WO2020103582A1 - 一种3d打印用低成本钛粉的流化整形制备方法 - Google Patents

一种3d打印用低成本钛粉的流化整形制备方法

Info

Publication number
WO2020103582A1
WO2020103582A1 PCT/CN2019/109538 CN2019109538W WO2020103582A1 WO 2020103582 A1 WO2020103582 A1 WO 2020103582A1 CN 2019109538 W CN2019109538 W CN 2019109538W WO 2020103582 A1 WO2020103582 A1 WO 2020103582A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium powder
powder
fluidized
low
reactor
Prior art date
Application number
PCT/CN2019/109538
Other languages
English (en)
French (fr)
Inventor
秦明礼
陈刚
丁旺旺
曲选辉
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Priority to US16/624,916 priority Critical patent/US11090718B2/en
Publication of WO2020103582A1 publication Critical patent/WO2020103582A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/042Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling using a particular milling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/15Use of fluidised beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention belongs to the technical field of metal powder metallurgy preparation, and provides a low-cost fluidized preparation method of titanium powder for 3D printing.
  • Titanium is a metal with low density, good corrosion resistance, high specific strength, and excellent biocompatibility. It is mainly used in aerospace, petrochemical, energy, biomedical and other fields. In recent years, the use of 3D printing and injection molding and other powder metallurgy near-net forming processes to prepare high-performance and complex-shaped titanium products has become a hot research topic at home and abroad.
  • the powder metallurgy process has high requirements for the performance of titanium powder raw materials. In addition to the particle size and its composition and oxygen content performance, it particularly puts forward higher requirements for powder fluidity.
  • the purpose of the present invention is to provide a method for preparing titanium powder with low sphericity and fluidity, which can meet the requirements of powder metallurgy processes such as 3D printing and injection molding at a low cost, and to solve the current high requirements for spherical titanium powder production equipment and complex processes , High cost and other issues.
  • the present invention applies fluidization technology to the shaping process of irregularly shaped powder for the first time.
  • Fluidization technology is through solid particles and gas or liquid fluid medium moving and contacting with each other in the container, so as to achieve the purpose of surface treatment, drying or mass and heat transfer, etc., has been widely used in chemical, light industry, medicine, food and other fields .
  • the present invention uses low-cost hydrogenated dehydrogenated titanium powder as a raw material, puts the titanium powder into a fluidized reactor, and achieves the purpose of shaping the titanium powder through collision and friction between powder particles at a certain temperature in a protective atmosphere, thereby improving
  • the powder sphericity can obtain titanium powder with good fluidity, which can meet the requirements of powder metallurgy processes such as 3D printing and injection molding.
  • the method has the advantages of low cost, simple equipment and process, high efficiency, controllable impurity content, and obvious effect of improving powder fluidity. It can also be used as a reshaping treatment for other metal powders.
  • the titanium powder is added to the fluidized reactor, and a certain flow of gas (Ar or H 2 ) is introduced into the fluidized bed reactor from top to bottom to eliminate The air in the fluidized reactor provides a gas-protected environment for the powder.
  • a certain flow of gas Ar or H 2
  • the fluidized bed reactor is removed from the heating system, and the protective gas is continuously vented. After the reactor is cooled in the air, the ventilation is stopped and the processed titanium powder is collected with a vacuum package.
  • the protective atmosphere is used in the fluidization process, which effectively reduces the pollution risk of titanium powder in a high-temperature fluidized environment, and the content of impurities such as oxygen content of titanium powder after plastic treatment is effectively controlled.
  • the product particles have good fluidity.
  • the fluid shaping method is used to grind the sharp corners of irregularly shaped titanium powder through collision and friction between powder particles.
  • the fluidity of the obtained titanium powder is effectively improved and better than 30s / 50g, which can meet 3D printing and The requirements of powder metallurgy near-net forming technology such as injection molding.
  • Figure 2 is a scanning electron micrograph of the original titanium powder
  • FIG. 3 is a scanning electron micrograph of titanium powder after fluidization treatment in Example 1,
  • FIG. 4 Example 3 Scanning electron micrograph of titanium powder after fluidization treatment.
  • Hydrogenated dehydrogenated irregularly shaped titanium powder with an average particle size of 30 ⁇ m was weighed into 20 g, added to the fluidized reactor, and Ar gas was introduced from the gas inlet at the lower end of the fluidized reactor.
