WO2020113956A1 - 爬行焊接机器人及其控制方法 - Google Patents

爬行焊接机器人及其控制方法 Download PDF

Info

Publication number
WO2020113956A1
WO2020113956A1 PCT/CN2019/095300 CN2019095300W WO2020113956A1 WO 2020113956 A1 WO2020113956 A1 WO 2020113956A1 CN 2019095300 W CN2019095300 W CN 2019095300W WO 2020113956 A1 WO2020113956 A1 WO 2020113956A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
crawling
frame
welding robot
adjustment
Prior art date
Application number
PCT/CN2019/095300
Other languages
English (en)
French (fr)
Inventor
冯消冰
潘际銮
高力生
汪名峰
潘百蛙
段瑞民
李海龙
Original Assignee
北京博清科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京博清科技有限公司 filed Critical 北京博清科技有限公司
Priority to SG11202000192TA priority Critical patent/SG11202000192TA/en
Priority to US16/631,597 priority patent/US11786986B2/en
Priority to EP19832267.9A priority patent/EP3685958B1/en
Priority to RU2019145025A priority patent/RU2754728C1/ru
Priority to KR1020197034733A priority patent/KR102304107B1/ko
Priority to JP2019569933A priority patent/JP6929392B2/ja
Priority to ZA2019/08575A priority patent/ZA201908575B/en
Publication of WO2020113956A1 publication Critical patent/WO2020113956A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0294Transport carriages or vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/10Other electric circuits therefor; Protective circuits; Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/327Means for transporting supplies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0264Carriages for supporting the welding or cutting element magnetically attached to the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0241Attachments between the welding or cutting element and the carriage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0247Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0252Steering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/08Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for flash removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting
    • B23K9/1272Geometry oriented, e.g. beam optical trading
    • B23K9/1274Using non-contact, optical means, e.g. laser means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/06Endless track vehicles with tracks without ground wheels
    • B62D55/075Tracked vehicles for ascending or descending stairs, steep slopes or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/18Tracks
    • B62D55/26Ground engaging parts or elements
    • B62D55/265Ground engaging parts or elements having magnetic or pneumatic adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D55/00Endless track vehicles
    • B62D55/08Endless track units; Parts thereof
    • B62D55/30Track-tensioning means

