WO2020111437A1 - Camp 수용 단백질 변이체 및 이를 이용한 l-아미노산 제조방법 - Google Patents

Camp 수용 단백질 변이체 및 이를 이용한 l-아미노산 제조방법 Download PDF

Info

Publication number
WO2020111437A1
WO2020111437A1 PCT/KR2019/009292 KR2019009292W WO2020111437A1 WO 2020111437 A1 WO2020111437 A1 WO 2020111437A1 KR 2019009292 W KR2019009292 W KR 2019009292W WO 2020111437 A1 WO2020111437 A1 WO 2020111437A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
crp
variant
microorganism
protein
Prior art date
Application number
PCT/KR2019/009292
Other languages
English (en)
French (fr)
Inventor
이석명
정기용
서창일
이지선
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to RU2020120488A priority Critical patent/RU2760536C1/ru
Priority to BR112020012963-1A priority patent/BR112020012963A2/pt
Priority to CN201980013827.7A priority patent/CN112218881B/zh
Priority to US16/956,799 priority patent/US11697673B2/en
Priority to CA3087627A priority patent/CA3087627C/en
Priority to EP19890455.9A priority patent/EP3725800A4/en
Priority to JP2020538582A priority patent/JP6997327B2/ja
Priority to MX2021005180A priority patent/MX2021005180A/es
Publication of WO2020111437A1 publication Critical patent/WO2020111437A1/ko
Priority to PH12020550976A priority patent/PH12020550976A1/en
Priority to ZA2020/03830A priority patent/ZA202003830B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/227Tryptophan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Definitions