  • the flow rate is 0.5L / min, and the air in the fluidized reactor is removed in 30 minutes to prevent the oxidation of titanium powder. It was heated to 450 ° C, the flow rate was 1 L / min, fluidized and kept warm for 10 min, and the reactor was taken out to cool for 10 min, and then the powder was taken out and vacuum-encapsulated.
  • the fluidized hydrogenated dehydrogenated titanium powder was subjected to microscopic morphology observation (see Figure 3) and the test of fluidity and oxygen content.
  • the oxygen content of the powder was the difference between the oxygen content of the treated powder and the untreated powder.
  • Table 1 the flowability test uses a Hall flowmeter funnel (diameter of 5mm), and the oxygen content is tested using an inert gas pulse infrared thermal conductivity method.
  • the titanium powder after fluidization and shaping treatment has extremely low oxygen increase, and the fluidity meets the requirements of powder metallurgy near net forming processes such as 3D printing and injection molding.
  • Hydrogenated dehydrogenated irregularly shaped titanium powder with an average particle size of 80 ⁇ m was weighed into 50 g, added to the fluidized reactor, and Ar gas was introduced from the gas inlet at the lower end of the fluidized reactor, the flow rate was 1 L / min, and the fluidized reaction was removed in 10 min The air in the device prevents the oxidation of titanium powder. It was heated to 500 ° C, the flow rate was 2L / min, fluidized and held for 20min, and the reactor was taken out to cool for 30min, and then the powder was taken out and vacuum encapsulated.
  • the hydrodehydrogenated titanium powder subjected to fluidization treatment was subjected to microscopic morphology observation and fluidity and oxygen content tests, in which the oxygen content of the powder was the difference between the oxygen content of the treated powder and the untreated powder.
  • the results are shown in Table 1. .
  • the flowability test uses a Hall flowmeter funnel (diameter of 5mm), and the oxygen content is tested using an inert gas pulse infrared thermal conductivity method. Titanium powder after fluid shaping
  • the titanium powder after fluid shaping is only 0.16wt.%, And the fluidity meets the requirements of powder metallurgy near net forming processes such as 3D printing and injection molding.
  • Hydrogenated dehydrogenated irregularly shaped titanium powder with an average particle size of 40 ⁇ m was weighed into 200 g, added to the fluidized reactor, H 2 gas was introduced from the gas inlet at the lower end of the fluidized reactor, the flow rate was 0.8 L / min, and the flow was removed in 40 min Air in the reactor to prevent oxidation of titanium powder. It was heated to 550 ° C, the flow rate was 5 L / min, fluidized and kept warm for 60 min, and the reactor was taken out to cool for 25 min, and then the powder was taken out and vacuum-encapsulated. The fluidized hydrogenated dehydrogenated titanium powder was subjected to microscopic morphology observation (see Figure 4) and the test of fluidity and oxygen content.
  • the oxygen content of the powder was the difference between the oxygen content of the treated powder and the untreated powder. As shown in Table 1. Among them, the flowability test uses a Hall flowmeter funnel (diameter of 5mm), and the oxygen content is tested using an inert gas pulse infrared thermal conductivity method. Titanium powder after fluid shaping The titanium powder after fluid shaping has a high oxygen content, but the fluidity meets the requirements of powder metallurgy near-net forming processes such as 3D printing and injection molding.
  • Hydrogenated dehydrogenated irregularly shaped titanium powder with an average particle size of 120 ⁇ m was weighed into 200 g, added to the fluidized reactor, H 2 gas was introduced from the gas inlet at the lower end of the fluidized reactor, the flow rate was 1 L / min, and fluidization was removed in 40 min The air in the reactor prevents the oxidation of titanium powder. It was heated to 600 ° C, the flow rate was 3L / min, fluidized and kept warm for 70min, the reactor was taken out to cool for 30min, and then the powder was taken out and vacuum-encapsulated. The hydrodehydrogenated titanium powder subjected to fluidization treatment was subjected to microscopic morphology observation and testing of fluidity and oxygen content.
  • the oxygen content of the powder was the difference between the oxygen content of the treated powder and the untreated powder.
  • the flowability test uses a Hall flowmeter funnel (diameter of 5mm), and the oxygen content is tested using an inert gas pulse infrared thermal conductivity method. Titanium powder after fluid shaping The titanium powder after fluid shaping is too high in oxygen, but the fluidity meets the requirements of powder metallurgy near net forming processes such as 3D printing and injection molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种3D打印用低成本钛粉的流化整形制备方法,具体制备方法为:使用低成本氢化脱氢不规则形状钛粉为粉末原料,将钛粉置于流化床反应器中,并通入Ar或H 2,气流流速为0.5~1.5L/min,将反应器加热至300~700℃,流化处理时间为5~90min,对钛粉进行流化整形处理,在流动高纯氩气及高温加热的状态下,通过粉末颗粒之间的碰撞和摩擦,对不规则形状钛粉的尖锐棱角进行打磨处理,使所得钛粉的流动性得到有效改善,其杂质含量也得到了有效控制,具有设备工艺简单、效率高、杂质含量可控、制备成本低等优点,所得低成本钛粉原料满足3D打印和注射成形等粉末冶金工艺要求。

