WO2020105368A1 - ガラス板の製造方法、及びガラス板の製造装置 - Google Patents

ガラス板の製造方法、及びガラス板の製造装置

Info

Publication number
WO2020105368A1
WO2020105368A1 PCT/JP2019/041955 JP2019041955W WO2020105368A1 WO 2020105368 A1 WO2020105368 A1 WO 2020105368A1 JP 2019041955 W JP2019041955 W JP 2019041955W WO 2020105368 A1 WO2020105368 A1 WO 2020105368A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
light
light irradiation
imaging
irradiation device
Prior art date
Application number
PCT/JP2019/041955
Other languages
English (en)
French (fr)
Inventor
厚司 井上
修司 本郷
弥浩 植村
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201980074032.7A priority Critical patent/CN113015901A/zh
Publication of WO2020105368A1 publication Critical patent/WO2020105368A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass plate manufacturing method and a glass plate manufacturing apparatus, and more particularly to a technique for detecting and identifying defects in a glass plate.
  • a method of manufacturing a glass plate such as a glass substrate for a liquid crystal display includes a processing step of processing the glass plate, a cleaning step of cleaning the glass plate processed in the processing step, and a cleaning step of the glass plate cleaned in the cleaning step.
  • Some include an inspection process for inspecting defects (see, for example, Patent Document 1).
  • the defects of the glass plate detected in the inspection step include foreign matter such as platinum, scratches such as cracks, bubbles, and the like. Of these, scratches such as cracks are classified as surface defects. Further, bubbles and foreign substances are classified into surface defects and internal defects depending on their positions.
  • Patent Document 2 includes an inspection step for inspecting a glass plate for defects, and the inspection step specifies a defect coordinate specifying step for specifying the coordinates of the defect and the content of the defect having the coordinates specified in the defect coordinate specifying step.
  • a method for manufacturing a glass plate has been proposed which includes a defect content specifying step for specifying Specifically, in the defect coordinate identification step, using a light source and a camera that is arranged to face the light source via a transport path of the glass plate, the defect of the glass plate is detected and the coordinates thereof are specified,
  • the defect content specifying step a glass plate inspection method has been proposed in which a defect of a glass plate is imaged with a microscope based on the coordinate data and the type of the defect is specified.
  • this manufacturing method is a method for manufacturing a glass plate including an inspection step of inspecting a glass plate for defects with an inspection device, and the inspection device includes an image pickup device for picking up an image of the glass plate and a first light irradiation. And the reflected light irradiation device arranged so that the first light is reflected by the first surface of the glass plate and reaches the light receiving portion of the imaging device, and the second light is irradiated, and the second light is emitted.
  • a transmitted light irradiation device arranged so that light passes through the glass plate and reaches an area imaged by the imaging device, wherein the transmitted light irradiation device has a second light irradiation direction of the light receiving part of the imaging device. It is characterized by the points arranged so as to be inclined with respect to the direction directly facing.
  • the transmitted light irradiating device irradiates the second light toward the imaged region of the glass plate, and the direction facing the light receiving portion of the image pickup device is directly opposed.
  • the transmitted light irradiation device was arranged so as to be inclined. According to this configuration, as compared with the case where the transmitted light reflecting device is arranged in a direction directly facing the light receiving portion of the image pickup device via the glass plate, for example, the situation in which the defect shines entirely white is avoided and the defect The form can be easily visually recognized.
  • the reflected light irradiation device is arranged so that the reflected light reaches the light receiving portion of the image pickup device, and the transmitted light irradiation device is arranged so as to be inclined with respect to the direction directly facing the light receiving portion of the image pickup device.
  • a shadow can be formed on the defect or its periphery depending on the type of the defect. If the shadow can be visually recognized, the defect can be recognized three-dimensionally, and thus the type of defect can be identified more accurately than before. In addition, whether the defect is a surface defect or an internal defect can be accurately identified based on the degree of white light of the defect and the presence or absence of a shadow.
  • the reflected light irradiation device and the transmitted light irradiation device irradiate the imaging area, it is possible to secure the minimum amount of light necessary for detecting defects and reliably detect defects existing in the glass plate without omission. It will be possible.
  • the inspection process of the present invention it is possible to specify the type of defect based on the image obtained by picking up the image at one place, and thus to specify the coordinates of the defect as in the conventional case.
  • the step (1) it is not necessary to provide a step for observing the defect again with a microscope to specify its type. Therefore, the time required for the inspection process can be reduced and the productivity can be improved. In addition, it becomes possible to shorten the line length and eventually the facility cost.
  • the transmitted light irradiation device is such that the second light is vertically incident on the second surface located on the back side of the first surface of the glass plate. It may be arranged.
  • the transmitted light irradiation device by arranging the transmitted light irradiation device so that the second light, which becomes the transmitted light, enters perpendicularly to the second surface, which is the back surface of the glass plate, a sufficient amount of light for imaging can be obtained.
  • the transmitted light can be effectively supplied. As a result, it is possible to brighten an image obtained by picking up the image to enhance the detectability of defects and to easily identify shadows.
  • the reflected light irradiation device includes an incident angle of the first light with respect to the first surface of the glass plate, a normal direction of the first surface of the glass plate, and an imaging device. It may be arranged so that the angle formed by the image pickup direction of 1 is the same.
  • the direction of the transmitted light irradiation device is inclined with respect to the direction directly facing the imaging direction, and the incident angle of the first light that becomes the reflected light and the normal direction of the first surface of the glass plate are set.
  • the inspection device is an auxiliary light irradiation device which is arranged on the first surface side of the glass plate and irradiates a third light toward an imaged region of the glass plate. It may be further provided.
  • the auxiliary light irradiation device in addition to the reflected light irradiation device and the transmitted light irradiation device, by providing the auxiliary light irradiation device on the same side as the reflected light irradiation device, it is possible to particularly increase the white light level of the internal defect. As a result, it is possible to avoid the situation where the detection accuracy of the internal defect is lowered, and to reliably detect the internal defect without omission.
  • the glass plate may be transported on a predetermined transport path, and the transport path may pass through the inspection process.
  • the inspection process of the present invention it is possible to reliably detect defects in the glass plate without omission by only imaging at one location, and to accurately identify the type of the detected defects. .. Therefore, it becomes possible to carry out an inspection process accompanied by highly accurate defect type identification online and at low cost.
  • the manufacturing apparatus is a glass plate manufacturing apparatus including an inspection device for inspecting a glass plate for defects, and the inspection device irradiates the imaging device for imaging the glass plate and the first light. , And a reflected light irradiation device arranged so that the first light is reflected by the first surface of the glass plate and reaches the light receiving section of the image pickup device, and the second light is irradiated, and the second light is emitted.
  • a transmitted light irradiation device that is arranged so as to reach a region that is imaged by the imaging device through the glass plate, and the transmitted light irradiation device is such that the irradiation direction of the second light is the light receiving portion of the imaging device. It is characterized by points that are arranged so as to be inclined with respect to the facing direction.
  • the second light which becomes the transmitted light, is emitted toward the imaged area of the glass plate, and the irradiation direction of the second light is the image pickup apparatus. Since the transmitted light irradiation device is arranged so as to be inclined with respect to the direction directly facing the light receiving portion, it is possible to avoid the situation where the defect shines white as a whole and to make it easy to visually recognize the detailed form of the defect. it can.
  • the reflected light irradiation device is arranged so that the reflected light reaches the light receiving portion of the imaging device, and the transmitted light irradiation device is arranged so as to be inclined with respect to the direction directly facing the light receiving portion of the imaging device.
  • a shadow can be formed on the defect or its periphery.
  • the defect is a surface defect or an internal defect can be accurately identified based on the degree of white light of the defect and the presence or absence of a shadow.
  • the inspection apparatus of the present invention it is possible to specify the type of defect based on the image obtained by picking up the image at one place, and thus to specify the coordinates of the defect as in the conventional case.
  • the step (1) it is not necessary to provide a step for observing the defect again with a microscope to specify its type. Therefore, the time required for the inspection process can be reduced and the productivity can be improved.
  • FIG. 1 It is a schematic plan view of the manufacturing line of the glass plate which concerns on 1st embodiment of this invention. It is a side view of the inspection device used for the inspection process shown in FIG. It is the figure which drew typically an example of various defects in the image obtained using the inspection apparatus shown in FIG. It is the figure which drew typically an example of various defects in the image obtained using the inspection apparatus shown in FIG. It is the figure which drew typically an example of various defects in the image obtained using the inspection apparatus shown in FIG. It is a side view of the inspection device concerning a second embodiment of the present invention.
