WO2020105282A1 - 車体構造 - Google Patents

車体構造

Info

Publication number
WO2020105282A1
WO2020105282A1 PCT/JP2019/038522 JP2019038522W WO2020105282A1 WO 2020105282 A1 WO2020105282 A1 WO 2020105282A1 JP 2019038522 W JP2019038522 W JP 2019038522W WO 2020105282 A1 WO2020105282 A1 WO 2020105282A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
frame
mounting
vehicle
body structure
Prior art date
Application number
PCT/JP2019/038522
Other languages
English (en)
French (fr)
Inventor
卓哉 森澤
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201980074683.6A priority Critical patent/CN113015672B/zh
Publication of WO2020105282A1 publication Critical patent/WO2020105282A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units

Definitions

  • the present invention relates to a vehicle body structure.
  • the present application claims priority based on Japanese Patent Application No. 2018-216643 filed on November 19, 2018, and the content thereof is incorporated herein.
  • a guide roller is provided behind the vehicle body of a rear mounting portion provided at the rear portion of the subframe so as to face the inclined surface of the floor panel.
  • the guide roller moves downward while rotating along the vehicle body panel due to the impact load due to the frontal collision. Therefore, the dropped subframe is guided below the vehicle body panel. This makes it possible to promote buckling deformation of the front side frame and ensure a crash stroke (for example, see Patent Document 1).
  • a sub frame is provided below the front side frame, a rear end portion of the sub frame is extended below the vehicle body, and a rear end portion of the sub frame is connected to a lower portion of the vehicle body in a vertically swingable manner.
  • the subframe is dropped while rotating around the connecting member as an axis. This ensures a crash stroke and deforms the front side frame to absorb impact energy (see, for example, Patent Document 2).
  • the guide roller of Patent Document 1 is provided so as to face the inclined surface of the floor panel. Therefore, it is necessary to secure a space below the vehicle body in order to provide the guide roller. Further, at the rear end portion of the sub-frame of Patent Document 2, the guide roller is extended below the vehicle body by the impact load due to the frontal collision, so it is necessary to secure a space below the vehicle body.
  • an electric vehicle so-called EV
  • a battery IPU: intelligent power unit mounted under the floor of the vehicle. For this reason, it is difficult to secure a space under the floor of the vehicle, and there is a demand for practical application of a configuration that secures a crash stroke in a vehicle such as an electric vehicle.
  • the mode concerning the present invention is made in view of the above-mentioned actual situation, and it aims at providing the body structure which can secure a crash stroke.
  • a vehicle body structure includes a sub-frame that fixes a lower arm below a front side frame, and the sub-frame is a predetermined displacement portion that buckles downward due to an impact load input from the front of the vehicle body. Is provided, and the lower arm is fixed in front of the vehicle body at the predetermined displacement portion.
  • the planned displacement portion is provided on the sub-frame, and the lower arm is provided in front of the vehicle body at the displacement planned portion.
  • the predetermined displacement portion of the subframe is buckled downward by the impact load generated by the front front collision, so that a crash stroke (energy absorption stroke) can be secured and the impact energy can be absorbed.
  • the lower arm of the suspension can be moved rearward and downward by buckling the planned displacement portion of the subframe downward. Therefore, it is possible to avoid interfering with the battery by moving the lower arm below the battery (IPU: intelligent power unit). As a result, the interference between the lower arm and the battery can be avoided without using the guide roller and the additional parts such as the rear end portion of the sub-frame which are required in the conventional vehicle body structure.
  • the subframe may have a steering mechanism arranged on the front side of the vehicle body, and the predetermined displacement portion may be provided between the steering mechanism and the rear mounting portion of the subframe. ..
  • the planned displacement part is provided between the steering mechanism and the rear mounting part of the subframe. Therefore, it is possible to prevent the subframe from being sandwiched between the subframe and the dash lower panel when the steering mechanism moves to the rear of the vehicle body due to the impact load generated by the frontal collision and the subframe is deformed at the planned displacement portion. Can be crushed sufficiently. As a result, the front side frame can be sufficiently crushed, so that a sufficient crash stroke (energy absorption stroke) can be obtained without dropping the rear mounting portion of the sub frame from the vehicle body.
  • the front support portion and the rear support portion of the lower arm are sequentially arranged rearward of the vehicle body of the steering mechanism, and the rear support portion includes the subframe and the front side.
  • the frame supporting portion mounted on the front side frame may be provided with a downward movement permitting portion that permits downward movement of the rear supporting portion.
  • the lower arm is smoothly moved below the battery by the impact load generated by the frontal collision. be able to.
  • the easily deformable portion of the sub-frame is composed of at least three bent portions, and the central bent portion among the three bent portions may be the displacement scheduled portion. Good.
  • the easily deformable portion is formed by at least three bent portions. Therefore, a large impact energy absorption amount can be obtained by bending and deforming the sub-frame in a side view in a jerky shape at the easily deformable portion by an impact load due to a frontal collision. Further, by setting the center bent portion of the three bent portions as the planned displacement portion, the planned displacement portion can be largely moved downward. As a result, the lower arm can be suitably moved downward.
  • the planned displacement portion may be a groove portion that is disposed adjacent to the rear support portion of the lower arm and extends in the vehicle width direction.
  • the planned displacement part was formed adjacent to the rear support part of the lower arm. Therefore, when the predetermined displacement portion is moved downward due to the impact load due to the frontal collision, it is possible to secure the same amount of movement of the lower arm as the predetermined displacement portion. As a result, the lower arm can be suitably moved downward.
  • the sub-frame includes left and right side members extending in the vehicle front-rear direction at intervals in the vehicle width direction, and the rear arm of the left and right side members. And a cross member that is erected at a portion where the support portion is provided.
  • the cross members were installed at the sites where the rear support parts of the lower arm were provided.
  • a planned displacement portion is formed adjacent to the rear support portion of the lower arm. Therefore, even if the impact load input due to a frontal collision varies in the vehicle width direction, the cross member can average the transmission load to the left and right displacement planned portions. As a result, the left and right lower arms can be uniformly lowered even when the impact load is input with variations in the vehicle width direction.
  • a cross section of the front portion of the subframe is formed to be larger than that of the rear portion of the subframe so that the vehicle can be driven from the front portion to receive a narrow offset collision load.
  • a receiving member may be provided that projects outward in the width direction.
  • the receiving member is provided on the front part of the sub-frame, and the receiving member is projected outward in the vehicle width direction.
  • the impact load (energy) generated by the flat collision full-wrap frontal collision
  • the impact energy generated by the narrow offset frontal collision can be absorbed.
  • the rear mounting portion of the sub-frame may include a reinforcing plate that is superposed on a mounting surface at the rear of the vehicle body of the rearmost bent portion of the bent portions.
  • the rear mounting part can be reinforced with the reinforcing plate. Accordingly, it is possible to promote the deformation of the bent portion (that is, the subframe) due to the impact load generated by the frontal collision.
  • an annular vehicle body bottom frame frame formed along the outer periphery of the floor, and an annular battery mounting frame fixed to the vehicle body bottom frame frame.
  • the vehicle body bottom skeleton frame is formed in an octagonal annular shape in a plan view
  • the battery mounting frame is provided with an octagonal annular skeleton portion in a plan view, on each side of the vehicle body bottom skeleton frame. It may be fixed.
  • the skeleton frame at the bottom of the vehicle body was formed into an octagonal ring, and the ring frame of the battery mounting frame was formed into an octagonal ring.
  • the annular skeleton portion of the battery mounting frame is fixed to the vehicle body bottom skeleton frame. Therefore, the impact load due to the collision can be supported by the vehicle body bottom frame frame and the annular frame part from the vehicle body front-rear direction, the vehicle width direction (that is, the left-right direction), the vehicle body front diagonal direction, and the vehicle body rear diagonal direction. As a result, the battery can be protected against an impact load input from all directions of the vehicle body.
  • the sub-frame includes a front attachment portion, a center attachment portion and a rear attachment portion that are fastened to the vehicle body.
  • the front mounting portion is fastened to the front side frame of the vehicle body so as to allow separation in the vehicle front-rear direction, and the center mounting portion allows separation of the vehicle body in the front side frame in the vehicle width direction. It may be possible to be fastened.
  • the front mounting part of the subframe was fastened to the front side frame so that separation in the vehicle front-rear direction was allowed.
  • the central mounting portion of the sub-frame is fastened to the front side frame so as to allow separation in the vehicle width direction. Therefore, when the front side frame buckles and deforms rearward of the vehicle body due to the impact load generated by the frontal collision, the front mounting portion and the central mounting portion can be separated from the front side frame. Thus, for example, even if a member such as a steering mechanism having high rigidity is arranged in the front portion of the sub-frame, it is possible to prevent the deformation of the front side frame by the sub-frame and sufficiently secure the crash stroke.
  • the subframe is provided with the planned displacement portion, and the lower arm is provided in front of the displacement planned portion of the vehicle body. This ensures a crash stroke.
  • FIG. 3 is a bottom view of the vehicle body structure of the first embodiment according to the present invention as seen from below. It is the perspective view which looked at the important section of the body structure concerning a 1st embodiment from the lower part. It is a bottom view showing the state where the steering mechanism and the lower arm were provided in the body structure concerning a 1st embodiment.
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG. 1.
  • FIG. 5 is a sectional view taken along line VV of FIG. 1. It is a perspective view which removed the subframe from the body structure concerning a 1st embodiment. It is the side view which looked at the body structure concerning a 1st embodiment from the left side. It is a perspective view showing a subframe concerning a 1st embodiment.
  • FIG. 2 is a sectional view taken along line XX of FIG. 1. It is sectional drawing which expanded the XI section of FIG.
  • FIG. 3 is a perspective view of the vehicle body structure according to the first embodiment provided with a steering mechanism and a lower arm as seen from above.
  • FIG. 6 is a side view illustrating an example in which an impact load is input to the vehicle body structure according to the first embodiment. It is a side view explaining the example which absorbs an impact load in the body structure concerning a 1st embodiment. It is a side view explaining the example which deforms the sub-frame concerning a 1st embodiment by an impact load.
  • a vehicle body structure 10 includes a vehicle body bottom skeleton frame 12, a battery mounting frame 13, left and right front side frames 14, a sub frame 15, a front bumper beam 16, and a steering mechanism 17. (See also FIG. 9) and a lower arm 18 (see also FIG. 9).
  • the vehicle body bottom frame frame 12, the left and right front side frames 14, and the front bumper beam 16 are members that form the vehicle body frame.
  • the vehicle body structure 10 is used, for example, in an electric vehicle (so-called EV).
  • the vehicle body bottom skeleton frame 12 is formed in an octagonal ring shape in a plan view along the floor outer circumference (floor outer circumference) of the vehicle body.
  • the vehicle body bottom frame frame 12 includes left and right side sills 21, left and right outriggers (front side frame ends) 22, a front cross member 23, left and right rear frame front portions 24a, and a rear cross member 25. ..
  • the left and right side sills 21 are provided in the vehicle width direction of the vehicle body structure 10 at lower left and right outer sides of the vehicle compartment and extend in the vehicle front-rear direction.
  • the left and right side sills 21, 21 are, for example, members having a high rigidity that are formed in a rectangular closed cross section and form a vehicle body skeleton.
  • a rear end 22a of the left outrigger 22 is connected to a front end 21a of the left side sill 21.
  • the left outrigger 22 extends obliquely from the rear end portion 14a of the left front side frame 14 toward the rear of the vehicle body and to the left outer side in the vehicle width direction to the front end portion 21a of the left side sill 21.
  • a rear end 22a of the right outrigger 22 is connected to a front end 21a of the right side sill 21.
  • the right outrigger 22 extends obliquely from the rear end portion 14a of the right front side frame 14 toward the rear side of the vehicle body and toward the right outer side in the vehicle width direction to the front end portion 12a of the right side sill 21.
  • the left and right outriggers 22 are formed of, for example, a rectangular closed cross section and are members of high rigidity that form a vehicle body skeleton.
  • a front cross member 23 is installed on the left outrigger 22 and the right outrigger 22 in the vehicle width direction.
  • the front cross member 23 is, for example, a hat-shaped section (see FIG. 11), and is a highly rigid member that forms a vehicle body skeleton.
  • the center position G1 (see FIG. 11) of the front cross member 23 is located substantially at the center of the hat-shaped cross section.
  • a left rear frame 24 extends from the rear end portion 21b of the left side sill 21 to the rear end portion of the vehicle body structure 10 toward the rear of the vehicle body.
  • the left rear frame 24 has a left rear frame front portion 24a connected to a rear end portion 21b of the left side sill 21.
  • the left rear frame front part 24a extends from the rear end part 21b of the left side sill 21 toward the rear of the vehicle body and inwardly toward the right inside of the vehicle width direction.
  • a right rear frame 24 extends from the rear end portion 21b of the right side sill 21 to the rear end portion of the vehicle body structure 10 toward the rear of the vehicle body.
  • the right rear frame 24 has a right rear frame front portion 24a connected to a rear end portion 21b of the right side sill 21.
  • the right rear frame front part 24a extends from the rear end part 21b of the left side sill 21 to the rear of the vehicle body and inclines toward the left inner side in the vehicle width direction.
  • the left and right rear frame front portions 24a, 24a are members having a high rigidity that are formed in, for example, rectangular closed cross sections and form a vehicle body skeleton.
  • a rear cross member 25 is laid across the rear end portion 24b of the left rear frame front portion 24a and the rear end portion 24b of the right rear frame front portion 24a in the vehicle width direction.
  • the rear cross member 25 is, for example, a hat-shaped cross section, and is a highly rigid member that forms a vehicle body skeleton.
  • the left and right side sills 21, the left and right outriggers 22, the front cross member 23, the left and right rear frame front portions 24a, and the rear cross members 25 form the vehicle body bottom skeleton frame 12 in an octagonal ring shape in a plan view.
  • a floor panel 27 (see FIG. 4) is provided inside the vehicle body bottom frame frame 12. The floor panel 27 forms the floor of the passenger compartment.
  • the left and right side sills 21, the left and right outriggers 22, the front cross member 23, the left and right rear frame front portions 24a, and the rear cross member 25 are members having high rigidity that form a vehicle body skeleton. That is, the vehicle body bottom frame frame 12 is a highly rigid vehicle body frame member and is formed in an octagonal ring shape.
  • the battery mounting frame 13 is fixed to the vehicle body bottom frame 12 by a plurality of fastening bolts (fastening members) 31.
  • the battery mounting frame 13 is formed in an octagonal ring shape along the vehicle body bottom skeleton frame 12.
  • a lower portion of the battery mounting frame 13 is covered with a battery floor 32 from below, and a driving battery (IPU: intelligent power unit) 34 (see FIG. 4) is mounted inside.
  • IPU intelligent power unit
  • the battery mounting frame 13 includes an annular skeleton portion 36 and a vehicle body mounting portion 37.
  • the annular skeleton portion 36 and the vehicle body mounting portion 37 are formed along the vehicle body bottom portion skeleton frame 12 into an octagonal annular shape in a plan view.
  • the annular skeleton portion 36 includes a skeleton upper wall (upper wall) 41, a skeleton lower wall (lower wall) 42, an outer vertical wall (vertical wall) 43, and an inner vertical wall 44. And are equipped with.
  • the skeleton upper wall 41 is arranged below the floor panel 27 and along the floor panel 27.
  • the skeleton lower wall 42 is arranged below the skeleton upper wall 41 along the skeleton upper wall 41.
  • An outer vertical wall 43 is connected to the outer periphery of the skeleton upper wall 41 and the outer periphery of the skeleton lower wall 42.