Description

一种3D打印用低成本钛粉的流化整形制备方法 技术领域
本发明属于金属粉末冶金制备技术领域,提供一种3D打印用低成本钛粉的流化整形制备方法。
背景技术
钛是一种密度低、耐腐蚀好、比强度高、生物相容性优异的金属,主要应用于航空航天、石油化工、能源、生物医用等领域。近年来,利用3D打印和注射成形等粉末冶金近净成形工艺制备高性能且形状复杂的钛制品成为了国内外争相研究的热点。粉末冶金工艺对于钛粉末原料的性能要求较高,除了粒度及其组成、氧含量性能之外,特别对粉末流动性提出了较高的要求。因为,粉末流动性直接影响到粉末成形质量,比如3D打印过程中的粉末铺展均匀性或注射成形喂料中的粉末装载率(量)等,从而关乎最终制品的综合性能。因此,3D打印和注射成形等粉末冶金工艺通常使用粉末流动性较好的球形钛粉作为原料。球形钛粉主要采用惰性气体雾化、等离子旋转电极雾化、等离子熔丝雾化和等离子球化等方法制得,这些工艺所制钛粉的球形度较高,杂质含量较低,流动性较好。然而,上述球形钛粉的制备方法设备复杂、工艺繁琐,生产成本高(目前3D打印或注射成形用球形钛及钛合金粉末每公斤价格超过2000元),高昂的价格成为限制了粉末冶金钛制品的广泛应用的关键因素。因此,开发一种成本低、工艺过程简单、杂质含量可控、流动性好,且能满足粉末冶金工艺要求的钛粉制备或加工技术迫在眉睫。
发明内容
本发明的目的在于提供一种低成本制备球形度和流动性好,且能满足3D打印和注射成形等粉末冶金工艺要求的钛粉的方法,解决目前球形钛粉的生产设备要求高、工艺复杂、成本高等问题。
本发明首次将流化技术应用于不规则形状粉末的整形处理。流化技术是通过固体颗粒与气体或液体流体介质在容器中相互运动和接触,从而达到表面处理、 干燥或传质传热等目的,已被广泛用于化工、轻工、医药、食品等领域。本发明采用低成本氢化脱氢钛粉为原料,将钛粉至于流化反应器中,在保护气氛中于一定温度下通过粉末颗粒之间的碰撞和摩擦,达到钛粉整形的目的,从而改善粉末球形度,获得流动性好的钛粉,满足3D打印和注射成形等粉末冶金工艺的要求。该方法具有成本低、设备和工艺简单、效率高、杂质含量可控、粉末流动性改善效果明显等优点,也可用作其他金属粉末的整形处理。
一种3D打印用低成本钛粉的流化整形制备方法(示意图见图1),包括如下具体步骤:
(1)采用氢化脱氢不规则形状钛粉为原料,将钛粉加入流化反应器中,自上而下地往流化床反应器通入一定流量的气体(Ar或者H 2),以排除流化反应器内的空气,为粉末提供气体保护环境。
(2)待流化床反应器内部空气排完之后,将其移至加热系统中,流化过程中连续通入稳定流量的气体(Ar或者H 2),气流流速为0.5~1.5L/min,并加热温度至300~700℃,在恒温下流化5~90min。流化过程中,由于气流的作用,钛粉颗粒漂浮于反应器中,并发生颗粒间的相互碰撞和摩擦,使其表面形貌和粒度组成发生变化。
(3)流化结束后,将流化床反应器移出加热系统,持续通保护气体,待反应器待在空气中冷却,停止通气并用真空封装收集处理后的钛粉。
本发明首次采用流化技术对钛粉进行整形处理,具有成本低、氧含量可控、粉末整形效果好等优势,具体如下:
(1)成本低。采用氢化脱氢不规则形状钛粉作为原料,降低了粉末原料的成本;采用流化床工艺对不规则形状钛粉进行整形处理,设备简易,工艺简单,效率高,工艺成本低;钛粉收得率接近100%,同样也降低了生产成本。
(2)无污染,氧含量易控。在流化过程中采用保护气氛,有效降低了钛粉在高温流化环境中的污染风险,整形处理后的钛粉氧元素等杂质含量得到有效控制。
(3)产物颗粒流动性好。采用流化整形方法通过粉末颗粒之间的碰撞和摩擦,对不规则形状钛粉的尖锐棱角进行打磨处理,所得钛粉的流动性 得到了有效改善且优于30s/50g,能够满足3D打印和注射成形等粉末冶金近净成形工艺的要求。
表1不同温度流化处理后钛粉的流动性和增氧量(相对于原始未处理钛粉)
Figure PCTCN2019109538-appb-000001
附图说明
图1为流化处理钛粉装置及工艺过程示意图,
图2为原始钛粉扫描电镜照片,
图3为实例1流化处理后钛粉扫描电镜照片,
图4实例3流化处理后钛粉扫描电镜照片。
具体实施方式
实施例1
将平均粒径30μm的氢化脱氢不规则形状钛粉(显微形貌如图2所示)称量20g、加入流化反应器中,从流化反应器下端进气口通入Ar气,流量为0.5L/min,30min除去流化反应器内的空气,防止钛粉氧化。加热至450℃,流量为1L/min,流化并保温10min,取出反应器冷却10min,随后将粉末取出并进行真空封装。将经过流化处理的氢化脱氢钛粉进行显微形貌观察(见图3)及流动性和氧含量的测试,其中粉末增氧量为处理粉末与未处理粉末的氧含量之差,结果如表1所示。其中,流动性测试采用霍尔流速计漏斗(直径为5mm)、氧含量采用惰气脉冲红外热导法测试。流化整形处理后的钛粉增氧量极低,且流动性满足3D打印和注射成形等粉末冶金近净成形工艺的要求。
实施例2
将平均粒径80μm的氢化脱氢不规则形状钛粉称量50g、加入流化反应器中,从流化反应器下端进气口通入Ar气,流量为1L/min,10min除去流化反应器内的空气,防止钛粉氧化。加热至500℃,流量为2L/min,流化并保温20min,取出反应器冷却30min,随后将粉末取出并进行真空封装。将经过流化处理的氢化脱氢钛粉进行显微形貌观察及流动性和氧含量的测试,其中粉末增氧量为处理粉末与未处理粉末的氧含量之差,结果如表1所示。其中,流动性测试采用霍尔流速计漏斗(直径为5mm)、氧含量采用惰气脉冲红外热导法测试。流化整形处理后的钛粉流化整形处理后的钛粉增氧量仅为0.16wt.%,且流动性满足3D打印和注射成形等粉末冶金近净成形工艺的要求。
实施例3
将平均粒径40μm的氢化脱氢不规则形状钛粉称量200g、加入流化反应器中,从流化反应器下端进气口通入H 2气,流量为0.8L/min,40min除去流化反应器内的空气,防止钛粉氧化。加热至550℃,流量为5L/min,流化并保温60min,取出反应器冷却25min,随后将粉末取出并进行真空封装。将经过流化处理的氢化脱氢钛粉进行显微形貌观察(见图4)及流动性和氧含量的测试,其中粉末增氧量为处理粉末与未处理粉末的氧含量之差,结果如表1所示。其中,流动性测试采用霍尔流速计漏斗(直径为5mm)、氧含量采用惰气脉冲红外热导法测试。流化整形处理后的钛粉流化整形处理后的钛粉增氧量偏高,但流动性满足3D打印和注射成形等粉末冶金近净成形工艺的要求。
实施例4
将平均粒径120μm的氢化脱氢不规则形状钛粉称量200g、加入流化反应器中,从流化反应器下端进气口通入H 2气,流量为1L/min,40min除去流化反应器内的空气,防止钛粉氧化。加热至600℃,流量为3L/min,流化并保温70min,取出反应器冷却30min,随后将粉末取出并进行真空封装。将经过流化处理的氢化脱氢钛粉进行显微形貌观察及流动性和氧含量的测试,其中粉末增氧量为处理粉末与未处理粉末的氧含量之差,结果如表1所示。其中,流动性测试采用霍尔流速计漏斗(直径为5mm)、氧含量采用惰气脉冲红外热导法测试。流化整形处理后的钛粉流化整形处理后的钛粉增氧量过高,但流动性满足3D打印和注射成形等粉末冶金近净成形工艺的要求。

Claims (3)

  1. 一种3D打印用低成本钛粉的流化整形制备方法,其特征在于制备步骤如下:
    (1)采用氢化脱氢不规则形状钛粉为原料,将钛粉加入流化反应器中,自上而下地往流化床反应器通入一定流量的Ar或者H 2,以排除流化反应器内的空气,为粉末提供气体保护环境;
    (2)待流化床反应器内部空气排完之后,将其移至加热系统中,流化过程中连续通入稳定流量的Ar或者H 2,并加热至一定温度下恒温流化;流化过程中,由于气流的作用,钛粉颗粒漂浮于反应器中,并发生颗粒间的相互碰撞和摩擦,使其表面形貌和粒度组成发生变化;
    (3)流化结束后,将流化床反应器移出加热系统,持续通保护气体,待反应器待在空气中冷却,停止通气并用真空封装收集处理后的钛粉。
  2. 如权利要求1所述3D打印用低成本钛粉的流化整形制备方法,其特征在于Ar或者H 2气流流速为0.5~1.5L/min。
  3. 如权利要求1所述3D打印用低成本钛粉的流化整形制备方法,其特征在于加热温度为300~700℃,恒温流化时间为5~90min。
PCT/CN2019/109538 2018-11-23 2019-09-30 一种3d打印用低成本钛粉的流化整形制备方法 WO2020103582A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/624,916 US11090718B2 (en) 2018-11-23 2019-09-30 Method based on fluidizing for modifying and preparing low-cost titanium powders for 3D printing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811408679.2A CN109382511B (zh) 2018-11-23 2018-11-23 一种3d打印用低成本钛粉的流化整形制备方法
CN201811408679.2 2018-11-23

Publications (1)

Publication Number Publication Date
WO2020103582A1 true WO2020103582A1 (zh) 2020-05-28

Family

ID=65429761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109538 WO2020103582A1 (zh) 2018-11-23 2019-09-30 一种3d打印用低成本钛粉的流化整形制备方法

Country Status (3)

Country Link
US (1) US11090718B2 (zh)
CN (1) CN109382511B (zh)
WO (1) WO2020103582A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109382511B (zh) * 2018-11-23 2019-12-03 北京科技大学 一种3d打印用低成本钛粉的流化整形制备方法
CN109877329B (zh) * 2019-04-16 2020-12-15 北京科技大学 基于流化床气流磨技术制备3d打印用钛及钛合金粉末
CN110666178B (zh) * 2019-08-26 2022-07-29 中国航天空气动力技术研究院 一种增材制造废弃钛或钛合金粉末的回收处理方法
CN110560682A (zh) * 2019-09-29 2019-12-13 北京科技大学 一种3d打印用低成本钛粉的液-固流化整形方法
CN111168074A (zh) * 2020-01-15 2020-05-19 北京科技大学 一种低成本3D打印用Nb521合金粉末的制备方法
CN113289056A (zh) * 2020-02-24 2021-08-24 张锴 一种3d打印钛网及其制备方法和应用
CN111702164B (zh) * 2020-05-29 2022-02-18 同济大学 一种提高3d打印金属粉体球形度的处理装置及其应用
CN111482620B (zh) * 2020-06-02 2021-11-30 东北大学 一种用于氢化钛粉流化脱氢的装置及脱氢方法
CN111842875B (zh) * 2020-07-06 2022-03-18 北京科技大学 一种低成本打印制备高性能Nb521制品的方法
CN112626404A (zh) * 2020-11-19 2021-04-09 北京科技大学 一种3D打印高性能WMoTaTi高熵合金及其低成本粉末制备方法
CN112846197A (zh) * 2021-01-05 2021-05-28 北京科技大学 一种提高3d打印金属粉体激光吸收率的方法
CN113618058A (zh) * 2021-08-11 2021-11-09 浙江工业大学 一种自整形制备低成本球形金属粉体的方法
CN114289722B (zh) * 2021-12-08 2023-08-29 北京科技大学 一种细粒度球形钨粉的制备方法
CN114888275B (zh) * 2022-04-02 2023-03-10 中国科学院过程工程研究所 一种用于3d打印的高速工具钢粉体球化及筛分方法
CN114713820B (zh) * 2022-04-13 2024-02-23 河南颍川新材料股份有限公司 近球形碳化钛包覆高速钢复合粉体的制备装置及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192583A (ja) * 1989-01-20 1990-07-30 Hitachi Chem Co Ltd 微粒子の乾燥方法及び微粒子乾燥装置
WO2014176045A1 (en) * 2013-04-24 2014-10-30 United Technologies Corporation Fluidized bed for degassing and heat treating powders
WO2015023438A1 (en) * 2013-08-12 2015-02-19 United Technologies Corporation Powder spheroidizing via fluidized bed
CN104525956A (zh) * 2014-12-16 2015-04-22 中国航空工业集团公司北京航空材料研究院 一种氢化钛合金粉末的制备方法
CN107670811A (zh) * 2017-10-26 2018-02-09 河北工业职业技术学院 颗粒物流化研磨设备
CN108788129A (zh) * 2018-06-29 2018-11-13 宁夏东方钽业股份有限公司 一种难熔金属粉、其制备方法与一种金属制品
CN109382511A (zh) * 2018-11-23 2019-02-26 北京科技大学 一种3d打印用低成本钛粉的流化整形制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876793A (en) * 1996-02-21 1999-03-02 Ultramet Fine powders and method for manufacturing
KR100718912B1 (ko) * 2006-04-19 2007-05-16 한국생산성본부 진공호퍼를 이용한 분체 원료 이송장치
DE102014211037A1 (de) * 2014-06-10 2015-12-17 Wacker Chemie Ag Siliciumkeimpartikel für die Herstellung von polykristallinem Siliciumgranulat in einem Wirbelschichtreaktor
CN105562700A (zh) * 2015-12-31 2016-05-11 龙岩紫荆创新研究院 一种用于3d打印的球形钛粉的等离子体制备方法
CN107511118B (zh) * 2017-10-17 2019-08-13 福建农林大学 一种旋转气流流化装置及片状材料的流化方法
CN108080621B (zh) * 2017-11-21 2019-09-27 北京科技大学 低成本激光选区熔化用钛粉、其制备方法及钛材制备方法
CN108192190A (zh) * 2018-01-17 2018-06-22 成都新柯力化工科技有限公司 一种3d打印用聚乙烯粉末材料及其低成本制备方法
US11130175B2 (en) * 2018-01-18 2021-09-28 The Boeing Company Spherical metallic powder blends and methods for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192583A (ja) * 1989-01-20 1990-07-30 Hitachi Chem Co Ltd 微粒子の乾燥方法及び微粒子乾燥装置
WO2014176045A1 (en) * 2013-04-24 2014-10-30 United Technologies Corporation Fluidized bed for degassing and heat treating powders
WO2015023438A1 (en) * 2013-08-12 2015-02-19 United Technologies Corporation Powder spheroidizing via fluidized bed
CN104525956A (zh) * 2014-12-16 2015-04-22 中国航空工业集团公司北京航空材料研究院 一种氢化钛合金粉末的制备方法
CN107670811A (zh) * 2017-10-26 2018-02-09 河北工业职业技术学院 颗粒物流化研磨设备
CN108788129A (zh) * 2018-06-29 2018-11-13 宁夏东方钽业股份有限公司 一种难熔金属粉、其制备方法与一种金属制品
CN109382511A (zh) * 2018-11-23 2019-02-26 北京科技大学 一种3d打印用低成本钛粉的流化整形制备方法

Also Published As

Publication number Publication date
CN109382511B (zh) 2019-12-03
US11090718B2 (en) 2021-08-17
CN109382511A (zh) 2019-02-26
US20200406352A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2020103582A1 (zh) 一种3d打印用低成本钛粉的流化整形制备方法
CN107363262B (zh) 一种高纯致密球形钛锆合金粉末的制备方法及应用
CN105695788B (zh) 一种石墨烯增强镍基复合材料及其制备方法
CN110090949B (zh) 一种镍钛合金球形粉末及其制备方法与应用
CN108145169A (zh) 一种高强高导石墨烯增强铜基复合材料及制备方法与应用
CN108080621A (zh) 低成本激光选区熔化用钛粉、其制备方法及钛材制备方法
CN107096924A (zh) 一种可用于三维打印的球形金属基稀土纳米复合粉末的制备方法及产品
CN101716686A (zh) 一种微细球形钛粉的短流程制备方法
CN104532051B (zh) 一种纳米颗粒搅拌法制备弥散强化铜及其制备方法
CN108500281A (zh) 球形钽、铌及钽铌合金粉末、及其制备方法及其在3d打印及医疗器械中的用途
CN113427008B (zh) 钽钨合金粉末及其制备方法
CN103938005B (zh) 气流磨氢化钛粉制备超细晶粒钛及钛合金的方法
CN104525956A (zh) 一种氢化钛合金粉末的制备方法
CN107971499A (zh) 制备球形钛铝基合金粉末的方法
CN111377449A (zh) 一种碳化硼纳米颗粒的制备方法
CN110732676A (zh) 一种球形钨铼合金粉体的制备方法
CN110157931A (zh) 一种具有三维网络结构的纳米碳增强金属基复合材料及其制备方法
CN102127713A (zh) 一种双晶结构氧化物弥散强化铁素体钢及制备方法
CN111842875B (zh) 一种低成本打印制备高性能Nb521制品的方法
CN108330408A (zh) 一种高强度含铝铁素体ods钢及其制备方法
CN113800522A (zh) 一种高纯致密碳化钨-钴复合球形粉体材料制备的方法
CN114289722B (zh) 一种细粒度球形钨粉的制备方法
CN115026292A (zh) 一种3d打印用钛粉及其制备方法和装置
CN114905051A (zh) 一种钛合金制件及其制备方法
JP2013204075A (ja) 細還元鉄粉の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886260

Country of ref document: EP

Kind code of ref document: A1