  • the glass plate manufacturing line 1 performs a processing step S1 of performing a predetermined process such as cutting and polishing on the glass plate, and washing the glass plate subjected to the predetermined process.
  • the cleaning process S2 includes an inspection process S3 for inspecting the cleaned glass plate for defects, and a packaging process S4 for packaging the glass plate inspected for defects in the inspection process S3.
  • the size of the glass plate manufactured in the manufacturing line 1 shown in FIG. 1 is, for example, 300 ⁇ 300 mm to 3500 ⁇ 3500 mm, and the thickness dimension thereof is, for example, 0.1 to 1.1 mm.
  • FIG. 2 is a side view showing the overall configuration of the inspection apparatus 10 used in the inspection step S3 of the glass plate G manufacturing apparatus used in the manufacturing line 1 shown in FIG.
  • the inspection device 10 includes an imaging device 11, a reflected light irradiation device 12, and a transmitted light irradiation device 13.
  • a transport path 14 for the glass plate G is provided between the imaging device 11, the reflected light irradiation device 12, and the transmitted light irradiation device 13.
  • the transport path 14 is configured by a transport device (not shown), and is arranged, for example, over the processing step S1, the cleaning step S2, the inspection step S3, and the packing step S4 (see FIG. 1).
  • the configuration of the transport device is arbitrary, and for example, a floating portion such as an air float that floats the glass sheet G from below by jetting air, and the width direction of the glass sheet G (in the present embodiment, the transport direction of the glass sheet G).
  • a direction orthogonal to F The same shall apply hereinafter.
  • It is composed of a feed unit such as a roller which comes into contact with both sides and conveys the glass sheet G.
  • the image pickup device 11 is, for example, a line camera, and is configured to take an image of the entire area of the glass plate G in the width direction. Further, both the reflected light irradiation device 12 and the transmitted light irradiation device 13 are configured to irradiate the entire area of the glass plate G in the width direction. As a result, the inspection device 10 inspects defects in the entire area of the glass sheet G conveyed along the predetermined conveyance direction F on the conveyance path 14. Of course, when the widthwise ends of the glass sheet G are not included in the final product, the defect may be inspected in a region excluding these widthwise ends.
  • the imaging device 11 may image the glass plate G while moving in the width direction of the glass plate G to image the entire area or a partial area of the glass plate G in the width direction. It may be configured so that the entire area or a partial area of the glass plate G in the width direction can be imaged in a state where 11 is fixed at a predetermined position.
  • the reflected light irradiation device 12 may irradiate the glass plate G with the first light L1 while moving in the width direction of the glass plate G to irradiate the entire area or a partial area of the glass plate G in the width direction.
  • the first light L ⁇ b> 1 may be configured to be able to be applied to the entire area or a partial area of the glass plate G in the width direction while the reflected light irradiation device 12 is fixed at a predetermined position.
  • the reflected light irradiation device 12 can be configured by a laser light irradiation device capable of irradiating a laser beam, and in the case of the latter configuration, the reflected light irradiation device 12 is a glass plate.
  • the illumination device can be configured by arranging a slit extending in the width direction of G on the front side.
  • the transmitted light irradiation device 13 may irradiate the glass plate G with the second light L2 while moving in the width direction of the glass plate G.
  • the glass plate G may be configured to be able to irradiate the second light L2.
  • the transmitted light irradiation device 13 can be configured by a laser light irradiation device that can emit laser light, and when the fixed configuration is used, the transmitted light irradiation device 13 is
  • the lighting device can be configured by arranging a slit extending in the width direction of the glass plate G in the front.
  • the image pickup device 11 is arranged on the side of the first surface Ga of the glass plate G.
  • the first surface Ga is directed upward.
  • the image pickup direction of the image pickup device 11 to be precise, the optical axis direction of the light receiving portion 11a (lens or the like) of the image pickup device 11 is the normal direction of the first surface Ga of the glass plate G (the vertical direction in FIG. 2).
  • the angle (imaging angle ⁇ 1) formed by the imaging direction of the imaging device 11 and the normal direction of the first surface Ga is set in a range of, for example, 5 ° or more and 30 ° or less, and preferably It is set in the range of 10 ° or more and 25 ° or less.
  • the reflected light irradiation device 12 like the imaging device 11, is arranged on the side of the first surface Ga of the glass plate G. Further, in the present embodiment, the reflected light irradiation device 12 is arranged on the upstream side (the right side in FIG. 2) in the transport direction F of the glass plate G with respect to the imaging device 11.
  • the reflected light irradiation device 12 irradiates the first light L1 toward the region G1 of the first surface Ga of the glass plate G that is imaged by the imaging device 11.
  • the angle (incident angle ⁇ 2) formed by the irradiation direction of the first light L1 and the normal direction of the first surface Ga of the glass plate G is set within the imaging angle ⁇ 1 plus or minus 5 °, preferably.
  • the reflection angle of the first light L1 matches the imaging angle ⁇ 1.
  • the transmitted light irradiation device 13 is arranged on the opposite side of the imaging device 11 and the reflected light irradiation device 12, that is, on the second surface Gb side which is the back surface side with respect to the first surface Ga of the glass plate G.
  • the transmitted light irradiation device 13 directly irradiates the second light L2 toward the back surface side of the region G1 of the second surface Gb of the glass plate G imaged by the imaging device 11. That is, the irradiated second light L2 is configured to pass through the glass plate G and reach the imaged region G1 of the first surface Ga.
  • the irradiation direction of the second light L2 and the imaging direction (optical axis direction) of the imaging device 11 do not match, in other words, the irradiation direction of the second light L2 matches the imaging direction of the imaging device.
  • the transmitted light irradiation device 13 is arranged so as to be inclined with respect to the direction in which the transmitted light is emitted.
  • the irradiation direction of the second light L2 is set so that the inclination angle ⁇ 3 formed with respect to the image pickup direction of the image pickup device 11 exceeds 5 °, and preferably set to 10 ° or more.
  • the inclination angle ⁇ 3 is set to 25 ° or less, preferably 20 ° or less, from the viewpoint of ensuring the detectability of the defect by irradiating the second light L2.
  • the transmitted light irradiation device 13 is arranged so that the irradiation direction of the second light L2 is perpendicular to the second surface Gb.
  • the tilt angle ⁇ 3 in this case is equal to the imaging angle ⁇ 1.
  • a display device (not shown) is connected to the image pickup device 11 so that the image of the region G1 picked up by the image pickup device 11 is displayed on the display device.
  • a processing device (not shown) that performs a predetermined process on the captured image of the region G1 is connected, and a defect detection process is automatically performed by the processing device on the image of the captured region G1. You can go. In this case, only the image of the detected defect is displayed on the display device. Of course, all the images of the area G1 captured by the image capturing device 11 may be displayed on the display device. Further, not only the defect detection processing, but also the detected defect may be subjected to predetermined image processing to automatically identify the type of defect described later.
  • a glass sheet G (not shown in FIG. 1) loaded on the transport path 14 is transported toward the processing step S1. Then, in the processing step S1, the glass plate G is subjected to processing such as edge processing (chamfering processing). Subsequently, in a cleaning step S2, the glass plate G processed in the processing step S1 is cleaned with, for example, a cleaning liquid or a roll brush. At this time, drying (draining) after washing may be accompanied.
  • the glass sheet G that has passed the cleaning step S2 is then conveyed to the inspection step S3.
  • the inspection step S3 as shown in FIG. 2, the imaging device 11 and the reflected light irradiation device 12 are arranged above the conveyance path 14, and the transmitted light irradiation device 13 is arranged below the conveyance path 14. Then, when the glass plate G is carried into the inspection step S3, image pickup of the glass plate G by the image pickup device 11 is started, and at the same time, the first and the first of the reflected light irradiation device 12 and the transmitted light irradiation device 13 to the glass plate G are performed. Irradiation of the second lights L1 and L2 is started.
  • the first and second lights L1 and L2 are emitted toward the region G1 of the first surface Ga of the glass plate G that is imaged by the imaging device 11.
  • the imaged region G1 moves in the width direction of the glass plate G
  • the reflected light irradiation device 12 and the transmitted light irradiation device 13 are moved in the width direction of the glass plate G while following the imaged region G1. And irradiates the first and second lights L1 and L2.
  • the first light L1 emitted from the reflected light emitting device 12 is reflected by the first surface Ga of the glass plate G and reaches the light receiving portion 11a of the imaging device 11.
  • the second light L2 emitted from the transmitted light irradiation device 13 passes through the glass plate G from the second surface Gb side and reaches the region G1 imaged by the imaging device 11.
  • the second light L2 is emitted in a state in which the transmitted light irradiation device 13 is arranged so as to be inclined with respect to the direction directly facing the light receiving portion 11a of the imaging device 11.
  • the defect in the image is a protrusion-like defect in which the surface of the glass plate G has a protrusion shape
  • the protrusion-like defect P1 in the image P is present in its entirety and its periphery.
  • the shadow S is formed.
  • the protruding defect P1 shown in FIG. 3A is due to a foreign substance (platinum) existing on the surface layer of the glass plate G.
  • the scratch P2 in the image P has a shadow S formed on the entire surface thereof, as shown in FIG. 3B.
  • the defect in the image is a defect such as a bubble existing inside the glass plate G
  • the internal defect P3 in the image P is in a state of shining white as a whole, as shown in FIG. 3C.
