WO2022111524A1 - 光学成像镜头及成像设备 - Google Patents

光学成像镜头及成像设备 Download PDF

Info

Publication number
WO2022111524A1
WO2022111524A1 PCT/CN2021/132792 CN2021132792W WO2022111524A1 WO 2022111524 A1 WO2022111524 A1 WO 2022111524A1 CN 2021132792 W CN2021132792 W CN 2021132792W WO 2022111524 A1 WO2022111524 A1 WO 2022111524A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
object side
image side
optical
Prior art date
Application number
PCT/CN2021/132792
Other languages
English (en)
French (fr)
Inventor
张歆越
王克民
曾吉勇
Original Assignee
江西联创电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联创电子有限公司 filed Critical 江西联创电子有限公司
Priority to US18/038,971 priority Critical patent/US20240004168A1/en
Publication of WO2022111524A1 publication Critical patent/WO2022111524A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to the technical field of imaging lenses, in particular to an optical imaging lens and an imaging device.
  • ADAS Advanced Driver Assist System
  • vehicle camera lens as the key component of ADAS, can sense the road conditions around the vehicle in real time and realize forward collision
  • the performance of functions such as early warning, lane deviation alarm and pedestrian detection directly affects the safety factor of ADAS. Therefore, the performance requirements for vehicle camera lenses are getting higher and higher.
  • the optical imaging lens in ADAS applied to the front of the vehicle is mainly used to identify the situation in front of the vehicle. It is required to clearly distinguish obstacles at a distance of 100 meters and realize collision warning. This requires the lens to have ultra-high pixels to realize the image of the object ahead. It occupies enough pixel units to effectively distinguish the details of the road environment; at the same time, the lens is also required to have good thermal stability to meet the requirements of good resolution in outdoor high and low temperature environments. However, most of the lenses on the existing market cannot meet the above requirements well. Therefore, it is imperative to develop an optical imaging lens with high resolution and large imaging surface that can cooperate with ADAS.
  • the purpose of the present invention is to provide an optical imaging lens and an imaging device to solve the above problems.
  • the present invention provides an optical imaging lens, comprising in sequence from the object side to the imaging surface along the optical axis: a first lens, a second lens, a third lens, a diaphragm, a fourth lens, a fifth lens, a first lens Six and seventh lenses.
  • the first lens has negative refractive power, the object side is convex, and the image side is concave;
  • the second lens has negative refractive power, the object side is concave, and the image side is convex;
  • the third lens has positive refractive power, the object side and the image side are convex;
  • the diaphragm is arranged between the third lens and the fourth lens;
  • the fourth lens has positive refractive power, and the object side and the image side are are convex;
  • the fifth lens has positive refractive power, and both the object side and the image side are convex;
  • the sixth lens has negative refractive power, and both the object side and the image side are concave, and the fifth lens and the sixth lens to form a cemented lens group;
  • the seventh lens has positive refractive power, and its object side and image side are convex; wherein, the first lens, the second lens, the third lens
  • the lens, the fourth lens, the fifth lens and the sixth lens are all glass s
  • the present invention provides an imaging device, including an imaging element and the optical imaging lens provided in the first aspect, where the imaging element is used to convert an optical image formed by the optical imaging lens into an electrical signal.
  • the optical imaging lens and imaging device provided by the present invention, through the reasonable configuration of each lens surface and the reasonable collocation of the focal power, enable the lens to have ultra-high resolution, while achieving good imaging quality, it has the advantages of The characteristics of good thermal stability, large imaging surface and easy assembly can well meet the requirements of ADAS for the lens, and all use glass lenses, which can largely ensure the reliability and quality of the lens, making it suitable for the environment. more demanding fields.
  • FIG. 1 is a schematic structural diagram of an optical imaging lens in a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of the field curvature of the optical imaging lens in the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of the distortion of the optical imaging lens in the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the MTF of the optical imaging lens in the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the field curvature of the optical imaging lens in the second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the distortion of the optical imaging lens in the second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the MTF of the optical imaging lens in the second embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an imaging device provided by a third embodiment of the present invention.
  • the present invention provides an optical imaging lens, which sequentially includes: a first lens, a second lens, a third lens, a diaphragm, a fourth lens, a fifth lens, a sixth lens and a seventh lens along the optical axis from the object side to the imaging plane. lens.
  • the first lens has negative refractive power, the object side is convex, and the image side is concave;
  • the second lens has negative refractive power, the object side is concave, and the image side is convex;
  • the third lens has positive refractive power, the object side and the image side are convex;
  • the diaphragm is arranged between the third lens and the fourth lens;