  • An inner vertical wall 44 is connected to the inner periphery of the skeleton upper wall 41 and the inner periphery of the skeleton lower wall 42.
  • the skeleton upper wall 41, the skeleton lower wall 42, and the outer vertical wall 43 form an outer peripheral portion 38 of the annular skeleton portion 36 in a U-shaped cross section.
  • the skeleton upper wall 41, the skeleton lower wall 42, the outer vertical wall 43, and the inner vertical wall 44 form an annular skeleton portion 36 in a hollow frame having a rectangular cross section. That is, the annular skeleton portion 36 is a hollow frame having a rectangular cross section and is formed as a highly rigid skeleton member.
  • a vehicle body mounting portion 37 is provided outside the annular skeleton portion 36. That is, the battery mounting frame 13 is provided with the vehicle body mounting portion 37 on the outside.
  • the vehicle body attachment part 37 is formed in an octagonal ring shape in a plan view along the outer peripheral part 38 of the annular skeleton part 36 (see FIG. 1).
  • the vehicle body mounting portion 37 includes a mounting upper wall 46, a mounting lower wall 47, and a mounting outer peripheral wall 48.
  • the mounting upper wall 46 projects from the center in the vertical direction of the skeleton upper wall 41 toward the outside of the annular skeleton portion 36.
  • the mounting lower wall 47 is disposed below the mounting upper wall 46, and projects from the skeleton lower wall 42 along the mounting upper wall 46 toward the outside of the annular skeleton portion 36.
  • a mounting outer peripheral wall 48 is connected to the outer periphery of the mounting upper wall 46 and the outer periphery of the mounting lower wall 47.
  • the vehicle body mounting portion 37 is formed in a U-shaped cross section by the mounting upper wall 46, the mounting lower wall 47, and the mounting outer peripheral wall 48.
  • the vehicle body mounting portion 37 is integrally provided on the outer vertical wall 43 (outer peripheral portion 38) and is disposed below the vehicle body bottom frame frame 12.
  • the mounting upper wall 46 is fixed to each side of the vehicle body bottom frame frame 12 from below with a plurality of fastening bolts 31.
  • each side of the vehicle body bottom frame 12 is composed of left and right side sills 21, left and right outriggers 22, a front cross member 23, left and right rear frame front portions 24 a, and a rear cross member 25.
  • the vehicle body mounting portion 37 is a mounting portion corresponding to each side, the left and right side mounting portions 51, the left and right front slant mounting portions 52, the front mounting portion 53, the left and right rear slant mounting portions 54, and the rear. And a mounting portion 55.
  • the front attachment portion 53 is attached to the outer peripheral portion 38 of the front skeleton portion 45 of the annular skeleton portion 36.
  • the front skeleton portion 45 extends in the vehicle width direction along the front cross member 23 in a state where the front skeleton portion 45 is disposed behind the front cross member 23 in the annular skeleton portion 36.
  • the front skeleton portion 45 is arranged at a position facing left and right rear mounting portions 77 (described later) of the sub-frame 15, and also serves as a stopper portion of the left and right rear mounting portions 77.
  • the front skeleton portion 45 will be described as the stopper portion 45.
  • the reason why the front skeleton portion 45 also serves as the stopper portion 45 will be described later in detail.
  • the front mounting portion 53 is arranged at a position facing the left and right rear mounting portions 77 of the sub-frame 15.
  • the front mounting portion 53 has a left mounting end portion 53 a and a right mounting end portion 53 b fixed to the front cross member 23.
  • the left mounting end portion 53a is a portion near the left end of the front mounting portion 53, and is mounted on the left end portion 23a of the front cross member 23 with a pair of fastening bolts 31.
  • the pair of fastening bolts 31 of the left mounting end portion 53a are arranged at intervals in the vehicle width direction.
  • the right attachment end portion 53b is a portion near the right end of the front attachment portion 53, and is attached to the right end portion 23b of the front cross member 23 with a pair of fastening bolts 31.
  • the pair of fastening bolts 31 of the right mounting end portion 53b are arranged at intervals in the vehicle width direction.
  • the left mounting end 53a is mounted to the left end 23a of the front cross member 23, and the right mounting end 53b is mounted to the right end 23b of the front cross member 23, whereby the front mounting part 53 is fixed to the front cross member 23. ing.
  • the left mounting end portion 53 a has a left recessed portion (recessed portion) 57 formed between the pair of fastening bolts 31.
  • the left recessed portion 57 is formed in a recessed shape by, for example, being cut out in a curved shape from the mounting outer peripheral wall 48 of the left mounting end portion 53a toward the annular skeleton portion 36 (that is, the rear of the vehicle body).
  • the right mounting end 53b has a right recess 58 formed between the pair of fastening bolts 31.
  • the right recess 58 is formed in a recess by, for example, being cut out in a curved shape from the mounting outer peripheral wall 48 of the right mounting end 53b toward the annular skeleton 36 (that is, the rear of the vehicle body). ing.
  • the vehicle body mounting portion 37 is formed on the annular skeleton portion 36 of the battery mounting frame 13, and the front mounting portion 53 of the vehicle body mounting portion 37 is provided with the left recessed portion 57 and the right recessed portion 58. Accordingly, it is not necessary to form the left recess 57 and the right recess 58 in the annular skeleton 36, and the left recess 57 and the right recess 58 can be formed without affecting the strength and rigidity of the battery mounting frame 13.
  • the left and right recesses 57 and 58 are formed in a curved shape will be described, but the shape of the left and right recesses 57 and 58 is not limited to a curved shape. The reason why the left and right recesses 57 and 58 are formed in the front mounting portion 53 will be described later in detail.
  • the vehicle body bottom skeleton frame 12 is formed in an octagonal ring shape
  • the ring skeleton portion 36 of the battery mounting frame 13 is formed in an octagonal ring shape.
  • the strength and rigidity of the vehicle body bottom frame 12 and the battery mounting frame 13 can be increased.
  • the battery mounting frame 13 can surround the outer periphery of the battery 34 from all directions. Accordingly, the battery mounting frame 13 can sufficiently protect the battery 34 (see FIG. 4) from an external collision.
  • annular skeleton portion 36 of the battery mounting frame 13 is fixed to the vehicle body bottom skeleton frame 12. Therefore, the vehicle body bottom frame 12 and the battery mounting frame 13 are formed to have substantially the same contour. As a result, the function (for example, strength and rigidity) of the vehicle body bottom frame 12 can be supplemented by the battery mounting frame 13, so that the weight reduction of the vehicle body structure 10 can be achieved.
  • the annular skeleton portion 36 is fixed to the vehicle body bottom skeleton frame 12, the impact load due to the collision is applied from the vehicle body front and rear direction, the left and right vehicle width directions, the vehicle body front diagonal direction, and the vehicle body rear diagonal direction to the vehicle body bottom skeleton frame 12 And can be supported by the annular skeleton 36. Thereby, the battery 34 can be protected against an impact load input from all directions of the vehicle body.
  • the rear end portion 14a of the left front side frame 14 is connected to the front end portion 22b of the left outrigger 22 of the vehicle body bottom frame frame 12.
  • a rear end portion 14a of the right front side frame 14 is connected to a front end portion 22b () of the right outrigger 22 of the vehicle body bottom frame frame 12.
  • Front bumper beams 16 are installed on the front end portions 14b of the left and right front side frames 14 via extensions 19.
  • the left and right front side frames 14 are provided at left and right outer sides of the power unit room 61 in the vehicle width direction of the vehicle body structure 10 and extend in the vehicle front-rear direction.
  • the power unit room 61 is, for example, a space in which a power unit serving as a driving power source is accommodated.
  • the left and right front side frames 14 are members having a high rigidity that are formed in, for example, a rectangular closed cross section and form a vehicle body skeleton.
  • the left and right front side frames 14 When the vehicle has a frontal collision, the left and right front side frames 14 receive an impact load on the front end portion 14b through the front bumper beam 16 and the extension 19.
  • the left and right front side frames 14 secure a crash stroke (energy absorption stroke) by, for example, buckling and deforming rearward of the vehicle body by an impact load input to the front end portion 14b, and absorb impact energy due to a frontal collision.
  • a sub frame 15 is provided below the left and right front side frames 14 and in front of the vehicle body of the battery mounting frame 13.
  • the sub-frame 15 includes left and right side members 63, a front crossbar 64, a rear crossbar (cross member) 65, and left and right receiving members (receiving members) 66.
  • the left side member 63 is arranged below the left front side frame 14 and extends in the front-rear direction of the vehicle body.
  • the left side member 63 includes a first member portion 71, a second member portion 72, and a third member portion (front portion of subframe) 73.
  • the first member portion 71 extends linearly in the vehicle front-rear direction.
  • a rear end portion 72a of the second member portion 72 is connected to a front end portion 71a of the first member portion 71.
  • the second member portion 72 extends in a curved shape toward the front of the vehicle body so as to project from the front end portion 71a of the first member portion 71 to the left side in the vehicle width direction.
  • the third member portion 73 is connected to the front end portion 72b of the second member portion 72 toward the front of the vehicle body.
  • the first member portion 71, the second member portion 72, and the third member portion 73 are high-rigidity members formed in, for example, a rectangular closed cross section.
  • the third member portion 73 forms the front portion of the left side member 63 and has a larger cross-sectional shape than the rear portion of the third member portion 73 (that is, the first member portion 71 and the second member portion 72). ing.
  • the right side member 63 is formed symmetrically with respect to the left side member 63.
  • the left side member 63 and the right side member 63 are arranged at intervals in the vehicle width direction and extend toward the front and rear of the vehicle body.
  • a front crossbar 64 is laid across the front end portion 71a of the first member portion 71 of the left side member 63 and the front end portion 71a of the first member portion 71 of the right side member 63 in the vehicle width direction.
  • the rear cross bar 65 is provided at the portion 71b of the left side member 63 near the center rear end of the first member portion 71 and the portion 71b of the right side member 63 near the center rear end of the first member portion 71. It is installed along the bar 64 in the vehicle width direction.
  • a rear support portion 93 (see FIG. 9), which will be described later, is provided at a portion 71b near the center rear end portion.
  • the rear crossbar 65 is installed on the portion 71b of the left and right side members 63 where the rear support portion 93 of the lower arm 18 is provided.
  • the third member portion 73 of the left side member 63 is arranged on the left side in the vehicle width direction with respect to the first member portion 71 via the second member portion 72.
  • a left receiving member 66 projects from the front end portion 73a toward the left outside in the vehicle width direction.
  • the third member portion 73 of the right side member 63 is arranged on the right outside of the first member portion 71 in the vehicle width direction with the second member portion 72 interposed therebetween.
  • a right receiving member 66 is projected from the front end portion 73a toward the right outer side in the vehicle width direction.
  • the left receiving member 66 of the left side member 63 is arranged so as to overlap the left end portion 16a of the front bumper beam 16 in the vertical direction (plan view).
  • the right receiving member 66 of the right side member 63 is arranged so as to overlap the right end portion 16b of the front bumper beam 16 in the up-down direction (plan view). Therefore, for example, an impact load due to a narrow offset frontal collision (narrow offset collision) of the vehicle can be received by the left and right receiving members 66.
  • the vehicle body structure 10 can absorb the impact energy generated by the vehicle's narrow offset frontal collision in addition to the impact energy generated by the vehicle's flat collision (full-wrap frontal collision).
  • the left side member 63 includes a front mounting portion 75, a central mounting portion 76, and a rear mounting portion 77.
  • the front attachment portion 75 projects from the front end portion 71a of the first member portion 71 of the left side member 63 to the left outside in the vehicle width direction.
  • the front attachment portion 75 is fastened to the lower front portion 14c of the left front side frame 14 via the front support bracket 81, for example, by fastening bolts 82 that allow separation in the vehicle body front-rear direction.
  • a front slit extending in the front-rear direction of the vehicle body is formed in the lower portion of the front support bracket 81, and the fastening bolt 82 is inserted into the front slit and attached to the lower portion of the front support bracket 81 by screw connection.
  • the front slit is pulled out from the fastening bolt 82, so that the front support bracket 81 can be separated from the front mounting portion 75 in the vehicle front-rear direction. it can. This prevents the front lower portion 14c of the left front side frame 14 from moving rearward of the vehicle body by the front mounting portion 75 (that is, the left side member 63).
  • the central mounting portion 76 extends upward from the vehicle body front side of a portion 71b of the first member portion 71 near the central rear end portion, and projects toward the left side in the vehicle width direction.
  • the central mounting portion 76 is fastened to the central lower portion 14d of the left front side frame 14 by, for example, fastening bolts 83 so as to allow separation in the vehicle width direction.
  • a central slit 84 extending in the vehicle width direction is formed at the upper end portion 76a of the central mounting portion 76, and the fastening bolt 83 is inserted into the central slit 84 and screwed to the central lower portion 14d.
  • the central attachment portion 76 is attached to the lower central portion 14d of the left front side frame 14 via the fastening bolts 83.
  • the central slit 84 is pulled out from the fastening bolt 83, so that the central lower portion 14d of the front side frame 14 is moved in the vehicle width direction with respect to the central mounting portion 76. Can be separated to the left outside. As a result, it is possible to prevent the lower central portion 14d of the left front side frame 14 from moving leftward in the vehicle width direction by the central mounting portion 76 (that is, the left side member 63).
  • the front attachment portion 75 of the left side member 63 is fastened to the front lower portion 14c of the left front side frame 14 so as to allow separation in the vehicle front-rear direction.
  • the central mounting portion 76 of the left side member 63 is fastened to the central lower portion 14d of the left front side frame 14 so as to allow separation in the vehicle width direction.
  • the front mounting portion 75 and the central mounting portion 76 can be separated from the left front side frame 14. This makes it possible to prevent the left front side frame 14 from being deformed by the sub frame 15 in a state where a member such as the steering mechanism 17 having high rigidity is arranged on the vehicle body front side of the sub frame 15. Therefore, the crash stroke of the left front side frame 14 can be sufficiently secured.
  • the rear mounting portion 77 is formed at the rear end portion of the first member portion 71 of the left side member 63, and is formed in the left recess 57 of the left mounting end portion 53 a of the front mounting portion 53. It is arranged.
  • the rear mounting portion 77 is fastened to the left end portion 23a of the front cross member 23 with a fastening bolt 86 while being arranged in the left recessed portion 57.
  • the rear mounting portion 77 of the left side member 63 is opposed to the stopper portion 45 of the battery mounting frame 13 via the bottom portion 57a of the left recessed portion 57. Therefore, the rear mounting portion 77 of the left side member 63 is brought closer to the battery mounting frame 13 (specifically, the stopper portion 45) to reduce the distance L1 (see also FIG. 11) between the rear mounting portion 77 and the stopper portion 45. it can.
  • the rear mounting portion 77 of the left side member 63 rearward of the vehicle body with an impact load generated by a frontal collision, the rear mounting portion 77 quickly contacts the stopper portion 45, and the stopper portion 45 impacts.
  • the load can be suitably supported.
  • the front cross member 23 is formed in a hat-shaped cross section by a front wall 23c, a rear wall 23d, a bottom portion 23e, a front overhanging piece 23f, and a rear overhanging piece 23g.
  • the center of gravity position G1 is located at the center.
  • the center of gravity G1 of the front cross member 23 is located in front of the fastening bolt 86 in the vehicle body.
  • the rear attachment portion 77 of the left side member 63 is attached to the left end portion 23a of the front cross member 23 by the fastening bolt 86. That is, the rear mounting portion 77 is fixed to the rear of the vehicle body from the center of gravity G1 of the front cross member 23 with the fastening bolt 86.
  • an impact load generated by a frontal collision is input to the front cross member 23 of the vehicle body bottom frame frame 12 through the rear mounting portion 77 and the fastening bolt 86. That is, an impact load that tends to fall toward the battery mounting frame 13 side about the center of gravity G1 is input to the front cross member 23 via the fastening bolt 86. Therefore, the rear mounting portion 77 of the left side member 63 is fixed to the rear of the vehicle body from the center of gravity G1 of the front cross member 23. Accordingly, the rear mounting portion 77 of the left side member 63 can be brought into contact with the stopper portion 45 (that is, the front surface of the battery mounting frame 13) quickly and reliably, and the impact load is quickly transmitted to the battery mounting frame 13. be able to.