  • the present application relates to cAMP-receptive protein variants, microorganisms comprising the same, and L-amino acid production methods using the same.
  • CRP cyclic AMP receptor protein
  • CAP catabolite activator protein
  • CRP is the most well-known transcription regulator in E. coli, also called CAP (catabolite activator protein).
  • CRP is characterized by a carbon source-dependent regulatory mechanism, a typical one being'catabolite repression'. This action is triggered by the concentration of cyclic AMP (hereinafter referred to as'cAMP') in the cell.
  • a preferred carbon source such as glucose is present, the activity of adenylate cyclase is inhibited, cAMP is lowered, and the expression of catabolite metabolic genes is expressed through this signal. This is suppressed.
  • CRP is known to play a variety of roles, such as intracellular signaling through cAMP, osmotic regulation, coping with cell emergencies, biofilm production, nitrogen fixation, and iron transport.
  • CRP expression change is likely to be a good tool for producing microorganisms with useful traits by promoting a wide range of low-level gene expression changes.
  • the present inventors have completed this application by discovering a novel variant protein containing one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1 and confirming that the variant protein increases the production capacity of L-amino acids.
  • One object of the present application is to provide cAMP receptor protein variants.
  • Another object of the present application is to provide a polynucleotide encoding the cAMP receptor protein variant.
  • Another object of the present application is to provide a vector comprising the polynucleotide.
  • Another object of the present application is to provide a microorganism of the genus Escherichia comprising the above variant.
  • Another object of the present application is to provide a method for producing L-amino acid, comprising culturing the microorganism of the genus Escherichia in a medium.
  • Another object of the present application is to provide an L-amino acid production use of the above-described variant or microorganism of the genus Escherichia containing the variant.
  • One aspect of the present application for achieving the above object is to provide a cAMP receptor protein variant comprising at least one amino acid substitution in the amino acid sequence of SEQ ID NO: 1.
  • the present application provides a cAMP-accepting protein variant comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1, wherein the amino acid substitution includes the 35th amino acid substitution from the N-terminus with alanine. More specifically, to provide a cAMP-accepting protein variant comprising the amino acid substitution of the 35th amino acid in the amino acid sequence of SEQ ID NO: 1.
  • cAMP receptor protein cAMP receptor protein, CRP
  • CRP cAMP receptor protein
  • the cAMP receptor protein is a cAMP receptor protein encoded by the crp gene.
  • CRP cAMP receptor protein
  • CAP catabolite activator protein
  • the CRP can obtain its sequence from a known database, NCBI GenBank.
  • it may be CRP derived from Escherichia sp. , and more specifically, may be a polypeptide/protein including the amino acid sequence of SEQ ID NO: 1, but is not limited thereto.
  • a sequence having the same activity as the amino acid sequence may be included without limitation.
  • the amino acid sequence of SEQ ID NO: 1 or 80% or more homology (homology) or identity with it (identity) may include, but is not limited thereto.
  • the amino acid may include amino acids having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% homology or identity with SEQ ID NO: 1 and SEQ ID NO: 1 Can be.
  • amino acid sequence having such homology or identity and exhibiting efficacy corresponding to the protein it is obvious that a protein having an amino acid sequence in which some sequences are deleted, modified, substituted, or added is also included in the scope of the present application.
  • variant refers to the function of the protein (where at least one amino acid differs from the recited sequence listed above in conservative substitution and/or modification). Refers to a polypeptide whose functions or properties are maintained. Variant polypeptides differ from sequences identified by several amino acid substitutions, deletions or additions. Such variants can generally be identified by modifying one of the polypeptide sequences and evaluating the properties of the modified polypeptide. In other words, the ability of the variant may be increased, unchanged, or decreased compared to the native protein. Such variants can generally be identified by modifying one of the polypeptide sequences and evaluating the reactivity of the modified polypeptide.
  • variants may include variants with one or more portions removed, such as an N-terminal leader sequence or a transmembrane domain.
  • variants may include variants with a portion removed from the N- and/or C-terminus of the mature protein.
  • conservative substitution in the present application means to replace one amino acid with another amino acid having similar structural and/or chemical properties.
  • the variant may retain one or more biological activities, but may have one or more conservative substitutions, for example.
  • Such amino acid substitutions can generally occur based on the similarity in the polarity, charge, solubility, hydrophobicity, hydrophilicity and/or amphipathic nature of the residues.
  • positively charged (basic) amino acids include arginine, lysine, and histidine
  • Negatively charged (acidic) amino acids include glutamic acid and arpartic acid
  • Aromatic amino acids include phenylalanine, tryptophan and tyrosine
  • hydrophobic amino acids include alanine, valine, isoleucine, leucine, methionine, phenylalanine, proline, glycine and tryptophan.
  • the variant may include deletions or additions of amino acids with minimal impact on the properties and secondary structure of the polypeptide.
  • a polypeptide can be conjugated with a signal (or leader) sequence of the protein N-terminal involved in the translation of a protein co-translationally or post-translationally.
  • the polypeptide may be conjugated with other sequences or linkers to identify, purify, or synthesize the polypeptide.
  • cAMP receptor protein variant is a cAMP receptor protein variant comprising one or more amino acid substitutions in the amino acid sequence of a polypeptide having cAMP receptor protein activity, wherein the amino acid substitution is the amino acid at position 35 from the N-terminus. And substituted with other amino acids.
  • a protein variant in which the amino acid at position 35 is substituted with another amino acid at the amino acid position at position 35 in the amino acid sequence of a polypeptide having AMP-receptive protein activity includes a protein variant in which a mutation at position 35 from the N-terminus in the amino acid sequence of SEQ ID NO: 1 occurs.
  • the protein variant may be a protein in which the 35th amino acid is substituted with another amino acid in the amino acid sequence of SEQ ID NO:1.
  • The'other amino acid' is not limited as long as it is other than the 35th amino acid L-glutamic acid.
  • the variant may be a protein in which the 35th amino acid in the amino acid sequence of SEQ ID NO: 1 is replaced with a hydrophobic amino acid.
  • the hydrophobic amino acid may be one of L-alanine, L-glycine, L-valine, L-isoleucine, L-leucine, L-methionine, L-proline, L-phenylalanine and L-tryptophan.
  • the variant may be a protein in which the 35th amino acid is substituted with alanine in the amino acid sequence of SEQ ID NO: 1, but is not limited thereto.
  • the variant has at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or more homology or identity to SEQ ID NO: 1 and/or SEQ ID NO: 1 as described above.
  • the branch means that the amino acid at position 35 from the N-terminus in the amino acid has been mutated.
  • cAMP receptor protein variant refers to the cAMP receptor protein variant is a variant CRP protein, CRP variant, variant cAMP receptor protein, variant CAP protein, CAP variant, variant catabolic activation protein, catabolic It can be used in combination with water-activated protein variants.
  • L-amino acid production is characterized by an increase compared to a microorganism without the cAMP-receptive protein variant.
  • the CRP variant is characterized by having gene regulatory activity so that L-amino acid production capacity is increased compared to a natural wild type or non-mutated cAMP receptor protein. This is significant in that the CRP variant of the present application can increase L-amino acid production through the introduced microorganism.
  • the L-amino acid may be L-threonine or L-tryptophan, but is included without limitation as long as it is an L-amino acid that can be produced by introducing or including the mutant cAMP receptor protein.
  • the cAMP-accepting protein variant may include the amino acid sequence in which the 35th amino acid in the amino acid sequence represented by SEQ ID NO: 1 is substituted with another amino acid, and may be composed of SEQ ID NO: 3 as a variant.
  • a variant in which the 35th amino acid in the amino acid sequence of SEQ ID NO: 1 is substituted with alanine, may be composed of SEQ ID NO: 3, but is not limited thereto.
  • the CRP variant may include an amino acid sequence of SEQ ID NO: 3 or an amino acid sequence having 80% or more homology or identity thereto, but is not limited thereto.
  • the CRP variant of the present application has at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or more homology or identity with SEQ ID NO: 3 and SEQ ID NO: 3 Protein.
  • amino acid sequence having such homology or identity and showing the efficacy corresponding to the protein in addition to the amino acid sequence at the 35th position, proteins having amino acid sequences deleted, modified, substituted, or added are also within the scope of the present application. It is obvious that it is included.
  • the term'homology' or'identity' refers to the degree of correlation with two given amino acid sequences or nucleotide sequences and may be expressed as a percentage.
  • sequence homology or identity of a conserved polynucleotide or polypeptide is determined by standard alignment algorithms, and default gap penalties established by the program used can be used together.
  • Substantially, homologous or identical sequences are generally at least about 50%, 60%, 70%, 80% of the entire or full-length sequence in medium or high stringent conditions. Or it can hybridize to 90% or more. Hybridization also contemplates polynucleotides containing degenerate codons instead of codons in the polynucleotide.
  • the homology, similarity or identity of a polynucleotide or polypeptide is, for example, Smith and Waterman, Adv. Appl. As known in Math (1981) 2:482, for example, Needleman et al. (1970), J Mol Biol. 48: 443 can be determined by comparing sequence information using a GAP computer program.
  • the GAP program defines the total number of symbols in the shorter of the two sequences, divided by the number of similar aligned symbols (i.e., nucleotides or amino acids).
  • the default parameters for the GAP program are (1) a binary comparison matrix (contains values of 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979), Gribskov et al (1986) Nucl. Acids Res. 14: Weighted comparison matrix of 6745 (or EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap (or gap open penalty 10, gap extension penalty 0.5); And (3) no penalty for the end gap.
  • the term “homology” or “identity” refers to relevance between sequences.
  • Another aspect of the present application is to provide a polynucleotide encoding the CRP variant, or a vector comprising the polynucleotide.
  • polynucleotide is a polymer of nucleotides in which the nucleotide monomers are long chained by covalent bonds, and are DNA or RNA strands of a certain length or more, and more specifically, the mutant protein. It means a polynucleotide fragment to be encoded.
  • the polynucleotide encoding the CRP variant of the present application may be included without limitation as long as it is a polynucleotide sequence encoding the cAMP receptor protein variant of the present application.
  • the polynucleotide encoding the CRP variant may be included without limitation as long as it is a sequence encoding a variant protein in which the 35th amino acid is substituted with another amino acid in the amino acid sequence of SEQ ID NO: 1.
  • the 35th amino acid in the amino acid sequence of SEQ ID NO: 1 may be a polynucleotide sequence encoding a variant substituted with alanine.
  • the polynucleotide encoding the CRP variant of the present application may be a polynucleotide sequence encoding the amino acid sequence of SEQ ID NO: 3, but is not limited thereto. More specifically, it may be composed of a polynucleotide sequence consisting of SEQ ID NO: 4, but is not limited thereto.
  • the polynucleotide may be variously modified in the coding region within a range that does not change the amino acid sequence of the protein, due to the degeneracy of the codon or in consideration of the codon preferred in the organism in which the protein is to be expressed. . Therefore, it is obvious that a polynucleotide that can be translated into a polypeptide having the amino acid sequence of SEQ ID NO: 3 or a homology or identity thereto by codon degeneracy may also be included.
  • probes that can be prepared from known gene sequences, for example, hybridized with complementary sequences to all or part of the nucleotide sequence under strict conditions, to the amino acid of the 35th amino acid in the amino acid sequence of SEQ ID NO: 1
  • Any sequence encoding a substituted CRP variant may be included without limitation.
  • stringent condition refers to a condition that enables specific hybridization between polynucleotides. These conditions are specifically described in J. Sambrook et al., supra. For example, genes with high homology or identity, 80% or more, 85% or more, specifically 90% or more, more specifically 95% or more, more specifically 97% or more, Specifically, hybridization between genes having 99% or more homology or identity, and hybridization between genes with low homology or identity are not hybridized, or 60°C, which is a washing condition for conventional southern hybridization.
  • Hybridization requires that two nucleic acids have complementary sequences, although mismatches between bases are possible depending on the stringency of hybridization.
  • the term “complementary” is used to describe the relationship between nucleotide bases that are hybridizable to each other. For example, with respect to DNA, adenosine is complementary to thymine and cytosine is complementary to guanine. Accordingly, the present application may also include isolated nucleic acid fragments complementary to the entire sequence, as well as substantially similar nucleic acid sequences.
  • polynucleotides having homology or identity can be detected using hybridization conditions including a hybridization step at a Tm value of 55° C. and using the above-described conditions.
  • the Tm value may be 60°C, 63°C or 65°C, but is not limited thereto, and may be appropriately adjusted by a person skilled in the art according to the purpose.
  • the appropriate stringency to hybridize a polynucleotide depends on the length and degree of complementarity of the polynucleotide, and variables are well known in the art (see Sambrook et al., supra, 9.50-9.51, 11.7-11.8).
  • the term “vector” is a DNA preparation containing a base sequence of a polynucleotide encoding the target variant protein operably linked to a suitable regulatory sequence so that the target variant protein can be expressed in a suitable host.
  • the regulatory sequence may include a promoter capable of initiating transcription, any operator sequence for regulating such transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence regulating the termination of transcription and translation. After transformation into a suitable host cell, the vector can replicate or function independently of the host genome, and can be integrated into the genome itself.
  • the vector used in the present application is not particularly limited as long as it is replicable in the host cell, and any vector known in the art can be used.
  • Examples of commonly used vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophage.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pBR-based, pUC-based, and pBluescriptII-based plasmid vectors.
  • pGEM system pTZ system, pCL system and pET system.
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors and the like can be used.
  • a polynucleotide encoding a target variant protein in a chromosome may be replaced with a mutated polynucleotide through a vector for intracellular chromosomal insertion. Insertion of the polynucleotide into the chromosome can be made by any method known in the art, for example, homologous recombination, but is not limited thereto.
  • a selection marker for checking whether the chromosome is inserted may be further included. The selection marker is for selecting cells transformed with a vector, that is, to confirm whether a target nucleic acid molecule is inserted, and selectable phenotypes such as drug resistance, nutritional demand, resistance to a cytotoxic agent, or expression of a surface variant protein.
  • the present application is to provide a microorganism that produces L-amino acid, including the mutated protein or a polynucleotide encoding the mutated protein.
