3的两面,即物面和像面分别为S5、S6,所述第四透镜L4的两面,即物面和像面分别为S7、S8,所述第五透镜L5的两面,即物面和像面分别为S9和S10,所述第六透镜L6的两面,即物面和像面分别为S11和S12,所述滤光元件L8的两面分别为S13、S14,所述平面镜片L9的两面分别为S15、S16,所述像面为S17;所述S1-S17与下表7
和表8中的面序号一一对应。
表7第四个实施例的光学镜头参数
面序号 R曲率半径R 中心厚度d 折射率Nd 阿贝常数Vd
1 4.2475 2.4849 1.86 36.6
2 2.4718 2.8683    
3 -7.0386 2.6337 1.58 61.1
4 -7.7488 0.1000    
5 14.6014 4.1000 1.90 37.1
6 -12.8969 -0.1000    
7 Infinity 1.0177    
8 40.1873 1.1466 1.92 20.9
9 7.6891 2.6188 1.76 52.3
10 -23.1237 0.1000    
11 10.0000 2.8000 1.50 81.6
12 -269.3559 1.0000    
13 Infinity 0.5500 1.52 64.2
14 Infinity 1.7598    
15 Infinity 0.4000 1.52 64.2
16 Infinity 0.3212    
17 Infinity      
表8第四个实施例的非球面系数
面序号 K A B C D E
1 -0.9590625 -6.4944E-04 -1.2078E-04 -5.3975E-07 2.2275E-07 -4.1417E-09
2 -1.773352 -2.8145E-03 -7.9828E-04 7.6984E-05 -3.4482E-06 1.1862E-07
3 -0.00224598 -1.4175E-03 -4.8587E-05 1.2482E-05 -1.6969E-07 -1.9919E-08
4 -0.195443 -5.2260E-04 1.2933E-04 5.0857E-05 -2.1495E-06 1.1890E-08
11 -6.253544 4.5344E-04 5.5237E-05 -1.0361E-05 6.9645E-07 -1.8079E-08
12 5561.805 -1.9695E-03 1.8189E-04 -8.2462E-05 -1.9847E-07 2.0609E-08
根据上述数据,计算这个实施例中涉及的公式数值如下:
R1/(R2+d1)=0.857,|R4|/(|R3|+d3)=0.801,F1/F=-3.124,|F2|/F=58.026,TTL/F=3.818,(FOVm×F)/Ym=89.823。如表7和表8所示,在这个实施例中,作为一组具体的实施例参数,采用这些参数的光学镜头,能够达到较好的光学性能,具有较长的整体焦距,且具有较大的视场角。
综上所述,本发明所述的光学镜头,通过6片镜片结构,以及接近同心圆的非球面镜片的设计,能够满足在小型化的要求下,实现长焦距、大视场角、大孔径且符合高清晰度要求以及有效矫正光学系统的各种像差,特别适于车载摄像头系统,捕捉远距离的物体,且整体的观察视场扩大,可以通过一种镜头实现传统 的长焦镜头和广角镜头这两种镜头的功能,降低车载摄像头系统的成本,提高镜头的实际使用性能。
本发明的这个实施例与第一个实施例的区别在于,所述第二透镜L2的光焦度不同。
参照图9和图10,根据本发明的第五个实施例的光学镜头被说明,其中所述光学镜头包括至少一第一透镜L1、至少一第二透镜L2、一第三透镜L3、一第四透镜L4、一第五透镜L5和一第六透镜L6。所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6沿一物方至一像方方向依次排列。
所述第一透镜L1具有负光焦度,且所述第一透镜L1具有一物面S1和一像面S2,所述物面S1朝向物方,所述像面S2朝向像方。根据本发明的这个实施例,所述第一透镜L1的所述物面S1是凸面,以便于增大所述光学镜头的光通量。也就是说,通过所述第一透镜L1的凸面的所述物面S1汇聚较大角度的光线,增加由物方进入所述光学镜头的光通量。优选地,所述第一透镜L1的所述物面S1为非球面镜,以便于降低加工难度。当然,在本发明的其它实施例中,所述第一透镜L1可以为球面镜。
进一步,根据本发明的这个实施例,所述第一透镜L1的所述像面S2是凹面。也就是说,所述第一透镜L1包括两个面S1、S2,其中一个面为凸面,另一个面为凹面,所述凹面和所述凸面形成弯月形,且弯月形凸向物方,以便于增加进入所述光学级镜头的光线。
需要说明的是,本发明提供的所述成像系统透镜组中,当所述透镜表面为凸面且未界定所述凸面的位置时,则表示所述透镜的表面的近光轴处为凸面;当所述透镜表面为凹面且未界定所述凹面的位置时,则表示所述透镜表面近光轴处为凹面。
所述第二透镜L2具有一物面S3和一像面S4,所述物面S3朝向物方,所述像面S4朝向像方。根据本发明的这个实施例,所述第二透镜L2的所述像面S4是凸面,以便于将通过所述第一透镜L1的光线进行适当发散传递至所述光学镜头的后方。所述第二透镜L2具有负光焦度。也就是说,所述第二透镜L2具有过渡光线的作用,将所述第一透镜L1的光线平稳过渡至所述第三透镜L3。优选地,所述第二透镜L2为非球面镜,以便于降低加工难度。当然,在本发明的其 他实施例中,所述第二透镜L2可以为球面镜。
进一步,根据本发明的这个实施例,所述第二透镜L2的所述物面S3是凸面。也就是说,所述第二透镜L2包括两个面S3、S4,其中一个面为凸面,另一个面为凹面,所述凸面和所述凹面形成弯月形,且弯月凸向像方,以便将所述第一透镜L1传递的光线进行发散传递至后方。
值得一提的是,所述第一透镜L1和所述第二透镜L2的弯月形相对设置,接近同心圆结构,使得所述光学镜头靠近中心的视场角较小,焦距较大,大角度分辨率高。
所述第三透镜L3具有一物面S5和一像面S6,所述物面S5朝向物方,所述像面S6朝向像方。所述第三透镜L3的所述物面S5和所述像面S6都为凸面,以便于汇聚由所述第二透镜L2传递的光线并且向所述光学透镜后方传递。换句话说,所述第三透镜L3是一双凸透镜,具有光线过渡以及汇聚作用。
根据本发明的这个实施例,所述第三透镜L3具有正光焦度。
所述第四透镜L4和所述第五透镜L5组成一消色差透镜组,以便于消减由所述光学镜头的前方部件传递的光线色差。
参照图9,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6形成一前透镜组和一后透镜组,其中所述前透镜组包括所述第一透镜L1、所述第二透镜L2和所述第三透镜L3,所述后透镜组包括所述第四透镜L4、所述第五透镜L5和所述第六透镜L6。所述前透镜组和所述后透镜组沿从物方到像方方向依次被设置。
参照图9,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6光心共轴。换句话说,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的主光轴一致。
参照图9,根据本发明的第一个实施例,所述光学镜头进一步包括一光阑L7,其中所述前透镜组和所述后透镜组可被分别设置于所述光阑L7的两侧,其中所述光阑L7的光心与所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的光心共轴。优选地,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间。
值得一提的是,参照图9,在本发明的这个实施例中,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间,以减少所述光学镜头中的杂散光,使得所述光学镜头具有良好的成像效果。在本发明的其它实施例中,所述光阑L7可以被设置于其他位置,比如第二透镜L2和第三透镜L3之间、第四透镜L4和第五透镜L5之间、第五透镜L5和第六透镜L6之间等等,本领域的技术人员应当理解的是,所述光阑L7的位置并不是本发明的限制。换句话说,所述前透镜组不限于由所述第一透镜L1、第二透镜L2和第三透镜L3组成,所述后透镜组不限于由所述第四透镜L4、所述第五透镜L5、所述第六透镜L6组成,当所述光阑L7被设置于不同位置时,所述光学镜头可以组成不同的所述前透镜组和所述后透镜组。
如图9所示,根据本发明的这个实施例,所述第四透镜L4具有一物面S7和一像面S8,所述物面S7朝向物方,所述像面S8朝向像方。进一步,所述第四透镜L4的所述物面S7为凸面,所述第四透镜L4的所述像面S8为凹面。换句话说,所述第四透镜L4具有两面S7、S8,分别为一凸面和一凹面,所述凸面和所述凹面形成一弯月形,且弯月凸向物方。进一步地,根据本发明的这个实施例,所述第四透镜L4具有负光焦度。
根据本发明的这个实施例,所述第五透镜L5具有一物面S9和一像面S10,所述物面S9朝向物方,所述像面S10朝向像方。进一步地,所述第五透镜L5的所述物面S9为凸面,所述第五透镜L5的所述像面S10为凹面。换句话说,所述第五透镜L5为一弯月形透镜,且弯月凸向物方。进一步地,根据本发明的这个实施例,所述第五透镜L5具有正光焦度。
进一步地,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9被设置相面对面。换句话说,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9面对面设置,在这个实施例中,即所述第四透镜L4的凹面和所述第五透镜L5的凸面面对面设置。
根据本发明的这个实施例,所述第六透镜L6具有一物面S11和一像面S12,所述物面S11朝向物方,所述像面S12朝向像方。进一步地,所述第六透镜L6的所述物面S11为凸面,所述第六透镜L6的所述像面S12为凸面。换句话说,所述第六透镜L6为一双凸透镜。进一步地。所述第六透镜L6具有正光焦度。通过所述第六透镜L6进一步修正像差和畸变,使得所述光学镜头的成像质量更 佳。
值得一提的是,在本发明的这个实施例中,所述第六透镜L6用于适当增大所述光学镜头的前方透镜的镜片边缘的畸变,使得大角度的光线可以到达预定尺寸的所述成像面L10,比如感光芯片面,而通过后期的软件处理可以继续修订图像,还使得经过所述第六透镜L6后的光线形成的图像恢复正常,即得到大角度的成像。
根据本发明的这个实施例,所述光学镜头还包括一平面镜片L9,用于保护隔离所述光学镜头。当然,在本发明的其他实施例中,还可以不设置所述平面镜片L9,本发明在这方面并不限制。
参照图9,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1具有一凸面和一凹面,所述第二透镜L2具有一个凹面和一个凸面,其中所述第一透镜L1的凸面被设置朝向物方,所述第一透镜L1的所述凹面被设置朝向像方,所述第二透镜L2的所述凹面被设置朝向物方,所述第二透镜L2的所述凸面被设置朝向像方。所述的第三透镜L3具有两个凸面,分别朝向物方和像方。所述第四透镜L4具有一个凸面和一个凹面,分别朝向物方和像方,所述第五透镜L5具有两凸面,分别朝向物方和像方,其中所述第四透镜L4的所述凹面和所述第五透镜L5的凸面面对面相对设置。所述第六透镜L6具有两个凸面,分别被设置朝向物方和像方。
根据本发明的这个实施例,所述光学镜头的所述消色差透镜组优选为胶合透镜。换句话说,所述第四透镜L4和所述第五透镜L5被胶合在一起,以形成所述消色差透镜组。此时,由于所述第四透镜L4和所述第五透镜L5被胶合在一起,因此,所述第四透镜L4的凹面的所述像面S8和所述第五透镜L5的凸面的所述物面S9以胶合的方式面对面设置。当然,在本发明的其它实施例中,所述消色差透镜组也可以是分离型消色差透镜组。可以理解的是,当所述消色差透镜组是分离型消色差透镜组时,所述第四透镜L4和所述第五透镜L5被相分离地设置。
值得一提的是,所述第一透镜L1和所述第二透镜L2可由玻璃材料构成,也可以由其他具有良好透光性能的材料制成,比如塑料、树脂。本领域的技术人员可以理解的是,在本发明中的所述光学镜头中,光线由所述第一透镜L1进入,经过所述第一透镜L1的汇聚作用后传递至所述第二透镜L2,从而通过所述第一 透镜L1可以收集大角度的光线,进一步,光线经过所述第一透镜L1后,到达所述第二透镜L2,经过所述第一透镜L1汇聚的光线由所述第二透镜L2适当发散后传递至所述光学镜头的后方,因此,所述第一透镜L1和所述第二透镜L2的折射率Nd需要相互配合,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的折射率Nd并不是本发明的限制。另一方面,本发明中,所述第一透镜L1和所述第二透镜L2设置阿贝常数Vd,使得所述镜头具有较好的成像质量,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的阿贝常数Vd并不是本发明的限制。
如图9所示是根据本发明的第五个实施例的光学镜头的结构示意图。所述光学镜头,从物方到像方依次包括:前透镜组、光阑L7、后透镜组、滤光元件L8、平面镜片L9、成像面L10。
其中,所述前透镜组从物方到像方包括:第一透镜L1、第二透镜L2和第三透镜L3,所述第一透镜L1为具有负光焦度的弯月形透镜,所述第二透镜L2为具有负光焦度的弯月形透镜,所述第一透镜L1和所述第二透镜L2的凹面相对,所述第三透镜L3为具有正光焦度的双凸透镜;所述后透镜组从物方到像方包括:第四透镜L4、第五透镜L5和第六透镜L6,所述第四透镜L4为具有负光焦度的弯月形透镜,所述第五透镜L5为具有正光焦度的弯月形透镜,所述第四透镜L4的凹面和所述第五透镜L5的凸面相对。进一步,所述第四透镜L4的凹面和所述第五透镜L5的凸面相胶合。所述第六透镜L6为具有正光焦度的双凸透镜。
在这个实施例中,所述第一透镜L1满足以下条件:
0.5≤R1/(R2+d1)≤1.5;
其中,R1是所述第一透镜L1的所述物面S1的曲率半径,R2是所述第一透镜L1的所述像面S2的曲率半径,d1是所述第一透镜L1的中心厚度。
所述第二透镜L2满足以下条件:
0.45≤|R4|/(|R3|+d3)≤1.3;
其中,R3是所述第二透镜L2的所述物面S3的曲率半径,R4是所述第二透镜L2的所述像面S4的曲率半径,d2是所述第二透镜L2的中心厚度。
通过上述条件中,对所述第一透镜L1和所述第二透镜L2的各自曲率半径和厚度的关系限制,使得所述第一透镜L1和所述第二透镜L2接近同心圆,从而当所述第一透镜L1和所述第二透镜L2凹面相对设置时,可以采集更大角度 光线进入所述光学镜头,并且通过所述第二透镜L2的适当扩散而向后传递。
本发明的这个实施例中,所述第一透镜L1的焦距F1和所述光学镜头的组合焦距F满足以下条件:
-3.5≤F1/F≤-1。
所述第二透镜L2的焦距F2和所述光学镜头的整组焦距F满足以下条件:
|F2/F|≥5.0。
所述光学镜头的最大视场角为FOVm,所述光学镜头的最大视场角对应的像高为Ym,则(FOVm×F)/Ym≥45。
在本发明的这个实施例中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。
优选地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5为球面镜。本领域的技术人员应当理解的是,所述地第一透镜L1、所述第二透镜L2和所述第六透镜L6不限于玻璃非球面镜,也可以是塑料非球面或球面镜等,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5不限于玻璃球面镜,也可以为玻璃非球面、塑料非球面或树脂非球面等,本发明在这方面并不限制。特别地,在本发明的一些实施例中,由3个玻璃球面、3个玻璃非球面构成的6片镜片构成所述光学镜头,举例地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜片,第三透镜L3、第四透镜L4和第五透镜L5为玻璃球面,从而使得所述光学镜头具备长焦距、大视场角的特性,且通过玻璃非球面镜片保证所述光学镜头的解像清晰度、减小色差。
在本发明的这个实施方式中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。所述第一透镜L1和所述第二透镜L2接近同心圆的镜片,并且是非球面,使得大角度的光线可以有效平稳的汇聚,且由于非球面的设置,避免传统的球面同心圆镜片加工的难题。
进一步,在一些实施例中,所述第一透镜L1的所述物面S1具有一中心区域S101和一自所述中心区域S101向外延伸的边缘区域S102,所述第一透镜L1的所述物面S1的所述中心区域S101为凸面,所述第一透镜L1的所述物面S1的所述边缘区域S102为凹面。本领域的技术人员应当理解的是,所述第一透镜L1的非球面的具体结构以及所述中心区域和边缘区域的具体结构以及范围大小 并不是本发明的限制。
所述第一透镜L1、所述第二透镜L2和所述第六透镜L6的非球面镜面满足以下公式:
Figure PCTCN2017111193-appb-000007
其中,Z(h)为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高,c=1/r,r表示非球面镜面的曲率半径,k为圆锥系数conic,A、B、C、D、E为高次非球面系数。
如图10所示是本发明的这个实施例的光学性能曲线,由所述光学镜头的MTF曲线看到,所述光学镜头的解像较高,具有较好的光学性能。
如下表9和表10所示,是本发明的这个实施例的光学镜头的参数。需要说明的是,所述第一透镜L1的两面,即物面和像面分别为S1、S2,所述第二透明的两面,即物面和像面分别为S3、S4,所述第三透镜L3的两面,即物面和像面分别为S5、S6,所述第四透镜L4的两面,即物面和像面分别为S7、S8,所述第五透镜L5的两面,即物面和像面分别为S9和S10,所述第六透镜L6的两面,即物面和像面分别为S11和S12,所述滤光元件L8的两面分别为S13、S14,所述平面镜片L9的两面分别为S15、S16,所述像面为S17;所述S1-S17与下表9和表10中的面序号一一对应。
表9第五个实施例的光学镜头参数
面序号 R曲率半径R 中心厚度d 折射率Nd 阿贝常数Vd
1 5.1284 2.5800 1.81 40.9
2 2.3517 2.9458    
3 -7.5032 2.6600 1.81 40.9
4 -8.7623 0.1000    
5 12.8327 3.0000 1.90 37.1
6 -15.5327 0.1357    
7 Infinity 1.1108    
8 21.4464 0.6500 1.92 20.9
9 5.8000 3.0000 1.50 81.6
10 135.9052 0.2000    