  • the right side member 63 also includes a fastening bolt 82, a fastening bolt 83, and a fastening bolt 86 on the right end portion 23b of the right front side frame 14 and the front cross member 23.
  • the front attachment portions 75 are attached to the front lower portions 14c of the left and right front side frames 14 via the front support bracket 81 and the fastening bolts 82 so as to allow separation in the vehicle front-rear direction.
  • a central attachment portion 76 is attached to the lower central portion 14d of the left and right front side frames 14 via fastening bolts 83 so as to allow separation in the vehicle width direction. Therefore, when an impact load is input to the left and right front side frames 14, the sub frame 15 can be separated from the left and right front side frames 14. This allows the left and right front side frames 14 to buckle and deform rearward of the vehicle body to absorb impact energy.
  • a steering mechanism 17 is arranged on the vehicle body front side of the subframe 15. Specifically, the steering mechanism 17 is installed on the vehicle body front side of the first member portion 71 of the left side member 63 and the first member portion 71 (see FIG. 2) of the right side member 63.
  • the steering mechanism 17 has, for example, a rack and a pinion housed inside a steering gear box 17a.
  • the rack is meshed with the pinion, the rack extends in the vehicle width direction, and the left and right tie rods 17b are connected to the rack.
  • the left and right tie rods 17b (only the left tie rod 17b is shown) extend outward from the steering gear box 17a in the vehicle width direction.
  • the steering mechanism 17 is a member having high rigidity.
  • the lower arm 18 is arranged behind the steering mechanism 17 in the vehicle body, and is fixed to the first member portion 71 of the left side member 63 and the first member portion 71 of the right side member 63 (see FIG. 2). With the lower arm 18 fixed to the first member portion 71 of the left side member 63, the suspension is supported by the lower arm 18 via the knuckle 89. The front wheels are supported by the suspension via knuckles 89.
  • the lower arm 18 includes an arm body 91, a front support portion 92, and a rear support portion 93.
  • the arm body 91 is arranged between the front support portion 92 and the rear support portion 93, and is connected to the front support portion 92 and the rear support portion 93.
  • the front support portion 92 and the rear support portion 93 are sequentially arranged toward the rear of the vehicle body.
  • the front support portion 92 is fixed to a portion 71c of the first member portion 71 near the vehicle body rear side of the steering mechanism 17.
  • the rear support portion 93 is arranged behind the front support portion 92 in the vehicle body, and has a member support portion 97 and a frame support portion 98.
  • the member support portion 97 is connected to a portion 71b of the first member portion 71, which is located on the rear side of the vehicle body of the front support portion 92 and near the center rear end portion, with a fastening bolt 101. ..
  • the frame support portion 98 is connected to a connection bracket (bracket) 103 of the left front side frame 14 with a fastening bolt 104. That is, the rear support portion 93 is provided on the portion 71 b of the first member portion 71 near the center rear end portion and the connecting bracket 103 of the left front side frame 14.
  • the frame support portion 98 includes a downward movement permitting portion 105 that permits downward movement with respect to the connecting bracket 103 of the left front side frame 14.
  • a downward movement allowance portion 105 for example, a slit (groove portion) is formed.
  • the fastening bolt 104 is inserted into the downward movement allowance portion (that is, the slit) 105 and fastened to the connection bracket 103. Therefore, when the left side member 63 is deformed by the impact load input to the front end portion 15a of the subframe 15 (the front end portion of the left side member 63), the downward movement allowance portion (slit) 105 comes out from the fastening bolt 104, The support 98 is allowed to move downward. As a result, the lower arm 18 can be smoothly moved downward together with the left side member 63 to be positioned below the battery 34.
  • the left side member 63 includes the easily deformable portion 110 provided between the steering mechanism 17 and the rear mounting portion 77.
  • the easily deformable portion 110 is composed of, for example, three bent portions, a first bent portion 112, a second bent portion 113, and a third bent portion 114.
  • the easily deformable portion 110 is composed of the first to third bent portions 112 to 114 will be described, but the number of bent portions is not limited to this. It is also possible to provide three or more.
  • the first bent portion 112 is provided, for example, on the lower surface portion 71d of the first member portion 71 of the left side member 63 near the vehicle front side of the rear crossbar 65.
  • the first bent portion 112 is, for example, a groove portion that is formed in an upward concave shape and that extends in the vehicle width direction.
  • the third bent portion 114 is provided, for example, on the lower surface portion 71e of the rear mounting portion 77 of the first member portion 71 near the front side of the vehicle body.
  • the third bent portion 114 is, for example, formed in an upward concave shape and is formed of a step portion extending in the vehicle width direction.
  • the second bent portion 113 is formed, for example, on the central upper surface portion 71f of the first member portion 71 between the first bent portion 112 and the third bent portion 114.
  • the 2nd bending part 113 is formed in the downward concave shape, for example, and is formed in the groove part (groove) extended in a vehicle width direction.
  • the second bent portion 113 will be described as the "displacement portion 113".
  • the planned displacement portion 113 is provided between the steering mechanism 17 and the rear mounting portion 77 (see FIG. 10) and adjacent to the rear support portion 93 of the lower arm 18 at the rear of the vehicle body.
  • the rear support portion 93 of the lower arm 18 is fixed to the vehicle body front side of the displacement target portion 113.
  • the predetermined displacement portion 113 is formed as a groove having a downward concave shape. Therefore, when an impact load due to a frontal collision is input to the front end portion 15a of the sub-frame 15 (the front end portion of the left side member 63 (see FIG. 3)), the input impact load can deform the predetermined displacement portion 113 downward. it can.
  • the third bent portion 114 is located at the end of the first to third bent portions 112 to 114 (the first bent portion 112 is shown in FIG. 10) arranged in order toward the rear of the vehicle body.
  • the rear mounting portion 77 is located adjacent to the rear of the rearmost third bent portion 114 in the vehicle body.
  • the reinforcing plate 116 is overlaid on the mounting surface 77a of the rear mounting portion 77 from below. In this state, the reinforcing plate 116 is attached by the fastening bolts 86 in a state of being overlapped with the attachment surface 77a of the rear attachment portion 77.
  • the reinforcing plate 116 is formed of, for example, a flat steel plate.
  • the mounting surface 77a of the rear mounting portion 77 is reinforced by the reinforcing plate 116.
  • a third bent portion 114 is formed adjacent to the front side of the reinforcing plate 116 in the vehicle body.
  • the easily deformable portion 110 is provided on the left side member 63 of the subframe 15. Further, the rear mounting portion 77 of the left side member 63 is arranged in the left recess 57 (see also FIG. 3). Furthermore, the stopper portion 45 of the battery mounting frame 13 is opposed to the rear mounting portion 77 of the left side member 63 via the bottom portion 57a (see also FIG. 6) of the left recessed portion 57.
  • the impact load F1 due to the frontal collision is input to the front end portion 14b of the left front side frame 14. Further, the impact load F2 due to the frontal collision is input to the left side member 63 (specifically, the first member portion 71) of the subframe 15.
  • the left front side frame 14 buckles and deforms so that, for example, the front part moves rearward of the vehicle body and the central part moves in the vehicle width direction.
  • the front attachment portion 75 is separated from the front support bracket 81 of the left front side frame 14 by moving the front portion of the left front side frame 14 rearward of the vehicle body.
  • the central mounting portion 76 is separated from the left front side frame 14 by moving the central portion of the left front side frame 14 in the vehicle width direction. Therefore, even if a member such as the steering mechanism 17 having high rigidity is arranged on the front side of the subframe 15 in the vehicle body, the deformation of the left front side frame 14 can be prevented by the subframe 15. As a result, the crash stroke of the left front side frame 14 can be secured, and the impact energy due to the frontal collision can be absorbed.
  • the reason why the front skeleton portion 45 of the annular skeleton portion 36 is also used as the stopper portion 45 will be described in detail. That is, when the impact load F2 is input to the first member portion 71 of the left side member 63, the rear attachment portion 77 of the left side member 63 that moves rearward of the vehicle body can be supported by the stopper portion 45. Therefore, the impact load F2 due to the frontal collision can be dispersed between the battery mounting frame 13 and the vehicle body bottom frame 12. As a result, the cross-sectional shape and the plate thickness dimension of the vehicle body bottom frame frame 12 can be kept small, and the vehicle body structure 10 can be made lighter.
  • the central second fold 113 is set as the displacement scheduled part 113.
  • the scheduled displacement portion 113 is formed so as to buckle downward due to the impact load F2 generated by the front collision.
  • the planned displacement portion 113 can be largely moved downward. In this way, by buckling the planned displacement portion 113 downward, the crash stroke of the left front side frame 14 can be secured and the impact energy can be absorbed.
  • a lower arm 18 (see FIG. 12) is provided in front of the vehicle body of the planned displacement portion 113.
  • the scheduled displacement portion 113 is formed adjacent to the rear support portion 93 (see FIG. 12) of the lower arm 18. Therefore, by buckling the planned displacement portion 113 of the left side member 63 downward, the downward movement amount of the lower arm 18 can be secured similarly to the planned displacement portion 113.
  • the rear cross bar 65 is provided at a portion 71 b near the center rear end portion where the rear support portion 93 of the lower arm 18 is provided. Has been erected.
  • a planned displacement portion 113 is formed adjacent to the rear support portion 93 of the lower arm 18. Therefore, even when the impact load F2 input due to a frontal collision varies in the vehicle width direction, the transmission load to the left and right displacement planned portions 113 can be averaged by the rear cross bar 65. As a result, the left and right lower arms 18 can be uniformly lowered even when the impact load F2 varies and is input in the vehicle width direction.
  • an easily deformable portion 110 is provided between the steering mechanism 17 and the rear mounting portion 77 of the left side member 63. Therefore, due to the impact load F2 generated by the frontal collision, the left side member 63 is deformed by the deformable portion 110, and the steering mechanism 17 moves rearward of the vehicle body. In this case, it can be prevented from being sandwiched between the sub-frame 15 and the dash lower panel 29, and the sub-frame 15 can be sufficiently deformed (crushed). As a result, the left front side frame 14 can be sufficiently buckled and deformed (crushed), and a sufficient crash stroke can be obtained without dropping the rear mounting portion 77 of the left side member 63 from the vehicle body.
  • the easy-to-deform portion 110 is formed of three bent portions, that is, the first to third bent portions 112 to 114. Therefore, the left side member 63 (specifically, the first member portion 71) of the sub-frame 15 can be bent and deformed in the side surface-like jar shape in the easily deformable portion 110 by the impact load F2 due to the frontal collision. This makes it possible to obtain a large amount of impact energy absorption in the subframe 15.
  • the pressing force F3 that moves the rear mounting portion 77 of the left side member 63 rearward of the vehicle body can be made larger than the rotational force F4 that acts on the rear mounting portion 77.
  • the shearing force acting on the fastening bolt 86 can be increased. Therefore, the fastening bolt 86 can be broken by the shearing force, and the rear mounting portion 77 can be moved favorably rearward of the vehicle body. This makes it possible to secure a large contact surface for the rear mounting portion 77 to contact the stopper portion 45. Therefore, the impact load F2 can be satisfactorily transmitted from the rear attachment portion 77 to the stopper portion 45, and the impact load F2 can be favorably supported by the stopper portion 45 (that is, the battery mounting frame 13).
  • a vehicle body structure 130 is the same as that of the first embodiment except that the battery mounting frame 13 of the first embodiment is replaced with a battery mounting frame 132.
  • the battery mounting frame 132 is made of a highly rigid body frame member and is formed in an annular shape along the vehicle body bottom frame frame 12.
  • the battery mounting frame 132 has corner portions 132a to 132d formed in a curved shape (arc shape), and the other configurations are the same as those of the battery mounting frame 13 of the first embodiment. Further, the battery mounting frame 132 is fixed to the vehicle body bottom frame 12 by a plurality of fastening bolts 31.
  • the battery mounting frame 132 is formed in an annular shape, so that the strength of the vehicle body bottom frame 12 and the battery mounting frame 132 can be reduced. The rigidity can be increased. Further, the battery mounting frame 132 is fixed to the vehicle body bottom frame 12. As a result, the function (for example, strength and rigidity) of the vehicle body bottom frame 12 can be supplemented by the battery mounting frame 132, so that the weight reduction of the vehicle body structure 130 can be achieved. Further, by forming the battery mounting frame 132 in an annular shape, the battery mounting frame 132 can surround the outer periphery of the battery 34 (see FIG. 4) from all directions. Thereby, the battery mounting frame 132 can sufficiently protect the battery 34 from an external impact.
  • the entire battery mounting frame 132 may be formed in a curved shape (arc shape). Is.
  • the vehicle body structure 140 is the same as that of the first embodiment except that the annular skeleton portion 36 of the battery mounting frame 13 of the first embodiment is replaced with the annular skeleton portion 142.
  • the annular skeleton portion 142 includes a skeleton upper wall 41, a skeleton lower wall 42, an outer vertical wall 43, and a plurality of reinforcing ribs 143.
  • the skeleton upper wall 41, the skeleton lower wall 42, and the outer vertical wall 43 form the outer peripheral portion 38 of the annular skeleton portion 142 in a U-shaped cross section.
  • a plurality of reinforcing ribs 143 are provided inside the outer peripheral portion 38 at intervals.
  • the outer peripheral portion 38 is reinforced by the plurality of reinforcing ribs 143.
  • the annular skeleton portion 142 is formed into a highly rigid skeleton member by providing the plurality of reinforcing ribs 143 inside the outer peripheral portion 38.
  • a vehicle body structure 150 is the same as that of the first embodiment except that the battery mounting frame 13 of the first embodiment is replaced by a battery mounting frame 152.
  • the battery mounting frame 13 of the first embodiment is provided with left and right recesses 57 and 58 (see FIG. 6) in the vehicle body mounting portion 37.
  • the battery mounting frame 152 of the second embodiment includes a vehicle body mounting portion 153 instead of the vehicle body mounting portion 37 of the first embodiment.
  • the battery mounting frame 152 forms a space 154 between the vehicle body mounting portion 153 and the vehicle body bottom frame frame 12.
  • a space 154 (see FIG. 17) is formed between the vehicle body mounting portion 153 of the battery mounting frame 152 and the vehicle body bottom skeleton frame 12. Therefore, when the left and right rear mounting portions 77 of the sub-frame 15 are moved rearward of the vehicle body by the impact load F2 generated by the frontal collision, the left and right rear mounting portions 77 can enter the space 154. As a result, the impact load F2 can be transmitted by bringing the left and right rear mounting portions 77 into contact with the front skeleton portion (that is, the stopper portion) 45 of the battery mounting frame 152.
  • the left and right rear mounting portions 77 of the sub-frame 15 can be moved along the upper side of the vehicle body mounting portion 153 of the battery mounting frame 152. Accordingly, the vehicle body mounting portion 153 can prevent the fastening bolts 86 (see FIG. 17) for mounting the left and right rear mounting portions 77 of the sub-frame 15 to the vehicle body bottom skeleton frame 12 from falling off.
  • Body structure Vehicle body bottom frame frame 13, 132, 152 Battery mounting frame 14 Left and right front side frames 15 Subframe 18 Lower arm 17 Steering mechanism 21 Left and right side sills (each side of vehicle body bottom frame frame) 22 Left and right outriggers (each side of the body frame frame) 23 Front cross members (each side of the vehicle body bottom frame frame) 24a Left and right rear frame front parts (each side of the vehicle body bottom frame frame) 25 Rear cross members (each side of the skeleton frame at the bottom of the vehicle) 36,142 Annular skeleton part 63 Left and right side members 65 Rear cross bar (cross member) 66 Left and right receiving members (receiving members) 71, 72 Rear part of third member part (first member part and second member part) 71b Part near the center rear end of the first member part (part where the rear support part is provided) 73 Third Member Section (Front of Subframe) 75 Front mounting part 76 Central mounting part 77 Left and right rear mounting parts (rear mounting part)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