  • the operator determines the presence or absence of various defects P1 to P3 by looking at the image P of the imaging region G1 displayed on the display device (not shown), and identifies the types of the defects P1 to P3. This operation is performed on the entire area of the glass plate G, and it is determined whether or not the inspected glass plate G is a non-defective product based on the content of the detected defect (for example, the type and size and the number thereof).
  • the glass plate G determined to be a non-defective product is conveyed to the packing process S4 located on the downstream side of the inspection process S3, and is packed and shipped as a non-defective product in the packing process S4.
  • the glass plate G determined to be a defective product is packaged as a defective product in the packaging step S4 separately from the glass plate G determined to be a good product. Alternatively, it is discharged to the outside of the production line 1 through a discarding conveyance path (not shown).
  • the transmitted light irradiation device 13 irradiates the second light L2 to be transmitted light toward the imaged region G1 of the glass plate G, and
  • the transmitted light irradiation device 13 is arranged so as to be inclined with respect to the direction directly facing the light receiving portion 11a of the imaging device 11. According to this configuration, it is possible to avoid the situation in which the defects P1 to P3 shine as white as a whole regardless of their types, and make it easier to visually recognize the forms of the defects P1 to P3. In particular, as shown in FIG.
  • the reflected light irradiation device 12 is arranged so that the first light L1 that becomes reflected light reaches the light receiving part 11a of the image pickup device 11, and the light receiving part 11a of the image pickup device 11 and the light receiving part 11a are arranged directly.
  • the transmitted light irradiation device 13 By arranging the transmitted light irradiation device 13 in the direction offset from the opposite direction, the shadow S can be formed on the surface defect itself such as the protruding defect P1 or the scratch P2 or on the periphery thereof. If the shadow S can be visually recognized, the defects (P1, P2) can be recognized three-dimensionally. Therefore, the types of the defects P1 to P3 can be identified more accurately than before by the presence or absence of the shadow S or its shape. Become.
  • the defects P1 to P3 are surface defects such as protrusion defects or scratches or internal defects, depending on the degree of white light of the defects P1 to P3 and the presence or absence of the shadow S.
  • the reflected light irradiation device 12 and the transmitted light irradiation device 13 irradiate the imaging region G1
  • the minimum amount of light necessary for detecting the defects P1 to P3 is secured, and the defects P1 to P3 existing on the glass plate G are secured. It is possible to reliably detect P3 without leakage.
  • the inspection step S3 of the present invention it is possible to specify the types of the defects P1 to P3 based on the image P obtained by picking up the image at one place. It is not necessary to provide a process for observing the defects P1 to P3 again with a microscope and specifying the type thereof, in addition to the process for specifying the coordinates of P3 to P3. Therefore, the time required for the inspection step S3 can be reduced and the productivity can be improved. Also. Therefore, it is possible to reduce the line length of the manufacturing line 1 and to suppress the cost increase.
  • the transmitted light irradiation device 13 is arranged so that the second light L2 is vertically incident on the second surface Gb of the glass plate G.
  • the incident angle ⁇ 2 of the first light L1 with respect to the first surface Ga of the glass plate G is the imaging angle ⁇ 1 of the imaging device with respect to the first surface Ga of the glass plate G (see FIG. 2 for both).
  • the reflected light irradiation device 12 is arranged so as to be equal to According to this configuration, the shadow S of the surface defect (P1, P2) can be made darker and the degree of white light of the internal defect P3 can be further increased. Therefore, it becomes easier to distinguish between the surface defects (P1, P2) and the internal defects P3.
  • the glass plate manufacturing method and the glass plate manufacturing apparatus according to the present invention are not limited to the above-described exemplary embodiments.
  • the manufacturing method and the manufacturing apparatus can take various forms within the scope of the present invention.
  • FIG. 4 shows a side view of the inspection device 20 according to the second embodiment of the present invention. Similar to the inspection device 10 shown in FIG. 2, the inspection device 20 includes an imaging device 11, a reflected light irradiation device 12, and a transmitted light irradiation device 13, and emits auxiliary light for emitting the third light L3.
  • the apparatus 21 is further provided.
  • the auxiliary light irradiation device 21 is arranged on the side of the first surface Ga of the glass plate G, like the reflected light irradiation device 12.
  • the auxiliary light irradiation device 21 irradiates the third light L3 toward the region G1 of the first surface Ga of the glass plate G that is imaged by the imaging device 11. Further, the angle (incident angle ⁇ 4) formed by the irradiation direction of the third light L3 and the normal direction of the first surface Ga of the glass plate G is the incident angle of the second light L2 with respect to the first surface Ga. It is set larger than ⁇ 2.
  • the incident angle ⁇ 4 of the third light L3 is set to the incident angle ⁇ 2 + 10 ° or more of the second light L2, preferably the incident angle ⁇ 2 + 15 ° or more, and more preferably the incident angle ⁇ 2 + 20 °.
  • the incident angle ⁇ 4 of the third light L3 is set to be larger than the imaging angle ⁇ 1.
  • the incident angle ⁇ 4 of the third light L3 is set to the imaging angle ⁇ 1 + 10 ° or more, preferably to the imaging angle ⁇ 1 + 15 ° or more, and more preferably to the imaging angle ⁇ 1 + 20 ° or more. To be done.
  • the incident angle ⁇ 4 of the third light L3 is preferably set to the imaging angle ⁇ 1 + 40 ° or less, and preferably the imaging angle ⁇ 1 + 30 °. The following should be set.
  • the auxiliary light irradiating device 21 irradiates the glass plate G with the third light L3 while moving in the width direction of the glass plate G, thereby irradiating the whole or part of the width direction of the glass plate G.
  • the auxiliary light irradiating device 21 may be configured to be able to irradiate the entire area or a partial area in the width direction of the glass plate G with the third light L3 in a state where the auxiliary light irradiating device 21 is fixed at a predetermined position.
  • the auxiliary light irradiating device 21 can be configured by a laser light irradiating device capable of irradiating laser light, similarly to the reflected light irradiating device 12, and in the case of adopting the latter configuration,
  • the auxiliary light irradiation device 21 can be configured by an illumination device in which a slit extending in the width direction of the glass plate G is arranged in the front.
  • the inspection step S3 using the inspection device 20 having the above-described configuration, when the glass plate G is carried into the inspection step S3, the imaging of the glass plate G by the imaging device 11 is started, and the reflected light irradiation device 12 and the transmitted light irradiation are performed. Irradiation of the first to third lights L1 to L3 onto the glass plate G by the device 13 and the auxiliary light irradiation device 21 is started. Specifically, while conveying the glass plate G, the first to third lights L1 to L3 are emitted toward the region G1 of the first surface Ga of the glass plate G that is imaged by the imaging device 11.
  • the reflected light irradiation device 12 When the region G1 to be imaged moves in the width direction of the glass plate G, the reflected light irradiation device 12, the transmitted light irradiation device 13, and the auxiliary light irradiation device 21 are moved in the width direction of the glass plate G.
  • the third light L1 to L3 is irradiated following the imaged region G1.
  • the first light L1 emitted from the reflected light emitting device 12 is reflected by the first surface Ga of the glass plate G and reaches the light receiving portion 11a of the imaging device 11. Further, the second light L2 emitted from the transmitted light irradiation device 13 passes through the glass plate G from the second surface Gb side and reaches the region G1 imaged by the imaging device 11, and the auxiliary light irradiation device 21. The third light L3 emitted from reaches the area G1 imaged by the imaging device 11. This causes a phenomenon in which the dark and light states of the defects P1 to P3 in the image P differ depending on the types of the defects P1 to P3 in the image P captured by the imaging device 11. By irradiating the region G1 to be imaged with the third light L3 serving as auxiliary light, the degree of white light of the internal defect P3 is particularly increased.
  • the operator determines the presence or absence of defects P1 to P3 by looking at the image P of the area G1 displayed on the display device (not shown), and identifies the types of defects P1 to P3. This operation is performed on the entire area of the glass plate G, and it is determined whether or not the inspected glass plate G is a non-defective product based on the content (for example, type and number) of the detected defects.
  • the auxiliary light irradiation device 21 is provided on the same side as the reflected light irradiation device 12.
  • the amount of light supplied to the controlled area G1 can be supplemented.
  • the degree of white light of the internal defect P3 can be particularly increased, so that it is possible to avoid a situation in which the detection accuracy of the internal defect P3 is deteriorated due to a lack of overall brightness, and to eliminate all defects P1 to P3 including the internal defect P3. It is possible to surely detect without omission.
  • the projection defect P1 and the scratch P2 due to the foreign substance are exemplified as the surface defects, and the bubble is exemplified as the internal defect P3, but of course, according to the manufacturing method and the manufacturing apparatus according to the present invention.
  • the types of defects other than these can be accurately identified.
  • the protruding defects may include protruding defects due to foreign substances other than platinum and protruding defects due to bubbles.
  • the surface defect may include an adhered substance (for example, dirt or glass powder), and the internal defect may include an internal defect due to a foreign substance.
  • the glass plate G manufacturing line 1 includes the glass plate G processing step S1, the cleaning step S2, the inspection step S3, and the packing step S4 has been exemplified, but of course, Is not limited. Steps other than the above may be added, or some of the above steps may be omitted. In short, the configuration of the manufacturing line to which the present invention can be applied is arbitrary as long as it has the inspection step S3.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Mathematical Physics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