  • the fourth lens has positive refractive power, and the object side and the image side are are convex;
  • the fifth lens has positive refractive power, and both the object side and the image side are convex;
  • the sixth lens has negative refractive power, and both the object side and the image side are concave, and the fifth lens and the sixth lens to form a cemented lens group;
  • the seventh lens has positive refractive power, and its object side and image side are convex; wherein, the first lens, the second lens, the third lens
  • the lens, the fourth lens, the fifth lens and the sixth lens are all glass s
  • the optical imaging lens satisfies the following conditional formula:
  • TTL represents the total optical length of the optical imaging lens
  • ImgH represents half of the maximum diameter of the effective pixel area of the optical imaging lens on the imaging surface. Satisfying the conditional formula (1) can achieve a large image area while better compressing the total length of the lens, so that the design of the lens can be miniaturized, and it is easy to be mounted on other imaging devices.
  • the optical imaging lens satisfies the following conditional formula:
  • R5 represents the radius of curvature of the object side of the third lens
  • R6 represents the radius of curvature of the image side of the third lens
  • R7 represents the radius of curvature of the object side of the fourth lens
  • R8 represents the radius of curvature of the image side of the fourth lens.
  • the optical imaging lens satisfies the following conditional formula:
  • (CRA) max represents the maximum value of the incident angle of the chief ray of the full field of view of the optical imaging lens on the image plane. Satisfying the conditional formula (4) can make the CRA (principal ray incident angle) of the lens more matched with the CRA of the chip photosensitive element, thereby improving the photosensitive efficiency of the chip.
  • the optical imaging lens satisfies the following conditional formula:
  • f5 represents the focal length of the fifth lens
  • f6 represents the focal length of the sixth lens.
  • Conditional formula (5) is satisfied, and the effect of eliminating chromatic aberration is achieved by gluing the fifth positive lens and the sixth negative lens two positive and negative power lenses.
  • the optical imaging lens satisfies the following conditional formula:
  • T34 represents the separation distance between the third lens and the fourth lens on the optical axis
  • TTL represents the total optical length of the optical imaging lens
  • the optical imaging lens satisfies the following conditional formula:
  • T23 represents the separation distance between the second lens and the third lens on the optical axis
  • T45 represents the separation distance between the fourth lens and the fifth lens on the optical axis
  • TTL represents the total optical length of the optical imaging lens. Satisfying the conditional expressions (7) and (8), the total length of the optical imaging lens can be compressed by reducing the distance between the second lens and the third lens, and the distance between the fourth lens and the fifth lens, respectively.
  • the second lens and the third lens constitute the lens group [1]
  • the fourth lens constitute the lens group [2] ]
  • the fifth lens and the sixth lens constitute the lens group [2] ]
  • the lens group [1] and the lens group [2] are approximately symmetrical about the diaphragm, and this symmetrical structure has the effect of reducing distortion.
  • the optical imaging lens satisfies the following conditional formula:
  • Vd5 represents the Abbe number of the fifth lens
  • Vd6 represents the Abbe number of the sixth lens
  • Nd5 represents the refractive index of the fifth lens
  • Nd6 represents the refractive index of the sixth lens.
  • the optical imaging lens satisfies the following conditional formula:
  • ⁇ 12 is the face-centered angle of the object side of the seventh lens at the effective semi-aperture
  • ⁇ 13 is the face-centered angle of the image side of the seventh lens at the effective semi-aperture
  • S12 is the effective semi-aperture of the object side of the seventh lens
  • S13 represents the effective semi-aperture of the image side of the seventh lens
  • R12 represents the curvature radius of the object side of the seventh lens
  • R13 represents the curvature radius of the image side of the seventh lens.
  • the optical imaging lens satisfies the following conditional formula:
  • the present invention will be further described below with a plurality of embodiments.
  • the thickness and radius of curvature of each lens in the optical imaging lens are different, and the specific differences can be found in the parameter table in each embodiment.
  • z represents the distance of the surface from the vertex of the surface in the direction of the optical axis
  • c represents the curvature of the vertex of the surface
  • K represents the quadratic surface coefficient
  • h represents the distance from the optical axis to the surface
  • B, C, D, E and F represent the four Order, sixth, eighth, tenth, and twelfth order surface coefficients.
  • FIG. 1 is a schematic structural diagram of an optical imaging lens 100 provided by a first embodiment of the present invention.
  • the optical imaging lens 100 sequentially includes a first lens L1 and a second lens L2 along the optical axis from the object side to the imaging plane. , the third lens L3, the diaphragm ST, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, and the filter G1;
  • the first lens L1 has negative refractive power, the object side S1 of the first lens L1 is convex, and the image side S2 of the first lens L1 is concave;
  • the second lens L2 has negative refractive power, the object side S3 of the second lens L2 is concave, and the image side S4 of the second lens L2 is convex;
  • the third lens L3 has positive refractive power, and both the object side S5 and the image side S6 of the third lens L3 are convex;