車体構造(10)は、左右のフロントサイドフレームの下方にサブフレーム(15)が備えられている。サブフレームにロアアーム(18)が固定されている。ロアアームにサスペンションが支持されている。サブフレームは、車体前方から衝撃荷重が入力した際に、衝撃荷重に対して下方に座屈する変位予定部(113)が設けられている。また、サブフレームは、変位予定部の車体前方にロアアームが固定されている。

Description

車体構造
 本発明は、車体構造に関する。
 本願は、2018年11月19日に出願された日本国特願2018-216643号に基づき優先権を主張し、その内容をここに援用する。
 車体構造として、前面衝突の際に車体パネルの変形を防止し、クラッシュストローク(エネルギ吸収ストローク)を安定的に確保する構成が知られている。この車体構造は、サブフレームの後部に設けられた後取付部の車体後方に、フロアパネルの傾斜面と対峙するようにガイドローラが設けられている。ガイドローラは、前面衝突による衝撃荷重で車体パネルに沿って回転しながら下方に移動する。よって、脱落したサブフレームが車体パネルの下方に案内される。これにより、フロントサイドフレームの座屈変形を促進させることが可能になり、クラッシュストロークを確保できる(例えば、特許文献1参照)。
 また、車体構造として、フロントサイドフレームの下方にサブフレームが設けられ、サブフレームの後端部が車体下方へ延ばされ、後端部が連結部材により車体下部に上下方向へスイング可能に連結される構成が知られている。この車体構造は、前面衝突の際にサブフレームを、連結部材を軸にして回転させながら脱落させる。これにより、クラッシュストロークを確保し、フロントサイドフレームを変形させて衝撃エネルギを吸収する(例えば、特許文献2参照)。
日本国特許第4818887号 日本国特許第5557925号
 ここで、特許文献1のガイドローラは、フロアパネルの傾斜面と対峙させて設けられる。よって、ガイドローラを設けるために、車体下方に空間を確保する必要がある。また、特許文献2のサブフレームの後端部は、前面衝突による衝撃荷重でガイドローラを車体下方へ延出されるため、車体下方に空間を確保する必要がある。
 しかし、例えば、電気自動車(いわゆるEV)は、車両の床下にバッテリ(IPU:インテリジェントパワーユニット)が搭載されている。このため、車両の床下にスペースを確保することが難しく、電気自動車などの車両においてクラッシュストロークを確保する構成の実用化が望まれている。
 本発明に係る態様は、上記実情に鑑みてなされたものであり、クラッシュストロークを確保できる車体構造を提供することを目的とする。
 上記課題を解決するために、本発明は以下の態様を採用した。
(1)本発明の一態様に係る車体構造は、フロントサイドフレームの下方に、ロアアームを固定するサブフレームを備え、前記サブフレームは、車体前方から入力した衝撃荷重により下方に座屈する変位予定部が設けられ、前記変位予定部の車体前方に前記ロアアームが固定される。
 このように、サブフレームに変位予定部を設け、変位予定部の車体前方にロアアームを設けた。これにより、前面前突により発生る衝撃荷重でサブフレームの変位予定部を下方に座屈させることにより、クラッシュストローク(エネルギ吸収ストローク)を確保して、衝撃エネルギを吸収できる。
 また、サブフレームの変位予定部を下方に座屈させることにより、サスペンションのロアアームを車体後方で、かつ下方へ移動させることができる。よって、ロアアームをバッテリ(IPU:インテリジェントパワーユニット)の下方に移動させでバッテリに干渉することを回避できる。これにより、従来技術の車体構造において必要としたガイドローラや、サブフレームの後端部などの追加部品を用いることなくロアアームとバッテリとの干渉を回避できる。
(2)上記態様(1)において、前記サブフレームは、車体前方側にステアリング機構が配置され、前記ステアリング機構と前記サブフレームの後取付部との間に前記変位予定部が設けられてもよい。
 このように、ステアリング機構とサブフレームの後取付部との間に変位予定部を設けた。よって、前面衝突により発生する衝撃荷重で、サブフレームが変位予定部で変形してステアリング機構が車体後方に移動した場合に、サブフレームとダッシュロアパネルとの間に挟まれることを防止でき、サブフレームを十分に潰すことができる。これにより、フロントサイドフレームを十分に潰すことができるので、サブフレームの後取付部を車体から脱落させることなく十分なクラッシュストローク(エネルギ吸収ストローク)を得ることができる。
(3)上記態様(2)において、前記ステアリング機構の車体後方に前記ロアアームの前支持部及び後支持部が車体後方へ向けて順次配置され、前記後支持部は、前記サブフレームと前記フロントサイドフレームとに架設され、前記後支持部のうち、前記フロントサイドフレームに取り付けられるフレーム支持部は、前記後支持部の下方移動を許容する下方移動許容部を備えてもよい。
 このように、ロアアームの後支持部のうち、フロントサイドフレームに取り付けられるフレーム支持部に下方移動許容部を備えることにより、前面衝突により発生する衝撃荷重で、ロアアームをバッテリより下方に円滑に移動することができる。
(4)上記態様(2)または(3)において、前記サブフレームの変形容易部は、少なくとも3つの折れ部から構成され、前記3つの折れ部のうち中央の折れ部を前記変位予定部としてもよい。
 このように、少なくとも3つの折れ部で変形容易部を形成するようにした。よって、前面衝突による衝撃荷重で、サブフレームを変形容易部において側面視ジャヤバラ状に折れ変形させることにより大きな衝撃エネルギ吸収量を得ることができる。
 また、3つの折れ部のうち中央の折れ部を変位予定部とすることにより、変位予定部を下方に大きく移動できる。これにより、ロアアームを下方に好適に移動することができる。
(5)上記態様(3)において、前記変位予定部は、前記ロアアームの前記後支持部に隣接して配置され、車幅方向に延びる溝部で形成されてもよい。
 このように、ロアアームの後支持部に隣接して変位予定部を形成した。よって、前面衝突による衝撃荷重で、変位予定部を下方に移動する際に、変位予定部と同等のロアアームの移動量を確保できる。これにより、ロアアームを下方に好適に移動することができる。
(6)上記態様(3)または(5)において、前記サブフレームは、車幅方向に間隔をおいて車体前後方向へ延びる左右のサイドメンバと、前記左右のサイドメンバのうち前記ロアアームの前記後支持部が設けられた部位に架設されたクロスメンバと、を備えてもよい。
 このように、左右のサイドメンバにおいて、ロアアームの後支持部が設けられた部位にクロスメンバを架設した。ここで、ロアアームの後支持部に隣接して変位予定部が形成されている。よって、前面衝突により入力する衝撃荷重が車幅方向でばらついた場合でも、左右の変位予定部への伝達荷重をクロスメンバで平均化できる。これにより、衝撃荷重が車幅方向でばらついて入力した場合でも、左右のロアアームを均一に下げることができる。
(7)上記態様(1)~(6)のいずれか1つにおいて、前記サブフレームは、前部の断面が後方部より大きく形成され、ナローオフセット衝突荷重を受けるように、前記前部から車幅方向外側へ張り出された受け部材を備えてもよい。
 このように、サブフレームの前部に受け部材を備え、受け部材を車幅方向外側に張り出した。これにより、フラット衝突(フルラップ前面衝突)により発生する衝撃荷重(エネルギ)に加えて、ナローオフセット前面衝突により発生する衝撃エネルギを吸収できる。
(8)上記態様(4)において、前記サブフレームの前記後取付部において、前記折れ部のうち、最後尾の折れ部の車体後方の取付面に重ねられる補強板を備えてもよい。
 このように、最後尾の折れ部の車体後方に補強板を設けることにより、補強板で後取付部を補強できる。これにより、前面衝突により発生する衝撃荷重による折れ部(すなわち、サブフレーム)の変形を促進することができる。
(9)上記態様(1)~(8)のいずれか1つにおいて、フロア外周に沿って形成された環状の車体底部骨格フレームと、前記車体底部骨格フレームに固定された環状のバッテリ搭載フレームと、をさらに備え、前記車体底部骨格フレームは、平面視で八角形の環状に形成され、前記バッテリ搭載フレームは、平面視で八角形の環状骨格部を備え、前記車体底部骨格フレームの各辺に固定されてもよい。
 このように、車体底部骨格フレームを八角形の環状に形成し、バッテリ搭載フレームの環状骨格部を八角形の環状に形成した。また、バッテリ搭載フレームの環状骨格部を車体底部骨格フレームに固定した。よって、車体前後方向、車幅方向(すなわち、左右方向)、車体前方斜め方向、車体後方斜め方向から衝突による衝撃荷重を車体底部骨格フレームおよび環状骨格部で支えることができる。これにより、車体の全方位から入力する衝撃荷重に対してバッテリを保護できる。
(10)上記態様(2)、(3)、(5)、(6)または(8)において、前記サブフレームは、車体に締結される前取付部、中央取付部及び前記後取付部を備え、前記前取付部は、前記車体の前記フロントサイドフレームに車体前後方向への分離を許容可能に締結され、前記中央取付部は、前記車体の前記フロントサイドフレームに車幅方向への分離を許容可能に締結されてもよい。
 このように、サブフレームの前取付部をフロントサイドフレームに車体前後方向への分離を許容可能に締結した。また、サブフレームの中央取付部をフロントサイドフレームに車幅方向への分離を許容可能に締結した。よって、前面衝突により発生する衝撃荷重でフロントサイドフレームが車体後方へ向けて座屈変形する際に、前取付部および中央取付部をフロントサイドフレームから分離できる。これにより、例えば、サブフレームの前部に剛性の高いステアリング機構などの部材が配置されていても、サブフレームでフロントサイドフレームの変形を遮らないようにでき、クラッシュストロークを十分に確保できる。
 本発明に係る態様によれば、サブフレームに変位予定部を設け、変位予定部の車体前方にロアアームを設けた。これにより、クラッシュストロークを確保できる。
本発明に係る第1実施形態の車体構造を下方から見た底面図である。 第1実施形態に係る車体構造の要部を下方から見た斜視図である。 第1実施形態に係る車体構造にステアリング機構およびロアアームを備えた状態を示す底面図である。 図1のIV-IV線に沿う断面図である。 図1のV-V線に沿う断面図である。 第1実施形態に係る車体構造からサブフレームを外した斜視図である。 第1実施形態に係る車体構造を左側方から見た側面図である。 第1実施形態に係るサブフレームを示す斜視図である。 第1実施形態に係る車体構造造にステアリング機構およびロアアームを備えた状態を下方から見た斜視図である。 図1のX-X線に沿う断面図である。 図10のXI部を拡大した断面図である。 第1実施形態に係る車体構造造にステアリング機構およびロアアームを備えた状態を上方から見た斜視図である。 第1実施形態に係る車体構造に衝撃荷重が入力する例を説明する側面図である。 第1実施形態に係る車体構造で衝撃荷重を吸収する例を説明する側面図である。 第1実施形態に係るサブフレームを衝撃荷重で変形させる例を説明する側面図である。 本発明に係る第2実施形態の車体構造を下方から見た底面図である。 本発明に係る第3実施形態の車体構造の環状骨格部を示す斜視図である。 本発明に係る第4実施形態の車体構造を左側方から見た側面図である。 第4実施形態に係るサブフレームの後取付部をストッパ部に当接させて衝撃荷重を伝達する例を説明する側面図である。
 以下、本発明の実施形態を図面に基づいて説明する。図面において、矢印FRは車両の前方、矢印UPは車両の上方、矢印LHは車両の左側方を示す。なお、車体構造10は略左右対称の構成であり、以下、便宜上、左右の構成部材に同じ符号を付して説明する。
(第1実施形態)
 図1~図3に示すように、車体構造10は、車体底部骨格フレーム12と、バッテリ搭載フレーム13と、左右のフロントサイドフレーム14と、サブフレーム15と、フロントバンパビーム16と、ステアリング機構17(図9も参照)と、ロアアーム18(図9も参照)と、を備えている。
 車体底部骨格フレーム12、左右のフロントサイドフレーム14、およびフロントバンパビーム16は車体の骨格を構成する部材である。車体構造10は、例えば、電気自動車(いわゆるEV)などに採用される。
 車体底部骨格フレーム12は、車体の床部外周(フロア外周)に沿って平面視で八角形の環状に形成されている。車体底部骨格フレーム12は、左右のサイドシル21と、左右のアウトリガー(フロントサイドフレームエンド)22と、フロントクロスメンバ23と、左右のリヤフレーム前部24aと、リヤクロスメンバ25と、を備えている。
 左右のサイドシル21は、車体構造10の車幅方向において、車室の左右外側下部に間隔をおいて設けられ、車体前後方向へ延びている。左右のサイドシル21,21は、例えば矩形状の閉断面に形成され、車体骨格を形成する剛性の高い部材である。
 左サイドシル21の前端部21aに左アウトリガー22の後端部22aが連結されている。左アウトリガー22は、左フロントサイドフレーム14の後端部14aから車体後方で、かつ車幅方向左外側へ向けて左サイドシル21の前端部21aまで傾斜状に延びている。