ガラス板Gの製造方法は、検査装置10でガラス板Gの欠陥P1~P3を検査する検査工程S3を備える。検査装置10は、ガラス板Gを撮像する撮像装置11と、第一の光L1を照射し、かつ第一の光L1がガラス板Gの第一の表面Gaで反射して撮像装置11の受光部11aに到達するように配置された反射光照射装置12と、第二の光L2を照射し、かつ第二の光L2がガラス板Gを透過して撮像装置11により撮像される領域G1に到達するように配置された透過光照射装置13とを備える。透過光照射装置13は、第二の光L2の照射方向が撮像装置11の受光部11aと正対する向きに対して傾斜するように配置される。

Description

ガラス板の製造方法、及びガラス板の製造装置
 本発明は、ガラス板の製造方法、及びガラス板の製造装置に関し、特にガラス板の欠陥を検出及び識別するための技術に関する。
 例えば液晶ディスプレイ用のガラス基板等のガラス板の製造方法には、ガラス板を加工する加工工程と、加工工程で加工されたガラス板を洗浄する洗浄工程と、洗浄工程で洗浄されたガラス板の欠陥を検査する検査工程とを備えるものがある(例えば特許文献1参照)。検査工程で検出されるガラス板の欠陥には、例えば白金などの異物、クラックなどの傷、泡等が含まれる。これらのうちクラック等の傷は表面欠陥に分類される。また、泡や異物はその位置によって表面欠陥又は内部欠陥に分類される。
 ところで、検査工程では、欠陥の有無だけでなく、欠陥の種類まで特定することが求められる場合がある。しかし、単純に、欠陥の種類まで特定しようとすると、検査工程に要する時間が長くなり、生産性の低下を招くといった問題があった。
 そこで、例えば特許文献2には、ガラス板の欠陥を検査する検査工程を備え、検査工程が、欠陥の座標を特定する欠陥座標特定工程と、欠陥座標特定工程で特定された座標の欠陥の内容を特定する欠陥内容特定工程とを有するガラス板の製造方法が提案されている。具体的には、欠陥座標特定工程で、光源と、光源に対してガラス板の搬送路を介して対向配置されたカメラとを用いて、ガラス板の欠陥を検出すると共にその座標を特定し、欠陥内容特定工程で、当該座標データに基づいて顕微鏡でガラス板の欠陥を撮像し、欠陥の種類を特定するガラス板の検査方法が提案されている。
特開2015-141096号公報 特開2017-111033号公報
 しかしながら、特許文献2に記載の検査工程だと、欠陥の検出工程とは別に、顕微鏡観察により欠陥をもう一度観察してその種類を特定する工程が必要になるので、ライン長が増大し、コストアップを招くといった問題が生じる。
 以上の事情に鑑み、生産性に優れ、かつ設備コストを削減しながらガラス板の欠陥の種類を正確に特定可能な検査手法を提供することを、解決すべき技術課題とする。
 前記課題の解決は、本発明に係るガラス板の製造方法により達成される。すなわち、この製造方法は、検査装置でガラス板の欠陥を検査する検査工程を備えたガラス板の製造方法であって、検査装置は、ガラス板を撮像する撮像装置と、第一の光を照射し、かつ第一の光がガラス板の第一の表面で反射して撮像装置の受光部に到達するように配置された反射光照射装置と、第二の光を照射し、かつ第二の光がガラス板を透過して撮像装置により撮像される領域に到達するように配置された透過光照射装置とを備え、透過光照射装置は、第二の光の照射方向が撮像装置の受光部と正対する向きに対して傾斜するように配置される点をもって特徴付けられる。
 このように、本発明に係るガラス板の製造方法では、透過光照射装置から第二の光をガラス板の撮像される領域に向けて照射すると共に、撮像装置の受光部と正対する向きに対して傾斜するように透過光照射装置を配置した。この構成によれば、例えば透過光反射装置がガラス板を介して撮像装置の受光部と正対する向きに配置される場合と比べて、欠陥が全体的に白く光る事態を回避して、欠陥の形態を視認し易くすることができる。特に、上述のように反射光が撮像装置の受光部に到達するように反射光照射装置を配置すると共に、撮像装置の受光部と正対する向きからに対して傾斜するように透過光照射装置を配置することによって、欠陥の種類に応じて、欠陥又はその周囲に影を形成することができる。影が視認できれば、欠陥を立体的に認識できるようになるので、欠陥の種類を従来よりも正確に識別することが可能となる。また、欠陥の白光度合いや影の有無により、欠陥が表面欠陥と内部欠陥の何れかであるかを正確に識別できるようになる。もちろん、反射光照射装置と透過光照射装置により撮像領域を照射しているので、欠陥の検出に最低限必要な光量を確保して、ガラス板に存在する欠陥を漏れなく確実に検出することが可能となる。
 また、上述のように本発明に係る検査工程によれば、一箇所で撮像して得た画像に基づいて欠陥の種類を特定することができるので、従来のように欠陥の座標を特定するための工程とは別に、欠陥を顕微鏡で再び観察してその種類の特定するための工程を設ける必要がなくなる。このため、検査工程に要する時間を削減し、生産性を向上させることができる。また、ライン長の短縮、ひいては設備コストの削減を図ることが可能となる。
 また、本発明に係るガラス板の製造方法において、透過光照射装置は、ガラス板の第一の表面の裏側に位置する第二の表面に対して、第二の光が垂直に入射するように配置されてもよい。
 このように、透過光となる第二の光がガラス板の裏面となる第二の表面に対して垂直に入射するように透過光照射装置を配置することによって、撮像するのに十分な量の透過光を効果的に供給することができる。これにより、撮像して得た画像を明るくして欠陥の検出能を高めることができ、また影を容易に識別することができる。
 また、本発明に係るガラス板の製造方法において、反射光照射装置は、ガラス板の第一の表面に対する第一の光の入射角と、ガラス板の第一の表面の法線方向と撮像装置の撮像方向とがなす角度とが等しくなるように配置されてもよい。
 上述のように、透過光照射装置の向きを撮像方向と正対する向きに対して傾斜させると共に、反射光となる第一の光の入射角と、ガラス板の第一の表面の法線方向と撮像方向とがなす角度とが等しくなるように反射光照射装置を配置することによって、表面欠陥の影をより濃くし、又は内部欠陥の白光度合いをさらに高めることができる。従って、表面欠陥と内部欠陥とをより区別し易くなる。
 また、本発明に係るガラス板の製造方法において、検査装置は、ガラス板の第一の表面側に配置され第三の光をガラス板の撮像される領域に向けて照射する補助光照射装置をさらに備えてもよい。
 このように、反射光照射装置と透過光照射装置とに加えて、反射光照射装置と同じ側に補助光照射装置を設けることによって、特に内部欠陥の白光度合いを高めることができる。これにより内部欠陥の検出精度が低下する事態を回避して、内部欠陥を漏れなく確実に検出することが可能となる。
 また、本発明に係るガラス板の製造方法において、ガラス板は所定の搬送路上を搬送され、搬送路が検査工程を通過するように構成されていてもよい。
 以上に述べたように、本発明に係る検査工程によれば、一箇所での撮像のみでガラス板の欠陥を漏れなく確実に検出すると共に、検出した欠陥の種類を正確に識別することができる。よって、高精度な欠陥種類の識別を伴う検査工程をオンラインでかつ低コストに実施することが可能となる。