Definitions

  • the present disclosure relates to the technical field of welding devices, and in particular, to a crawling welding robot and its control method.
  • welding robots are unable to perform welding operations on large and medium-sized flat or arc-shaped structural parts such as steel storage tanks, spherical tanks, and hulls.
  • the working environment is harsh and requires multiple workers to work together.
  • the demand for welding skills is high.
  • the welding quality cannot be guaranteed and the productivity is low.
  • the objectives of the present disclosure include, for example, to provide a crawling welding robot to improve the deficiencies of the prior art, its ability to adapt to the environment is strong, and its operating efficiency is high.
  • the object of the present disclosure also includes, for example, a control method of a crawling welding robot.
  • An embodiment of the present disclosure provides a crawling welding robot, which includes an adjustable magnetic adsorption module, a wheeled walking mechanism, a crawler frame and a welding load device.
  • the welding load device is provided on the crawler frame;
  • the wheeled walking mechanism is arranged at the opposite ends of the crawler frame to provide crawling power to the crawler frame;
  • the adjustable magnetic adsorption module is arranged on the crawler locomotive frame, and is arranged between two wheeled walking mechanisms.
  • the wheeled walking mechanism includes a magnetic seat, a roller chain, a driving wheel, a driven wheel and a first driving device;
  • the first driving device is fixedly arranged on the crawler locomotive frame
  • Both the driving wheel and the driven wheel are rotated and set on the crawler frame;
  • Driving wheel and driven wheel are connected by roller chain
  • the magnetic base is set on the roller chain.
  • the sliding locomotive frame is provided with a sliding groove
  • Sliding wheel is set in the sliding groove
  • the crawler locomotive frame is provided with a second driving device for driving the driven wheel to move in the sliding groove, so that the corresponding roller chain is tensioned or loosened.
  • the crawler locomotive frame includes an adjustment block and an adjustment screw, the adjustment block and the sliding groove slidingly cooperate, the adjustment screw is screwed on the crawler locomotive frame, the adjustment screw and the adjustment block are rotationally connected, and the adjustment screw and the adjustment block are adjusted
  • the axial direction of the screw is relatively fixed; when the adjusting screw rotates, the adjusting block can slide in the sliding groove; the driven wheel is rotationally connected with the adjusting block.
  • the crawler frame includes an adjustment block and an adjustment screw, the adjustment block slidingly cooperates with the sliding groove, the adjustment screw is screwed on the crawler frame, and the adjustment screw and the crawler frame are opposite in the axial direction of the adjustment screw
  • the adjusting screw is fixedly connected with the adjusting block; when the adjusting screw rotates, the adjusting block can slide in the sliding groove; the driven wheel is connected with the adjusting block in rotation.
  • the first driving device includes a servo motor and a corner reduction motor
  • the servo motor is connected to the corner reduction motor
  • the servo motor and the corner reduction motor are fixed on the crawler frame
  • the driving wheel is fixed on the flange of the corner reduction motor ,
  • the driving wheel can be driven to rotate through the servo motor.
  • the crawler frame includes a vehicle body connecting plate and two side plates connected to the vehicle body connecting plate and disposed oppositely, and the two wheeled walking mechanisms are respectively installed on the two side plates.
  • the welding load device includes a welding frame and a torch swing mechanism
  • the welding frame is fixed on the crawler frame
  • the welding swing mechanism includes a first linear motor, a first linear guide, a third driving device, a first transmission gear and a first transmission rack;
  • the first linear motor is fixedly arranged on the welding frame, the first linear guide rail is connected to the first linear motor; the first transmission gear is rotatably arranged on the first linear guide rail; the first transmission gear meshes with the first transmission rack , The first transmission rack is in sliding fit with the first linear guide rail; the third drive device is connected to the first transmission gear for driving the first transmission gear to rotate, thereby driving the first transmission rack to reciprocate relative to the first linear guide rail slide.
  • the welding load device further includes a welding gun angle swing clamping mechanism
  • Welding gun angle pendulum clamping mechanism includes angle pendulum, locking mechanism and clamp;
  • the angle pendulum is connected with the clamp to drive the welding gun on the clamp to swing;
  • the locking mechanism is arranged on the angle pendulum and fixedly connected with the first transmission rack.
  • the angle pendulum includes a connected motor and a rotating platform, the clamp is connected to the rotating platform, and the locking mechanism is connected to the motor.
  • the welding load device also includes a laser-tracking pendulum mechanism and a laser-tracking module;
  • the laser tracking mechanism includes a second linear motor, a second linear guide, a fourth drive device, a second transmission gear and a second transmission rack;
  • the second linear motor is fixed on the welding frame, the second linear guide is connected to the second linear motor; the second transmission gear is rotatably set on the second linear guide; the second transmission gear meshes with the second transmission rack, and the second transmission
  • the laser tracking module includes a camera, a laser sensor, a mounting frame, and a multi-filter;
  • the camera, laser sensor and multi-filter are all set on the mounting frame;
  • the mounting bracket is fixedly arranged on the second transmission rack.
  • the crawling welding robot further includes a windproof device, which is connected to the crawler frame;
  • the windproof device includes a connected fixed bracket and a windproof cover body, and the fixed bracket is connected with the welding frame;
  • the fixed bracket includes a telescopic translation plate capable of telescoping in the front-rear direction.
  • the telescopic translation plate is provided with a left-right direction slideway with an angle and a front-rear direction slideway.
  • the windshield body is provided with an up-down direction slideway. The body is connected, and the windshield body can slide relative to the telescopic translation plate in the extending direction of the slideway in the up-down direction and the extending direction of the slideway in the left-right direction, so that the windproof body can be adjusted in three directions.
  • the fixed bracket further includes a connected fixed bottom plate and a fixed connection plate.
  • the fixed connection plate and the telescopic translation plate slide-fit in the extension direction of the slideway in the front-rear direction; the fixed bottom plate is used to connect with the crawler frame.
  • the telescopic translation plate includes a first plate portion and a second plate portion connected, the first plate portion and the second plate portion have an angle, the left and right direction slideways are provided on the first plate portion, and the front and rear direction slideways are provided On the second plate portion; the first plate portion is slidingly connected with the windshield body, and the second plate portion is slidingly connected with the fixed connection plate.
  • the adjustable magnetic adsorption module includes a magnet module and a lifting adjustment module, and the lifting adjustment module is connected to the magnet module to control the lifting of the magnet module;
  • the lifting adjustment module includes a plurality of independently controllable lifting mechanisms. By separately adjusting the plurality of independently controlled lifting mechanisms, the angle and/or gap between the magnet module and the adsorbed surface are changed.
  • the magnet module includes a mounting shell, a cover, and a magnet.
  • the mounting shell is provided with a cavity, and the magnet is placed in the cavity.
  • the cover is connected to the mounting shell to cover the cavity.
  • the lifting structure includes a supporting frame, a lifting screw and an adjusting nut
  • the supporting frame is connected to the crawler locomotive frame
  • the lifting screw is screwed to the adjusting nut
  • the adjusting nut is rotationally connected to the supporting frame
  • the adjusting nut and the supporting frame are at the adjusting nut Is relatively fixed in the axial direction; the lifting screw is connected with the magnet module.
  • the support frame includes a groove body and a cover plate, and a limited groove is provided on the groove body; an annular limiting protrusion is provided on the adjusting nut, the annular limiting protrusion extends along the circumferential direction of the adjusting nut, and the annular limiting protrusion
  • the outer circumferential surface of the adjusting nut protrudes outward in the radial direction of the adjusting nut; the ring-shaped limit protrusion is located in the limit groove, and the cover plate is connected with the groove body and covers the notch of the limit groove to make the ring-shaped limit protrusion Restricted between the bottom of the limit groove and the cover.
  • An embodiment of the present disclosure also provides a control method of a crawling welding robot, which includes the following steps:
  • the beneficial effects of the embodiments of the present disclosure include, for example:
  • the crawling welding robot and its control method provided by the present disclosure can achieve crawling without a track and without guidance, with a large welding range and being able to move on the surface of large and medium-sized plane or arc welding structures.
  • Vertical wall climbing can perform welding operations in forward or backward movements, thereby achieving all-position welding of large and medium-sized structural parts, which can significantly reduce welding auxiliary time and high production efficiency; adjust the magnetic adsorption force through the adjustable magnetic adsorption module
  • the size can realize the crawling of flat plates and arc plates with large curvature, and the adaptability of the working environment is high.
  • FIG. 1 is a three-dimensional structural schematic diagram of a crawling welding robot provided by an embodiment of the present disclosure
  • FIG. 2 is an exploded view of a crawling welding robot provided by an embodiment of the present disclosure
  • FIG. 3 is a side view of a crawler frame and a wheeled walking mechanism of a crawling welding robot provided by an embodiment of the present disclosure
  • FIG. 4 is a three-dimensional structural schematic diagram of a crawler frame and a wheeled walking mechanism of a crawling welding robot provided by an embodiment of the present disclosure
  • FIG. 5 is a bottom view of a crawling welding robot provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural view of a welding swing mechanism and a laser tracking swing mechanism of a crawling welding robot provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a laser tracking module of a crawling welding robot provided by an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a welding gun angle swing clamping mechanism of a crawling welding robot provided by an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a windproof device of a crawling welding robot provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an adjustable magnetic adsorption module of a crawling welding robot provided by an embodiment of the present disclosure
  • FIG. 11 is a control principle diagram of a crawling welding robot provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a fixing bracket provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural view of a windshield provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a lifting adjustment module provided by an embodiment of the present disclosure.
  • 15 is a schematic structural diagram of a magnet module provided by an embodiment of the present disclosure.
  • 1 Crawler frame; 1-1: body connecting plate; 1-2: sliding groove; 1-3: adjustment block; 1-4: adjustment screw; 1-5: side plate; 1-6: tension Mechanism; 2: Wheeled walking mechanism; 2-1: driving wheel; 2-2: magnetic seat; 2-3: roller chain; 2-4: driven wheel; 2-56: first drive device; 2- 5: corner reduction motor; 2-6: servo motor; 3: torch swing mechanism; 3-1: first linear motor; 3-2: first linear guide rail; 3-3: first transmission rack; 3-4: Third drive device; 3-5: First transmission gear; 4: Laser tracking oscillating mechanism; 4-1: Second linear motor; 4-2: Second linear guide; 4-3: Second Transmission rack; 4-4: Fourth drive device; 4-5: Second transmission gear; 5: Laser tracking module; 5-1: Mounting frame; 5-2: Multi-filter; 5-3: Laser sensor ; 5-4: camera; 6: welding torch angle swing clamping mechanism; 6-1: corner swing device; 6-2: locking mechanism; 6-3: clamp; 7: windproof device; 7-1: windproof cover
  • connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
  • the present disclosure provides a crawling welding robot, including an adjustable magnetic adsorption module 9, a wheeled walking mechanism 2, a crawler frame 1 and a welding load device 11, the welding load device 11 It is installed on the crawler frame 1; the wheeled walking mechanism 2 is provided on the opposite ends of the crawler frame 1 to provide the crawler frame 1 with the power required for crawling; the adjustable magnetic adsorption module 9 is provided on The crawler locomotive frame 1 is provided between two wheeled walking mechanisms 2.
  • the wheeled walking mechanism 2 drives the welding robot to move, and can run smoothly without a track, while also ensuring that the welding robot has sufficient crawling power.
  • the adjustable magnetic adsorption module 2 the magnetic force of the surface to be adsorbed is adjusted so that it can achieve the optimal magnetic force without being too large or too small, so that it can be applied to different curved surfaces.
  • the wheeled walking mechanism 2 includes a magnetic base 2-2, a roller chain 2-3, a driving wheel 2-1, a driven wheel 2-4 and a first driving device 2-56.
  • the first driving device 2-56 is fixedly installed on the crawler frame 1, the first driving device is connected to the driving wheel 2-1, and is used to drive the driving wheel 2-1 to rotate, and the driving wheel 2-1 and the driven wheel 2-4 Both are rotatably set on the crawler frame 1, the driving wheel 2-1 and the driven wheel 2-4 are connected by a roller chain 2-3, and the magnetic base 2-2 is set on the roller chain 2-3.
  • the crawler frame 1 includes a body connecting plate 1-1 and side plates 1-5, and the first driving device 2-56 is fixedly disposed on the body connecting plate 1- Below 1, the driving wheel 2-1 and the driven wheel 2-4 are both set on the side plates 1-5, and the driving wheel 2-1 drives the driven wheel 2-4 to rotate through the roller chain 2-3.
  • the connecting plate 1-1 is a rectangular plate-like structure provided with a plurality of waist-shaped holes, and the waist-shaped holes penetrate the connecting plate 1-1 along a plane perpendicular to the connecting plate 1-1. Arranged in a rectangular array.
  • the number of side plates 1-5 is two. The two side plates 1-5 are respectively disposed on both sides of the width direction of the connecting plate 1-1.
  • the two side plates 1-5 are fixedly connected to the connecting plate 1-1.
  • the plate surface of the side plate 1-5 is perpendicular to the plate surface of the connection plate 1-1.
  • the wheeled walking mechanism 2 includes two roller chains 2-3, two driving wheels 2-1, two driven wheels 2-4 and two first driving devices 2-56, one driving wheel 2-1, one
  • the driven wheel 2-2, a roller chain 2-3, and a first driving device 2-56 form a group to form a walking assembly, and the two walking assemblies correspond to the two side plates 1-5, respectively.
  • the two roller chains 2-3 of the wheeled walking mechanism 2 are arranged in parallel at intervals.
  • the magnetic base 2-2 is rigidly connected to the extension pin on the roller chain 2-3.
  • each group of walking assemblies includes a plurality of magnetic seats 2-2, and a plurality of magnetic seats 2-2 fixedly mounted on the same roller chain 2-3 are evenly arranged along the circumferential direction of the roller chain 2-3 .
  • the number of extension pins is multiple, and the number of extension pins is in one-to-one correspondence with the number of magnetic seats 2-2.
  • the roller chain 2-3 drags the magnetic base 2-2 to move, and the head end magnetic base 2-2 in the advancing direction moves from the state of detaching the structural part to the state of attracting the structural part, while advancing at the same time
  • the end magnetic base 2-2 in the direction goes from the state of adsorbing structural parts to the state of detaching structural parts.
  • the entire wheeled walking mechanism 2 can maintain the total adsorption force unchanged, so the crawling welding robot can be reliably and smoothly adsorbed on the structure On the part and relative to the structural part.
  • the roller chain 2-3 drags the magnetic base 2-2 to move, and the head end magnetic base 2-2 in the backward direction moves from the state of disengagement into the state of adsorption structure, and at the same time, it moves backward
  • the end magnetic base 2-2 in the direction goes from the state of adsorbing structural parts to the state of detaching structural parts.
  • the entire wheeled walking mechanism 2 can maintain the total adsorption force unchanged, so the crawling welding robot can be reliably and smoothly adsorbed on the structure On the part and relative to the structural part.
  • the number of the first driving devices 2-56 is two, respectively driving the two driving wheels 2-1 of the two wheeled walking mechanisms 2, and the two first driving devices 2-56 are independently provided
  • Each of the first driving devices 2-56 can be controlled independently, so that the rotation speeds of the driving wheels 2-1 on the left and right sides of the wheeled walking mechanism 2 can be different, and the steering function of the crawling welding robot can be realized by using the differential speed principle.
  • both the driving wheel 2-1 and the driven wheel 2-4 are provided with walking wheels, and the walking wheels may be tires.
  • the driving wheel 2-1 is fixed on the first driving device 2-56, and the first driving device is fixed on the corresponding side plate 1-5.
  • a guide device is provided on the car body, the guide device is provided with a guide groove, and a guide block is installed on the magnetic base 2-2.
  • the guide block snaps into the guide groove when the roller chain 2-4 drives.
  • the first driving device 2-56 includes a servo motor 2-6 and a corner reduction motor 2-5, the servo motor 2-6 is connected to the corner reduction motor 2-5, and the servo motor 2-6 Both the angle reduction motor 2-5 and the angle reduction motor 2-5 are fixed on the crawler frame 1, the driving wheel 2-1 is fixed on the flange of the angle reduction motor 2-5, and the driving wheel 2-1 can be driven to rotate through the servo motor 2-6.
  • the corner reduction motor 2-5 is rigidly fixed on the vehicle body connection plate 1-1
  • the servo motor 2-6 is fixed on the connection plate 1-1
  • the servo motor 2-6 drives the initiative through the corner reduction motor 2-5
  • the wheel 2-1 rotates relative to the side plate 1-5.
  • the side plates 1-5 of the crawler frame 1 are provided with sliding grooves 1-2, and the driven wheels 2-4 are slidably disposed in the sliding grooves 1-2.
  • the side wall of the sliding groove 1-2 is provided with a second driving device for driving the driven wheel 2-4 to move in the sliding groove 1-2, thereby changing the driving wheel 2-1 and the driving wheel 2-1 located on the same side plate 1-5
  • the distance between the driven wheels 2-4 realizes the tension or slack of the roller chain 2-3.
  • the roller chain 2-3 can be tensioned; or, when the driven wheel 2-4 slides in the sliding groove 1-2 so that the distance between the driven wheel 2-4 and the driving wheel 2-1 is reduced, the roller chain 2-3 can be relaxed.
  • the driven wheel 2-4 is driven to slide in the sliding groove 1-2 by the second driving device, so that the distance between the driven wheel 2-4 and the driving wheel 2-1 is adjustable, and thus can be used as a tensioning mechanism 1-6 Tension of roller chain 2-3.
  • the tensioning mechanism 1-6 includes an adjustment block 1-3 and an adjustment screw 1-4; the driven wheel 2-4 is set on the adjustment block 1-3 by rotation, and the adjustment block 1-3 is slidably set In the sliding groove 1-2, one end of the adjusting screw 1-4 is rotatably connected with the adjusting block 1-3, and has axial positioning between the adjusting block 1-3, in other words, the adjusting screw 1-4 and the adjusting block 1-3 is relatively fixed in the axial direction of the adjusting screw 1-4.
  • the sliding groove 1-2 is provided with a through hole on the side wall in the sliding direction of the adjusting block 1-3, the through hole may be a threaded hole, the adjusting screw 1-4 is screwed to the threaded hole, and the adjusting screw 1-4 is away from the adjustment
  • the end of the block 1-3 extends out of the threaded hole.
  • the adjustment screw 1-4 may also be arranged in such a manner that one end is screwed to the adjustment block 1-3, the other end extends out of the side wall of the sliding groove 1-2, and the adjustment screw 1-4 Rotatingly connected with the sliding groove 1-2, the adjusting screw 1-4 and the sliding groove 1-2 have axial positioning, in other words, the adjusting screw 1-4 and the sliding groove 1-2 are in the axial direction of the adjusting screw 1-4 Relatively fixed.
  • the adjustment screw 1-4 does not move axially when it rotates about its own axis relative to the sliding groove 1-2, and because the adjustment screw 1-4 is screwed with the adjustment block 1-3, the adjustment block 1 -3 will move in the sliding groove 1-2 along the axis of the adjusting screw 1-4, so as to achieve the purpose of driving the driven wheel 2-4 to move linearly, and finally achieve the elastic adjustment of the roller chain 2-3.