 右サイドシル21の前端部21aに右アウトリガー22の後端部22aが連結されている。右アウトリガー22は、右フロントサイドフレーム14の後端部14aから車体後方で、かつ車幅方向右外側へ向けて右サイドシル21の前端部12aまで傾斜状に延びている。左右のアウトリガー22は、例えば矩形状の閉断面に形成され、車体骨格を形成する剛性の高い部材である。
 左アウトリガー22と右アウトリガー22とにフロントクロスメンバ23が車幅方向に向けて架設されている。フロントクロスメンバ23は、例えば断面ハット状に形成され(図11参照)、車体骨格を形成する剛性の高い部材である。フロントクロスメンバ23は、ハット状断面の略中央に重心位置G1(図11参照)が位置する。
 左サイドシル21の後端部21bから左リヤフレーム24が車体構造10の後端部まで車体後方へ向けて延びている。左リヤフレーム24は、左サイドシル21の後端部21bに連結される左リヤフレーム前部24aを有する。左リヤフレーム前部24aは、左サイドシル21の後端部21bから車体後方で、かつ車幅方向右内側へ向けて傾斜状に延びている。
 また、右サイドシル21の後端部21bから右リヤフレーム24が車体構造10の後端部まで車体後方へ向けて延びている。右リヤフレーム24は、右サイドシル21の後端部21bに連結される右リヤフレーム前部24aを有する。右リヤフレーム前部24aは、左サイドシル21の後端部21bから車体後方で、かつ車幅方向左内側へ向けて傾斜状に延びている。左右のリヤフレーム前部24a,24aは、例えば矩形状の閉断面に形成され、車体骨格を形成する剛性の高い部材である。
 左リヤフレーム前部24aの後端部24bと右リヤフレーム前部24aの後端部24bとにリヤクロスメンバ25が車幅方向に向けて架設されている。リヤクロスメンバ25は、フロントクロスメンバ23と同様に、例えば断面ハット状に形成され、車体骨格を形成する剛性の高い部材である。
 左右のサイドシル21、左右のアウトリガー22、フロントクロスメンバ23、左右のリヤフレーム前部24a、およびリヤクロスメンバ25で車体底部骨格フレーム12が平面視で八角形の環状に形成されている。車体底部骨格フレーム12の内側にフロアパネル27(図4参照)が設けられている。フロアパネル27で車室の床部が形成される。
 ここで、左右のサイドシル21、左右のアウトリガー22、フロントクロスメンバ23、左右のリヤフレーム前部24a、およびリヤクロスメンバ25は、車体骨格を形成する剛性の高い部材である。すなわち、車体底部骨格フレーム12は、剛性の高い車体骨格部材で八角形の環状に形成されている。
 車体底部骨格フレーム12にバッテリ搭載フレーム13が複数の締結ボルト(締結部材)31により固定されている。
 バッテリ搭載フレーム13は、車体底部骨格フレーム12に沿って八角形の環状に形成されている。バッテリ搭載フレーム13は、下部がバッテリフロア32で下方から覆われ、内部に駆動用のバッテリ(IPU:インテリジェントパワーユニット)34(図4参照)が搭載されている。なお、実施形態では、バッテリ搭載フレーム13の内部に駆動用のバッテリ34を搭載する例について説明するが、これに限定するものではない。
 バッテリ搭載フレーム13は、環状骨格部36と、車体取付部37と、を備えている。
 環状骨格部36および車体取付部37は、車体底部骨格フレーム12に沿って平面視で八角形の環状に形成されている。
 図4、図5に示すように、環状骨格部36は、骨格上壁(上壁)41と、骨格下壁(下壁)42と、外鉛直壁(鉛直壁)43と、内鉛直壁44と、を備えている。骨格上壁41は、フロアパネル27の下方においてフロアパネル27に沿って配置されている。骨格下壁42は、骨格上壁41の下方において骨格上壁41に沿って配置されている。骨格上壁41の外周辺および骨格下壁42の外周辺に外鉛直壁43が連結されている。骨格上壁41の内周辺および骨格下壁42の内周辺に内鉛直壁44が連結されている。
 骨格上壁41、骨格下壁42、および外鉛直壁43で環状骨格部36の外周部38が断面U字状に形成される。また、骨格上壁41、骨格下壁42、外鉛直壁43、および内鉛直壁44で環状骨格部36が断面矩形状の中空フレームで形成されている。すなわち、環状骨格部36は、断面矩形状の中空フレームで剛性の高い骨格部材に形成されている。
 環状骨格部36の外側に車体取付部37が設けられている。すなわち、バッテリ搭載フレーム13は外側に車体取付部37を備えている。車体取付部37は、環状骨格部36の外周部38に沿って平面視で八角形の環状に形成されている(図1参照)。車体取付部37は、取付上壁46と、取付下壁47と、取付外周壁48と、を備える。取付上壁46は、骨格上壁41のうち、上下方向の中央から環状骨格部36の外側に向けて張り出されている。取付下壁47は、取付上壁46の下方に配置され、骨格下壁42から取付上壁46に沿って環状骨格部36の外側に向けて張り出されている。取付上壁46の外周辺と、取付下壁47の外周辺とに取付外周壁48が連結されている。
 取付上壁46、取付下壁47、および取付外周壁48で車体取付部37が、断面U字状に形成されている。車体取付部37は、外鉛直壁43(外周部38)に一体に設けられ、車体底部骨格フレーム12の下方に配置されている。車体取付部37は、取付上壁46が車体底部骨格フレーム12の各辺に複数の締結ボルト31で下方から固定される。
 図1に示すように、車体底部骨格フレーム12の各辺は、左右のサイドシル21、左右のアウトリガー22、フロントクロスメンバ23、左右のリヤフレーム前部24a、およびリヤクロスメンバ25で構成されている。
 すなわち、車体取付部37は、各辺に対応する取付部として、左右のサイド取付部51と、左右のフロント傾斜取付部52と、フロント取付部53と、左右のリヤ傾斜取付部54と、リヤ取付部55と、を備えている。
 図4に戻って、フロント取付部53は、環状骨格部36のうちフロント骨格部45の外周部38に取り付けられている。フロント骨格部45は、環状骨格部36のうち、フロントクロスメンバ23の車体後方に配置された状態において、フロントクロスメンバ23に沿って車幅方向に延びている。フロント骨格部45は、サブフレーム15の左右の後取付部77(後述する)に対峙する位置に配置され、左右の後取付部77のストッパ部を兼用している。以下、フロント骨格部45をストッパ部45として説明する。
 フロント骨格部45がストッパ部45を兼用する理由については後で詳しく説明する。
 図2、図6に示すように、フロント取付部53は、サブフレーム15の左右の後取付部77に対峙する位置に配置されている。フロント取付部53は、左取付端部53aおよび右取付端部53bがフロントクロスメンバ23に固定されている。具体的には、左取付端部53aは、フロント取付部53の左端寄りの部位であり、フロントクロスメンバ23の左端部23aに一対の締結ボルト31で取り付けられている。左取付端部53aの一対の締結ボルト31は、車幅方向に間隔をおいて配置されている。
 右取付端部53bは、フロント取付部53の右端寄りの部位であり、フロントクロスメンバ23の右端部23bに一対の締結ボルト31で取り付けられている。右取付端部53bの一対の締結ボルト31は、車幅方向に間隔をおいて配置されている。
 フロントクロスメンバ23の左端部23aに左取付端部53aが取り付けられ、フロントクロスメンバ23の右端部23bに右取付端部53bが取り付けられることにより、フロント取付部53がフロントクロスメンバ23に固定されている。
 左取付端部53aは、一対の締結ボルト31の間に左凹部(凹部)57が形成されている。左凹部57は、例えば、左取付端部53aの取付外周壁48から環状骨格部36(すなわち、車体後方)へ向けて湾曲状に切り欠かれることにより凹状に形成されている。
 右取付端部53bは、左凹部57と同様に、一対の締結ボルト31の間に右凹部(凹部)58が形成されている。右凹部58は、左凹部57と同様に、例えば、右取付端部53bの取付外周壁48から環状骨格部36(すなわち、車体後方)へ向けて湾曲状に切り欠かれることにより凹状に形成されている。
 このように、バッテリ搭載フレーム13の環状骨格部36に車体取付部37が形成され、車体取付部37のフロント取付部53に左凹部57および右凹部58が設けられている。これにより、環状骨格部36に左凹部57および右凹部58を形成する必要がなく、バッテリ搭載フレーム13の強度、剛性に影響なく左凹部57および右凹部58を形成できる。
 実施形態では、左右の凹部57,58を湾曲形に形成した例について説明するが、左右の凹部57,58の形状は湾曲形に限らない。
 フロント取付部53に左右の凹部57,58を形成した理由については後で詳しく説明する。
 図1に示すように、車体底部骨格フレーム12が八角形の環状に形成され、バッテリ搭載フレーム13の環状骨格部36が八角形の環状に形成されている。これにより、車体底部骨格フレーム12およびバッテリ搭載フレーム13の単品の強度、剛性を高くできる。
 また、バッテリ搭載フレーム13を環状に形成することにより、バッテリ搭載フレーム13でバッテリ34の外周を全方位から囲うことができる。これにより、バッテリ搭載フレーム13によりバッテリ34(図4参照)を外部からの衝突から十分に保護できる。
 さらに、車体底部骨格フレーム12にバッテリ搭載フレーム13の環状骨格部36が固定されている。よって、車体底部骨格フレーム12およびバッテリ搭載フレーム13が略同一輪郭に形成されている。これにより、車体底部骨格フレーム12の機能(例えば、強度、剛性)をバッテリ搭載フレーム13で補うことができるので車体構造10の軽量化を達成できる。
 加えて、車体底部骨格フレーム12に環状骨格部36が固定されることにより、車体前後方向、左右の車幅方向、車体前方斜め方向、車体後方斜め方向から衝突による衝撃荷重を車体底部骨格フレーム12および環状骨格部36で支えることができる。これにより、車体の全方位から入力する衝撃荷重に対してバッテリ34を保護できる。
 図2、図7に示すように、車体底部骨格フレーム12のうち左アウトリガー22の前端部22bに左フロントサイドフレーム14の後端部14aが連結されている。また、車体底部骨格フレーム12のうち右アウトリガー22の前端部22b()に右フロントサイドフレーム14の後端部14aが連結されている。
 左右のフロントサイドフレーム14の前端部14bには、エクステンション19を介してフロントバンパビーム16が架設されている。左右のフロントサイドフレーム14は、車体構造10の車幅方向において、パワーユニットルーム61の左右外側に間隔をおいて設けられ、車体前後方向へ延びている。パワーユニットルーム61は、例えば、駆動用の動力源となるパワーユニットが収容される空間である。左右のフロントサイドフレーム14は、例えば矩形状の閉断面に形成され、車体骨格を形成する剛性の高い部材である。
 左右のフロントサイドフレーム14は、車両が前面衝突した際に、フロントバンパビーム16およびエクステンション19を経て衝撃荷重が前端部14bに入力する。左右のフロントサイドフレーム14は、例えば、前端部14bに入力した衝撃荷重により車体後方に座屈変形することにより、クラッシュストローク(エネルギ吸収ストローク)を確保し、前面衝突による衝撃エネルギを吸収する。
 左右のフロントサイドフレーム14の下方で、バッテリ搭載フレーム13の車体前方にサブフレーム15が設けられている。
 図2、図8に示すように、サブフレーム15は、左右のサイドメンバ63と、フロントクロスバー64と、リヤクロスバー(クロスメンバ)65と、左右の受け部材(受け部材)66と、を備えている。
 左サイドメンバ63は、左フロントサイドフレーム14の下方に配置されて車体前後方向に向けて延びている。左サイドメンバ63は、第1メンバ部71と、第2メンバ部72と、第3メンバ部(サブフレームの前部)73と、を備えている。
 第1メンバ部71は、車体前後方向に直線状に延びている。第1メンバ部71の前端部71aに第2メンバ部72の後端部72aが連結されている。第2メンバ部72は、第1メンバ部71の前端部71aから車幅方向左側に張り出すように車体前方へ向けて湾曲状に延びている。第2メンバ部72の前端部72bに第3メンバ部73が車体前方へ向けて連結されている。第1メンバ部71、第2メンバ部72、および第3メンバ部73は、例えば矩形状の閉断面に形成された剛性の高い部材である。
 第3メンバ部73は、左サイドメンバ63の前部を形成し、第3メンバ部73の後方部(すなわち、第1メンバ部71および第2メンバ部72)に比べて断面形状が大きく形成されている。
 右サイドメンバ63は、左サイドメンバ63に対して左右対称に形成されている。以下、右サイドメンバ63の構成部材に左サイドメンバ63と同じ符号を付して、右サイドメンバ63の詳しい説明を省略する。
 左サイドメンバ63および右サイドメンバ63は、車幅方向に間隔をおいて配置され、車体前後方に向けて延びている。左サイドメンバ63の第1メンバ部71の前端部71aと、右サイドメンバ63の第1メンバ部71の前端部71aとに、フロントクロスバー64が車幅方向に向けて架設されている。