 また、前記課題の解決は、本発明に係るガラス板の製造装置によっても達成される。すなわち、この製造装置は、ガラス板の欠陥を検査するための検査装置を備えたガラス板の製造装置であって、検査装置は、ガラス板を撮像する撮像装置と、第一の光を照射し、かつ第一の光がガラス板の第一の表面で反射して撮像装置の受光部に到達するように配置された反射光照射装置と、第二の光を照射し、かつ第二の光がガラス板を透過して撮像装置により撮像される領域に到達するように配置された透過光照射装置とを備え、透過光照射装置は、第二の光の照射方向が撮像装置の受光部と正対する向きに対して傾斜するように配置される点をもって特徴付けられる。
 このように、本発明に係るガラス板の製造装置によっても、透過光となる第二の光をガラス板の撮像される領域に向けて照射すると共に、第二の光の照射方向が撮像装置の受光部と正対する向きに対して傾斜するように透過光照射装置を配置するようにしたので、欠陥が全体的に白く光る事態を回避して、欠陥の詳細な形態を視認し易くすることができる。特に、上述のように反射光が撮像装置の受光部に到達するように反射光照射装置を配置すると共に、撮像装置の受光部と正対する向きに対して傾斜するように透過光照射装置を配置することによって、欠陥又はその周囲に影を形成することができる。これにより、欠陥を立体的に認識して、欠陥の種類を従来よりも正確に識別することが可能となる。また、欠陥の白光度合いや影の有無により、欠陥が表面欠陥と内部欠陥の何れかであるかを正確に識別できるようになる。また、上述のように本発明に係る検査装置によれば、一箇所で撮像して得た画像に基づいて欠陥の種類を特定することができるので、従来のように欠陥の座標を特定するための工程とは別に、欠陥を顕微鏡で再び観察してその種類の特定するための工程を設ける必要がなくなる。このため、検査工程に要する時間を削減し、生産性を向上させることができる。また、ライン長の短縮、ひいてはコストアップの抑制を図ることが可能となる。
 以上に述べたように、本発明に係るガラス板の製造方法及び製造装置によれば、生産性に優れ、かつ設備コストを削減しながらガラス板の欠陥の種類を正確に特定することが可能となる。
本発明の第一実施形態に係るガラス板の製造ラインの概略平面図である。 図1に示す検査工程に使用される検査装置の側面図である。 図2に示す検査装置を用いて得た画像中の各種欠陥の一例を模式的に描いた図である。 図2に示す検査装置を用いて得た画像中の各種欠陥の一例を模式的に描いた図である。 図2に示す検査装置を用いて得た画像中の各種欠陥の一例を模式的に描いた図である。 本発明の第二実施形態に係る検査装置の側面図である。
 以下、本発明の第一実施形態を説明する。
 本実施形態に係るガラス板の製造ライン1は、例えば図1に示すように、ガラス板に切断、研磨など所定の加工を施す加工工程S1と、所定の加工が施されたガラス板を洗浄する洗浄工程S2と、洗浄したガラス板の欠陥を検査する検査工程S3と、検査工程S3で欠陥の検査が実施されたガラス板を梱包する梱包工程S4とを備える。
 また、図1に示す製造ライン1で製造されるガラス板のサイズは、例えば300×300mm~3500×3500mmであり、その厚み寸法は、例えば0.1~1.1mmである。
 図2は、図1に示す製造ライン1に使用されるガラス板Gの製造装置のうち、検査工程S3に使用される検査装置10の全体構成を示す側面図である。図2に示すように、この検査装置10は、撮像装置11と、反射光照射装置12と、透過光照射装置13とを備える。また、撮像装置11及び反射光照射装置12と、透過光照射装置13との間には、ガラス板Gの搬送路14が設けられる。ここで、搬送路14は、図示しない搬送装置で構成され、例えば加工工程S1から洗浄工程S2、検査工程S3、そして梱包工程S4に跨って配設されている(図1を参照)。また、搬送装置の構成は任意であり、例えばエアの噴出によりガラス板Gを下方から浮上させるエアフロート等の浮上部と、ガラス板Gの幅方向(本実施形態では、ガラス板Gの搬送方向Fに直交する方向をいう。以下、同じ。)両側と接触してガラス板Gを搬送するローラ等の送り部とで構成される。
 撮像装置11は、例えばラインカメラであって、ガラス板Gの幅方向全域を撮像するように構成される。また、反射光照射装置12と透過光照射装置13はともに、ガラス板Gの幅方向全域を照射するように構成される。これにより、搬送路14上を所定の搬送方向Fに沿って搬送されるガラス板Gの全域について、検査装置10による欠陥の検査が行われる。もちろん、ガラス板Gの幅方向両端部が最終的な製品に含まれない場合には、これら幅方向両端部を除いた領域について欠陥の検査を行えばよい。この場合には、撮像装置11により幅方向で検査対象となる領域のみを撮像すればよく、また反射光照射装置12及び透過光照射装置13により幅方向で検査対象となる領域のみを照射すればよい。
 なお、図示は省略するが、撮像装置11がガラス板Gの幅方向に移動しながらガラス板Gを撮像することでガラス板Gの幅方向全域又は一部領域を撮像してもよく、撮像装置11が所定位置に固定された状態で、ガラス板Gの幅方向全域又は一部領域を撮像可能なように構成されてもよい。同様に、反射光照射装置12がガラス板Gの幅方向に移動しながらガラス板Gに第一の光L1を照射することでガラス板Gの幅方向全域又は一部領域を照射してもよく、反射光照射装置12が所定位置に固定された状態で、ガラス板Gの幅方向全域又は一部領域に第一の光L1を照射可能なように構成されてもよい。ここで、前者の構成をとる場合、反射光照射装置12は、レーザー光を照射可能なレーザー光照射装置で構成することができ、後者の構成をとる場合、反射光照射装置12は、ガラス板Gの幅方向に延びるスリットを前方に配置して成る照明装置で構成することができる。透過光照射装置13についても同様に、ガラス板Gの幅方向に移動しながらガラス板Gに第二の光L2を照射してもよく、透過光照射装置13が所定位置に固定された状態で、ガラス板Gに第二の光L2を照射可能なように構成されてもよい。この場合も、移動可能な構成をとる場合、透過光照射装置13は、レーザー光を照射可能なレーザー光照射装置で構成することができ、固定した構成をとる場合、透過光照射装置13は、ガラス板Gの幅方向に延びるスリットを前方に配置して成る照明装置で構成することができる。
 撮像装置11は、ガラス板Gの第一の表面Gaの側に配置される。本実施形態では、第一の表面Gaは上方を指向している。また、撮像装置11による撮像方向、正確には、撮像装置11の受光部11a(レンズなど)の光軸方向は、ガラス板Gの第一の表面Gaの法線方向(図2では上下方向)に対してその搬送方向Fの下流側に傾斜している。具体的には、撮像装置11の撮像方向と、第一の表面Gaの法線方向とがなす角度(撮像角度θ1)は、例えば5°以上でかつ30°以下の範囲に設定され、好ましくは10°以上でかつ25°以下の範囲に設定される。
 反射光照射装置12は、撮像装置11と同様、ガラス板Gの第一の表面Gaの側に配置される。また、本実施形態では、反射光照射装置12は、撮像装置11に対してガラス板Gの搬送方向Fの上流側(図2でいえば右側)に配置される。ここで、反射光照射装置12は、ガラス板Gの第一の表面Gaのうち撮像装置11により撮像される領域G1に向けて第一の光L1を照射する。また、第一の光L1の照射方向と、ガラス板Gの第一の表面Gaの法線方向とがなす角度(入射角θ2)は、撮像角度θ1プラスマイナス5°以内に設定され、好ましくはプラスマイナス3°以内に設定され、より好ましくはプラスマイナス1°以内に設定され、最も好ましくは0°、すなわち撮像角度θ1に等しくなるように設定される。この場合、第一の光L1の反射角は撮像角度θ1に一致する。
 透過光照射装置13は、撮像装置11と反射光照射装置12とは反対側、すなわちガラス板Gの第一の表面Gaに対して裏面側となる第二の表面Gbの側に配置される。ここで、透過光照射装置13は、直接的にはガラス板Gの第二の表面Gbのうち撮像装置11により撮像される領域G1の裏面側に向けて第二の光L2を照射する。すなわち、照射した第二の光L2がガラス板Gを透過して第一の表面Gaのうち撮像される領域G1に到達するように構成される。
 また、第二の光L2の照射方向と、撮像装置11の撮像方向(光軸方向)とが一致しないように、言い換えると、第二の光L2の照射方向が、撮像装置の撮像方向と一致する向きに対して傾斜するように、透過光照射装置13が配置されるのがよい。具体的には、第二の光L2の照射方向が、撮像装置11の撮像方向に対してなす傾斜角θ3が5°を上回るように設定され、好ましくは10°以上に設定される。一方で、第二の光L2を照射することによる欠陥の検出能を確保する観点からは、傾斜角θ3は25°以下に設定され、好ましくは20°以下に設定される。本実施形態では、第二の光L2の照射方向が第二の表面Gbに対して垂直となる向きに透過光照射装置13が配置されている。この場合の傾斜角θ3は、撮像角度θ1と等しい。
 また、撮像装置11には表示装置(図示は省略)が接続されており、撮像装置11により撮像された領域G1の画像が表示装置に表示されるようになっている。この際、例えば撮像された領域G1の画像に対して所定の処理を施す処理装置(図示は省略)を接続し、撮像して得た領域G1の画像について処理装置により欠陥の検出処理を自動で行ってもよい。この場合、検出された欠陥の画像のみが表示装置に表示される。もちろん、撮像装置11で撮像された領域G1の全ての画像を表示装置に表示してもかまわない。また、欠陥の検出処理だけでなく、検出した欠陥に対して所定の画像処理を施すことで、後述する欠陥の種類を自動的に識別してもかまわない。
 次に、上記構成の製造ライン1におけるガラス板Gの製造工程の一例を、検査工程S3を中心に説明する。
 まず、図1に示すように、搬送路14上に投入されたガラス板G(図1では省略)を加工工程S1に向けて搬送する。そして、加工工程S1でガラス板Gに対して例えば端面加工(面取り加工等)等の加工を施す。続いて洗浄工程S2で、加工工程S1で加工されたガラス板Gを、例えば洗浄液やロールブラシによって洗浄する。この際、洗浄後の乾燥(水切り)を伴ってもよい。
 洗浄工程S2を通過したガラス板Gは、次に検査工程S3に向けて搬送される。検査工程S3では、図2に示すように、搬送路14の上方に撮像装置11と反射光照射装置12が配設され、搬送路14の下方に透過光照射装置13が配設されている。そして、ガラス板Gが検査工程S3に搬入されると、撮像装置11によるガラス板Gの撮像を開始すると共に、反射光照射装置12及び透過光照射装置13によるガラス板Gへの第一及び第二の光L1,L2の照射を開始する。具体的には、ガラス板Gを搬送しながら、ガラス板Gの第一の表面Gaのうち撮像装置11により撮像される領域G1に向けて第一及び第二の光L1,L2を照射する。撮像される領域G1がガラス板Gの幅方向に移動する場合には、反射光照射装置12及び透過光照射装置13をガラス板Gの幅方向に移動させながら、撮像される領域G1に追随して第一及び第二の光L1,L2を照射する。
 この際、反射光照射装置12から照射された第一の光L1は、ガラス板Gの第一の表面Gaで反射して撮像装置11の受光部11aに到達する。また、透過光照射装置13から照射された第二の光L2は、第二の表面Gb側からガラス板Gを透過して撮像装置11により撮像される領域G1に到達する。また、この第二の光L2は、透過光照射装置13が撮像装置11の受光部11aと正対する向きに対して傾斜するように配置された状態で照射される。これにより、撮像装置11で撮像して得た画像中のガラス板Gの欠陥が存在する場合、当該欠陥の種類によって、画像中における欠陥の明暗状態(画像の種類によっては濃淡状態)が異なる現象が生じる。
 具体的に、画像中の欠陥が、ガラス板Gの表面が突起状となる突起状欠陥である場合、図3Aに示すように、画像P中の突起状欠陥P1は、その全体及びその周囲に影Sを形成した状態となる。なお、図3Aに示す突起状欠陥P1は、ガラス板Gの表層に存在する異物(白金)によるものである。また、画像中の欠陥が、ガラス板Gの表面に存在する傷である場合、図3Bに示すように、画像P中の傷P2は、その全体に影Sを形成した状態となる。また、画像中の欠陥が、泡などガラス板Gの内部に存在する欠陥である場合、図3Cに示すように、画像P中の内部欠陥P3は、全体的に白く光った状態となる。
 作業者は、表示装置(図示は省略)に表示された撮像領域G1の画像Pを見て各種欠陥P1~P3の有無を判定すると共に、当該欠陥P1~P3の種類を識別する。この作業をガラス板Gの全域に対して行い、検出した欠陥の内容(例えば種類及びサイズとその数など)に基づき、検査を行ったガラス板Gが良品か否かの判定を行う。
 そして、良品と判定されたガラス板Gは、検査工程S3の下流側に位置する梱包工程S4に向けて搬送され、梱包工程S4で良品として梱包されて出荷される。一方、不良品と判定されたガラス板Gは、良品と判定されたガラス板Gとは別に梱包工程S4で不良品として梱包される。あるいは、図示しない廃棄用の搬送路を通って製造ライン1外に排出される。
 このように、本発明に係るガラス板の製造方法及び製造装置では、透過光照射装置13により透過光となる第二の光L2をガラス板Gの撮像される領域G1に向けて照射すると共に、撮像装置11の受光部11aと正対する向きに対して傾斜するように透過光照射装置13を配置した。この構成によれば、欠陥P1~P3がその種類によらず全体的に白く光る事態を回避して、欠陥P1~P3の形態を視認し易くすることができる。特に、図2に示すように、反射光となる第一の光L1が撮像装置11の受光部11aに到達するように反射光照射装置12を配置すると共に、撮像装置11の受光部11aと正対する向きからオフセットした向きに透過光照射装置13を配置することによって、突起状欠陥P1や傷P2といった表面欠陥自体又はその周囲に影Sを形成することができる。影Sが視認できれば、欠陥(P1,P2)を立体的に認識できるようになるので、影Sの有無又はその形状により、欠陥P1~P3の種類を従来よりも正確に識別することが可能となる。また、欠陥P1~P3の白光度合いや影Sの有無により、欠陥P1~P3が突起状欠陥や傷といった表面欠陥と内部欠陥の何れかであるかを正確に識別できるようになる。もちろん、反射光照射装置12と透過光照射装置13により撮像領域G1を照射しているので、欠陥P1~P3の検出に最低限必要な光量を確保して、ガラス板Gに存在する欠陥P1~P3を漏れなく確実に検出することが可能となる。
 また、上述のように本発明に係る検査工程S3によれば、一箇所で撮像して得た画像Pに基づいて欠陥P1~P3の種類を特定することができるので、従来のように欠陥P1~P3の座標を特定するための工程とは別に、欠陥P1~P3を顕微鏡で再び観察してその種類を特定するための工程を設ける必要がなくなる。このため、検査工程S3に要する時間を削減し、生産性を向上させることができる。また。よって、製造ライン1のライン長の短縮、ひいてはコストアップの抑制を図ることが可能となる。
 また、本実施形態では、透過光照射装置13を、ガラス板Gの第二の表面Gbに対して、第二の光L2が垂直に入射するように透過光照射装置13を配置した。この構成によれば、撮像するのに十分な量の透過光(第二の光L2)を効果的に供給することができる。これにより、撮像して得た画像Pを全体的に明るくして欠陥P1~P3の検出能を高めることができる。また、影Sの識別も容易になる。
 また、本実施形態では、ガラス板Gの第一の表面Gaに対する第一の光L1の入射角θ2が、ガラス板Gの第一の表面Gaに対する撮像装置の撮像角度θ1(ともに図2を参照)と等しくなるように、反射光照射装置12を配置した。この構成によれば、表面欠陥(P1,P2)の影Sをより濃くし、内部欠陥P3の白光度合いをさらに高めることができる。従って、表面欠陥(P1,P2)と内部欠陥P3とをより区別し易くなる。
 以上、本発明の第一実施形態を説明したが、本発明に係るガラス板の製造方法、及びガラス板の製造装置は上記例示の形態には限定されない。当該製造方法及び製造装置は、本発明の範囲内で種々の形態をとることが可能である。
 図4は、本発明の第二実施形態に係る検査装置20の側面図を示している。この検査装置20は、図2に示す検査装置10と同様に、撮像装置11と、反射光照射装置12と、透過光照射装置13とを備えると共に、第三の光L3を照射する補助光照射装置21をさらに備える。
 補助光照射装置21は、反射光照射装置12と同じくガラス板Gの第一の表面Gaの側に配置される。この補助光照射装置21は、ガラス板Gの第一の表面Gaのうち撮像装置11により撮像される領域G1に向けて第三の光L3を照射する。また、第三の光L3の照射方向と、ガラス板Gの第一の表面Gaの法線方向とがなす角度(入射角θ4)は、第二の光L2の第一の表面Gaに対する入射角θ2よりも大きく設定される。具体的には、第三の光L3の入射角θ4は、第二の光L2の入射角θ2+10°以上に設定され、好ましくは、入射角θ2+15°以上に設定され、より好ましくは入射角θ2+20°以上に設定される。また、本実施形態では、第三の光L3の入射角θ4は、撮像角度θ1よりも大きく設定される。この場合、具体的には、第三の光L3の入射角θ4は、撮像角度θ1+10°以上に設定され、好ましくは、撮像角度θ1+15°以上に設定され、より好ましくは撮像角度θ1+20°以上に設定される。一方で、撮像される領域G1に対し必要な光量を確保する観点からは、第三の光L3の入射角θ4は、撮像角度θ1+40°以下に設定されるのがよく、好ましくは撮像角度θ1+30°以下に設定されるのがよい。
 また、この場合、補助光照射装置21がガラス板Gの幅方向に移動しながらガラス板Gに第三の光L3を照射することでガラス板Gの幅方向全域又は一部領域を照射してもよく、補助光照射装置21が所定位置に固定された状態で、ガラス板Gの幅方向全域又は一部領域に第三の光L3を照射可能なように構成されてもよい。ここで、前者の構成をとる場合、補助光照射装置21は、反射光照射装置12と同様に、レーザー光を照射可能なレーザー光照射装置で構成することができ、後者の構成をとる場合、補助光照射装置21は、ガラス板Gの幅方向に延びるスリットを前方に配置して成る照明装置で構成することができる。
 上記構成の検査装置20を用いた検査工程S3では、ガラス板Gが検査工程S3に搬入されると、撮像装置11によるガラス板Gの撮像を開始すると共に、反射光照射装置12と透過光照射装置13、及び補助光照射装置21によるガラス板Gへの第一~第三の光L1~L3の照射を開始する。具体的には、ガラス板Gを搬送しながら、ガラス板Gの第一の表面Gaのうち撮像装置11により撮像される領域G1に向けて第一~第三の光L1~L3を照射する。撮像される領域G1がガラス板Gの幅方向に移動する場合には、反射光照射装置12と透過光照射装置13、及び補助光照射装置21をガラス板Gの幅方向に移動させながら第一~第三の光L1~L3を撮像される領域G1に追随して照射する。
 この際、反射光照射装置12から照射された第一の光L1は、ガラス板Gの第一の表面Gaで反射して撮像装置11の受光部11aに到達する。また、透過光照射装置13から照射された第二の光L2は、第二の表面Gb側からガラス板Gを透過して撮像装置11により撮像される領域G1に到達し、補助光照射装置21から照射された第三の光L3は、撮像装置11により撮像される領域G1に到達する。これにより、撮像装置11で撮像して得た画像P中の欠陥P1~P3の種類によって、画像P中における欠陥P1~P3の明暗状態が異なる現象が生じる。また、補助光となる第三の光L3を撮像される領域G1に照射することにより、特に内部欠陥P3の白光度合いが高まる。
 作業者は、表示装置(図示は省略)に表示された領域G1の画像Pを見て欠陥P1~P3の有無を判定すると共に、欠陥P1~P3の種類を識別する。この作業をガラス板Gの全域に対して行い、検出した欠陥の内容(例えば種類及び数)に基づき、検査を行ったガラス板Gが良品か否かの判定を行う。
 このように、本実施形態に係る検査装置20では、反射光照射装置12と透過光照射装置13とに加えて、反射光照射装置12と同じ側に補助光照射装置21を設けたので、撮像される領域G1に供給される光量を補うことができる。これにより、特に内部欠陥P3の白光度合いを高めることができるので、全体的な輝度不足による内部欠陥P3の検出精度が低下する事態を回避して、内部欠陥P3を含む全ての欠陥P1~P3を漏れなく確実に検出することが可能となる。
 また、以上の説明では、表面欠陥として異物(白金)による突起状欠陥P1と傷P2を例示し、内部欠陥P3として泡を例示したが、もちろん、本発明に係る製造方法及び製造装置によれば、これら以外の欠陥についてもその種類を正確に識別することが可能である。例えば、突起状欠陥には、白金以外の異物による突起状欠陥や泡による突起状欠陥が含まれてもよい。また、表面欠陥には、付着物(例えば汚れやガラス粉等)が含まれてもよく、内部欠陥には、異物による内部欠陥が含まれてもよい。
 また、以上の説明では、ガラス板Gの製造ライン1が、ガラス板Gの加工工程S1と、洗浄工程S2と、検査工程S3と、梱包工程S4とを備える場合を例示したが、もちろんこれには限られない。上記以外の工程を追加してもよく、また上記工程の一部を省略してもよい。要は、検査工程S3を有する限りにおいて、本発明が適用できる製造ラインの構成は任意である。