  • the roller when the driven wheel 2-4 moves away from the driving wheel 2-1, a tensioning function can be realized, and when the driven wheel 2-4 moves toward the driving wheel 2-1, the roller can be made to roll.
  • the sub-chain 2-3 is slack, which facilitates the disassembly and installation of the roller chain 2-3.
  • the welding load device 11 includes a welding frame 10 and a torch swing mechanism 3; the welding frame 10 is fixedly disposed on the body connecting plate 1-1 of the crawler frame 1; the welding swing mechanism 3 It includes a first linear motor 3-1, a first linear guide 3-2, a third driving device 3-4, a first transmission gear 3-5 and a first transmission rack 3-3.
  • the first linear motor 3-1 is fixedly arranged on the welding frame 10, and the first linear guide 3-2 is connected to the first linear motor 3-1;
  • the first transmission gear 3-5 is rotatably arranged on the first linear guide On 3-2, the first transmission rack 3-3 is slidingly connected with the first linear guide 3-2, and the first transmission gear 3-5 is meshed with the first transmission rack 3-3.
  • the third driving device 3-4 is connected to the first transmission gear 3-5.
  • the third driving device 3-4 is used to drive the first transmission gear 3-5 to rotate, thereby driving the first transmission rack 3-3 relative to the first The linear guide 3-2 slides back and forth.
  • the first linear motor 3-1 can drive the first linear guide 3-2 to perform linear movement in the x direction on the welding frame 10, in other words, the first linear motor 3-1, the first The linear guide 3-2 and the welding frame 10 together form a screw transmission structure; by rotating the first transmission gear 3-5 provided on the first linear guide 3-2 and slidingly provided on the first linear guide 3-
  • the cooperation of the first transmission rack 3-3 on the 2 can drive the welding gun 12 provided on the first transmission rack 3-3 to move up and down in the z direction, so as to realize the welding gun 12 in the x direction and the z direction Position adjustment.
  • the wheeled walking mechanism 2 it can walk in the y direction to realize the position adjustment of the welding gun 12 in the y direction, and finally achieve the position adjustment of the welding gun 12 in the three-dimensional direction.
  • the x direction is set parallel to the adsorbed surface and perpendicular to the walking direction of the wheeled walking mechanism 2
  • the y direction is set to the walking direction of the wheeled walking mechanism 2
  • the z direction is set perpendicular to the adsorbed surface Direction.
  • the crawling welding robot can make the welding gun 12 and the position to be welded accurately aligned during welding, and improve the welding quality.
  • the third driving device 3-4 may be a handle or a turntable, which can rotate the handle or the turntable manually, thereby driving the first transmission gear 3-5 to rotate, and driving the mesh with the first transmission gear 3-5
  • the first transmission rack 3-3 slides, and finally the position adjustment of the welding gun 12 in the y direction is achieved, in other words, the height adjustment of the welding gun 12 is finally achieved.
  • the third driving device 3-4 can also be a motor, which is connected to the motor through the controller to realize the automatic adjustment of the height of the welding gun 12, or the controller can be used to remotely control the motor, thereby achieving the welding gun 12 Remote adjustment of height.
  • the welding load device 11 further includes a welding gun corner pendulum clamping mechanism 6.
  • the welding gun angle pendulum clamping mechanism 6 can realize the rotation of the welding gun 12 about the axis parallel to the y direction, and realize the adjustment of the welding angle of the welding gun 12.
  • the welding gun corner pendulum clamping mechanism 6 includes a corner pendulum 6-1, a locking mechanism 6-2, and a clamp 6-3.
  • the angle pendulum 6-1 is connected to the clamp 6-3 to drive the welding gun provided on the clamp 6-3 to swing or rotate;
  • the locking mechanism 6-2 is arranged on the angle pendulum 6-1 and is connected to the first A transmission rack 3-3 is fixedly connected.
  • the angle pendulum 6-1 includes a stepping motor and a rotating platform with a reduction function, the rotating platform is connected to the stepping motor, the clamp 6-3 is connected to the rotating platform, and the clamp 6-3 is used for clamping and fixing Welding gun 12, the locking mechanism 6-2 can fixedly connect the stepping motor to the first transmission rack 3-3, and the stepping motor drives the rotating platform to rotate, which in turn drives the welding gun 12 located on the clamp 6-3 to move. High-precision rotation or pendulum movement of the welding gun 12 is realized.
  • the stepping motor can be started to drive the welding gun 12 to rotate or swing back and forth within the set angle range, and can be kept at the set position, which is convenient for welding operations .
  • the welding rack 10 is provided with a laser tracking tilt mechanism 4 and a laser tracking module 5.
  • the laser tracking mechanism 4 can adjust the position of the laser tracking module 5 in the x and z directions, so that the laser tracking module 5 can reach the optimal position; the laser tracking module 5 can collect and analyze the data of the position that needs to be welded first.
  • the position and angle of the torch 12 are adjusted accurately together, so that the torch 12 is to be welded Match the position to ensure the welding quality.
  • the laser tracking tilt mechanism 4 and the welding gun tilt mechanism 3 are located on opposite sides of the welding frame 10.
  • the laser tracking mechanism 4 includes a second linear motor 4-1, a second linear guide 4-2, a fourth driving device 4-4, a second transmission gear 4-5, and a second transmission rack 4-3.
  • the second linear motor 4-1 is fixed on the welding frame 10, and is located on opposite sides of the welding frame 10 with the first linear motor 3-1, and the second linear guide 4-2 is connected to the second linear motor 4-1 ;
  • the second transmission gear 4-5 is rotatably set on the second linear guide 4-2, the second transmission rack 4-3 and the second linear guide 4-2 are slidingly fitted, and the second transmission gear 4-5 and the second The transmission rack 4-3 meshes;
  • the fourth drive device 4-4 is connected to the second transmission gear 4-5, and is used to drive the second transmission gear 4-5 to rotate, thereby driving the second transmission rack 4-3 to reciprocate linearly. .
  • the second linear motor 4-1 can drive the second linear guide 4-2 to perform linear movement in the x direction on the welding frame 10.
  • the second linear motor 4-1, the welding frame 10, and the first The two linear guides 4-2 together constitute the screw drive structure.
  • the second transmission gear 4-5 provided on the second linear guide 4-2 and the second transmission rack 4-3 slidingly provided on the second linear guide 4-2 it can drive the second transmission gear 4-5
  • the laser tracking module 5 on the transmission rack 4-3 can be moved up and down in the z direction, and then the position of the laser tracking module 5 in the x direction and the z direction can be adjusted, and then the wheeled walking mechanism 2 can walk to achieve
  • the adjustment of the laser tracking module 5 in the y direction finally realizes the position adjustment of the welding gun 12 in the three-dimensional direction.
  • the x direction is set parallel to the adsorbed surface and perpendicular to the walking direction of the wheeled walking mechanism 2
  • the y direction is set to the walking direction of the wheeled walking mechanism 2
  • the z direction is set perpendicular to the adsorbed surface Direction.
  • the crawling welding robot can accurately find the position to be welded when welding, and ensure that the welding torch 12 accurately matches the position to be welded.
  • the fourth driving device 4-4 may include a handle or turntable, the handle or turntable is connected to the second transmission gear 4-5, and the second transmission gear 4-5 is rotated by manually turning the handle or turntable, which in turn drives and The second transmission rack 4-3 meshed with the second transmission gear 4-5 slides back and forth relative to the second linear guide rail 4-2, and finally adjusts the height of the laser tracking module 5.
  • the fourth driving device 4-4 may include a motor, the output shaft of the motor is connected to the second transmission gear 4-5, and the motor is connected to the motor through the controller, thereby achieving the height of the laser tracking module 5 Automatic adjustment, or use the controller to remotely control the motor, thereby achieving remote adjustment of the height of the laser tracking module 5.
  • the laser tracking module 5 includes a camera 5-4, a laser sensor 5-3, a mounting bracket 5-1, and a multi-filter 5-2.
  • the camera 5-4, the laser sensor 5-3 and the multi-filter 5-2 are all set on the mounting frame 5-1; the mounting frame 5-1 is fixedly set on the second transmission rack 4-3.
  • the laser sensor 5-3 and the camera 5-4 are both rotatably set on the mounting bracket 5-1, and the rotation adjustment of the laser sensor 5-3 and the camera 5-4 can be realized, thereby adjusting the laser sensor 5-3 and the camera 5-4 viewing angle.
  • the multi-filter 5-2 includes a combination of various filters of different specifications, which can effectively filter the interference of arc and other related light sources.
  • an advanced welding seam recognition, tracking and welding control system is adopted, which can obtain the geometric shape and position information of the welding seam, so the welding quality can be guaranteed.
  • Welding seam tracking accuracy can reach ⁇ 0.3mm, the height is within ⁇ 0.5mm, and the tracking range is not limited.
  • the welding auxiliary time can be significantly reduced, and the production efficiency is high.
  • the welding frame 10 is also provided with a windproof device 7;
  • the windproof device 7 includes a fixed bracket 13 and a windproof cover 7-1.
  • One end of the fixed bracket 13 is connected to the welding frame 10, and another One end is connected to the windshield body 7-1;
  • the fixed bracket 13 includes a telescopic translation plate 7-4, and a slideway 7-3 in the left-right direction and a slideway 7-11 in the front-rear direction are provided on the telescopic translation plate 7-4, and the windshield body 7 -1 is provided with a slideway 7-2 in the up and down direction, so that the windshield 7-1 can be adjusted in three dimensions, and at the same time, the windshield 7-1 can be adjusted after the position adjustment of the windshield 7-1 is completed Fix it to keep the draft shield 7-1 in the set position.
  • the wind shield body 7-1 is provided outside the welding gun 12 and fixedly connected to the welding robot through the fixing bracket 13.
  • the position of the welding torch 12 is adjusted, the position of the windshield body 7-1 can be adjusted through the fixed bracket 13 on the windshield body 7-1, The position of the windshield body 7-1 and the position of the welding gun 12 are matched to ensure the windproof performance of the windshield body 7-1.
  • the fixed bracket 13 includes a fixed bottom plate 7-5, a fixed connection plate 7-14 and a telescopic translation plate 7-4.
  • the number of fixing holes in the present disclosure is four.
  • Fixing base plates 7-5 are fixed to the vehicle body connecting plate 1-1 of the welding robot through fixing holes through fixing holes.
  • the fixed connection plate 7-14 is fixedly connected to one side or a surface of the fixed bottom plate 7-5.
  • the fixed connection method may be welding, riveting, bolt connection, or integrated installation, as long as the fixed bottom plate 7-5 and the fixed connection plate 7-14 can be fixedly connected together.
  • the telescopic translation plate 7-4 is connected to the fixed connection plate 7-14.
  • connection method of the telescopic translation plate 7-4 and the fixed connection plate 7-14 can be fixed connection through a fixed bolt.
  • the fixed bolt passes through the fixed connection plate at the same time
  • the first connecting hole 7-141 on 7-14 and the slideway 7-11 on the front and back direction on the telescopic translation plate 7-4 are tightened on the fixing bolts by nuts to realize the fixing of the connecting plate 7-14 and the telescopic translation plate 7 -4 Purpose of fixed connection.
  • the setting of the slideway 7-11 in the front-rear direction allows the connection position of the fixed connecting plate 7-14 and the telescopic translation plate 7-4 to be moved and adjusted according to the extending direction of the slideway 7-11 in the front-rear direction, thereby making the windshield body 7 -1 can be fixed at a more suitable position in the front-rear direction.
  • the number of slideways 7-11 in the front-rear direction is set as required.
  • the number of slideways 7-11 in the front-rear direction is four, and the four slideways 7-11 in the front-rear direction are arranged in a rectangular array. cloth.
  • the number of the first connecting holes 7-141 provided on the fixed connecting plate 7-14 is set as required, to ensure that at least one first connecting hole 7-141 corresponds to one front-to-rear slide 7-11.
  • the number of first connection holes 7-141 is eight, two first connection holes 7-141 are a group, and two first connection holes 7-141 in the same group are connected Direction slides 7-11 cooperate.
  • the telescopic translation plate 7-4 has a bend, in other words, the telescopic translation plate 7-4 includes a first plate portion 7-41 and a second plate portion 7-42 that are connected and arranged vertically
  • the first plate portion 7-41 and the second plate portion 7-42 may be integrally formed.
  • the front-rear slideway 7-11 is provided on the second plate portion 7-42-, and the left-right slideway 7-3 is provided on the first plate portion 7-41.
  • the windshield body 7-1 is provided with a slideway 7-2 in the up-and-down direction.
  • the nut is tightened to realize the telescopic translation plate 7-4
  • the installation of the slideway 7-3 in the left-right direction allows the connection position between the telescopic translation plate 7-4 and the windshield body 7-1 to be moved and adjusted according to the slideway 7-3 in the left-right direction, thereby making the windshield body 7 -1 can be fixed at a more suitable position in the left-right direction.
  • the vertical slideway 7-2 is provided so that the connection position between the telescopic translation plate 7-4 and the windshield body 7-1 can be moved and adjusted according to the vertical slideway 7-2, thereby making the windshield body 7 -1 can be fixed at a more suitable position in the up and down direction.
  • the number of left and right slideways 7-3 provided on the first plate portion 7-41 may be four, and the four left and right slideways 7-3 are arranged in a rectangular array.
  • the number of the up and down direction slideways 7-2 provided on the windshield body 7-1 may be four, and the four up and down direction slideways 7-2 are arranged in a rectangular array.
  • connection stability between the telescopic translation plate 7-4 and the fixed connection plate 7-14 optionally, in order to ensure the connection stability between the telescopic translation plate 7-4 and the fixed connection plate 7-14, the connection stability between the telescopic translation plate 7-4 and the windshield body 7-1 ,
  • the slideways 7-11 in the front-rear direction, the slideways 7-3 in the left-right direction, and the slideways 7-2 in the up-down direction are provided as at least two, and are symmetrically arranged.
  • a flexible protective skirt is provided on the bottom edge of the windshield body 7-1, and the flexible protective skirt extends along the circumferential direction of the windshield body 7-1 and is annular, through the flexible protective skirt.
  • the flexible protective skirt is fixed to the windshield body 7-1 by bolts, and it is convenient for disassembly and replacement after the flexible protective skirt is damaged.
  • the flexible protective skirt and the windshield body 7-1 are fixed by bolts, but the flexible protective skirt and the windshield body 7-1 are not limited to the use of bolts, but can also be used Other fixing methods, such as rivet fixing or adhesive bonding, that is, as long as the flexible protective skirt can be fixed to the bottom of the windshield body 7-1.
  • a lower bead 7-13 is provided on the flexible protective skirt, and both the lower bead 7-13 and the flexible protective skirt are fixed to the bottom of the windshield body 7-1 by bolts, thereby enabling Ensure that the flexible protective skirt fits the bottom of the windshield body 7-1, thereby improving the protection ability of the flexible protective skirt to the windshield body 7-1.
  • the material of the flexible protective skirt adopts a high temperature resistant flexible material or a metal brush bar.
  • the windshield body 7-1 Since the welding torch 12 will move axially or laterally during the welding process, the windshield body 7-1 is fixed, so it is necessary to use a soft connection at the connection position of the windshield body 7-1 and the welding gun 12 to make the windproof
  • the cover 7-1 does not affect the movement of the welding torch 12, but also can ensure the windproof performance of the windproof cover 7-1.
  • the top end of the wind shield body 7-1 is provided with a flexible protective cap for soft connection with the welding gun 12.
  • the flexible protective cover is made of flexible high-temperature resistant material.
  • the flexible high-temperature resistant material and the edge of the top of the windshield body 7-1 are fixedly connected by means of bolts and upper pressure bars 7-12, and the middle of the flexible protective cover is opened at the same time. A hole for the welding gun 12 to pass through.
  • the flexible protective cap and the top of the welding gun 12 are connected by a clamp mechanism, that is, the flexible protective cap is wrapped around the welding gun 12, and the external is locked by the clamp mechanism.
  • an observation window 14 is provided on the windshield body 7-1, and the observation window 14 is located through the observation window 14 The state of the welding gun 12 inside the device 7 during welding.
  • the observation window 14 includes a transparent window.
  • the transparent window is set as a high temperature resistant lens. During the welding operation, the transparent window is less affected by the high temperature, and the service life of the transparent window is extended.
  • the observation window 14 is rotatably connected with the windshield body 7-1.
  • the situation in the windshield body 7-1 can be relatively comprehensively understood and grasped, so that the unexpected situation can be grasped and handled in time.
  • the rotation connection between the observation window 14 and the draft shield body 7-1 is a ball connection.
  • the observation window 14 is provided with a hinged sphere 7-8, and the hinged sphere 7-8 is provided with an observation through-hole connecting the observation window 14 and the windshield 7-1; the windshield 7-1 is provided with a fixed The flange 7-6 and the hinged sphere 7-8 are positioned on the fixed flange 7-6 through the movable flange 7-7.
  • the movable flange 7-7 is used to connect the hinged sphere 7- 8 is fixed on the fixed flange 7-6, and the part of the hinged sphere 7-8 is limited between the fixed flange 7-6 and the movable flange 7-7, so that the hinged sphere 7-8 cannot be separated from the fixed flange 7- 6 and movable flange 7-7, and can only rotate between fixed flange 7-6 and movable flange 7-7.
  • An observation through hole is provided on the hinged sphere 7-8.
  • One end of the observation through hole communicates with the observation window 14 and the other end communicates with the interior of the windshield 7-1, so that the hinged sphere 7-8 will not affect the passage of the observation window Observation of the inside of the windshield 7-1.
  • connection between the observation window 14 and the windshield body 7-1 is a ball connection, but it is not limited to the ball connection, it can also be other rotational connection methods, that is, That is to say, as long as it can be connected by rotation, the viewing angle of the viewing window 14 can be changed, and the field of view of the viewing window 14 can be increased.
  • the observation window 14 includes a main observation window 7-9 and an auxiliary observation window 7-10, and the main observation window 7-9 and the auxiliary observation window 7-10 are respectively disposed at a certain angle with the windshield body 7-1. It should be noted that both the main observation window 7-9 and the auxiliary observation window 7-10 can be rotatably connected to the windshield body 7-1 through the ball structure.
  • Observing the situation in the windshield body 7-1 through the main observation window 7-9 and the auxiliary observation window 7-10 can increase the visual field of observation and help to more comprehensively understand the internal conditions of the windshield body 7-1.
  • the angle between the main observation window 7-9 and the windshield body 7-1 is 30°-60°, in this embodiment, the angle between the main observation window 7-9 and the windshield body 7-1 45°; the angle between the auxiliary observation window 7-9 and the windshield body 7-1 is 30°-60°, in this embodiment, the angle between the auxiliary observation window 7-9 and the windshield body 7-1 Is 45°.
  • the windshield body 7-1 is made of a high-temperature resistant light alloy.
  • the adjustable magnetic adsorption module 9 includes a magnet module 15 and a lifting adjustment module 16.
  • the lifting adjustment module 16 is connected to the magnet module 15 to control the lifting of the magnet module 15;
  • the adjustment module 16 includes a plurality of independently controllable lifting mechanisms. By separately adjusting the plurality of independently controlled lifting mechanisms, the angle and/or gap between the magnet module 15 and the surface to be adsorbed are changed.
  • the crawling welding robot can be crawled on a flat surface and an arc surface with a diameter not greater than 3 meters, and the working environment has good adaptability.
  • the magnet module 15 is provided with a lifting adjustment module 16, and the height of the magnet module 15 is adjusted by the lifting adjustment module 16, so as to adjust the gap between the magnet module 15 and the adsorbed surface.
  • This arrangement makes it possible to adjust the magnetic force of the magnet module 15 on the adsorbed surface when the adsorbed surface is an arc surface, thereby ensuring the stability of the magnetic force and the stability of the magnetic adsorption device on the arc surface.
  • the lifting adjustment module 16 includes at least two independently controllable lifting mechanisms. By separately controlling the lifting mechanisms, the lifting heights of the lifting mechanisms are different to correspond to the heights of the magnet modules 15 at various positions Adjustment, and then the adjustment of the angle between the magnet module 15 and the adsorbed surface.
  • the number of lifting mechanisms is two, and they are respectively provided on both sides of the magnet module 15.
  • the walking rollers or crawlers are provided on opposite sides of the magnet module 15, the two lifting mechanisms are provided on opposite sides of the magnet module 15, and the arrangement direction of the two lifting structures and the arrangement of the rollers or crawlers
  • the direction of the magnet module 15 is the same, and the height of the two ends of the magnet module 15 is different by controlling the lifting mechanism, so that the angle between the magnet module 15 and the surface to be adsorbed is changed, and during the driving process, it can be guaranteed to be at a different slope or arc
  • the welding robot has sufficient magnetic force and adsorption force.
  • the lifting adjustment module 16 is specifically configured as a linear drive device.
  • the lifting adjustment module 16 may perform lifting adjustment in a unified manner, and may continuously adjust the height of the magnet module 15 to ensure that it can cope with any arc surface and slope.
  • the linear drive device is provided as a worm gear mechanism, a hydraulic transmission mechanism, a rack and pinion transmission mechanism, a screw transmission mechanism, or the like.
  • the magnet module 15 is connected to the worm.
  • the rotation of the turbine drives the worm to make a linear movement, and the magnet module 15 is driven to move up and down, so as to adjust the height of the magnet module 15.
  • the magnet module 15 When the hydraulic transmission mechanism is used as the linear driving device, the magnet module 15 is connected to the hydraulic rod. When the hydraulic rod is telescopically moved, the magnet module 15 is driven to move up and down, and the height of the magnet module 15 is adjusted.
  • the rack When a rack and pinion transmission mechanism is used as a linear drive device, the rack is connected to the magnet module 15 and the gear is engaged with the rack. When the gear rotates, the rack is driven to move linearly, which in turn drives the magnet module 15 to move up and down to realize the magnet module 15 height adjustment.
  • the screw drive mechanism When the screw drive mechanism is used as a linear driving device, the threaded rod and the magnet module 15 are screw-connected, and the threaded rod and the magnet module 15 are relatively fixed in the circumferential direction of the threaded rod. When the threaded rod rotates, the magnet module 15 will move along the threaded rod The axis moves linearly, which in turn drives the magnet module 15 to move up and down to achieve the adjustment of the height of the magnet module 15.
  • the linear driving device includes any one or several of the above-mentioned manners, which can be arbitrarily combined.
  • the linear driving device can be the above-mentioned several setting methods, but it is not limited to the above-mentioned several methods, it can also have other linear methods, such as a crank slider mechanism, etc., that is That is, as long as the linear drive device can realize the linear lift of the magnet module 15.
  • the lifting mechanism is provided as a threaded lifting adjustment mechanism.
  • the threading lifting adjustment mechanism includes a support frame 16-1, a lifting screw 9-6 and an adjusting nut 16-2.
  • the adjusting nut 16-2 is rotatably set on the supporting frame 16-1, the adjusting nut 16-2 and the supporting frame 16-1 are relatively fixed along the axis direction of the adjusting nut 16-2, the adjusting nut 16-2 and the lifting screw 9-6 Screw connection; the lifting screw 9-6 is movably connected with the magnet module 15.
  • Each lifting mechanism is adjusted by means of a threaded screw, and the lifting screw 9-6 is movably connected to the magnet module 15.
  • the method of the movable connection can be a rotary connection or a universal connection, as long as it can simultaneously align the magnet The height and angle of the module 15 can be adjusted.
  • two mounting ears 9-7 are provided at both ends of the magnet module 15, the two mounting ears 9-7 are arranged in parallel and spaced apart, and each mounting ear 9-7 is provided with a rotation hole 9 -11, the lifting screw 9-6 is connected with the rotating shaft 9-8, the two ends of the rotating shaft 9-8 are inserted into the corresponding rotating holes 9-11, and the rotating shaft 9-8 and the rotating hole 9-11 are rotationally matched, Furthermore, the rotation connection between the rotating shaft 9-8 and the mounting ear 9-7 is realized.
  • the adjustment nut 16-2 is rotatably provided on the support frame 16-1, which cannot perform axial movement on the support frame 16-1, which can not only prevent the adjustment nut 16-2 from falling off, but also ensure The role of the axial fixing of the adjusting nut 16-2.
  • the adjusting nut 16-2 is threadedly connected to the lifting screw 9-6. By turning the adjusting nut 16-2, the lifting screw 9-6 can be moved axially, which in turn drives one end of the magnet module 15 movably connected to the lifting screw 9-6 Raise or lower to achieve height adjustment of one end of the magnet module 15.
  • the magnet module 15 When the adjustment directions and heights of the opposite ends of the magnet module 15 are the same, the magnet module 15 only changes the gap with the adsorbed surface; when the adjustment directions and/or adjustment heights of the opposite ends of the magnet module 15 are different, the magnet module 15 changes with The angle between the adsorbed surfaces.
  • the adsorption force between the magnet module 15 and the adsorbed surface changes, which in turn enables the magnet module 15 to adapt to different curved surface environments, ensuring that the magnet module 15 and the adsorbed surface Of adsorption.
  • the support frame 16-1 includes a groove 9-4 and a cover 9-3.
  • the slot body 9-4 is provided with a limit slot 9-41
  • the limit slot 9-41 is a cylindrical slot.
  • the adjusting nut 16-2 is provided with a ring-shaped limit protrusion 16-21.
  • the ring-shaped limit protrusion 16-21 is located at one end of the adjustment nut 16-2.
  • the ring-shaped limit protrusion 16-21 is a cylindrical protrusion, and the ring-shaped limit The position protrusion 16-21 protrudes outward from the outer circumference of the adjustment nut 16-2 in the radial direction of the adjustment nut 16-2, and the annular limit protrusion 16-21 is coaxial with the adjustment nut 16-2.
  • the ring-shaped limit protrusion 16-21 matches the limit groove 9-41.
  • the ring-shaped limit The protrusion 16-21 is rotatably engaged with the limit groove 9-41, and the end surface of the annular limit protrusion 16-21 away from the limit groove 9-41 is substantially flush with the end surface of the limit groove 9-41.
  • the cover plate 9-3 can block the notch of the limit groove 9-41, so that the annular limit protrusion 16-21 will not be separated from the limit groove 9-41 from the cover plate, thereby realizing the adjustment nut 16-2 and
  • the groove 9-4 is relatively fixed in the axial direction of the adjusting nut 16-2.
  • the groove body 9-4 is a box-shaped structure, and a through hole for allowing the lifting screw 9-6 to pass through is provided at the bottom of the groove.
  • the through hole communicates with the bottom of the limiting groove 9-41, and the adjusting nut 16- 2 After being inserted into the limiting groove 9-41, the annular limiting protrusion 16-21 is limited to the bottom of the limiting groove 9-41 without falling from the through hole.
  • the end of the through hole far from the bottom of the limiting groove 9-41 is provided with a chamfer to facilitate the installation of the lifting screw 9-6.
  • the chamfering can be set to rounded corners or 45° ⁇ 45° chamfering, or other types of chamfering, as long as it can pass the setting of chamfering, it is convenient to install the lifting screw 9-6.
  • the cover plate 9-3 and the groove body 9-4 are fixedly connected by a fixing bolt, which can not only facilitate maintenance and replacement of the adjusting nut 16-2, but also ensure the axial positioning of the adjusting nut 16-2.
  • the fixed connection between the cover 9-3 and the groove 9-4 may be the above-mentioned connection through a fixed bolt, but it is not limited to only one of the above-mentioned arrangements, it also It can be other fixed connection methods, such as pin connection or snap connection, that is, as long as the cover 9-3 and the groove 9-4 are fixedly connected together by detachable connection .
  • cover 9-3 and the tank 9-4 are detachably connected, and the cover 9-3 and the tank 9-4 may also be provided as a non-detachable connection, such as
  • the cover 9-3 and the tank 9-4 can be fixedly connected by welding or riveting, that is, as long as the cover 9-3 and the tank 9-4 can be fixedly connected, the adjustment nut can be realized Axial positioning of 16-2 is sufficient.
  • An adjustment hole 9-31 is provided on the cover 9-3; the adjustment nut 16-2 can extend upward through the adjustment hole 9-31, thereby increasing the adjustment range of the lifting screw 9-6.
  • the end of the adjusting nut 16-2 away from the magnet module 15 is provided with a driving handle 9- 1;
  • One end of the driving handle 9-1 is fixedly connected to the adjusting nut 16-2, and the other end passes through the cover plate 9-3 through the adjusting hole.
  • Such an arrangement enables the drive handle 9-1 to leak out of the cover 9-3, and then the drive adjustment nut 16-2 can be rotated outside the support frame 16-1, and the adjustment nut 16-2 can be rotated to drive up and down
  • the screw 9-6 moves axially, and finally adjusts the height of the magnet module 15.
  • the driving handle 9-1 and the adjusting nut 16-2 are fixed coaxially.
  • the driving handle 9-1 may be coaxially fixed with the adjusting nut 16-2, or it may be provided at any position on the side of the adjusting nut 16-2 away from the magnet module 15, as long as it can pass the driving The handle 9-1 can drive the adjusting nut 16-2 to rotate.
  • the driving handle 9-1 is provided with a through hole allowing the lifting screw 9-6 to pass through.
  • the through hole is a threaded hole, and the lifting screw 9-6 passes through the threaded hole and the driving handle 9-1 Threaded connection.
  • the through hole provided on the driving handle 9-1 is a threaded hole, but it is not limited to the threaded hole, it may also be provided as a straight hole, as long as it can make the lifting screw 9- 6 Pass, can increase the moving distance of the axis of the lifting screw 9-6.
  • the fixed connection between the driving handle 9-1 and the adjusting nut 16-2 is integrally provided.
  • the fixed connection between the driving handle 9-1 and the adjusting nut 16-2 may be an integrated arrangement as in the present disclosure, but it is not limited to this arrangement, it may be other Fixed connection method, such as welding, riveting or screw connection, that is, as long as the driving handle 9-1 can be fixedly connected to the adjusting nut 16-2, the driving nut can be driven to rotate through the driving handle 9-1 In order to realize the axial displacement by driving the lifting screw 9-6.
  • the support frame 16-1 includes a support bottom plate 9-5, and the support bottom plate 9-5 is used to connect with the welding mechanism.
  • a plurality of second connection holes 9-2 are provided on the support base 9-5, and the adjustable magnetic adsorption module 9 is fixedly connected to the welding robot through the installation holes through the second connection holes 9-2, through the adjustable adsorption module 9 Adsorption on the surface to be adsorbed, and then to achieve the purpose of adsorbing the welding mechanism on the surface to be adsorbed, so that the welding operation of the welding mechanism can be realized.
  • the supporting base 9-5 is provided on the outer side wall of the tank 9-4, and the multiple supporting bases 9-5 of the multiple lifting mechanisms are all provided on the same side to ensure welding with Institutional connection and installation.
  • the position and direction of the support base 9-5 can be adjusted according to the shape and connection position of the welding mechanism, as long as the welding mechanism and the lifting mechanism can be connected together through the support base 9-5.
  • the magnet module 15 includes a mounting shell 15-1, a cover 15-2, and a magnet 15-3.
  • the mounting shell 15-1 and the cover 15-2 are spliced to form a cavity 9-9
  • the magnet 15-3 is arranged in the cavity 9-9.
  • the magnet in the present disclosure is a high temperature resistant neodymium iron boron
  • the magnet is arranged in the cavity 9-9 in a manner that the N pole and the S pole are installed oppositely
  • the material of the cavity 9-9 is aluminum, which can be effective
  • the cavity cover 9-10 above the cavity 9-9 is a low carbon steel with good magnetic permeability.
  • the shell structure formed by splicing the mounting shell 15-1 and the cover 15-2 has three cavities 9-9, and the three cavities 9-9 are arranged in a straight line.
  • the number of magnets is three
  • the three magnets correspond to the three cavities 9-9 one by one.
  • the cavity 9-9 may be cylindrical, and correspondingly, the magnet 15-3 is cylindrical. It should be noted that the number of cavities 9-9 is not limited to three, and the number of magnets 15-3 is not limited to three.
  • a strong magnetic force can be formed at the bottom of the mounting shell 15-1, while the magnetic force at the top and each side is relatively weak, so that the bottom of the mounting shell 15-1 is strongly attracted to the surface to be attracted.
  • the crawler locomotive frame 1 is also provided with an attitude sensor 8.
  • the attitude sensor 8 is installed on the vehicle body connection plate 1-1, and can monitor the movement attitude of the crawling welding robot in real time, and feedback the signal to the controller, and the controller feeds back the signal to the wheeled walking mechanism 2 to realize the attitude adjustment.
  • the trackless and non-guided crawling welding robot controls the crawling welding robot to move on the surface of the large and medium-sized plane or arc welding structure through the wheel track type walking mechanism, and can climb the wall vertically; crawling
  • the welding robot can perform welding operations when moving forward or backward.
  • the CCD camera 5-4 in the laser tracking module 5 is responsible for identifying and tracking, and the camera 5-4 in the laser tracking module 5 responsible for testing the welded seam after welding, observing the forming width and base height of the welded seam.
  • the forming width and bottoming height of a welding seam are stored. After the welding is completed, these data are averaged, and the average number has a positive guiding significance for the process parameters of the cover.
  • the principle of the laser tracking module 5 for tracking the weld is as follows:
  • the image signal detected by the laser sensor 5-3 is transmitted to the industrial computer, and the image processing software sends the calculated welding seam information data to the tracking controller, and the tracking controller issues an instruction to make the welding gun 12 laterally controlled by the welding gun swing mechanism 3 Track the movement of the welding seam and instruct the welding torch 12 to track the change of dry depth through the wheeled walking mechanism 2; at the same time, the image processing software sends the calculated welding seam information data to the general controller of the crawling welding robot.
  • the general controller will The welding groove change information is transmitted to the welding power source controller, so that the process parameters of the welding power source can be adjusted in real time.
  • the torch swing mechanism 3 is provided with a displacement sensor.
  • the displacement signal generated by the displacement sensor is combined with the vehicle body attitude signal generated by the body attitude sensor 8.
  • the driving device of the welding robot keeps the crawling welding robot parallel to the welding seam, so as to perform all-position planar or arc welding operations; at the same time, the crawling welding robot is equipped with a windproof device 7, which can meet the melting of wind speed not more than 10m/s. Gas shielded welding.
  • a control method of a crawling welding robot characterized in that it includes the following steps:
  • step S2 the position coordinate, reliability and image signal of the weld seam information are measured with the laser sensor 5-3;
  • the industrial computer transmits the above-mentioned welding seam information to the tracking controller and the welding power controller through signal processing;
  • the tracking controller sends instructions based on the welding seam information
  • the welding gun 12 can track the welding seam movement and maintain the dry depth
  • the attitude sensor 8 on the body sends out the body attitude signal
  • step 7 Combining the input data of step 1, step 5 and step 6, the tracking controller performs arithmetic processing
  • the tracking controller sends the processed data to the general controller of the crawling welding robot
  • the general controller of the crawling welding robot sends out instructions after calculation, and drives the two driving wheels 2-1 through two servo motors 2-6 to rotate at different speeds, so that the crawling welding robot performs steering movement;
  • the laser tracking module 5 is driven by the wheeled walking mechanism 2 to move, so that the camera 5-4 can always lock the weld seam;
  • the welding power supply controller issues instructions according to the welding seam information, thereby adjusting the welding power supply process parameters in real time;
  • the upper computer swing software sets the corresponding welding swing parameters according to the welding process, including the control parameters of the welding type, flat pendulum, pendulum, swing amplitude, swing speed and pause time. After the control parameters are set, they are sent to the tracking controller ;
  • the tracking controller swings the welding gun 12 through the welding gun angle swing clamping mechanism 6 according to the welding swing parameters received by the upper computer;
  • the manual controller connected to the tracking controller controls the welding parameters that require fine adjustment or manual intervention during the welding process
  • the upper locomotive car body control software sets the corresponding car body control parameters according to the welding process: including automatic driving reference speed, manual driving speed and setting parameter content, the general controller of the crawling welding robot receives and saves the set process parameters, Drive according to the set value;
  • the control method of the welding gun 12 position is as follows:
  • the crawling welding robot controls the running of the wheeled walking mechanism 2 in a differential manner to realize the steering of the crawling welding robot, which can realize 360° auto-in-situ;
  • Torch swing mechanism 3, laser tracking swing mechanism 4 and wheeled walking mechanism 2 realize the position adjustment of the welding gun 12, so as to adjust the dry depth length of the welding gun 12;
  • the welding gun angle pendulum clamping mechanism 6 controls and realizes the angle pendulum of the welding gun 12 in a step-by-step drive (including a speed reducer) mode, so as to meet certain welding process requirements.
  • the wheel-over walking mechanism 2 realizes no need for track and guide crawling, and has a large welding range; it can significantly reduce welding auxiliary time and high production efficiency; it can realize all-position welding of large and medium-sized structural parts.
  • the magnetic adsorption force can be adjusted by the adjustable magnetic adsorption module, which can realize the crawling of flat plates and arc plates with large curvature, and the adaptability of the working environment is high.
  • the crawling welding robot is equipped with a windproof device 7, which can meet the gas shielded welding of the melting pole under the condition of wind speed not more than 10m/s.
  • the crawler welding robot master controller adjusts the welding power supply controller to adjust the welding power supply voltage and current to meet the welding seam. Real-time adjustment of welding process when irregular changes.
  • the crawling welding robot provided by the present disclosure, through the wheeled walking mechanism 2, realizes crawling without orbit and guide, has a large welding range, can move on the surface of large and medium-sized plane or arc welding structures, can vertically climb walls, and is advancing
  • the welding operation can be carried out during the backward or forward movement, and then the full-position welding of large and medium-sized structural parts can be realized, which can significantly reduce the welding auxiliary time and have high production efficiency;
  • the magnetic adsorption force can be adjusted by the adjustable magnetic adsorption module 9 to realize the flat plate And large curvature arc board crawling, high adaptability to working environment.
  • the present disclosure provides a crawling welding robot and its control method, which has a wide operating range and high operating efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Manipulator (AREA)