11 7.0000 2.8000 1.50 81.6
12 -17.8204 1.5000    
13 Infinity 0.5500 1.52 64.2
14 Infinity 1.5000    
15 Infinity 0.4000 1.52 64.2
16 Infinity 0.8693    
17 Infinity      
表10第五个实施例的非球面系数
面序号 K A B C D E
1 -0.7734714 -2.4660E-03 -1.9457E-04 7.1243E-06 4.2572E-08 -2.5996E-09
2 -1.007374 -4.3224E-03 -1.3469E-03 1.6456E-04 -1.0684E-05 3.2449E-07
3 -1.507036 -1.3737E-03 -1.0084E-04 9.3691E-06 1.0179E-06 -5.9436E-08
4 -1.979089 -3.2995E-04 3.9076E-06 4.1590E-06 -6.2126E-08 -5.6871E-09
11 -1.593386 5.8667E-04 1.6222E-04 -1.1357E-05 5.5035E-08 -3.4995E-09
12 -100.0041 -2.7144E-03 3.9714E-04 -1.6299E-05 -8.1284E-09 5.3382E-08
根据上述数据,计算这个实施例中涉及的公式数值如下:
R1/(R2+d1)=1.040,|R4|/(|R3|+d3)=0.854,F1/F=-1.427,|F2|/F=185.133,TTL/F=3.734,(FOVm×F)/Ym=97.039。如表9和表10所示,在这个实施例中,作为一组具体的实施例参数,采用这些参数的光学镜头,能够达到较好的光学性能,具有较长的整体焦距,且具有较大的视场角。
综上所述,本发明所述的光学镜头,通过6片镜片结构,以及接近同心圆的非球面镜片的设计,能够满足在小型化的要求下,实现长焦距、大视场角、大孔径且符合高清晰度要求以及有效矫正光学系统的各种像差,特别适于车载摄像头系统,捕捉远距离的物体,且整体的观察视场扩大,可以通过一种镜头实现传统的长焦镜头和广角镜头这两种镜头的功能,降低车载摄像头系统的成本,提高镜头的实际使用性能。
本发明的这个实施例与第一个实施例的区别在于,所述第五透镜L5的结构不同。
参照图11和图12,根据本发明的第六个实施例的光学镜头被说明,其中所述光学镜头包括至少一第一透镜L1、至少一第二透镜L2、一第三透镜L3、一第四透镜L4、一第五透镜L5和一第六透镜L6。所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6沿一物方至一像方方向依次排列。
所述第一透镜L1具有负光焦度,且所述第一透镜L1具有一物面S1和一像面S2,所述物面S1朝向物方,所述像面S2朝向像方。根据本发明的这个实施例,所述第一透镜L1的所述物面S1是凸面,以便于增大所述光学镜头的光通量。也就是说,通过所述第一透镜L1的凸面的所述物面S1汇聚较大角度的光线,增加由物方进入所述光学镜头的光通量。优选地,所述第一透镜L1的所述 物面S1为非球面镜,以便于降低加工难度。当然,在本发明的其它实施例中,所述第一透镜L1可以为球面镜。
进一步,根据本发明的这个实施例,所述第一透镜L1的所述像面S2是凹面。也就是说,所述第一透镜L1包括两个面S1、S2,其中一个面为凸面,另一个面为凹面,所述凹面和所述凸面形成弯月形,且弯月形凸向物方,以便于增加进入所述光学级镜头的光线。
需要说明的是,本发明提供的所述成像系统透镜组中,当所述透镜表面为凸面且未界定所述凸面的位置时,则表示所述透镜的表面的近光轴处为凸面;当所述透镜表面为凹面且未界定所述凹面的位置时,则表示所述透镜表面近光轴处为凹面。
所述第二透镜L2具有一物面S3和一像面S4,所述物面S3朝向物方,所述像面S4朝向像方。根据本发明的这个实施例,所述第二透镜L2的所述像面S4是凸面,以便于将通过所述第一透镜L1的光线进行适当发散传递至所述光学镜头的后方。所述第二透镜L2具有负光焦度。也就是说,所述第二透镜L2具有过渡光线的作用,将所述第一透镜L1的光线平稳过渡至所述第三透镜L3。优选地,所述第二透镜L2为非球面镜,以便于降低加工难度。当然,在本发明的其他实施例中,所述第二透镜L2可以为球面镜。
进一步,根据本发明的这个实施例,所述第二透镜L2的所述物面S3是凸面。也就是说,所述第二透镜L2包括两个面S3、S4,其中一个面为凸面,另一个面为凹面,所述凸面和所述凹面形成弯月形,且弯月凸向像方,以便将所述第一透镜L1传递的光线进行发散传递至后方。
值得一提的是,所述第一透镜L1和所述第二透镜L2的弯月形相对设置,接近同心圆结构,使得所述光学镜头靠近中心的视场角较小,焦距较大,大角度分辨率高。
所述第三透镜L3具有一物面S5和一像面S6,所述物面S5朝向物方,所述像面S6朝向像方。所述第三透镜L3的所述物面S5和所述像面S6都为凸面,以便于汇聚由所述第二透镜L2传递的光线并且向所述光学透镜后方传递。换句话说,所述第三透镜L3是一双凸透镜,具有光线过渡以及汇聚作用。
根据本发明的这个实施例,所述第三透镜L3具有正光焦度。
所述第四透镜L4和所述第五透镜L5组成一消色差透镜组,以便于消减由 所述光学镜头的前方部件传递的光线色差。
参照图11,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6形成一前透镜组和一后透镜组,其中所述前透镜组包括所述第一透镜L1、所述第二透镜L2和所述第三透镜L3,所述后透镜组包括所述第四透镜L4、所述第五透镜L5和所述第六透镜L6。所述前透镜组和所述后透镜组沿从物方到像方方向依次被设置。
参照图11,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6光心共轴。换句话说,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的主光轴一致。
参照图11,根据本发明的这个实施例,所述光学镜头进一步包括一光阑L7,其中所述前透镜组和所述后透镜组可被分别设置于所述光阑L7的两侧,其中所述光阑L7的光心与所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的光心共轴。优选地,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间。
值得一提的是,参照图11,在本发明的这个实施例中,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间,以减少所述光学镜头中的杂散光,使得所述光学镜头具有良好的成像效果。在本发明的其它实施例中,所述光阑L7可以被设置于其他位置,比如第二透镜L2和第三透镜L3之间、第四透镜L4和第五透镜L5之间、第五透镜L5和第六透镜L6之间等等,本领域的技术人员应当理解的是,所述光阑L7的位置并不是本发明的限制。换句话说,所述前透镜组不限于由所述第一透镜L1、第二透镜L2和第三透镜L3组成,所述后透镜组不限于由所述第四透镜L4、所述第五透镜L5、所述第六透镜L6组成,当所述光阑L7被设置于不同位置时,所述光学镜头可以组成不同的所述前透镜组和所述后透镜组。
如图11所示,根据本发明的这个实施例,所述第四透镜L4具有一物面S7和一像面S8,所述物面S7朝向物方,所述像面S8朝向像方。进一步,所述第四透镜L4的所述物面S7为凸面,所述第四透镜L4的所述像面S8为凹面。换句话说,所述第四透镜L4具有两面S7、S8,分别为一凸面和一凹面,所述凸面 和所述凹面形成一弯月形,且弯月凸向物方。进一步地,根据本发明的这个实施例,所述第四透镜L4具有负光焦度。
根据本发明的这个实施例,所述第五透镜L5具有一物面S9和一像面S10,所述物面S9朝向物方,所述像面S10朝向像方。进一步地,所述第五透镜L5的所述物面S9为凸面,所述第五透镜L5的所述像面S10为凸面。换句话说,所述第五透镜L5为一双凸透镜。进一步地,根据本发明的这个实施例,所述第五透镜L5具有正光焦度。
进一步地,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9被设置相面对面。换句话说,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9面对面,在这个实施例中,即所述第四透镜L4的凹面和所述第五透镜L5的凸面相相对设置。
根据本发明的这个实施例,所述第六透镜L6具有一物面S11和一像面S12,所述物面S11朝向物方,所述像面S12朝向像方。进一步地,所述第六透镜L6的所述物面S11为凸面,所述第六透镜L6的所述像面S12为凸面。换句话说,所述第六透镜L6为一双凸透镜。进一步地。所述第六透镜L6具有正光焦度。通过所述第六透镜L6进一步修正像差和畸变,使得所述光学镜头的成像质量更佳。
值得一提的是,在本发明的这个实施例中,所述第六透镜L6用于适当增大所述光学镜头的前方透镜的镜片边缘的畸变,使得大角度的光线可以到达预定尺寸的所述成像面L10,比如感光芯片面,而通过后期的软件处理可以继续修订图像,还使得经过所述第六透镜L6后的光线形成的图像恢复正常,即得到大角度的成像。
根据本发明的这个实施例,所述光学镜头还包括一平面镜片L9,用于保护隔离所述光学镜头。当然,在本发明的其他实施例中,还可以不设置所述平面镜片L9,本发明在这方面并不限制。
参照图11,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1具有一凸面和一凹面,所述第二透镜L2具有一个凹面和一个凸面,其中所述第一透镜L1的凸面被设置朝向物方,所述第一透镜L1的所述凹面被设置朝向像方,所述第二透镜L2的所述凹面被设置朝向物方,所述第二透镜L2的所述凸面被设置朝向像方。所述的第三透镜L3具有两个凸面,分别朝向物方和像方。所述 第四透镜L4具有一个凸面和一个凹面,分别朝向物方和像方,所述第五透镜L5具有两凸面,分别朝向物方和像方,其中所述第四透镜L4的所述凹面和所述第五透镜L5的凸面面对面相对设置。所述第六透镜L6具有两个凸面,分别被设置朝向物方和像方。
根据本发明的这个实施例,所述光学镜头的所述消色差透镜组优选为胶合透镜。换句话说,所述第四透镜L4和所述第五透镜L5被胶合在一起,以形成所述消色差透镜组。此时,由于所述第四透镜L4和所述第五透镜L5被胶合在一起,因此,所述第四透镜L4的凹面的所述像面S8和所述第五透镜L5的凸面的所述物面S9以胶合的方式面对面设置。当然,在本发明的其它实施例中,所述消色差透镜组也可以是分离型消色差透镜组。可以理解的是,当所述消色差透镜组是分离型消色差透镜组时,所述第四透镜L4和所述第五透镜L5被相分离地设置。
值得一提的是,所述第一透镜L1和所述第二透镜L2可由玻璃材料构成,也可以由其他具有良好透光性能的材料制成,比如塑料、树脂。本领域的技术人员可以理解的是,在本发明中的所述光学镜头中,光线由所述第一透镜L1进入,经过所述第一透镜L1的汇聚作用后传递至所述第二透镜L2,从而通过所述第一透镜L1可以收集大角度的光线,进一步,光线经过所述第一透镜L1后,到达所述第二透镜L2,经过所述第一透镜L1汇聚的光线由所述第二透镜L2适当发散后传递至所述光学镜头的后方,因此,所述第一透镜L1和所述第二透镜L2的折射率Nd需要相互配合,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的折射率Nd并不是本发明的限制。另一方面,本发明中,所述第一透镜L1和所述第二透镜L2设置阿贝常数Vd,使得所述镜头具有较好的成像质量,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的阿贝常数Vd并不是本发明的限制。
如图11所示是根据本发明的第六个实施例的光学镜头的结构示意图。所述光学镜头,从物方到像方依次包括:前透镜组、光阑L7、后透镜组、滤光元件L8、平面镜片L9、成像面L10。
其中,所述前透镜组从物方到像方包括:第一透镜L1、第二透镜L2和第三透镜L3,所述第一透镜L1为具有负光焦度的弯月形透镜,所述第二透镜L2为具有负光焦度的弯月形透镜,所述第一透镜L1和所述第二透镜L2的凹面相对, 所述第三透镜L3为具有正光焦度的双凸透镜;所述后透镜组从物方到像方包括:第四透镜L4、第五透镜L5和第六透镜L6,所述第四透镜L4为具有负光焦度的弯月形透镜,所述第五透镜L5为具有正光焦度的双凸透镜,所述第四透镜L4的凹面和所述第五透镜L5的凸面相对。进一步,所述第四透镜L4的凹面和所述第五透镜L5的凸面相胶合。所述第六透镜L6为具有正光焦度的双凸透镜。
在这个实施例中,所述第一透镜L1满足以下条件:
0.5≤R1/(R2+d1)≤1.5;
其中,R1是所述第一透镜L1的所述物面S1的曲率半径,R2是所述第一透镜L1的所述像面S2的曲率半径,d1是所述第一透镜L1的中心厚度。
所述第二透镜L2满足以下条件:
0.45≤|R4|/(|R3|+d3)≤1.3;
其中,R3是所述第二透镜L2的所述物面S3的曲率半径,R4是所述第二透镜L2的所述像面S4的曲率半径,d2是所述第二透镜L2的中心厚度。
通过上述条件中,对所述第一透镜L1和所述第二透镜L2的各自曲率半径和厚度的关系限制,使得所述第一透镜L1和所述第二透镜L2接近同心圆,从而当所述第一透镜L1和所述第二透镜L2凹面相对设置时,可以采集更大角度光线进入所述光学镜头,并且通过所述第二透镜L2的适当扩散而向后传递。
本发明的这个实施例中,所述第一透镜L1的焦距F1和所述光学镜头的组合焦距F满足以下条件:
-3.5≤F1/F≤-1。
所述第二透镜L2的焦距F2和所述光学镜头的整组焦距F满足以下条件:
|F2/F|≥5.0。
所述光学镜头的最大视场角为FOVm,所述光学镜头的最大视场角对应的像高为Ym,则(FOVm×F)/Ym≥45。
在本发明的这个实施例中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。
优选地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5为球面镜。本领域的技术人员应当理解的是,所述地第一透镜L1、所述第二透镜L2和所述第六透镜L6不限于玻璃非球面镜,也可以是塑料非球面或球面镜等,所述第三透镜L3、 所述第四透镜L4、所述第五透镜L5不限于玻璃球面镜,也可以为玻璃非球面、塑料非球面或树脂非球面等,本发明在这方面并不限制。特别地,在本发明的一些实施例中,由3个玻璃球面、3个玻璃非球面构成的6片镜片构成所述光学镜头,举例地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜片,第三透镜L3、第四透镜L4和第五透镜L5为玻璃球面,从而使得所述光学镜头具备长焦距、大视场角的特性,且通过玻璃非球面镜片保证所述光学镜头的解像清晰度、减小色差。
在本发明的这个实施方式中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。所述第一透镜L1和所述第二透镜L2接近同心圆的镜片,并且是非球面,使得大角度的光线可以有效平稳的汇聚,且由于非球面的设置,避免传统的球面同心圆镜片加工的难题。
进一步,在一些实施例中,所述第一透镜L1的所述物面S1具有一中心区域S101和一自所述中心区域S101向外延伸的边缘区域S102,所述第一透镜L1的所述物面S1的所述中心区域S101为凸面,所述第一透镜L1的所述物面S1的所述边缘区域S102为凹面。本领域的技术人员应当理解的是,所述第一透镜L1的非球面的具体结构以及所述中心区域和边缘区域的具体结构以及范围大小并不是本发明的限制。
所述第一透镜L1、所述第二透镜L2和所述第六透镜L6的非球面镜面满足以下公式:
Figure PCTCN2017111193-appb-000008
其中,Z(h)为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高,c=1/r,r表示非球面镜面的曲率半径,k为圆锥系数conic,A、B、C、D、E为高次非球面系数。
如图12所示是本发明的这个实施例的光学性能曲线,由所述光学镜头的MTF曲线看到,所述光学镜头的解像较高,具有较好的光学性能。
如下表11和12所示,是本发明的这个实施例的光学镜头的参数。需要说明的是,所述第一透镜L1的两面,即物面和像面分别为S1、S2,所述第二透明的两面,即物面和像面分别为S3、S4,所述第三透镜L3的两面,即物面和像面分别为S5、S6,所述第四透镜L4的两面,即物面和像面分别为S7、S8,所述第 五透镜L5的两面,即物面和像面分别为S9和S10,所述第六透镜L6的两面,即物面和像面分别为S11和S12,所述滤光元件L8的两面分别为S13、S14,所述平面镜片L9的两面分别为S15、S16,所述像面为S17;所述S1-S17与下表11和表12中的面序号一一对应。
表11第六个实施例的光学镜头参数
面序号 R曲率半径R 中心厚度d 折射率Nd 阿贝常数Vd
1 4.8520 2.4189 1.81 40.9
2 2.5815 2.8500    
3 -6.3611 2.6600 1.86 36.6
4 -7.6405 0.1000    
5 12.5325 3.5056 1.90 37.1
6 -12.5325 0.0030    
7 Infinity 0.8961    
8 22.0087 0.6500 1.92 20.9
9 5.6200 3.0000 1.50 81.6
10 -20.3591 0.1749    
11 19.0000 2.8000 1.50 81.6
12 -13.0000 1.5000    
13 Infinity 0.5500 1.52 64.2
14 Infinity 2.1474    
15 Infinity 0.4000 1.52 64.2
16 Infinity 0.3691    
17 Infinity      
表12第六个实施例的非球面系数
面序号 K A B C D E
1 -1.17222 -1.3623E-03 -1.3685E-04 1.4424E-06 2.6998E-07 -6.7463E-09
2 -1.085924 -3.5967E-03 -8.6722E-04 1.1455E-04 -6.9582E-06 1.6094E-07
3 0.154065 -1.0838E-04 -2.0721E-05 3.5541E-05 -1.5618E-06 1.7341E-08
4 -0.190863 -1.8193E-05 -2.8590E-05 1.0776E-05 -7.2336E-07 1.7372E-08
11 -48.045994 -5.3806E-04 -5.3048E-05 5.4919E-06 -2.0341E-06 2.3821E-08
12 -5.159199 -3.0265E-03 1.2368E-04 -1.5823E-05 3.9491E-07 -1.2384E-08
根据上述数据,计算这个实施例中涉及的公式数值如下:
R1/(R2+d1)=0.970,|R4|/(|R3|+d3)=0.847,F1/F=-2.020,|F2|/F=178.681,TTL/F=3.731,(FOVm×F)/Ym=77.492。如表11和表12所示,在这个实施例中,作为一组具体的实施例参数,采用这些参数的光学镜头,能够达到较好的光学性能,具有较长的整体焦距,且具有较大的视场角。
综上所述,本发明所述的光学镜头,通过6片镜片结构,以及接近同心圆的 非球面镜片的设计,能够满足小型化的要求下,实现长焦距、大视场角、大孔径且符合高清晰度要求以及有效矫正光学系统的各种像差,特别适于车载摄像头系统,捕捉远距离的物体,且整体的观察视场扩大,可以通过一种镜头实现传统的长焦镜头和广角镜头这两种镜头的功能,降低车载摄像头系统的成本,提高镜头的实际使用性能。
参照图13和图14,根据本发明的第七个实施例的光学镜头被说明,其中所述光学镜头包括至少一第一透镜L1、至少一第二透镜L2、一第三透镜L3、一第四透镜L4、一第五透镜L5和一第六透镜L6。所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6沿一物方至一像方方向依次排列。
所述第一透镜L1具有负光焦度,且所述第一透镜L1具有一物面S1和一像面S2,所述物面S1朝向物方,所述像面S2朝向像方。根据本发明的这个实施例,所述第一透镜L1的所述物面S1是凸面,以便于增大所述光学镜头的光通量。也就是说,通过所述第一透镜L1的凸面的所述物面S1汇聚较大角度的光线,增加由物方进入所述光学镜头的光通量。优选地,所述第一透镜L1的所述物面S1为非球面镜,以便于降低加工难度。当然,在本发明的其它实施例中,所述第一透镜L1可以为球面镜。
进一步,根据本发明的这个实施例,所述第一透镜L1的所述像面S2是凹面。也就是说,所述第一透镜L1包括两个面S1、S2,其中一个面为凸面,另一个面为凹面,所述凹面和所述凸面形成弯月形,且弯月形凸向物方,以便于增加进入所述光学级镜头的光线。
需要说明的是,本发明提供的所述成像系统透镜组中,当所述透镜表面为凸面且未界定所述凸面的位置时,则表示所述透镜的表面的近光轴处为凸面;当所述透镜表面为凹面且未界定所述凹面的位置时,则表示所述透镜表面近光轴处为凹面。
所述第二透镜L2具有一物面S3和一像面S4,所述物面S3朝向物方,所述像面S4朝向像方。根据本发明的这个实施例,所述第二透镜L2的所述像面S4是凸面,以便于将通过所述第一透镜L1的光线进行适当发散传递至所述光学镜头的后方。所述第二透镜L2具有负光焦度。也就是说,所述第二透镜L2具有过渡光线的作用,将所述第一透镜L1的光线平稳过渡至所述第三透镜L3。优选 地,所述第二透镜L2为非球面镜,以便于降低加工难度。当然,在本发明的其他实施例中,所述第二透镜L2可以为球面镜。
进一步,根据本发明的这个实施例,所述第二透镜L2的所述物面S3是凸面。也就是说,所述第二透镜L2包括两个面S3、S4,其中一个面为凸面,另一个面为凹面,所述凸面和所述凹面形成弯月形,且弯月凸向像方,以便将所述第一透镜L1传递的光线进行发散传递至后方。
值得一提的是,所述第一透镜L1和所述第二透镜L2的弯月形相对设置,接近同心圆结构,使得所述光学镜头靠近中心的视场角较小,焦距较大,大角度分辨率高。
所述第三透镜L3具有一物面S5和一像面S6,所述物面S5朝向物方,所述像面S6朝向像方。所述第三透镜L3的所述物面S5和所述像面S6都为凸面,以便于汇聚由所述第二透镜L2传递的光线并且向所述光学透镜后方传递。换句话说,所述第三透镜L3是一双凸透镜,具有光线过渡以及汇聚作用。
根据本发明的这个实施例,所述第三透镜L3具有正光焦度。
所述第四透镜L4和所述第五透镜L5组成一消色差透镜组,以便于消减由所述光学镜头的前方部件传递的光线色差。
参照图13,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6形成一前透镜组和一后透镜组,其中所述前透镜组包括所述第一透镜L1、所述第二透镜L2和所述第三透镜L3,所述后透镜组包括所述第四透镜L4、所述第五透镜L5和所述第六透镜L6。所述前透镜组和所述后透镜组沿从物方到像方方向依次被设置。
参照图13,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6光心共轴。换句话说,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的主光轴一致。
参照图13,根据本发明的这个实施例,所述光学镜头进一步包括一光阑L7,其中所述前透镜组和所述后透镜组可被分别设置于所述光阑L7的两侧,其中所述光阑L7的光心与所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的光心共轴。优选地,所 述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间。
值得一提的是,参照图13,在本发明的这个实施例中,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间,以减少所述光学镜头中的杂散光,使得所述光学镜头具有良好的成像效果。在本发明的其它实施例中,所述光阑L7可以被设置于其他位置,比如第二透镜L2和第三透镜L3之间、第四透镜L4和第五透镜L5之间、第五透镜L5和第六透镜L6之间等等,本领域的技术人员应当理解的是,所述光阑L7的位置并不是本发明的限制。换句话说,所述前透镜组不限于由所述第一透镜L1、第二透镜L2和第三透镜L3组成,所述后透镜组不限于由所述第四透镜L4、所述第五透镜L5、所述第六透镜L6组成,当所述光阑L7被设置于不同位置时,所述光学镜头可以组成不同的所述前透镜组和所述后透镜组。
如图13所示,根据本发明的这个实施例,所述第四透镜L4具有一物面S7和一像面S8,所述物面S7朝向物方,所述像面S8朝向像方。进一步,所述第四透镜L4的所述物面S7为凸面,所述第四透镜L4的所述像面S8为凹面。换句话说,所述第四透镜L4具有两面S7、S8,分别为一凸面和一凹面,所述凸面和所述凹面形成一弯月形,且弯月凸向物方。进一步地,根据本发明的这个实施例,所述第四透镜L4具有负光焦度。
根据本发明的这个实施例,所述第五透镜L5具有一物面S9和一像面S10,所述物面S9朝向物方,所述像面S10朝向像方。进一步地,所述第五透镜L5的所述物面S9为凸面,所述第五透镜L5的所述像面S10为凸面。换句话说,所述第五透镜L5为一双凸透镜。进一步地,根据本发明的这个实施例,所述第五透镜L5具有正光焦度。
进一步地,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9被设置相面对面。换句话说,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9面对面设置,在这个实施例中,即所述第四透镜L4的凹面和所述第五透镜L5的凸面面对面设置。
根据本发明的这个实施例,所述第六透镜L6具有一物面S11和一像面S12,所述物面S11朝向物方,所述像面S12朝向像方。进一步地,所述第六透镜L6的所述物面S11为凸面,所述第六透镜L6的所述像面S12为凹面。换句话说,所述第六透镜L6为一弯月形透镜,且弯月凸向物方。进一步地。所述第六透镜 L6具有正光焦度。通过所述第六透镜L6进一步修正像差和畸变,使得所述光学镜头的成像质量更佳。
值得一提的是,在本发明的这个实施例中,所述第六透镜L6用于适当增大所述光学镜头的前方透镜的镜片边缘的畸变,使得大角度的光线可以到达预定尺寸的所述成像面L10,比如感光芯片面,而通过后期的软件处理可以继续修订图像,还使得经过所述第六透镜L6后的光线形成的图像恢复正常,即得到大角度的成像。
根据本发明的这个实施例,所述光学镜头还包括一平面镜片L9,用于保护隔离所述光学镜头。当然,在本发明的其他实施例中,还可以不设置所述平面镜片L9,本发明在这方面并不限制。
参照图13,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1具有一凸面和一凹面,所述第二透镜L2具有一个凹面和一个凸面,其中所述第一透镜L1的凸面被设置朝向物方,所述第一透镜L1的所述凹面被设置朝向像方,所述第二透镜L2的所述凹面被设置朝向物方,所述第二透镜L2的所述凸面被设置朝向像方。所述的第三透镜L3具有两个凸面,分别朝向物方和像方。所述第四透镜L4具有一个凸面和一个凹面,分别朝向物方和像方,所述第五透镜L5具有两凸面,分别朝向物方和像方,其中所述第四透镜L4的所述凹面和所述第五透镜L5的凸面面对面相对设置。所述第六透镜L6具有一个凸面和一个凹面,分别被设置朝向物方和像方。
根据本发明的这个实施例,所述光学镜头的所述消色差透镜组优选为胶合透镜。换句话说,所述第四透镜L4和所述第五透镜L5被胶合在一起,以形成所述消色差透镜组。此时,由于所述第四透镜L4和所述第五透镜L5被胶合在一起,因此,所述第四透镜L4的凹面的所述像面S8和所述第五透镜L5的凸面的所述物面S9以胶合的方式面对面设置。当然,在本发明的其它实施例中,所述消色差透镜组也可以是分离型消色差透镜组。可以理解的是,当所述消色差透镜组是分离型消色差透镜组时,所述第四透镜L4和所述第五透镜L5被相分离地设置。
值得一提的是,所述第一透镜L1和所述第二透镜L2可由玻璃材料构成,也可以由其他具有良好透光性能的材料制成,比如塑料、树脂。本领域的技术人员可以理解的是,在本发明中的所述光学镜头中,光线由所述第一透镜L1进入, 经过所述第一透镜L1的汇聚作用后传递至所述第二透镜L2,从而通过所述第一透镜L1可以收集大角度的光线,进一步,光线经过所述第一透镜L1后,到达所述第二透镜L2,经过所述第一透镜L1汇聚的光线由所述第二透镜L2适当发散后传递至所述光学镜头的后方,因此,所述第一透镜L1和所述第二透镜L2的折射率Nd需要相互配合,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的折射率Nd并不是本发明的限制。另一方面,本发明中,所述第一透镜L1和所述第二透镜L2设置阿贝常数Vd,使得所述镜头具有较好的成像质量,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的阿贝常数Vd并不是本发明的限制。
如图13所示是根据本发明的第七个实施例的光学镜头的结构示意图。所述光学镜头,从物方到像方依次包括:前透镜组、光阑L7、后透镜组、滤光元件L8、平面镜片L9、成像面L10。
其中,所述前透镜组从物方到像方包括:第一透镜L1、第二透镜L2和第三透镜L3,所述第一透镜L1为具有负光焦度的弯月形透镜,所述第二透镜L2为具有负光焦度的弯月形透镜,所述第一透镜L1和所述第二透镜L2的凹面相对,所述第三透镜L3为具有正光焦度的双凸透镜;所述后透镜组从物方到像方包括:第四透镜L4、第五透镜L5和第六透镜L6,所述第四透镜L4为具有负光焦度的弯月形透镜,所述第五透镜L5为具有正光焦度的双凸透镜,所述第四透镜L4的凹面和所述第五透镜L5的凸面相对。进一步,所述第四透镜L4的凹面和所述第五透镜L5的凸面相胶合。所述第六透镜L6为具有正光焦度的弯月形透镜。
在这个实施例中,所述第一透镜L1满足以下条件:
0.5≤R1/(R2+d1)≤1.5;
其中,R1是所述第一透镜L1的所述物面S1的曲率半径,R2是所述第一透镜L1的所述像面S2的曲率半径,d1是所述第一透镜L1的中心厚度。
所述第二透镜L2满足以下条件:
0.45≤|R4|/(|R3|+d3)≤1.3;
其中,R3是所述第二透镜L2的所述物面S3的曲率半径,R4是所述第二透镜L2的所述像面S4的曲率半径,d2是所述第二透镜L2的中心厚度。
通过上述条件中,对所述第一透镜L1和所述第二透镜L2的各自曲率半径和厚度的关系限制,使得所述第一透镜L1和所述第二透镜L2接近同心圆,从 而当所述第一透镜L1和所述第二透镜L2凹面相对设置时,可以采集更大角度光线进入所述光学镜头,并且通过所述第二透镜L2的适当扩散而向后传递。
本发明的这个实施例中,所述第一透镜L1的焦距F1和所述光学镜头的组合焦距F满足以下条件:
-3.5≤F1/F≤-1。
所述第二透镜L2的焦距F2和所述光学镜头的整组焦距F满足以下条件:
|F2/F|≥5.0。
所述光学透镜的光学系统总长为TTL,所述光学透镜的整组焦距为F,则2.0≤TTL/F≤6.0。
所述光学镜头的最大视场角为FOVm,所述光学镜头的最大视场角对应的像高为Ym,则(FOVm×F)/Ym≥45。
在本发明的这个实施例中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。
优选地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5为球面镜。本领域的技术人员应当理解的是,所述地第一透镜L1、所述第二透镜L2和所述第六透镜L6不限于玻璃非球面镜,也可以是塑料非球面或球面镜等,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5不限于玻璃球面镜,也可以为玻璃非球面、塑料非球面或树脂非球面等,本发明在这方面并不限制。特别地,在本发明的一些实施例中,由3个玻璃球面、3个玻璃非球面构成的6片镜片构成所述光学镜头,举例地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜片,第三透镜L3、第四透镜L4和第五透镜L5为玻璃球面,从而使得所述光学镜头具备长焦距、大视场角的特性,且通过玻璃非球面镜片保证所述光学镜头的解像清晰度、减小色差。
在本发明的这个实施方式中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。所述第一透镜L1和所述第二透镜L2接近同心圆的镜片,并且是非球面,使得大角度的光线可以有效平稳的汇聚,且由于非球面的设置,避免传统的球面同心圆镜片加工的难题。
进一步,在一些实施例中,所述第一透镜L1的所述物面S1具有一中心区域S101和一自所述中心区域S101向外延伸的边缘区域S102,所述第一透镜L1 的所述物面S1的所述中心区域S101为凸面,所述第一透镜L1的所述物面S1的所述边缘区域S102为凹面。本领域的技术人员应当理解的是,所述第一透镜L1的非球面的具体结构以及所述中心区域和边缘区域的具体结构以及范围大小并不是本发明的限制。
所述第一透镜L1、所述第二透镜L2和所述第六透镜L6的非球面镜面满足以下公式:
Figure PCTCN2017111193-appb-000009
其中,Z(h)为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高,c=1/r,r表示非球面镜面的曲率半径,k为圆锥系数conic,A、B、C、D、E为高次非球面系数。
如图14所示是本发明的这个实施例的光学性能曲线,由所述光学镜头的MTF曲线看到,所述光学镜头的解像较高,具有较好的光学性能。
如下表13和表14所示,是本发明的这个实施例的光学镜头的参数。需要说明的是,所述第一透镜L1的两面,即物面和像面分别为S1、S2,所述第二透明的两面,即物面和像面分别为S3、S4,所述第三透镜L3的两面,即物面和像面分别为S5、S6,所述第四透镜L4的两面,即物面和像面分别为S7、S8,所述第五透镜L5的两面,即物面和像面分别为S9和S10,所述第六透镜L6的两面,即物面和像面分别为S11和S12,所述滤光元件L8的两面分别为S13、S14,所述平面镜片L9的两面分别为S15、S16,所述像面为S17;所述S1-S17与下表13和表14中的面序号一一对应。
表13第七个实施例的光学镜头参数
面序号 R曲率半径R 中心厚度d 折射率Nd 阿贝常数Vd
1 4.2235 2.5216 1.59 61.2
2 2.3173 2.9099    
3 -7.1103 3.0102 1.81 40.9
4 -9.4965 0.1003    
5 14.5576 3.2126 1.90 37.1
6 -13.5576 -0.1003    
7 Infinity 0.8497    
8 19.5694 0.6522 1.92 20.9
9 5.8700 3.1683 1.50 81.6
10 -17.2234 0.1003    
11 7.8803 3.1292 1.50 81.6
12 829.8058 1.5051    
13 Infinity 0.5500 1.52 64.2
14 Infinity 1.9525    
15 Infinity 0.4000 1.52 64.2
16 Infinity 0.1254    
17 Infinity      
表14第七个实施例的非球面系数
面序号 K A B C D E
1 -1.06539 -8.0610E-04 -1.7734E-04 2.2267E-06 2.3283E-07 -5.6253E-09
2 -0.9390998 -2.2233E-03 -1.4107E-03 1.8546E-04 -1.4092E-06 6.1833E-08
3 -1.257638 -1.0064E-04 -3.9705E-05 2.2839E-06 1.3498E-06 -6.6925E-08
4 -1.492346 -9.5681E-05 1.5537E-05 3.1981E-06 -3.6958E-07 1.4668E-08
11 -4.647512 1.0329E-03 7.5460E-04 -6.6992E-06 4.1139E-07 -7.2836E-09
12 33915.57 -1.1551E-03 2.0418E-04 -8.8223E-06 1.5849E-07 1.1890E-08
根据上述数据,计算这个实施例中涉及的公式数值如下:
R1/(R2+d1)=0.873,|R4|/(|R3|+d3)=0.938,F1/F=-2.642,|F2|/F=12.411,TTL/F=3.727,(FOVm×F)/Ym=93.578。如表13和表14所示,在这个实施例中,作为一组具体的实施例参数,采用这些参数的光学镜头,能够达到较好的光学性能,具有较长的整体焦距,且具有较大的视场角。
综上所述,本发明所述的光学镜头,通过6片镜片结构,以及接近同心圆的非球面镜片的设计,能够满足在,小型化的要求下,实现长焦距、大视场角、大孔径,且符合高清晰度要求以及有效矫正光学系统的各种像差,特别适于车载摄像头系统,捕捉远距离的物体,且整体的观察视场扩大,可以通过一种镜头实现传统的长焦镜头和广角镜头这两种镜头的功能,降低车载摄像头系统的成本,提高镜头的实际使用性能。
本发明的这个实施例与第一个实施例的区别在于,所述第六透镜L6的结构不同。
参照图15和图16,根据本发明的第八个实施例的光学镜头被说明,其中所述光学镜头包括至少一第一透镜L1、至少一第二透镜L2、一第三透镜L3、一第四透镜L4、一第五透镜L5和一第六透镜L6。所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6沿一物方至一像方方向依次排列。
所述第一透镜L1具有负光焦度,且所述第一透镜L1具有一物面S1和一像面S2,所述物面S1朝向物方,所述像面S2朝向像方。根据本发明的这个实施 例,所述第一透镜L1的所述物面S1是凸面,以便于增大所述光学镜头的光通量。也就是说,通过所述第一透镜L1的凸面的所述物面S1汇聚较大角度的光线,增加由物方进入所述光学镜头的光通量。优选地,所述第一透镜L1的所述物面S1为非球面镜,以便于降低加工难度。当然,在本发明的其它实施例中,所述第一透镜L1可以为球面镜。
进一步,根据本发明的这个实施例,所述第一透镜L1的所述像面S2是凹面。也就是说,所述第一透镜L1包括两个面S1、S2,其中一个面为凸面,另一个面为凹面,所述凹面和所述凸面形成弯月形,且弯月形凸向物方,以便于增加进入所述光学级镜头的光线。
需要说明的是,本发明提供的所述成像系统透镜组中,当所述透镜表面为凸面且未界定所述凸面的位置时,则表示所述透镜的表面的近光轴处为凸面;当所述透镜表面为凹面且未界定所述凹面的位置时,则表示所述透镜表面近光轴处为凹面。
所述第二透镜L2具有一物面S3和一像面S4,所述物面S3朝向物方,所述像面S4朝向像方。根据本发明的这个实施例,所述第二透镜L2的所述像面S4是凸面,以便于将通过所述第一透镜L1的光线进行适当发散传递至所述光学镜头的后方。所述第二透镜L2具有正光焦度。也就是说,所述第二透镜L2具有过渡光线的作用,将所述第一透镜L1的光线平稳过渡至所述第三透镜L3。优选地,所述第二透镜L2为非球面镜,以便于降低加工难度。当然,在本发明的其他实施例中,所述第二透镜L2可以为球面镜。
进一步,根据本发明的这个实施例,所述第二透镜L2的所述物面S3是凸面。也就是说,所述第二透镜L2包括两个面S3、S4,其中一个面为凸面,另一个面为凹面,所述凸面和所述凹面形成弯月形,且弯月凸向像方,以便将所述第一透镜L1传递的光线进行发散传递至后方。
值得一提的是,所述第一透镜L1和所述第二透镜L2的弯月形相对设置,接近同心圆结构,使得所述光学镜头靠近中心的视场角较小,焦距较大,大角度分辨率高。
所述第三透镜L3具有一物面S5和一像面S6,所述物面S5朝向物方,所述像面S6朝向像方。所述第三透镜L3的所述物面S5和所述像面S6都为凸面,以便于汇聚由所述第二透镜L2传递的光线并且向所述光学透镜后方传递。换句 话说,所述第三透镜L3是一双凸透镜,具有光线过渡以及汇聚作用。
根据本发明的这个实施例,所述第三透镜L3具有正光焦度。
所述第四透镜L4和所述第五透镜L5组成一消色差透镜组,以便于消减由所述光学镜头的前方部件传递的光线色差。
参照图15,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6形成一前透镜组和一后透镜组,其中所述前透镜组包括所述第一透镜L1、所述第二透镜L2和所述第三透镜L3,所述后透镜组包括所述第四透镜L4、所述第五透镜L5和所述第六透镜L6。所述前透镜组和所述后透镜组沿从物方到像方方向依次被设置。
参照图15,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6光心共轴。换句话说,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的主光轴一致。
参照图15,根据本发明的这个实施例,所述光学镜头进一步包括一光阑L7,其中所述前透镜组和所述后透镜组可被分别设置于所述光阑L7的两侧,其中所述光阑L7的光心与所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的光心共轴。优选地,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间。
值得一提的是,参照图15,在本发明的这个实施例中,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间,以减少所述光学镜头中的杂散光,使得所述光学镜头具有良好的成像效果。在本发明的其它实施例中,所述光阑L7可以被设置于其他位置,比如第二透镜L2和第三透镜L3之间、第四透镜L4和第五透镜L5之间、第五透镜L5和第六透镜L6之间等等,本领域的技术人员应当理解的是,所述光阑L7的位置并不是本发明的限制。换句话说,所述前透镜组不限于由所述第一透镜L1、第二透镜L2和第三透镜L3组成,所述后透镜组不限于由所述第四透镜L4、所述第五透镜L5、所述第六透镜L6组成,当所述光阑L7被设置于不同位置时,所述光学镜头可以组成不同的所述前透镜组和所述后透镜组。
如图15所示,根据本发明的这个实施例,所述第四透镜L4具有一物面S7 和一像面S8,所述物面S7朝向物方,所述像面S8朝向像方。进一步,所述第四透镜L4的所述物面S7为凸面,所述第四透镜L4的所述像面S8为凹面。换句话说,所述第四透镜L4具有两面S7、S8,分别为一凸面和一凹面,所述凸面和所述凹面形成一弯月形,且弯月凸向物方。进一步地,根据本发明的这个实施例,所述第四透镜L4具有负光焦度。
根据本发明的这个实施例,所述第五透镜L5具有一物面S9和一像面S10,所述物面S9朝向物方,所述像面S10朝向像方。进一步地,所述第五透镜L5的所述物面S9为凸面,所述第五透镜L5的所述像面S10为凸面。换句话说,所述第五透镜L5为一双凸透镜。进一步地,根据本发明的这个实施例,所述第五透镜L5具有正光焦度。
进一步地,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9被设置相面对面。换句话说,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9面对面设置,在这个实施例中,即所述第四透镜L4的凹面和所述第五透镜L5的凸面面对面设置。
根据本发明的这个实施例,所述第六透镜L6具有一物面S11和一像面S12,所述物面S11朝向物方,所述像面S12朝向像方。进一步地,所述第六透镜L6的所述物面S11为凹面,所述第六透镜L6的所述像面S12为凸面。换句话说,所述第六透镜L6为一弯月形透镜,且弯月凸向像方。进一步地。所述第六透镜L6具有负光焦度。通过所述第六透镜L6进一步修正像差和畸变,使得所述光学镜头的成像质量更佳。
值得一提的是,在本发明的这个实施例中,所述第六透镜L6用于适当增大所述光学镜头的前方透镜的镜片边缘的畸变,使得大角度的光线可以到达预定尺寸的所述成像面L10,比如感光芯片面,而通过后期的软件处理可以继续修订图像,还使得经过所述第六透镜L6后的光线形成的图像恢复正常,即得到大角度的成像。
根据本发明的这个实施例,所述光学镜头还包括一平面镜片L9,用于保护隔离所述光学镜头。当然,在本发明的其他实施例中,还可以不设置所述平面镜片L9,本发明在这方面并不限制。
参照图15,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1具有一凸面和一凹面,所述第二透镜L2具有一个凹面和一个凸面,其中所述第一 透镜L1的凸面被设置朝向物方,所述第一透镜L1的所述凹面被设置朝向像方,所述第二透镜L2的所述凹面被设置朝向物方,所述第二透镜L2的所述凸面被设置朝向像方。所述的第三透镜L3具有两个凸面,分别朝向物方和像方。所述第四透镜L4具有一个凸面和一个凹面,分别朝向物方和像方,所述第五透镜L5具有两凸面,分别朝向物方和像方,其中所述第四透镜L4的所述凹面和所述第五透镜L5的凸面面对面相对设置。所述第六透镜L6具有两个凸面,分别被设置朝向物方和像方。
根据本发明的这个实施例,所述光学镜头的所述消色差透镜组优选为胶合透镜。换句话说,所述第四透镜L4和所述第五透镜L5被胶合在一起,以形成所述消色差透镜组。此时,由于所述第四透镜L4和所述第五透镜L5被胶合在一起,因此,所述第四透镜L4的凹面的所述像面S8和所述第五透镜L5的凸面的所述物面S9以胶合的方式面对面设置。当然,在本发明的其它实施例中,所述消色差透镜组也可以是分离型消色差透镜组。可以理解的是,当所述消色差透镜组是分离型消色差透镜组时,所述第四透镜L4和所述第五透镜L5被相分离地设置。
值得一提的是,所述第一透镜L1和所述第二透镜L2可由玻璃材料构成,也可以由其他具有良好透光性能的材料制成,比如塑料、树脂。本领域的技术人员可以理解的是,在本发明中的所述光学镜头中,光线由所述第一透镜L1进入,经过所述第一透镜L1的汇聚作用后传递至所述第二透镜L2,从而通过所述第一透镜L1可以收集大角度的光线,进一步,光线经过所述第一透镜L1后,到达所述第二透镜L2,经过所述第一透镜L1汇聚的光线由所述第二透镜L2适当发散后传递至所述光学镜头的后方,因此,所述第一透镜L1和所述第二透镜L2的折射率Nd需要相互配合,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的折射率Nd并不是本发明的限制。另一方面,本发明中,所述第一透镜L1和所述第二透镜L2设置阿贝常数Vd,使得所述镜头具有较好的成像质量,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的阿贝常数Vd并不是本发明的限制。
如图15所示是根据本发明的第八个实施例的光学镜头的结构示意图。所述光学镜头,从物方到像方依次包括:前透镜组、光阑L7、后透镜组、滤光元件L8、平面镜片L9、成像面L10。
其中,所述前透镜组从物方到像方包括:第一透镜L1、第二透镜L2和第三透镜L3,所述第一透镜L1为具有负光焦度的弯月形透镜,所述第二透镜L2为具有负光焦度的弯月形透镜,所述第一透镜L1和所述第二透镜L2的凹面相对,所述第三透镜L3为具有正光焦度的双凸透镜;所述后透镜组从物方到像方包括:第四透镜L4、第五透镜L5和第六透镜L6,所述第四透镜L4为具有负光焦度的弯月形透镜,所述第五透镜L5为具有正光焦度的双凸透镜,所述第四透镜L4的凹面和所述第五透镜L5的凸面相对。进一步,所述第四透镜L4的凹面和所述第五透镜L5的凸面相胶合。所述第六透镜L6为具有负光焦度的弯月形透镜。
在这个实施例中,所述第一透镜L1满足以下条件:
0.5≤R1/(R2+d1)≤1.5;
其中,R1是所述第一透镜L1的所述物面S1的曲率半径,R2是所述第一透镜L1的所述像面S2的曲率半径,d1是所述第一透镜L1的中心厚度。
所述第二透镜L2满足以下条件:
0.45≤|R4|/(|R3|+d3)≤1.3;
其中,R3是所述第二透镜L2的所述物面S3的曲率半径,R4是所述第二透镜L2的所述像面S4的曲率半径,d2是所述第二透镜L2的中心厚度。
通过上述条件中,对所述第一透镜L1和所述第二透镜L2的各自曲率半径和厚度的关系限制,使得所述第一透镜L1和所述第二透镜L2接近同心圆,从而当所述第一透镜L1和所述第二透镜L2凹面相对设置时,可以采集更大角度光线进入所述光学镜头,并且通过所述第二透镜L2的适当扩散而向后传递。
本发明的这个实施例中,所述第一透镜L1的焦距F1和所述光学镜头的组合焦距F满足以下条件:
-3.5≤F1/F≤-1。
所述第二透镜L2的焦距F2和所述光学镜头的整组焦距F满足以下条件:
|F2/F|≥5.0。
所述光学透镜的光学系统总长为TTL,所述光学透镜的整组焦距为F,则2.0≤TTL/F≤6.0。
所述光学镜头的最大视场角为FOVm,所述光学镜头的最大视场角对应的像高为Ym,则(FOVm×F)/Ym≥45。
在本发明的这个实施例中,所述第一透镜L1、所述第二透镜L2和所述第六 透镜L6为非球面镜。
优选地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5为球面镜。本领域的技术人员应当理解的是,所述地第一透镜L1、所述第二透镜L2和所述第六透镜L6不限于玻璃非球面镜,也可以是塑料非球面或球面镜等,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5不限于玻璃球面镜,也可以为玻璃非球面、塑料非球面或树脂非球面等,本发明在这方面并不限制。特别地,在本发明的一些实施例中,由3个玻璃球面、3个玻璃非球面构成的6片镜片构成所述光学镜头,举例地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜片,第三透镜L3、第四透镜L4和第五透镜L5为玻璃球面,从而使得所述光学镜头具备长焦距、大视场角的特性,且通过玻璃非球面镜片保证所述光学镜头的解像清晰度、减小色差。
在本发明的这个实施方式中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。所述第一透镜L1和所述第二透镜L2接近同心圆的镜片,并且是非球面,使得大角度的光线可以有效平稳的汇聚,且由于非球面的设置,避免传统的球面同心圆镜片加工的难题。
进一步,在一些实施例中,所述第一透镜L1的所述物面S1具有一中心区域S101和一自所述中心区域S101向外延伸的边缘区域S102,所述第一透镜L1的所述物面S1的所述中心区域S101为凸面,所述第一透镜L1的所述物面S1的所述边缘区域S102为凹面。本领域的技术人员应当理解的是,所述第一透镜L1的非球面的具体结构以及所述中心区域和边缘区域的具体结构以及范围大小并不是本发明的限制。
所述第一透镜L1、所述第二透镜L2和所述第六透镜L6的非球面镜面满足以下公式:
Figure PCTCN2017111193-appb-000010
其中,Z(h)为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高,c=1/r,r表示非球面镜面的曲率半径,k为圆锥系数conic,A、B、C、D、E为高次非球面系数。
如图16所示是本发明的这个实施例的光学性能曲线,由所述光学镜头的 MTF曲线看到,所述光学镜头的解像较高,具有较好的光学性能。
如下表15和16所示,是本发明的这个实施例的光学镜头的参数。需要说明的是,所述第一透镜L1的两面,即物面和像面分别为S1、S2,所述第二透明的两面,即物面和像面分别为S3、S4,所述第三透镜L3的两面,即物面和像面分别为S5、S6,所述第四透镜L4的两面,即物面和像面分别为S7、S8,所述第五透镜L5的两面,即物面和像面分别为S9和S10,所述第六透镜L6的两面,即物面和像面分别为S11和S12,所述滤光元件L8的两面分别为S13、S14,所述平面镜片L9的两面分别为S15、S16,所述像面为S17;所述S1-S17与下表15和表16中的面序号一一对应。
表15第八个实施例的光学镜头参数
面序号 R曲率半径R 中心厚度d 折射率Nd 阿贝常数Vd
1 5.9641 2.4339 1.81 40.9
2 2.7568 2.5977    
3 -6.4507 3.0000 1.81 40.9
4 -6.4540 0.1000    
5 9.3582 4.7000 1.90 37.1
6 -17.0252 -0.1000    
7 Infinity 0.2588    
8 20.4614 0.8600 1.92 20.9
9 4.3077 3.4000 1.53 60.2
10 -8.3722 0.1000    
11 -22.9600 2.4325 1.50 81.6
12 -34.2848 1.5000    
13 Infinity 0.5500 1.52 64.2
14 Infinity 1.6586    
15 Infinity 0.4000 1.52 64.2
16 Infinity 0.1250    
17 Infinity      
表16第八个实施例的非球面系数
面序号 K A B C D E
1 -1.978921 -2.1392E-03 -1.2613E-04 5.6395E-06 3.9365E-08 -1.0714E-09
2 -1.500251 -2.1479E-03 -8.3223E-04 1.4589E-04 -7.2360E-06 5.1163E-07
3 -2.962827 -1.6979E-03 -1.8978E-04 1.8242E-05 4.6182E-07 -3.1658E-09
4 -0.218725 -1.2550E-04 -1.9909E-05 4.3064E-06 -5.5250E-07 -2.1591E-09
11 0 -3.8120E-03 2.4927E-04 -3.0693E-05 2.8948E-07 6.0839E-08
12 0 -5.5343E-03 3.1880E-04 -2.6158E-05 1.0499E-06 -1.4779E-08
根据上述数据,计算这个实施例中涉及的公式数值如下:
R1/(R2+d1)=1.149,|R4|/(|R3|+d3)=0.683,F1/F=-1.492,|F2|/F=5.971,TTL/F=3.742,(FOVm×F)/Ym=82.612。如表15和表16所示,在这个实施例中,作为一组具体的实施例参数,采用这些参数的光学镜头,能够达到较好的光学性能,具有较长的整体焦距,且具有较大的视场角。
综上所述,本发明所述的光学镜头,通过6片镜片结构,以及接近同心圆的非球面镜片的设计,能够满足在小型化的要求下,实现长焦距、大视场角、大孔径且符合高清晰度要求以及有效矫正光学系统的各种像差,特别适于车载摄像头系统,捕捉远距离的物体,且整体的观察视场扩大,可以通过一种镜头实现传统的长焦镜头和广角镜头这两种镜头的功能,降低车载摄像头系统的成本,提高镜头的实际使用性能。
本发明的这个实施例与第一个实施例的区别在于,所述第二透镜的光焦度以及所述第六透镜的光焦度和结构。
参照图17和图18,根据本发明的第九个实施例的光学镜头被说明,其中所述光学镜头包括至少一第一透镜L1、至少一第二透镜L2、一第三透镜L3、一第四透镜L4、一第五透镜L5和一第六透镜L6。所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6沿一物方至一像方方向依次排列。
所述第一透镜L1具有负光焦度,且所述第一透镜L1具有一物面S1和一像面S2,所述物面S1朝向物方,所述像面S2朝向像方。根据本发明的这个实施例,所述第一透镜L1的所述物面S1是凸面,以便于增大所述光学镜头的光通量。也就是说,通过所述第一透镜L1的凸面的所述物面S1汇聚较大角度的光线,增加由物方进入所述光学镜头的光通量。优选地,所述第一透镜L1的所述物面S1为非球面镜,以便于降低加工难度。当然,在本发明的其它实施例中,所述第一透镜L1可以为球面镜。
进一步,根据本发明的这个实施例,所述第一透镜L1的所述像面S2是凹面。也就是说,所述第一透镜L1包括两个面S1、S2,其中一个面为凸面,另一个面为凹面,所述凹面和所述凸面形成弯月形,且弯月形凸向物方,以便于增加进入所述光学级镜头的光线。
需要说明的是,本发明提供的所述成像系统透镜组中,当所述透镜表面为凸面且未界定所述凸面的位置时,则表示所述透镜的表面的近光轴处为凸面;当所 述透镜表面为凹面且未界定所述凹面的位置时,则表示所述透镜表面近光轴处为凹面。
所述第二透镜L2具有一物面S3和一像面S4,所述物面S3朝向物方,所述像面S4朝向像方。根据本发明的这个实施例,所述第二透镜L2的所述像面S4是凸面,以便于将通过所述第一透镜L1的光线进行适当发散传递至所述光学镜头的后方。所述第二透镜L2具有正光焦度。也就是说,所述第二透镜L2具有过渡光线的作用,将所述第一透镜L1的光线平稳过渡至所述第三透镜L3。优选地,所述第二透镜L2为非球面镜,以便于降低加工难度。当然,在本发明的其他实施例中,所述第二透镜L2可以为球面镜。
进一步,根据本发明的这个实施例,所述第二透镜L2的所述物面S3是凸面。也就是说,所述第二透镜L2包括两个面S3、S4,其中一个面为凸面,另一个面为凹面,所述凸面和所述凹面形成弯月形,且弯月凸向像方,以便将所述第一透镜L1传递的光线进行发散传递至后方。
值得一提的是,所述第一透镜L1和所述第二透镜L2的弯月形相对设置,接近同心圆结构,使得所述光学镜头靠近中心的视场角较小,焦距较大,大角度分辨率高。
所述第三透镜L3具有一物面S5和一像面S6,所述物面S5朝向物方,所述像面S6朝向像方。所述第三透镜L3的所述物面S5和所述像面S6都为凸面,以便于汇聚由所述第二透镜L2传递的光线并且向所述光学透镜后方传递。换句话说,所述第三透镜L3是一双凸透镜,具有光线过渡以及汇聚作用。
根据本发明的这个实施例,所述第三透镜L3具有正光焦度。
所述第四透镜L4和所述第五透镜L5组成一消色差透镜组,以便于消减由所述光学镜头的前方部件传递的光线色差。
参照图17,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6形成一前透镜组和一后透镜组,其中所述前透镜组包括所述第一透镜L1、所述第二透镜L2和所述第三透镜L3,所述后透镜组包括所述第四透镜L4、所述第五透镜L5和所述第六透镜L6。所述前透镜组和所述后透镜组沿从物方到像方方向依次被设置。
参照图17,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所 述第六透镜L6光心共轴。换句话说,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的主光轴一致。
参照图17,根据本发明的这个实施例,所述光学镜头进一步包括一光阑L7,其中所述前透镜组和所述后透镜组可被分别设置于所述光阑L7的两侧,其中所述光阑L7的光心与所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的光心共轴。优选地,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间。
值得一提的是,参照图17,在本发明的这个实施例中,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间,以减少所述光学镜头中的杂散光,使得所述光学镜头具有良好的成像效果。在本发明的其它实施例中,所述光阑L7可以被设置于其他位置,比如第二透镜L2和第三透镜L3之间、第四透镜L4和第五透镜L5之间、第五透镜L5和第六透镜L6之间等等,本领域的技术人员应当理解的是,所述光阑L7的位置并不是本发明的限制。换句话说,所述前透镜组不限于由所述第一透镜L1、第二透镜L2和第三透镜L3组成,所述后透镜组不限于由所述第四透镜L4、所述第五透镜L5、所述第六透镜L6组成,当所述光阑L7被设置于不同位置时,所述光学镜头可以组成不同的所述前透镜组和所述后透镜组。
如图17所示,根据本发明的这个实施例,所述第四透镜L4具有一物面S7和一像面S8,所述物面S7朝向物方,所述像面S8朝向像方。进一步,所述第四透镜L4的所述物面S7为凸面,所述第四透镜L4的所述像面S8为凹面。换句话说,所述第四透镜L4具有两面S7、S8,分别为一凸面和一凹面,所述凸面和所述凹面形成一弯月形,且弯月凸向物方。进一步地,根据本发明的这个实施例,所述第四透镜L4具有负光焦度。
根据本发明的这个实施例,所述第五透镜L5具有一物面S9和一像面S10,所述物面S9朝向物方,所述像面S10朝向像方。进一步地,所述第五透镜L5的所述物面S9为凸面,所述第五透镜L5的所述像面S10为凸面。换句话说,所述第五透镜L5为一双凸透镜。进一步地,根据本发明的这个实施例,所述第五透镜L5具有正光焦度。
进一步地,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面 S9被设置相面对面。换句话说,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9面对面设置,在这个实施例中,即所述第四透镜L4的凹面和所述第五透镜L5的凸面面对面设置。
根据本发明的这个实施例,所述第六透镜L6具有一物面S11和一像面S12,所述物面S11朝向物方,所述像面S12朝向像方。进一步地,所述第六透镜L6的所述物面S11为凹面,所述第六透镜L6的所述像面S12为凹面。换句话说,所述第六透镜L6为一双凹透镜。进一步地。所述第六透镜L6具有负光焦度。通过所述第六透镜L6进一步修正像差和畸变,使得所述光学镜头的成像质量更佳。
值得一提的是,在本发明的这个实施例中,所述第六透镜L6用于适当增大所述光学镜头的前方透镜的镜片边缘的畸变,使得大角度的光线可以到达预定尺寸的所述成像面L10,比如感光芯片面,而通过后期的软件处理可以继续修订图像,还使得经过所述第六透镜L6后的光线形成的图像恢复正常,即得到大角度的成像。
根据本发明的这个实施例,所述光学镜头还包括一平面镜片L9,用于保护隔离所述光学镜头。当然,在本发明的其他实施例中,还可以不设置所述平面镜片L9,本发明在这方面并不限制。
参照图17,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1具有一凸面和一凹面,所述第二透镜L2具有一个凹面和一个凸面,其中所述第一透镜L1的凸面被设置朝向物方,所述第一透镜L1的所述凹面被设置朝向像方,所述第二透镜L2的所述凹面被设置朝向物方,所述第二透镜L2的所述凸面被设置朝向像方。所述的第三透镜L3具有两个凸面,分别朝向物方和像方。所述第四透镜L4具有一个凸面和一个凹面,分别朝向物方和像方,所述第五透镜L5具有两凸面,分别朝向物方和像方,其中所述第四透镜L4的所述凹面和所述第五透镜L5的凸面面对面相对设置。所述第六透镜L6具有两个凹面,分别被设置朝向物方和像方。
根据本发明的这个实施例,所述光学镜头的所述消色差透镜组优选为胶合透镜。换句话说,所述第四透镜L4和所述第五透镜L5被胶合在一起,以形成所述消色差透镜组。此时,由于所述第四透镜L4和所述第五透镜L5被胶合在一起,因此,所述第四透镜L4的凹面的所述像面S8和所述第五透镜L5的凸面的 所述物面S9以胶合的方式面对面设置。当然,在本发明的其它实施例中,所述消色差透镜组也可以是分离型消色差透镜组。可以理解的是,当所述消色差透镜组是分离型消色差透镜组时,所述第四透镜L4和所述第五透镜L5被相分离地设置。
值得一提的是,所述第一透镜L1和所述第二透镜L2可由玻璃材料构成,也可以由其他具有良好透光性能的材料制成,比如塑料、树脂。本领域的技术人员可以理解的是,在本发明中的所述光学镜头中,光线由所述第一透镜L1进入,经过所述第一透镜L1的汇聚作用后传递至所述第二透镜L2,从而通过所述第一透镜L1可以收集大角度的光线,进一步,光线经过所述第一透镜L1后,到达所述第二透镜L2,经过所述第一透镜L1汇聚的光线由所述第二透镜L2适当发散后传递至所述光学镜头的后方,因此,所述第一透镜L1和所述第二透镜L2的折射率Nd需要相互配合,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的折射率Nd并不是本发明的限制。另一方面,本发明中,所述第一透镜L1和所述第二透镜L2设置阿贝常数Vd,使得所述镜头具有较好的成像质量,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的阿贝常数Vd并不是本发明的限制。
如图17所示是根据本发明的第九个实施例的光学镜头的结构示意图。所述光学镜头,从物方到像方依次包括:前透镜组、光阑L7、后透镜组、滤光元件L8、平面镜片L9、成像面L10。
其中,所述前透镜组从物方到像方包括:第一透镜L1、第二透镜L2和第三透镜L3,所述第一透镜L1为具有负光焦度的弯月形透镜,所述第二透镜L2为具有正光焦度的弯月形透镜,所述第一透镜L1和所述第二透镜L2的凹面相对,所述第三透镜L3为具有正光焦度的双凸透镜;所述后透镜组从物方到像方包括:第四透镜L4、第五透镜L5和第六透镜L6,所述第四透镜L4为具有负光焦度的弯月形透镜,所述第五透镜L5为具有正光焦度的双凸透镜,所述第四透镜L4的凹面和所述第五透镜L5的凸面相对。进一步,所述第四透镜L4的凹面和所述第五透镜L5的凸面相胶合。所述第六透镜L6为具有负光焦度的双凹透镜。
在这个实施例中,所述第一透镜L1满足以下条件:
0.5≤R1/(R2+d1)≤1.5;
其中,R1是所述第一透镜L1的所述物面S1的曲率半径,R2是所述第一透 镜L1的所述像面S2的曲率半径,d1是所述第一透镜L1的中心厚度。
所述第二透镜L2满足以下条件:
0.45≤|R4|/(|R3|+d3)≤1.3;
其中,R3是所述第二透镜L2的所述物面S3的曲率半径,R4是所述第二透镜L2的所述像面S4的曲率半径,d2是所述第二透镜L2的中心厚度。
通过上述条件中,对所述第一透镜L1和所述第二透镜L2的各自曲率半径和厚度的关系限制,使得所述第一透镜L1和所述第二透镜L2接近同心圆,从而当所述第一透镜L1和所述第二透镜L2凹面相对设置时,可以采集更大角度光线进入所述光学镜头,并且通过所述第二透镜L2的适当扩散而向后传递。
本发明的这个实施例中,所述第一透镜L1的焦距F1和所述光学镜头的组合焦距F满足以下条件:
-3.5≤F1/F≤-1。
所述第二透镜L2的焦距F2和所述光学镜头的整组焦距F满足以下条件:
|F2/F|≥5.0。
所述光学透镜的光学系统总长为TTL,所述光学透镜的整组焦距为F,则2.0≤TTL/F≤6.0。
所述光学镜头的最大视场角为FOVm,所述光学镜头的最大视场角对应的像高为Ym,则(FOVm×F)/Ym≥45。
在本发明的这个实施例中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。
优选地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5为球面镜。本领域的技术人员应当理解的是,所述地第一透镜L1、所述第二透镜L2和所述第六透镜L6不限于玻璃非球面镜,也可以是塑料非球面或球面镜等,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5不限于玻璃球面镜,也可以为玻璃非球面、塑料非球面或树脂非球面等,本发明在这方面并不限制。特别地,在本发明的一些实施例中,由3个玻璃球面、3个玻璃非球面构成的6片镜片构成所述光学镜头,举例地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜片,第三透镜L3、第四透镜L4和第五透镜L5为玻璃球面,从而使得所述光学镜头具备长焦距、大视场角的特性,且通过玻璃非球面镜片保证所述光学镜头 的解像清晰度、减小色差。
在本发明的这个实施方式中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。所述第一透镜L1和所述第二透镜L2接近同心圆的镜片,并且是非球面,使得大角度的光线可以有效平稳的汇聚,且由于非球面的设置,避免传统的球面同心圆镜片加工的难题。
进一步,在一些实施例中,所述第一透镜L1的所述物面S1具有一中心区域S101和一自所述中心区域S101向外延伸的边缘区域S102,所述第一透镜L1的所述物面S1的所述中心区域S101为凸面,所述第一透镜L1的所述物面S1的所述边缘区域S102为凹面。本领域的技术人员应当理解的是,所述第一透镜L1的非球面的具体结构以及所述中心区域和边缘区域的具体结构以及范围大小并不是本发明的限制。
所述第一透镜L1、所述第二透镜L2和所述第六透镜L6的非球面镜面满足以下公式:
Figure PCTCN2017111193-appb-000011
其中,Z(h)为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高,c=1/r,r表示非球面镜面的曲率半径,k为圆锥系数conic,A、B、C、D、E为高次非球面系数。
如图18所示是本发明的这个实施例的光学性能曲线,由所述光学镜头的MTF曲线看到,所述光学镜头的解像较高,具有较好的光学性能。
如下表17和18所示,是本发明的这个实施例的光学镜头的参数。需要说明的是,所述第一透镜L1的两面,即物面和像面分别为S1、S2,所述第二透明的两面,即物面和像面分别为S3、S4,所述第三透镜L3的两面,即物面和像面分别为S5、S6,所述第四透镜L4的两面,即物面和像面分别为S7、S8,所述第五透镜L5的两面,即物面和像面分别为S9和S10,所述第六透镜L6的两面,即物面和像面分别为S11和S12,所述滤光元件L8的两面分别为S13、S14,所述平面镜片L9的两面分别为S15、S16,所述像面为S17;所述S1-S17与下表17和表18中的面序号一一对应。
表17第九个实施例的光学镜头参数
面序号 R曲率半径R 中心厚度d 折射率Nd 阿贝常数Vd
1 6.5000 2.5037 1.81 40.9
2 2.9235 2.5906    
3 -6.2753 3.0000 1.81 40.9
4 -6.7072 0.4277    
5 10.2531 4.0608 1.90 37.1
6 -13.6337 -0.1000    
7 Infinity 0.4793    
8 23.8088 0.6500 1.92 20.9
9 4.8600 3.7464 1.50 81.6
10 -8.0810 0.1000    
11 -63.1041 2.2786 1.50 81.6
12 279.8107 1.5000    
13 Infinity 0.5500 1.52 64.2
14 Infinity 1.6940    
15 Infinity 0.4000 1.52 64.2
16 Infinity 0.1250    
17 Infinity      
表18第九个实施例的非球面系数
面序号 K A B C D E
1 -1.8543 -1.9997E-03 -1.1560E-04 2.2771E-05 -5.2886E-08 -9.4573E-10
2 -2.44619 -2.4723E-03 -7.5085E-04 1.3839E-04 -1.1765E-06 4.7022E-07
3 0.712885 -1.3650E-03 -7.9399E-05 1.5092E-06 6.4412E-07 -4.6140E-08
4 -0.24082 8.6831E-05 4.6499E-06 4.2465E-06 -1.0800E-07 -1.8697E-08
11 0 -3.0744E-03 2.7745E-04 -2.9488E-05 1.1583E-07 -7.2211E-09
12 0 -4.4573E-03 2.9165E-04 -2.0576E-05 7.3659E-07 -7.7739E-09
根据上述数据,计算这个实施例中涉及的公式数值如下:
R1/(R2+d1)=1.198,|R4|/(|R3|+d3)=0.723,F1/F=-1.483,|F2|/F=8.851,TTL/F=3.730,(FOVm×F)/Ym=58.952。如表18和表19所示,在这个实施例中,作为一组具体的实施例参数,采用这些参数的光学镜头,能够达到较好的光学性能,具有较长的整体焦距,且具有较大的视场角。
综上所述,本发明所述的光学镜头,通过6片镜片结构,以及接近同心圆的非球面镜片的设计,能够满足在小型化的要求下,实现长焦距、大视场角、大孔径且符合高清晰度要求以及有效矫正光学系统的各种像差,特别适于车载摄像头系统,捕捉远距离的物体,且整体的观察视场扩大,可以通过一种镜头实现传统的长焦镜头和广角镜头这两种镜头的功能,降低车载摄像头系统的成本,提高镜头的实际使用性能。
本发明的这个实施例与第一个实施例的区别在于,所述第二透镜L2的光焦度以及所述第六透镜L6的光焦度和结构。
参照图19和图20,根据本发明的第十个实施例的光学镜头被说明,其中所述光学镜头包括至少一第一透镜L1、至少一第二透镜L2、一第三透镜L3、一第四透镜L4、一第五透镜L5和一第六透镜L6。所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6沿一物方至一像方方向依次排列。
所述第一透镜L1具有负光焦度,且所述第一透镜L1具有一物面S1和一像面S2,所述物面S1朝向物方,所述像面S2朝向像方。根据本发明的这个实施例,所述第一透镜L1的所述物面S1是凸面,以便于增大所述光学镜头的光通量。也就是说,通过所述第一透镜L1的凸面的所述物面S1汇聚较大角度的光线,增加由物方进入所述光学镜头的光通量。优选地,所述第一透镜L1的所述物面S1为非球面镜,以便于降低加工难度。当然,在本发明的其它实施例中,所述第一透镜L1可以为球面镜。
进一步,根据本发明的这个实施例,所述第一透镜L1的所述像面S2是凹面。也就是说,所述第一透镜L1包括两个面S1、S2,其中一个面为凸面,另一个面为凹面,所述凹面和所述凸面形成弯月形,且弯月形凸向物方,以便于增加进入所述光学级镜头的光线。
需要说明的是,本发明提供的所述成像系统透镜组中,当所述透镜表面为凸面且未界定所述凸面的位置时,则表示所述透镜的表面的近光轴处为凸面;当所述透镜表面为凹面且未界定所述凹面的位置时,则表示所述透镜表面近光轴处为凹面。
所述第二透镜L2具有一物面S3和一像面S4,所述物面S3朝向物方,所述像面S4朝向像方。根据本发明的这个实施例,所述第二透镜L2的所述像面S4是凸面,以便于将通过所述第一透镜L1的光线进行适当发散传递至所述光学镜头的后方。所述第二透镜L2具有负光焦度。也就是说,所述第二透镜L2具有过渡光线的作用,将所述第一透镜L1的光线平稳过渡至所述第三透镜L3。优选地,所述第二透镜L2为非球面镜,以便于降低加工难度。当然,在本发明的其他实施例中,所述第二透镜L2可以为球面镜。
进一步,根据本发明的这个实施例,所述第二透镜L2的所述物面S3是凸面。也就是说,所述第二透镜L2包括两个面S3、S4,其中一个面为凸面,另一个面为凹面,所述凸面和所述凹面形成弯月形,且弯月凸向像方,以便将所述第 一透镜L1传递的光线进行发散传递至后方。
值得一提的是,所述第一透镜L1和所述第二透镜L2的弯月形相对设置,接近同心圆结构,使得所述光学镜头靠近中心的视场角较小,焦距较大,大角度分辨率高。
所述第三透镜L3具有一物面S5和一像面S6,所述物面S5朝向物方,所述像面S6朝向像方。所述第三透镜L3的所述物面S5和所述像面S6都为凸面,以便于汇聚由所述第二透镜L2传递的光线并且向所述光学透镜后方传递。换句话说,所述第三透镜L3是一双凸透镜,具有光线过渡以及汇聚作用。
根据本发明的这个实施例,所述第三透镜L3具有正光焦度。
所述第四透镜L4和所述第五透镜L5组成一消色差透镜组,以便于消减由所述光学镜头的前方部件传递的光线色差。
参照图19,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6形成一前透镜组和一后透镜组,其中所述前透镜组包括所述第一透镜L1、所述第二透镜L2和所述第三透镜L3,所述后透镜组包括所述第四透镜L4、所述第五透镜L5和所述第六透镜L6。所述前透镜组和所述后透镜组沿从物方到像方方向依次被设置。
参照图19,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6光心共轴。换句话说,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的主光轴一致。
参照图19,根据本发明的这个实施例,所述光学镜头进一步包括一光阑L7,其中所述前透镜组和所述后透镜组可被分别设置于所述光阑L7的两侧,其中所述光阑L7的光心与所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的光心共轴。优选地,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间。
值得一提的是,参照图19,在本发明的这个实施例中,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间,以减少所述光学镜头中的杂散光,使得所述光学镜头具有良好的成像效果。在本发明的其它实施例中,所述光阑L7可以被设置于其他位置,比如第二透镜L2和第三透镜L3之间、第四透镜L4 和第五透镜L5之间、第五透镜L5和第六透镜L6之间等等,本领域的技术人员应当理解的是,所述光阑L7的位置并不是本发明的限制。换句话说,所述前透镜组不限于由所述第一透镜L1、第二透镜L2和第三透镜L3组成,所述后透镜组不限于由所述第四透镜L4、所述第五透镜L5、所述第六透镜L6组成,当所述光阑L7被设置于不同位置时,所述光学镜头可以组成不同的所述前透镜组和所述后透镜组。
如图19所示,根据本发明的这个实施例,所述第四透镜L4具有一物面S7和一像面S8,所述物面S7朝向物方,所述像面S8朝向像方。进一步,所述第四透镜L4的所述物面S7为凸面,所述第四透镜L4的所述像面S8为凸面。换句话说,所述第四透镜L4具有两面S7、S8,分别为两凸面。所述第四透镜为一双凸透镜。进一步地,根据本发明的这个实施例,所述第四透镜L4具有正光焦度。
根据本发明的这个实施例,所述第五透镜L5具有一物面S9和一像面S10,所述物面S9朝向物方,所述像面S10朝向像方。进一步地,所述第五透镜L5的所述物面S9为凹面,所述第五透镜L5的所述像面S10为凸面。换句话说,所述第五透镜L5为一弯月形透镜,且弯月凸向像方。进一步地,根据本发明的这个实施例,所述第五透镜L5具有负光焦度。
进一步地,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9被设置相面对面。换句话说,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9面对面设置,在这个实施例中,即所述第四透镜L4的凸面和所述第五透镜L5的凹面面对面设置。
根据本发明的这个实施例,所述第六透镜L6具有一物面S11和一像面S12,所述物面S11朝向物方,所述像面S12朝向像方。进一步地,所述第六透镜L6的所述物面S11为凸面,所述第六透镜L6的所述像面S12为凸面。换句话说,所述第六透镜L6为一双凸透镜。进一步地。所述第六透镜L6具有正光焦度。通过所述第六透镜L6进一步修正像差和畸变,使得所述光学镜头的成像质量更佳。
值得一提的是,在本发明的这个实施例中,所述第六透镜L6用于适当增大所述光学镜头的前方透镜的镜片边缘的畸变,使得大角度的光线可以到达预定尺寸的所述成像面L10,比如感光芯片面,而通过后期的软件处理可以继续修订图 像,还使得经过所述第六透镜L6后的光线形成的图像恢复正常,即得到大角度的成像。
根据本发明的这个实施例,所述光学镜头还包括一平面镜片L9,用于保护隔离所述光学镜头。当然,在本发明的其他实施例中,还可以不设置所述平面镜片L9,本发明在这方面并不限制。
参照图19,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1具有一凸面和一凹面,所述第二透镜L2具有两个个凸面,其中所述第一透镜L1的凸面被设置朝向物方,所述第一透镜L1的所述凹面被设置朝向像方,所述第二透镜L2的所述凹面被设置朝向物方,所述第二透镜L2的所述凸面被设置朝向像方。所述的第三透镜L3具有两个凸面,分别朝向物方和像方。所述第四透镜L4具有两个凸面,分别朝向物方和像方,所述第五透镜L5具有一个凹面和一个凸面,分别朝向物方和像方,其中所述第四透镜L4的所述凸面和所述第五透镜L5的凹面面对面相对设置。所述第六透镜L6具有两个凸面,分别被设置朝向物方和像方。
根据本发明的这个实施例,所述光学镜头的所述消色差透镜组优选为胶合透镜。换句话说,所述第四透镜L4和所述第五透镜L5被胶合在一起,以形成所述消色差透镜组。此时,由于所述第四透镜L4和所述第五透镜L5被胶合在一起,因此,所述第四透镜L4的凸面的所述像面S8和所述第五透镜L5的凹面的所述物面S9以胶合的方式面对面设置。当然,在本发明的其它实施例中,所述消色差透镜组也可以是分离型消色差透镜组。可以理解的是,当所述消色差透镜组是分离型消色差透镜组时,所述第四透镜L4和所述第五透镜L5被相分离地设置。
值得一提的是,所述第一透镜L1和所述第二透镜L2可由玻璃材料构成,也可以由其他具有良好透光性能的材料制成,比如塑料、树脂。本领域的技术人员可以理解的是,在本发明中的所述光学镜头中,光线由所述第一透镜L1进入,经过所述第一透镜L1的汇聚作用后传递至所述第二透镜L2,从而通过所述第一透镜L1可以收集大角度的光线,进一步,光线经过所述第一透镜L1后,到达所述第二透镜L2,经过所述第一透镜L1汇聚的光线由所述第二透镜L2适当发散后传递至所述光学镜头的后方,因此,所述第一透镜L1和所述第二透镜L2的折射率Nd需要相互配合,但是本领域的技术人员应当理解的是,所述第一透 镜L1和所述第二透镜L2的折射率Nd并不是本发明的限制。另一方面,本发明中,所述第一透镜L1和所述第二透镜L2设置阿贝常数Vd,使得所述镜头具有较好的成像质量,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的阿贝常数Vd并不是本发明的限制。
如图19所示是根据本发明的第十个实施例的光学镜头的结构示意图。所述光学镜头,从物方到像方依次包括:前透镜组、光阑L7、后透镜组、滤光元件L8、平面镜片L9、成像面L10。
其中,所述前透镜组从物方到像方包括:第一透镜L1、第二透镜L2和第三透镜L3,所述第一透镜L1为具有负光焦度的弯月形透镜,所述第二透镜L2为具有负光焦度的弯月形透镜,所述第一透镜L1和所述第二透镜L2的凹面相对,所述第三透镜L3为具有正光焦度的双凸透镜;所述后透镜组从物方到像方包括:第四透镜L4、第五透镜L5和第六透镜L6,所述第四透镜L4为具有负光焦度的弯月形透镜,所述第五透镜L5为具有正光焦度的双凸透镜,所述第四透镜L4的凹面和所述第五透镜L5的凸面相对。进一步,所述第四透镜L4的凹面和所述第五透镜L5的凸面相胶合。所述第六透镜L6为具有正光焦度的双凸透镜。
在这个实施例中,所述第一透镜L1满足以下条件:
0.5≤R1/(R2+d1)≤1.5;
其中,R1是所述第一透镜L1的所述物面S1的曲率半径,R2是所述第一透镜L1的所述像面S2的曲率半径,d1是所述第一透镜L1的中心厚度。
所述第二透镜L2满足以下条件:
0.45≤|R4|/(|R3|+d3)≤1.3;
其中,R3是所述第二透镜L2的所述物面S3的曲率半径,R4是所述第二透镜L2的所述像面S4的曲率半径,d2是所述第二透镜L2的中心厚度。
通过上述条件中,对所述第一透镜L1和所述第二透镜L2的各自曲率半径和厚度的关系限制,使得所述第一透镜L1和所述第二透镜L2接近同心圆,从而当所述第一透镜L1和所述第二透镜L2凹面相对设置时,可以采集更大角度光线进入所述光学镜头,并且通过所述第二透镜L2的适当扩散而向后传递。
本发明的这个实施例中,所述第一透镜L1的焦距F1和所述光学镜头的组合焦距F满足以下条件:
-3.5≤F1/F≤-1。
所述第二透镜L2的焦距F2和所述光学镜头的整组焦距F满足以下条件:
|F2/F|≥5.0。
所述光学透镜的光学系统总长为TTL,所述光学透镜的整组焦距为F,则2.0≤TTL/F≤6.0。
所述光学镜头的最大视场角为FOVm,所述光学镜头的最大视场角对应的像高为Ym,则(FOVm×F)/Ym≥45。
在本发明的这个实施例中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。
优选地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5为球面镜。本领域的技术人员应当理解的是,所述地第一透镜L1、所述第二透镜L2和所述第六透镜L6不限于玻璃非球面镜,也可以是塑料非球面或球面镜等,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5不限于玻璃球面镜,也可以为玻璃非球面、塑料非球面或树脂非球面等,本发明在这方面并不限制。特别地,在本发明的一些实施例中,由3个玻璃球面、3个玻璃非球面构成的6片镜片构成所述光学镜头,举例地,所述第一透镜L1、第二透镜L2和所述第六透镜L6为玻璃非球面镜片,第三透镜L3、第四透镜L4和第五透镜L5为玻璃球面,从而使得所述光学镜头具备长焦距、大视场角的特性,且通过玻璃非球面镜片保证所述光学镜头的解像清晰度、减小色差。
在本发明的这个实施方式中,所述第一透镜L1、所述第二透镜L2和所述第六透镜L6为非球面镜。所述第一透镜L1和所述第二透镜L2接近同心圆的镜片,并且是非球面,使得大角度的光线可以有效平稳的汇聚,且由于非球面的设置,避免传统的球面同心圆镜片加工的难题。
进一步,在一些实施例中,所述第一透镜L1的所述物面S1具有一中心区域S101和一自所述中心区域S101向外延伸的边缘区域S102,所述第一透镜L1的所述物面S1的所述中心区域S101为凸面,所述第一透镜L1的所述物面S1的所述边缘区域S102为凹面。本领域的技术人员应当理解的是,所述第一透镜L1的非球面的具体结构以及所述中心区域和边缘区域的具体结构以及范围大小并不是本发明的限制。
所述第一透镜L1、所述第二透镜L2和所述第六透镜L6的非球面镜面满足 以下公式:
Figure PCTCN2017111193-appb-000012
其中,Z(h)为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高,c=1/r,r表示非球面镜面的曲率半径,k为圆锥系数conic,A、B、C、D、E为高次非球面系数。
如图20所示是本发明的这个实施例的光学性能曲线,由所述光学镜头的MTF曲线看到,所述光学镜头的解像较高,具有较好的光学性能。
如下表19和20所示,是本发明的这个实施例的光学镜头的参数。需要说明的是,所述第一透镜L1的两面,即物面和像面分别为S1、S2,所述第二透明的两面,即物面和像面分别为S3、S4,所述第三透镜L3的两面,即物面和像面分别为S5、S6,所述第四透镜L4的两面,即物面和像面分别为S7、S8,所述第五透镜L5的两面,即物面和像面分别为S9和S10,所述第六透镜L6的两面,即物面和像面分别为S11和S12,所述滤光元件L8的两面分别为S13、S14,所述平面镜片L9的两面分别为S15、S16,所述像面为S17;所述S1-S17与下表19和表20中的面序号一一对应。
表19第十个实施例的光学镜头参数
面序号 R曲率半径R 中心厚度d 折射率Nd 阿贝常数Vd
1 4.3692 2.4162 1.80 40.9
2 2.5522 3.8563    
3 -9.5378 2.8366 1.80 40.9
4 -12.8901 0.1039    
5 10.8564 4.1587 1.90 37.1
6 -22.4014 -0.1039    
7 Infinity 0.2697    
8 20.1697 2.3000 1.50 81.6
9 -6.5194 0.6753 1.92 20.9
10 -18.3936 0.1039    
11 8.7592 3.9834 1.50 81.6
12 -37.8285 1.5583    
13 Infinity 0.5500 1.52 64.2
14 Infinity 1.2618    
15 Infinity 0.4000 1.52 64.2
16 Infinity 1.2891    
17 Infinity      
表20第十个实施例的非球面系数
面序号 K A B C D E
1 -1.287151 -6.4725E-03 -1.3349E-04 1.2359E-05 1.6163E-07 -3.3718E-09
2 -1.946078 -1.5948E-03 -1.1736E-04 1.5427E-05 -1.0285E-06 3.2996E-07
3 -1.648267 -7.1211E-04 -3.8923E-05 9.7563E-07 1.2209E-07 -5.6355E-09
4 1.536966 -1.0649E-04 -1.5640E-05 3.5054E-06 -1.0721E-07 -1.0554E-09
11 -6.42357 8.4923E-05 6.6215E-05 -6.3975E-06 1.3614E-07 4.9213E-09
12 -3.5558E+15 -8.3382E-05 1.5449E-05 -6.9922E-06 2.7355E-07 -4.5369E-09
根据上述数据,计算这个实施例中涉及的公式数值如下:
R1/(R2+d1)=0.879,|R4|/(|R3|+d3)=1.042,F1/F=-2.803,|F2|/F=10.922,TTL/F=3.842,(FOVm×F)/Ym=46.241。如表19和表20所示,在这个实施例中,作为一组具体的实施例参数,采用这些参数的光学镜头,能够达到较好的光学性能,具有较长的整体焦距,且具有较大的视场角。
综上所述,本发明所述的光学镜头,通过6片镜片结构,以及接近同心圆的非球面镜片的设计,能够满足在小型化的要求下,实现长焦距、大视场角、大孔径且符合高清晰度要求以及有效矫正光学系统的各种像差,特别适于车载摄像头系统,捕捉远距离的物体,且整体的观察视场扩大,可以通过一种镜头实现传统的长焦镜头和广角镜头这两种镜头的功能,降低车载摄像头系统的成本,提高镜头的实际使用性能。
本发明的这个实施例与第一个实施例的区别在于,所述第四透镜L4的光焦度和结构以及所述第五透镜L5的光焦度和结构。
参照图21和图22,根据本发明的第十一个实施例的光学镜头被说明,其中所述光学镜头包括至少一第一透镜L1、至少一第二透镜L2、一第三透镜L3、一第四透镜L4、一第五透镜L5和一第六透镜L6。所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6沿一物方至一像方方向依次排列。
所述第一透镜L1具有负光焦度,且所述第一透镜L1具有一物面S1和一像面S2,所述物面S1朝向物方,所述像面S2朝向像方。根据本发明的这个实施例,所述第一透镜L1的所述物面S1是凸面,以便于增大所述光学镜头的光通量。也就是说,通过所述第一透镜L1的凸面的所述物面S1汇聚较大角度的光线,增加由物方进入所述光学镜头的光通量。优选地,所述第一透镜L1的所述物面S1为非球面镜,以便于降低加工难度。当然,在本发明的其它实施例中,所述第一透镜L1可以为球面镜。
进一步,根据本发明的这个实施例,所述第一透镜L1的所述像面S2是凹面。也就是说,所述第一透镜L1包括两个面S1、S2,其中一个面为凸面,另一个面为凹面,所述凹面和所述凸面形成弯月形,且弯月形凸向物方,以便于增加进入所述光学级镜头的光线。
需要说明的是,本发明提供的所述成像系统透镜组中,当所述透镜表面为凸面且未界定所述凸面的位置时,则表示所述透镜的表面的近光轴处为凸面;当所述透镜表面为凹面且未界定所述凹面的位置时,则表示所述透镜表面近光轴处为凹面。
所述第二透镜L2具有一物面S3和一像面S4,所述物面S3朝向物方,所述像面S4朝向像方。根据本发明的这个实施例,所述第二透镜L2的所述像面S4是凸面,以便于将通过所述第一透镜L1的光线进行适当发散传递至所述光学镜头的后方。所述第二透镜L2具有正光焦度。也就是说,所述第二透镜L2具有过渡光线的作用,将所述第一透镜L1的光线平稳过渡至所述第三透镜L3。优选地,所述第二透镜L2为非球面镜,以便于降低加工难度。当然,在本发明的其他实施例中,所述第二透镜L2可以为球面镜。
进一步,根据本发明的这个实施例,所述第二透镜L2的所述物面S3是凸面。也就是说,所述第二透镜L2包括两个面S3、S4,其中一个面为凸面,另一个面为凹面,所述凸面和所述凹面形成弯月形,且弯月凸向像方,以便将所述第一透镜L1传递的光线进行发散传递至后方。
值得一提的是,所述第一透镜L1和所述第二透镜L2的弯月形相对设置,接近同心圆结构,使得所述光学镜头靠近中心的视场角较小,焦距较大,大角度分辨率高。
所述第三透镜L3具有一物面S5和一像面S6,所述物面S5朝向物方,所述像面S6朝向像方。所述第三透镜L3的所述物面S5和所述像面S6都为凸面,以便于汇聚由所述第二透镜L2传递的光线并且向所述光学透镜后方传递。换句话说,所述第三透镜L3是一双凸透镜,具有光线过渡以及汇聚作用。
根据本发明的这个实施例,所述第三透镜L3具有正光焦度。
所述第四透镜L4和所述第五透镜L5组成一消色差透镜组,以便于消减由所述光学镜头的前方部件传递的光线色差。
参照图21,所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述 第四透镜L4、所述第五透镜L5和所述第六透镜L6形成一前透镜组和一后透镜组,其中所述前透镜组包括所述第一透镜L1、所述第二透镜L2和所述第三透镜L3,所述后透镜组包括所述第四透镜L4、所述第五透镜L5和所述第六透镜L6。所述前透镜组和所述后透镜组沿从物方到像方方向依次被设置。
参照图21,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6光心共轴。换句话说,所述光学镜头的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的主光轴一致。
参照图21,根据本发明的这个实施例,所述光学镜头进一步包括一光阑L7,其中所述前透镜组和所述后透镜组可被分别设置于所述光阑L7的两侧,其中所述光阑L7的光心与所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的光心共轴。优选地,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间。
值得一提的是,参照图21,在本发明的这个实施例中,所述光阑L7被设置于所述第三透镜L3和所述第四透镜L4之间,以减少所述光学镜头中的杂散光,使得所述光学镜头具有良好的成像效果。在本发明的其它实施例中,所述光阑L7可以被设置于其他位置,比如第二透镜L2和第三透镜L3之间、第四透镜L4和第五透镜L5之间、第五透镜L5和第六透镜L6之间等等,本领域的技术人员应当理解的是,所述光阑L7的位置并不是本发明的限制。换句话说,所述前透镜组不限于由所述第一透镜L1、第二透镜L2和第三透镜L3组成,所述后透镜组不限于由所述第四透镜L4、所述第五透镜L5、所述第六透镜L6组成,当所述光阑L7被设置于不同位置时,所述光学镜头可以组成不同的所述前透镜组和所述后透镜组。
如图21所示,根据本发明的这个实施例,所述第四透镜L4具有一物面S7和一像面S8,所述物面S7朝向物方,所述像面S8朝向像方。进一步,所述第四透镜L4的所述物面S7为凸面,所述第四透镜L4的所述像面S8为凹面。换句话说,所述第四透镜L4具有两面S7、S8,分别为一凸面和一凹面,所述凸面和所述凹面形成一弯月形,且弯月凸向物方。进一步地,根据本发明的这个实施例,所述第四透镜L4具有负光焦度。
根据本发明的这个实施例,所述第五透镜L5具有一物面S9和一像面S10,所述物面S9朝向物方,所述像面S10朝向像方。进一步地,所述第五透镜L5的所述物面S9为凸面,所述第五透镜L5的所述像面S10为凸面。换句话说,所述第五透镜L5为一双凸透镜。进一步地,根据本发明的这个实施例,所述第五透镜L5具有正光焦度。
进一步地,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9被设置相面对面。换句话说,所述第四透镜L4的所述像面S8和所述第五透镜L5的所述物面S9面对面设置,在这个实施例中,即所述第四透镜L4的凹面和所述第五透镜L5的凸面面对面设置。
根据本发明的这个实施例,所述第六透镜L6具有一物面S11和一像面S12,所述物面S11朝向物方,所述像面S12朝向像方。进一步地,所述第六透镜L6的所述物面S11为凸面,所述第六透镜L6的所述像面S12为凹面。换句话说,所述第六透镜L6为一弯月形透镜,且所述弯月凸向物方。进一步地。所述第六透镜L6具有正光焦度。通过所述第六透镜L6进一步修正像差和畸变,使得所述光学镜头的成像质量更佳。
值得一提的是,在本发明的这个实施例中,所述第六透镜L6用于适当增大所述光学镜头的前方透镜的镜片边缘的畸变,使得大角度的光线可以到达预定尺寸的所述成像面L10,比如感光芯片面,而通过后期的软件处理可以继续修订图像,还使得经过所述第六透镜L6后的光线形成的图像恢复正常,即得到大角度的成像。
根据本发明的这个实施例,所述光学镜头还包括一平面镜片L9,用于保护隔离所述光学镜头。当然,在本发明的其他实施例中,还可以不设置所述平面镜片L9,本发明在这方面并不限制。
参照图21,根据本发明的这个实施例,所述光学镜头的所述第一透镜L1具有一凸面和一凹面,所述第二透镜L2具有一个凹面和一个凸面,其中所述第一透镜L1的凸面被设置朝向物方,所述第一透镜L1的所述凹面被设置朝向像方,所述第二透镜L2的所述凹面被设置朝向物方,所述第二透镜L2的所述凸面被设置朝向像方。所述的第三透镜L3具有两个凸面,分别朝向物方和像方。所述第四透镜L4具有一个凸面和一个凹面,分别朝向物方和像方,所述第五透镜L5具有两凸面,分别朝向物方和像方,其中所述第四透镜L4的所述凹面和所述第 五透镜L5的凸面面对面相对设置。所述第六透镜L6具有一个凸面和一个凹面,分别被设置朝向物方和像方。
根据本发明的这个实施例,所述光学镜头的所述消色差透镜组优选为胶合透镜。换句话说,所述第四透镜L4和所述第五透镜L5被胶合在一起,以形成所述消色差透镜组。此时,由于所述第四透镜L4和所述第五透镜L5被胶合在一起,因此,所述第四透镜L4的凹面的所述像面S8和所述第五透镜L5的凸面的所述物面S9以胶合的方式面对面设置。当然,在本发明的其它实施例中,所述消色差透镜组也可以是分离型消色差透镜组。可以理解的是,当所述消色差透镜组是分离型消色差透镜组时,所述第四透镜L4和所述第五透镜L5被相分离地设置。
值得一提的是,所述第一透镜L1和所述第二透镜L2可由玻璃材料构成,也可以由其他具有良好透光性能的材料制成,比如塑料、树脂。本领域的技术人员可以理解的是,在本发明中的所述光学镜头中,光线由所述第一透镜L1进入,经过所述第一透镜L1的汇聚作用后传递至所述第二透镜L2,从而通过所述第一透镜L1可以收集大角度的光线,进一步,光线经过所述第一透镜L1后,到达所述第二透镜L2,经过所述第一透镜L1汇聚的光线由所述第二透镜L2适当发散后传递至所述光学镜头的后方,因此,所述第一透镜L1和所述第二透镜L2的折射率Nd需要相互配合,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的折射率Nd并不是本发明的限制。另一方面,本发明中,所述第一透镜L1和所述第二透镜L2设置阿贝常数Vd,使得所述光学镜头具有较好的成像质量,但是本领域的技术人员应当理解的是,所述第一透镜L1和所述第二透镜L2的阿贝常数Vd并不是本发明的限制。
如图21所示是根据本发明的第十一个实施例的光学镜头的结构示意图。所述光学镜头,从物方到像方依次包括:前透镜组、光阑L7、后透镜组、滤光元件L8、平面镜片L9、成像面L10。
其中,所述前透镜组从物方到像方包括:第一透镜L1、第二透镜L2和第三透镜L3,所述第一透镜L1为具有负光焦度的弯月形透镜,所述第二透镜L2为具有正光焦度的弯月形透镜,所述第一透镜L1和所述第二透镜L2的凹面相对,所述第三透镜L3为具有正光焦度的双凸透镜;所述后透镜组从物方到像方包括:第四透镜L4、第五透镜L5和第六透镜L6,所述第四透镜L4为具有负光焦度的 弯月形透镜,所述第五透镜L5为具有正光焦度的双凸透镜,所述第四透镜L4的凹面和所述第五透镜L5的凸面相对。进一步,所述第四透镜L4的凹面和所述第五透镜L5的凸面相胶合。所述第六透镜L6为具有正光焦度的弯月形透镜。
在这个实施例中,所述第一透镜L1满足以下条件:
0.5≤R1/(R2+d1)≤1.5;
其中,R1是所述第一透镜L1的所述物面S1的曲率半径,R2是所述第一透镜L1的所述像面S2的曲率半径,d1是所述第一透镜L1的中心厚度。
所述第二透镜L2满足以下条件:
0.45≤|R4|/(|R3|+d3)≤1.3;
其中,R3是所述第二透镜L2的所述物面S3的曲率半径,R4是所述第二透镜L2的所述像面S4的曲率半径,d2是所述第二透镜L2的中心厚度。
通过上述条件中,对所述第一透镜L1和所述第二透镜L2的各自曲率半径和厚度的关系限制,使得所述第一透镜L1和所述第二透镜L2接近同心圆,从而当所述第一透镜L1和所述第二透镜L2凹面相对设置时,可以采集更大角度光线进入所述光学镜头,并且通过所述第二透镜L2的适当扩散而向后传递。
本发明的这个实施例中,所述第一透镜L1的焦距F1和所述光学镜头的组合焦距F满足以下条件:
-3.5≤F1/F≤-1。
所述第二透镜L2的焦距F2和所述光学镜头的整组焦距F满足以下条件:
|F2/F|≥5.0。
所述光学透镜的光学系统总长为TTL,所述光学透镜的整组焦距为F,则2.0≤TTL/F≤6.0。
所述光学镜头的最大视场角为FOVm,所述光学镜头的最大视场角对应的像高为Ym,则(FOVm×F)/Ym≥45。
在本发明的这个实施例中,所述第一透镜L1和所述第二透镜L2为非球面镜,所述第六透镜L6为球面镜。
优选地,所述第一透镜L1和第二透镜L2为玻璃非球面镜,所述第三透镜L3、所述第四透镜L4、所述第五透镜L5、所述第六透镜L6为球面镜。本领域的技术人员应当理解的是,所述地第一透镜L1和所述第二透镜L2不限于玻璃非球面镜,也可以是塑料非球面或球面镜等,所述第三透镜L3、所述第四透镜 L4、所述第五透镜L5和所述第六透镜L6不限于玻璃球面镜,也可以为玻璃非球面、塑料非球面或树脂非球面等,本发明在这方面并不限制。特别地,在本发明的一些实施例中,由4个玻璃球面、2个玻璃非球面构成的6片镜片构成所述光学镜头,举例地,所述第一透镜L1和第二透镜L2为玻璃非球面,第三透镜L3、第四透镜L4和第五透镜L5和所述第六透镜L6为玻璃球面,从而使得所述光学镜头具备长焦距、大视场角的特性,且通过玻璃非球面镜片保证所述光学镜头的解像清晰度、减小色差。
在本发明的这个实施方式中,所述第一透镜L1和所述第二透镜L2为非球面镜,所述第六透镜L6为球面镜。所述第一透镜L1和所述第二透镜L2接近同心圆的镜片,并且是非球面,使得大角度的光线可以有效平稳的汇聚,且由于非球面的设置,避免传统的球面同心圆镜片加工的难题。
进一步,在一些实施例中,所述第一透镜L1的所述物面S1具有一中心区域S101和一自所述中心区域S101向外延伸的边缘区域S102,所述第一透镜L1的所述物面S1的所述中心区域S101为凸面,所述第一透镜L1的所述物面S1的所述边缘区域S102为凹面。本领域的技术人员应当理解的是,所述第一透镜L1的非球面的具体结构以及所述中心区域和边缘区域的具体结构以及范围大小并不是本发明的限制。
所述第一透镜L1和所述第二透镜L2的非球面镜面满足以下公式:
Figure PCTCN2017111193-appb-000013
其中,Z(h)为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高,c=1/r,r表示非球面镜面的曲率半径,k为圆锥系数conic,A、B、C、D、E为高次非球面系数。
如图22所示是本发明的这个实施例的光学性能曲线,由所述光学镜头的MTF曲线看到,所述光学镜头的解像较高,具有较好的光学性能。
如下表21和22所示,是本发明的这个实施例的光学镜头的参数。需要说明的是,所述第一透镜L1的两面,即物面和像面分别为S1、S2,所述第二透明的两面,即物面和像面分别为S3、S4,所述第三透镜L3的两面,即物面和像面分别为S5、S6,所述第四透镜L4的两面,即物面和像面分别为S7、S8,所述第五透镜L5的两面,即物面和像面分别为S9和S10,所述第六透镜L6的两面, 即物面和像面分别为S11和S12,所述滤光元件L8的两面分别为S13、S14,所述平面镜片L9的两面分别为S15、S16,所述像面为S17;所述S1-S17与下表21和表22中的面序号一一对应。
表21第十一个实施例的光学镜头参数
面序号 R曲率半径R 中心厚度d 折射率Nd 阿贝常数Vd
1 4.5123 2.8542 1.59 61.2
2 2.0011 3.2789    
3 -8.9864 2.0040 1.59 61.2
4 -7.5487 1.9445    
5 10.3445 2.3543 1.90 37.1
6 -28.3461 -0.0602    
7 Infinity 0.8204    
8 13.5466 0.6518 1.92 20.9
9 4.8251 3.1282 1.50 81.6
10 -26.8576 0.2005    
11 7.7329 2.7170 1.50 81.6
12 45.8171 1.5041    
13 Infinity 0.5515 1.52 64.2
14 Infinity 1.0027    
15 Infinity 0.4011 1.52 64.2
16 Infinity 0.8281    
17 Infinity      
表22第十一个实施例的非球面系数
面序号 K A B C D E
1 -2.436562 -1.5670E-03 -1.8242E-04 3.3840E-06 8.7904E-08 -2.8099E-09
2 -2.934329 -2.1007E-03 -1.4025E-03 1.4893E-04 -1.4763E-06 2.4676E-08
3 1.727415 -1.1578E-03 -8.1327E-05 -2.7747E-05 4.6566E-06 -1.6485E-07
4 1.195293 -2.5272E-03 -8.8916E-05 7.3705E-05 2.9740E-07 -2.3993E-08
根据上述数据,计算这个实施例中涉及的公式数值如下:
R1/(R2+d1)=0.929,|R4|/(|R3|+d3)=0.687,F1/F=-1.652,|F2|/F=8.247TTL/F=3.795,(FOVm×F)/Ym=93.684。如表21和表22所示,在这个实施例中,作为一组具体的实施例参数,采用这些参数的光学镜头,能够达到较好的光学性能,具有较长的整体焦距,且具有较大的视场角。
综上所述,本发明所述的光学镜头,通过6片镜片结构,以及接近同心圆的非球面镜片的设计,能够满足在小型化的要求下,实现长焦距、大视场角、大孔径且符合高清晰度要求以及有效矫正光学系统的各种像差,特别适于车载摄像头系统,捕捉远距离的物体,且整体的观察视场扩大,可以通过一种镜头实现传统 的长焦镜头和广角镜头这两种镜头的功能,降低车载摄像头系统的成本,提高镜头的实际使用性能。
本发明的这个实施例区别于第一个实施例在于,所述第二透镜L2的光焦度和所述第六透镜L6的结构。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (26)

  1. 一光学镜头,其特征在于,包括:
    一第一透镜;
    一第二透镜;
    一第三透镜;
    一第四透镜;
    一第五透镜;和
    一第六透镜;
    其中所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜沿从物方到像方方向依次设置;
    其中所述第一透镜具有一物面和一像面,所述第一透镜的所述物面朝向物方,所述第一透镜的所述像面朝向像方,所述第一透镜的所述物面为凸面,所述第一透镜具有负光焦度,所述第一透镜的所述像面为凹面;
    其中所述第二透镜具有一物面和一像面,所述第二透镜的所述物面朝向物方,所述第二透镜的所述像面朝向像方,所述第二透镜的所述物面为凹面,所述第二透镜的所述像面为凸面;
    其中所述第三透镜具有一物面和一像面,所述第三透镜的所述物面朝向物方,所述第三透镜的所述像面朝向像方,所述第三透镜的所述物面为凸面,所述第三透镜的所述像面为凸面,所述第三透镜具有正光焦度;
    其中所述第四透镜和所述第五透镜组成一消色差透镜组,且其中一为正光焦度,另一为负光焦度。
  2. 根据权利要求1所述的光学镜头,其中所述第二透镜具有负光焦度。
  3. 根据权利要求2所述的光学镜头,其中所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凸面,所述第四透镜的所述像面为凹面。
  4. 根据权利要求3所述的光学镜头,其中所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凸面。
  5. 根据权利要求4所述的光学镜头,其中所述第六透镜具有一物面和一像 面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凸面,所述第六透镜具有正光焦度。
  6. 根据权利要求1所述的光学镜头,其中所述第二透镜具有正光焦度。
  7. 根据权利要求6所述的光学镜头,其中所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凹面,所述第四透镜的所述像面为凹面,其中所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,其中所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凸面,所述第六透镜具有正光焦度。
  8. 根据权利要求7所述的光学镜头,其中所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述第六透镜的所述像面为凸面。
  9. 根据权利要求7所述的光学镜头,其中所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凹面。
  10. 根据权利要求6所述的光学镜头,其中所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凸面,所述第四透镜的所述像面为凹面,所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凸面,所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凸面,所述第六透镜具有正光焦度。
  11. 根据权利要求3所述的光学镜头,其中所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凹面,所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凸面,所述第六透镜具有正光焦度。
  12. 根据权利要求4所述的光学镜头,其中所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凹面,所述第六透镜具有正光焦度。
  13. 根据权利要求6所述的光学镜头,其中所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凸面,所述第四透镜的所述像面为凹面,所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凸面,所述第六透镜具有负光焦度。
  14. 根据权利要求13所述的光学镜头,其中所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凹面,所述第六透镜的所述像面为凸面。
  15. 根据权利要求13所述的光学镜头,其中所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凹面,所述第六透镜的所述像面为凹面。
  16. 根据权利要求2所述的光学镜头,其中所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凸面,所述第四透镜的所述像面为凸面,所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凹面,所述第五透镜的所述像面为凸面,所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方,所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凸面,所述第六透镜具有正光焦度。
  17. 根据权利要求6所述的光学镜头,其中所述第四透镜具有一物面和一像面,所述第四透镜的所述物面朝向物方,所述第四透镜的所述像面朝向像方,所述第四透镜的所述物面为凸面,所述第四透镜的所述像面为凹面,所述第五透镜具有一物面和一像面,所述第五透镜的所述物面朝向物方,所述第五透镜的所述像面朝向像方,所述第五透镜的所述物面为凸面,所述第五透镜的所述像面为凸面,所述第六透镜具有一物面和一像面,所述第六透镜的所述物面朝向物方, 所述第六透镜的所述像面朝向像方,所述第六透镜的所述物面为凸面,所述第六透镜的所述像面为凹面,所述第六透镜具有正光焦度。
  18. 根据权利要求1至17任一所述的光学镜头,其中所述第四透镜和所述第五透镜相胶合。
  19. 根据权利要求1至17任一所述的光学镜头,其中所述第一透镜的所述物面的曲率半径R1、所述第一透镜的所述像面的曲率半径R2和第一透镜的中心厚度d1满足:
    0.5≤R1/(R2+d1)≤1.5。
  20. 根据权利要求1至17任一所述的光学镜头,其中所述第二透镜的所述像面的曲率半径R3、所述第二透镜的所述像面的曲率半径R4、所述第一透镜的中心厚度d2满足:
    0.45≤|R4|/(|R3|+d3)≤1.3。
  21. 根据权利要求1至17任一所述的光学镜头,其中所述第一透镜的焦距F1和所述光学镜头的整组焦距F满足:
    -3.5≤F1/F≤-1。
  22. 根据权利要求1至17任一所述的光学镜头,其中所述第二透镜的焦距F2和所述光学镜头的整组焦距F满足:
    |F2/F|≥5。
  23. 根据权利要求1至17任一所述的光学镜头,其中所述光学镜头的光学系统总长TTL和所述光学镜头的整组焦距F满足:
    2.0≤TTL/F≤6.0。
  24. 根据权利要求1至17任一所述的光学镜头,其中所述光学镜头的最大视场角FOVm和所述光学镜头的最大视场角对应的像高Ym满足:
    (FOVm×F)/Ym≥45。
  25. 根据权利要求1至17任一所述的光学镜头,其中所述第一透镜为非球面镜,所述第一透镜的所述物面具有一中心区域和一自所述中心区域向外延伸的边缘区域,所述第一透镜的所述物面的所述中心区域为凸面,所述第一透镜的所述物面的所述边缘区域为凹面。
  26. 根据权利要求1至17任一所述的光学镜头,其中所述第一透镜和所述第二透镜为非球面镜。
PCT/CN2017/111193 2016-11-15 2017-11-15 光学镜头 WO2018090938A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/349,891 US11275233B2 (en) 2016-11-15 2017-11-15 Optical lens system comprising two lens groups of −+ refractive powers having six lenses of −−+−++, −++−++, −−++−+ or −−+−+− refractive powers
US17/580,188 US11921265B2 (en) 2016-11-15 2022-01-20 Optical lens comprising two lens groups of −+ refractive powers having six lenses of −−+−++, −+++−++, −−++−+ or −−+−+− refractive powers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611032907.1 2016-11-15
CN201611032907.1A CN108072966B (zh) 2016-11-15 2016-11-15 光学镜头

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/349,891 A-371-Of-International US11275233B2 (en) 2016-11-15 2017-11-15 Optical lens system comprising two lens groups of −+ refractive powers having six lenses of −−+−++, −++−++, −−++−+ or −−+−+− refractive powers
US17/580,188 Continuation US11921265B2 (en) 2016-11-15 2022-01-20 Optical lens comprising two lens groups of −+ refractive powers having six lenses of −−+−++, −+++−++, −−++−+ or −−+−+− refractive powers

Publications (1)

Publication Number Publication Date
WO2018090938A1 true WO2018090938A1 (zh) 2018-05-24

Family

ID=62146019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111193 WO2018090938A1 (zh) 2016-11-15 2017-11-15 光学镜头

Country Status (3)

Country Link
US (2) US11275233B2 (zh)
CN (4) CN113189743A (zh)
WO (1) WO2018090938A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087938A (ja) * 2016-11-30 2018-06-07 Hoya株式会社 撮像光学系
JP7126868B2 (ja) * 2018-06-04 2022-08-29 株式会社タムロン 撮像レンズ及び撮像装置
TWI768063B (zh) * 2018-06-15 2022-06-21 光芒光學股份有限公司 鏡頭及其製造方法
CN108681050B (zh) * 2018-06-19 2019-12-03 江西联创电子有限公司 车载摄像镜头
CN109031605B (zh) * 2018-08-14 2020-06-16 瑞声光学解决方案私人有限公司 摄像光学镜头
CN109445068B (zh) * 2018-12-05 2020-02-18 江西联创电子有限公司 车载摄像镜头及成像设备
CN110703414A (zh) * 2019-10-21 2020-01-17 东莞市宇瞳光学科技股份有限公司 一种大光圈定焦镜头和拍摄装置
CN111781702B (zh) * 2020-06-20 2024-05-03 广东弘景光电科技股份有限公司 大光圈超大广角监控光学系统
CN111880286B (zh) * 2020-06-20 2023-12-29 广东弘景光电科技股份有限公司 大光圈超大广角监控摄像模组
CN114063246B (zh) * 2020-08-05 2024-07-12 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN111965786B (zh) * 2020-08-25 2023-05-30 玉晶光电(厦门)有限公司 光学成像镜头
CN114442259B (zh) * 2020-10-30 2024-07-09 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
WO2022089603A1 (zh) * 2020-10-30 2022-05-05 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
CN114488467A (zh) * 2020-11-12 2022-05-13 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
US11428378B1 (en) * 2021-04-12 2022-08-30 Young Optics Inc. Vehicle lamp device and projection lens for vehicle lamp
CN114721125A (zh) 2022-03-29 2022-07-08 诚瑞光学(苏州)有限公司 摄像光学镜头
CN114994876B (zh) * 2022-05-27 2023-09-26 莆田学院 一种宽光谱日夜两用的监控鱼眼镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020188A (ja) * 1996-07-03 1998-01-23 Asahi Optical Co Ltd 撮影レンズ
JP2004341376A (ja) * 2003-05-19 2004-12-02 Nidec Copal Corp 広角レンズ
CN102455493A (zh) * 2010-10-27 2012-05-16 鸿富锦精密工业(深圳)有限公司 变焦镜头
CN104919353A (zh) * 2013-04-22 2015-09-16 奥林巴斯株式会社 广角物镜光学系统
US20160195716A1 (en) * 2015-01-07 2016-07-07 Hiroshi Nakanuma Imaging optical system, camera apparatus and stereo camera apparatus
CN105911671A (zh) * 2013-07-01 2016-08-31 大立光电股份有限公司 光学影像拾取系统镜头组及取像装置
CN107203032A (zh) * 2016-03-16 2017-09-26 Hoya株式会社 成像光学系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01185330A (ja) 1988-01-20 1989-07-24 Mitsubishi Rayon Co Ltd アクリロニトリル系重合体微粒子及びその製造法
JP2007279555A (ja) * 2006-04-11 2007-10-25 Nidec Copal Corp 魚眼レンズ
US8780463B2 (en) * 2010-06-24 2014-07-15 Ricoh Company, Ltd. Image-forming lens, and imaging apparatus and information device using the image-forming lens
TWI461731B (zh) * 2012-05-18 2014-11-21 Largan Precision Co Ltd 影像鏡頭系統組
TWI449944B (zh) * 2012-07-24 2014-08-21 Largan Precision Co Ltd 廣視角光學鏡頭組
US9804364B2 (en) * 2013-10-21 2017-10-31 Kantatsu Co., Ltd. Image pickup lens
CN103676092B (zh) * 2013-10-30 2015-09-30 宁波舜宇车载光学技术有限公司 一种高像素光学镜头
CN103777329B (zh) * 2013-10-31 2016-05-11 玉晶光电(厦门)有限公司 光学成像镜头及应用该光学成像镜头的电子装置
JP6289131B2 (ja) * 2014-01-31 2018-03-07 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
TWI487941B (zh) * 2014-02-24 2015-06-11 Largan Precision Co Ltd 光學成像鏡組、取像裝置以及可攜裝置
TWI480576B (zh) * 2014-03-24 2015-04-11 Sintai Optical Shenzhen Co Ltd 廣角鏡頭
TWI479190B (zh) * 2014-03-24 2015-04-01 Largan Precision Co Ltd 攝像光學鏡組、取像裝置以及車用攝影裝置
CN104238082B (zh) * 2014-05-29 2016-12-07 玉晶光电(厦门)有限公司 光学成像镜头及应用该光学成像镜头的电子装置
KR101740772B1 (ko) * 2014-11-28 2017-05-26 삼성전기주식회사 렌즈 모듈
CN104459948B (zh) * 2014-12-20 2017-01-04 中山联合光电科技有限公司 一种高像质广角光学镜头
CN104820276B (zh) * 2015-01-23 2017-04-12 玉晶光电(厦门)有限公司 可携式电子装置与其光学成像镜头
JP6425028B2 (ja) * 2015-04-15 2018-11-21 コニカミノルタ株式会社 撮像レンズ、レンズユニット、撮像装置、デジタルスチルカメラ及び携帯端末
CN104991331B (zh) * 2015-08-06 2017-12-22 浙江舜宇光学有限公司 超广角镜头
TWI611208B (zh) * 2016-06-04 2018-01-11 大立光電股份有限公司 拾像光學系統鏡組、取像裝置及電子裝置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020188A (ja) * 1996-07-03 1998-01-23 Asahi Optical Co Ltd 撮影レンズ
JP2004341376A (ja) * 2003-05-19 2004-12-02 Nidec Copal Corp 広角レンズ
CN102455493A (zh) * 2010-10-27 2012-05-16 鸿富锦精密工业(深圳)有限公司 变焦镜头
CN104919353A (zh) * 2013-04-22 2015-09-16 奥林巴斯株式会社 广角物镜光学系统
CN105911671A (zh) * 2013-07-01 2016-08-31 大立光电股份有限公司 光学影像拾取系统镜头组及取像装置
US20160195716A1 (en) * 2015-01-07 2016-07-07 Hiroshi Nakanuma Imaging optical system, camera apparatus and stereo camera apparatus
CN107203032A (zh) * 2016-03-16 2017-09-26 Hoya株式会社 成像光学系统

Also Published As

Publication number Publication date
US11275233B2 (en) 2022-03-15
CN108072966A (zh) 2018-05-25
CN113189742A (zh) 2021-07-30
CN113189743A (zh) 2021-07-30
US20220137376A1 (en) 2022-05-05
CN113189742B (zh) 2023-05-16
CN113189744A (zh) 2021-07-30
CN108072966B (zh) 2021-04-09
US11921265B2 (en) 2024-03-05
US20190331900A1 (en) 2019-10-31
CN113189744B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2018090938A1 (zh) 光学镜头
CN106249380B (zh) 光学成像系统
CN105652409B (zh) 光学成像系统
CN106154497B (zh) 光学成像系统
US10551593B2 (en) Optical lens
WO2020114040A1 (zh) 车载摄像镜头及成像设备
US10416420B2 (en) Optical lens
WO2022111524A1 (zh) 光学成像镜头及成像设备
WO2020107759A1 (zh) 光学镜头及成像设备
WO2022111523A1 (zh) 光学成像镜头及成像设备
CN108508571B (zh) 成像系统透镜组
CN106154492B (zh) 光学成像系统
CN109445077A (zh) 光学镜头及成像设备
CN115128771B (zh) 光学镜头
CN110275276A (zh) 光学成像系统
CN203773139U (zh) 成像透镜和包括成像透镜的成像装置
CN110146967A (zh) 光学成像系统
CN115128769A (zh) 光学镜头
CN110488470A (zh) 光学镜头
WO2019019496A1 (zh) 鱼眼镜头装置
CN110320637B (zh) 镜头及其制造方法
JP2012237852A (ja) 撮像レンズ
CN116256875A (zh) 光学镜头
CN217587739U (zh) 玻塑混合光学系统
TWI747747B (zh) 成像透鏡組及攝像模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871107

Country of ref document: EP

Kind code of ref document: A1