 左サイドメンバ63の第1メンバ部71の中央後端部寄りの部位71bと、右サイドメンバ63の第1メンバ部71の中央後端部寄りの部位71bとに、リヤクロスバー65がフロントクロスバー64に沿って車幅方向に向けて架設されている。中央後端部寄りの部位71bには、後述するロアアーム18の後支持部93(図9参照)が設けられる。換言すれば、リヤクロスバー65は、左右のサイドメンバ63のうち、ロアアーム18の後支持部93が設けられた部位71bに架設されている。
 左サイドメンバ63の第3メンバ部73は、第2メンバ部72を介して第1メンバ部71より車幅方向左外側に配置されている。左サイドメンバ63の第3メンバ部73には、前端部73aから左受け部材66が車幅方向左外側へ向けて張り出されている。
 また、右サイドメンバ63の第3メンバ部73は、第2メンバ部72を介して第1メンバ部71より車幅方向右外側に配置されている。右サイドメンバ63の第3メンバ部73には、前端部73aから右受け部材66が車幅方向右外側へ向けて張り出されている。
 図2、図7に示すように、左サイドメンバ63の左受け部材66は、フロントバンパビーム16の左端部16aに、上下方向(平面視)において重なるように配置されている。
 また、右サイドメンバ63の右受け部材66は、フロントバンパビーム16の右端部16bに、上下方向(平面視)において重なるように配置されている。
 よって、例えば、車両のナローオフセット前面衝突(ナローオフセット衝突)による衝撃荷重を左右の受け部材66で受けることができる。これにより、車体構造10は、車両のフラット衝突(フルラップ前面衝突)により発生する衝撃エネルギに加えて、車両のナローオフセット前面衝突により発生する衝撃エネルギを吸収できる。
 図7、図9に示すように、左サイドメンバ63は、前取付部75と、中央取付部76と、後取付部77と、を備える。
 前取付部75は、左サイドメンバ63の第1メンバ部71の前端部71aから車幅方向左外側に突出されている。前取付部75は、左フロントサイドフレーム14の前下部14cにフロント支持ブラケット81を介して、例えば、車体前後方向への分離を許容可能に締結ボルト82により締結されている。具体的には、例えば、フロント支持ブラケット81の下部に車体前後方向へ延びる前スリットが形成され、前スリットに締結ボルト82が差し込まれた状態でフロント支持ブラケット81の下部にねじ結合により取り付けられる。
 よって、前面衝突により左フロントサイドフレーム14に衝撃荷重が入力した際に、前スリットが締結ボルト82から抜け出すことにより、フロント支持ブラケット81を前取付部75に対して車体前後方向へ分離させることができる。これにより、左フロントサイドフレーム14の前下部14cが車体後方へ移動することを前取付部75(すなわち、左サイドメンバ63)で遮らないようにできる。
 中央取付部76は、第1メンバ部71のうち中央後端部寄りの部位71bの車体前方側から上方へ向けて延び、かつ車幅方向左外側へ向けて突出されている。中央取付部76は、左フロントサイドフレーム14の中央下部14dに、例えば、車幅方向への分離を許容可能に締結ボルト83により締結されている。具体的には、例えば、中央取付部76の上端部76aに車幅方向へ延びる中央スリット84が形成され、中央スリット84に締結ボルト83が差し込まれて中央下部14dにねじ結合される。中央取付部76が締結ボルト83を介して左フロントサイドフレーム14の中央下部14dに取り付けられる。
 よって、前面衝突により左フロントサイドフレーム14に衝撃荷重が入力した際に、中央スリット84が締結ボルト83から抜け出すことにより、フロントサイドフレーム14の中央下部14dを中央取付部76に対して車幅方向左外側へ分離させることができる。
 これにより、左フロントサイドフレーム14の中央下部14dが車幅方向左外側へ移動することを中央取付部76(すなわち、左サイドメンバ63)で遮らないようにできる。
 このように、左サイドメンバ63の前取付部75は、左フロントサイドフレーム14の前下部14cに車体前後方向への分離を許容可能に締結されている。また、左サイドメンバ63の中央取付部76は、左フロントサイドフレーム14の中央下部14dに車幅方向への分離を許容可能に締結されている。
 ここで、前面衝突により発生する衝撃荷重が左フロントサイドフレーム14の前端部に入力した際に、左フロントサイドフレーム14は、例えば、前部が車体後方へ移動し、中央部が車幅方向へ移動するように座屈変形する。よって、前面衝突による衝撃荷重で左フロントサイドフレーム14が車体後方へ向けて座屈変形する際に、前取付部75および中央取付部76を左フロントサイドフレーム14から分離できる。
 これにより、例えば、サブフレーム15の車体前方側に剛性の高いステアリング機構17などの部材が配置された状態において、サブフレーム15で左フロントサイドフレーム14の変形を遮らないようにできる。したがって、左フロントサイドフレーム14のクラッシュストロークを十分に確保できる。
 つぎに、フロント取付部53に左右の凹部57,58を形成した理由を図9、図10に基づいて詳しく説明する。
 図9、図10に示すように、後取付部77は、左サイドメンバ63の第1メンバ部71の後端部で形成され、フロント取付部53のうち左取付端部53aの左凹部57に配置されている。後取付部77は、左凹部57に配置された状態においてフロントクロスメンバ23の左端部23aに締結ボルト86で締結されている。
 ここで、左サイドメンバ63の後取付部77に、左凹部57の底部57aを介してバッテリ搭載フレーム13のストッパ部45が対峙されている。よって、左サイドメンバ63の後取付部77をバッテリ搭載フレーム13(具体的には、ストッパ部45)に近づけて、後取付部77とストッパ部45との距離L1(図11も参照)を小さくできる。
 これにより、前面衝突により発生する衝撃荷重で、左サイドメンバ63の後取付部77を車体後方へ移動させることにより、後取付部77をストッパ部45に迅速に当接させてストッパ部45で衝撃荷重を好適に支えることができる。
 図11に示すように、フロントクロスメンバ23は、前壁23c、後壁23d、底部23e、前張出片23fと、後張出片23gとによりハット状断面に形成され、ハット状断面の略中央に重心位置G1が位置する。フロントクロスメンバ23の重心位置G1は、締結ボルト86の車体前方に位置する。締結ボルト86により、フロントクロスメンバ23の左端部23aに、左サイドメンバ63の後取付部77が取り付けられている。すなわち、後取付部77は、フロントクロスメンバ23の重心位置G1より車体後方に締結ボルト86で固定されている。
 ここで、車体底部骨格フレーム12のフロントクロスメンバ23には、前面衝突により発生する衝撃荷重が後取付部77および締結ボルト86を介して入力する。すなわち、フロントクロスメンバ23には、重心位置G1を中心にしてバッテリ搭載フレーム13側に倒そうとする衝撃荷重が締結ボルト86を介して入力する。
 そこで、フロントクロスメンバ23の重心位置G1より車体後方において左サイドメンバ63の後取付部77を固定するようにした。これにより、左サイドメンバ63の後取付部77をストッパ部45(すなわち、バッテリ搭載フレーム13の前面)に迅速、確実に当接させることができ、バッテリ搭載フレーム13に衝撃荷重を迅速に伝達することができる。
 図2、図9に戻って、右サイドメンバ63も、左サイドメンバ63と同様に、右フロントサイドフレーム14、フロントクロスメンバ23の右端部23bに、締結ボルト82、締結ボルト83、締結ボルト86で締結されている。
 すなわち、左右のフロントサイドフレーム14の前下部14cに前取付部75がフロント支持ブラケット81および締結ボルト82を介して車体前後方向への分離を許容可能に取り付けられている。また、左右のフロントサイドフレーム14の中央下部14dに中央取付部76が締結ボルト83を介して車幅方向への分離を許容可能に取り付けられている。
 よって、左右のフロントサイドフレーム14に衝撃荷重が入力した際に、左右のフロントサイドフレーム14からサブフレーム15を分離させることができる。これにより、左右のフロントサイドフレーム14を車体後方へ座屈変形させて衝撃エネルギを吸収できる。
 図3、図12に示すように、サブフレーム15の車体前方側にステアリング機構17が配置されている。具体的には、左サイドメンバ63の第1メンバ部71および右サイドメンバ63の第1メンバ部71(図2参照)の車体前方側に、ステアリング機構17が架設されている。ステアリング機構17は、例えば、ステアリングギアボックス17aの内部にラックおよびピニオンが収納されている。
 ピニオンにラックが噛み合わされ、ラックは車幅方向に延び、ラックに左右のタイロッド17bが連結されている。左右のタイロッド17b(左タイロッド17bのみを図示する)はステアリングギアボックス17aから車幅方向外側に延びている。ステアリング機構17は、剛性の高い部材である。
 ステアリング機構17の車体後方にロアアーム18が配置され、左サイドメンバ63の第1メンバ部71および右サイドメンバ63の第1メンバ部71(図2参照)に固定されている。左サイドメンバ63の第1メンバ部71にロアアーム18が固定された状態において、ロアアーム18にナックル89を介してサスペンションが支持される。サスペンションにナックル89を介して前輪が支持される。
 ロアアーム18は、アーム本体91と、前支持部92と、後支持部93と、を備える。
 アーム本体91は、前支持部92と後支持部93との間に配置され、前支持部92および後支持部93に連結されている。前支持部92および後支持部93は、車体後方へ向けて順次配置されている。
 具体的には、前支持部92は、第1メンバ部71のうちステアリング機構17の車体後方近傍の部位71cに固定されている。後支持部93は、前支持部92の車体後方に配置され、メンバ支持部97と、フレーム支持部98とを有する。
 図3、図9に示すように、メンバ支持部97は、第1メンバ部71のうち前支持部92の車体後方に位置する中央後端部寄りの部位71bに締結ボルト101で連結されている。フレーム支持部98は、左フロントサイドフレーム14の連結ブラケット(ブラケット)103に締結ボルト104で連結されている。すなわち、後支持部93は、第1メンバ部71の中央後端部寄りの部位71bと左フロントサイドフレーム14の連結ブラケット103とに架設されている。
 ここで、フレーム支持部98は、左フロントサイドフレーム14の連結ブラケット103に対して下方移動を許容する下方移動許容部105を備えている。具体的には、下方移動許容部105として、例えば、スリット(溝部)が形成されている。下方移動許容部(すなわち、スリット)105に締結ボルト104が差し込まれて連結ブラケット103に締結される。
 よって、サブフレーム15の前端部15a(左サイドメンバ63の前端部)に入力した衝撃荷重で左サイドメンバ63が変形する際に、締結ボルト104から下方移動許容部(スリット)105が抜け出し、フレーム支持部98が下方へ移動することを許容する。これにより、ロアアーム18を左サイドメンバ63とともに下方へ円滑に移動させてバッテリ34より下方に位置させることができる。
 図9、図10に示すように、左サイドメンバ63は、ステアリング機構17と後取付部77との間に設けられた変形容易部110を備える。変形容易部110は、例えば、第1折れ部112、第2折れ部113、第3折れ部114の3つの折れ部で構成される。
 実施形態では、変形容易部110を、第1~第3の折れ部112~114で構成する例について説明するが、折れ部の個数はこれに限らない。3つ以上の個数を備えることも可能である。
 第1折れ部112は、例えば、左サイドメンバ63の第1メンバ部71うち、リヤクロスバー65の車体前方側近傍の下面部71dに設けられている。第1折れ部112は、例えば、上向きの凹状に形成され、かつ車幅方向へ延びる溝部で形成されている。第3折れ部114は、例えば、第1メンバ部71の後取付部77の車体前方側近傍の下面部71eに設けられている。第3折れ部114は、例えば、上向きの凹状に形成され、かつ車幅方向へ延びる段部で形成されている。
 第2折れ部113は、例えば、第1メンバ部71のうち、第1折れ部112および第3折れ部114間の中央の上面部71fに形成されている。第2折れ部113は、例えば、下向きの凹状に形成され、かつ車幅方向へ延びる溝部(溝)で形成されている。以下、第2折れ部113を「変位予定部113」として説明する。
 図12に示すように、変位予定部113は、ステアリング機構17と後取付部77(図10参照)との間で、かつ、ロアアーム18の後支持部93の車体後方に隣接して設けられている。換言すれば、変位予定部113の車体前方にロアアーム18の後支持部93が固定されている。変位予定部113は、下向きの凹状に溝部で形成されている。よって、サブフレーム15の前端部15a(左サイドメンバ63の前端部(図3参照)に前面衝突による衝撃荷重が入力した際に、入力した衝撃荷重で変位予定部113を下方に変形させることができる。