  • the microorganism containing the mutant protein and/or the polynucleotide encoding the mutant protein may be a microorganism prepared by transformation with a vector containing the polynucleotide encoding the mutant protein, but is not limited thereto. .
  • transformation in the present application means to introduce a vector containing a polynucleotide encoding a target protein into a host cell so that the protein encoded by the polynucleotide in the host cell can be expressed.
  • the transformed polynucleotide may include all of them, whether they can be inserted into the host cell chromosome or located outside the chromosome, as long as it can be expressed in the host cell.
  • the polynucleotide includes DNA and RNA encoding a target protein. The polynucleotide may be introduced into a host cell and expressed as long as it can be expressed in any form.
  • the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self-expression.
  • the expression cassette may include a promoter, a transcription termination signal, a ribosome binding site, and a translation termination signal, which are operably linked to the polynucleotide.
  • the expression cassette may be in the form of an expression vector capable of self-replicating.
  • the polynucleotide may be introduced into a host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • operably linked means that the promoter sequence and the gene sequence to initiate and mediate the transcription of the polynucleotide encoding the target variant protein of the present application are functionally linked.
  • Another aspect of the present application is to provide a microorganism, Escherichia sp. , comprising the cAMP receptor protein variant.
  • microorganism comprising a CRP variant used in the present application may mean a microorganism that has been recombined so that the CRP variant of the present application is expressed.
  • it means a host cell or a microorganism that can express a polynucleotide containing a polynucleotide encoding a CRP variant, or transformed with a vector containing a polynucleotide encoding a CRP variant.
  • the microorganism is a microorganism expressing a cAMP-receptive protein variant comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1, wherein the amino acid substitution is the 35th amino acid from the N-terminus substituted with alanine , cAMP-accepting protein activity, may be a microorganism expressing a variant protein, but is not limited thereto.
  • the microorganism containing the CRP variant is any microorganism that can produce L-amino acids, such as L-threonine or L-tryptophan, including the CRP variant, but is not limited thereto.
  • the microorganism containing the CRP variant may be a recombinant microorganism having an increased ability to produce L-amino acid by expressing a CRP variant in a natural wild-type microorganism or a microorganism producing L-amino acid.
  • the recombinant microorganism having increased L-amino acid production capacity may be a microorganism having increased L-amino acid production capacity compared to a natural wild-type microorganism or an unmodified microorganism, and the L-amino acid may be L-threonine or L-tryptophan. However, it is not limited thereto.
  • microorganisms producing L-amino acids includes both wild-type microorganisms or microorganisms in which natural or artificial genetic modification has occurred, such as insertion of an external gene or enhanced or inactivated activity of an intrinsic gene.
  • a microorganism whose specific mechanism has been weakened or strengthened due to the cause it may be a microorganism having a genetic variation or enhanced activity in order to produce a desired L-amino acid.
  • the microorganism that produces the L-amino acid may include the mutant protein, to increase the production capacity of the desired L-amino acid.
  • a microorganism producing L-amino acid or a microorganism having the ability to produce L-amino acid a part of the gene in the L-amino acid biosynthetic pathway is enhanced or weakened, or a part of the gene in the L-amino acid degradation pathway is enhanced or weakened Microorganisms.
  • The'unmodified microorganism' means a microorganism that is a native strain itself, does not contain the CRP variant, or is not transformed with a vector containing a polynucleotide encoding the CRP variant.
  • The'microorganism' may be any prokaryotic or eukaryotic microorganism, as long as it is a microorganism capable of producing L-amino acid.
  • the microorganism strain to which it belongs may be included. Specifically, it may be a microorganism of the genus Escherichia, more specifically, Escherichia coli, but is not limited thereto.
  • a method for producing L-amino acid comprising culturing a microorganism in the genus Escherichia producing L-amino acid containing the cAMP receptor protein variant in a medium.
  • the step of culturing the microorganism is not particularly limited, but may be performed by a known batch culture method, a continuous culture method, a fed-batch culture method, or the like.
  • the culture conditions are not particularly limited, but using a basic compound (e.g. sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (e.g. phosphoric acid or sulfuric acid) to a proper pH (e.g. pH 5 to 9, specifically Can adjust pH 6 to 8, most specifically pH 6.8), and maintain aerobic conditions by introducing oxygen or an oxygen-containing gas mixture into the culture.
  • the culture temperature may be maintained at 20 to 45°C, specifically 25 to 40°C, and cultured for about 10 to 160 hours, but is not limited thereto.
  • the L-amino acid produced by the culture may be secreted into the medium or remain in the cell.
  • the culture medium used is sugar and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seeds) Oil, peanut oil and coconut oil), fatty acids (e.g. palmitic acid, stearic acid and linoleic acid), alcohols (e.g. glycerol and ethanol) and organic acids (e.g. acetic acid) can be used individually or in combination. , But is not limited to this.
  • Nitrogen sources include nitrogen-containing organic compounds (e.g.
  • peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea), or inorganic compounds e.g. ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate
  • inorganic compounds e.g. ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and Ammonium nitrate
  • potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and the corresponding sodium-containing salt may be used individually or in combination, but are not limited thereto.
  • the medium may contain other metal salts (eg, magnesium sulfate or iron sulfate), essential growth-promoting substances such as amino acids and vitamins.
  • the method may further include recovering L-amino acid from the microorganism or medium.
  • the method for recovering the L-amino acid produced in the culturing step of the present application may collect the desired L-amino acid from the culture medium using a suitable method known in the art according to the culture method. For example, centrifugation, filtration, anion exchange chromatography, crystallization and HPLC can be used, and the desired L-amino acid can be recovered from the medium or microorganism using a suitable method known in the art.
  • the recovery step may include a purification process, and may be performed using a suitable method known in the art. Therefore, the recovered L-amino acid may be a purified form or a microorganism fermentation broth containing L-amino acid (Introduction to Biotechnology and Genetic Engineering, A. J. Nair., 2008).
  • a cAMP receptor protein variant comprising one or more amino acid substitutions in the amino acid sequence of SEQ ID NO: 1 for the production of L-amino acids.
  • microorganism of the genus Escherichia comprising the cAMP receptor protein variant for the production of L-amino acids.
  • the chromosomal DNA (gDNA) of E. coli wild strain W3110 was extracted using the Genomic-tip system of Qiagen (S).
  • PCR polymerase chain reaction
  • gDNA PCR HL premix kit
  • PCR to amplify the gene crp fragment site using primers of SEQ ID NOs: 6 and 7 at 30°C for 30 seconds denaturation, at 56°C for 30 seconds annealing, and at 72°C for 2 minutes elongation ) was repeated 27 times.
  • crp fragment 0.96 Kb DNA fragment
  • Copycontrol pCC1BAC vector (EPICENTRE, USA) was treated with EcoR I, electrophoresed on a 0.8% agarose gel, eluted, and obtained by ligation of the crp fragment obtained in Example 1-1 to pCC1BAC. -A crp plasmid was produced.
  • PCR was performed using a diversify PCR random mutagenesis kit (catalog #: K1830-1, Table III, mutagenesis reactions 4) of clonetech, using wild type E. coli W3110 chromosome DNA as a template. Specifically, PCR is repeated 27 cycles consisting of denaturation of 30 seconds at 94°C and elongation of 1 minute at 68°C using the primers of SEQ ID NOs: 6 and 7 used in Example 1-1. Was performed.
  • crp m fragments 0.96 Kb mutated crp fragments
  • the vector pCC1BAC was prepared by treatment with the restriction enzyme EcoR I, followed by treatment with alkaline phosphatase (NEB). Crp m fragments obtained in Example 2-1 were ligated to the prepared vector and transformed using TransporMax EPI300 Electrocompetent E.coli (EPICENTRE, USA) using electroporation. As the transformed strain, colonies were selected from LB solid medium (15 ug/ml) containing chloramphenicol. The colonies thus obtained were collected to perform a plasmid prep to produce a pCC1BAC- crp m library.
  • the pCC1BAC- crp m library obtained in Example 2 was introduced by transformation into an electro-competent cell of the microorganism KCCM10541 producing threonine using electroporation.
  • the E. coli KCCM10541 (Republic of Korea Patent No. 10-0576342) used in this example is an E. coli in which the galR gene is inactivated from E. coli KFCC10718 (Republic of Korea Patent No. 10-0058286) producing L-threonine.
  • KCCM10541/pCC1BAC- crp(WT) was produced by transforming pCC1BAC- crp into KCCM10541 in the same manner as above.
  • Example 3-1 After dispensing the M9 minimal medium containing 1% glucose and 0.2 g/L yeast extract into a deep well microplate, the transformants and control strains prepared in Example 3-1 were inoculated. .
  • a micro size constant temperature incubator shaker Micro size constant temperature incubator shaker, TAITEC, Japan
  • HTS High Throughput Screening
  • the KCCM10541 strain in which the wild type crp gene was introduced showed a slight increase in OD by additional introduction of crp , but in the case of a transformant with improved growth, it was confirmed that the OD was higher than that of the wild type crp after the same incubation time.
  • sequence analysis was performed after plasmid mini-prep for the selected crp variants, and the results are summarized in Table 2.
  • Example 3-2 In order to measure the threonine titer of the recombinant microorganism selected in Example 3-2, the L-threonine productivity was confirmed by culturing in the threonine titer medium prepared according to the composition of Table 3 below.
  • composition of threonine titer medium Composition Concentration (per liter) Glucose 70 g KH 2 PO 4 2 g (NH 4 ) 2 SO 4 25 g MgSO 4 ⁇ 7H 2 O 1 g FeSO 4 ⁇ 7H 2 O 5 mg MnSO 4 , 4H 2 O 5 mg Yeast extract 2 g Calcium carbonate 30 g pH 6.8
  • E. coli KCCM10541/pCC1BAC- crp (WT) and E. coli KCCM10541/pCC1BAC- crpTM4 cultured overnight in LB solid medium in a 33° C. incubator were inoculated with platinum in 25 mL titer medium of Table 3, respectively. Next, it was incubated for 48 hours in an incubator at 33°C and 200 rpm to compare sugar consumption rate and threonine concentration.
  • the control group KCCM10541/pCC1BAC- crp(WT) strain has a consumption sugar of 26.1 g/L at 24 hours, whereas the strain introducing the mutant crpTM4 is about 16% compared to the parent strain. It was confirmed that the sugar consumption rate was improved by about 11% compared to the strain in which the wild type crp was additionally introduced.
  • the pCC1BAC- crpTM4 obtained in Example 3 was introduced by transforming the electro-competent cell of strain KCCM11166P producing tryptophan using electroporation.
  • the KCCM11166P used in this example is L-tryptophan-producing E. coli with the deletion of tehB gene and enhanced NAD kinase activity (Republic of Korea Patent No. 10-1261147).
  • pCC1BAC- crpTM4 As a control of the pCC1BAC- crpTM4 it introduced microorganism, transformed by the same manner as the pCC1BAC- crp (WT) above to prepare a KCCM11166P KCCM11166P / pCC1BAC- crp (WT).
  • Example 4-1 After dispensing the M9 minimal medium containing 1% glucose, 0.2 g/L yeast extract into a deep well microplate, the transformants and control strains prepared as described in Example 4-1 were inoculated.
  • KCCM11166P/pCC1BAC- crpTM4 by culturing the strain for 16 hours using a High Throughput Screening (HTS) method using a micro size constant temperature incubator shaker (TAITEC, Japan) Transformant It was confirmed that the growth was improved (Table 5).
  • HTS High Throughput Screening
  • Tryptophan titer medium composition Composition Concentration (per liter) Glucose 60 g K 2 HPO 4 1 g (NH 4 ) 2 SO 4 10 g NaCl 1 g MgSO 4 ⁇ 7H 2 O 1 g Sodium citrate 5 g Yeast extract 2 g Calcium carbonate 40 g Sodium citrate 5 g Phenylalanine 0.15 g Tyrosine 0.1 g pH 6.8
  • E. coli KCCM11166P/pCC1BAC- crp(WT) and E. coli KCCM11166P/pCC1BAC- crpTM4 cultured overnight on an LB solid medium in a 37° C. incubator were inoculated in platinum at 25 mL titer medium in Table 6, respectively. Then, it was incubated for 48 hours in an incubator at 37°C and 200 rpm to compare sugar consumption rate and tryptophan concentration.
  • the control group KCCM11166P/pCC1BAC- crp(WT) strain has a consumption rate of 30.2 g/L at 22 hours, but the strain introducing the mutant type crpTM4 is about 146% compared to the parent strain, It was confirmed that the sugar consumption rate was improved by about 9% compared to the strain in which wild-type crp was additionally introduced.
  • the vectors of pCC1BAC- crp(WT) and pCC1BAC- crpTM4 are electrically transferred to a wild-type derived strain capable of producing threonine. It was introduced by transformation using a perforation method. In addition, a strain in which pCC1BAC- crp(WT) was introduced as a control was also produced.
  • the wild type derived strain capable of producing threonine used in this example is W3110::PcysK-ppc/pACYC184-thrABC, and W3110::PcysK-ppc/pACYC184-thrABC is a chromosome phosphoenool pyruvate carb It is a strain that replaces the native promoter of the ppc gene encoding the voxylase with the promoter of the cysK gene, and introduces the threonine biosynthetic operon gene in vector form to increase the number of copies to increase threonine production. Specifically, according to the method described in Korean Patent Registration No.
  • the prepared strains were cultured in the threonine evaluation medium prepared according to the composition in Table 8 below to compare the growth rate and L-threonine production capacity.
  • composition of threonine evaluation medium Composition Concentration (per liter) Glucose 70 g KH 2 PO 4 2 g (NH 4 ) 2 SO 4 25 g MgSO 4 ⁇ 7H 2 O 1 g FeSO 4 ⁇ 7H 2 O 5 mg MnSO 4 ⁇ 7H 2 O 5 mg DL-methionine 0.15 g Yeast extract 2 g Calcium carbonate 30 g pH 6.8
  • each strain was inoculated with platinum in 25 mL titer medium of Table 8, and then incubated at 33°C and 200 rpm for 48 hours. It was cultured for a while, and the results are shown in Table 9 below. As can be seen from the following results, the wild type strain also suggests that the mutant protein selected in the present application can efficiently produce threonine with high yield.
  • the vectors of pCC1BAC- crp(WT) and pCC1BAC- crpTM4 were transformed into a wild-type derived strain capable of producing tryptophan ( transformation).
  • the wild type-derived strain capable of producing the tryptophan used in this example is W3110 trp ⁇ 2/pCL-Dtrp_att-trpEDCBA, the control mechanism of the tryptophan operon regulatory site is released, and the tryptophan operon expression is enhanced so that the tryptophan can be excessively produced.
  • Tryptophan evaluation medium composition Composition Concentration (per liter) Glucose 2 g K 2 HPO 4 1 g (NH 4 ) 2 SO 4 12 g NaCl 1 g Na 2 HPO 4 ⁇ H 2 O 5 g MgSO 4 ⁇ H 2 O 1 g MnSO 4 ⁇ H 2 O 15 mg CuSO 4 ⁇ H 2 O 3 mg ZnSO 4 ⁇ H 2 O 30 mg Sodium citrate 1 g Yeast extract 1 g Phenylalanine 0.15 g pH 6.8
  • the strains cultured overnight on an LB solid medium in a 37°C incubator were inoculated with platinum in 25 ml evaluation medium of Table 9, respectively, and then incubated at 37°C and 200 rpm for 48 hours.
  • the OD and tryptophan concentration by culturing are shown in Table 11.
  • the wild type strain also suggests that the mutant protein selected in the present application can efficiently produce tryptophan with high yield.
  • Wild-type derived cell growth and tryptophan production capacity evaluation results Strain OD Tryptophan (g/L)** W3110 trp ⁇ 2/pCL-Dtrp_att-trpEDCBA/pCC1BAC 10.8 0.5 W3110 trp ⁇ 2/pCL-Dtrp_att-trpEDCBA/pCC1BAC- crp(WT) 11.0 0.6 W3110 trp ⁇ 2/pCL-Dtrp_att-trpEDCBA/pCC1BAC- crpTM4 13.0 1.0
  • the present inventors named the KCCM11166P strain-based, pCC1BAC- crpTM4 , and improved the tryptophan production capacity and sugar consumption rate (KCCM11166P/pCC1BAC- crpTM4 ) as "CA04-2809" and preserved Korea Microorganisms, an international depository organization under the Budapest Treaty. Deposited with the accession number KCCM12375P at the center (KCCM) on November 07, 2018.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 출원은 cAMP 수용 단백질 변이체, 이를 포함하는 미생물, 및 이를 이용한 L-아미노산 제조방법에 관한 것이다.

