WO2020111741A1 - 방향성 전기강판 및 그의 제조방법 - Google Patents

방향성 전기강판 및 그의 제조방법 Download PDF

Info

Publication number
WO2020111741A1
WO2020111741A1 PCT/KR2019/016386 KR2019016386W WO2020111741A1 WO 2020111741 A1 WO2020111741 A1 WO 2020111741A1 KR 2019016386 W KR2019016386 W KR 2019016386W WO 2020111741 A1 WO2020111741 A1 WO 2020111741A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
weight
steel sheet
electrical steel
oriented electrical
Prior art date
Application number
PCT/KR2019/016386
Other languages
English (en)
French (fr)
Inventor
송대현
박준수
양일남
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2021531296A priority Critical patent/JP7221481B6/ja
Priority to EP19891365.9A priority patent/EP3889297A4/en
Priority to CN201980078904.7A priority patent/CN113166892B/zh
Priority to US17/297,115 priority patent/US20220290277A1/en
Publication of WO2020111741A1 publication Critical patent/WO2020111741A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • It relates to a grain-oriented electrical steel sheet and a method for manufacturing the same. Specifically, it relates to a grain-oriented electrical steel sheet having improved magnetic properties by appropriately controlling the contents of Mn, Cr, Sn, and Sb, and a method for manufacturing the same.
  • the grain-oriented electrical steel sheet is a soft magnetic material with excellent magnetic properties in one direction or in the rolling direction because it exhibits a goss texture in which the grain texture of the steel piece is ⁇ 110 ⁇ 001> with respect to the rolling direction.
  • complicated processes such as component control in steelmaking, slab reheating and hot rolling process factor control in hot rolling, hot rolled sheet annealing heat treatment, cold rolling, primary recrystallization annealing, and secondary recrystallization annealing are required. It must be managed precisely and strictly.
  • the reduction of the plate thickness the addition of alloying elements having the effect of increasing the resistivity such as Si, the tensioning in the steel sheet, the reduction in the roughness of the steel sheet surface, the refinement of the secondary recrystallized grain size, the magnetic domain refinement, etc. It is known to be effective in improving iron loss.
  • a grain-oriented electrical steel sheet and a method for manufacturing the same are provided.
  • the present invention provides a grain-oriented electrical steel sheet having improved magnetic properties by appropriately controlling the contents of Mn, Cr, Sn, and Sb and a method of manufacturing the same.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention is by weight, Si: 2.0 to 6.0%, Mn: 0.12 to 1.0%, Sb:0.01 to 0.05%, Sn: 0.03 to 0.08% and Cr: 0.01 to 0.2% It contains, the balance of Fe and inevitable impurities, and satisfies the following formula (1).
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention may further include Al: 0.005 to 0.04% by weight and P: 0.005 to 0.045% by weight.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention may further include Co:0.1 wt% or less.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention may further include C: 0.01% by weight or less, N:0.01% by weight or less, and S:0.01% by weight or less.
  • Method of manufacturing a grain-oriented electrical steel sheet according to an embodiment of the present invention is by weight, Si: 2.0 to 6.0%, C: 0.01 to 0.15%, Mn: 0.12 to 1.0%, Sb:0.01 to 0.05%, Sn: 0.03 To 0.08% and Cr: heating the slab containing 0.01 to 0.2%, containing the remaining Fe and inevitable impurities, and satisfying Equation 1 below; Hot rolling a slab to produce a hot rolled sheet; Cold rolling the hot rolled sheet to produce a cold rolled sheet; First recrystallization annealing the cold rolled sheet; And secondary recrystallization annealing of the cold rolled sheet subjected to primary recrystallization annealing.
  • the slab can satisfy Equation 2 below.
  • the slab can satisfy Equation 3 below.
  • the slab In the step of heating the slab, it may be heated to a temperature of 1250°C or less.
  • the step of manufacturing the cold-rolled sheet may include one or more cold-rolling operations including one cold rolling or intermediate annealing.
  • the first recrystallization annealing step includes a decarburization step and a denitrification step, and may be performed after a decarburization step, a denitrification step, or after a denitrification step, a decarburization step, or a decarburization step and a denitrification step simultaneously.
  • a step of applying an annealing separator may be further included.
  • the second recrystallization may be completed at a temperature of 900 to 1210°C.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention can improve iron loss along with increasing specific resistance and imparting grain growth suppression through Mn-based sulfide formation.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention can appropriately control the contents of Cr, Sn, and Sb, thereby promoting the formation of an oxide layer during decarburization, and assisting the grain growth suppression force, thereby improving magnetic properties.
  • first, second and third are used to describe various parts, components, regions, layers and/or sections, but are not limited thereto. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first portion, component, region, layer or section described below may be referred to as a second portion, component, region, layer or section without departing from the scope of the present invention.
  • % means weight%, and 1 ppm is 0.0001% by weight.
  • the meaning of further including an additional element means that the remaining amount of iron (Fe) is replaced by an additional amount of the additional element.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention is by weight, Si: 2.0 to 6.0%, Mn: 0.12 to 1.0%, Sb:0.01 to 0.05%, Sn: 0.03 to 0.08% and Cr: 0.01 to 0.2% And the balance Fe and unavoidable impurities.
  • Silicon (Si) is a basic composition of an electric steel sheet, and increases the specific resistance of a material, thereby reducing the core loss. If the Si content is too small, the resistivity decreases, the eddy current loss increases, and the iron loss characteristics deteriorate.
  • the phase transformation between ferrite and austenite becomes active and the primary recrystallized aggregate structure is severely damaged.
  • phase transformation between ferrite and austenite occurs during the second recrystallization annealing, and the second recrystallization becomes unstable and the ⁇ 110 ⁇ goth aggregate is severely damaged.
  • the SiO 2 and Fe 2 SiO 4 oxide layers are excessively and densely formed during the first recrystallization annealing to delay the decarburization behavior, so that phase transformation between ferrite and austenite occurs continuously during the first recrystallization annealing process.
  • the primary recrystallized collective can be severely damaged.
  • the nitriding behavior is also delayed due to the effect of delaying the decarburization behavior according to the above-described formation of the dense oxide layer, so that nitrides such as (Al,Si,Mn)N and AlN are not sufficiently formed, thereby securing sufficient grain suppression power required for secondary recrystallization during high temperature annealing. It can become impossible.
  • Si when Si is included in an excessive amount, the brittleness, which is a mechanical property, increases and the toughness decreases, thereby increasing the incidence of plate breakage during the rolling process, and the weldability between plates becomes inferior, making it impossible to secure easy workability.
  • Si may be included in 2.0 to 6.0% by weight. More specifically, it may contain 3.0 to 5.0% by weight.
  • Manganese (Mn) has the effect of reducing the total iron loss by increasing the specific resistance by reducing the eddy current loss as in Si, and reacts with S in a low-strength state to make Mn-based sulfide as well as being introduced by nitriding with Si.
  • By reacting with nitrogen to form a precipitate of (Al,Si,Mn)N it is an important element in suppressing the growth of primary recrystallized grains and causing secondary recrystallization.
  • the present invention not only is the purpose of improving the overall iron loss due to the increase in specific resistance due to the increase of the Mn content, but also an object of imparting the ability to suppress grain growth by Mn-based sulfide.
  • Mn Iron loss may be improved when Mn is properly included within the above-described Si content range. However, when Mn was included in excess, the effect of improving iron loss did not appear, and the magnetic properties deteriorated as the austenite phase transformation was not only deepened, but also decarbonization took a long time. Therefore, Mn may be included in an amount of 0.12 to 1.0% by weight. More specifically, Mn may include 0.13 to 1.0% by weight. More specifically, it may include 0.21 to 0.95% by weight. More specifically, it may include 0.25 to 0.95% by weight. More specifically, it may include 0.3 to 0.95% by weight. In one embodiment of the present invention, even when a relatively large amount of Mn is added due to the proper addition of Si and C together with Mn, the aggregated structure is not severely damaged in the secondary recrystallization annealing process.
  • Antimony (Sb) has the effect of segregating to the grain boundaries and suppressing the growth of crystal grains, and has the effect of stabilizing secondary recrystallization. However, it has a low melting point, so it is easy to diffuse to the surface during primary recrystallization annealing, and thus has an effect of preventing decarburization, oxide layer formation, and invasion by nitriding. If too little Sb is included, it is difficult to properly exhibit the above-described effect. Conversely, when Sb is added in excess, decarburization can be prevented and the formation of an oxide layer, which is the base of the base coating, can be suppressed. Therefore, Sb may be included in an amount of 0.01 to 0.05% by weight. More specifically, it may include 0.01 to 0.04% by weight.