 図11に示すように、第3折れ部114は、車体後方へ向けて順に配置される第1~第3の折れ部112~114(第1折れ部112は図10参照)のうち最後尾に位置する。
 最後尾の第3折れ部114の車体後方に隣接して後取付部77が位置する。後取付部77の取付面77aに補強板116が下方から重ねられている。
 この状態において、補強板116が後取付部77の取付面77aに重ねられた状態に締結ボルト86で取り付けられている。補強板116は、例えば、平坦な鋼板で形成されている。補強板116により後取付部77の取付面77aが補強されている。また、補強板116の車体前方側に隣接して第3折れ部114が形成されている。
 よって、サブフレーム15の前端部15a(左サイドメンバ63の前端部)(図3参照)に前面衝突による衝撃荷重が入力した際に、第3折れ部114に応力を集中させることができる。これにより、前面衝突により発生する衝撃荷重により、左サイドメンバ63(具体的には、第1メンバ部71)の第1~第3の折れ部112~114を迅速に折り曲げてサブフレーム15の変形を促進させることができる。
 つぎに、車体構造10で前面衝突による衝撃荷重を吸収する例を図9、図12、図13A、図13B、図14に基づいて詳しく説明する。
 図13Aに示すように、サブフレーム15の左サイドメンバ63に変形容易部110が設けられている。また、左サイドメンバ63の後取付部77が左凹部57(図3も参照)に配置されている。さらに、左サイドメンバ63の後取付部77に左凹部57の底部57a(図6も参照)を介してバッテリ搭載フレーム13のストッパ部45が対峙されている。
 この状態において、前面衝突による衝撃荷重F1が左フロントサイドフレーム14の前端部14bに入力する。また、前面衝突による衝撃荷重F2がサブフレーム15の左サイドメンバ63(具体的には、第1メンバ部71)に入力する。
 図13Bに示すように、左フロントサイドフレーム14の前端部14bに衝撃荷重F1が入力することにより、左フロントサイドフレーム14による車体後方への座屈変形を開始する。
 また、左サイドメンバ63の第1メンバ部71に衝撃荷重F2が入力することにより、左サイドメンバ63の後取付部77がストッパ部45に当接する。後取付部77をストッパ部45に当接させることにより、左サイドメンバ63の変形容易部110(すなわち、第1~第3の折れ部112~114)を折り曲げて、左サイドメンバ63を変形させる。
 左フロントサイドフレーム14の座屈変形が進むことにより、左フロントサイドフレーム14が、例えば、前部が車体後方へ移動し、中央部が車幅方向へ移動するように座屈変形する。左フロントサイドフレーム14の前部が車体後方へ移動することにより、前取付部75が左フロントサイドフレーム14のフロント支持ブラケット81から分離する。また、左フロントサイドフレーム14の中央部が車幅方向へ移動することにより、中央取付部76が左フロントサイドフレーム14から分離する。
 よって、サブフレーム15の車体前方側に剛性の高いステアリング機構17などの部材が配置されていても、サブフレーム15で左フロントサイドフレーム14の変形を遮らないようにできる。これにより、左フロントサイドフレーム14のクラッシュストロークを確保することが可能になり、前面衝突による衝撃エネルギを吸収できる。
 ここで、環状骨格部36のフロント骨格部45をストッパ部45として兼用する理由について詳しく説明する。
 すなわち、左サイドメンバ63の第1メンバ部71に衝撃荷重F2が入力した際に、車体後方に移動する左サイドメンバ63の後取付部77をストッパ部45で支えることができる。よって、前面衝突による衝撃荷重F2をバッテリ搭載フレーム13と車体底部骨格フレーム12とに分散できる。これにより、車体底部骨格フレーム12の断面形状や板厚寸法を小さく抑えることが可能になり車体構造10を軽量化できる。
 また、第1~第3の折れ部112~114の3つの折れ部のうち中央の第2折れ部113を変位予定部113とした。変位予定部113は、前面前突により発生る衝撃荷重F2で下方に座屈させるように形成されている。中央の第2折れ部113を変位予定部113とすることにより、変位予定部113を下方に大きく移動できる。このように、変位予定部113を下方へ座屈させることにより、左フロントサイドフレーム14のクラッシュストロークを確保して衝撃エネルギを吸収できる。
 さらに、変位予定部113の車体前方にロアアーム18(図12参照)が設けられている。変位予定部113は、ロアアーム18の後支持部93(図12参照)に隣接して形成されている。よって、左サイドメンバ63の変位予定部113を下方に座屈させることにより、変位予定部113と同等にロアアーム18の下方への移動量を確保できる。
 これにより、ロアアーム18を車体後方で、かつバッテリ34の下方へ好適に移動させてバッテリ34に干渉することを回避できる。したがって、従来技術の車体構造において必要としたガイドローラや、サブフレームの後端部などの追加部品を用いることなくロアアーム18とバッテリ34との干渉を回避できる。
 図13A、図13Bに加えて、図9、図12に示すように、左右のサイドメンバ63において、ロアアーム18の後支持部93が設けられた中央後端部寄りの部位71bにリヤクロスバー65が架設されている。ここで、ロアアーム18の後支持部93に隣接して変位予定部113が形成されている。よって、前面衝突により入力する衝撃荷重F2が車幅方向でばらついた場合でも、左右の変位予定部113への伝達荷重をリヤクロスバー65で平均化できる。これにより、衝撃荷重F2が車幅方向でばらついて入力した場合でも、左右のロアアーム18を均一に下げることができる。
 加えて、ステアリング機構17と左サイドメンバ63の後取付部77との間に変形容易部110が設けられている。よって、前面衝突により発生する衝撃荷重F2で、左サイドメンバ63が変形容易部110で変形してステアリング機構17が車体後方に移動する。
 この場合において、サブフレーム15とダッシュロアパネル29との間に挟まれることを防止でき、サブフレーム15を十分に変形させる(潰す)ことができる。
 これにより、左フロントサイドフレーム14を十分に座屈変形(潰す)ことができ、左サイドメンバ63の後取付部77を車体から脱落させることなく十分なクラッシュストロークを得ることができる。
 図14に示すように、変形容易部110を第1~第3の折れ部112~114の3つの折れ部で形成するようにした。よって、前面衝突による衝撃荷重F2で、サブフレーム15の左サイドメンバ63(具体的には、第1メンバ部71)を変形容易部110において側面視ジャヤバラ状に折れ変形させることができる。これにより、サブフレーム15で大きな衝撃エネルギ吸収量を得ることができる。
 また、サブフレーム15をジャヤバラ状に折れ変形させることにより、左サイドメンバ63の後取付部77を車体後方へ移動させる押付力F3を、後取付部77に作用する回転力F4より大きくできる。後取付部77を車体後方へ移動させる押付力F3を大きくすることにより、締結ボルト86に作用するせん断力を大きくできる。よって、締結ボルト86をせん断力で破断させて、後取付部77を車体後方へ良好に移動させることができる。
 これにより、後取付部77がストッパ部45に当接する当接面を大きく確保できる。したがって、後取付部77からストッパ部45に衝撃荷重F2を良好に伝え、衝撃荷重F2をストッパ部45(すなわち、バッテリ搭載フレーム13)で好適に支えることができる。
 つぎに、第2~第4の実施形態の車体構造を図15~図18に基づいて説明する。なお、第2~第4の実施形態において、第1実施形態の車体構造10と同一、類似の構成部材については同じ符号を付して詳しい説明を省略する。
(第2実施形態)
 図15に示すように、車体構造130は、第1実施形態のバッテリ搭載フレーム13をバッテリ搭載フレーム132に代えたもので、その他の構成は第1実施形態と同じである。
 バッテリ搭載フレーム132は、剛性の高い車体骨格部材により、車体底部骨格フレーム12に沿って環状に形成されている。具体的には、バッテリ搭載フレーム132は、角部132a~132dが湾曲状(円弧状)に形成され、その他の構成は第1実施形態のバッテリ搭載フレーム13と同じである。また、バッテリ搭載フレーム132は、車体底部骨格フレーム12に複数の締結ボルト31により固定されている。
 第2実施形態の車体構造130によれば、第1実施形態の車体構造10と同様に、バッテリ搭載フレーム132を環状に形成することにより、車体底部骨格フレーム12およびバッテリ搭載フレーム132の単品の強度、剛性を高くできる。さらに、車体底部骨格フレーム12にバッテリ搭載フレーム132が固定されている。これにより、車体底部骨格フレーム12の機能(例えば、強度、剛性)をバッテリ搭載フレーム132で補うことができるので車体構造130の軽量化を達成できる。
 また、バッテリ搭載フレーム132を環状に形成することにより、バッテリ搭載フレーム132でバッテリ34(図4参照)の外周を全方位から囲うことができる。これにより、バッテリ搭載フレーム132によりバッテリ34を外部からの衝撃から十分に保護できる。
 なお、第2実施形態においては、バッテリ搭載フレーム132の角部132a~132dを湾曲状に形成した例について説明したが、バッテリ搭載フレーム132の全体を湾曲状(円弧状)に形成することも可能である。
(第3実施形態)
 図16に示すように、車体構造140は、第1実施形態のバッテリ搭載フレーム13の環状骨格部36を環状骨格部142に代えたもので、その他の構成は第1実施形態と同じである。
 環状骨格部142は、骨格上壁41と、骨格下壁42と、外鉛直壁43と、複数の補強リブ143と、を備えている。骨格上壁41、骨格下壁42、および外鉛直壁43で環状骨格部142の外周部38が断面U字状に形成される。外周部38の内部に複数の補強リブ143が間隔をおいて設けられている。よって、外周部38が複数の補強リブ143で補強されている。これにより、環状骨格部142は、外周部38の内部に複数の補強リブ143が設けられることにより、剛性の高い骨格部材に形成されている。
(第4実施形態)
 図17に示すように、車体構造150は、第1実施形態のバッテリ搭載フレーム13をバッテリ搭載フレーム152に代えたもので、その他の構成は第1実施形態と同じである。
 ここで、第1実施形態のバッテリ搭載フレーム13は、車体取付部37に左右の凹部57,58(図6参照)を備えている。これに対して、第2実施形態のバッテリ搭載フレーム152は、第1実施形態の車体取付部37に代えて、車体取付部153を備えている。
 これにより、バッテリ搭載フレーム152は、車体取付部153と車体底部骨格フレーム12との間に空間154を形成する。
 図18に示すように、バッテリ搭載フレーム152の車体取付部153と車体底部骨格フレーム12との間に空間154(図17参照)が形成されている。よって、前面衝突により発生する衝撃荷重F2でサブフレーム15の左右の後取付部77が車体後方に移動した際に、左右の後取付部77を空間154に進入させることができる。これにより、バッテリ搭載フレーム152のフロント骨格部(すなわち、ストッパ部)45に左右の後取付部77を当接させて衝撃荷重F2を伝達することができる。
 また、サブフレーム15の左右の後取付部77を空間154に進入させることにより、バッテリ搭載フレーム152の車体取付部153の上側に沿って左右の後取付部77を移動させることができる。これにより、サブフレーム15の左右の後取付部77を車体底部骨格フレーム12に取り付ける締結ボルト86(図17参照)の脱落を車体取付部153で防止できる。
 その他、本発明の趣旨を逸脱しない範囲で、上述した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上述した変形例を適宜組み合わせてもよい。
10,130,140,150 車体構造
12 車体底部骨格フレーム
13,132,152 バッテリ搭載フレーム
14 左右のフロントサイドフレーム
15 サブフレーム
18 ロアアーム
17 ステアリング機構
21 左右のサイドシル(車体底部骨格フレームの各辺)
22 左右のアウトリガー(車体底部骨格フレームの各辺)
23 フロントクロスメンバ(車体底部骨格フレームの各辺)
24a 左右のリヤフレーム前部(車体底部骨格フレームの各辺)
25 リヤクロスメンバ(車体底部骨格フレームの各辺)
36,142 環状骨格部
63 左右のサイドメンバ
65 リヤクロスバー(クロスメンバ)
66 左右の受け部材(受け部材)
71,72 第3メンバ部の後方部(第1メンバ部および第2メンバ部)
71b 第1メンバ部の中央後端部寄りの部位(後支持部が設けられた部位)
73 第3メンバ部(サブフレームの前部)
75 前取付部
76 中央取付部
77 左右の後取付部(後取付部)
77a 取付面
92 前支持部
93 後支持部
97 メンバ支持部
98 フレーム支持部
110 変形容易部
105 下方移動許容部
112~114 第1~第3の折れ部(折れ部)
113 変位予定部
116 補強板