Description

CAMP 수용 단백질 변이체 및 이를 이용한 L-아미노산 제조방법
본 출원은 cAMP 수용 단백질 변이체, 이를 포함하는 미생물, 및 이를 이용한 L-아미노산 제조방법에 관한 것이다.
CRP(cyclic AMP receptor protein)는 대장균에서 가장 많이 알려진 전사조절인자로, CAP(catabolite activator protein)이라고도 불린다. CRP는 탄소원에 의존적인 조절 기작을 특징적으로 가지는데 대표적인 것이 '대사산물 억제작용(catabolite repression)'이다. 이 작용은 세포내의 cyclic AMP (이하'cAMP')의 농도에 의해 촉발되는데, 포도당과 같은 선호되는 탄소원이 있을 때에는 adenylate cyclase의 활성이 저해되어 cAMP가 낮아지고, 이 신호를 통하여서 catabolite 대사 유전자들의 발현이 억제된다. 반대의 경우 adenylate cyclase의 활성이 증가되고, 그 결과 repressor들을 억제하여 catabolite 대사 유전자들의 발현이 시작된다. 그 외에도 CRP는 cAMP를 통한 세포내 신호전달, 삼투조절, 세포의 긴급상황발생시 대처, 바이오필름 생성, 질소고정, 철분 수송등의 다양한 역할을 하는 것으로 알려져 있다.
보고된 바에 따르면, 418개의 대장균 유전자가 CRP에 의해 조절을 받는 것으로 알려져 있으나, 해당 기작은 아직 상세히 밝혀지지 않았다(J Biol Eng. (2009) 24;3:13). 이처럼 광범위한 조절 능력으로 CRP는 돌연변이에 의하여 다양한 표현형을 보일 수 있는 가능성을 가지고 있고, 그러한 장점으로 인해 다양한 환경에서 적용 가능한 세포수준의 균주 재설계에 적합한 대상으로 연구되고 있다. 최근에는 생물정보학적인 방법으로 선별된 CRP의 아미노산 변이에 의해 DNA의 결합정도를 변화시켜 조절 대상 유전자의 발현을 변화시킨 방법 (Nucleic Acids Research, (2009) 37: 2493-2503)과 zinc finger DNA결합부위와 CRP를 융합하여 인공적인 전사인자(ATF, artificial transcription factor)를 만든 것으로 열, 삼투 및 저온에 내성을 가지는 대장균을 선별((Nucleic Acids Research, (2008) 36: e102) 하는 등 다양한 실험이 이루어지고 있다. 즉, CRP의 발현변화는 광범위한 수준의 하위 단계 유전자 발현 변화를 촉진하여 유용한 형질을 가진 미생물을 제작하는데 좋은 도구가 될 가능성이 크다.
본 발명자들은 서열번호 1의 아미노산 서열에서 하나 이상의 아미노산 치환을 포함하는 신규한 변이형 단백질을 발굴하고, 상기 변이형 단백질이 L-아미노산의 생산능을 증가시킴을 확인함으로써, 본 출원을 완성하였다.
본 출원의 하나의 목적은 cAMP 수용 단백질 변이체를 제공하는 것이다.
본 출원의 다른 하나의 목적은 상기 cAMP 수용 단백질 변이체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 출원의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다.
본 출원의 또 다른 목적은 상기 변이체를 포함하는, 에스케리키아 속 미생물을 제공하는 것이다.
본 출원의 또 다른 목적은 상기 에스케리키아 속 미생물을 배지에서 배양하는 단계를 포함하는 L-아미노산 생산방법을 제공하는 것이다.
본 출원의 또 다른 목적은 상기 변이체 또는 상기 변이체를 포함하는 에스케리키아 속 미생물의 L-아미노산 생산 용도를 제공하는 것이다.
본 출원의 cAMP 수용 단백질 변이체를 포함하는, L-아미노산을 생산하는 에스케리키아 속 미생물을 배양하는 경우, 고수율의 L-아미노산 생산이 가능하다. 이에, 산업적인 면에서 생산의 편의성과 함께 제조원가 절감 등의 효과를 기대할 수 있다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
상기 목적을 달성하기 위한 본 출원의 하나의 양태는 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 치환을 포함하는 cAMP 수용 단백질 변이체를 제공하는 것이다. 구체적으로, 본 출원은 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 치환을 포함하는 cAMP 수용 단백질 변이체를 제공하며, 상기 아미노산 치환은 N-말단으로부터 35번째 아미노산이 알라닌으로 치환된 것을 포함한다. 더욱 구체적으로, 서열번호 1의 아미노산 서열에서 35번째 아미노산이 알라닌으로 치환된 것을 포함하는, cAMP 수용 단백질 변이체를 제공하는 것이다.
본 출원에서 용어, "cAMP 수용 단백질(cAMP receptor protein, CRP)"은 대장균에서 가장 많이 알려진 전사조절인자로서 그 자체로 활성인자와 저해인자의 기능을 함께 가지고 있어 'dual regulator'라고도 불린다. 일반적으로 구조유전자의 앞쪽에 위치한 22개의 염기를 가지는 대칭형 DNA서열에 결합하여 DNA의 구부러짐을 유도하고, 카르복시 말단에 있는 첫 번째 활성부위와 아미노 말단에 있는 두번 째 활성부위가 전사를 담당하는 RNA중합효소와 상호작용하도록 하여 활성인자의 역할을 하고, 억제인자의 역할을 할 경우에는 활성단백질이 활성부위에 결합하지 못하도록 그 위치를 선점하거나, 활성단백질과 결합하여 활성부위에 결합하지 않는 구조로 변환시키는 방법을 취하는 것으로 알려져 있다. 상기 cAMP 수용 단백질은 crp 유전자에 의해 코딩되는 cAMP 수용 단백질이다.
본 출원의 "cAMP 수용 단백질(cyclic AMP receptor protein, CRP)"는 이화대사물 활성화 단백질(catabolite activator protein, CAP), CRP 단백질, CAP 단백질 등과 혼용되어 사용될 수 있다.
본 출원에서 상기 CRP는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있다. 일 예로, 에스케리아 속(Escherichia sp.) 유래 CRP일 수 있으며, 더욱 구체적으로는 서열번호 1로 기재된 아미노산 서열을 포함하는 폴리펩티드/단백질일 수 있으나, 이에 제한되지 않다. 또한 상기 아미노산 서열과 동일한 활성을 갖는 서열은 제한없이 포함될 수 있다. 또한, 서열번호 1의 아미노산 서열 또는 이와 80% 이상의 상동성(homology) 또는 동일성(identity)을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로 상기 아미노산은 서열번호 1 및 상기 서열번호 1과 적어도 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성 또는 동일성을 가지는 아미노산을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 범위내에 포함됨은 자명하다.
본 출원에서 용어, "변이체(variant)"는 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)에 있어서 상기 열거된 서열 (the recited sequence)과 상이하나, 상기 단백질의 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드를 지칭한다. 변이형 폴리펩티드는 수 개의 아미노산 치환, 결실 또는 부가에 의해 식별되는 서열(identified sequence)과 상이하다. 이러한 변이형은 일반적으로 상기 폴리펩티드 서열 중 하나를 변형하고, 상기 변형된 폴리펩티드의 특성을 평가하여 식별될 수 있다. 즉, 변이형의 능력은 본래 단백질(native protein)에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 이러한 변이형은 일반적으로 상기 폴리펩티드 서열 중 하나를 변형하고, 변형된 폴리펩티드의 반응성을 평가하여 식별될 수 있다. 또한, 일부 변이형은 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거된 변이형을 포함할 수 있다. 다른 변이형은 성숙 단백질 (mature protein)의 N- 및/또는 C- 말단으로부터 일부분이 제거된 변이형을 포함할 수 있다.
본 출원에서 용어 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 상기 변이형은 하나 이상의 생물학적 활성을 여전히 보유하면서, 예를 들어 하나 이상의 보존적 치환을 가질 수 있다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 예를 들면, 양으로 하전된 (염기성) 아미노산은 알지닌, 리신, 및 히스티딘을 포함하고; 음으로 하전된 (산성) 아미노산은 글루탐산 및 아르파르트산을 포함하고; 방향족 아미노산은 페닐알라닌, 트립토판 및 타이로신을 포함하고, 소수성 아미노산은 알라닌, 발린, 이소류신, 류신, 메티오닌, 페닐알라닌, 프롤린, 글리신 및 트립토판을 포함한다.
또한, 변이형은 폴리펩티드의 특성과 2차 구조에 최소한의 영향을 갖는 아미노산들의 결실 또는 부가를 포함할 수 있다. 예를 들면 폴리펩티드는 번역-동시에(co-translationally) 또는 번역-후에(post-translationally) 단백질의 이전(transfer)에 관여하는 단백질 N-말단의 시그널 (또는 리더)서열과 컨쥬게이트 할 수 있다. 또한 상기 폴리펩티드는 폴리펩티드를 확인, 정제, 또는 합성할 수 있도록 다른 서열 또는 링커와 컨쥬게이트 될 수 있다.
본 출원에서 용어, "cAMP 수용 단백질 변이체"는 cAMP 수용 단백질 활성을 갖는 폴리펩티드의 아미노산 서열에서 하나 이상의 아미노산 치환을 포함하는 cAMP 수용 단백질 변이체로서, 상기 아미노산 치환은 N-말단으로부터 35번째 위치의 아미노산이 다른 아미노산으로 치환된 것을 포함한다. 구체적으로는 AMP 수용 단백질 활성을 갖는 폴리펩티드의 아미노산 서열에서 35번째 위치의 아미노산이 다른 아미노산으로 치환된 35번째 위치의 아미노산이 다른 아미노산으로 치환된 단백질 변이체를 포함한다. 예를 들어, 상기 단백질 변이체는 서열번호 1의 아미노산 서열 내 N-말단으로부터 35번째 위치의 변이가 일어난 단백질 변이체를 포함한다. 보다 구체적으로, 상기 단백질 변이체는 서열번호 1의 아미노산 서열에서 35번째 아미노산이 다른 아미노산으로 치환된 단백질일 수 있다. 상기 '다른 아미노산'은 35번째 아미노산인 L-글루탐산을 제외한 다른 아미노산이면 제한되지 않는다. 구체적으로, 상기 변이체는 서열번호 1의 아미노산 서열에서 35번째 아미노산이 소수성 아미노산으로 치환된 단백질일 수 있다. 상기 소수성 아미노산은 L-알라닌, L-글리신, L-발린, L-이소류신, L-류신, L-메티오닌, L-프롤린, L-페닐알라닌 및 L-트립토판 중 하나 일 수 있다. 보다 구체적으로, 상기 변이체는 서열번호 1의 아미노산 서열에서 35번째 아미노산이 알라닌(Alanine)으로 치환된 단백질일 수 있으나, 이에 제한되지 않는다.
또한 상기 변이체는 위에서 설명한 서열번호 서열번호 1 및/또는 상기 서열번호 1와 적어도 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성 또는 동일성을 가지는 아미노산에서 N-말단으로부터 35번째 위치의 아미노산이 변이된 것을 의미한다.
본 출원에서 용어, "cAMP 수용 단백질 변이체"는 상기 cAMP 수용 단백질 변이체는 변이형 CRP 단백질, CRP 변이체, 변이형 cAMP 수용 단백질, 변이형 CAP 단백질, CAP 변이체, 변이형 이화대사물 활성화 단백질, 이화대사물 활성화 단백질 변이체 등과 혼용되어 사용될 수 있다.
본 출원의 목적상 상기 cAMP 수용 단백질 변이체를 포함하는 미생물의 경우, L-아미노산 생산량이 상기 cAMP 수용 단백질 변이체가 존재하지 않는 미생물에 비하여 증가하는 것을 특징으로 한다. 상기 CRP 변이체는 천연의 야생형 또는 비변이 cAMP 수용 단백질에 비하여 L-아미노산 생산능이 증가되도록 유전자 조절 활성을 갖는 것을 특징으로 한다. 이는 본 출원의 CRP 변이체가 도입된 미생물을 통해 L-아미노산 생산량을 증가시킬 수 있다는 것에 의의가 있다. 구체적으로, 상기 L-아미노산은 L-쓰레오닌 또는 L-트립토판일 수 있으나, 상기 변이형 cAMP 수용 단백질이 도입 또는 포함되어 생산될 수 있는 L-아미노산이면 제한없이 포함된다.
상기 cAMP 수용 단백질 변이체는 그 예로, 서열번호 1로 표시되는 아미노산 서열 내 35번째 아미노산이 다른 아미노산으로 치환된 아미노산 서열을 포함하는, 변이체로 서열번호 3으로 이루진 것일 수 있다. 서열번호 1의 아미노산 서열에서 35번째 아미노산이 알라닌(Alanine)으로 치환된 변이체는, 서열번호 3으로 이루어진 것일 수 있으나, 이에 제한되지 않는다. 또한, 상기 CRP 변이체는 서열번호 3의 아미노산 서열 또는 이와 80% 이상의 상동성 또는 동일성을 갖는 아미노산 서열을 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로 본 출원의 상기 CRP 변이체는 서열번호 3 및 상기 서열번호 3과 적어도 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성 또는 동일성을 가지는 단백질을 포함할 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 단백질에 상응하는 효능을 나타내는 아미노산 서열이라면 35번째 위치의 아미노산 서열 이외에, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원의 범위 내에 포함됨은 자명하다.
즉, 본 출원에서 '특정 서열번호로 기재된 아미노산 서열을 갖는 단백질 '이라고 기재되어 있다 하더라도, 해당 서열번호의 아미노산 서열로 이루어진 단백질과 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 갖는 단백질도 본 출원에서 사용될 수 있음은 자명하다. 예를 들어, 상기 변이형 단백질과 동일 혹은 상응하는 활성을 가지는 경우라면 상기 아미노산 서열 앞뒤에 단백질의 기능을 변경하지 않는 서열 추가, 자연적으로 발생할 수 있는 돌연변이, 이의 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 제외하는 것이 아니며, 이러한 서열 추가 혹은 돌연변이를 가지는 경우에도 본원의 범위 내에 속하는 것이 자명하다.
본 출원에서 용어, '상동성(homology)' 또는 '동일성(identity)'은 두 개의 주어진 아미노산 서열 또는 염기 서열과 서로 관련된 정도를 의미하며 백분율로 표시될 수 있다.
용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 중간 또는 높은 엄격한 조건(stringent conditions)에서 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90% 이상으로 하이브리드할 수 있다. 하이브리드화는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48: 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 일진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본원에서 사용된 것으로서, 용어 "상동성" 또는 "동일성"은 서열들간의 관련성(relevance)를 나타낸다.