  • Tin (Sn) is a grain boundary segregation element and acts as a grain growth inhibitor because it is an element that interferes with the movement of grain boundaries.
  • the grain growth inhibitory force for smooth secondary recrystallization behavior during secondary recrystallization annealing is insufficient, segregation to the grain boundaries is necessary to prevent Sn from moving. If too little Sn is included, it is difficult to properly exhibit the above-described effect. Conversely, when Sn is added in excess, the grain growth inhibitory force is too strong to obtain a stable secondary recrystallization. Therefore, the content of Sn may include 0.03 to 0.08% by weight. More specifically, it may include 0.04 to 0.08% by weight.
  • Chromium (Cr) promotes the formation of the hard phase in the hot-rolled sheet, thereby promoting the formation of ⁇ 110 ⁇ 001> of Goss aggregates during cold rolling, and the desorption during the first recrystallization annealing process, thereby increasing the retention time of austenite phase transformation.
  • the effect of reducing the retention time of austenite phase transformation is expressed so as to prevent a phenomenon in which the aggregate tissue is damaged.
  • by promoting the formation of the oxide layer on the surface formed during the first recrystallization annealing process there is an effect that can solve the disadvantage that the formation of the oxide layer is inhibited by Sn and Sb among the alloying elements used as the grain growth auxiliary inhibitor.
  • Cr When Cr is low, it is difficult to properly exhibit the above-described effect. On the contrary, when an excessive amount of Cr is added, during the first recrystallization annealing process, a denser oxide layer is formed during the formation of the oxide layer, so that the oxide layer formation is inferior, and decarburization and deterioration may be prevented. Therefore, Cr may include 0.01 to 0.2% by weight. More specifically, it may include 0.02 to 0.1% by weight.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention satisfies Expression 1 below.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention may further include Al: 0.005 to 0.04% by weight and P: 0.005 to 0.045% by weight. As described above, when the additional element is further included, the remaining Fe is added as a replacement.
  • Aluminum (Al) is combined with Al, Si, and Mn in which nitrogen ions introduced by ammonia gas are present in solid solution in steel in addition to AlN, which is finely precipitated during hot rolling and hot-rolled sheet annealing.
  • AlN By forming nitrides of (Al,Si,Mn)N and AlN forms, it serves as a powerful grain growth inhibitor.
  • Al When Al is added, when the content of Al is too small, a sufficient effect as an inhibitor cannot be expected because the number and volume of formation are considerably low. Conversely, when the Al content is too high, coarse nitrides are formed, thereby reducing the ability to inhibit grain growth. Therefore, when Al is further included, Al may further include 0.005 to 0.04% by weight. More specifically, it may include 0.01 to 0.035% by weight.
  • Phosphorus (P) is segregated in the grain boundaries, and can play a secondary role in inhibiting the movement of grain boundaries and simultaneously suppressing grain growth, and has the effect of improving ⁇ 110 ⁇ 001> aggregates in terms of microstructure.
  • P may further include 0.005 to 0.045% by weight. More specifically, it may include 0.01 to 0.04% by weight.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention may further include Co:0.1 wt% or less.
  • Co Co is an alloying element that is effective in improving the magnetic flux density by increasing the magnetization of iron, and at the same time, reducing the iron loss by increasing the specific resistance.
  • Co When Co is appropriately added, the above effects can be further obtained. If too much Co is added, the amount of austenite phase transformation increases, which may have an adverse effect on microstructures, precipitates, and aggregates. Therefore, when Co is added, it may further include 0.1% by weight or less. More specifically, it may further include 0.005 to 0.05% by weight.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention may further include C: 0.01% by weight or less, N:0.01% by weight or less, and S:0.01% by weight or less.
  • Carbon (C) is an element that contributes to fine grains and to improve the elongation by causing phase transformation between ferrite and austenite, and is an essential element for improving the rolling property of an electric steel sheet having poor brittleness due to its brittleness.
  • C may be further included in an amount of 0.01% by weight or less. More specifically, C may further include 0.005% by weight or less. More specifically, C may further include 0.003% by weight or less.
  • In the slab may contain 0.01 to 0.15% by weight of C.
  • C When C is contained in the slab too little, phase transformation between ferrite and austenite does not occur sufficiently, causing unevenness in the slab and hot-rolled microstructure, thereby impairing cold-rollability.
  • the adhesion of dislocations during cold rolling is activated by the residual carbon present in the steel sheet to increase the shear strain zone, thereby increasing the generation location of goth nuclei, thereby increasing the fraction of goss grains in the primary recrystallized microstructure.
  • the C content according to the Mn and Si content satisfies the following Equation 2
  • magnetic properties may be further improved.
  • the content of C means the content of C in the slab.
  • Equation 3 may be satisfied.
  • N Nitrogen
  • N is an element that reacts with Al to form AlN.
  • N is additionally added, if too much is added, it causes a surface defect called blister due to nitrogen diffusion in the process after hot rolling, and because the nitride is formed too much in the slab state, rolling becomes difficult, and the subsequent process may be complicated. have.
  • N necessary for forming nitrides such as (Al,Si,Mn)N, AlN, (Si,Mn)N is reinforced by performing nitriding treatment in steel using ammonia gas in an annealing process after cold rolling. do. Thereafter, since N is partially removed in the secondary recrystallization annealing process, the N content of the slab and the oriented electrical steel sheet finally produced is substantially the same.
  • N may further include 0.01 wt% or less. More specifically, it may further include 0.005% by weight or less. More specifically, it may further include 0.003% by weight or less.
  • Sulfur (S) is a precipitate of MnS is formed in the slab serves to suppress grain growth.
  • MnS is not used as the main grain growth inhibitor, there is no need to add S excessively.
  • S may be further included in an amount of 0.01% by weight or less. Specifically, S may further include 0.005% by weight or less. More specifically, it may further include 0.003% by weight or less.
  • the balance includes iron (Fe). In addition, it may contain unavoidable impurities.
  • the inevitable impurity means impurity which is inevitably incorporated in the manufacturing process of steelmaking and grain-oriented electrical steel. Since unavoidable impurities are widely known, detailed description is omitted.
  • addition of elements other than the above-described alloy components is not excluded, and may be variously included within a range not detrimental to the technical spirit of the present invention. When additional elements are further included, the balance of Fe is included.
  • Method for manufacturing a grain-oriented electrical steel sheet comprises the steps of heating a slab; Hot rolling a slab to produce a hot rolled sheet; Cold rolling the hot rolled sheet to produce a cold rolled sheet; First recrystallization annealing the cold rolled sheet; And secondary recrystallization annealing of the cold rolled sheet subjected to primary recrystallization annealing.
  • the slab is heated. Since the alloy composition of the slab has been described in relation to the alloy composition of the grain-oriented electrical steel sheet, redundant description is omitted. Specifically, the slab is by weight, Si: 2.0 to 6.0%, C: 0.01 to 0.15%, Mn: 0.12 to 1.0%, Sb:0.01 to 0.05%, Sn: 0.03 to 0.08% and Cr: 0.01 to 0.2% It contains, the balance of Fe and unavoidable impurities, and may satisfy Equation 1 below.
  • the thickness of the hot rolled sheet may be 1.0 to 3.5 mm.
  • the crack temperature may be 800 to 1300°C.
  • the non-uniform microstructure and precipitates of the hot-rolled sheet can be homogenized, but it is also possible to omit this.
  • a cold rolled sheet is manufactured by cold rolling the hot rolled sheet.
  • one or more cold rolling steps including cold rolling or intermediate annealing may be performed.
  • the thickness of the cold rolled sheet may be 0.1 to 0.5 mm.
  • the cold rolling reduction can be rolled to 87% or more. This is because the degree of integration of the goth aggregate increases as the cold reduction rate increases. However, it is also possible to apply a lower cold reduction rate.
  • the primary recrystallization annealing step may include a decarburization step and an entrainment step.
  • the decarburization step and the nitriding step can be performed in any order. That is, after the decarburization step, a denitrification step may be performed, after the denitration step, a decarburization step may be performed, or a decarburization step and a denitrification step may be simultaneously performed.
