WO2020107932A1 - 一种高性能超高分子量聚乙烯树脂的制备方法 - Google Patents

一种高性能超高分子量聚乙烯树脂的制备方法 Download PDF

Info

Publication number
WO2020107932A1
WO2020107932A1 PCT/CN2019/099338 CN2019099338W WO2020107932A1 WO 2020107932 A1 WO2020107932 A1 WO 2020107932A1 CN 2019099338 W CN2019099338 W CN 2019099338W WO 2020107932 A1 WO2020107932 A1 WO 2020107932A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
polyethylene resin
high molecular
weight polyethylene
ultra
Prior art date
Application number
PCT/CN2019/099338
Other languages
English (en)
French (fr)
Inventor
叶纯麟
骆广海
李建龙
叶晓峰
肖明威
阳永荣
张振飞
张乐天
郭宁
Original Assignee
上海化工研究院有限公司
上海联濮化工科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海化工研究院有限公司, 上海联濮化工科技有限公司 filed Critical 上海化工研究院有限公司
Publication of WO2020107932A1 publication Critical patent/WO2020107932A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins

Definitions

  • the invention belongs to the technical field of polymer materials, and particularly relates to a preparation method of high-performance ultra-high molecular weight polyethylene resin.
  • High-performance polyethylene fibers have the characteristics of light weight, high strength, long service life, wear resistance, high strength, moisture resistance, and corrosion resistance. Towing rope, negative force rope, rescue rope, anti-cutting gloves, etc. At the same time, high-performance polyethylene fibers can be made into protective clothing, helmets, bulletproof materials, etc. in the military.
  • the composite material of high-performance polyethylene fiber also has high strength and extremely strong anti-collision performance. In aerospace, it is suitable for the wingtip structure, spaceship structure and buoy aircraft of various aircraft.
  • the current methods for spinning polyethylene can be divided into two main categories: melt spinning and solution spinning.
  • Melt spinning is mainly aimed at polyethylene with lower molecular weight and certain fluidity, but the strength is generally low.
  • Solution spinning is mainly for ultra-high molecular weight polyethylene.
  • the molecular chain of the ultra-high molecular weight polyethylene is fully unwound, thereby greatly improving the ultra-high molecular weight polyethylene with relatively poor processing performance.
  • ultra-high molecular weight polyethylene fibers with higher strength can be obtained.
  • the solvent is removed by solvent extraction and drying of the raw silk, and finally multi-stage drawing is performed to obtain high-strength and high-modulus polyethylene fiber. Since the molecular weight of the raw materials used in this type of method is higher than 1.5 million, the strength of the obtained polyethylene fiber is high, and the tensile strength can generally exceed 30 cN/dtex.
  • China Patent No. CN103572396B China Patent No. CN108004612A, China Patent No. CN107326462B, China Patent No. CN102050980B and other patents improve the mechanical properties of fibers by adding inorganic or nano-modified fibers.
  • This type of method can play a certain role in enhancing the strength of ultra-high molecular weight polyethylene fibers, but the process is more complicated. In order to achieve uniform dispersion of inorganic nanoparticles, the equipment and operation requirements are also high.
  • China Patent No. CN106120300B, China Patent No. CN101623899B, etc. are to enhance the strength of ultra-high molecular weight polyethylene fiber from the process point of view. Through the improvement of the process, the performance improvement of UHMWPE fiber is limited, and the process is more complicated.
  • the current ultra-high molecular weight polyethylene fiber materials are all obtained by Ziegler Natta catalytic system polymerization.
  • the performance of ultra-high molecular weight polyethylene fibers will also be improved.
  • the molecular weight is higher than 6 million, the effect of increasing the molecular weight on the performance improvement of the polyethylene fiber becomes weak. Due to the higher entanglement degree of the raw material molecular chain, the requirements for swelling and processing conditions are higher, and during the spinning process Broken wire is more likely to occur in the middle.
  • the production of polyethylene by the slurry polymerization method is a well-known conventional technique, and the use of a loop in the form of a reactor is considered to be efficient and easy to achieve large-scale, and has been disclosed in, for example, US3152872, US3242150, and US4613484.
  • a diluent is required, generally an inert component that does not react with olefins, and its role is to provide a uniform temperature environment for the polymerization reaction.
  • the prior art generally believes that the diluent should not dissolve polyethylene as much as possible, and it should also be easy to gasify in the subsequent process to separate from polyethylene.
  • the prior art generally chooses C3 to C8 hydrocarbon components, such as propane, butylene Alkane, pentane, hexane, heptane and octane, but for ordinary polyethylene, the generally preferred result is butane or propane, such as US6225421, while the technology disclosed in CN107108793A is used to produce components with ultra-high molecular weight Polyethylene, but butane is still preferred as the diluent. Therefore, the existing technology for producing ultra-high molecular weight polyethylene still needs improvement.
  • the purpose of the present invention is to provide a method for preparing high-performance ultra-high molecular weight polyethylene resin in order to overcome the above-mentioned defects in the prior art.