본 출원의 다른 하나의 양태는 상기 CRP변이체를 코딩하는 폴리뉴클레오티드, 또는 상기 폴리뉴클레오티드를 포함하는 벡터를 제공하는 것이다.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이형 단백질을 코딩하는 폴리뉴클레오티드 단편을 의미한다.
본 출원의 CRP 변이체를 코딩하는 폴리뉴클레오티드는, 본 출원의 cAMP 수용 단백질 변이체를 코딩하는 폴리뉴클레오티드 서열이라면 제한없이 포함될 수 있다. 상기 CRP 변이체를 코딩하는 폴리뉴클레오티드는 서열번호 1의 아미노산 서열에서 35번째 아미노산이 다른 아미노산으로 치환된 변이형 단백질을 코딩하는 서열이라면 제한없이 포함될 수 있다. 구체적으로, 서열번호 1의 아미노산 서열에서 35번째 아미노산이 알라닌으로 치환된 변이체를 코딩하는 폴리뉴클레오티드 서열일 수 있다. 예를 들어, 본 출원의 CRP변이체를 코딩하는 폴리뉴클레오티드는 서열번호 3의 아미노산 서열을 코딩하는 폴리뉴클레오티드 서열일 수 있으나, 이에 제한되는 것은 아니다. 보다 구체적으로는 서열번호 4로 이루어진 폴리뉴클레오티드 서열로 구성된 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 따라서, 코돈 축퇴성 (codon degeneracy)에 의해 상기 서열번호 3의 아미노산 서열로 이루어진 폴리펩타이드 또는 이와 상동성 또는 동일성을 가지는 폴리펩타이드로 번역될 수 있는 폴리뉴클레오티드 역시 포함될 수 있음은 자명하다.
또한 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 1의 아미노산 서열에서 35번째 아미노산이 다른 아미노산으로 치환된 CRP 변이체를 코딩하는 서열이라면 제한없이 포함될 수 있다.
상기 "엄격한 조건(stringent condition)"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌 (예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성(homology) 또는 동일성(identity)이 높은 유전자끼리, 80% 이상, 85% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성 또는 동일성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃, 1 X SSC, 0.1% SDS, 구체적으로는 60℃, 0.1 X SSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1 X SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).
본 출원에서 사용된 용어, "벡터"는 적합한 숙주 내에서 목적 변이형 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 변이형 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.
본 출원에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 변이형 단백질을 코딩하는 폴리뉴클레오티드를 변이된 폴리뉴클레오티드로 교체시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동 재조합(homologous recombination)에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커(selection marker)를 추가로 포함할 수 있다. 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 핵산 분자의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 변이형 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다. 본 출원의 또 하나의 양태로서, 본 출원은 상기 변이형 단백질을 포함하거나, 상기 변이형 단백질을 코딩하는 폴리뉴클레오티드를 포함하여, L-아미노산을 생산하는 미생물을 제공하는 것이다. 구체적으로 변이형 단백질 및/또는 상기 변이형 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 미생물은 변이형 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환에 의해 제조되는 미생물일 수 있으나, 이에 제한되지 않는다.
본 출원에서 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.
또한, 상기에서 용어 "작동 가능하게 연결"된 것이란 본 출원의 목적 변이형 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.
본 출원의 다른 하나의 양태는 상기 cAMP 수용 단백질 변이체를 포함하는, 에스케리키아 속(Escherichia sp.) 미생물을 제공하는 것이다.
본 출원에서 사용되는 용어 "CRP 변이체를 포함하는 미생물"이란, 본 출원의 CRP 변이체가 발현되도록 재조합된 미생물을 의미할 수 있다. 예를 들어 CRP 변이체를 코딩하는 폴리뉴클레오티드를 포함하거나, 또는 CRP 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되어 상기 변이체를 발현할 수 있는 숙주세포 또는 미생물을 의미한다. 본 출원의 목적상 구체적으로 상기 미생물은 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 치환을 포함하는 cAMP 수용 단백질 변이체를 발현하는 미생물로서, 상기 아미노산 치환은 N-말단으로부터 35번째 아미노산이 알라닌으로 치환되어, cAMP 수용 단백질 활성을 갖는, 변이형 단백질을 발현하는 미생물일 수 있으나 이에 제한되지 않는다.
상기 CRP변이체를 포함하는 미생물은, 상기 CRP 변이체를 포함하여 L-아미노산, 그 예로, L-쓰레오닌 또는 L-트립토판을 생산할 수 있는 미생물이라면 모두 가능하나, 이에 제한되지 않는다. 예를 들어, 상기 CRP변이체를 포함하는 미생물은, 천연의 야생형 미생물 또는 L-아미노산을 생산하는 미생물에 CRP 변이체가 발현되어, L-아미노산 생산능이 증가된 재조합 미생물일 수 있다. 상기 L-아미노산 생산능이 증가된 재조합 미생물은, 천연의 야생형 미생물 또는 비변형 미생물에 비하여 L-아미노산 생산능이 증가된 미생물일 수 있으며, 상기 L-아미노산은 L-쓰레오닌 또는 L-트립토판일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 용어, "L-아미노산을 생산하는 미생물"은 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 L-아미노산 생산을 위하여 유전적 변이가 일어나거나 활성을 강화시킨 미생물 일 수 있다. 본 출원의 목적상 상기 L-아미노산을 생산하는 미생물은 상기 변이형 단백질을 포함하여, 목적하는 L-아미노산의 생산능이 증가된 것일 수 있다. 구체적으로, 본 출원에서 L-아미노산을 생산하는 미생물 또는 L-아미노산 생산능을 갖는 미생물은, L-아미노산 생합성 경로 내 유전자 일부가 강화 또는 약화되거나, L-아미노산 분해 경로 내 유전자 일부가 강화 또는 약화된 미생물일 수 있다.
상기 '비변형 미생물'은 천연형 균주 자체이거나, 상기 CRP 변이체를 포함하지 않는 미생물, 또는 상기 CRP 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되지 않은 미생물을 의미한다. 상기 '미생물'은 L-아미노산을 생산할 수 있는 미생물이라면, 원핵 미생물 및 진핵 미생물 어느 것이나 포함될 수 있다. 예를 들면 에스케리키아(Escherichia) 속, 어위니아(Erwinia) 속, 세라티아(Serratia) 속, 프로비덴시아(Providencia) 속, 코리네박테리움(Corynebacterium) 속 및 브레비박테리움(Brevibacterium)속에 속하는 미생물 균주가 포함될 수 있다. 구체적으로는 에스케리키아속 미생물일 수 있으며, 보다구체적으로는 대장균일 수 있으나, 이에 제한되지 않는다.
본 출원의 또 하나의 양태로서, 상기 cAMP 수용 단백질 변이체를 포함하는 L-아미노산을 생산하는 에스케리키아 속 미생물을 배지에서 배양하는 단계를 포함하는 L-아미노산 생산방법을 제공한다.
상기 용어 'cAMP 수용 단백질 변이체', 및 'L-아미노산'은 앞에서 설명한 바와 같다.
상기 방법에 있어서, 상기 미생물을 배양하는 단계는, 특별히 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행될 수 있다. 이때, 배양조건은, 특별히 이에 제한되지 않으나, 염기성 화합물 (예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물 (예: 인산 또는 황산)을 사용하여 적정 pH (예컨대, pH 5 내지 9, 구체적으로는 pH 6 내지 8, 가장 구체적으로는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있다. 배양온도는 20 내지 45 ℃, 구체적으로는 25 내지 40 ℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 제한 되는 것은 아니다. 상기 배양에 의하여 생산된 L-아미노산은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물 (예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방 (예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산 (예: 팔미트산, 스테아르산 및 리놀레산), 알코올 (예: 글리세롤 및 에탄올) 및 유기산 (예: 아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 질소 공급원으로는 질소-함유 유기 화합물 (예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물 (예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 인 공급원으로 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으나, 이에 제한되지 않는다. 또한, 배지에는 기타 금속염 (예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
상기 방법은 상기 미생물 또는 배지로부터 L-아미노산을 회수하는 단계를 추가로 포함할 수 있다.
본 출원의 상기 배양 단계에서 생산된 L-아미노산을 회수하는 방법은 배양방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배양액으로부터 목적하는 L-아미노산을 수집(collect)할 수 있다. 예를 들어, 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 미생물로부터 목적하는 L-아미노산을 회수 할 수 있다.
또한, 상기 회수 단계는 정제 공정을 포함할 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 수행될 수 있다. 따라서, 상기의 회수되는 L-아미노산은 정제된 형태 또는 L-아미노산을 함유한 미생물 발효액일 수 있다(Introduction to Biotechnology and Genetic Engineering, A. J. Nair., 2008).
본 출원의 또 다른 하나의 양태로서, L-아미노산의 생산을 위한 서열번호 1의 아미노산 서열 내 하나 이상의 아미노산 치환을 포함하는 cAMP 수용 단백질 변이체의 용도를 제공한다.
본 출원의 또 다른 하나의 양태로서, L-아미노산의 생산을 위한 상기 cAMP 수용 단백질 변이체를 포함하는, 에스케리키아 속 미생물의 용도를 제공한다.
상기 용어 'cAMP 수용 단백질 변이체', 및 'L-아미노산'은 앞에서 설명한 바와 같다.
이하 본 출원을 실시예에 의해 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로, 본 출원의 범위가 이들 실시예에 의해 제한되는 것은 아니며, 본 출원이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
실시예 1. 재조합 벡터 pCC1BAC- crp 의 제작
1-1. 유전자 crp 단편의 준비
유전자 crp와 발현조절부위 부위를 포함하는 서열번호 5의 DNA 단편 약 0.96kb를 얻기 위해, Qiagen(사)의 Genomic-tip 시스템을 이용하여 대장균 야생주인 W3110의 염색체 DNA (gDNA)를 추출하고, 상기 gDNA를 주형으로 PCR HL premix kit(BIONEER사 제품, 이하 동일함)를 사용하여 PCR (polymerase chain reaction)을 수행하였다. 유전자 crp 단편 부위를 증폭시키기 위한 PCR은 서열번호 6 및 7의 프라이머를 사용하여 95℃에서 30초의 변성(denaturation), 56℃에서 30초의 어닐링(annealing), 및 72℃에서 2분의 신장(elongation)으로 이루어진 사이클을 27회 반복 수행하였다.
상기 PCR 결과물을 EcoR I으로 절단하여 0.96 Kb 크기의 DNA 단편(이하, "crp 단편"이라 명명함)을 0.8% 아가로스 겔(agarose gel)에서 전기영동한 후 용리하여 수득하였다.
서열번호 프라이머명 서열(5'-3')
6 crp-F CACGAATTCTTTGCTACTCCACTGCGTCA
7 crp-R ACACGAATTCTTAACGAGTGCCGTAAACG
1-2. 재조합 벡터 pCC1BAC- crp 의 제작
Copycontrol pCC1BAC vector (EPICENTRE, USA)를 EcoR I으로 처리하여 0.8% 아가로스 겔(agarose gel)에서 전기영동한 후 용리하여 수득하고, 실시예 1-1에서 얻어진 crp 단편을 라이게이션(ligation)시켜 pCC1BAC-crp 플라스미드를 제작하였다.
실시예 2. 재조합 벡터 pCC1BAC- crp 변이체 라이브러리의 제작
2-1. error-prone PCR을 이용한 돌연변이 crp 단편의 준비
야생형 대장균인 W3110 염색체 DNA를 주형으로 clonetech사의 diversify PCR random mutagenesis kit(catalog #: K1830-1, Table Ⅲ, mutagenesis reactions 4)을 이용하여 PCR을 수행하였다. 구체적으로, PCR은 실시예 1-1에서 사용된 서열번호 6 및 7의 프라이머를 사용하여 94℃에서 30초의 변성(denaturation), 68℃에서 1분의 신장(elongation)으로 이루어진 사이클을 27회 반복 수행하였다.
상기 PCR 결과물을 EcoR I으로 절단하여 0.96Kb 크기의 돌연변이된 crp 단편(이하, " crp m 단편"이라 명명함)들을 0.8% 아가로스 겔(agarose gel)에서 전기영동한 후 용리하여 수득하였다.
2-2. 재조합 벡터 pCC1BAC- crp 변이체 라이브러리의 제작