  • C may be decarburized to 0.01% by weight or less. More specifically, C can be decarburized to 0.005% by weight or less.
  • N may be nitrided to 0.01% by weight or more.
  • the crack temperature of the first recrystallization annealing step may be 840°C to 900°C.
  • an annealing separator may be applied to the steel sheet. Since the annealing separator is widely known, a detailed description is omitted. For example, an annealing separator based on MgO may be used.
  • the cold rolled sheet subjected to primary recrystallization annealing is subjected to secondary recrystallization annealing.
  • the purpose of the secondary recrystallization annealing is largely the formation of ⁇ 110 ⁇ 001> aggregates by secondary recrystallization, the formation of a glassy film by the reaction of MgO with the oxide layer formed during primary recrystallization annealing, imparting insulation and impurity impairing magnetic properties. It is removal.
  • the secondary recrystallization is well developed by protecting the nitride, which is a particle growth inhibitor, by maintaining it as a mixed gas of nitrogen and hydrogen in the temperature rising section before the secondary recrystallization occurs, and the secondary recrystallization is completed.
  • impurities are removed by holding for a long time in a 100% hydrogen atmosphere.
  • the second recrystallization may be completed at a temperature of 900 to 1210°C.
  • the grain-oriented electrical steel sheet according to an embodiment of the present invention has particularly excellent iron loss and magnetic flux density characteristics.
  • the magnetic flux density (B 8) is 1.89T or more, the iron loss (W 17/50) this can be not more than 0.85W / kg.
  • the magnetic flux density B 8 is the magnitude of the magnetic flux density (Tesla) induced under a magnetic field of 800 A/m
  • the iron loss W 17/50 is the magnitude of the iron loss (W/kg) induced at 1.7 Tesla and 50 Hz.
  • More particularly grain-oriented electrical steel sheet according to one embodiment of the present invention is a magnetic flux density (B 8) is 1.895T or more, may be up to iron loss (W 17/50) is 0.83W / kg. More particularly grain-oriented electrical steel sheet is the magnetic flux density (B 8) is 1.895 to about 1.92T, may be up to iron loss (W 17/50) of 0.8 to 0.83W / kg.
  • Si: 3.3%, Mn: 0.3%, Al: 0.026%, N: 0.004%, S: 0.004%, Sb: 0.03%, Sn: 0.06%, P: 0.03%, Cr: 0.04%, Co : 0.02% and C content was changed as shown in Table 3, and the remaining components were heated to a temperature of 1150° C. with a residual Fe and other inevitably contained impurities, followed by hot rolling with a thickness of 2.3 mm. The hot-rolled sheet was heated to a temperature of 1080° C., maintained at 890° C. for 160 seconds, and quenched in water.
  • the hot-rolled annealing plate is rolled once to a thickness of 0.23 mm after pickling, and the cold-rolled plate is held at a temperature of 860° C. for 200 seconds in a mixed atmosphere of hydrogen, nitrogen and ammonia, and the nitrogen content is 180 ppm and the carbon content is 30 ppm. Simultaneous decarbonitization annealing heat treatment was performed.
  • Final annealing was performed by applying MgO, an annealing separator, to the steel sheet, and the final annealing was carried out with a mixed atmosphere of 25% by volume nitrogen + 75% by volume hydrogen up to 1200°C, and maintained at 100% by volume in a hydrogen atmosphere for at least 10 hours after reaching 1200°C. It was then cooled.
  • Table 3 shows the magnetic properties measured for each condition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명의 일 실시예에 의한 방향성 전기강판은 중량%로, Si: 2.0 내지 6.0%, Mn: 0.12 내지 1.0%, Sb:0.01 내지 0.05%, Sn: 0.03 내지 0.08% 및 Cr: 0.01 내지 0.2%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고 하기 식 1을 만족한다. [식 1] 4×[Cr]-0.1×[Mn] ≥ 0.5×([Sn]+[Sb]) (식 1에서, [Cr], [Mn], [Sn] 및 [Sb]는 각각 Cr, Mn, Sn, Sb의 함량(중량%)를 나타낸다.)

Description

방향성 전기강판 및 그의 제조방법
방향성 전기강판 및 그의 제조방법에 관한 것이다. 구체적으로, Mn, Cr, Sn, Sb의 함량을 적절히 제어하여 자성을 향상시킨 방향성 전기강판 및 그의 제조 방법에 관한 것이다.
방향성 전기강판은 압연방향에 대해 강편의 집합조직이 {110}<001>인 고스집합조직(Goss texture)을 나타내고 있어 일방향 혹은 압연방향으로 자기적 특성이 우수한 연자성 재료이며, 이러한 집합조직을 발현하기 위해서는 제강에서의 성분제어, 열간 압연에서의 슬라브 재가열 및 열간압연 공정인자 제어, 열연판 소둔 열처리, 냉간 압연, 1차 재결정 소둔, 2차 재결정 소둔 등의 복잡한 공정들이 요구되고, 이들 공정 또한 매우 정밀하고 엄격하게 관리되어야 한다.
전술한 수단 외에도 판 두께의 감소, Si과 같은 비저항 증가 효과가 있는 합금원소의 첨가, 강판에서의 장력부여, 강판 표면의 조도 저감, 2차재결정립 크기의 미세화, 자구 미세화 등이 방향성 전기강판의 철손 개선에 효과적인 것으로 알려져 있다.
이 중 비저항 증가에 의한 철손 개선 기술로는 Si함유량을 증가시키는 방법이 주로 알려져 있다. 다만, Si 함유량을 증대하면 할수록 소재의 취성이 크게 증가하여 가공성이 급격히 떨어지게 되며 이로 인해 Si 함유량 증대에는 한계가 존재한다.
Si 함유량이 높은 방향성 전기강판의 가공성 개선을 위해 표층부에 Si 함량이 높은 별도의 층을 제공하여 냉간압연성을 개선할 수 있는 방법이 제안되었다. 그러나, 공정이 까다롭고 제조원가가 높 아질 뿐만 아니라 표층부의 박리가 발생할 가능성이 있는 문제점이 있다.
Si 함유량이 높은 방향성 전기강판을 제조할 경우 특정한 온도 및 압하율에 의해 압연이 가능한 방법이 제안되었다. 그러나, 실제 생산에서는 온도 및 압하율 제어에 제조원가의 부담이 높아져 상업적 생산에 적용하기에는 한계가 있다.
고규소 방향성 전기강판의 제조방법으로서, 열간압연 후 1차 재결정 온도 보다 낮은 온도 영역에서 온간압연을 실시하여 집적도가 우수한 고스 조직을 갖는 기술이 제안되었으나, 온간압연 설비를 별도로 추가해야 하므로 제조원가의 상승 부담이 있고 온간압연 중 냉연판 표층부에 추가적인 산화가 발생하여 최종 제조된 방향성 전기강판의 표면특성을 열위하게 한다.
방향성 전기강판에 Sn, Sb, Cr 등의 원소를 첨가하여, 탈탄소둔판의 산화층을 적절히 형성하는 기술이 제안되었다. 그러나, 이 기술은 Mn이 2차 재결정 소둔 공정에서 집합조직을 심하게 훼손하는 원인이라고 설명하며, Mn의 함량을 낮게 제어하였다. 이로 인해 자성에 한계가 있었다.
방향성 전기강판 및 그의 제조방법을 제공한다. 구체적으로, Mn, Cr, Sn, Sb의 함량을 적절히 제어하여 자성을 향상시킨 방향성 전기강판 및 이를 제조하는 방법을 제공한다.
본 발명의 일 실시예에 의한 방향성 전기강판은 중량%로, Si: 2.0 내지 6.0%, Mn: 0.12 내지 1.0%, Sb:0.01 내지 0.05%, Sn: 0.03 내지 0.08% 및 Cr: 0.01 내지 0.2%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고 하기 식 1을 만족한다.
[식 1]
Figure PCTKR2019016386-appb-I000001
(식 1에서, [Cr], [Mn], [Sn] 및 [Sb]는 각각 Cr, Mn, Sn, Sb의 함량(중량%)를 나타낸다.)