  • a method for preparing high-performance ultra-high molecular weight polyethylene resin In the reactor, ethylene monomer is prepared by polymerization through a single-site-supported polyethylene catalyst to obtain a polymer with a lower entanglement degree and a narrower molecular weight distribution. Polyethylene resin.
  • the single-site catalyst is selected from one or more of metallocene catalysts or late transition metal catalysts.
  • a cocatalyst is also added to the polymerization reaction.
  • the cocatalyst is one or more of an aluminum alkyl compound, an alkyl lithium compound, an alkyl zinc compound or an alkyl boron compound, and the molar ratio of the single active site catalyst to the cocatalyst is 1 : 100 ⁇ 1:10000.
  • a diluent is also added to the polymerization reaction, and the diluent is one or more of n-hexane, isobutane, n-heptane, isopentane, white oil, or 120# gasoline.
  • the reactor is a slurry reactor with at least one loop.
  • the flow velocity of the slurry in the reactor is 4m/s-15m/s.
  • the reaction temperature of the polymerization reaction is 30°C to 70°C.
  • the reaction pressure of the polymerization reaction is 1 MPa to 5 MPa.
  • the reaction residence time of the polymerization reaction is 3 hours to 8 hours.
  • the prepared polyethylene resin has a resin viscosity average molecular weight of 1.2 million or more, a ratio of weight average molecular weight to number average molecular weight Mw/Mn ⁇ 4.0, and a number of thousand carbon methyl groups ⁇ 0.1.
  • Ultra-high molecular weight polyethylene is an unbranched linear polyethylene with a molecular weight of more than 1.5 million. Traditional ultra-high molecular weight polyethylene is generally polymerized using Ziegler Natta catalysts. The molecular weight distribution of the obtained UHMWPE tends to be wider.
  • the single-site catalyst has a narrow molecular weight distribution because of its single active site.
  • the resulting ultra-high molecular weight polyethylene fiber product can have a tensile strength of over 45 cN/dtex. The amount can reach more than 1800cN/dtex.
  • this kind of polyethylene resin has a low entanglement performance, swelling at a swelling temperature of 100 °C ⁇ 120 °C, this process takes only 30 minutes to 90 minutes, can be processed into ultra-high through subsequent steps Molecular weight polyethylene fiber, and the relatively high entangled ultra-high molecular weight polyethylene with the same molecular weight size and distribution is swollen through the same swelling time and swelling temperature. After extruding the fiber through the subsequent steps, the fiber has uneven dissolution and broken wires .
  • the invention is a method for preparing raw materials suitable for high-performance ultra-high molecular weight polyethylene fibers.
  • a slurry loop reactor and a single active site catalyst an ultra-high molecular weight polymer with unwinding, easy processing and higher performance is obtained Vinyl fiber raw material.
  • the present invention found that the performance of the ultra-high molecular weight polyethylene fiber mainly depends on the low molecular weight part of polyethylene, and the negative influence of the molecular chain of the polyethylene low molecular weight part on the mechanical properties of polyethylene fiber is very serious, as shown in Table 1.
  • the ultra-high molecular weight polyethylene obtained by the traditional Ziegler Natta catalyst system has a wider molecular weight distribution, and the content of the low molecular weight part is much higher than that of the narrow molecular weight distribution polyethylene obtained by the single-site catalyst polymerization.
  • the mechanical properties of the main body of the molecular weight polyethylene fiber are greatly impaired.
  • the narrow molecular weight distribution polyethylene obtained by single-site catalyst polymerization the low molecular weight part is very few, and the weight average molecular weight is 800,000, which is equivalent to that of traditional ultra-high fiber products.
  • the polyethylene catalyst is sensitive to the polymerization temperature, and the reaction temperature will affect the molecular weight of the polyethylene raw material obtained from its polymerization. See Table 2.
  • the present invention also found that the slurry loop reactor with higher heat transfer efficiency further ensures The molecular weight of high molecular weight polyethylene resin can be controlled, so that the mechanical properties of fiber products are improved.
  • a high temperature gel chromatograph was used for testing.
  • the swollen raw material is fed into a twin-screw extruder.
  • the twin-screw feed temperature is 120°C
  • the mixing section temperature is 190°C
  • the discharge temperature is 180°C
  • the rotation speed is 170 r/min.
  • the twin-screw extruded jelly yarn passes through pre-stretching and enters circulating water for quenching.
  • the pre-stretching factor is 5 times.
  • the drying temperature is 100°C.
  • the fiber is subjected to three-stage multiple drawing, the drawing temperature is 128°C-139°C, and the total drawing ratio is 30 times, to obtain a polyethylene fiber strength of 49.1cN/dtex
  • the modulus is 2120cN/dtex.
  • the swollen raw material is fed into a twin-screw extruder.
  • the twin-screw feed temperature is 120°C
  • the mixing section temperature is 190°C
  • the discharge temperature is 180°C
  • the rotation speed is 170 r/min.
  • the twin-screw extruded jelly yarn passes through pre-stretching and enters circulating water for quenching.