벡터 pCC1BAC을 제한효소 EcoR I으로 처리한 후, 알칼라인 포스파타제(alkaline phosphatase (NEB))를 처리하여 준비하였다. 준비된 벡터에 실시예 2-1에서 수득한 crp m 단편들을 라이게이션(ligation)시켜 TransforMax EPI300 Electrocompetent E.coli (EPICENTRE, USA)에 전기천공법을 이용하여 형질전환하였다. 형질전환시킨 균주는 클로람페니콜을 포함하는 LB고체배지(15ug/ml) 에서 콜로니(colony)를 선별하였다. 이렇게 획득된 콜로니들을 모아 플라스미드 프랩(plasmid prep)을 수행하여 pCC1BAC-crp m library를 제작하였다.
실시예 3. crp 변이체 라이브러리의 쓰레오닌 생산균주 도입 및 성장이 개선된 균체의 선별
3-1. pCC1BAC-crp m library의 쓰레오닌 생산 균주 도입
실시예 2에서 수득된 pCC1BAC-crp m library를 쓰레오닌을 생산하는 미생물 KCCM10541의 electro-competent cell에 전기천공법을 이용하여 형질전환(transformation)시켜 도입하였다. 본 실시예에서 사용된 대장균 KCCM10541(대한민국등록특허 제10-0576342호)은 L-쓰레오닌을 생산하는 대장균 KFCC10718(대한민국등록특허 제10-0058286호)로부터 galR 유전자가 불활성화된 대장균이다.
pCC1BAC-crp m library가 도입된 미생물의 대조군으로서, KCCM10541에 pCC1BAC-crp를 위와 같은 방법으로 형질전환하여 KCCM10541/pCC1BAC-crp(WT)을 제작하였다.
3-2. 재조합 미생물의 성장 속도 비교
1% 포도당(glucose), 0.2 g/L의 효모 추출물(yeast extract)이 포함된 M9 최소배지를 deep well microplate에 분주한 후, 상기 실시예 3-1에서 만들어진 형질전환체 및 대조군 균주를 접종하였다. 마이크로 크기 항온 배양기 쉐이커(Micro size constant temperature incubator shaker, TAITEC, Japan)를 이용(37℃, 200 rpm 조건)하여 HTS (High Throughput Screening) 방법으로 20시간동안 상기 균주를 배양시켜 성장이 개선된 균주들을 선별하였고, 그 중 최종적으로 1종의 균주를 선별하였다(표 2).
야생형 crp유전자가 도입된 KCCM10541 균주의 경우 crp 추가 도입에 의하여 약간의 OD 증가를 보이나, 성장이 개선된 형질전환체의 경우 OD가 동일 배양 시간후 야생형 crp 대비 높게 측정됨을 확인하였다. 또한, 선별된 crp 변이체에 대해 플라스미드 미니-프랩(plasmid mini-prep)후 서열 분석을 진행하였으며, 그 결과는 표 2에 정리하였다.
쓰레오닌 생산균주의 crp m library 도입후 성장 개선된 형질전환체 정보
균주 OD600 변이
KCCM10541/pCC1BAC 2.3 -
KCCM10541/pCC1BAC-crp(WT) 2.8 -
KCCM10541/pCC1BAC-crpTM4 3.5 E35A
3-3. 재조합 미생물의 쓰레오닌 역가 비교
상기 실시예 3-2에서 선별된 재조합 미생물의 쓰레오닌 역가를 측정하기 위하여 하기 표 3의 조성대로 제조된 쓰레오닌 역가 배지에서 배양하여 L-쓰레오닌 생산성 향상을 확인하였다.
쓰레오닌 역가 배지 조성
조성물 농도 (리터당)
Glucose 70 g
KH2PO4 2 g
(NH4)2SO4 25 g
MgSO4·7H2O 1 g
FeSO4·7H2O 5 mg
MnSO4·4H2O 5 mg
효모액기스 2 g
탄산칼슘 30 g
pH 6.8
구체적으로, 33℃ 배양기(incubator) 내 LB 고체 배지에서 밤새 배양한 대장균 KCCM10541/pCC1BAC-crp(WT) 및 대장균 KCCM10541/pCC1BAC-crpTM4를 각각 상기 표 3의 25 mL 역가 배지에 한 백금이씩 접종한 다음, 이를 33℃, 200 rpm의 배양기에서 48시간 동안 배양하여 당 소모속도 및 쓰레오닌 농도를 비교하였다.
그 결과, 하기 표 4에 기재된 바와 같이, 대조군인 KCCM10541/pCC1BAC-crp(WT) 균주는 24시간에서 소모당이 26.1 g/L이지만, 돌연변이 crpTM4를 도입한 균주는, 모균주 대비 약 16%, 야생형 crp를 추가 도입한 균주 대비 약 11 % 개선된 당 소모속도를 보임을 확인하였다.
또한, L-쓰레오닌 생산량의 경우 48시간 배양하였을 때, 야생형 crp를 추가도입한 균주의 경우는 29.0 g/L 를 생산하였으나, 상기에서 수득된 돌연변이 균주는 배양 속도가 증가함에도 불구하고, L-쓰레오닌의 생산량이 31.0 g/L까지 증가되어, 모균주 대비 약 8%, 야생형 crp를 추가 도입한 균주 대비 약 7% 증가된 농도를 나타냄을 확인하였다.
이는 crp 변이형의 도입에 의하여 수율이 증가하며 균체의 당 소모능을 증가시킬 수 있는 좋은 변이형질로 보여, 발효시 생산효율 향상에 크게 기여할 수 있을 것으로 보인다.
crp 변이형이 포함된 쓰레오닌 균주 역가 비교
균주 소모당(g/L)* 쓰레오닌 (g/L)**
KCCM10541/pCC1BAC 25.0 28.8
KCCM10541/pCC1BAC-crp(WT) 26.1 29.0
KCCM10541/pCC1BAC-crpTM4 29.0 31.0
* 24시간 측청치, ** 48시간 측청치
실시예 4. pCC1BAC- crpTM4 변이체의 트립토판 생산균주 도입
4-1. pCC1BAC- crpTM4 스크리닝 균주 도입
실시예 3에서 수득된 pCC1BAC-crpTM4 를 트립토판을 생산하는 균주 KCCM11166P의 electro-competent cell에 전기천공법을 이용하여 형질전환(transformation)시켜 도입하였다. 본 실시예에서 사용된 KCCM11166P는 tehB 유전자가 결실되고, NAD 키나아제의 활성이 강화된 L-트립토판 생산 대장균 이다 (대한민국등록특허 제10-1261147호).
pCC1BAC-crpTM4 가 도입된 미생물의 대조군으로서, KCCM11166P에 pCC1BAC-crp(WT)를 위와 같은 방법으로 형질전환하여 KCCM11166P/pCC1BAC-crp(WT)을 제작하였다.
4-2. 재조합 미생물의 성장 속도 비교
1% 포도당, 0.2 g/L의 효모 추출물이 포함된 M9 최소배지를 deep well microplate에 분주 한 후, 상기 실시예 4-1에서 기술된 대로 만들어진 형질전환체 및 대조군 균주를 접종하였다. 하여 마이크로 크기 항온 배양기 쉐이커(Micro size constant temperature incubator shaker, TAITEC, Japan)를 이용(37℃, 200 rpm 조건)하여 HTS (High Throughput Screening) 방법으로 16시간 동안 상기 균주를 배양시켜 KCCM11166P/pCC1BAC-crpTM4 형질전환체의 성장이 개선되는 것을 확인하였다(표 5).
야생형 crp 유전자가 도입된 KCCM11166P 균주의 경우 crp 추가 도입에 의하여 동일 배양 시간후 측정하였을 때, 동등 수준의 OD를 보이나, 성장이 개선된 형질 전환체의 경우 OD가 야생형 crp 대비 높게 측정됨을 확인하였다.
트립토판 생산균주의 crpTM4 도입후 성장 개선된 형질전환체 정보
균주 OD600 변이
KCCM11166P/pCC1BAC 3.4 -
KCCM11166P/pCC1BAC-crp(WT) 3.5 -
KCCM11166P/pCC1BAC-crpTM4 4.0 E35A
4-3. 재조합 미생물의 트립토판 역가 비교
상기 실시예 4-2에서 제조한 재조합 미생물의 트립토판 역가를 측정하기 위하여 하기 표 6의 조성대로 제조된 트립토판 역가 배지에서 배양하여 L-트립토판 생산효율 향상을 확인하였다.
트립토판 역가 배지 조성
조성물 농도 (리터당)
Glucose 60 g
K2HPO4 1 g
(NH4)2SO4 10 g
NaCl 1 g
MgSO4·7H2O 1 g
구연산나트륨 5 g
효모액기스 2 g
탄산칼슘 40 g
구연산나트륨 5 g
페닐알라닌 0.15 g
타이로신 0.1 g
pH 6.8
구체적으로, 37℃ 배양기(incubator)에서 LB 고체 배지상에 밤새 배양한 대장균 KCCM11166P/pCC1BAC-crp(WT) 및 대장균 KCCM11166P/pCC1BAC-crpTM4를 각각 상기 표 6의 25 mL 역가 배지에 한 백금이씩 접종한 다음, 이를 37℃, 200 rpm의 배양기에서 48시간 동안 배양하여 당 소모속도 및 트립토판 농도를 비교하였다.
그 결과, 하기 표 7에 기재된 바와 같이, 대조군인 KCCM11166P/pCC1BAC-crp(WT) 균주는 22시간에서 소모당이 30.2 g/L이지만, 돌연변이형 crpTM4를 도입한 균주는 모균주 대비 약 146%, 야생형 crp를 추가 도입한 균주 대비 약 9 %까지 개선된 당 소모속도를 보임을 확인하였다.
L-트립토판 생산량의 경우 48시간 배양하였을 때, 야생형 crp를 추가 도입한 균주의 경우는 8.4 g/L 를 생산하였으나, 상기에서 수득된 돌연변이 균주들은 배양 속도가 증가함에도 불구하고, L-트립토판의 생산량이 9.7 g/L까지 증가되어, 모균주 대비 약 18 %, 야생형 crp를 추가 도입한 균주 대비 약 15% 증가된 농도를 보임을 확인 하였다.
이는 crp 변이형의 도입에 의하여 균체의 당 소모능이 증가되며, 수율도 향상 시킬 수 있는 좋은 변이형질로 보여, 발효시 생산성 향상에 크게 기여할 수 있을 것으로 보인다.
crp 변이형이 포함된 트립토판 균주 역가 비교
균주 소모당(g/L)* 트립토판 (g/L)**
KCCM11166P/pCC1BAC 29.0 8.2
KCCM11166P/pCC1BAC-crp(WT) 30.2 8.4
KCCM11166P/pCC1BAC-crpTM4 33.0 9.7
*22시간 측정치, ** 48시간 측정치
실시예 5. 유효 crp 변이형 내재 벡터의 야생형 대장균 도입
5-1. 유효 pCC1BAC- crp 변이형의 야생형 유래 쓰레오닌 생산균주 도입
상기 실시예 3에서 스크리닝된 crp 변이형을 포함한 벡터가 야생형 균주에서도 동등한 효과를 보이는지 확인해 보기 위하여, pCC1BAC-crp(WT) 및 pCC1BAC-crpTM4의 벡터를 쓰레오닌을 생산할 수 있는 야생형 유래 균주에 전기천공법을 이용하여 형질전환(transformation)시켜 도입하였다. 또한 대조군으로 pCC1BAC-crp(WT)를 도입한 균주도 제작하였다.
본 실시예에 사용된 쓰레오닌을 생산할 수 있는 야생형 유래 균주는 W3110::PcysK-ppc/pACYC184-thrABC이며, W3110::PcysK-ppc/pACYC184-thrABC는 염색체상의 포스포에놀파이루베이트 카르복실레이즈를 코딩하는 ppc 유전자의 native 프로모터를 cysK 유전자의 프로모터로 치환하고, 쓰레오닌 생합성 오페론 유전자를 벡터 형태로 도입하여 카피수를 증가시켜 쓰레오닌 생성량을 증가시킨 균주이다. 구체적으로는, 대한민국 등록특허 제10-0966324호에 기재된 방법대로, pUCpcycKmloxP를 이용하여 W3110::PcycK-ppc 균주를 제작 한 후, 상기 균주에 pACYC184-thrABC(대한민국 등록특허 제10-1865998호)를 전기천공법을 이용하여 형질전환하였다.
상기 제조된 균주들은 하기 표 8의 조성대로 제조된 쓰레오닌 평가 배지에서 배양하여 성장속도와 L-쓰레오닌 생산능을 비교하였다.
쓰레오닌 평가 배지 조성
조성물 농도 (리터당)
Glucose 70 g
KH2PO4 2 g
(NH4)2SO4 25 g
MgSO4·7H2O 1 g
FeSO4·7H2O 5 mg
MnSO4·7H2O 5 mg
DL-메티오닌 0.15 g
효모엑기스 2 g
탄산칼슘 30 g
pH 6.8
구체적으로, 33℃ 배양기(incubator)에서 LB 고체 배지 중에 밤새 배양한 W3110, 각각의 균주를 표 8의 25 mL 역가 배지에 한 백금이씩 접종한 다음, 이를 33℃, 200 rpm의 배양기에서 48시간 동안 배양하였으며, 이의 결과를 하기 표 9에 나타내었다. 하기 결과에서 알 수 있듯이, 야생형 균주에서도 본 출원에서 선별한 변이형 단백질이 쓰레오닌을 고수율로 효율적으로 생산할 수 있음을 시사하는 것이다.
야생형 유래 균체 성장 및 쓰레오닌 생성능 평가 결과
균주 OD 쓰레오닌(g/L)**
W3110::PcysK-ppc/pACYC184-thrABC/pCC1BAC 10.8 1.5
W3110::PcysK-ppc/pACYC184-thrABC/ pCC1BAC-crp(WT) 11.0 1.6
W3110::PcysK-ppc/pACYC184-thrABC/pCC1BAC-crpTM4 13.0 2.2
5-2. 유효 pCC1BAC- crp 변이형의 야생형 유래 트립토판 생산균주 도입
상기 실시예 4에서 스크리닝된 crp 변이형을 포함한 벡터가 야생형 균주에서도 동등한 효과를 보이는지 확인 하기 위하여, pCC1BAC-crp(WT) 및 pCC1BAC-crpTM4의 벡터를 트립토판을 생산할 수 있는 야생형 유래 균주로 형질전환(transformation)시켜 도입하였다.
본 실시예 사용된 트립토판을 생산할 수 있는 야생형 유래 균주는 W3110 trp△2/pCL-Dtrp_att-trpEDCBA로서, 트립토판 오페론 조절 부위의 조절 기작이 해제되고, 트립토판을 과량 생산할 수 있도록 트립토판 오페론 발현이 강화된 벡터가 도입된 균주이다 (대한민국 등록특허 제10-1532129호). 벡터가 도입된 균주들은 하기 표 10의 조성대로 제조된 트립토판 평가 배지에서 배양하여 L-트립토판 생산능을 비교하였다.
트립토판 평가 배지 조성
조성물 농도 (리터당)
Glucose 2 g
K2HPO4 1 g
(NH4)2SO4 12 g
NaCl 1 g
Na2HPO4·H2O 5 g
MgSO4·H2O 1 g
MnSO4·H2O 15 mg
CuSO4·H2O 3 mg
ZnSO4·H2O 30 mg
구연산나트륨 1 g
효모액기스 1 g
페닐알라닌 0.15 g
pH 6.8
구체적으로, 37℃ 배양기(incubator)에서 LB 고체 배지 상에 밤새 배양한 균주들을 각각 상기 표 9의 25 ㎖ 평가 배지에 한 백금이씩 접종한 다음, 이를 37℃, 200 rpm의 배양기에서 48시간 동안 배양하여 OD 및 트립토판 농도를 비교하여 표 11에 나타내었다. 하기 결과에서 알 수 있듯이, 야생형 균주에서도 본 출원에서 선별한 변이형 단백질이 트립토판을 고수율로 효율적으로 생산할 수 있음을 시사하는 것이다.
야생형 유래 균체 성장 및 트립토판 생성능 평가 결과
균주 OD 트립토판 (g/L)**
W3110 trp△2/pCL-Dtrp_att-trpEDCBA/pCC1BAC 10.8 0.5
W3110 trp△2/pCL-Dtrp_att-trpEDCBA/pCC1BAC-crp(WT) 11.0 0.6
W3110 trp△2/pCL-Dtrp_att-trpEDCBA/pCC1BAC-crpTM4 13.0 1.0
본 발명자들은 KCCM11166P 균주 기반, pCC1BAC-crpTM4가 도입되어 트립토판 생산능 및 당 소모속도가 개선된 균주(KCCM11166P/pCC1BAC-crpTM4)를 "CA04-2809"로 명명한 후 부다페스트 조약 하에 국제기탁기관인 한국미생물보존센터 (KCCM)에 2018년 11월 07일자에 기탁하여 수탁번호 KCCM12375P를 부여받았다.
상기와 같은 결과들은, 본 출원의 crp 변이체가 도입된 에스케리키아속 미생물에서 당 소모 속도가 개선되면서 L-아미노산 생성능이 증가되어 결과적으로 비변형 균주보다 L-아미노산의 생산능이 증가되는 것을 시사하는 것이다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2019009292-appb-I000001

Claims (11)

  1. 서열번호 1의 아미노산 서열에서 35번째 아미노산이 알라닌으로 치환된, cAMP 수용 단백질(cAMP receptor protein) 변이체.
  2. 제1항의 cAMP 수용 단백질 변이체를 코딩하는 폴리뉴클레오티드.
  3. 제1항의 cAMP 수용 단백질 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터.
  4. 서열번호 1의 아미노산 서열에서 35번째 아미노산이 알라닌으로 치환된, cAMP 수용 단백질 변이체를 포함하는, 에스케리키아 속(Escherichia sp.) 미생물.
  5. 제4항에 있어서, 상기 에스케리키아속 미생물은 대장균인, 에스케리키아 속 미생물.
  6. 제4항에 있어서, 상기 에스케리키아 속 미생물은 L-아미노산을 생산하는 것인, 에스케리키아속 미생물.
  7. 제6항 있어서, 상기 L-아미노산은 L-쓰레오닌 또는 L-트립토판인 것인, 에스케리키아 속 미생물.
  8. 서열번호 1의 아미노산 서열에서 35번째 아미노산이 알라닌으로 치환된, cAMP 수용 단백질 변이체를 포함하는, 에스케리키아 속 미생물을 배지에서 배양하는 단계를 포함하는, L-아미노산을 생산하는 방법.
  9. 제8항에 있어서, 상기 미생물 또는 배지로부터 L-아미노산을 회수하는 단계를 추가적으로 포함하는, L-아미노산을 생산하는 방법.
  10. 제8항에 있어서, 상기 L-아미노산은 L-쓰레오닌 또는 L-트립토판인 것인, L-아미노산을 생산하는 방법.
  11. 서열번호 1의 아미노산 서열에서 35번째 아미노산이 알라닌으로 치환된 cAMP 수용 단백질 변이체 또는 상기 변이체를 포함하는 에스케리키아 속 미생물의 L-아미노산 생산 용도.
PCT/KR2019/009292 2018-11-29 2019-07-25 Camp 수용 단백질 변이체 및 이를 이용한 l-아미노산 제조방법 WO2020111437A1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2020120488A RU2760536C1 (ru) 2018-11-29 2019-07-25 ВАРИАНТ БЕЛКА-РЕЦЕПТОРА цАМФ И СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТЫ С ИСПОЛЬЗОВАНИЕМ ЭТОГО ВАРИАНТА
BR112020012963-1A BR112020012963A2 (pt) 2018-11-29 2019-07-25 variante de proteína de receptor de camp e método de produção de l-aminoácido com uso do mesmo
CN201980013827.7A CN112218881B (zh) 2018-11-29 2019-07-25 cAMP受体蛋白变体及使用其制备L-氨基酸的方法
US16/956,799 US11697673B2 (en) 2018-11-29 2019-07-25 Camp receptor protein variant and method of producing L-amino acid using the same
CA3087627A CA3087627C (en) 2018-11-29 2019-07-25 Camp receptor protein variant and method of producing l-amino acid using the same
EP19890455.9A EP3725800A4 (en) 2018-11-29 2019-07-25 CAMP RECEPTOR PROTEIN MUTANTS AND METHOD FOR MANUFACTURING L-AMINO ACID USING THE SAME
JP2020538582A JP6997327B2 (ja) 2018-11-29 2019-07-25 Camp受容タンパク質変異体及びそれを用いたl-アミノ酸の製造方法
MX2021005180A MX2021005180A (es) 2018-11-29 2019-07-25 Variante proteica receptora de ampc y procedimiento de produccion de l-aminoacido mediante el uso de la misma.
PH12020550976A PH12020550976A1 (en) 2018-11-29 2020-06-24 Camp receptor protein variant and method of producing l-amino acid using the same
ZA2020/03830A ZA202003830B (en) 2018-11-29 2020-06-24 Camp receptor protein mutant and method for preparing l-amino acid by using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180151043A KR101991207B1 (ko) 2018-11-29 2018-11-29 cAMP 수용 단백질 변이체 및 이를 이용한 L-아미노산 제조방법
KR10-2018-0151043 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111437A1 true WO2020111437A1 (ko) 2020-06-04

Family

ID=67104335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009292 WO2020111437A1 (ko) 2018-11-29 2019-07-25 Camp 수용 단백질 변이체 및 이를 이용한 l-아미노산 제조방법

Country Status (12)

Country Link
US (1) US11697673B2 (ko)
EP (1) EP3725800A4 (ko)
JP (1) JP6997327B2 (ko)
KR (1) KR101991207B1 (ko)
CN (1) CN112218881B (ko)
BR (1) BR112020012963A2 (ko)
CA (1) CA3087627C (ko)
MX (1) MX2021005180A (ko)
PH (1) PH12020550976A1 (ko)
RU (1) RU2760536C1 (ko)
WO (1) WO2020111437A1 (ko)
ZA (1) ZA202003830B (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101991206B1 (ko) 2018-11-29 2019-06-19 씨제이제일제당 (주) cAMP 수용 단백질 변이체 및 이를 이용한 L-아미노산 제조방법
KR101991207B1 (ko) * 2018-11-29 2019-06-19 씨제이제일제당 (주) cAMP 수용 단백질 변이체 및 이를 이용한 L-아미노산 제조방법
KR101996767B1 (ko) 2018-11-29 2019-07-04 씨제이제일제당 (주) cAMP 수용 단백질 변이체 및 이를 이용한 L-아미노산 제조방법
KR102281359B1 (ko) * 2021-01-26 2021-07-22 씨제이제일제당 (주) 신규한 단백질 변이체 및 이를 이용한 l-발린 생산 방법
CN118742558A (zh) 2022-03-01 2024-10-01 瓦克化学股份公司 改良的半胱氨酸生产菌株

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100576342B1 (ko) 2004-02-05 2006-05-03 씨제이 주식회사 galR 유전자가 불활성화된 L-쓰레오닌 생성 미생물,그를 제조하는 방법 및 상기 미생물을 이용한L-쓰레오닌의 제조방법
US20080286760A1 (en) * 2003-11-26 2008-11-20 Bayerische Julius-Maximilians-Universität Würzburg Means and Methods for the Determination of Camp In Vitro and In Vivo
KR100966324B1 (ko) 2008-01-08 2010-06-28 씨제이제일제당 (주) 향상된 l-쓰레오닌 생산능을 갖는 대장균 및 이를 이용한l-쓰레오닌의 생산 방법
KR20120083795A (ko) * 2011-01-18 2012-07-26 씨제이제일제당 (주) L-아미노산의 생산능이 향상된 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
CN103114069A (zh) * 2013-02-22 2013-05-22 新疆梅花氨基酸有限责任公司 混糖发酵生产l-色氨酸的细菌及发酵方法
KR101532129B1 (ko) 2012-01-10 2015-06-29 씨제이제일제당 (주) L-트립토판 생산능이 강화된 에스케리키아속 미생물 및 이를 이용하여 l-트립토판을 생산하는 방법
KR20160030053A (ko) * 2014-09-05 2016-03-16 씨제이제일제당 (주) L-쓰레오닌 생산능이 향상된 미생물 및 이를 이용한 l-쓰레오닌 생산방법
US20160362456A1 (en) * 2015-06-12 2016-12-15 Arizona Board Of Regents On Behalf Of Arizona State University Modified microorganisms for chemical production
KR101991207B1 (ko) * 2018-11-29 2019-06-19 씨제이제일제당 (주) cAMP 수용 단백질 변이체 및 이를 이용한 L-아미노산 제조방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920009598B1 (ko) 1990-10-11 1992-10-21 주식회사삼성전자 풀림방지용 체결기구
JPH05271279A (ja) * 1991-08-07 1993-10-19 Takeda Chem Ind Ltd ヒト副甲状腺ホルモンムテインおよびその製造法
AU1287595A (en) * 1994-08-26 1996-03-22 Immtech International, Inc. A mutant protein and methods and materials for making and using it
DE19630617A1 (de) 1996-07-29 1998-02-05 Boehringer Mannheim Gmbh Positiver Selektionsvektor auf Basis des caps-Gens, pCAPs-Vektor und seine Verwendung
US8283148B2 (en) 2002-10-25 2012-10-09 Agilent Technologies, Inc. DNA polymerase compositions for quantitative PCR and methods thereof
GB0410983D0 (en) 2004-05-17 2004-06-16 El Gewely Mohamed R Molecules
HUE027400T2 (en) 2005-02-18 2016-10-28 Glaxosmithkline Biologicals Sa Proteins and nucleic acids from meningitis / sepsis with Escherichia coli
KR100812110B1 (ko) 2006-10-24 2008-03-12 한국과학기술원 징크 핑거 단백질과 원핵 생물의 전사 인자를 포함하는인공 전사 인자의 제조 및 이의 이용
KR101327093B1 (ko) * 2012-01-06 2013-11-07 씨제이제일제당 (주) L-아미노산을 생산할 수 있는 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
KR20140017213A (ko) 2012-07-31 2014-02-11 건국대학교 산학협력단 카르도 구조를 갖는 황산화 고분자 전해질막 및 이를 포함하는 연료전지
KR101608734B1 (ko) * 2014-03-21 2016-04-04 씨제이제일제당 주식회사 L-아미노산을 생산하는 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
KR101599802B1 (ko) * 2014-05-23 2016-03-04 씨제이제일제당 주식회사 세포내 에너지 수준이 향상된 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
EP3050970B1 (en) 2015-01-28 2019-09-18 Metabolic Explorer Modified microorganism for optimized production of 1,4-butanediol
WO2016162712A1 (en) 2015-04-07 2016-10-13 Metabolic Explorer Modified microorganism for the optimized production of 2,4-dihydroxyburyrate
KR101704199B1 (ko) * 2015-05-14 2017-02-08 씨제이제일제당 (주) L-트립토판 생산능을 갖는 에스케리키아속 미생물 및 이를 이용한 l-트립토판의 제조 방법
KR101704198B1 (ko) * 2015-05-14 2017-02-08 씨제이제일제당 (주) L-트립토판 생산능을 갖는 에스케리키아속 미생물 및 이를 이용한 l-트립토판의 제조 방법
TW201725212A (zh) * 2015-12-10 2017-07-16 第一三共股份有限公司 特異性於降鈣素基因相關胜肽的新穎蛋白
KR101795912B1 (ko) 2016-03-14 2017-11-08 주식회사 야스 하나의 진공 증착 챔버에서 두 장의 기판에 순차 증착하는 시스템
KR101996767B1 (ko) * 2018-11-29 2019-07-04 씨제이제일제당 (주) cAMP 수용 단백질 변이체 및 이를 이용한 L-아미노산 제조방법
KR101991206B1 (ko) * 2018-11-29 2019-06-19 씨제이제일제당 (주) cAMP 수용 단백질 변이체 및 이를 이용한 L-아미노산 제조방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286760A1 (en) * 2003-11-26 2008-11-20 Bayerische Julius-Maximilians-Universität Würzburg Means and Methods for the Determination of Camp In Vitro and In Vivo
KR100576342B1 (ko) 2004-02-05 2006-05-03 씨제이 주식회사 galR 유전자가 불활성화된 L-쓰레오닌 생성 미생물,그를 제조하는 방법 및 상기 미생물을 이용한L-쓰레오닌의 제조방법
KR100966324B1 (ko) 2008-01-08 2010-06-28 씨제이제일제당 (주) 향상된 l-쓰레오닌 생산능을 갖는 대장균 및 이를 이용한l-쓰레오닌의 생산 방법
KR20120083795A (ko) * 2011-01-18 2012-07-26 씨제이제일제당 (주) L-아미노산의 생산능이 향상된 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
KR101261147B1 (ko) 2011-01-18 2013-05-06 씨제이제일제당 (주) L-아미노산의 생산능이 향상된 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
KR101532129B1 (ko) 2012-01-10 2015-06-29 씨제이제일제당 (주) L-트립토판 생산능이 강화된 에스케리키아속 미생물 및 이를 이용하여 l-트립토판을 생산하는 방법
CN103114069A (zh) * 2013-02-22 2013-05-22 新疆梅花氨基酸有限责任公司 混糖发酵生产l-色氨酸的细菌及发酵方法
KR20160030053A (ko) * 2014-09-05 2016-03-16 씨제이제일제당 (주) L-쓰레오닌 생산능이 향상된 미생물 및 이를 이용한 l-쓰레오닌 생산방법
KR101865998B1 (ko) 2014-09-05 2018-06-11 씨제이제일제당 (주) L-쓰레오닌 생산능이 향상된 미생물 및 이를 이용한 l-쓰레오닌 생산방법
US20160362456A1 (en) * 2015-06-12 2016-12-15 Arizona Board Of Regents On Behalf Of Arizona State University Modified microorganisms for chemical production
KR101991207B1 (ko) * 2018-11-29 2019-06-19 씨제이제일제당 (주) cAMP 수용 단백질 변이체 및 이를 이용한 L-아미노산 제조방법

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation", 1979, pages: 353 - 358
A. J. NAIR., INTRODUCTION TO BIOTECHNOLOGY AND GENETIC ENGINEERING, 2008
ATSCHUL: "J MOLEC BIOL", vol. 215, 1990, ACADEMIC PRESS, pages: 403
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
J BIOL ENG., vol. 24, no. 3, 2009, pages 13
NEEDLEMAN ET AL., J MOL BIOL., vol. 48, 1970, pages 443
NUCLEIC ACIDS RESEARCH, vol. 36, 2008, pages e102
NUCLEIC ACIDS RESEARCH, vol. 37, 2009, pages 2493 - 2503
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET, vol. 16, 2000, pages 276 - 277, XP004200114, DOI: 10.1016/S0168-9525(00)02024-2
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482
WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453

Also Published As

Publication number Publication date
US11697673B2 (en) 2023-07-11
EP3725800A1 (en) 2020-10-21
BR112020012963A2 (pt) 2020-12-01
EP3725800A4 (en) 2021-01-27
CN112218881B (zh) 2023-11-07
US20210363197A1 (en) 2021-11-25
CA3087627C (en) 2023-10-31
CN112218881A (zh) 2021-01-12
CA3087627A1 (en) 2020-06-04
RU2760536C1 (ru) 2021-11-26
PH12020550976A1 (en) 2021-04-26
KR101991207B1 (ko) 2019-06-19
ZA202003830B (en) 2022-03-30
JP2021511025A (ja) 2021-05-06
JP6997327B2 (ja) 2022-01-17
MX2021005180A (es) 2021-08-05

Similar Documents

Publication Publication Date Title
WO2020111436A1 (ko) Camp 수용 단백질 변이체 및 이를 이용한 l-아미노산 제조방법
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2020111438A1 (ko) Camp 수용 단백질 변이체 및 이를 이용한 l-아미노산 제조방법
WO2020111437A1 (ko) Camp 수용 단백질 변이체 및 이를 이용한 l-아미노산 제조방법
WO2019027267A2 (ko) Atp 포스포리보실 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
WO2019117398A1 (ko) 5'-이노신산을 생산하는 미생물 및 이를 이용한 5'-이노신산의 생산 방법
WO2020130236A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2022231369A1 (ko) 신규한 포르메이트 의존성 포스포리보실글리신아미드 포밀 전이효소 변이체 및 이를 이용한 imp 생산 방법
WO2022225322A1 (ko) 신규한 f0f1 atp 합성효소 서브유닛 알파 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022005225A1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
WO2020067618A1 (ko) 알파-글루코시다제의 활성이 강화된 l-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2022225320A1 (ko) 신규한 포스포글리세린산 디하이드로게나제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022225319A1 (ko) 신규한 l-세린 암모니아 분해 효소 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022149865A2 (ko) GlxR 단백질 변이체 또는 이를 이용한 쓰레오닌 생산방법
WO2022231371A1 (ko) 신규한 5-(카르복시아미노)이미다졸리보뉴클레오티드합성효소 변이체 및 이를 이용한 imp 생산 방법
WO2022225321A1 (ko) 신규한 f0f1 atp 합성효소 서브유닛 감마 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022225100A1 (ko) 신규한 이중기능성 메틸렌테트라히드로폴레이트 탈수소효소/메테닐테트라하이드로폴레이트 사이클로하이드롤라아제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
WO2022231057A1 (ko) 신규한 아이소시트르산 디하이드로게네이즈 키나아제/포스파타제 효소 변이체 및 이를 이용한 l-트립토판 생산 방법
WO2022163916A1 (ko) 신규한 dahp 신타아제 변이체 및 이를 이용한 l-라이신 생산 방법
WO2022158652A1 (ko) 신규한 사이토신 퍼미에이즈 변이체 및 이를 이용한 l-트립토판 생산 방법
WO2022158650A1 (ko) 신규한 페로체라테이즈 변이체 및 이를 이용한 l-트립토판 생산 방법
WO2022154184A1 (ko) 신규한 셀레니드, 물 디키나제 변이체 및 이를 이용한 imp 생산 방법
WO2022154189A1 (ko) 신규한 피토엔 신타제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3087627

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020538582

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019890455

Country of ref document: EP

Effective date: 20200717

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020012963

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020012963

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200625

NENP Non-entry into the national phase

Ref country code: DE