본 발명의 일 실시예에 의한 방향성 전기강판은 Al: 0.005 내지 0.04중량% 및 P:0.005 내지 0.045 중량% 더 포함할 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 Co:0.1 중량% 이하 더 포함할 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 C: 0.01 중량% 이하, N:0.01 중량% 이하 및 S:0.01 중량% 이하 더 포함할 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은 중량%로, Si: 2.0 내지 6.0%, C: 0.01 내지 0.15%, Mn: 0.12 내지 1.0%, Sb:0.01 내지 0.05%, Sn: 0.03 내지 0.08% 및 Cr: 0.01 내지 0.2%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고 하기 식 1을 만족하는 슬라브를 가열하는 단계; 슬라브를 열간 압연하여 열연판을 제조하는 단계; 열연판을 냉간 압연하여 냉연판을 제조하는 단계; 냉연판을 1차 재결정 소둔하는 단계; 및 1차 재결정 소둔한 냉연판을 2차 재결정소둔하는 단계;를 포함한다.
슬라브는 하기 식 2를 만족할 수 있다.
[식 2]
Figure PCTKR2019016386-appb-I000002
(식 2에서 [Mn], [Si] 및 [C]는 각각 슬라브 내의 Mn, Si 및 C의 함량(중량%)을 나타낸다.)
슬라브는 하기 식 3을 만족할 수 있다.
[식 3]
Figure PCTKR2019016386-appb-I000003
(식 3에서 [Mn], [Si] 및 [C]는 각각 슬라브 내의 Mn, Si 및 C의 함량(중량%)을 나타낸다.)
슬라브를 가열하는 단계에서, 1250℃이하의 온도로 가열할 수 있다.
냉연판을 제조하는 단계는 1회의 냉간압연 또는 중간소둔을 포함하는 2회 이상의 냉간압연을 포함할 수 있다.
1차 재결정 소둔하는 단계는 탈탄 단계 및 침질 단계를 포함하고, 탈탄 단계 이후, 침질 단계를 수행하거나, 침질 단계 이후, 탈탄 단계를 수행하거나, 또는 탈탄 단계 및 침질 단계를 동시에 수행할 수 있다.
1차 재결정 소둔하는 단계 이후, 소둔 분리제를 도포하는 단계를 더 포함할 수 있다.
2차 재결정 소둔하는 단계는 900 내지 1210℃의 온도에서 2차 재결정이 완료될 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 Mn을 비교적 다량 포함함으로써, 비저항 증가 및 Mn계 황화물 형성을 통한 결정립 성장 억제력 부여와 함께 철손을 개선할 수 있다.
또한, 본 발명의 일 실시예에 의한 방향성 전기강판은 Cr, Sn, Sb의 함량을 적절히 제어하여, 탈탄 중 산화층 형성을 촉진 시키고, 결정립 성장 억제력을 보조함으로써, 자성을 향상시킬 수 있다.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.
본 발명의 일 실시예에서 추가 원소를 더 포함하는 것의 의미는 추가 원소의 추가량 만큼 잔부인 철(Fe)을 대체하여 포함하는 것을 의미한다.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 의한 방향성 전기강판은 중량%로, Si: 2.0 내지 6.0%, Mn: 0.12 내지 1.0%, Sb:0.01 내지 0.05%, Sn: 0.03 내지 0.08% 및 Cr: 0.01 내지 0.2%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함한다.
하기에서는 합금 성분 한정 이유를 설명한다.
Si : 2.0 내지 6.0 중량%
실리콘(Si)은 전기강판의 기본 조성으로 소재의 비저항을 증가시켜 철손(core loss)을 낮추는 역할을 한다. Si함량이 너무 적은 경우 비저항이 감소하게 되어 와전류손이 증가하여 철손특성이 열화되고, 1차 재결정 소둔시 페라이트와 오스테나이트간 상변태가 활발하게 되어 1차재결정 집합조직이 심하게 훼손된다. 또한 2차 재결정 소둔시 페라이트와 오스테나트간 상변태가 발생하게 되어 2차 재결정이 불안정해 질 뿐만 아니라 {110}고스집합조직이 심하게 훼손된다. 한편 Si함량이 과잉 함유시에는 1차 재결정 소둔시 SiO2 및 Fe2SiO4 산화층이 과하고 치밀하게 형성되어 탈탄 거동을 지연시켜 페라이트와 오스테나이트간 상변태가 1차 재결정 소둔 처리 동안 지속적으로 일어나게 되어 1차 재결정 집합조직이 심하게 훼손될 수 있다. 또한 상술한 치밀한 산화층 형성에 따른 탈탄 거동 지연효과로 질화 거동 또한 지연되어 (Al,Si,Mn)N 및 AlN 등의 질화물이 충분히 형성되지 못하여, 고온소둔시 2차재결정에 필요한 충분한 결정립 억제력을 확보할 수 없게 될 수 있다..
또한, Si가 과량 포함되면, 기계적 특성인 취성이 증가하고 인성이 감소하여 압연 과정 중 판파단 발생율이 심화되고, 판간 용접성이 열위하게 되어 용이한 작업성을 확보할 수 없게 된다. 결과적으로 Si함량을 상기 소정의 범위로 제어하지 않으면 2차재결정 형성이 불안정해져 자기적 특성이 심각하게 훼손되고, 작업성 또한 악화된다. 그러므로 Si은 2.0 내지 6.0 중량%로 포함할 수 있다. 보다 구체적으로는 3.0 내지 5.0 중량% 포함할 수 있다.
Mn : 0.12 내지 1.0 중량%
망간(Mn)은 Si과 동일하게 비저항을 증가시켜 와전류손을 감소시킴으로써 전체 철손을 감소시키는 효과도 있으며, 소강상태에서 S와 반응하여 Mn계 황화물을 만들뿐만 아니라 Si과 함께 질화처리에 의해서 도입되는 질소와 반응하여 (Al,Si,Mn)N의 석출물을 형성함으로써 1차재결정립의 성장을 억제하여 2차재결정을 일으키는데 중요한 원소이다. 본 발명의 일 실시예에서는 Mn함유량의 증대로 인한 비저항 증가로 전체 철손을 개선하는 데 목적이 있을 뿐만 아니라 Mn계 황화물에 의한 결정립 성장 억제력 부여에도 목적이 있다. 전술한 Si 함유량 범위 내에서 Mn 이 적절히 포함될 경우 철손이 개선될 수 있다. 그러나 Mn이 과량 포함될 경우, 철손 개선효과가 나타나지 않았으며, 이는 오스테나이트 상변태량이 심화될 뿐만 아니라 탈탄에도 장시간이 소요됨에 따라 자기적 특성이 열화된다. 따라서, Mn을 0.12 내지 1.0 중량% 포함할 수 있다. 더욱 구체적으로 Mn을 0.13 내지 1.0 중량% 포함할 수 있다. 더욱 구체적으로 0.21 내지 0.95 중량% 포함할 수 있다. 더욱 구체적으로 0.25 내지 0.95 중량% 포함할 수 있다. 더욱 구체적으로 0.3 내지 0.95 중량% 포함할 수 있다. 본 발명의 일 실시예에서는 Mn과 함께, Si, C의 적절한 첨가로 인하여 Mn을 비교적 다량 첨가하더라도 2차 재결정 소둔 공정에서 집합조직을 심하게 훼손시키지 아니한다.
Sb : 0.01 내지 0.05 중량%
안티몬(Sb)는 결정립계에 편석하여 결정립의 성장을 억제하는 효과가 있고, 2차 재결정을 안정화시키는 효과가 있다. 그러나 융점이 낮아서 1차재결정 소둔중 표면으로의 확산이 용이하여 탈탄이나 산화층형성 및 질화에 의한 침질을 방해하는 효과가 있다. Sb가 너무 적게 포함되면, 전술한 효과를 적절히 발휘하기 어렵다. 반대로, Sb를 과량 첨가하면 탈탄을 방해하고 베이스코팅의 기초가 되는 산화층 형성을 억제할 수 있다. 따라서, Sb를 0.01 내지 0.05 중량% 포함할 수 있다. 더욱 구체적으로 0.01 내지 0.04 중량% 포함할 수 있다.
Sn: 0.03 내지 0.08 중량%
주석(Sn)은 결정립계 편석원소로서 결정립계의 이동을 방해하는 원소이기 때문에 결정립 성장 억제제 역할을 한다. 본 발명의 일 실시예에서는 2차 재결정 소둔시 원활한 2차 재결정 거동을 위한 결정립 성장 억제력이 부족하기 때문에, 결정립계에 편석함으로써 결정립계의 이동을 방해하는 Sn이 반드시 필요하다. Sn이 너무 적게 포함되면, 전술한 효과를 적절히 발휘하기 어렵다. 반대로, Sn을 과량 첨가할 경우 결정립 성장 억제력이 너무 강하여 안정적인 2차 재결정을 얻을 수 없다. 따라서 Sn의 함량은 0.03 내지 0.08 중량% 포함할 수 있다. 더욱 구체적으로 0.04 내지 0.08 중량% 포함할 수 있다.