Claims (6)

  1.  検査装置でガラス板の欠陥を検査する検査工程を備えたガラス板の製造方法であって、
     前記検査装置は、
     前記ガラス板を撮像する撮像装置と、
     第一の光を照射し、かつ前記第一の光が前記ガラス板の第一の表面で反射して前記撮像装置の受光部に到達するように配置された反射光照射装置と、
     第二の光を照射し、かつ前記第二の光が前記ガラス板を透過して前記撮像装置により撮像される領域に到達するように配置された透過光照射装置とを備え、
     前記透過光照射装置は、前記第二の光の照射方向が前記撮像装置の前記受光部と正対する向きに対して傾斜するように配置される、ガラス板の製造方法。
  2.  前記透過光照射装置は、前記ガラス板の前記第一の表面の裏側に位置する第二の表面に対して、前記第二の光が垂直に入射するように配置される、請求項1に記載のガラス板の製造方法。
  3.  前記反射光照射装置は、前記ガラス板の前記第一の表面に対する前記第一の光の入射角と、前記ガラス板の前記第一の表面の法線方向と前記撮像装置の撮像方向とがなす角度とが等しくなるように配置される、請求項1又は2に記載のガラス板の製造方法。
  4.  前記検査装置は、前記ガラス板の前記第一の表面側に配置され、第三の光を前記ガラス板の前記撮像される領域に向けて照射する補助光照射装置をさらに備える、請求項1~3の何れか一項に記載のガラス板の製造方法。
  5.  前記ガラス板は所定の搬送路上を搬送され、前記搬送路が前記検査工程を通過するように構成されている請求項1~4の何れか一項に記載のガラス板の製造方法。
  6.  前記ガラス板の欠陥を検査するための検査装置を備えたガラス板の製造装置であって、
     前記検査装置は、
     前記ガラス板を撮像する撮像装置と、
     第一の光を照射し、かつ前記第一の光が前記ガラス板の第一の表面で反射して前記撮像装置の受光部に到達するように配置された反射光照射装置と、
     第二の光を照射し、かつ前記第二の光が前記ガラス板を透過して前記撮像装置により撮像される領域に到達するように配置された透過光照射装置とを備え、
    前記透過光照射装置は、前記第二の光の照射方向が前記撮像装置の前記受光部と正対する向きに対して傾斜するように配置される、ガラス板の製造装置。
     
PCT/JP2019/041955 2018-11-21 2019-10-25 ガラス板の製造方法、及びガラス板の製造装置 WO2020105368A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980074032.7A CN113015901A (zh) 2018-11-21 2019-10-25 玻璃板的制造方法以及玻璃板的制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018218233A JP2020085587A (ja) 2018-11-21 2018-11-21 ガラス板の製造方法、及びガラス板の製造装置
JP2018-218233 2018-11-21

Publications (1)

Publication Number Publication Date
WO2020105368A1 true WO2020105368A1 (ja) 2020-05-28

Family

ID=70773993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041955 WO2020105368A1 (ja) 2018-11-21 2019-10-25 ガラス板の製造方法、及びガラス板の製造装置

Country Status (4)

Country Link
JP (1) JP2020085587A (ja)
CN (1) CN113015901A (ja)
TW (1) TW202043760A (ja)
WO (1) WO2020105368A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484333B (zh) * 2021-09-08 2021-12-14 苏州高视半导体技术有限公司 多层结构屏幕的异物缺陷区分方法、电子设备及存储介质
CN113628212B (zh) * 2021-10-12 2022-03-11 高视科技(苏州)有限公司 不良偏光片识别方法、电子设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234187A (ja) * 1994-02-24 1995-09-05 G T C:Kk ガラス基板の表面欠点検出方法およびその装置
JP2007198761A (ja) * 2006-01-24 2007-08-09 Canon Chemicals Inc 欠陥検出方法および装置
JP2009537022A (ja) * 2006-05-12 2009-10-22 コーニング インコーポレイテッド 透明基板の欠陥の特性評価のための装置及び方法
JP2010249552A (ja) * 2009-04-13 2010-11-04 Central Glass Co Ltd ガラス板の欠陥識別方法および装置
JP2011203132A (ja) * 2010-03-25 2011-10-13 Seiko Epson Corp 外観検査装置
JP2012042297A (ja) * 2010-08-18 2012-03-01 Kurabo Ind Ltd 撮像光学検査装置
JP2013152206A (ja) * 2011-12-31 2013-08-08 Shibaura Mechatronics Corp 照明装置、照明方法及び検査装置
US20140368634A1 (en) * 2011-12-02 2014-12-18 Saint-Gobain Glass France Device for analyzing visible defects in a transparent substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497107B2 (ja) * 1999-10-21 2004-02-16 株式会社エム・アイ・エル 容器内浮遊物判別方法及びその装置
JP2001208702A (ja) * 2000-01-31 2001-08-03 Nippon Sheet Glass Co Ltd 欠点検査方法及び欠点検査装置
JP2008292273A (ja) * 2007-05-24 2008-12-04 Ushio Inc パターン検査装置およびパターン検査方法
JP2010048745A (ja) * 2008-08-25 2010-03-04 Asahi Glass Co Ltd 欠陥検査システムおよび欠陥検査方法
KR101324015B1 (ko) * 2011-08-18 2013-10-31 바슬러 비전 테크놀로지스 에이지 유리기판 표면 불량 검사 장치 및 검사 방법
JP6296499B2 (ja) * 2014-08-11 2018-03-20 株式会社 東京ウエルズ 透明基板の外観検査装置および外観検査方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234187A (ja) * 1994-02-24 1995-09-05 G T C:Kk ガラス基板の表面欠点検出方法およびその装置
JP2007198761A (ja) * 2006-01-24 2007-08-09 Canon Chemicals Inc 欠陥検出方法および装置
JP2009537022A (ja) * 2006-05-12 2009-10-22 コーニング インコーポレイテッド 透明基板の欠陥の特性評価のための装置及び方法
JP2010249552A (ja) * 2009-04-13 2010-11-04 Central Glass Co Ltd ガラス板の欠陥識別方法および装置
JP2011203132A (ja) * 2010-03-25 2011-10-13 Seiko Epson Corp 外観検査装置
JP2012042297A (ja) * 2010-08-18 2012-03-01 Kurabo Ind Ltd 撮像光学検査装置
US20140368634A1 (en) * 2011-12-02 2014-12-18 Saint-Gobain Glass France Device for analyzing visible defects in a transparent substrate
JP2013152206A (ja) * 2011-12-31 2013-08-08 Shibaura Mechatronics Corp 照明装置、照明方法及び検査装置

Also Published As

Publication number Publication date
CN113015901A (zh) 2021-06-22
TW202043760A (zh) 2020-12-01
JP2020085587A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
TWI468674B (zh) Method for inspection of multi - crystalline wafers
JP4747602B2 (ja) ガラス基板検査装置および検査方法
US20200378899A1 (en) Glass processing apparatus and methods
JP2015040835A (ja) 透明板状体の欠点検査装置及び欠点検査方法
WO2020105368A1 (ja) ガラス板の製造方法、及びガラス板の製造装置
JP7404250B2 (ja) ガラスシートを検査するための装置及び方法
JP2006300663A (ja) 欠点検出システム
WO2010058680A1 (ja) シリコンウェハ欠陥検査装置
KR100953203B1 (ko) 기판 품질 검사장치
WO2012153718A1 (ja) ガラスシートの端面検査方法、及びガラスシートの端面検査装置
CN108139336B (zh) 玻璃板的制造方法
JP2015141096A (ja) 検査装置、検査方法及びガラス基板の製造方法
JP2015225003A (ja) 外観検査装置
JP2006349599A (ja) 透明基板検査装置及び検査方法
JP2019070545A (ja) 表面検査装置および表面検査方法
JP2001215197A (ja) 透明シートの検査方法および装置
TWI779055B (zh) 光學顯示面板的損傷檢查方法
JP2000065546A (ja) フィルム包装検査方法およびその装置
JPH09318559A (ja) 透明ガラス容器の外観検査方法及び装置
KR101046566B1 (ko) 기판 검사 장치 및 이를 이용한 기판 검사 방법
JP2017150992A (ja) 検査装置及び検査方法
KR101280569B1 (ko) 기판검사장치
JP2011007498A (ja) 円筒体の表面検査装置
TWI841484B (zh) 用於檢測玻璃片的設備及方法
TWI838357B (zh) 用於檢測玻璃片的設備及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887036

Country of ref document: EP

Kind code of ref document: A1