  • the diaphragm ST is arranged between the third lens L3 and the fourth lens L4;
  • the fourth lens L4 has positive refractive power, and both the object side S7 and the image side S8 of the fourth lens L4 are convex;
  • the fifth lens L5 has a positive refractive power, and the object side surface S9 and the image side surface of the fifth lens L5 are convex surfaces;
  • the sixth lens L6 has negative refractive power, and its object side and image side S11 are both concave, wherein the fifth lens L5 and the sixth lens L6 form a cemented lens group, that is, the image side of the fifth lens L5 and the sixth lens
  • the glued surface of the object side of L6 is S10;
  • the seventh lens L7 has positive refractive power, and both the object side S12 and the image side S13 of the seventh lens L7 are convex;
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5 and the sixth lens L6 are all glass spherical lenses, and the seventh lens L7 is a glass aspherical lens.
  • the lens group [1] is composed of the second lens L2 and the third lens L3, and the lens group [2] is composed of the fourth lens L4, the fifth lens L5 and the sixth lens L6.
  • Table 1 shows the relevant parameters of each lens of the optical imaging lens 100 in this embodiment.
  • FIG. 2 , FIG. 3 , and FIG. 4 show a field curvature graph, an f- ⁇ distortion graph, and an MTF graph of the optical imaging lens 100 in this embodiment, respectively.
  • the field curvature curve of FIG. 2 represents the degree of curvature of the meridional image plane and the sagittal image plane.
  • the horizontal axis represents the offset (unit: mm)
  • the vertical axis represents the field angle (unit: degree). It can be seen from Figure 2 that the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.02mm, indicating that the field curvature of the optical imaging lens is well corrected.
  • the distortion curves in Figure 3 represent the distortion at different image heights on the imaging plane.
  • the horizontal axis represents the f- ⁇ distortion percentage
  • the vertical axis represents the field angle (unit: degree). It can be seen from Figure 3 that the f- ⁇ distortion at different image heights on the imaging surface is controlled within [-5%, 0], indicating that the distortion of the optical imaging lens is well corrected.
  • the MTF curves of Figure 4 represent the paraxial MTF for different spatial frequencies.
  • the horizontal axis in FIG. 4 represents the spatial frequency (unit: line pair/mm), and the vertical axis represents the MTF value. It can be seen from Figure 4 that the MTF value at the paraxial position of the high frequency is around 0.6, indicating that the paraxial aberration of the optical imaging lens is well corrected and the overall resolution is high.
  • the optical imaging lens provided by the second embodiment of the present invention has substantially the same structure as the optical imaging lens 100 in the first embodiment, and the difference lies in that the parameters such as the radius of curvature of each lens are different.
  • FIG. 5 , FIG. 6 and FIG. 7 are respectively a field curvature graph, an f- ⁇ distortion graph and an MTF graph of the optical imaging lens in the second embodiment.
  • the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.05mm, indicating that the field curvature of the optical imaging lens is well corrected.
  • the f- ⁇ distortion at different image heights on the imaging surface is controlled within [-5%, 0], indicating that the distortion of the optical imaging lens is well corrected.
  • the MTF value at the paraxial position of the high frequency is about 0.5, indicating that the paraxial aberration of the optical imaging lens is well corrected and has a high resolution.
  • Table 5 shows the corresponding optical characteristics in the above-mentioned embodiments, including the focal length EFL of the system, the total optical length TTL, the field of view angle FOV, the aperture number F#, and the values corresponding to each conditional expression described above.
  • Example 1 TTL(mm) 35.000 34.998 EFL(mm) 4.751 4.738 FOV 112.8° 112.8° F# 2 1.9 ImgH(mm) 4.508 4.503 TTL/ImgH 7.764 7.772 R6/R5 -3.010 -24.276 R8/R7 -4.206 -5.687 (CRA) max 13.481° 13.052° f5/f6 -1.604 -1.553 TTL/T23 416.667 437.475 TTL/T34 10.151 10.485 TTL/T45 343.137 228.745 Vd5/Vd6 3.624 3.624 Nd5/Nd6 0.828 0.828
  • a third embodiment of the present invention provides an imaging device 200 , and the imaging device 200 may include an imaging element 210 and an optical imaging lens (eg, the optical imaging lens 100 ) in any of the foregoing embodiments.
  • the imaging element 210 may be a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor) image sensor, or may be a CCD (Charge Coupled Device, charge coupled device) image sensor.
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • CCD Charge Coupled Device, charge coupled device
  • the imaging device 200 may be a vehicle-mounted surveillance device, an unmanned aerial vehicle, a panoramic camera, or any other electronic device equipped with an optical imaging lens.
  • the imaging device 200 provided in this embodiment includes the optical imaging lens in any of the above embodiments. Since the optical imaging lens has the characteristics of ultra-high resolution, good thermal stability, large imaging surface, and convenient assembly, the imaging device 200 has imaging quality. High, large target surface and good thermal stability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头(100)及成像设备(200),光学成像镜头(100)沿光轴从物侧至成像面(S16)依次包括:具有负光焦度的第一透镜(L1),其物侧面(S1)为凸面、像侧面(S2)为凹面;具有负光焦度的第二透镜(L2),其物侧面(S3)为凹面、像侧面(S4)为凸面;具有正光焦度的第三透镜(L3),其物侧面(S5)和像侧面(S6)均为凸面;光阑(ST);具有正光焦度的第四透镜(L4),其物侧面(S7)和像侧面(S8)均为凸面;具有正光焦度的第五透镜(L5),其物侧面(S9)和像侧面(S10)均为凸面;具有负光焦度的第六透镜(L6),其物侧面(S10)和像侧面(S11)均为凹面,且第五透镜(L5)和第六透镜(L6)组成粘合透镜组;具有正光焦度的第七透镜(L7),其物侧面(S12)和像侧面(S13)均为凸面。光学成像镜头(100)具有超高解像力、热稳定性好、大成像面以及方便组装的特点。