Cr: 0.01 내지 0.2 중량%
크롬(Cr)은 열연판 내 경질상의 형성을 촉진하여 냉간압연시 Goss집합조직의 {110}<001>의 형성을 촉진하고, 1차 재결정 소둔 과정 중 탈탄을 촉진함으로써 오스테나이트 상변태 유지시간이 길어져 집합조직이 훼손되는 현상을 방지할 수 있도록 오스테나이트 상변태 유지시간을 감소시키는 효과를 발현한다. 또한, 1차 재결정 소둔 과정 중 형성되는 표면의 산화층 형성을 촉진시킴으로써 결정립 성장 보조 억제제로 사용되는 합금 원소 중 Sn과 Sb로 인해 산화층 형성이 저해되는 단점을 해결할 수 있는 효과가 있다. Cr이 적게 포함되는 경우, 전술한 효과를 적절히 발휘하기 어렵다. 반대로, Cr이 과량 첨가될 경우 1차 재결정 소둔 과정중 산화층 형성시 보다 치밀한 산화층이 형성되도록 조장하여 오히려 산화층 형성이 열위하게 되고 탈탄 및 침질까지 방해할 수 있다. 따라서, Cr은 0.01 내지 0.2 중량% 포함할 수 있다. 더욱 구체적으로 0.02 내지 0.1 중량% 포함할 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 하기 식 1을 만족한다.
[식 1]
Figure PCTKR2019016386-appb-I000004
(식 1에서, [Cr], [Mn], [Sn] 및 [Sb]는 각각 Cr, Mn, Sn, Sb의 함량(중량%)를 나타낸다.)
식 1에서와 같이 Cr, Mn, Sn, Sb의 함량을 적절히 제어함으로써, 1차 재결정 소둔 과정에서 산화층의 치밀화를 방지하고 탈탄을 촉진시켜 오스테나이트 상변태에 의한 Goss집합조직 훼손을 저감 내지 방지할 수 있다. 또한 1차 재결정 소둔 과정 중 형성되는 산화층의 적절한 형성을 유도함으로써 안정적인 베이스코팅도 만들 수가 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 Al: 0.005 내지 0.04중량% 및 P:0.005 내지 0.045 중량% 더 포함할 수 있다. 전술하였듯이, 추가 원소를 더 포함하는 경우, 잔부인 Fe를 대체하여 첨가한다.
Al : 0.005 내지 0.04 중량%
알루미늄(Al)은 열간압연과 열연판소둔시에 미세하게 석출된 AlN이외에도 냉간압연이후의 소둔공정에서 암모니아가스에 의해서 도입된 질소이온이 강중에 고용상태로 존재하는 Al, Si, Mn과 결합하여 (Al,Si,Mn)N 및 AlN형태의 질화물을 형성함으로써 강력한 결정립 성장 억제제의 역할을 수행한다. Al이 첨가되는 경우, Al의 함량이 너무 적은 경우에는 형성되는 개수와 부피가 상당히 낮은 수준이기 때문에 억제제로의 충분한 효과를 기대할 수 없다. 반대로 Al의 함량이 너무 높게되면 조대한 질화물을 형성함으로써 결정립 성장 억제력이 떨어지게 된다. 따라서, Al을 더 포함하는 경우, Al은 0.005 내지 0.04 중량% 더 포함할 수 있다. 더욱 구체적으로 0.01 내지 0.035 중량% 포함할 수 있다.
P : 0.005 내지 0.045 중량%
인(P)는 결정립계에 편석하여 결정립계의 이동을 방해하고 동시에 결정립 성장을 억제하는 보조적인 역할이 가능하며, 미세조직측면에서 {110}<001>집합조직을 개선하는 효과가 있다. P가 첨가되는 경우, 첨가량이 너무 작으면, 첨가효과가 없다. 반대로 첨가량이 너무 많으면, 취성이 증가하여 압연성이 크게 나빠진다. 따라서, P를 더 포함하는 경우, P는 0.005 내지 0.045 중량% 더 포함할 수 있다. 더욱 구체적으로 0.01 내지 0.04 중량% 포함할 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 Co:0.1 중량% 이하 더 포함할 수 있다.
Co : 0.1 중량% 이하
코발트(Co)는 철의 자화를 증가시켜 자속밀도를 향상시키는데 효과적인 합금원소임과 동시에 비저항을 증가시켜 철손을 감소시키는 합금원소이다. Co를 적절히 추가할 경우, 상기 효과를 추가로 얻을 수 있다. Co를 너무 많이 첨가할 경우, 오스테나이트 상변태량이 증가하여 미세조직, 석출물 및 집합조직에 부정정인 영향을 미칠수 있다. 따라서, Co를 첨가하는 경우, 0.1 중량% 이하로 더 포함할 수 있다. 더욱 구체적으로 0.005 내지 0.05 중량% 더 포함할 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 C: 0.01 중량% 이하, N:0.01 중량% 이하 및 S:0.01 중량% 이하 더 포함할 수 있다.
C: 0.01 중량% 이하
탄소(C)은 페라이트 및 오스테나이트간 상변태를 일으켜 결정립을 미세화시키고 연신율을 향상시키는데 기여하는 원소로서, 취성이 강해 압연성이 좋지 않은 전기강판의 압연성 향상을 위해 필수적인 원소이다. 다만, 최종 제조되는 방향성 전기강판에 잔존하게 될 경우 자기적 시효효과로 인해 형성되는 탄화물을 강판 내에 석출시켜 자기적 특성을 악화시키는 원소이다. 따라서, 최종 제조되는 방향성 전기강판에서는 C를 0.01 중량% 이하로 더 포함할 수 있다. 더욱 구체적으로 C를 0.005 중량% 이하로 더 포함할 수 있다. 더욱 구체적으로 C를 0.003 중량% 이하로 더 포함할 수 있다.
슬라브 내에서 C를 0.01 내지 0.15 중량% 포함할 수 있다. 슬라브 내에 C가 너무 적게 함유되게 되면 페라이트 및 오스테나이트간 상변태가 충분히 일어나지 않아 슬라브 및 열간압연 미세조직의 불균일화를 야기하게 되며 이로 인해 냉간압연성까지 해치게 된다. 한편 열연판소둔열처리후 강판내 존재하는 잔류탄소에 의해 냉간압연중 전위의 고착을 활성화시켜 전단변형대를 증가시켜 고스핵의 생성장소를 증가시켜 1차 재결정 미세조직의 고스결정립 분율을 증가시키게 되므로 C이 많을수록 이로울 것 같으나, 슬라브 내에 C를 너무 많이 함유하게 되면 충분한 탈탄을 얻을 수 없을 뿐만 아니라, 이로 인해 Goss집합조직의 집적도가 저하되어 2차재결정 집합조직이 심하게 훼손되게 되고, 나아가 방향성 전기강판을 전력기기에 적용시 자기시효에 의한 자기적 특성의 열화현상을 초래하게 된다. 따라서, 슬라브 내에서 C를 0.01 내지 0.15 중량% 포함할 수 있다. 더욱 구체적으로 C를 0.02 내지 0.08 중량% 포함할 수 있다.
또한, 본 발명의 일 실시예에서 Mn과 Si 함유량에 따른 C함유량을 하기 식 2를 만족할 시, 자성이 더욱 향상될 수 있다. 이 때, C의 함량은 슬라브 내의 C의 함량을 의미한다.
[식 2]
Figure PCTKR2019016386-appb-I000005
(식 2에서 [Mn], [Si] 및 [C]는 각각 슬라브 내의 Mn, Si 및 C의 함량(중량%)을 나타낸다.)
보다 구체적으로 하기 식 3을 만족할 수 있다.
[식 3]
Figure PCTKR2019016386-appb-I000006
(식 3에서 [Mn], [Si] 및 [C]는 각각 슬라브 내의 Mn, Si 및 C의 함량(중량%)을 나타낸다.)