  • the pre-stretching multiple is 5 times. After heating and drying, the drying temperature is 100°C. After drying, the fiber is subjected to three-stage multiple drawing, the drawing temperature is 128°C-139°C, and the total drawing multiple is 30 times, to obtain a polyethylene fiber strength of 46.2cN/dtex.
  • the modulus is 1980 cN/dtex.
  • the metallocene catalyst and methylaluminoxane co-catalyst were pre-mixed so that the molar ratio of Zr to Al was 1:150.
  • the mixture was added to the loop reactor.
  • the slurry flow rate in the loop reactor was 10m/s
  • the reaction temperature is 60°C
  • the reaction pressure is 10bar
  • the diluent is n-hexane
  • the residence time is set to 4h.
  • an ultra-high molecular weight polyethylene resin was obtained with a viscosity average molecular weight of 1.5 million, a density of 0.9340 g/cm 3 after melting, and a Mw/Mn of 2.4.
  • the swollen raw material is fed into a twin-screw extruder.
  • the twin-screw feed temperature is 120°C
  • the mixing section temperature is 190°C
  • the discharge temperature is 180°C
  • the rotation speed is 170 r/min.
  • the twin-screw extruded jelly yarn passes through pre-stretching and enters circulating water for quenching.
  • the pre-stretching multiple is 5 times. After heating and drying, the drying temperature is 100°C. After drying, the fiber is subjected to three-stage multiple drawing, the drawing temperature is 128°C-139°C, the total drawing multiple is 30 times, and the polyethylene fiber strength is 45.1cN/dtex.
  • the modulus is 1820 cN/dtex.
  • the swollen raw material is fed into a twin-screw extruder.
  • the twin-screw feed temperature is 120°C
  • the mixing section temperature is 190°C
  • the discharge temperature is 180°C
  • the rotation speed is 170 r/min. Crystal points appear in the extruded fiber, and broken filaments appear.
  • the twin-screw extruded jelly yarn passes through pre-stretching and enters circulating water for quenching.
  • the pre-stretching multiple is 5 times. After heating and drying, the drying temperature is 100 °C, after drying, the fiber is subjected to three-stage multiple drawing, the drawing temperature is 128 °C-139 °C, the total drawing multiple is 30 times, and the polyethylene fiber strength is 29.1cN/dtex.
  • the modulus is 1030cN/dtex.
  • the swollen raw material is fed into a twin-screw extruder.
  • the twin-screw feed temperature is 120°C
  • the mixing section temperature is 190°C
  • the discharge temperature is 180°C
  • the rotation speed is 170 r/min.
  • the twin-screw extruded jelly yarn passes through pre-stretching and enters circulating water for quenching.
  • the pre-stretching multiple is 5 times. After heating and drying, the drying temperature is 100°C. After drying, the fiber is subjected to three-stage multiple drawing, the drawing temperature is 128°C-139°C, and the total drawing multiple is 30 times, to obtain a polyethylene fiber strength of 33.2cN/dtex.
  • the modulus is 1340 cN/dtex.
  • the polyethylene resin has a viscosity average molecular weight of 1.2 million or more, the ratio of weight average molecular weight to number average molecular weight Mw/Mn ⁇ 4.0, and the number of kilocarbon methyl groups ⁇ 0.1.
  • the density of the polyethylene resin after melt treatment is less than 0.9320g/cm 3.
  • the late transition metal catalyst uses a co-catalyst as an aluminum alkyl compound.
  • the molar ratio of the late transition metal catalyst to the co-catalyst is 1:100 .
  • the slurry flow rate of the above reaction raw material in the reactor is 10 m/s, and the reaction temperature of the polymerization reaction is controlled to 40° C., the reaction pressure is 2 MPa, and the reaction residence time is 4 h.
  • the polyethylene resin has a viscosity average molecular weight of 1.2 million or more, the ratio of weight average molecular weight to number average molecular weight Mw/Mn ⁇ 4.0, and the number of kilocarbon methyl groups ⁇ 0.1.
  • the diluent used is a mixture of n-hexane and isobutane, and the mass ratio of FI catalyst to diluent is 1:10,000.
  • the slurry flow rate of the above reaction raw material in the reactor is 10 m/s, and the reaction temperature of the polymerization reaction is controlled to 40° C., the reaction pressure is 2 MPa, and the reaction residence time is 4 h.
  • the polyethylene resin has a viscosity average molecular weight of 1.2 million or more, the ratio of weight average molecular weight to number average molecular weight Mw/Mn ⁇ 4.0, and the number of kilocarbon methyl groups ⁇ 0.1.
  • the cocatalyst used is an alkyl lithium compound
  • the molar ratio of the metallocene catalyst to the cocatalyst is 1:10,000
  • the diluent is The mass ratio of white oil, metallocene catalyst to diluent is 1:60,000.
  • the slurry flow rate of the reaction raw material in the reactor is 30 m/s, and the reaction temperature of the polymerization reaction is controlled to 70° C., the reaction pressure is 5 MPa, and the reaction residence time is 3 h.
  • the polyethylene resin has a viscosity average molecular weight of 1.2 million or more, the ratio of weight average molecular weight to number average molecular weight Mw/Mn ⁇ 4.0, and the number of kilocarbon methyl groups ⁇ 0.1.
  • the polyethylene resin obtained above undergoes post-processing processes such as swelling, dissolving, extrusion, extraction, multiple stretching, etc., and the resulting ultra-high molecular weight polyethylene fiber products can have a tensile strength of more than 45 cN/dtex and a tensile modulus of up to Above 1800cN/dtex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Artificial Filaments (AREA)

Abstract

提供了一种高性能超高分子量聚乙烯树脂的制备方法。在反应器内,将乙烯单体通过负载单活性中心聚乙烯催化剂通过聚合反应制备得到具有较低的缠结度及较窄的分子量分布的聚乙烯树脂。与现有技术相比,聚合得到的聚乙烯原料具有窄分子量分布的特性,大幅提高所得超高分子量聚乙烯的力学性能,同时其低缠结的特性解决了目前窄分子量分布超高分子量聚乙烯在溶剂中较难溶解均匀的问题。

Description

一种高性能超高分子量聚乙烯树脂的制备方法 技术领域
本发明属于高分子材料技术领域,尤其是涉及一种高性能超高分子量聚乙烯树脂的制备方法。
背景技术
随着科学技术突飞猛进的发展,工程技术界对特种纤维的需求在不断增长,高性能聚乙烯纤维具有轻质高强、使用周期长、耐磨、高强、耐湿、耐腐蚀等特性,而普遍用于拖曳绳、负力绳索、救捞绳、防切割手套等。同时,高性能聚乙烯纤维在军事上可以制成防护衣料、头盔、防弹材料等。高性能聚乙烯纤维的复合材料同样具有高强和极强的防撞击性能,在航空航天方面,适用于各种飞机的翼尖结构、飞船结构和浮标飞机等。在体育用品上,已经制成安全帽、滑雪板、帆轮板、钓竿、球拍及自行车、滑翔板、超轻量飞机零部件等。由于超高分子量聚乙烯纤维复合材料的生物相容性,在医用方面,也可用于牙托、假肢、医用手套等。
目前对于聚乙烯纺丝的方法可以主要分为两大类:熔体纺丝与溶液纺丝。
熔体纺丝主要针对分子量较低,有一定流动性的聚乙烯,但强度普遍偏低。
溶液纺丝主要是针对超高分子量聚乙烯进行的,通过溶剂的溶胀及溶解过程使超高分子量聚乙烯分子链充分解缠,从而将加工性能比较差的超高分子量聚乙烯大幅提升。通过后处理工艺将溶剂去除后可得到较高强度的超高分子量聚乙烯纤维。中国专利号第CN200980146604、中国专利号第CN201410264678、国际申请公开号第W02005/066401A1、美国专利号第US430577等公开的以溶剂首先对高分子量聚乙烯进行溶胀溶解后,挤出成聚乙烯原丝。对原丝进行溶剂萃取干燥等步骤除去溶剂,最后进行多级拉伸,得到高强高模聚乙烯纤维。这类方法由于使用的原料分子量高于150万,因此所得到的聚乙烯纤维的强度较高,拉伸强度一般可超过30cN/dtex。
随着各行各业尖端领域的需要,许多产品对聚乙烯纤维的要求越来越高,尤其是国防军事、航天航空等尖端领域,因此超高分子量聚乙烯纤维性能的进 一步突破也迫在眉睫。
目前提高超高分子量聚乙烯纤维性能的主要途径有三种:针对超高分子量聚乙烯原料的改性、溶液纺丝工艺改进及在超高分子量聚乙烯合成过程对分子结构的改进。
中国专利号第CN103572396B、中国专利号第CN108004612A、中国专利号第CN107326462B、中国专利号第CN102050980B等专利通过添加无机或纳米改性纤维,从而提高纤维力学性能。该类方法可以对超高分子量聚乙烯纤维的强度起到一定的增强作用,但过程较复杂,为了达到无机纳米粒子的均匀分散,对设备及操作要求也较高。
中国专利号第CN106120300B、中国专利号第CN101623899B等则是从工艺角度提升超高分子量聚乙烯纤维的强度。通过工艺的改进,对超高分子量聚乙烯纤维性能的提升有限,且过程较复杂。
从原料角度,目前超高分子量聚乙烯纤维料均为齐格勒纳塔催化体系聚合获得,随着超高分子量聚乙烯粘均分子量的提升,超高分子量聚乙烯纤维的性能也会有所提升。但当其分子量高于600万后,分子量的提升对聚乙烯纤维的性能提升效果变弱,由于原料分子链更高的缠结度,对溶胀及加工条件的要求更高,并在纺丝过程中更容易出现断丝。
目前已有针对超高分子量聚乙烯的低缠结聚合方法的研究,US6562930、CN201280054710、WO09/091334等专利已有报导,但这些方法聚合时或因聚合温度低于常温,能耗大,或因活性低,失活快,难以产业化。因此需要一种能够产业化生产低缠结度高性能超高分子量聚乙烯的工艺技术。
采用淤浆聚合方法生产聚乙烯是众所周知的常规技术,而反应器采用环管形式被认为是高效的且易于实现大型化,已公开在例如,US3152872、US3242150、US4613484中。在这些公开的技术中,需要用到稀释剂,一般是与烯烃不反应的惰性组分,其作用是为聚合反应提供一个温度均匀的环境。现有技术普遍认为,稀释剂应尽量不溶解聚乙烯,同时也应该易于在后续过程中气化以便和聚乙烯分离,因此,现有技术一般选用C3到C8的烃组分,例如丙烷、丁烷、戊烷、己烷、庚烷及辛烷,但对于普通的聚乙烯,一般优选的结果为丁烷或丙烷,例如US6225421,而CN107108793A公开的技术虽用于生产具 有超高分子量组分的聚乙烯,但仍然优选丁烷为稀释剂。因此生产超高分子量聚乙烯的现有技术仍需要改进。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种高性能超高分子量聚乙烯树脂的制备方法。
本发明的目的可以通过以下技术方案来实现:
一种高性能超高分子量聚乙烯树脂的制备方法,在反应器内,将乙烯单体通过负载单活性中心聚乙烯催化剂通过聚合反应制备得到具有较低的缠结度及较窄的分子量分布的聚乙烯树脂。
所述单活性中心催化剂选自茂金属催化剂或后过渡金属催化剂的一种或几种。
聚合反应中还加入助催化剂,该助催化剂为烷基铝化合物、烷基锂化合物、烷基锌化合物或烷基硼化合物中的一种或几种,单活性中心催化剂与助催化剂的摩尔比1:100~1:10000。
聚合反应中还加入稀释剂,该稀释剂为正己烷、异丁烷、正庚烷、异戊烷、白油或120#汽油中的一种或几种。
所述反应器为具有至少一个环管的淤浆反应器。
所述反应器中浆液流速为4m/s~15m/s。
所述聚合反应的反应温度为30℃~70℃。
所述聚合反应的反应压力为1MPa~5MPa。
所述聚合反应的反应停留时间为3小时~8小时。
制备得到的聚乙烯树脂的树脂粘均分子量在120万以上,重均分子量与数均分子量的比值Mw/Mn<4.0,千碳甲基数<0.1。超高分子量聚乙烯是分子量150万以上的无支链的线性聚乙烯,传统超高分子量聚乙烯一般使用齐格勒纳塔催化剂聚合得到,由于齐格勒纳塔催化剂多活性中心的特点,聚合得到的超高分子量聚乙烯分子量分布往往较宽。而单活性中心催化剂因为其活性点单一的特性,得到的聚乙烯的分子量分布一般较窄。已经发现,将上述得到的聚乙 烯树脂经过溶胀、溶解、挤出、萃取、多倍拉伸等后加工流程,所得超高分子量聚乙烯纤维制品拉伸强度可达45cN/dtex以上,拉伸模量可达1800cN/dtex以上。并且,该种聚乙烯树脂具有较低的缠结度的性能,在100℃~120℃溶胀温度下进行溶胀,此过程的时间仅需要30分钟~90分钟,即可经过后续步骤加工成超高分子量聚乙烯纤维,而相对传统较高缠结的相同分子量大小及分布的超高分子量聚乙烯通过相同溶胀时间及溶胀温度进行溶胀后通过后续步骤挤出纤维出现溶解不均匀及断丝等不良现象。
本发明是一种适用于高性能超高分子量聚乙烯纤维的原料的制备方法,通过利用淤浆环管反应器及单活性中心催化剂,得到解缠、易加工及更高性能的超高分子量聚乙烯纤维原料。
本发明发现,超高分子量聚乙烯纤维的性能主要取决于聚乙烯的低分子量部分,聚乙烯低分子量部分的分子链对聚乙烯纤维力学性能的负面影响极为严重,见表1。而传统齐格勒纳塔催化体系聚合得到的超高分子量聚乙烯的分子量分布较宽,低分子量部分含量远高于单活性中心催化剂聚合得到的窄分子量分布聚乙烯,这些低分子量部分对超高分子量聚乙烯纤维主体力学性能削弱非常大。对于单活性中心催化剂聚合得到的窄分子量分布聚乙烯,其低分子量部分极少,重均分子量80万即可与传统超高纤维制品相当。
聚乙烯催化剂对聚合反应温度敏感,反应温度会影响其聚合得到的聚乙烯原料分子量的高低,见表2本发明还发现,通过移热效率较高的淤浆环管式反应器,进一步保证了超高分子量聚乙烯树脂分子量的可控,从而使纤维制品的力学性能提高。
表1.高分子量聚乙烯与低分子量聚乙烯共混后溶液纺丝得到制品的力学性能对比(百分比为重量比)
HDPE(7万PD5.0) MPE(80万PD2.8) 拉伸强度(cN/dtex)
0% 100% 34.2
1% 99% 31.1
5% 95% 23.3
10% 90% 18.9
表2.聚乙烯原料在不同反应温度下结晶度与活性对比
反应器 聚合温度 结晶度% 活性gPE/gcat
釜式反应器 80℃ 59.3 9000
釜式反应器 30℃ 72.1 3500
釜式反应器 -5℃ 80.5 1000
环管式反应器 60℃ 75.2 7200
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例中聚乙烯原料的表征数据由以下方法获得:
拉伸性能
采用《ASTM D885M》的方法与设备,对成品丝的拉伸强度以及拉伸模量进行测试。
重均分子量及其分布
采用高温凝胶色谱仪进行测试。
实施例1
在氮气的保护下,将茂金属催化剂及烷基硼化合物助催化剂进行预混,使Zr与B的摩尔比为1:100,将混合物加入环管反应器,环管反应器中浆液流速为10m/s,反应温度为50℃,反应压力为10bar,稀释剂为正己烷,停留时间设置为4h。经过后处理出料后得到超高分子量聚乙烯树脂,其粘均分子量为800万,熔融后密度为0.9270g/cm 3,Mw/Mn为3.0。
取该超高分子量聚乙烯0.2kg、十氢萘2.8kg、抗氧剂1010 12g投入混合釜高温搅拌。混合釜温度为90℃,压力为1.0MPa,搅拌速度为200r/min,溶胀时间60分钟。
将溶胀后的原料喂入双螺杆挤出机,双螺杆进料温度为120℃,混合段温度为190℃,出料温度为180℃,转速为170r/min。
双螺杆挤出成型的冻胶丝通过预拉伸,进入循环水急冷,预拉伸倍数为5 倍。之后进行加热干燥,干燥温度100℃,干燥后将纤维进行三级多倍拉伸,拉伸温度128℃-139℃,拉伸总倍数为30倍,得到聚乙烯纤维强度为49.1cN/dtex,模量为2120cN/dtex。
实施例2
在氮气的保护下,将非茂后过渡金属催化剂及甲基铝氧烷助催化剂进行预混,使AL与Fe的摩尔比为300:1,将混合物加入环管反应器,环管反应器中浆液流速为6m/s,反应温度为70℃,反应压力为30bar,稀释剂为异戊烷,停留时间设置为6h。经过后处理出料后得到超高分子量聚乙烯树脂,其粘均分子量为300万,熔融后密度为0.9320g/cm 3,Mw/Mn为2.6。
取该超高分子量聚乙烯0.2kg、十氢萘2.8kg、抗氧剂1010 12g投入混合釜高温搅拌。混合釜温度为90℃,压力为1.0MPa,搅拌速度为200r/min,溶胀时间60分钟。
将溶胀后的原料喂入双螺杆挤出机,双螺杆进料温度为120℃,混合段温度为190℃,出料温度为180℃,转速为170r/min。
双螺杆挤出成型的冻胶丝通过预拉伸,进入循环水急冷,预拉伸倍数为5倍。之后进行加热干燥,干燥温度100℃,干燥后将纤维进行三级多倍拉伸,拉伸温度128℃-139℃,拉伸总倍数为30倍,得到聚乙烯纤维强度为46.2cN/dtex,模量为1980cN/dtex。
实施例3
在氮气的保护下,将茂金属催化剂及甲基铝氧烷助催化剂进行预混,使Zr与Al的摩尔比为1:150,将混合物加入环管反应器,环管反应器中浆液流速为10m/s,反应温度为60℃,反应压力为10bar,稀释剂为正己烷,停留时间设置为4h。经过后处理出料后得到超高分子量聚乙烯树脂,其粘均分子量为150万,熔融后密度为0.9340g/cm 3,Mw/Mn为2.4。
取该超高分子量聚乙烯0.2kg、十氢萘2.8kg、抗氧剂1010 12g投入混合釜高温搅拌。混合釜温度为90℃,压力为1.0MPa,搅拌速度为200r/min,溶胀时间60分钟。
将溶胀后的原料喂入双螺杆挤出机,双螺杆进料温度为120℃,混合段温度为190℃,出料温度为180℃,转速为170r/min。
双螺杆挤出成型的冻胶丝通过预拉伸,进入循环水急冷,预拉伸倍数为5倍。之后进行加热干燥,干燥温度100℃,干燥后将纤维进行三级多倍拉伸,拉伸温度128℃-139℃,拉伸总倍数为30倍,得到聚乙烯纤维强度为45.1cN/dtex,模量为1820cN/dtex。
对比例1
2L釜式反应器中,加入600ml己烷,并随己烷加入8mg主催化剂,适量助催化剂,助催化剂/主催化剂中Al/Ti为100:1(摩尔比),加入己烷总量1L,反应体系进行升温,温度升至65℃时,加入乙烯气体,恒压0.7Mpa反应,控制反应温度72℃,至聚合结束,降温排气,分离固液相,干燥得超高分子量聚乙烯。该超高分子量聚乙烯粘均分子量为800万,Mw/Mn为12.6。
取该超高分子量聚乙烯0.2kg、十氢萘2.8kg、抗氧剂1010 12g投入混合釜高温搅拌。混合釜温度为90℃,压力为1.0MPa,搅拌速度为200r/min,溶胀时间60分钟。
将溶胀后的原料喂入双螺杆挤出机,双螺杆进料温度为120℃,混合段温度为190℃,出料温度为180℃,转速为170r/min。挤出纤维出现晶点,并有断丝出现。
双螺杆挤出成型的冻胶丝通过预拉伸,进入循环水急冷,预拉伸倍数为5倍。之后进行加热干燥,干燥温度100℃,干燥后将纤维进行三级多倍拉伸,拉伸温度128℃-139℃,拉伸总倍数为30倍,得到聚乙烯纤维强度为29.1cN/dtex,模量为1030cN/dtex。
对比例2
2L釜式反应器中,加入600ml己烷,并随己烷加入8mg主催化剂,适量助催化剂,助催化剂/主催化剂中Al/Ti为80:1(摩尔比),加入己烷总量1L,反应体系进行升温,温度升至65℃时,加入乙烯气体,恒压0.8Mpa反应,控制反应温度72℃,至聚合结束,降温排气,分离固液相,干燥得超高分子量聚乙烯。该超高分子量聚乙烯粘均分子量为400万,Mw/Mn为9.4。
取该超高分子量聚乙烯0.2kg、十氢萘2.8kg、抗氧剂1010 12g投入混合釜高温搅拌。混合釜温度为90℃,压力为1.0MPa,搅拌速度为200r/min,溶胀时间60分钟。
将溶胀后的原料喂入双螺杆挤出机,双螺杆进料温度为120℃,混合段温度为190℃,出料温度为180℃,转速为170r/min。
双螺杆挤出成型的冻胶丝通过预拉伸,进入循环水急冷,预拉伸倍数为5倍。之后进行加热干燥,干燥温度100℃,干燥后将纤维进行三级多倍拉伸,拉伸温度128℃-139℃,拉伸总倍数为30倍,得到聚乙烯纤维强度为33.2cN/dtex,模量为1340cN/dtex。
表3.实施例数据汇总
Figure PCTCN2019099338-appb-000001
实施例4
一种高性能超高分子量聚乙烯树脂的制备方法,在具有至少一个环管的淤浆反应器器内,将乙烯单体通过负载茂金属催化剂通过聚合反应制备得到具有较低的缠结度及较窄的分子量分布的聚乙烯树脂,加入的茂金属催化剂,上述反应原料在反应器中浆液流速为4m/s,并且控制聚合反应的反应温度为30℃、反应压力为1MPa、反应停留时间为8h。最终能够制备得到聚乙烯树脂的树脂粘均分子量在120万以上,重均分子量与数均分子量的比值Mw/Mn<4.0,千碳甲基数<0.1。聚乙烯树脂熔融处理后密度小于0.9320g/cm 3,将上述得到的聚乙烯树脂经过溶胀、溶解、挤出、萃取、多倍拉伸等后加工流程,所得超高分子量聚乙烯纤维制品拉伸强度可达45cN/dtex以上,拉伸模量可达 1800cN/dtex以上。
实施例5
一种高性能超高分子量聚乙烯树脂的制备方法,在具有至少一个环管的淤浆反应器器内,将乙烯单体通过负载后过渡金属催化剂,并加入助催化剂,通过聚合反应制备得到具有较低的缠结度及较窄的分子量分布的聚乙烯树脂,在上述反应中,后过渡金属催化剂,使用的助催化剂为烷基铝化合物,后过渡金属催化剂与助催化剂的摩尔比1:100。上述反应原料在反应器中浆液流速为10m/s,并且控制聚合反应的反应温度为40℃、反应压力为2MPa、反应停留时间为4h。最终能够制备得到聚乙烯树脂的树脂粘均分子量在120万以上,重均分子量与数均分子量的比值Mw/Mn<4.0,千碳甲基数<0.1。
实施例6
一种高性能超高分子量聚乙烯树脂的制备方法,在具有至少一个环管的淤浆反应器器内,将乙烯单体通过负载FI催化剂,并加入稀释剂,通过聚合反应制备得到具有较低的缠结度及较窄的分子量分布的聚乙烯树脂,在上述反应中,使用的稀释剂为正己烷、异丁烷的混合物,FI催化剂与稀释剂的质量比为1:10000。上述反应原料在反应器中浆液流速为10m/s,并且控制聚合反应的反应温度为40℃、反应压力为2MPa、反应停留时间为4h。最终能够制备得到聚乙烯树脂的树脂粘均分子量在120万以上,重均分子量与数均分子量的比值Mw/Mn<4.0,千碳甲基数<0.1。
实施例7
一种高性能超高分子量聚乙烯树脂的制备方法,在具有至少一个环管的淤浆反应器器内,将乙烯单体通过负载茂金属催化剂,并加入助催化剂和稀释剂,通过聚合反应制备得到具有较低的缠结度及较窄的分子量分布的聚乙烯树脂,在上述反应中,使用的助催化剂为烷基锂化合物,茂金属催化剂与助催化剂的摩尔比1:10000,稀释剂为白油,茂金属催化剂与稀释剂的质量比为1:60000。反应原料在反应器中浆液流速为30m/s,并且控制聚合反应的反应温度为70℃、反应压力为5MPa、反应停留时间为3h。最终能够制备得到聚乙烯树脂的树脂粘均分子量在120万以上,重均分子量与数均分子量的比值Mw/Mn<4.0,千碳甲基数<0.1。
将上述得到的聚乙烯树脂经过溶胀、溶解、挤出、萃取、多倍拉伸等后加工流程,所得超高分子量聚乙烯纤维制品拉伸强度可达45cN/dtex以上,拉伸模量可达1800cN/dtex以上。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

  1. 一种高性能超高分子量聚乙烯树脂的制备方法,其特征在于,该方法在反应器内,将乙烯单体通过负载单活性中心聚乙烯催化剂通过聚合反应制备得到具有较低的缠结度及较窄的分子量分布的聚乙烯树脂。
  2. 根据权利要求1所述高性能超高分子量聚乙烯树脂的制备方法,其特征在于,制备得到的聚乙烯树脂为纤维树脂,其重均分子量与数均分子量的比值Mw/Mn<4.0,千碳甲基数<0.1。
  3. 根据权利要求1所述高性能超高分子量聚乙烯树脂的制备方法,其特征在于,所述单活性中心催化剂选自茂金属催化剂或后过渡金属催化剂的一种或几种。
  4. 根据权利要求1所述高性能超高分子量聚乙烯树脂的制备方法,其特征在于,所述反应器为具有至少一个环管的淤浆反应器。
  5. 根据权利要求1所述高性能超高分子量聚乙烯树脂的制备方法,其特征在于,聚合反应中还加入稀释剂,该稀释剂为正己烷、异丁烷、正庚烷、异戊烷、白油或120#汽油中的一种或几种。
  6. 根据权利要求1所述高性能超高分子量聚乙烯树脂的制备方法,其特征在于,聚合反应中还加入助催化剂,该助催化剂为烷基铝化合物、烷基锂化合物、烷基锌化合物或烷基硼化合物中的一种或几种,单活性中心催化剂与助催化剂的摩尔比1:100~1:10000。
  7. 根据权利要求3所述高性能超高分子量聚乙烯树脂的制备方法,其特征在于,所述反应器中浆液流速为4m/s~15m/s。
  8. 根据权利要求1所述高性能超高分子量聚乙烯树脂的制备方法,其特征在于,所述聚合反应的反应温度为30℃~70℃。
  9. 根据权利要求1所述高性能超高分子量聚乙烯树脂的制备方法,其特征在于,所述聚合反应的反应压力为1MPa~5MPa。
  10. 根据权利要求1所述高性能超高分子量聚乙烯树脂的制备方法,其特征在于,所述聚合反应的反应停留时间为3小时~8小时。
PCT/CN2019/099338 2018-11-28 2019-08-06 一种高性能超高分子量聚乙烯树脂的制备方法 WO2020107932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811436080.X 2018-11-28
CN201811436080.XA CN109535291A (zh) 2018-11-28 2018-11-28 一种高性能超高分子量聚乙烯树脂的制备方法

Publications (1)

Publication Number Publication Date
WO2020107932A1 true WO2020107932A1 (zh) 2020-06-04

Family

ID=65852028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099338 WO2020107932A1 (zh) 2018-11-28 2019-08-06 一种高性能超高分子量聚乙烯树脂的制备方法

Country Status (2)

Country Link
CN (1) CN109535291A (zh)
WO (1) WO2020107932A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535291A (zh) * 2018-11-28 2019-03-29 上海化工研究院有限公司 一种高性能超高分子量聚乙烯树脂的制备方法
CN110698578B (zh) * 2019-09-30 2021-11-23 宁波大学 超高分子量聚烯烃和低分子量聚烯烃共混物的制备方法
CN111620971A (zh) * 2020-05-31 2020-09-04 上海化工研究院有限公司 一种抗氧化超高分子量聚乙烯树脂及其制备方法与应用
CN111607026A (zh) * 2020-06-30 2020-09-01 上海化工研究院有限公司 一种易溶胀聚乙烯粉末及其制备方法和应用
CN113388071B (zh) * 2021-06-28 2023-03-31 上海联乐化工科技有限公司 一种具有亲水性的超高分子量聚乙烯复合材料及其制备和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193907A (zh) * 2012-01-09 2013-07-10 宁波大学 一种超高分子量聚乙烯复合材料的制备方法
CN103374171A (zh) * 2012-04-13 2013-10-30 中国石油天然气股份有限公司 高熔体强度茂金属聚乙烯树脂组合物及其制备方法
JP2015081335A (ja) * 2013-10-24 2015-04-27 東ソー株式会社 超高分子量ポリエチレン粒子及びそれよりなる成形体
CN109535291A (zh) * 2018-11-28 2019-03-29 上海化工研究院有限公司 一种高性能超高分子量聚乙烯树脂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8821774B2 (en) * 2008-07-10 2014-09-02 Teijin Aramid B.V. Method for manufacturing high molecular weight polyethylene fibers
CN102219869B (zh) * 2010-09-14 2014-12-17 中国科学院上海有机化学研究所 一种烯烃聚合催化剂及超低支化度超高分子量聚乙烯
WO2013034582A1 (en) * 2011-09-05 2013-03-14 Stichting Dutch Polymer Institute Process for the melt extrusion of ultra high molecular weight polyethylene
CN104725536B (zh) * 2015-03-17 2017-03-15 宁波大学 一种低缠结度超高分子量聚乙烯粉料及其板材的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193907A (zh) * 2012-01-09 2013-07-10 宁波大学 一种超高分子量聚乙烯复合材料的制备方法
CN103374171A (zh) * 2012-04-13 2013-10-30 中国石油天然气股份有限公司 高熔体强度茂金属聚乙烯树脂组合物及其制备方法
JP2015081335A (ja) * 2013-10-24 2015-04-27 東ソー株式会社 超高分子量ポリエチレン粒子及びそれよりなる成形体
CN109535291A (zh) * 2018-11-28 2019-03-29 上海化工研究院有限公司 一种高性能超高分子量聚乙烯树脂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAVINDRA P. GOTE ET AL: "Judicious Reduction of Supported Ti Catalyst Enables Access to Disentangled Ultrahigh Molecular Weight Polyethylene", MACROMOLECULES, vol. 51, no. 12, 7 June 2018 (2018-06-07), pages 4541 - 4552, XP055711070, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.8b00590 *

Also Published As

Publication number Publication date
CN109535291A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2020107932A1 (zh) 一种高性能超高分子量聚乙烯树脂的制备方法
JP5742877B2 (ja) 高強度ポリエチレン繊維およびその製造方法
JP6212080B2 (ja) 高分子量ポリエチレン
CN103193908B (zh) 一种制备超强uhmwpe纤维的方法及其相关催化剂
JP5976635B2 (ja) 高強度uhmw−pe繊維の方法及び生成物
BR112013022111B1 (pt) Processo para preparar homopolímero ou copolímero de etileno na presença de iniciador de polimerização de radical livre e pelo menos um agente de transferência de cadeia em reator tubular, homopolímero ou copolímero de etileno obtenível por tal processo, seu uso e processo para revestimento por extrusão de substrato
CN109234850B (zh) 交联改性超高分子量聚乙烯纤维及其制备方法
CN109306541B (zh) 一种高强高模聚乙烯纤维的制备方法
CN109440215A (zh) 一种高性能聚乙烯纤维的制备方法
CN111936534A (zh) 聚烯烃树脂组合物及其生产方法
CN101679698B (zh) 新型聚烯烃组合物和由其制备的拉伸带、纤维和长丝
CN112321759B (zh) 一种低剪切模量的聚烯烃及其应用
JPH078890B2 (ja) オレフインの連続重合法
CN112746345B (zh) 低蠕变纤维
JP5497255B2 (ja) 高強度ポリエチレン繊維およびその製造方法
CN114507311B (zh) 乙烯聚合物及其制备方法
CN101787089A (zh) 一种用于烯烃聚合的串联反应器工艺
CN115029810A (zh) 一种抗风浪渔业绳网用高性能聚乙烯粗旦单丝及其制备方法
CN111607026A (zh) 一种易溶胀聚乙烯粉末及其制备方法和应用
CN115340619B (zh) 低灰分超高分子量聚乙烯树脂及其制备方法
NL8600046A (nl) Werkwijze voor het vervaardigen van polyethyleenvoorwerpen met hoge sterkte en hoge modulus.
DE10257740A1 (de) Geträgerter Chrom-Katalysator und seine Verwendung zur Herstellung von Ethylenhomopolymerisaten und- copolymerisaten
CN108641021A (zh) 一种提高高分子量聚乙烯加工性能的方法及应用
CN110820058B (zh) 一种民用高性能聚乙烯纤维的制备方法
CN117384315A (zh) 利用两个反应器串/并联制备聚乙烯树脂的方法和聚乙烯树脂以及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889563

Country of ref document: EP

Kind code of ref document: A1