Description

光学成像镜头及成像设备
交叉引用
本申请要求2020年11月26日递交的发明名称为:“光学成像镜头及成像设备”的申请号202011346249.X的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及成像镜头技术领域,特别是涉及一种光学成像镜头及成像设备。
背景技术
随着自动驾驶技术的发展,ADAS(Advanced Driver AssistantSystem,高级驾驶辅助系统)已经成了汽车的标配;其中,车载摄像镜头作为ADAS的关键器件,能够实时感知车辆周边的路况,实现前向碰撞预警、车道偏移报警和行人检测等功能,其性能高低直接影响着ADAS的安全系数,因此,对车载摄像镜头的性能要求越来越高。
ADAS中搭载的应用于车辆前方的光学成像镜头,主要是识别汽车前方状况,要求在百米外能够清晰分辨出障碍物,实现碰撞预警,这就要求镜头具有超高像素才能实现前方物体在图像中占有足够多的像素单元,以有效分辨道路环境的细节;同时还要求镜头具有良好的热稳定性,满足在室外的高低温环境中都拥有良好的解像力。然而,现有市场上的大多镜头均不能很好的满足上述要求,因此,开发一种可以配合ADAS的高解像力、大成像面的光学成像镜头是当务之急。
发明内容
为此,本发明的目的在于提出一种光学成像镜头及成像设备,用于解决上述问题。
本发明实施例通过以下技术方案实施上述的目的。
第一方面,本发明提供了一种光学成像镜头,沿光轴从物侧至成像面依次包括:第一透镜,第二透镜,第三透镜,光阑,第四透镜,第五透镜,第六透镜和第七透镜。所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;所述第二透镜具有负光焦度,其物侧面为凹面,像侧面为凸面;所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面;所述光阑设置于所述第三透镜和所述第四透镜之间;所述第四透镜具有正光焦度,其物侧面和像侧面均为凸面;所述第五透镜具有正光焦度,其物侧面和像侧面均为凸面;所述第六透镜具有负光焦度,其物侧面和像侧面均为凹面,所述第五透镜和所述第六透镜组成粘合透镜组;所述第七透镜具有正光焦度,其物侧面和像侧面均为凸面;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均为玻璃球面镜片,所述第七透镜为玻璃非球面镜片;所述光学成像镜头满足条件式:7<TTL/ImgH<8,TTL表示所述光学成像镜头的光学总长,ImgH表示光学成像镜头在成像面上有效像素区域最大直径的一半。
第二方面,本发明提供一种成像设备,包括成像元件及第一方面提供的光学成像镜头,成像元件用于将光学成像镜头形成的光学图像转换为电信号。
相比于现有技术,本发明提供的光学成像镜头及成像设备,通过各镜片面型的合理配置以及光焦度的合理搭配,使镜头具有超高解像力,在实现良好成像质量的同时,具有热稳定性好、大成像面以及方便组装的特点,能够很好的满足ADAS对镜头的要求,而且全部使用玻璃透镜,能够很大程度上保证镜头的信赖性品质,使其能适用于对环境比较苛刻的领域。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明第一实施例中的光学成像镜头的结构示意图;
图2为本发明第一实施例中的光学成像镜头的场曲示意图;
图3为本发明第一实施例中的光学成像镜头的畸变示意图;
图4为本发明第一实施例中的光学成像镜头的MTF示意图;
图5为本发明第二实施例中的光学成像镜头的场曲示意图;
图6为本发明第二实施例中的光学成像镜头的畸变示意图;
图7为本发明第二实施例中的光学成像镜头的MTF示意图;
图8为本发明第三实施例提供的成像设备的结构示意图。
具体实施方式
为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提出一种光学成像镜头,沿光轴从物侧至成像面依次包括:第一透镜,第二透镜,第三透镜,光阑,第四透镜,第五透镜,第六透镜和第七透镜。所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;所述第二透镜具有负光焦度,其物侧面为凹面,像侧面为凸面;所述第三透镜具有正光焦度,其物侧面和像侧面均为凸面;所述光阑设置于所述第三透镜和所述第四透镜之间;所述第四透镜具有正光焦度,其物侧面和像侧面均为凸面;所述第五透镜具有正光焦度,其物侧面和像侧面均为凸面;所述第六透镜具有负光焦度,其物侧面和像侧面均为凹面,所述第五透镜和所述第六透镜组成粘合透镜组;所述第七透镜具有正光焦度,其物侧面和像侧面均为凸面;其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均为玻璃球面镜片,所述第七透镜为玻璃非球面镜片。
在一些实施方式中,所述光学成像镜头满足以下条件式:
7<TTL/ImgH<8;      (1)
其中,TTL表示光学成像镜头的光学总长,ImgH表示光学成像镜头在成像 面上有效像素区域最大直径的一半。满足条件式(1),可以实现大像面的同时更好压缩镜头的总长,使镜头的设计实现小型化,便于搭载在其它成像设备上。
在一些实施方式中,所述光学成像镜头满足以下条件式:
R6/R5<-2.8;      (2)
-5.8<R8/R7<-3.8;       (3)
其中,R5表示第三透镜的物侧面的曲率半径,R6表示第三透镜的像侧面的曲率半径,R7表示第四透镜的物侧面的曲率半径,R8表示第四透镜的像侧面的曲率半径。满足条件式(2)和(3),可以改变第三透镜和第四透镜的像侧面二次反射鬼像的光瞳像在焦面上的相对位置,通过控制曲率半径可以使得鬼像的光瞳像远离焦面,有效降低鬼像的相对能量值,提高镜头成像画面的质量。
在一些实施方式中,所述光学成像镜头满足以下条件式:
(CRA) max<14°;      (4)
其中,(CRA) max表示光学成像镜头的全视场主光线在像面上入射角的最大值。满足条件式(4),可以使镜头的CRA(主光线入射角)与芯片感光元件的CRA更匹配,提高芯片的感光效率。
在一些实施方式中,所述光学成像镜头满足以下条件式:
-1.8<f5/f6<-1.4;     (5)
其中,f5表示所述第五透镜的焦距,f6表示所述第六透镜的焦距。满足条件式(5),通过第五正透镜和第六负透镜两枚正负光焦度镜片的胶合,达到消除色差的作用。
在一些实施方式中,所述光学成像镜头满足以下条件式:
9<TTL/T34<11;      (6)
其中,T34表示第三透镜和第四透镜在光轴上的间隔距离,TTL表示光学成像镜头的光学总长。满足条件式(6),通过增大第三透镜和第四透镜之间的间距使后端光学系统远离前端,不同视场的物方光线在第三透镜收束后以一定角度发散,会聚到更远的垂轴位置上,从而增大了像高。
在一些实施方式中,所述光学成像镜头满足以下条件式:
200<TTL/T23<500;    (7)
200<TTL/T45<500;     (8)
其中,T23表示第二透镜和第三透镜在光轴上的间隔距离,T45表示第四透镜和第五透镜在光轴上的间隔距离,TTL表示光学成像镜头的光学总长。满足条件式(7)和(8),分别通过减小第二透镜和第三透镜的间距、第四透镜和第五透镜的间距,可以压缩光学成像镜头的总长。满足上述条件式(6)至(8),通过合理的分隔镜片,由第二透镜和第三透镜构成镜片组[1],由第四透镜、第五透镜和第六透镜构成镜片组[2],使镜片组[1]与镜片组[2]关于光阑近似对称,这种对称结构具有减小畸变的作用。
在一些实施方式中,所述光学成像镜头满足以下条件式:
3.2<Vd5/Vd6<3.8;     (9)
0.8<Nd5/Nd6<0.84;     (10)
其中,Vd5表示第五透镜的阿贝数,Vd6表示第六透镜的阿贝数,Nd5表示第五透镜的折射率,Nd6表示第六透镜的折射率。满足条件式(9)至(10),通过增大第五透镜和第六透镜的阿贝数差值、折射率差值,更有利于色差的消除。
在一些实施方式中,所述光学成像镜头满足以下条件式:
-30°<|φ12|-arctan[S12/(R12 2-S12 2) 1/2]<30°;     (11)
-13°<|φ13|-arctan[S13/(R13 2-S13 2) 1/2]<13°;      (12)
其中,φ12表示第七透镜的物侧面在有效半口径处的面心角,φ13表示第七透镜的像侧面在有效半口径处的面心角,S12表示第七透镜的物侧面的有效半口径,S13表示第七透镜像侧面的有效半口径,R12表示第七透镜的物侧面的曲率半径,R13表示第七透镜的像侧面的曲率半径。满足条件式(11)至(12),使得第七透镜的镜片中心到边缘光焦度的变化趋势更接近余弦函数,在温度变化时,所有视场的离焦曲线会更加聚拢,有利于改善镜头的温度性能。
在一些实施方式中,所述光学成像镜头满足以下条件式:
12| max≤20°;    (13)
13| max≤6°;     (14)
其中,|φ 12| max表示第七透镜的物侧面的面心角的最大值,|φ 13| max表示第七透 镜的像侧面的面心角的最大值,面心角即该透镜表面垂直截面上的切线与水平方向的夹角。满足条件式(13)至(14),有利减小CRA,提升相对照度。
下面分多个实施例对本发明进行进一步的说明。在以下每个实施例中,光学成像镜头中的各个透镜的厚度、曲率半径有所不同,具体不同可参见各实施例中的参数表。
本发明各实施例中的光学成像镜头的非球面的表面形状均满足下列方程:
Figure PCTCN2021132792-appb-000001
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,K表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E和F分别表示四阶、六阶、八阶、十阶和十二阶曲面系数。
第一实施例
请参阅图1,所示为本发明第一实施例提供的光学成像镜头100的结构示意图,该光学成像镜头100沿光轴从物侧到成像面依次包括:第一透镜L1,第二透镜L2,第三透镜L3,光阑ST,第四透镜L4,第五透镜L5,第六透镜L6,第七透镜L7,以及滤光片G1;
第一透镜L1具有负光焦度,第一透镜L1的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面;
第二透镜L2具有负光焦度,第二透镜L2的物侧面S3为凹面,第二透镜L2的像侧面S4为凸面;
第三透镜L3具有正光焦度,第三透镜L3的物侧面S5和像侧面S6均为凸面;
光阑ST设置于第三透镜L3和第四透镜L4之间;
第四透镜L4具有正光焦度,第四透镜L4的物侧面S7和像侧面S8均为凸面;
第五透镜L5具有正光焦度,第五透镜L5额物侧面S9和像侧面均为凸面;
第六透镜L6具有负光焦度,其物侧面与像侧面S11均为凹面,其中,第五 透镜L5和第六透镜L6组成粘合透镜组,即第五透镜L5的像侧面和第六透镜L6的物侧面的胶合面为S10;
第七透镜L7具有正光焦度,第七透镜L7的物侧面S12和像侧面S13均为凸面;
其中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6均为玻璃球面镜片,第七透镜L7为玻璃非球面镜片。由第二透镜L2和第三透镜L3构成镜片组[1],由第四透镜L4、第五透镜L5和第六透镜L6构成镜片组[2]。
本实施例中的光学成像镜头100的各透镜的相关参数如表1所示。
表1
Figure PCTCN2021132792-appb-000002
Figure PCTCN2021132792-appb-000003
本实施例的各透镜非球面的参数如表2所示。
表2
Figure PCTCN2021132792-appb-000004
请参照图2、图3和图4,所示分别为本实施例中光学成像镜头100的场曲曲线图、f-θ畸变图和MTF曲线图。
图2的场曲曲线表示子午像面和弧矢像面的弯曲程度。其中,图2中横轴表示偏移量(单位:mm),纵轴表示视场角(单位:度)。从图2中可以看出,子午像面和弧矢像面的场曲控制在±0.02mm以内,说明光学成像镜头的场曲矫正良好。
图3的畸变曲线表示成像面上不同像高处的畸变。其中,图3中横轴表示f-θ畸变百分比,纵轴表示视场角(单位:度)。从图3中可以看出,成像面上不同像高处的f-θ畸变控制在[-5%,0]以内,说明光学成像镜头的畸变得到良好的校正。
图4的MTF曲线表示不同空间频率的近轴MTF。其中,图4中横轴表示空间频率(单位:线对/毫米),纵轴表示MTF值。从图4中可以看出,在高频的近轴处MTF值在0.6左右,说明光学成像镜头的近轴像差得到良好的校正,整体上拥有较高的分辨率。
第二实施例
本发明第二实施例提供的光学成像镜头与第一实施例中的光学成像镜头100的结构大抵相同,不同之处在于各透镜的曲率半径等参数不同。
本发明第二实施例的光学成像镜头中各透镜的相关参数如表3所示。
表3
Figure PCTCN2021132792-appb-000005
Figure PCTCN2021132792-appb-000006
本实施例的各透镜非球面的参数如表4所示。
表4
Figure PCTCN2021132792-appb-000007
请参照图5、图6和图7,所示分别为第二实施例中光学成像镜头的场曲曲线图、f-θ畸变图和MTF曲线图。从图5中可以看出,子午像面和弧矢像面的场曲控制在±0.05mm以内,说明光学成像镜头的场曲矫正良好。从图6中可以看出,成像面上不同像高处的f-θ畸变控制在[-5%,0]以内,说明光学成像镜头的畸变得到良好的校正。从图7中可以看出,在高频的近轴处MTF值在0.5左右,说明光学成像镜头的近轴像差得到良好的校正,拥有较高的分辨率。
表5是上述各实施例中对应的光学特性,包括系统的焦距EFL、光学总长TTL、视场角FOV、光圈数F#和前面所述每个条件式对应的数值。
表5
  实施例1 实施例2
TTL(mm) 35.000 34.998
EFL(mm) 4.751 4.738
FOV 112.8° 112.8°
F# 2 1.9
ImgH(mm) 4.508 4.503
TTL/ImgH 7.764 7.772
R6/R5 -3.010 -24.276
R8/R7 -4.206 -5.687
(CRA) max 13.481° 13.052°
f5/f6 -1.604 -1.553
TTL/T23 416.667 437.475
TTL/T34 10.151 10.485
TTL/T45 343.137 228.745
Vd5/Vd6 3.624 3.624
Nd5/Nd6 0.828 0.828
12|-arctan[S12/(R12 2-S12 2) 1/2] -27.271° -10.184°
13|-arctan[S13/(R13 2-S13 2) 1/2] -11.057° -0.123°
12| max 19.947° 9.702°
13| max 2.531° 5.275°
第三实施例
请参阅图8,本发明第三实施例提供了一种成像设备200,该成像设备200可以包括成像元件210和上述任一实施例中的光学成像镜头(例如光学成像镜头100)。成像元件210可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。
成像设备200可以是车载监控、无人机、全景相机以及其他任意一种形态 的装载了光学成像镜头的电子设备。
本实施例提供的成像设备200包括上述任一实施例中的光学成像镜头,由于光学成像镜头具有超高解像力、热稳定性好、大成像面以及方便组装等特点,因此成像设备200具有成像品质高、大靶面以及良好的热稳定性等优点。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种光学成像镜头,其特征在于,沿光轴从物侧到成像面依次包括:
    具有负光焦度的第一透镜,所述第一透镜的物侧面为凸面,所述第一透镜的像侧面为凹面;
    具有负光焦度的第二透镜,所述第二透镜的物侧面为凹面,所述第二透镜的像侧面为凸面;
    具有正光焦度的第三透镜,所述第三透镜的物侧面和像侧面均为凸面;
    光阑;
    具有正光焦度的第四透镜,所述第四透镜的物侧面和像侧面均为凸面;
    具有正光焦度的第五透镜,所述第五透镜的物侧面和像侧面均为凸面;
    具有负光焦度的第六透镜,所述第六透镜的物侧面和像侧面均为凹面,且所述第五透镜和所述第六透镜组成粘合透镜组;
    具有正光焦度的第七透镜,所述第七透镜的物侧面和像侧面均为凸面;
    其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜均为玻璃球面镜片,所述第七透镜为玻璃非球面镜片;
    所述光学成像镜头满足条件式:
    7<TTL/ImgH<8;
    其中,TTL表示所述光学成像镜头的光学总长,ImgH表示光学成像镜头在成像面上有效像素区域最大直径的一半。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    R6/R5<-2.8;
    -5.8<R8/R7<-3.8;
    其中,R5表示所述第三透镜物侧面的曲率半径,R6表示所述第三透镜像侧面的曲率半径,R7表示所述第四透镜物侧面的曲率半径,R8表示所述第四透镜像侧面的曲率半径。
  3. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    (CRA) max<14°;
    其中,(CRA) max表示所述光学成像镜头的全视场主光线在像面上入射角的最大值。
  4. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    -1.8<f5/f6<-1.4;
    其中,f5表示所述第五透镜的焦距,f6表示所述第六透镜的焦距。
  5. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    9<TTL/T34<11;
    其中,T34表示所述第三透镜和所述第四透镜在所述光轴上的间隔距离,TTL表示所述光学成像镜头的光学总长。
  6. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    200<TTL/T23<500;
    200<TTL/T45<500;
    其中,T23表示所述第二透镜和所述第三透镜在所述光轴上的间隔距离,T45表示所述第四透镜和所述第五透镜在所述光轴上的间隔距离,TTL表示所述光学成像镜头的光学总长。
  7. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    3.2<Vd5/Vd6<3.8;
    0.80<Nd5/Nd6<0.84;
    其中,Vd5表示所述第五透镜的阿贝数,Vd6表示所述第六透镜的阿贝数,Nd5表示所述第五透镜的折射率,Nd6表示所述第六透镜的折射率。
  8. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头 满足条件式:
    -30°<|φ12|-arctan[S12/(R12 2-S12 2) 1/2]<30°;
    -13°<|φ13|-arctan[S13/(R13 2-S13 2) 1/2]<13°;
    其中,φ12表示所述第七透镜的物侧面在有效半口径处的面心角,φ13表示所述第七透镜的像侧面在有效半口径处的面心角,S12表示所述第七透镜的物侧面的有效半口径,S13表示所述第七透镜的像侧面的有效半口径,R12表示所述第七透镜的物侧面的曲率半径,R13表示所述第七透镜的像侧面的曲率半径。
  9. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:
    12| max≤20°;
    13| max≤6°;
    其中,|φ 12| max表示所述第七透镜的物侧面的面心角的最大值,|φ 13| max表示所述第七透镜的像侧面的面心角的最大值。
  10. 一种成像设备,其特征在于,包括如权利要求1-9任一项所述的光学成像镜头及成像元件,所述成像元件用于将所述光学成像镜头形成的光学图像转换为电信号。
PCT/CN2021/132792 2020-11-26 2021-11-24 光学成像镜头及成像设备 WO2022111524A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/038,971 US20240004168A1 (en) 2020-11-26 2021-11-24 Optical imaging lens and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011346249.XA CN112485890B (zh) 2020-11-26 2020-11-26 光学成像镜头及成像设备
CN202011346249.X 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022111524A1 true WO2022111524A1 (zh) 2022-06-02