N : 0.01 중량%이하
질소(N)은 Al과 반응하여 AlN을 형성하는 원소이다. N을 추가로 첨가할 경우, 너무 많이 첨가하게 되면 열연이후의 공정에서 질소확산에 의한 Blister라는 표면결함을 초래하고, 슬라브 상태에서 질화물이 너무 많이 형성되기 때문에 압연이 어려워져 차공정이 복잡해질 수 있다. 한편 (Al,Si,Mn)N, AlN, (Si,Mn)N 등의 질화물을 형성하기 위해 추가로 필요한 N은 냉간압연이후의 소둔공정에서 암모니아가스를 이용하여 강중에 질화처리를 실시하여 보강한다. 이후, 2차 재결정 소둔 공정에서 N이 일부 제거되므로, 슬라브와 최종 제조되는 방향성 전기강판의 N 함량이 실질적으로 동일하다. N을 추가로 첨가하는 경우, N은 0.01 중량% 이하로 더 포함할 수 있다. 더욱 구체적으로 0.005 중량% 이하로 더 포함할 수 있다. 더욱 구체적으로 0.003 중량% 이하로 더 포함할 수 있다.
S : 0.01 중량% 이하
황(S)는 MnS의 석출물들이 슬라브내에서 형성되어 결정립성장을 억제하는 역할을 한다. 다만 주조시 슬라브 중심부에 편석하여 이후 공정에서의 미세조직을 제어하기가 어렵다. 본 발명에서는 MnS를 주 결정립성장 억제제로서 사용하지 않기 때문에 S를 과량 첨가할 필요가 없다. 다만 일정 부분 첨가할 경우, 결정립 성장 억제에 도움이 될 수 있다. S가 첨가되는 경우, S를 0.01 중량% 이하로 더 포함할 수 있다. 구체적으로 S를 0.005 중량% 이하로 더 포함할 수 있다. 더욱 구체적으로 0.003 중량% 이하로 더 포함할 수 있다.
잔부로 철(Fe)를 포함한다. 또한, 불가피한 불순물을 포함할 수 있다. 불가피한 불순믈은 제강 및 방향성 전기강판의 제조 과정에서 불가피하게 혼입되는 불순물을 의미한다. 불가피한 불순물에 대해서는 널리 알려져 있으므로, 구체적인 설명은 생략한다. 본 발명의 일 실시예예서 전술한 합금 성분 외에 원소의 추가를 배제하는 것은 아니며, 본 발명의 기술 사상을 해치지 않는 범위 내에서 다양하게 포함될 수 있다. 추가 원소를 더 포함하는 경우 잔부인 Fe를 대체하여 포함한다.
본 발명의 일 실시예에 의한 방향성 전기강판의 제조방법은 슬라브를 가열하는 단계; 슬라브를 열간 압연하여 열연판을 제조하는 단계; 열연판을 냉간 압연하여 냉연판을 제조하는 단계; 냉연판을 1차 재결정 소둔하는 단계; 및 1차 재결정 소둔한 냉연판을 2차 재결정소둔하는 단계;를 포함한다.
먼저, 슬라브를 가열한다. 슬라브의 합금 조성에 대해서는 방향성 전기강판의 합금 조성과 관련하여 설명하였으므로, 중복되는 설명은 생략한다. 구체적으로 슬라브는 중량%로, Si: 2.0 내지 6.0%, C: 0.01 내지 0.15%, Mn: 0.12 내지 1.0%, Sb:0.01 내지 0.05%, Sn: 0.03 내지 0.08% 및 Cr: 0.01 내지 0.2%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고 하기 식 1을 만족할 수 있다.
다시 제조 방법에 대한 설명으로 돌아오면, 슬라브를 가열 시, 1250℃ 이하로 가열할 수 있다. 이로 인해 고용되는 Al과 N, M과 S의 화학당량적 관계에 따라 Al계 질화물이나 Mn계 황화물의 석출물이 불완전용체화 내지 완전용체화되도록 할 수 있다.
다음으로, 슬라브의 가열이 완료되면 열간 압연을 행하여 열연판을 제조한다. 열연판의 두께는 1.0 내지 3.5mm가 될 수 있다.
이후, 열연판 소둔을 실시할 수 있다. 열연판 소둔하는 단계에서 균열 온도는 800 내지 1300℃가 될 수 있다. 열연판 소둔을 실시하면, 열연판의 불균일한 미세조직과 석출물을 균질화 할 수 있으나, 이를 생략하는 것도 가능하다.
다음으로, 열연판을 냉간 압연하여 냉연판을 제조한다. 냉간 압연하는 단계는 1회의 냉간 압연 또는 중간 소둔을 포함한 2회 이상의 냉간 압연을 실시할 수 있다. 냉연판의 두께는 0.1 내지 0.5mm가 될 수 있다. 냉간압연을 실시할 때 냉간압하율이 87%이상으로 압연할 수 있다. 냉간압하율이 증가할수록 고스집합조직의 집적도가 증가하기 때문이다. 다만 이보다 낮은 냉간압하율을 적용하는 것도 가능하다.
다음으로, 냉연판을 1차 재결정 소둔한다. 이 때, 1차 재결정 소둔하는 단계는 탈탄 단계 및 침질 단계를 포함할 수 있다. 탈탄 단계 및 질화 단계는 순서와 무관하게 수행할 수 있다. 즉, 탈탄 단계 이후, 침질 단계를 수행하거나, 침질 단계 이후, 탈탄 단계를 수행하거나, 또는 탈탄 단계 및 침질 단계를 동시에 수행할 수 있다. 탈탄 단계에서 C를 0.01 중량% 이하로 탈탄할 수 있다. 더욱 구체적으로 C를 0.005 중량% 이하로 탈탄할 수 있다. 질화 과정에서 N을 0.01 중량% 이상으로 질화할 수 있다.
1차 재결정 소둔하는 단계의 균열 온도는 840℃ 내지 900℃일 수 있다.
1차 재결정 소둔하는 단계 이후, 강판에 소둔 분리제를 도포할 수 있다. 소둔 분리제에 대해서는 널리 알려져 있으므로, 자세한 설명은 생략한다. 일 예로 MgO를 주성분으로 하는 소둔 분리제를 사용할 수 있다.
다음으로, 1차 재결정 소둔한 냉연판을 2차 재결정 소둔 한다.
2차 재결정 소둔의 목적은 크게 보면 2차 재결정에 의한 {110}<001> 집합조직 형성, 1차 재결정 소둔 시 형성된 산화층과 MgO의 반응에 의한 유리질 피막형성으로 절연성 부여, 자기특성을 해치는 불순물의 제거이다. 2차 재결정 소둔의 방법으로는 2차 재결정이 일어나기 전의 승온구간에서는 질소와 수소의 혼합가스로 유지하여 입자성장 억제제인 질화물을 보호함으로써 2차 재결정이 잘 발달할 수 있도록 하고, 2차 재결정이 완료된 후 균열 단계에서는 100% 수소분위기에서 장시간 유지하여 불순물을 제거한다.
2차 재결정 소둔하는 단계는 900 내지 1210℃의 온도에서 2차 재결정이 완료될 수 있다.
본 발명의 일 실시예에 의한 방향성 전기강판은 철손 및 자속밀도 특성이 특히 우수하다. 본 발명의 일 실시예에 의한 방향성 전기강판은 자속밀도(B8)이 1.89T 이상이고, 철손(W17/50)이 0.85W/kg 이하일 수 있다. 이 때, 자속밀도 B8은 800A/m의 자기장하에서 유도되는 자속밀도의 크기(Tesla)이고, 철손 W17/50은 1.7Tesla 및 50Hz 조건에서 유도되는 철손의 크기(W/kg)이다. 더욱 구체적으로 본 발명의 일 실시예에 의한 방향성 전기강판은 자속밀도(B8)이 1.895T 이상이고, 철손(W17/50)이 0.83W/kg 이하일 수 있다. 더욱 구체적으로 방향성 전기강판은 자속밀도(B8)이 1.895 내지 1.92T이고, 철손(W17/50)이 0.8 내지 0.83W/kg 이하일 수 있다.
이하 본 발명의 구체적인 실시예를 기재한다. 그러나 하기 실시예는 본 발명의 구체적인 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
실시예 1
중량%로, Si : 3.4%, S : 0.004%, N : 0.004%, Al : 0.029%, P : 0.032%, 하기 표 1과 같이 Mn, C, Sn, Sb, Cr을 변화시키고, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 1140℃의 온도로 가열한 다음 두께 2.3mm로 열간압연하였다. 열연판은 1080℃의 온도로 가열한 후 910℃에서 160초간 유지하고 물에 급냉하였다. 열연 소둔판은 산세한 후 0.23mm 두께로 1회 압연하고, 냉간 압연된 판은 850℃의 온도로 습한 수소와 질소 및 암모니아 혼합 가스 분위기 속에서 200초간 유지하여 질소함량이 190ppm, 탄소 함량이 30ppm이 되도록 동시 탈탄질화 소둔 열처리하였다.