Abstract

一种爬行焊接机器人,包括可调式磁吸附模块(9)、轮覆式行走机构(2)、爬行机车架(1)和焊接负载装置(11),焊接负载装置(11)设置在爬行机车架(1)上;轮覆式行走机构(2)设置在爬行机车架(1)的相对两端,用于给爬行机车架(1)提供爬行动力;可调式磁吸附模块(9)设置在爬行机车架(1)上,且设置在两个轮覆式行走机构(2)之间。通过轮覆式行走机构(2),实现无轨道、无导向爬行,能够在大中型平面或弧面焊接结构件表面运动,可垂直爬壁,在前进或后退的运动时均能进行焊接作业,实现大中型结构件的全位置焊接,可明显减少焊接辅助时间,生产效率高;通过可调式磁吸附模块(9)来调节磁吸附力大小,可实现平板及大曲率弧板爬行,工作环境适应性高。

Description

爬行焊接机器人及其控制方法
相关申请的交叉引用
本公开要求于2018年12月07日提交中国专利局的申请号为2018114965037、名称为“爬行焊接机器人及其控制方法”的中国专利申请的优先权。
技术领域
本公开涉及焊接装置技术领域,具体而言,涉及一种爬行焊接机器人及其控制方法。
背景技术
在金属结构焊接领域,对钢制储罐、球罐、管道、船体等大中型平面或弧面设备进行焊接作业时,通常是采用手工作业为主,劳动强度大且工作环境恶劣,需要多名工人协同完成,对焊接工的技能需求较高,同时受多种因素影响会导致焊接质量无法保证,生产率低下。目前随着焊接技术和工业机器人技术的不断发展,目前市场上的焊接机器人多为关节式。
现有技术中,焊接机器人无法对钢制储罐、球罐及船体等大中型平面或弧面结构件进行焊接作业;而人工进行大中型结构件平面或弧面焊接作业时,劳动强度大且工作环境恶劣,需要多名工人协同完成,对焊接工的技能需求较高,同时受多种因素影响会导致焊接质量无法保证,生产率低下。
发明内容
本公开的目的包括,例如,提供一种爬行焊接机器人,以改善现有技术的不足,其适应环境能力强,作业效率高。
本公开的目的还包括,例如,提供一种爬行焊接机器人的控制方法。
本公开的实施例是这样实现的:
本公开的实施例提供了一种爬行焊接机器人,包括可调式磁吸附模块、轮覆式行走机构、爬行机车架和焊接负载装置,焊接负载装置设置在爬行机车架上;
轮覆式行走机构设置在爬行机车架的相对两端,用于给爬行机车架提供爬行动力;
可调式磁吸附模块设置在爬行机车架上,且设置在两个轮覆式行走机构之间。
可选的,轮覆式行走机构包括磁座、滚子链、主动轮、从动轮和第一驱动装置;
第一驱动装置固定设置在爬行机车架上;
主动轮和从动轮均转动设置在爬行机车架上;
主动轮和从动轮通过滚子链连接;
磁座设置在滚子链上。
可选的,爬行机车架上设置有滑动槽;
从动轮滑动设置在滑动槽内;
爬行机车架上设置有第二驱动装置,用于带动从动轮在滑动槽内移动,以使对应的滚子链张紧或者松弛。
可选的,爬行机车架包括调节块以及调节螺杆,调节块与滑动槽滑动配合,调节螺杆螺接于爬行机车架上,调节螺杆与调节块转动连接,且调节螺杆与调节块在调节螺杆的轴向上相对固定;当调节螺杆转动时,调节块能够在滑动槽内滑动;从动轮与调节块转动连接。
可选的,爬行机车架包括调节块以及调节螺杆,调节块与滑动槽滑动配合,调节螺杆螺接于爬行机车架上,且调节螺杆与爬行机车架在调节螺杆的轴向上相对固定,调节螺杆与调节块转动连接;当调节螺杆转动时,调节块能够在滑动槽内滑动;从动轮与调节块转动连接。
可选的,第一驱动装置包括伺服电机和转角减速电机,伺服电机与转角减速电机连接,伺服电机和转角减速电机均固定在爬行机车架上,主动轮固定在转角减速电机的法兰上,通过伺服电机能够带动主动轮转动。
可选的,爬行机车架包括车体连接板以及与车体连接板连接且相对设置的两块侧板, 两个轮覆式行走机构分别安装于两个侧板上。
可选的,焊接负载装置包括焊接架和焊枪平摆机构;
焊接架固定设置在爬行机车架上;
焊接平摆机构包括第一直线电机、第一直线导轨、第三驱动装置、第一传动齿轮和第一传动齿条;
第一直线电机固定设置在焊接架上,第一直线导轨与第一直线电机连接;第一传动齿轮转动设置在第一直线导轨上;第一传动齿轮与第一传动齿条啮合,第一传动齿条与第一直线导轨滑动配合;第三驱动装置与第一传动齿轮连接,用于驱动第一传动齿轮转动,进而带动第一传动齿条相对于第一直线导轨往复滑动。
可选的,焊接负载装置还包括焊枪角摆夹持机构;
焊枪角摆夹持机构包括角摆器、锁紧机构和卡箍;
角摆器与卡箍连接,用于带动设置在卡箍上的焊枪摆动;
锁紧机构设置在角摆器上,且与第一传动齿条固定连接。
可选的,角摆器包括相连的电机以及旋转平台,卡箍与旋转平台连接,锁紧机构与电机连接。
可选的,焊接负载装置还包括激光跟踪平摆机构和激光跟踪模块;
激光跟踪平摆机构包括第二直线电机、第二直线导轨、第四驱动装置、第二传动齿轮和第二传动齿条;
第二直线电机固定设置在焊接架上,第二直线导轨与第二直线电机连接;第二传动齿轮转动设置在第二直线导轨上;第二传动齿轮与第二传动齿条啮合,第二传动齿条与第二直线导轨滑动配合;第四驱动装置与第二传动齿轮连接,用于驱动第二传动齿轮转动,以带动第二传动齿条往复直线运动。
可选的,激光跟踪模块包括相机、激光传感器、安装架和多滤光片;
相机、激光传感器和多滤光片均设置在安装架上;
安装架固定设置在第二传动齿条上。
可选的,爬行焊接机器人还包括防风装置,防风装置与爬行机车架连接;
防风装置包括相连的固定支架和防风罩体,固定支架与焊接架连接;
固定支架包括能够沿前后方向伸缩的伸缩平移板,伸缩平移板上开设有具有夹角的左右方向滑道及前后方向滑道,防风罩体上开设有上下方向滑道,伸缩平移板与防风罩体连接,且防风罩体能够相对于伸缩平移板在上下方向滑道的延伸方向以及左右方向滑道的延伸方向上滑移,使得防风罩体能够在三个方向上进行调整。
可选的,固定支架还包括相连的固定底板以及固定连接板,固定连接板与伸缩平移板沿前后方向滑道的延伸方向滑动配合;固定底板用于与爬行机车架连接。
可选的,伸缩平移板包括相连的第一板部和第二板部,第一板部与第二板部具有夹角,左右方向滑道设置于第一板部上,前后方向滑道设置于第二板部上;第一板部与防风罩体滑动连接,第二板部与固定连接板滑动连接。
可选的,可调式磁吸附模块包括磁体模块和升降调节模块,升降调节模块与磁体模块连接,用于控制磁体模块升降;
升降调节模块包括多个可独立控制的升降机构,通过分别调节多个独立控制的升降机构,改变磁体模块与被吸附表面之间的夹角和/或间隙。
可选的,磁体模块包括安装壳、盖体以及磁铁,安装壳设置有腔体,磁铁置于腔体内,盖体与安装壳连接以封盖腔体。
可选的,升降结构包括支撑架、升降螺杆以及调节螺母,支撑架与爬行机车架连接,升降螺杆与调节螺母螺接,调节螺母与支撑架转动连接,且调节螺母与支撑架在调节螺母的轴向上相对固定;升降螺杆与磁体模块连接。
可选的,支撑架包括槽体以及盖板,槽体上设置有限位槽;调节螺母上设置有环形限 位凸起,环形限位凸起沿调节螺母的周向延伸,环形限位凸起沿调节螺母的径向向外凸出调节螺母的外周面;环形限位凸起位于限位槽内,盖板与槽体连接且封盖限位槽的槽口,以使环形限位凸起限制在限位槽的槽底与盖体之间。
本公开的实施例还提供了一种爬行焊接机器人的控制方法,其包括如下步骤:
S1.控制可调式磁吸附模块,使爬行焊接机器人与被吸附表面间的吸附力保持稳定;S2.获取焊缝信息;S3.控制焊枪平移达到焊缝位置;S4.控制焊枪转动,达到工艺需求角度;S5.调节焊接电源的工艺参数;S6.启动焊接,控制爬行机器人自动沿焊缝走向自主爬行;S7.完成焊接。
与现有的技术相比,本公开实施例的有益效果包括,例如:
综上,本公开提供的爬行焊接机器人及其控制方法,通过轮覆式行走机构,实现无需轨道、无需导向爬行,可焊接范围大,能够在大中型平面或弧面焊接结构件表面运动,可垂直爬壁,在前进或后退的运动时均能进行焊接作业,进而实现大中型结构件的全位置焊接,可明显减少焊接辅助时间,生产效率高;通过可调式磁吸附模块来调节磁吸附力大小,可实现平板及大曲率弧板爬行,工作环境适应性高。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的爬行焊接机器人的立体结构示意图;
图2为本公开实施例提供的爬行焊接机器人的爆炸图;
图3为本公开实施例提供的爬行焊接机器人的爬行机车架和轮覆式行走机构的侧视图;
图4为本公开实施例提供的爬行焊接机器人的爬行机车架和轮覆式行走机构的立体结构示意图;
图5为本公开实施例提供的爬行焊接机器人的仰视图;
图6为本公开实施例提供的爬行焊接机器人的焊接平摆机构和激光跟踪平摆机构的结构示意图;
图7为本公开实施例提供的爬行焊接机器人的激光跟踪模块的结构示意图;
图8为本公开实施例提供的爬行焊接机器人的焊枪角摆夹持机构的结构示意图;
图9为本公开实施例提供的爬行焊接机器人的防风装置的结构示意图;
图10为本公开实施例提供的爬行焊接机器人的可调式磁吸附模块的结构示意图;
图11为本公开实施例提供的爬行焊接机器人的控制原理图;
图12为本公开实施例提供的固定支架的结构示意图;
图13为本公开实施例提供的防风罩体的结构示意图;
图14为本公开实施例提供的升降调节模块的结构示意图;
图15为本公开实施例提供的磁体模块的结构示意图。
附图标记:
1:爬行机车架;1-1:车体连接板;1-2:滑动槽;1-3:调节块;1-4:调节螺杆;1-5:侧板;1-6:张紧机构;2:轮覆式行走机构;2-1:主动轮;2-2:磁座;2-3:滚子链;2-4:从动轮;2-56:第一驱动装置;2-5:转角减速电机;2-6:伺服电机;3:焊枪平摆机构;3-1:第一直线电机;3-2:第一直线导轨;3-3:第一传动齿条;3-4:第三驱动装置;3-5:第一传动齿轮;4:激光跟踪平摆机构;4-1:第二直线电机;4-2:第二直线导轨;4-3:第二传动齿条;4-4:第四驱动装置;4-5:第二传动齿轮;5:激光跟踪模块;5-1:安装架;5-2:多滤光片;5-3:激光传感器;5-4:相机;6:焊枪角摆夹持机构;6-1:角摆器;6-2:锁紧机构;6-3:卡箍;7:防风装置;7-1:防风罩体;7-2:上下方向滑道;7-3: 左右方向滑道;7-4:伸缩平移板;7-41:第一板部;7-42:第二板部;7-5:固定底板;7-51:固定孔;7-6:固定法兰;7-7:活动法兰;7-8:铰接球体;7-9:主观察窗;7-10:副观察窗;7-11:前后方向滑道;7-12:上压条;7-13:下压条;7-14:固定连接板;7-141:第一连接孔;8:姿态传感器;9:可调式磁吸附模块;9-1:驱动柄;9-2:连接孔;9-3:盖板;9-31:调节孔;9-4:槽体;9-41:限位槽;9-5:支撑底板;9-6:升降螺杆;9-7:安装耳;9-8:转动轴;9-9:腔体;9-10:腔盖;9-11:转动孔;10:焊接架;11:焊接负载装置;12:焊枪;13:固定支架;14:观察窗;15:磁体模块;15-1:安装壳;15-2盖体;15-3:磁铁;16:升降调节模块;16-1:支撑架;16-2:调节螺母;16-21:环形限位凸起。
具体实施方式
下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
需要说明的是,在不冲突的情况下,本公开的实施例中的特征可以相互结合。
如附图1-图10所示,本公开提供了一种爬行焊接机器人,包括可调式磁吸附模块9、轮覆式行走机构2、爬行机车架1和焊接负载装置11,焊接负载装置11设置在爬行机车架1上;轮覆式行走机构2设置在爬行机车架1的相对两端,用于给爬行机车架1提供爬行所需的动力;可调式磁吸附模块9设置在爬行机车架1上,且设置在两个轮覆式行走机构2之间。
在本公开中,通过轮覆式行走机构2带动焊接机器人移动,在没有设置轨道的情况下,也能够行走平稳,同时也保证了焊接机器人有足够的爬行动力。通过可调式磁吸附模块2,对与被吸附表面的磁力进行调节,使得其能够达到最佳的磁力,不会过大或过小,使其能够适用于不同的曲面。
请参阅图3,在本公开中,可选的,轮覆式行走机构2包括磁座2-2、滚子链2-3、主动轮2-1、从动轮2-4和第一驱动装置2-56。第一驱动装置2-56固定设置在爬行机车架1上,第一驱动装置与主动轮2-1连接,用于驱动主动轮2-1转动,主动轮2-1和从动轮2-4均转动设置在爬行机车架1上,主动轮2-1和从动轮2-4通过滚子链2-3连接,磁座2-2设置在滚子链2-3上。
请参阅图4,在本公开中,可选的,爬行机车架1包括车体连接板1-1和侧板1-5,第一驱动装置2-56固定设置在车体连接板1-1的下方,主动轮2-1和从动轮2-4均转动设置在侧板1-5上,主动轮2-1通过滚子链2-3带动从动轮2-4转动。可选的,连接板1-1为设置有多个腰型孔的矩形板状结构,腰型孔沿垂直于连接板1-1的板面贯穿连接板1-1,多个腰型孔可以呈矩形阵列排布。侧板1-5的数量为两个,两个侧板1-5分别设置于连接板1-1宽度方向的两侧,两个侧板1-5均与连接板1-1固定连接,此外,侧板1-5的板面与连接板1-1的板面垂直。轮覆式行走机构2包括两根滚子链2-3、两个主动轮2-1、两个从动轮2-4和两个第一驱动装置2-56,一个主动轮2-1、一个从动轮2-2、一根滚子链2-3和一个第一驱动装置2-56为一组形成一个行走组件,两个行走组件分别与两个侧板1-5对应。轮覆式行走机构2安装完成后,轮覆式行走机构2的两根滚子链2-3平行间隔设置。磁座2-2与滚子链2-3上的加长销轴进行刚性连接。可选的,每组行走组件包括多个磁座 2-2,固定安装于同一滚子链2-3上的多个磁座2-2沿滚子链2-3的周向均匀间隔排布。对应的,加长销轴的数量为多个,多个加长销轴的数量与多个磁座2-2的数量一一对应。
爬行焊接机器人在前进时,滚子链2-3拖动磁座2-2运动,在前进方向上的首端磁座2-2从脱离结构件状态进入吸附结构件状态,与此同时在前进方向上的末端磁座2-2从吸附结构件状态进入脱离结构件状态,此过程中整个轮覆式行走机构2能维持总吸附力大小不变,因此爬行焊接机器人能可靠平稳的吸附在结构件上并相对于结构件运动。
爬行焊接机器人在后退时,滚子链2-3拖动磁座2-2运动,在后退方向上的首端磁座2-2从脱离结构件状态进入吸附结构件状态,与此同时在后退方向上的末端磁座2-2从吸附结构件状态进入脱离结构件状态,此过程中整个轮覆式行走机构2能维持总吸附力大小不变,因此爬行焊接机器人能可靠平稳的吸附在结构件上并相对于结构件运动。
在本公开中,第一驱动装置2-56的数量为两个,分别驱动两个轮覆式行走机构2的两个主动轮2-1,且两个第一驱动装置2-56为独立设置,每个第一驱动装置2-56可以单独控制,进而能够实现轮覆式行走机构2的左右两侧的主动轮2-1的转速不同,进而利用差速原理实现爬行焊接机器人的转向功能。
可选的,为保证轮覆式行走机构2行走地更加平稳,主动轮2-1及从动轮2-4外侧均设有行走轮,行走轮可以是轮胎。主动轮2-1固定在第一驱动装置2-56上,第一驱动装置固定在对应的侧板1-5上。
在本公开中,为防止滚子链2-4传动时产生偏移,车体上设有导向装置,导向装置设有导向槽,磁座2-2上安装有导向块,车体前进时,导向块在滚子链2-4传动运行时卡入导向槽内。
请参阅图4,在本公开中,第一驱动装置2-56包括伺服电机2-6和转角减速电机2-5,伺服电机2-6与转角减速电机2-5连接,伺服电机2-6和转角减速电机2-5均固定在爬行机车架1上,主动轮2-1固定在转角减速电机2-5的法兰上,通过伺服电机2-6能够带动主动轮2-1转动。
可选的,转角减速电机2-5刚性固定在车体连接板1-1上,伺服电机2-6固定在连接板1-1上,伺服电机2-6通过转角减速电机2-5带动主动轮2-1相对于侧板1-5转动。
请参阅图4,在本公开中,爬行机车架1的侧板1-5上设置有滑动槽1-2,从动轮2-4滑动设置在滑动槽1-2内。滑动槽1-2的侧壁上设置有第二驱动装置,用于带动从动轮2-4在滑动槽1-2内移动,进而改变位于同一侧板1-5上的主动轮2-1和从动轮2-4之间的距离,实现滚子链2-3的张紧或者松弛。例如,当从动轮2-4在滑动槽1-2内滑动使从动轮2-4和主动轮2-1之间的距离增大时,滚子链2-3能够被张紧;或者,当从动轮2-4在滑动槽1-2内滑动使从动轮2-4和主动轮2-1之间的距离减小时,滚子链2-3能够被松弛。
通过第二驱动装置驱动从动轮2-4在滑动槽1-2内滑动,使得从动轮2-4与主动轮2-1之间的间距可调,进而能够作为张紧机构1-6实现对滚子链2-3的张紧。
请参阅图4,可选的,张紧机构1-6包括调节块1-3和调节螺杆1-4;从动轮2-4转动设置在调节块1-3上,调节块1-3滑动设置在滑动槽1-2内,调节螺杆1-4的一端与调节块1-3转动连接,且与调节块1-3之间具有轴向定位,换句话说,调节螺杆1-4与调节块1-3在调节螺杆1-4的轴向上相对于固定。滑动槽1-2沿调节块1-3的滑动方向上的侧壁上设置有通孔,通孔可以为螺纹孔,调节螺杆1-4与螺纹孔螺接,且调节螺杆1-4远离调节块1-3的端部伸出螺纹孔。在转动调节螺杆1-4时,调节螺杆1-4与螺纹孔的配合,使得调节螺杆1-4会进行轴向移动,由于调节块1-3与调节螺杆1-4之间具有轴向定位,使得调节块1-3会跟随调节螺杆1-4一起进行轴向移动,进而实现从动轮2-4的移动。第二驱动装置与调节螺杆1-4连接,用于驱动调节螺杆1-4相对于通孔转动。
在本公开中,可选的,调节螺杆1-4的设置方式还可以是一端与调节块1-3进行螺纹连接,另一端伸出滑动槽1-2的侧壁,且调节螺杆1-4与滑动槽1-2转动连接,调节螺杆1-4和滑动槽1-2具有轴向定位,换句话说,调节螺杆1-4和滑动槽1-2在调节螺杆1-4 的轴向上相对固定。如此设置,使得调节螺杆1-4绕其自身轴线相对于滑动槽1-2转动时,不会进行轴向移动,而且由于调节螺杆1-4与调节块1-3螺纹连接,使得调节块1-3会沿调节螺杆1-4的轴线在滑动槽1-2内移动,以达到带动从动轮2-4直线移动的目的,最终实现滚子链2-3的松紧调节。
在本公开中,当从动轮2-4向远离主动轮2-1的方向移动时,可以实现张紧功能,当从动轮2-4向靠近主动轮2-1的方向移动时,可以使滚子链2-3松弛,进而便于滚子链2-3的拆卸和安装。
请参阅图6,可选的,焊接负载装置11包括焊接架10和焊枪平摆机构3;焊接架10固定设置在爬行机车架1的车体连接板1-1上;焊接平摆机构3包括第一直线电机3-1、第一直线导轨3-2、第三驱动装置3-4、第一传动齿轮3-5和第一传动齿条3-3。第一直线电机3-1固定设置在焊接架10上,第一直线导轨3-2与第一直线电机3-1连接;第一传动齿轮3-5转动设置在第一直线导轨3-2上,第一传动齿条3-3与第一直线导轨3-2滑动连接,且第一传动齿轮3-5与第一传动齿条3-3啮合。第三驱动装置3-4与第一传动齿轮3-5连接,第三驱动装置3-4用于驱动第一传动齿轮3-5转动,进而带动第一传动齿条3-3相对于第一直线导轨3-2往复滑动。
可选的,第一直线电机3-1能够带动第一直线导轨3-2在焊接架10上做x方向上的直线运动,换句话说,第一直线电机3-1、第一直线导轨3-2以及焊接架10共同构成一个丝杠传动结构;通过转动设置在第一直线导轨3-2上的第一传动齿轮3-5与滑动设置在第一直线导轨3-2上的第一传动齿条3-3相配合,能够带动设置在第一传动齿条3-3上的焊枪12做z方向的升降运动,进而能够实现焊枪12在x方向和z方向上的位置调节。再结合轮覆式行走机构2能够沿y方向行走,实现焊枪12在y方向上的位置调整,最终实现焊枪12在三维方向上的位置调整。
可选的,x方向设置为与被吸附表面平行,且垂直于轮覆式行走机构2的行走方向,y方向设置为轮覆式行走机构2的行走方向,z方向设置为与被吸附表面垂直的方向。
通过焊枪平摆机构3的设置,能够使爬行焊接机器人在焊接的时候,使焊枪12和待焊接位置对位准确,提高焊接质量。
在本公开中,第三驱动装置3-4可以为手柄或转盘,能够通过手动转动手柄或者转盘,进而带动第一传动齿轮3-5转动,且带动与第一传动齿轮3-5相啮合的第一传动齿条3-3滑动,最终实现焊枪12在y方向上的位置调节,换句话说,最终实现焊枪12的高度调节。
需要指出的是,第三驱动装置3-4还可以是电机,通过控制器与电机连接,进而实现对焊枪12高度的自动调节,或利用控制器实现对电机进行远程控制,进而实现对焊枪12高度的远程调节。
为了能够使得焊枪12在焊接作业时的位置更加准确,且能够适应各种工艺,在本公开中,请参阅图8,可选的,焊接负载装置11还包括焊枪角摆夹持机构6,通过焊枪角摆夹持机构6,能够实现焊枪12绕平行于y方向的轴线转动,实现焊枪12的焊接角度的调整。
可选的,在本公开中,焊枪角摆夹持机构6包括角摆器6-1、锁紧机构6-2和卡箍6-3。角摆器6-1与卡箍6-3连接,用于带动设置在卡箍6-3上的焊枪摆动或者转动;锁紧机构6-2设置在角摆器6-1上,且与第一传动齿条3-3固定连接。
可选的,角摆器6-1包括步进电机和带减速功能的旋转平台,旋转平台与步进电机连接,卡箍6-3与旋转平台连接,卡箍6-3用于夹持固定焊枪12,锁紧机构6-2能够将步进电机与第一传动齿条3-3固定连接,通过步进电机带动旋转平台转动,进而带动位于卡箍6-3上的焊枪12运动,可实现焊枪12的高精度旋转或钟摆运动。在使用的过程中,通过卡箍6-3将焊枪12固定后,启动步进电机即可带动焊枪12转动或者在设定角度范围内往复摆动,并能够保持在设定位置,便于进行焊接作业。
为保证焊枪12能够准确找到焊接位置,保证焊缝的质量,在本公开中,请参阅图5,可选的,焊接架10上设置了激光跟踪平摆机构4和激光跟踪模块5。激光跟踪平摆机构4 能够对激光跟踪模块5进行x方向和z方向的位置调整,使得激光跟踪模块5能够达到最佳位置;激光跟踪模块5能够对需要焊接的位置先进行数据收集和分析,以便于精准找到焊缝位置,然后再通过轮覆式行走机构2、焊枪平摆机构3和焊枪角摆夹持机构6,共同对焊枪12的位置和角度进行精确调整,使焊枪12与待焊接位置相匹配,保证焊接质量。
请参阅图6,可选的,在本公开中,激光跟踪平摆机构4与焊枪平摆机构3位于焊接架10相对的两侧。激光跟踪平摆机构4包括第二直线电机4-1、第二直线导轨4-2、第四驱动装置4-4、第二传动齿轮4-5和第二传动齿条4-3。第二直线电机4-1固定设置在焊接架10上,与第一直线电机3-1位于焊接架10的相对的两侧,第二直线导轨4-2与第二直线电机4-1连接;第二传动齿轮4-5转动设置在第二直线导轨4-2上,第二传动齿条4-3与第二直线导轨4-2滑动配合,且第二传动齿轮4-5与第二传动齿条4-3啮合;第四驱动装置4-4与第二传动齿轮4-5连接,用于驱动第二传动齿轮4-5转动,进而带动第二传动齿条4-3往复直线运动。
可选的,第二直线电机4-1可带动第二直线导轨4-2在焊接架10上做x方向上的直线运动,换句话说,第二直线电机4-1、焊接架10以及第二直线导轨4-2共同构成丝杠传动结构。通过转动设置在第二直线导轨4-2上的第二传动齿轮4-5与滑动设置在第二直线导轨4-2上的第二传动齿条4-3相配合,能够带动设置在第二传动齿条4-3上的激光跟踪模块5做z方向的升降运行,进而能够实现激光跟踪模块5的在x方向和z方向上的位置调节,再通过轮覆式行走机构2的行走,实现对激光跟踪模块5的y方向的调整,最终实现焊枪12在三维方向上的位置调节。
可选的,x方向设置为与被吸附表面平行,且垂直于轮覆式行走机构2的行走方向,y方向设置为轮覆式行走机构2的行走方向,z方向设置为与被吸附表面垂直的方向。
通过激光跟踪平摆机构4的设置,能够使爬行焊接机器人在焊接的时候,准确找到需要焊接的位置,保证焊枪12与待焊接位置精确配合。
在本公开中,第四驱动装置4-4可以包括手柄或转盘,手柄或者转盘与第二传动齿轮4-5连接,通过手动转动手柄或者转盘带动第二传动齿轮4-5转动,进而带动与第二传动齿轮4-5相啮合的第二传动齿条4-3相对于第二直线导轨4-2往复滑动,最终实现激光跟踪模块5高度的调节。
需要指出的是,可选的,第四驱动装置4-4可以包括电机,电机的输出轴与第二传动齿轮4-5连接,通过控制器与电机通信连接,进而实现对激光跟踪模块5高度的自动调节,或利用控制器对电机进行远程控制,进而实现对激光跟踪模块5高度的远程调节。
请参阅图7,可选的,在本公开中,激光跟踪模块5包括相机5-4、激光传感器5-3、安装架5-1和多滤光片5-2。相机5-4、激光传感器5-3和多滤光片5-2均设置在安装架5-1上;安装架5-1固定设置在第二传动齿条4-3上。
可选的,激光传感器5-3和相机5-4均转动设置在安装架5-1上,能够实现激光传感器5-3和相机5-4的旋转调节,进而调节激光传感器5-3和相机5-4的观察角度。
多滤光片5-2包括组合的多种不同规格滤光片,可有效过滤弧光等相关光源的干扰。
本公开中,通过激光传感器5-3和相机5-4,采用了先进的焊缝识别,跟踪和焊接控制系统,能获取焊缝的几何形状及位置信息,因此可以保证焊接的质量。焊缝跟踪精度可达±0.3mm,高度在±0.5mm以内,并且跟踪范围不受限制。相比需铺设轨道焊接机器人,可明显减少焊接辅助时间,生产效率高。
请参阅图9和图13,可选的,焊接架10上还设置有防风装置7;防风装置7包括固定支架13和防风罩体7-1,固定支架13的一端与焊接架10连接,另一端与防风罩体7-1连接;固定支架13包括伸缩平移板7-4,伸缩平移板7-4上开设有左右方向滑道7-3及前后方向滑道7-11,防风罩体7-1上开设有上下方向滑道7-2,使得防风罩体7-1能够在三维方向上进行调整,同时,在防风罩体7-1的位置调整结束后能够将防风罩体7-1进行固定,使防风罩体7-1保持在设定位置上。
在本公开中,可选的,防风罩体7-1罩设在焊枪12外,通过固定支架13与焊接机器人固定连接。当焊接机器人在进行焊接作业时,由于焊接的工艺不同,焊枪12的位置有所调整时,能够通过防风罩体7-1上的固定支架13实现对防风罩体7-1的位置进行调整,使得防风罩体7-1的位置与焊枪12的位置向匹配,以保证防风罩体7-1的防风性能。
请参阅图9和图12,在本公开中,可选的,固定支架13包括固定底板7-5、固定连接板7-14和伸缩平移板7-4,固定底板7-5上设置有多个固定孔7-51,本公开中固定孔的数量为四个,利用固定螺栓穿过对应的固定孔将固定底板7-5固定在焊接机器人的车体连接板1-1上。固定连接板7-14与固定底板7-5的一侧面或一板面固定连接,固定连接的方式可以是焊接、铆接、螺栓连接或者一体设置等,只要将固定底板7-5与固定连接板7-14固定连接在一起即可。伸缩平移板7-4与固定连接板7-14连接,伸缩平移板7-4与固定连接板7-14的连接方式可以是通过固定螺栓固定连接,安装时,固定螺栓同时穿过固定连接板7-14上的第一连接孔7-141和伸缩平移板7-4上的前后方向滑道7-11,通过螺母拧紧在固定螺栓上,实现将固定连接板7-14和伸缩平移板7-4固定连接在一起的目的。前后方向滑道7-11的设置,使得固定连接板7-14与伸缩平移板7-4的连接位置可以根据前后方向滑道7-11的延伸方向进行移动和调整,进而使得防风罩体7-1能够固定在前后方向较为合适的位置上。需要说明的是,前后方向滑道7-11的数量按需设置,例如,本公开中,前后方向滑道7-11的数量为四个,四个前后方向滑道7-11呈矩形阵列排布。对应的,设置于固定连接板7-14上的第一连接孔7-141的数量按需设置,保证至少有一个第一连接孔7-141与一个前后方向滑道7-11对应即可。可选的,本公开中,第一连接孔7-141的数量为八个,两个第一连接孔7-141为一组,且同一组的两个第一连接孔7-141与一个前后方向滑道7-11配合。
在本公开中,可选的,伸缩平移板7-4具有折弯,换句话说,伸缩平移板7-4包括相连且垂直设置的第一板部7-41和第二板部7-42,第一板部7-41和第二板部7-42可以一体成型。前后方向滑道7-11设置在第二板部7-42-上,左右方向滑道7-3设置在第一板部7-41上。防风罩体7-1上设置有上下方向滑道7-2,固定螺栓穿过左右方向滑道7-3和上下方向滑道7-2后,通过螺母拧紧,实现将伸缩平移板7-4与防风罩体7-1固定连接在一起的目的。左右方向滑道7-3的设置,使得伸缩平移板7-4与防风罩体7-1之间的连接位置,可以根据左右方向滑道7-3进行移动和调整,进而使得防风罩体7-1能够固定在左右方向较为合适的位置上。上下方向滑道7-2的设置,使得伸缩平移板7-4与防风罩体7-1之间的连接位置,可以根据上下方向滑道7-2进行移动和调整,进而使得防风罩体7-1能够固定在上下方向较为合适的位置上。需要说明的是,设置于第一板部7-41上的左右方向滑道7-3的数量可以是四个,四个左右方向滑道7-3呈矩形阵列排布。设置于防风罩体7-1上的上下方向滑道7-2的数量可以是四个,四个上下方向滑道7-2呈矩形阵列排布。
在本公开中,可选的,为保证伸缩平移板7-4与固定连接板7-14之间的连接稳定性,伸缩平移板7-4与防风罩体7-1之间的连接稳定性,将前后方向滑道7-11、左右方向滑道7-3和上下方向滑道7-2均设置为至少两条,且对称设置。
在本公开中,可选的,防风罩体7-1的底边上设置有柔性保护裙边,柔性保护裙边沿防风罩体7-1的周向延伸且呈环状,通过柔性保护裙边的设置,使得当焊接机器人在移动过程中产生颠簸时,避免防风罩体7-1与被焊接位置产生刚性碰撞,既保护了防风罩体7-1,又保护了被焊接位置,还可以填补防风装置7与焊接试件间的缝隙。
可选的,在本公开中,柔性保护裙边通过螺栓固定在防风罩体7-1上,在柔性保护裙边损坏后,便于拆卸更换。
需要指出的是,在本公开中,柔性保护裙边与防风罩体7-1采用螺栓固定,但柔性保护裙边与防风罩体7-1不仅仅局限于采用螺栓固定,其还可以采用使用其他的固定方式,如还可以是使用铆钉固定或者粘接等方式,也就是说,只要能够将柔性保护裙边固定在防风罩体7-1的底部即可。
可选的,在本公开中,在柔性保护裙边上设置有下压条7-13,通过螺栓将下压条7-13和柔性保护裙边均固定在防风罩体7-1的底部,进而能够保证柔性保护裙边与防风罩体7-1的底部的贴合度,进而提高柔性保护裙边对防风罩体7-1的防护能力。
在本公开中,可选的,柔性保护裙边的材料采用耐高温柔性材料或金属刷条。
由于焊枪12在焊接的过程中,会产生轴向或横向移动,防风罩体7-1固定不动,因此,需要在防风罩体7-1与焊枪12的连接位置,使用软连接,使得防风罩体7-1既不影响焊枪12的移动,又能够保证防风罩体7-1的防风性能。
为实现上述功能,在本公开中,可选的,防风罩体7-1的顶端设置有柔性防护封顶,用于与焊枪12进行软连接。
可选的,柔性防护封顶采用柔性耐高温材料,柔性耐高温材料与防风罩体7-1的顶端的边缘采用螺栓及上压条7-12的方式进行固定连接,同时在柔性防护封顶的中部开孔,用于供焊枪12穿过。
可选的,柔性防护封顶与焊枪12的顶端采用卡箍机构进行连接,即柔性防护封顶缠绕在焊枪12上,外部用卡箍机构进行锁紧。
为了便于对防风罩体7-1内的焊接情况进行及时的掌握和了解,在本公开中,可选的,在防风罩体7-1上设置了观察窗14,通过观察窗14观察位于防风装置7内部的焊枪12在焊接时的状况。
观察窗14包括透明视窗,透明视窗设置为耐高温透镜,在焊接作业过程中透明视窗受到高温的影响小,延长透明视窗的使用寿命。
可选的,在本公开中,观察窗14与防风罩体7-1转动连接。
通过转动观察窗14,能够对防风罩体7-1内的情况进行较为全面的了解和掌握,以便于对意外状况及时掌握并处理。
可选的,在本公开中,观察窗14与防风罩体7-1的转动连接的方式为球连接。
也就是说,观察窗14上设置有铰接球体7-8,铰接球体7-8上设置有连通观察窗14和防风罩体7-1的观察通孔;防风罩体7-1上设置有固定法兰7-6,铰接球体7-8通过活动法兰7-7定位在固定法兰7-6上。
也就是说,在防风罩体7-1上设置了固定法兰7-6,铰接球体7-8设置在固定法兰7-6上后,再利用活动法兰7-7将铰接球体7-8固定在固定法兰7-6上,铰接球体7-8部分被限位在固定法兰7-6和活动法兰7-7之间,使得铰接球体7-8不能脱离固定法兰7-6和活动法兰7-7,而只能在固定法兰7-6和活动法兰7-7之间转动。
在铰接球体7-8上设置了观察通孔,观察通孔的一端与观察窗14连通,另一端与防风罩体7-1的内部连通,使得铰接球体7-8不会影响到通过观察窗对防风罩体7-1内部的观察。
需要指出的是,在本公开中,观察窗14与防风罩体7-1之间的连接方式为球连接,但其不仅仅局限于球连接,其还可以是其他的转动连接方式,也就是说,只要能够通过转动连接,改变观察窗14观察的角度,进而增加观察窗14的视野即可。
可选的,观察窗14包括主观察窗7-9和副观察窗7-10,主观察窗7-9和副观察窗7-10分别与防风罩体7-1成一定角度设置。需要说明的是,主观察窗7-9和副观察窗7-10均可以通过球结构与防风罩体7-1实现转动连接。
通过主观察窗7-9和副观察窗7-10对防风罩体7-1内的情况进行观察,能够增加观察的视野,有利于更全面的了解防风罩体7-1的内部状况。
主观察窗7-9和防风罩体7-1之间以及副观察窗7-10和防风罩体7-1之间均设置有一定的角度,能够有效减少焊接时焊枪12飞出的熔渣对耐高温透镜的飞溅损害。
可选的,主观察窗7-9和防风罩体7-1之间的角度为30°-60°,本实施例中,主观察窗7-9和防风罩体7-1之间的角度为45°;副观察窗7-9和防风罩体7-1之间的角度为30°-60°,本实施例中,副观察窗7-9和防风罩体7-1之间的角度为45°。
在本公开中,防风罩体7-1采用耐高温轻质合金制备。
请参阅图5、图14和图15,可选的,可调式磁吸附模块9包括磁体模块15和升降调节模块16,升降调节模块16与磁体模块15连接,用于控制磁体模块15升降;升降调节模块16包括多个可独立控制的升降机构,通过分别调节多个独立控制的升降机构,改变磁体模块15与被吸附表面之间的夹角和/或间隙。
在本公开中,通过可调式磁吸附模块9,能实现爬行焊接机器人在平面以及直径不大于3米的弧面爬行,工作环境适应性好。
在本公开中,可选的,磁体模块15上设置升降调节模块16,通过升降调节模块16对磁体模块15的高度进行调节,实现对磁体模块15与被吸附表面之间的间隙进行调整。
这样的设置,使得在被吸附表面为弧面时,实现对磁体模块15的在被吸附表面的磁力调节,进而保证磁力的稳定性,也保证了磁力吸附装置在弧面上的稳定性。
在本公开中,升降调节模块16包括至少两个可独立控制的升降机构,通过分别对升降机构进行独立的控制,利用各个升降机构的升降高度不同,对磁体模块15的各个位置的高度进行相应的调整,进而实现对磁体模块15与被吸附表面之间的夹角的调节。
可选的,升降机构的数量为两个,且分别设于磁体模块15的两侧。
在使用时,行走用的滚轮或履带设置在磁体模块15的相对两侧,两个升降机构设置在磁体模块15的相对两侧,且两个升降结构的排布方向与滚轮或者履带的排布方向相同,磁体模块15,通过控制升降机构使得磁体模块15的两端的高度不同,进而实现磁体模块15与被吸附表面的夹角改变,进而在行驶的过程中,能够保证在不同的坡度或弧度上,焊接机器人具有足够的磁力和吸附力。
可选的,升降调节模块16具体设置为线性驱动装置。
升降调节模块16可以是统一进行升降调节,可以对磁体模块15的高度进行连续性调节,保证其能够应对任意的弧面和坡度。
线性驱动装置的设置方式有很多种,在本公开中,可选的,线性驱动装置设置为涡轮蜗杆机构、液压传动机构、齿轮齿条传动机构或螺旋传动机构等。
在使用涡轮蜗杆机构作为线性驱动装置时,磁体模块15与蜗杆连接,通过涡轮的转动,带动蜗杆做直线运动,带动磁体模块15进行升降运行,实现磁体模块15高度的调节。
在使用液压传动机构作为线性驱动装置时,磁体模块15与液压杆连接,液压杆做伸缩运动时,带动磁体模块15进行升降运动,实现磁体模块15的高度的调节。
在使用齿轮齿条传动机构作为线性驱动装置时,齿条与磁体模块15连接,齿轮与齿条啮合,齿轮转动时,带动齿条做直线运动,进而带动磁体模块15进行升降运动,实现磁体模块15的高度的调节。
在使用螺旋传动机构作为线性驱动装置时,螺纹杆与磁体模块15螺纹连接,且螺纹杆与磁体模块15在螺纹杆的周向上相对固定,当螺纹杆进行转动时,磁体模块15会沿螺纹杆的轴向做直线运动,进而带动磁体模块15进行升降运动,实现磁体模块15高度的调节。
需要指出的是,在本公开中,线性驱动装置包括上述几种方式中的任意一种或几种,其可以进行任意的组合。
还需要指出的是,线性驱动装置可以是上述几种设置方式,但其不仅仅局限于上述几种方式,其还可以是具有其他的线性方式,如还可以是曲柄滑块机构等,也就是说,只要能够通过线性驱动装置实现磁体模块15的线性升降即可。
请参阅图14,在本公开中,可选的,升降机构设置为螺纹升降调节机构,螺纹升降调节机构包括支撑架16-1、升降螺杆9-6和调节螺母16-2。调节螺母16-2转动设置在支撑架16-1上,调节螺母16-2与支撑架16-1沿调节螺母16-2的轴线方向上相对固定,调节螺母16-2与升降螺杆9-6螺纹连接;升降螺杆9-6与磁体模块15活动连接。
每个升降机构均使用螺纹螺杆的方式进行调节,且升降螺杆9-6与磁体模块15进行活动连接,活动连接的方式可以是转动连接,也可以是万向连接,其只要能够同时实现对磁 体模块15的高度和角度的调节即可。
在本公开中,可选的,磁体模块15的两端设置有两个安装耳9-7,两个安装耳9-7平行间隔排布,每个安装耳9-7上设置有转动孔9-11,升降螺杆9-6连接有转动轴9-8,转动轴9-8的两端分别插入对应的转动孔9-11内,且转动轴9-8与转动孔9-11转动配合,进而实现转动轴9-8与安装耳9-7的转动连接。
在本公开中,调节螺母16-2转动设置在支撑架16-1上,其在支撑架16-1上不能进行轴向移动,既能够避免调节螺母16-2的脱落,又能够保证起到对调节螺母16-2轴向固定的作用。调节螺母16-2与升降螺杆9-6螺纹连接,通过转动调节螺母16-2,能够使得升降螺杆9-6进行轴向移动,进而带动与升降螺杆9-6活动连接的磁体模块15的一端上升或下降,以实现对磁体模块15的一端的高度调节。
当磁体模块15相对两端的调节方向和高度均相同时,磁体模块15只改变与被吸附表面的间隙;当磁体模块15相对两端的调节方向和/或调节高度不相同时,磁体模块15改变与被吸附表面之间的夹角。
当磁体模块15与被吸附表面的间隙或夹角改变时,其与被吸附表面之间的吸附力改变,进而使得磁体模块15能够适应不同的曲面环境,保证磁体模块15与被吸附表面之间的吸附力。
在本公开中,可选的,支撑架16-1包括槽体9-4和盖板9-3。槽体9-4上设置有限位槽9-41,限位槽9-41为圆柱形槽。调节螺母16-2上设有环形限位凸起16-21,环形限位凸起16-21位于调节螺母16-2的一端,环形限位凸起16-21为圆柱形凸起,环形限位凸起16-21沿调节螺母16-2的径向向外凸出调节螺母16-2的外周面,环形限位凸起16-21与调节螺母16-2同轴。可选的,环形限位凸起16-21与限位槽9-41匹配,当调节螺母16-2具有环形限位凸起16-21的一端插入限位槽9-41后,环形限位凸起16-21与限位槽9-41转动配合,且环形限位凸起16-21远离限位槽9-41的端面大致与限位槽9-41槽口所在端面平齐。当调节螺母16-2设置在槽体9-4的限位槽内后,将盖板9-3固定设置在槽体9-4上,且调节螺母16-2穿过盖板9-3,盖板9-3能够封堵限位槽9-41的槽口,进而使环形限位凸起16-21不会从盖板处脱离限位槽9-41,进而实现调节螺母16-2与槽体9-4在的调节螺母16-2的轴向上相对固定。
可选的,槽体9-4为盒状结构,其在槽底设置有允许升降螺杆9-6通过的通孔,该通孔与限位槽9-41的槽底连通,调节螺母16-2插接在限位槽9-41内后,环形限位凸起16-21被限制在限位槽9-41的槽底而不会从通孔处落下。该通孔远离限位槽9-41的槽底的端部设置有倒角,以便于升降螺杆9-6的安装。
倒角可以设置为圆角或45°×45°的倒角,或其他类型倒角,只要能够通过倒角的设置,便于升降螺杆9-6的安装即可。
在本公开中,盖板9-3与槽体9-4通过固定螺栓进行固定连接,既能够便于对调节螺母16-2的维护和更换,又能够保证调节螺母16-2的轴向定位。
需要指出的是,在本公开中,盖板9-3与槽体9-4之间的固定连接方式可以是上述的通过固定螺栓连接,但其不仅仅局限于上述一种设置方式,其还可以是其他的固定连接方式,如还可以是销轴连接或者卡接等,也就是说,只要是通过可拆卸连接的方式将盖板9-3与槽体9-4固定连接在一起即可。
还需要指出的是,在本公开在,盖板9-3与槽体9-4之间为可拆卸连接,盖板9-3与槽体9-4也可以是设置为不可拆卸连接,如可以使用焊接或者铆接等方式将盖板9-3与槽体9-4进行固定连接,也就是说,只要能够通过将盖板9-3与槽体9-4进行固定连接,实现对调节螺母16-2的轴向定位即可。
在盖板9-3上设置有调节孔9-31;调节螺母16-2能够穿过调节孔9-31向上伸出,进而增加了升降螺杆9-6的调节范围。
为便于调节螺母16-2的转动,便于通过调节螺母16-2对升降螺杆9-6进行轴向驱动, 在本公开中,调节螺母16-2远离磁体模块15的一端设置有驱动柄9-1;驱动柄9-1的一端与调节螺母16-2固定连接,另一端通过调节孔穿过盖板9-3。
这样的设置,使得驱动柄9-1能够漏出盖板9-3,进而在支撑架16-1的外部即可实现驱动调节螺母16-2转动,进而通过调节螺母16-2的转动,带动升降螺杆9-6进行轴向移动,最终实现对磁体模块15的高度的调节。
在本公开中,驱动柄9-1与调节螺母16-2同轴固定设置。
需要指出的是,驱动柄9-1可以是与调节螺母16-2同轴固定设置,其也可以是设置在调节螺母16-2远离磁体模块15的一侧的任意位置,其只要能够通过驱动柄9-1带动调节螺母16-2进行转动即可。
在本公开中,驱动柄9-1上设置有允许升降螺杆9-6通过的通孔,具体的,该通孔为螺纹孔,升降螺杆9-6穿过该螺纹孔与驱动柄9-1螺纹连接。通过驱动柄9-1上的螺纹孔的设置,增加了升降螺杆9-6上螺纹配合的长度,进而增加了升降螺杆9-6的螺纹连接强度。
需要指出的是,在本公开中,驱动柄9-1上设置的通孔为螺纹孔,但其不仅仅局限于螺纹孔,其还可以是设置为直孔,其只要能够使升降螺杆9-6通过,能够增加升降螺杆9-6的轴线移动距离即可。
在本公开中,驱动柄9-1与调节螺母16-2之间的固定连接方式为一体设置。
需要指出的是,驱动柄9-1与调节螺母16-2之间的固定连接方式可以是如本公开中的一体设置,但其不仅仅局限于这一种设置方式,其还可以是其他的固定连接方式,如还可以是焊接、铆接或者螺纹连接等,也就是说,只要能够将驱动柄9-1与调节螺母16-2进行固定连接,能够通过驱动柄9-1带动驱动螺母进行转动,进而实现驱动升降螺杆9-6进行轴向位移即可。
在本公开中,可选的,支撑架16-1包括支撑底板9-5,支撑底板9-5用于与焊接机构连接。
支撑底板9-5上设置有多个第二连接孔9-2,通过安装螺栓穿过第二连接孔9-2实现将可调式磁吸附模块9与焊接机器人进行固定连接,通过可调式吸附模块9吸附在被吸附表面,进而实现将焊接机构吸附在被吸附表面的目的,以能够实现焊接机构的焊接作业。
可选的,在本公开中,支撑底板9-5设置在槽体9-4的外侧侧壁上,多个升降机构中的多个支撑底板9-5均设置在同一侧,以保证与焊接机构的连接和安装。
需要指出的是,支撑底板9-5的位置和方向,可以根据焊接机构的形状和连接位置进行调节,只要能够通过支撑底板9-5实现将焊接机构与升降机构连接在一起即可。
请参阅图15,在本公开中,磁体模块15包括安装壳15-1、盖体15-2和磁铁15-3,安装壳15-1与盖体15-2拼接形成具有腔体9-9的壳体结构,磁铁15-3设置在腔体9-9内。
可选的,本公开中的磁铁为耐高温钕铁硼,磁铁在腔体9-9内的设置方式为N极和S极对向安装,腔体9-9的材质为铝质,能够有效的传递磁力,腔体9-9上方的腔盖9-10为良好导磁性的低碳钢。可选的,安装壳15-1和盖体15-2拼接形成的壳体结构具有三个腔体9-9,三个腔体9-9直线排布,对应的,磁铁的数量为三个,三个磁铁与三个腔体9-9一一对应。腔体9-9可以是圆柱形,对应的,磁铁15-3为圆柱形。需要说明的是,腔体9-9的数量不限于是三个,磁铁15-3的数量不限于是三个。
这样的设置方式,可在安装壳15-1的底部形成强磁力,而顶部及各侧面磁力较弱,进而实现安装壳15-1的底部与待吸附面强力吸合。
可选的,爬行机车架1上还设置有姿态传感器8。
姿态传感器8安装在车体连接板1-1上,可实时监测爬行焊接机器人的运动姿态,并反馈信号至控制器,控制器回馈信号到轮覆式行走机构2,实现其姿态调整。
由上述可以看出,本公开提供的无轨道、无导向的爬行焊接机器人,通过轮履式行走机构,控制爬行焊接机器人在大中型平面或弧面焊接结构件表面运动,可垂直爬壁;爬行 焊接机器人在进行前进或后退的运动时均能进行焊接作业,在爬行焊接机器人前进焊接过程中,激光跟踪模块5中的CCD相机5-4负责识别跟踪,激光跟踪模块5中的相机5-4负责对焊接过后的焊缝进行检测,观察焊缝的成型宽度以及打底高度。在焊接过程中,对一条焊缝的成型宽度以及打底高度进行存储,焊接完成后对这些数据进行取平均值处理,平均数对盖面的工艺参数有积极的指导意义。
如图11所示,激光跟踪模块5进行跟踪焊缝原理为:
由激光传感器5-3检测到的图像信号传输到工控机,图像处理软件将计算得出的焊缝信息数据发送至跟踪控制器,跟踪控制器发出指示经焊枪平摆机构3控制使焊枪12横向跟踪焊缝运动,并指示经轮覆式行走机构2使焊枪12跟踪干深长度变化;同时图像处理软件将计算得出的焊缝信息数据发送至爬行焊接机器人的总控制器,总控制器将焊缝坡口变化信息传输到焊接电源控制器,从而实时调节焊接电源的工艺参数。焊枪平摆机构3上设置有位移传感器,位移传感器产生的位移信号与车身姿态传感器8产生的车体姿态信号相结合,经过跟踪控制器运算处理,输送给爬行焊接机器人的总控制器,启动爬行焊接机器人的驱动装置而使爬行焊接机器人保持与焊缝平行,从而进行全位置的平面或弧面焊接作业;同时爬行焊接机器人安装有防风装置7,能满足风速不大于10m/s条件下的熔化极气体保护焊。
一种爬行焊接机器人的控制方法,其特征在于,包括如下步骤:
S1.控制可调式磁吸附模块,使爬行焊接机器人与被吸附表面间的吸附力保持稳定;
S2.获取焊缝信息;
S3.控制焊枪12平移达到焊缝位置;
S4.控制焊枪12转动,达到工艺需求角度;
S5.调节焊接电源的工艺参数;
S6.启动焊接,控制爬行机器人自动沿焊缝走向自主爬行;
S7.完成焊接。
可选的:
1.在步骤S2中,用激光传感器5-3测得焊缝信息的位置坐标、可信度及图像信号;
2.工控机将上述焊缝信息经信号处理传输到跟踪控制器及焊接电源控制器;
3.跟踪控制器依据焊缝信息发指令;
4.根据这一指令,经焊枪平摆机构3和焊枪角摆夹持机构6,使焊枪12实现跟踪焊缝运动并保持干深长度;
5.焊枪12经焊枪平摆机构3和焊枪角摆夹持机构6进行移动时,发出焊枪12位移信号;
6.爬行焊接机器人在移动时,车身上的姿态传感器8发出车身姿态信号;
7.结合步骤1、步骤5以及步骤6的输入数据,跟踪控制器进行运算处理;
8.跟踪控制器将处理过后的数据发送给爬行焊接机器人的总控制器;
9.爬行焊接机器人的总控制器经过计算发出指令,经两个伺服电机2-6分别驱动两个主动轮2-1进行不同的速度转动,进而使爬行焊接机器人进行转向运动;
10.爬行焊接机器人的总控制器根据接收的图像位置信号计算后,经轮覆式行走机构2带动激光跟踪模块5移动,使相机5-4始终能够锁定焊缝;
11.焊接电源控制器依据焊缝信息发出指令,从而实时调节焊接电源的工艺参数;
12.上位机摆动软件依据焊接工艺,设置相应的焊接摆动参数,包括焊接类型、平摆、钟摆、摆幅、摆速以及停顿时间的控制参数,该控制参数设置好后,发送给跟踪控制器;
13.跟踪控制器根据上位机接收到的焊接摆动参数,经焊枪角摆夹持机构6使焊枪12实现摆动;
14.与跟踪控制器相连的手动控制器控制焊接过程中需要微调节或人工干预的焊接参数;
15.上位机车体控制软件依据焊接工艺,设置相应的车体控制参数:包括自动行驶基准速度、手动行驶速度以及整定参数内容,爬行焊接机器人的总控制器接收并保存设定的工艺参数,依据设定值行驶;
焊枪12位置的控制方式如下:
1.爬行焊接机器人以差速方式控制轮履式行走机构2行驶,实现爬行焊接机器人的转向,可以实现原地自传360°;
2.焊枪平摆机构3、激光跟踪平摆机构4及轮覆式行走机构2实现焊枪12的位置调节,以实现焊枪12的干深长度调节;
3.焊枪角摆夹持机构6以步进驱动(含减速机)方式控制实现焊枪12的角摆,以达到实现某些焊接工艺需求。
本申请与现有技术相比,优点包括:
1、通过轮覆式行走机构2实现无需轨道以及无需导向爬行,可焊接范围大;可明显减少焊接辅助时间,生产效率高;可实现大中型结构件的全位置焊接。
2、通过可调式磁吸附模块来调节磁吸附力大小,可实现平板及大曲率弧板爬行,工作环境适应性高。
3、通过采用了先进的焊缝识别以及多传感器数据融合技术,可实现可靠的焊缝跟踪,因此可以保证焊接的质量,焊缝跟踪精度可达±0.3mm.高度在±0.5mm以内,并且跟踪范围不受限制。
4、爬行焊接机器人安装有防风装置7,可满足风速不大于10m/s条件下的熔化极气体保护焊。
5、通过图像采集获取焊缝宽度等相关信息,反馈到爬行焊接机器人的总控制器,爬行焊接机器人的总控制器调节焊接电源控制器来实现对焊接电源电压及电流的调节,可满足焊缝不规则变化时焊接工艺的实时调节。
本公开提供的爬行焊接机器人,通过轮覆式行走机构2,实现无需轨道以及无需导向爬行,可焊接范围大,能够在大中型平面或弧面焊接结构件表面运动,可垂直爬壁,在前进或后退的运动时均能进行焊接作业,进而实现大中型结构件的全位置焊接,可明显减少焊接辅助时间,生产效率高;通过可调式磁吸附模块9来调节磁吸附力大小,可实现平板及大曲率弧板爬行,工作环境适应性高。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本公开的范围之内并且形成不同的实施例。例如,在上面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。公开于该背景技术部分的信息仅仅旨在加深对本公开的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
工业实用性:
综上所述,本公开提供了一种爬行焊接机器人及其控制方法,作业范围广以及作业效率高。

Claims (20)

  1. 一种爬行焊接机器人,其特征在于,包括可调式磁吸附模块、轮覆式行走机构、爬行机车架和焊接负载装置,所述焊接负载装置设置在所述爬行机车架上;
    所述轮覆式行走机构设置在所述爬行机车架的相对两端,用于给所述爬行机车架提供爬行动力;
    所述可调式磁吸附模块设置在所述爬行机车架上,且设置在两个所述轮覆式行走机构之间。
  2. 根据权利要求1所述的爬行焊接机器人,其特征在于,所述轮覆式行走机构包括磁座、滚子链、主动轮、从动轮和第一驱动装置;
    所述第一驱动装置固定设置在所述爬行机车架上;
    所述主动轮和所述从动轮均转动设置在所述爬行机车架上;
    所述主动轮和所述从动轮通过所述滚子链连接;
    所述磁座设置在所述滚子链上。
  3. 根据权利要求2所述的爬行焊接机器人,其特征在于,所述爬行机车架上设置有滑动槽;
    所述从动轮滑动设置在所述滑动槽内;
    所述爬行机车架上设置有第二驱动装置,用于带动所述从动轮在所述滑动槽内移动,以使对应的所述滚子链张紧或者松弛。
  4. 根据权利要求3所述的爬行焊接机器人,其特征在于,所述爬行机车架包括调节块以及调节螺杆,所述调节块与所述滑动槽滑动配合,所述调节螺杆螺接于所述爬行机车架上,所述调节螺杆与所述调节块转动连接,且所述调节螺杆与所述调节块在所述调节螺杆的轴向上相对固定;当所述调节螺杆转动时,所述调节块能够在所述滑动槽内滑动;所述从动轮与所述调节块转动连接。
  5. 根据权利要求3所述的爬行焊接机器人,其特征在于,所述爬行机车架包括调节块以及调节螺杆,所述调节块与所述滑动槽滑动配合,所述调节螺杆螺接于所述爬行机车架上,且所述调节螺杆与所述爬行机车架在所述调节螺杆的轴向上相对固定,所述调节螺杆与所述调节块转动连接;当所述调节螺杆转动时,所述调节块能够在所述滑动槽内滑动;所述从动轮与所述调节块转动连接。
  6. 根据权利要求2-5中任一项所述的爬行焊接机器人,其特征在于,所述第一驱动装置包括伺服电机和转角减速电机,所述伺服电机与所述转角减速电机连接,所述伺服电机和所述转角减速电机均固定在爬行机车架上,所述主动轮固定在所述转角减速电机的法兰上,通过所述伺服电机能够带动所述主动轮转动。
  7. 根据权利要求1-6中任一项所述的爬行焊接机器人,其特征在于,所述爬行机车架包括车体连接板以及与所述车体连接板连接且相对设置的两块侧板,两个所述轮覆式行走机构分别安装于两个所述侧板上。
  8. 根据权利要求1-7中任一项所述的爬行焊接机器人,其特征在于,所述焊接负载装置包括焊接架和焊枪平摆机构;
    所述焊接架固定设置在所述爬行机车架上;
    所述焊接平摆机构包括第一直线电机、第一直线导轨、第三驱动装置、第一传动齿轮和第一传动齿条;
    所述第一直线电机固定设置在所述焊接架上,所述第一直线导轨与所述第一直线电机连接;所述第一传动齿轮转动设置在所述第一直线导轨上;所述第一传动齿轮与所述第一传动齿条啮合,所述第一传动齿条与所述第一直线导轨滑动配合;所述第三驱动装置与所述第一传动齿轮连接,用于驱动所述第一传动齿轮转动,进而带动所述第一传动齿条相对于所述第一直线导轨往复滑动。
  9. 根据权利要求8所述的爬行焊接机器人,其特征在于,所述焊接负载装置还包括焊 枪角摆夹持机构;
    所述焊枪角摆夹持机构包括角摆器、锁紧机构和卡箍;
    所述角摆器与所述卡箍连接,用于带动设置在所述卡箍上的焊枪摆动;
    所述锁紧机构设置在所述角摆器上,且与所述第一传动齿条固定连接。
  10. 根据权利要求9所述的爬行焊接机器人,其特征在于,所述角摆器包括相连的电机以及旋转平台,所述卡箍与所述旋转平台连接,所述锁紧机构与所述电机连接。
  11. 根据权利要求8-10中任一项所述的爬行焊接机器人,其特征在于,所述焊接负载装置还包括激光跟踪平摆机构和激光跟踪模块;
    所述激光跟踪平摆机构包括第二直线电机、第二直线导轨、第四驱动装置、第二传动齿轮和第二传动齿条;
    所述第二直线电机固定设置在所述焊接架上,所述第二直线导轨与所述第二直线电机连接;所述第二传动齿轮转动设置在第二所述直线导轨上;所述第二传动齿轮与所述第二传动齿条啮合,所述第二传动齿条与所述第二直线导轨滑动配合;所述第四驱动装置与所述第二传动齿轮连接,用于驱动所述第二传动齿轮转动,以带动所述第二传动齿条往复直线运动。
  12. 根据权利要求11所述的爬行焊接机器人,其特征在于,
    所述激光跟踪模块包括相机、激光传感器、安装架和多滤光片;
    所述相机、所述激光传感器和所述多滤光片均设置在所述安装架上;
    所述安装架固定设置在所述第二传动齿条上。
  13. 根据权利要求1-12中任一项所述的爬行焊接机器人,其特征在于,所述爬行焊接机器人还包括防风装置,所述防风装置与所述爬行机车架连接;
    所述防风装置包括相连的固定支架和防风罩体,所述固定支架与所述爬行机车架连接;
    所述固定支架包括能够沿前后方向伸缩的伸缩平移板,所述伸缩平移板上开设有具有夹角的左右方向滑道及前后方向滑道,所述防风罩体上开设有上下方向滑道,所述伸缩平移板与所述防风罩体连接,且所述防风罩体能够相对于所述伸缩平移板在所述上下方向滑道的延伸方向以及所述左右方向滑道的延伸方向上滑移,使得所述防风罩体能够在三个方向上进行调整。
  14. 根据权利要求13所述的爬行焊接机器人,其特征在于,所述固定支架还包括相连的固定底板以及固定连接板,所述固定连接板与所述伸缩平移板沿所述前后方向滑道的延伸方向滑动配合;所述固定底板用于与所述爬行机车架连接。
  15. 根据权利要求13或者14所述的爬行焊接机器人,其特征在于,所述伸缩平移板包括相连的第一板部和第二板部,所述第一板部与所述第二板部具有夹角,所述左右方向滑道设置于所述第一板部上,所述前后方向滑道设置于所述第二板部上;所述第一板部与所述防风罩体滑动连接,所述第二板部与所述固定连接板滑动连接。
  16. 根据权利要求1-15中任一项所述的爬行焊接机器人,其特征在于,所述可调式磁吸附模块包括磁体模块和升降调节模块,所述升降调节模块与所述磁体模块连接,用于控制所述磁体模块升降;
    所述升降调节模块包括多个可独立控制的升降机构,通过分别调节多个独立控制的所述升降机构,改变所述磁体模块与被吸附表面之间的夹角和/或间隙。
  17. 根据权利要求16所述的爬行焊接机器人,其特征在于,所述磁体模块包括安装壳、盖体以及磁铁,所述安装壳设置有腔体,所述磁铁置于所述腔体内,所述盖体与所述安装壳连接以封盖所述腔体。
  18. 根据权利要求16或者17所述的爬行焊接机器人,其特征在于,所述升降结构包括支撑架、升降螺杆以及调节螺母,所述支撑架与所述爬行机车架连接,所述升降螺杆与所述调节螺母螺接,所述调节螺母与所述支撑架转动连接,且所述调节螺母与所述支撑架在所述调节螺母的轴向上相对固定;所述升降螺杆与所述磁体模块连接。
  19. 根据权利要求18所述的爬行焊接机器人,其特征在于,所述支撑架包括槽体以及盖板,所述槽体上设置有限位槽;所述调节螺母上设置有环形限位凸起,所述环形限位凸起沿所述调节螺母的周向延伸,所述环形限位凸起沿所述调节螺母的径向向外凸出所述调节螺母的外周面;所述环形限位凸起位于所述限位槽内,所述盖板与所述槽体连接且封盖所述限位槽的槽口,以使所述环形限位凸起限制在所述限位槽的槽底与所述盖体之间。
  20. 一种爬行焊接机器人的控制方法,其特征在于,包括如下步骤:
    S1.控制可调式磁吸附模块,使爬行焊接机器人与被吸附表面间的吸附力保持稳定;
    S2.获取焊缝信息;
    S3.控制焊枪平移达到焊缝位置;
    S4.控制焊枪转动,达到工艺需求角度;
    S5.调节焊接电源的工艺参数;
    S6.启动焊接,控制爬行机器人自动沿焊缝走向自主爬行;
    S7.完成焊接。
PCT/CN2019/095300 2018-12-07 2019-07-09 爬行焊接机器人及其控制方法 WO2020113956A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11202000192TA SG11202000192TA (en) 2018-12-07 2019-07-09 Crawling welding robot and method of controlling the same
US16/631,597 US11786986B2 (en) 2018-12-07 2019-07-09 Crawling welding robot and method of controlling the same
EP19832267.9A EP3685958B1 (en) 2018-12-07 2019-07-09 Crawling welding robot and control method thereof
RU2019145025A RU2754728C1 (ru) 2018-12-07 2019-07-09 Гусеничный сварочный робот и способ управления таким роботом
KR1020197034733A KR102304107B1 (ko) 2018-12-07 2019-07-09 크롤링 용접 로봇 및 그 제어 방법
JP2019569933A JP6929392B2 (ja) 2018-12-07 2019-07-09 クロール溶接ロボット及びその制御方法
ZA2019/08575A ZA201908575B (en) 2018-12-07 2019-12-23 Crawling welding robot and method of controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811496503.7A CN109396700A (zh) 2018-12-07 2018-12-07 爬行焊接机器人及其控制方法
CN201811496503.7 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020113956A1 true WO2020113956A1 (zh) 2020-06-11