Family

ID=74935081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132792 WO2022111524A1 (zh) 2020-11-26 2021-11-24 光学成像镜头及成像设备

Country Status (3)

Country Link
US (1) US20240004168A1 (zh)
CN (1) CN112485890B (zh)
WO (1) WO2022111524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079384A (zh) * 2022-08-23 2022-09-20 江西联创电子有限公司 光学镜头

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485890B (zh) * 2020-11-26 2022-03-04 江西联创电子有限公司 光学成像镜头及成像设备
CN113376803B (zh) * 2021-06-16 2022-06-03 嘉兴中润光学科技股份有限公司 一种大靶面车载adas镜头和图像拾取装置
CN113625422A (zh) * 2021-06-29 2021-11-09 南京信息工程大学 一种超大像面广角镜头
CN113640973B (zh) * 2021-10-15 2022-02-11 江西联创电子有限公司 光学成像镜头及成像设备
CN113900238B (zh) * 2021-12-10 2022-05-10 江西联创电子有限公司 光学镜头及成像设备
CN114815179B (zh) * 2022-06-30 2022-11-01 江西联创电子有限公司 光学镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307677A (ja) * 2002-04-15 2003-10-31 Matsushita Electric Ind Co Ltd ズームレンズおよび電子スチルカメラ
CN109541780A (zh) * 2018-11-16 2019-03-29 江西联创电子有限公司 光学镜头及成像设备
CN109960020A (zh) * 2017-12-22 2019-07-02 宁波舜宇车载光学技术有限公司 光学镜头
CN110133828A (zh) * 2019-04-28 2019-08-16 江西联创电子有限公司 定焦镜头
CN110794552A (zh) * 2018-08-03 2020-02-14 宁波舜宇车载光学技术有限公司 光学镜头
CN111856727A (zh) * 2020-08-20 2020-10-30 江西特莱斯光学有限公司 一种大孔径超广角高清镜头及包含该镜头的摄像设备
CN112485890A (zh) * 2020-11-26 2021-03-12 江西联创电子有限公司 光学成像镜头及成像设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248049A (ja) * 2010-05-26 2011-12-08 Hoya Corp ズームレンズ系
CN104597582B (zh) * 2015-01-06 2017-04-05 浙江舜宇光学有限公司 摄像镜头
CN106501921B (zh) * 2016-12-21 2022-06-07 江西联益光学有限公司 无人机摄像镜头
CN108469667B (zh) * 2018-05-31 2024-04-26 江西联创电子有限公司 广角镜头
CN110632743B (zh) * 2019-11-20 2020-03-27 江西联创电子有限公司 光学成像镜头及成像设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307677A (ja) * 2002-04-15 2003-10-31 Matsushita Electric Ind Co Ltd ズームレンズおよび電子スチルカメラ
CN109960020A (zh) * 2017-12-22 2019-07-02 宁波舜宇车载光学技术有限公司 光学镜头
CN110794552A (zh) * 2018-08-03 2020-02-14 宁波舜宇车载光学技术有限公司 光学镜头
CN109541780A (zh) * 2018-11-16 2019-03-29 江西联创电子有限公司 光学镜头及成像设备
CN110133828A (zh) * 2019-04-28 2019-08-16 江西联创电子有限公司 定焦镜头
CN111856727A (zh) * 2020-08-20 2020-10-30 江西特莱斯光学有限公司 一种大孔径超广角高清镜头及包含该镜头的摄像设备
CN112485890A (zh) * 2020-11-26 2021-03-12 江西联创电子有限公司 光学成像镜头及成像设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079384A (zh) * 2022-08-23 2022-09-20 江西联创电子有限公司 光学镜头
CN115079384B (zh) * 2022-08-23 2023-01-24 江西联创电子有限公司 光学镜头

Also Published As

Publication number Publication date
CN112485890A (zh) 2021-03-12
CN112485890B (zh) 2022-03-04
US20240004168A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
WO2022111524A1 (zh) 光学成像镜头及成像设备
WO2022111523A1 (zh) 光学成像镜头及成像设备
WO2019242411A1 (zh) 车载摄像镜头
WO2020119278A1 (zh) 广角镜头及成像设备
WO2020114040A1 (zh) 车载摄像镜头及成像设备
WO2021129577A1 (zh) 光学成像镜头及成像设备
WO2022033277A1 (zh) 广角镜头及成像设备
CN110727087B (zh) 广角镜头
WO2021098682A1 (zh) 光学成像镜头及成像设备
CN101149465A (zh) 广角摄像透镜、摄像装置、及摄像机组件
CN113031230B (zh) 超广角镜头及成像设备
CN113640973B (zh) 光学成像镜头及成像设备
WO2021114458A1 (zh) 光学成像镜头及成像设备
CN110646919A (zh) 鱼眼镜头
WO2022233304A1 (zh) 光学成像镜头及成像设备
CN115185067B (zh) 光学成像镜头及成像设备
CN115128780B (zh) 光学成像镜头及成像设备
CN112882209B (zh) 广角镜头及成像设备
CN112285884B (zh) 1.14mm超广角光学系统及其成像方法
CN215264198U (zh) 一种4k像素行车记录仪光学系统
CN113031212B (zh) 一种4k像素行车记录仪光学系统及其成像方法
CN114859528A (zh) 光学成像镜头
CN113267881B (zh) 光学成像镜头及成像设备
CN115220203B (zh) 光学成像镜头
CN113467060B (zh) 光学镜头及成像设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897024

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18038971

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897024

Country of ref document: EP

Kind code of ref document: A1