이 강판에 소둔분리제인 MgO를 도포하여 최종소둔하였고, 최종소둔은 1200℃ 까지는 25 부피% 질소 + 75 부피% 수소의 혼합분위기로 하였고, 1200℃ 도달후에는 100 부피% 수소 분위기에서 10시간이상 유지후 노냉하였다. 각각의 조건에 대하여 자기적 특성을 측정한 값은 표 2과 같다.
Figure PCTKR2019016386-appb-T000001
Figure PCTKR2019016386-appb-T000002
표 1 및 표 2에서 나타나듯이, Mn, Cr, Sn, Sb 간의 관계를 적절히 제어한 발명재는 자성이 우수함을 확인할 수 있다. 반면, Mn, Cr, Sn, Sb 간의 관계를 만족하지 못하는 비교재는 자성이 열위함을 확인할 수 있다.
실시예 2
중량%로, Si : 3.3%, Mn : 0.3%, Al : 0.026%, N : 0.004%, S : 0.004%, Sb : 0.03%, Sn : 0.06%, P : 0.03%, Cr : 0.04%, Co : 0.02% 및 C 함유량을 표 3과 같이 변화시키고, 나머지 성분은 잔부 Fe와 기타 불가피하게 함유되는 불순물을 포함하는 슬라브를 1150℃의 온도로 가열한 다음 두께 2.3mm로 열간압연하였다. 열연판은 1080℃의 온도로 가열한 후 890℃에서 160초간 유지하고 물에 급냉하였다. 열연 소둔판은 산세한 후 0.23mm 두께로 1회 압연하고, 냉간 압연된 판은 860℃의 온도로 습한 수소와 질소 및 암모니아 혼합 가스 분위기 속에서 200초간 유지하여 질소함량이 180ppm, 탄소 함량이 30ppm이 되도록 동시 탈탄질화 소둔 열처리하였다.
이 강판에 소둔분리제인 MgO를 도포하여 최종소둔하였고, 최종소둔은 1200℃ 까지는 25 부피% 질소 + 75 부피% 수소의 혼합분위기로 하였고, 1200℃ 도달후에는 100 부피% 수소 분위기에서 10시간이상 유지후 노냉하였다. 각각의 조건에 대하여 자기적 특성을 측정한 값은 표 3과 같다.
Figure PCTKR2019016386-appb-T000003
표 3에서 나타나듯이, 발명재 중에서도 식 2를 만족하는 발명재는 자성이 더욱 우수함을 확인할 수 있다. 또한 식 2를 만족하는 발명재 중에서도 식 3을 동시에 만족하는 발명재는 자성이 더욱 우수함을 확인할 수 있다.
실시예 3
중량%로, Si : 3.4%, Al : 0.027%, N : 0.005%, S : 0.004%, Sb : 0.02%, Sn : 0.07%, P : 0.03%, Cr : 0.04%, Co : 0.03% 및 C 함유량과 Mn 함유량을 표 4와 같이 변화시키고, 나머지 성분은 잔부 Fe와 기타 불가피하게 함유되는 불순물을 포함하는 슬라브를 1150℃의 온도로 가열한 다음 두께 2.3mm로 열간압연하였다. 열연판은 1080℃의 온도로 가열한 후 890℃에서 160초간 유지하고 물에 급냉하였다. 열연 소둔판은 산세한 후 0.23mm 두께로 1회 압연하고, 냉간 압연된 판은 860℃의 온도로 습한 수소와 질소 및 암모니아 혼합 가스 분위기 속에서 200초간 유지하여 질소함량이 180ppm, 탄소 함량이 30ppm이 되도록 동시 탈탄질화 소둔 열처리하였다.
이 강판에 소둔분리제인 MgO를 도포하여 최종소둔하였고, 최종소둔은 1200℃ 까지는 25 부피% 질소 + 75 부피% 수소의 혼합분위기로 하였고, 1200℃ 도달후에는 100 부피% 수소 분위기에서 10시간이상 유지후 노냉하였다. 각각의 조건에 대하여 자기적 특성을 측정한 값은 표 4와 같다.
Figure PCTKR2019016386-appb-T000004
Figure PCTKR2019016386-appb-I000007
표 4에서 나타나듯이, 발명재 중에서도 식 2 및 식 3을 만족하는 발명재는 자성이 더욱 우수함을 확인할 수 있다.
본 발명은 상기 구현예 및/또는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 구현예 및/또는 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (13)

  1. 중량%로, Si: 2.0 내지 6.0%, Mn: 0.12 내지 1.0%, Sb:0.01 내지 0.05%, Sn: 0.03 내지 0.08% 및 Cr: 0.01 내지 0.2%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고 하기 식 1을 만족하는 방향성 전기강판.
    [식 1]
    Figure PCTKR2019016386-appb-I000008
    (식 1에서, [Cr], [Mn], [Sn] 및 [Sb]는 각각 Cr, Mn, Sn, Sb의 함량(중량%)를 나타낸다.)
  2. 제1항에 있어서,
    Al: 0.005 내지 0.04중량% 및 P:0.005 내지 0.045 중량% 더 포함하는 방향성 전기강판.
  3. 제1항에 있어서,
    Co:0.1 중량% 이하 더 포함하는 방향성 전기강판.
  4. 제1항에 있어서,
    C: 0.01 중량% 이하, N:0.01 중량% 이하 및 S:0.01 중량% 이하 더 포함하는 방향성 전기강판.
  5. 중량%로, Si: 2.0 내지 6.0%, C: 0.01 내지 0.15%, Mn: 0.12 내지 1.0%, Sb:0.01 내지 0.05%, Sn: 0.03 내지 0.08% 및 Cr: 0.01 내지 0.2%를 포함하고, 잔부 Fe 및 불가피한 불순물을 포함하고 하기 식 1을 만족하는 슬라브를 가열하는 단계;
    상기 슬라브를 열간 압연하여 열연판을 제조하는 단계;
    상기 열연판을 냉간 압연하여 냉연판을 제조하는 단계;
    상기 냉연판을 1차 재결정 소둔하는 단계; 및
    상기 1차 재결정 소둔한 냉연판을 2차 재결정소둔하는 단계;를 포함하는 방향성 전기강판의 제조방법.
  6. 제5항에 있어서,
    상기 슬라브는 하기 식 2를 만족하는 방향성 전기강판의 제조방법.
    [식 2]
    Figure PCTKR2019016386-appb-I000009
    (식 2에서 [Mn], [Si] 및 [C]는 각각 슬라브 내의 Mn, Si 및 C의 함량(중량%)을 나타낸다.)
  7. 제5항에 있어서,
    상기 슬라브는 하기 식 3을 만족하는 방향성 전기강판의 제조방법.
    [식 3]
    Figure PCTKR2019016386-appb-I000010
    (식 3에서 [Mn], [Si] 및 [C]는 각각 슬라브 내의 Mn, Si 및 C의 함량(중량%)을 나타낸다.)
  8. 제5항에 있어서,
    상기 슬라브를 가열하는 단계에서, 1250℃이하의 온도로 가열하는 방향성 전기강판의 제조방법.
  9. 제5항에 있어서,
    상기 열연판을 제조하는 단계 이후, 열연판 소둔하는 단계를 더 포함하고, 상기 열연판 소둔하는 단계의 균열 온도는 800 내지 1300℃인 방향성 전기강판의 제조방법.
  10. 제5항에 있어서,
    상기 냉연판을 제조하는 단계는 1회의 냉간압연 또는 중간소둔을 포함하는 2회 이상의 냉간압연을 포함하는 방향성 전기강판의 제조방법.
  11. 제5항에 있어서,
    상기 1차 재결정 소둔하는 단계는 탈탄 단계 및 침질 단계를 포함하고,
    상기 탈탄 단계 이후, 상기 침질 단계를 수행하거나,
    상기 침질 단계 이후, 상기 탈탄 단계를 수행하거나, 또는
    상기 탈탄 단계 및 상기 침질 단계를 동시에 수행하는 방향성 전기강판의 제조방법.
  12. 제5항에 있어서,
    상기 1차 재결정 소둔하는 단계 이후, 소둔 분리제를 도포하는 단계를 더 포함하는 방향성 전기강판의 제조방법.
  13. 제5항에 있어서,
    상기 2차 재결정 소둔하는 단계는 900 내지 1210℃의 온도에서 2차 재결정이 완료되는 방향성 전기강판의 제조방법.
PCT/KR2019/016386 2018-11-30 2019-11-26 방향성 전기강판 및 그의 제조방법 WO2020111741A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021531296A JP7221481B6 (ja) 2018-11-30 2019-11-26 方向性電磁鋼板およびその製造方法
EP19891365.9A EP3889297A4 (en) 2018-11-30 2019-11-26 GRAIN ORIENTED ELECTRICAL STEEL SHEET AND METHOD OF MAKING IT
CN201980078904.7A CN113166892B (zh) 2018-11-30 2019-11-26 取向电工钢板及其制造方法
US17/297,115 US20220290277A1 (en) 2018-11-30 2019-11-26 Grain-oriented electric steel sheet and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180153119A KR102142511B1 (ko) 2018-11-30 2018-11-30 방향성 전기강판 및 그의 제조방법
KR10-2018-0153119 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020111741A1 true WO2020111741A1 (ko) 2020-06-04

Family

ID=70852894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016386 WO2020111741A1 (ko) 2018-11-30 2019-11-26 방향성 전기강판 및 그의 제조방법

Country Status (6)

Country Link
US (1) US20220290277A1 (ko)
EP (1) EP3889297A4 (ko)
JP (1) JP7221481B6 (ko)
KR (1) KR102142511B1 (ko)
CN (1) CN113166892B (ko)
WO (1) WO2020111741A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102493775B1 (ko) * 2020-12-21 2023-01-30 주식회사 포스코 방향성 전기강판 및 그의 제조방법
KR20230095258A (ko) * 2021-12-22 2023-06-29 주식회사 포스코 방향성 전기강판 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295447A (ja) * 1992-04-23 1993-11-09 Nippon Steel Corp 方向性電磁鋼板の短時間仕上焼鈍法
JP4321120B2 (ja) * 2003-05-29 2009-08-26 Jfeスチール株式会社 磁気特性に優れた方向性電磁鋼板の製造方法
KR101353550B1 (ko) * 2011-12-21 2014-02-05 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101751523B1 (ko) * 2015-12-24 2017-06-27 주식회사 포스코 방향성 전기강판의 제조방법
JP2017133080A (ja) * 2016-01-29 2017-08-03 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3885432B2 (ja) * 1999-12-01 2007-02-21 Jfeスチール株式会社 一方向性電磁鋼板の製造方法
JP4206665B2 (ja) * 2001-12-28 2009-01-14 Jfeスチール株式会社 磁気特性および被膜特性の優れた方向性電磁鋼板の製造方法
JP4593317B2 (ja) 2005-03-02 2010-12-08 新日本製鐵株式会社 磁気特性が優れた方向性電磁鋼板の製造方法
PL1752549T3 (pl) * 2005-08-03 2017-08-31 Thyssenkrupp Steel Europe Ag Sposób wytwarzania taśmy elektrotechnicznej o zorientowanych ziarnach
JP5040131B2 (ja) 2006-03-17 2012-10-03 Jfeスチール株式会社 一方向性電磁鋼板の製造方法
WO2009091127A2 (en) * 2007-12-28 2009-07-23 Posco Grain oriented electrical steel having excellent magnetic properties and manufacturing method for the same
JP5696404B2 (ja) 2010-09-06 2015-04-08 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5896112B2 (ja) * 2011-10-14 2016-03-30 Jfeスチール株式会社 方向性電磁鋼板とその製造方法および変圧器
JP5672273B2 (ja) * 2012-07-26 2015-02-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP6119959B2 (ja) 2012-11-05 2017-04-26 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101539751B1 (ko) * 2012-12-27 2015-07-27 주식회사 포스코 방향성 전기강판 및 그 제조방법
JP5949813B2 (ja) * 2013-03-07 2016-07-13 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP3050979B1 (en) * 2013-09-26 2020-01-15 JFE Steel Corporation Method for producing grain-oriented electromagnetic steel sheet
KR20150074933A (ko) * 2013-12-24 2015-07-02 주식회사 포스코 방향성 전기강판 및 이의 제조방법
DE102014104106A1 (de) * 2014-03-25 2015-10-01 Thyssenkrupp Electrical Steel Gmbh Verfahren zur Herstellung von hochpermeablem kornorientiertem Elektroband
JP6260513B2 (ja) * 2014-10-30 2018-01-17 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101633255B1 (ko) * 2014-12-18 2016-07-08 주식회사 포스코 방향성 전기강판 및 그 제조방법
WO2016139818A1 (ja) * 2015-03-05 2016-09-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6350398B2 (ja) * 2015-06-09 2018-07-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6354957B2 (ja) * 2015-07-08 2018-07-11 Jfeスチール株式会社 方向性電磁鋼板とその製造方法
KR101676630B1 (ko) * 2015-11-10 2016-11-16 주식회사 포스코 방향성 전기강판 및 그 제조방법
CN105274427A (zh) * 2015-11-24 2016-01-27 武汉钢铁(集团)公司 一种高磁感取向硅钢及生产方法
JP6439665B2 (ja) 2015-12-04 2018-12-19 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101751526B1 (ko) * 2015-12-21 2017-06-27 주식회사 포스코 방향성 전기강판의 제조방법
KR102177523B1 (ko) * 2015-12-22 2020-11-11 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101707451B1 (ko) * 2015-12-22 2017-02-16 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101899453B1 (ko) * 2016-12-23 2018-09-17 주식회사 포스코 방향성 전기강판의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295447A (ja) * 1992-04-23 1993-11-09 Nippon Steel Corp 方向性電磁鋼板の短時間仕上焼鈍法
JP4321120B2 (ja) * 2003-05-29 2009-08-26 Jfeスチール株式会社 磁気特性に優れた方向性電磁鋼板の製造方法
KR101353550B1 (ko) * 2011-12-21 2014-02-05 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101751523B1 (ko) * 2015-12-24 2017-06-27 주식회사 포스코 방향성 전기강판의 제조방법
JP2017133080A (ja) * 2016-01-29 2017-08-03 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Also Published As

Publication number Publication date
JP7221481B6 (ja) 2023-02-28
KR102142511B1 (ko) 2020-08-07
EP3889297A1 (en) 2021-10-06
EP3889297A4 (en) 2022-03-30
JP2022509864A (ja) 2022-01-24
CN113166892B (zh) 2023-10-13
JP7221481B2 (ja) 2023-02-14
CN113166892A (zh) 2021-07-23
KR20200066062A (ko) 2020-06-09
US20220290277A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2016099191A1 (ko) 방향성 전기강판 및 그 제조방법
WO2012087016A2 (ko) 자성이 우수한 방향성 전기강판 및 이의 제조방법
WO2013089297A1 (ko) 자성이 우수한 방향성 전기강판의 제조방법
WO2011040723A2 (ko) 저철손 고자속밀도 방향성 전기강판 및 그 제조방법
WO2013094777A1 (ko) 저철손 고자속밀도 방향성 전기강판 및 이의 제조방법
WO2020067721A1 (ko) 이방향성 전기강판 및 그의 제조방법
WO2017082621A1 (ko) 방향성 전기강판 및 그 제조방법
WO2020130328A1 (ko) 방향성의 전기강판 및 그 제조 방법
WO2020067724A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2020111741A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2020111736A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020122558A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2022139314A1 (ko) 무방향성 전기강판 및 그 제조방법
US11530462B2 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
WO2020067723A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2021125686A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2022139354A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2023121201A1 (ko) 방향성 전기강판 및 이의 제조방법
WO2023113527A1 (ko) 방향성 전기강판 및 이의 제조 방법
WO2020111832A2 (ko) 방향성 전기강판 및 그의 제조방법
WO2022139353A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2022139352A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2023121274A1 (ko) 방향성 전기강판 및 방향성 전기강판의 제조 방법
WO2024071628A1 (ko) 무방향성 전기 강판 및 그 제조 방법
WO2021125681A2 (ko) 방향성 전기강판 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531296

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019891365

Country of ref document: EP

Effective date: 20210630