Family

ID=65457925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095300 WO2020113956A1 (zh) 2018-12-07 2019-07-09 爬行焊接机器人及其控制方法

Country Status (9)

Country Link
US (1) US11786986B2 (zh)
EP (1) EP3685958B1 (zh)
JP (1) JP6929392B2 (zh)
KR (1) KR102304107B1 (zh)
CN (1) CN109396700A (zh)
RU (1) RU2754728C1 (zh)
SG (1) SG11202000192TA (zh)
WO (1) WO2020113956A1 (zh)
ZA (1) ZA201908575B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114102629A (zh) * 2021-12-06 2022-03-01 长沙理工大学 一种动车车底巡检机器人
CN114227722A (zh) * 2022-01-20 2022-03-25 北京史河科技有限公司 一种可精准识别生锈区域的船只内舱除锈机器人的定位机构
CN115420793A (zh) * 2022-08-22 2022-12-02 北京工业大学 一种斜拉桥索全断面缺陷的漏磁检测机器人
CN115541172A (zh) * 2022-12-02 2022-12-30 中国航空工业集团公司沈阳空气动力研究所 一种冰风洞云雾场连续测量装置
CN115676715A (zh) * 2022-10-14 2023-02-03 国网浙江省电力有限公司嵊泗县供电公司 一种半包围式电杆登高作业装置
CN116160170A (zh) * 2023-04-25 2023-05-26 常州市鹏睿机械有限公司 一种变压器外壳加工的自动焊接装置
CN116652377A (zh) * 2023-05-18 2023-08-29 广东百能家居有限公司 一种不锈钢灶台台面的手持式激光焊接设备及方法
CN117600624A (zh) * 2024-01-18 2024-02-27 南昌工程学院 一种膜式壁专用焊接机器人系统和膜式壁焊接方法
CN117961384A (zh) * 2024-03-29 2024-05-03 中国核工业二四建设有限公司 一种中空结构的履带式核电站安全壳爬壁焊接机器人

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109396700A (zh) 2018-12-07 2019-03-01 北京博清科技有限公司 爬行焊接机器人及其控制方法
CN109823434A (zh) * 2019-03-04 2019-05-31 温广胜 一种高灵活度的自走式机器人
CN112108806A (zh) * 2019-06-22 2020-12-22 北京博清科技有限公司 爬行焊接机器人
JP1665176S (zh) * 2019-11-21 2020-08-03
JP1665104S (zh) * 2019-11-21 2020-08-03
JP1665103S (zh) * 2019-11-21 2020-08-03
CN111761266A (zh) * 2020-06-30 2020-10-13 北京博清科技有限公司 一种焊接机器人及焊接方法
CN111805132A (zh) * 2020-07-06 2020-10-23 北京史河科技有限公司 一种焊接机构
CN112247318A (zh) * 2020-10-10 2021-01-22 中国核工业第二二建设有限公司 核电钢制安全壳无轨导焊接装置及其焊接方法
CN112537379A (zh) * 2020-11-26 2021-03-23 重庆大学 一种轮式攀爬机器人及其粘附装置
CN112846444A (zh) * 2020-12-31 2021-05-28 北京博清科技有限公司 气电立焊装置、其控制方法、控制装置、和气电立焊系统
KR20220146148A (ko) 2021-04-23 2022-11-01 한국조선해양 주식회사 용접선 추적장치
CN113231774A (zh) * 2021-06-04 2021-08-10 兰州理工大学 一种风电塔筒的环焊装置及其使用方法
CN114012747A (zh) * 2021-06-09 2022-02-08 中铁五局集团建筑工程有限责任公司 管桁架焊缝表面质量检测机器人及其控制系统、方法
CN113386151B (zh) * 2021-06-15 2022-06-21 北京博清科技有限公司 焊接机器人
CN113401239A (zh) * 2021-06-29 2021-09-17 上海电机学院 轮履结合的爬壁机器人
CN113334386B (zh) * 2021-06-30 2023-01-10 北京博清科技有限公司 焊渣的检测方法以及检测装置
KR20230026633A (ko) 2021-08-18 2023-02-27 삼성중공업 주식회사 로봇 용접 시스템 및 방법
CN113977043B (zh) * 2021-10-13 2022-12-16 华南理工大学 一种嵌入式爬行机器人焊接系统集控器装置
CN113942590A (zh) * 2021-10-19 2022-01-18 安徽理工大学 煤矿井下轮履复合式巡检清障机器人
CN114002328A (zh) * 2021-11-10 2022-02-01 大连海洋大学 船舶油舱用焊缝检测机器人及检测方法
CN114137074B (zh) * 2021-11-24 2023-12-19 苏州市建设工程质量检测中心有限公司 一种基于仿生爬壁机器人的玻璃幕墙检测装置
CN114227089B (zh) * 2021-11-29 2023-10-20 淮阴工学院 一种大型管道、容器自爬行式自动焊接装置
CN114054952B (zh) * 2021-12-13 2022-08-09 深圳市华明博机电设备工程有限公司 一种可以巡查检查的高铁车组制造焊接机器人
CN114235823A (zh) * 2021-12-29 2022-03-25 上海智楹机器人科技有限公司 一种检测用螺旋运动轨迹爬行机器人装置
CN114803380B (zh) * 2022-06-24 2022-09-13 江苏英拓动力科技有限公司 一种用于复杂环境的无人履带车运载输送平台
CN114888494B (zh) * 2022-06-28 2023-04-25 中国十七冶集团有限公司 一种高空钢梁焊接机器人、焊头调节机构及焊接方法
CN115846873B (zh) * 2023-02-24 2023-05-23 西安藤飞属信息科技有限公司 一种工业机器人制造用焊接工装
CN115890053B (zh) * 2023-03-02 2023-08-18 成都熊谷加世电器有限公司 内焊机对口方法、装置、内焊机及存储介质
CN116551274B (zh) * 2023-07-10 2023-09-05 北京石油化工学院 斜口管道焊接机器人
CN116551264B (zh) * 2023-07-11 2023-09-22 武汉斯优光电技术有限公司 一种激光器的封焊设备
CN117020515A (zh) * 2023-09-04 2023-11-10 央固工程科技(上海)有限公司 自动焊接装置
CN116871765B (zh) * 2023-09-07 2023-11-07 山东龙新节能科技有限公司 一种钢丝网架板卧式插丝焊接装置
CN117048730A (zh) * 2023-10-11 2023-11-14 中国核工业二四建设有限公司 一种履带式爬壁焊接机器人
CN117245303A (zh) * 2023-11-03 2023-12-19 杭萧钢构(山东)有限公司 一种适应于大型钢构件的焊接机器人及其焊接方法
CN117506265B (zh) * 2024-01-08 2024-03-29 宁波至信汽车零部件制造有限公司 一种汽车金属配件焊接装置
CN117734843B (zh) * 2024-02-20 2024-04-30 成都理工大学 一种可调体型大小的越障机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923205A (zh) * 2012-10-08 2013-02-13 上海工程技术大学 管道形锅炉管壁焊接用爬壁机器人行走机构
KR20130123954A (ko) * 2012-05-04 2013-11-13 삼성중공업 주식회사 용접부 절삭장치
CN206536447U (zh) * 2017-02-28 2017-10-03 吉林大学 一种复杂结构大型管罐件焊接磨抛机器人
CN107489854A (zh) * 2017-07-17 2017-12-19 上海交通大学 一种适应复杂壁面作业的非接触式磁吸附爬壁机器人
CN208085841U (zh) * 2018-04-18 2018-11-13 北京博清科技有限公司 用于焊接机器人的永磁吸附轮履式爬行机械
CN109396700A (zh) * 2018-12-07 2019-03-01 北京博清科技有限公司 爬行焊接机器人及其控制方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1248397A (en) * 1967-12-27 1971-09-29 Nat Res Dev Equipment for radiography of pipelines and closed vessels
US4005305A (en) * 1974-06-11 1977-01-25 Crc-Crose International, Inc. Shielding apparatus
SU774878A1 (ru) * 1978-10-18 1980-10-30 Всесоюзный Проектно-Конструкторский Институт Сварочного Производства Самоходное магнитное устройство
SU872157A1 (ru) * 1980-01-07 1981-10-15 Ордена Ленина Завод "Ленинская Кузница" Устройство дл односторонней автоматической сварки деталей
JPS57147172U (zh) 1981-03-11 1982-09-16
JPS5954178A (ja) 1982-09-18 1984-03-28 和泉電気株式会社 端子接続装置
JPS5954178U (ja) * 1982-09-30 1984-04-09 三菱重工業株式会社 ガスシ−ルドア−ク溶接装置の防風装置
JPS5994778U (ja) * 1982-12-17 1984-06-27 日本鋼管株式会社 狭開先溶接機のガスシ−ルド装置
US5045303A (en) 1985-05-17 1991-09-03 Neorx Corporation Radiohalogenated small molecules for protein labeling
US5045030A (en) * 1990-06-13 1991-09-03 Cunningham Kelly G Guide and tensioning device for endless track vehicles
US5811055A (en) * 1996-02-06 1998-09-22 Geiger; Michael B. Torch mounted gas scavaging system for manual and robotic welding and cutting torches
KR100312641B1 (ko) * 1999-03-04 2001-11-03 김징완 자동화 용접장치의 센싱 시스템
CN1222395C (zh) * 2003-08-19 2005-10-12 潘际銮 永磁履带自主全位置爬行式弧焊机器人的控制方法
JP2005254999A (ja) * 2004-03-11 2005-09-22 Komatsu Zenoah Co 履帯張り調整装置
CN100503342C (zh) * 2007-09-29 2009-06-24 华中科技大学 轮式永磁吸附管道爬行机器人
GB0917950D0 (en) * 2009-10-13 2009-11-25 Shawcor Ltd X-ray inspection method and apparatus for pipeline girth weld inspection
CN101863292B (zh) 2010-05-20 2011-12-14 常州华通焊丝有限公司 履带式永磁爬行机
CN201730450U (zh) * 2010-07-23 2011-02-02 温州天球电器有限公司 一种车窗玻璃滑移装置
CN101947777B (zh) * 2010-09-22 2012-07-04 上海交通大学 轮足组合越障非接触磁吸附式爬壁机器人系统
US9168786B2 (en) * 2011-12-02 2015-10-27 Helical Robotics, Llc Mobile robot
CN102489838B (zh) 2011-12-15 2013-06-19 上海交通大学 越障全位置自主焊接机器人
CN102704717B (zh) * 2012-05-09 2014-07-30 电联工程技术股份有限公司 用于移动式集成基站的升降支腿
CN102689085B (zh) * 2012-06-07 2014-12-10 中国东方电气集团有限公司 一种用于大型精密设备焊接的自主移动式抖动热丝tig焊机器人系统
CN202622192U (zh) * 2012-06-07 2012-12-26 中国东方电气集团有限公司 一种用于等离子mig复合焊接的自主移动式机器人系统
US10480862B2 (en) * 2013-05-23 2019-11-19 Crc-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline
CN103659076A (zh) 2013-12-04 2014-03-26 镇江新区汇达机电科技有限公司 磁吸爬行式钢结构焊接机
CN104443098B (zh) * 2014-11-14 2016-09-28 北京理工大学 磁吸附爬壁机器人
CN204750343U (zh) * 2015-05-14 2015-11-11 宁波大学 一种小型塑胶履带的松紧调节装置
CN205769675U (zh) 2016-05-13 2016-12-07 中国东方电气集团有限公司 一种轴线夹角自动调节的磁吸附驱动车轮组装置
CN105835978A (zh) * 2016-05-30 2016-08-10 哈工大机器人集团有限公司 一种履带式磁吸附爬壁机器人
CN205847902U (zh) * 2016-07-12 2017-01-04 周齐铭 多功能田间遥控作业车
CN205967771U (zh) * 2016-07-26 2017-02-22 中国建筑第八工程局有限公司 防风罩
CN206215954U (zh) * 2016-11-04 2017-06-06 浙江星欧电机科技有限公司 一种电机壳钻孔机的高效钻孔装置
CN106915389B (zh) 2017-04-13 2019-03-19 西南石油大学 一种基于弹簧形变的磁吸附力自适应调节装置及方法
CN108482503B (zh) 2018-04-28 2020-07-24 北京海科智机器人科技有限公司 一种磁吸轮履式爬壁机器人越障机构
CN109050822A (zh) * 2018-07-27 2018-12-21 深圳聚纵科技有限公司 柔性磁吸附水下爬壁机器人
CN209319076U (zh) * 2018-12-07 2019-08-30 北京博清科技有限公司 爬行焊接机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130123954A (ko) * 2012-05-04 2013-11-13 삼성중공업 주식회사 용접부 절삭장치
CN102923205A (zh) * 2012-10-08 2013-02-13 上海工程技术大学 管道形锅炉管壁焊接用爬壁机器人行走机构
CN206536447U (zh) * 2017-02-28 2017-10-03 吉林大学 一种复杂结构大型管罐件焊接磨抛机器人
CN107489854A (zh) * 2017-07-17 2017-12-19 上海交通大学 一种适应复杂壁面作业的非接触式磁吸附爬壁机器人
CN208085841U (zh) * 2018-04-18 2018-11-13 北京博清科技有限公司 用于焊接机器人的永磁吸附轮履式爬行机械
CN109396700A (zh) * 2018-12-07 2019-03-01 北京博清科技有限公司 爬行焊接机器人及其控制方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114102629A (zh) * 2021-12-06 2022-03-01 长沙理工大学 一种动车车底巡检机器人
CN114227722A (zh) * 2022-01-20 2022-03-25 北京史河科技有限公司 一种可精准识别生锈区域的船只内舱除锈机器人的定位机构
CN115420793B (zh) * 2022-08-22 2024-06-04 北京工业大学 一种斜拉桥索全断面缺陷的漏磁检测机器人
CN115420793A (zh) * 2022-08-22 2022-12-02 北京工业大学 一种斜拉桥索全断面缺陷的漏磁检测机器人
CN115676715A (zh) * 2022-10-14 2023-02-03 国网浙江省电力有限公司嵊泗县供电公司 一种半包围式电杆登高作业装置
CN115676715B (zh) * 2022-10-14 2023-08-22 国网浙江省电力有限公司嵊泗县供电公司 一种半包围式电杆登高作业装置
CN115541172A (zh) * 2022-12-02 2022-12-30 中国航空工业集团公司沈阳空气动力研究所 一种冰风洞云雾场连续测量装置
CN115541172B (zh) * 2022-12-02 2023-02-03 中国航空工业集团公司沈阳空气动力研究所 一种冰风洞云雾场连续测量装置
CN116160170A (zh) * 2023-04-25 2023-05-26 常州市鹏睿机械有限公司 一种变压器外壳加工的自动焊接装置
CN116652377B (zh) * 2023-05-18 2023-11-14 广东百能家居有限公司 一种不锈钢灶台台面的手持式激光焊接设备及方法
CN116652377A (zh) * 2023-05-18 2023-08-29 广东百能家居有限公司 一种不锈钢灶台台面的手持式激光焊接设备及方法
CN117600624A (zh) * 2024-01-18 2024-02-27 南昌工程学院 一种膜式壁专用焊接机器人系统和膜式壁焊接方法
CN117600624B (zh) * 2024-01-18 2024-03-29 南昌工程学院 一种膜式壁专用焊接机器人系统和膜式壁焊接方法
CN117961384A (zh) * 2024-03-29 2024-05-03 中国核工业二四建设有限公司 一种中空结构的履带式核电站安全壳爬壁焊接机器人

Also Published As

Publication number Publication date
US20210291289A1 (en) 2021-09-23
RU2754728C1 (ru) 2021-09-06
JP2021511237A (ja) 2021-05-06
SG11202000192TA (en) 2020-07-29
EP3685958C0 (en) 2023-11-01
EP3685958A4 (en) 2021-08-25
ZA201908575B (en) 2021-04-28
KR102304107B1 (ko) 2021-09-23
CN109396700A (zh) 2019-03-01
EP3685958A1 (en) 2020-07-29
EP3685958B1 (en) 2023-11-01
JP6929392B2 (ja) 2021-09-01
KR20200071044A (ko) 2020-06-18
US11786986B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2020113956A1 (zh) 爬行焊接机器人及其控制方法
CN108620782B (zh) 基于视觉伺服的箱型钢结构现场全位置焊接机器人
WO2021237920A1 (zh) 一种采用焊接移动小车装载焊枪的焊接系统
CN102672315B (zh) 一种自主移动式双面双弧焊接机器人系统
WO2021103522A1 (zh) 钢结构焊接设备
CN102689100B (zh) 一种用于等离子mig复合焊接的自主移动式机器人系统
CN202622192U (zh) 一种用于等离子mig复合焊接的自主移动式机器人系统
CN209319076U (zh) 爬行焊接机器人
KR101244179B1 (ko) 다축 구동 토치를 구비한 파이프 자동용접장치
CN202752729U (zh) 一种自主移动式双面双弧焊接机器人系统
CN104096955A (zh) 铝母线窄间隙mig焊接专机
CN113909639A (zh) 一种基于视觉检测的焊缝偏斜自动补偿埋弧焊小车及方法
CN105618907A (zh) 一种远程控制的埋弧焊自动调节装置
CN106563902A (zh) 一种自动化数控焊接机
KR20120103429A (ko) 학습형 강관 이음부 자동용접 장치
CN204711384U (zh) 用于行车单梁的四头龙门焊机
CN109955927A (zh) 一种自适应复杂3d金属曲面的智能移动机器人的行走系统
CN210548758U (zh) 一种远程控制的埋弧焊自动调节装置
CN219212060U (zh) 一种龙门架式可多角度调节的焊接机器人
CN213163805U (zh) 一种立式角焊小车
CN203356822U (zh) 铝母线窄间隙mig焊接专机
KR101107140B1 (ko) 강관용접 로봇의 제어장치
CN211162568U (zh) 一种管类自动焊接装置
KR100937752B1 (ko) 자주식 강관용접 로봇장치
CN213531395U (zh) 一种吸附式大型起重机主梁表面焊接辅助装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019569933

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019832267

Country of ref document: EP

Effective date: 20200115

NENP Non-entry into the national phase

Ref country code: DE