Claims (10)

  1.  フロントサイドフレームの下方に、ロアアームを固定するサブフレームを備え、
     前記サブフレームは、
     車体前方から入力した衝撃荷重により下方に座屈する変位予定部が設けられ、
     前記変位予定部の車体前方に前記ロアアームが固定される、
    ことを特徴とする車体構造。
  2.  前記サブフレームは、
     車体前方側にステアリング機構が配置され、前記ステアリング機構と前記サブフレームの後取付部との間に前記変位予定部が設けられる、
    ことを特徴とする請求項1に記載の車体構造。
  3.  前記ステアリング機構の車体後方に前記ロアアームの前支持部及び後支持部が車体後方へ向けて順次配置され、
     前記後支持部は、前記サブフレームと前記フロントサイドフレームとに架設され、
     前記後支持部のうち、前記フロントサイドフレームに取り付けられるフレーム支持部は、前記後支持部の下方移動を許容する下方移動許容部を備える、
    ことを特徴とする請求項2に記載の車体構造。
  4.  前記サブフレームの変形容易部は、少なくとも3つの折れ部から構成され、
     前記3つの折れ部のうち中央の折れ部を前記変位予定部とする、
    ことを特徴とする請求項2または請求項3に記載の車体構造。
  5.  前記変位予定部は、
     前記ロアアームの前記後支持部に隣接して配置され、車幅方向に延びる溝部で形成される、
    ことを特徴とする請求項3に記載の車体構造。
  6.  前記サブフレームは、
     車幅方向に間隔をおいて車体前後方向へ延びる左右のサイドメンバと、
     前記左右のサイドメンバのうち前記ロアアームの前記後支持部が設けられた部位に架設されたクロスメンバと、を備える、
    ことを特徴とする請求項3または請求項5に記載の車体構造。
  7.  前記サブフレームは、
     前部の断面が後方部より大きく形成され、ナローオフセット衝突による衝撃荷重を受けるように、前記前部から車幅方向外側へ張り出された受け部材を備える、
    ことを特徴とする請求項1~6のいずれか1項に記載の車体構造。
  8.  前記サブフレームの前記後取付部において、前記折れ部のうち、最後尾の折れ部の車体後方の取付面に重ねられる補強板を備える、
    ことを特徴とする請求項4に記載の車体構造。
  9.  フロア外周に沿って形成された環状の車体底部骨格フレームと、
     前記車体底部骨格フレームに固定された環状のバッテリ搭載フレームと、をさらに備え、
     前記車体底部骨格フレームは、平面視で八角形の環状に形成され、
     前記バッテリ搭載フレームは、
     平面視で八角形の環状骨格部を備え、前記車体底部骨格フレームの各辺に固定される、
    ことを特徴とする請求項1~8のいずれか1項に記載の車体構造。
  10.  前記サブフレームは、車体に締結される前取付部、中央取付部及び前記後取付部を備え、
     前記前取付部は、前記車体の前記フロントサイドフレームに車体前後方向への分離を許容可能に締結され、
     前記中央取付部は、前記車体の前記フロントサイドフレームに車幅方向への分離を許容可能に締結される、
    ことを特徴とする請求項2、請求項3、請求項5、請求項6または請求項8に記載の車体構造。
PCT/JP2019/038522 2018-11-19 2019-09-30 車体構造 WO2020105282A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980074683.6A CN113015672B (zh) 2018-11-19 2019-09-30 车身结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018216643 2018-11-19
JP2018-216643 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020105282A1 true WO2020105282A1 (ja) 2020-05-28

Family

ID=70774174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038522 WO2020105282A1 (ja) 2018-11-19 2019-09-30 車体構造

Country Status (2)

Country Link
CN (1) CN113015672B (ja)
WO (1) WO2020105282A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220111902A1 (en) * 2020-10-13 2022-04-14 Hyundai Motor Company Vehicle body structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835471U (ja) * 1981-08-31 1983-03-08 マツダ株式会社 自動車のサブフレ−ム
JPH1045022A (ja) * 1996-07-29 1998-02-17 Daihatsu Motor Co Ltd 自動車の車体前部構造
JP2002127936A (ja) * 2000-10-20 2002-05-09 Nissan Motor Co Ltd 自動車の車体前部構造
JP2013151225A (ja) * 2012-01-25 2013-08-08 Honda Motor Co Ltd 自動車の車体前部構造
JP2013241052A (ja) * 2012-05-18 2013-12-05 Honda Motor Co Ltd 自動車の車体フレーム構造
JP2018069892A (ja) * 2016-10-27 2018-05-10 本田技研工業株式会社 サブフレーム
JP2018140711A (ja) * 2017-02-28 2018-09-13 本田技研工業株式会社 電気自動車のフロア構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5974475B2 (ja) * 2011-12-20 2016-08-23 マツダ株式会社 自動車のフロントサブフレーム構造
JP6522981B2 (ja) * 2015-02-18 2019-05-29 本田技研工業株式会社 車体前部構造

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835471U (ja) * 1981-08-31 1983-03-08 マツダ株式会社 自動車のサブフレ−ム
JPH1045022A (ja) * 1996-07-29 1998-02-17 Daihatsu Motor Co Ltd 自動車の車体前部構造
JP2002127936A (ja) * 2000-10-20 2002-05-09 Nissan Motor Co Ltd 自動車の車体前部構造
JP2013151225A (ja) * 2012-01-25 2013-08-08 Honda Motor Co Ltd 自動車の車体前部構造
JP2013241052A (ja) * 2012-05-18 2013-12-05 Honda Motor Co Ltd 自動車の車体フレーム構造
JP2018069892A (ja) * 2016-10-27 2018-05-10 本田技研工業株式会社 サブフレーム
JP2018140711A (ja) * 2017-02-28 2018-09-13 本田技研工業株式会社 電気自動車のフロア構造

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220111902A1 (en) * 2020-10-13 2022-04-14 Hyundai Motor Company Vehicle body structure
US11845492B2 (en) * 2020-10-13 2023-12-19 Hyundai Motor Company Vehicle body structure

Also Published As

Publication number Publication date
CN113015672A (zh) 2021-06-22
CN113015672B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US7185934B2 (en) Vehicle body structure
JP5692191B2 (ja) 車体前部構造
EP2767457B1 (en) Front-end structure for vehicle
JP5867599B2 (ja) 車体前部構造
JP3828329B2 (ja) 自動車の車体構造
EP2786918B1 (en) Vehicle body structure
JP5459401B2 (ja) 車体構造
JP2010247795A (ja) 車両の下部車体構造
JP2018140711A (ja) 電気自動車のフロア構造
WO2020105283A1 (ja) 車体構造
KR20040023489A (ko) 자동차 차체의 전방부 구조
JP4314992B2 (ja) 車体構造
JP5714967B2 (ja) 車体の衝撃緩衝構造
WO2020105282A1 (ja) 車体構造
JP7290123B2 (ja) 車両の前部車体構造
JP6471768B2 (ja) 車両の前部車体構造
JP7213224B2 (ja) 車体構造
JP6759262B2 (ja) サイドシル構造
JP7157646B2 (ja) 鉄道車両
JP5804003B2 (ja) 車体前部構造
US11820434B2 (en) Vehicle body side structure
US11718350B2 (en) Vehicle body side structure
US20240034141A1 (en) Vehicle body rear structure
JP4083078B2 (ja) 自動車の車体前部構造
JP2020189576A (ja) 車両前部構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP