CN113427008B - 钽钨合金粉末及其制备方法 - Google Patents

钽钨合金粉末及其制备方法 Download PDF

Info

Publication number
CN113427008B
CN113427008B CN202110737910.8A CN202110737910A CN113427008B CN 113427008 B CN113427008 B CN 113427008B CN 202110737910 A CN202110737910 A CN 202110737910A CN 113427008 B CN113427008 B CN 113427008B
Authority
CN
China
Prior art keywords
tantalum
heat treatment
powder
tungsten alloy
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110737910.8A
Other languages
English (en)
Other versions
CN113427008A (zh
Inventor
李小平
张亚军
李兴钰
拓万勇
马晶
刘磊
车赛丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia Dongfang Zhizao Technology Co.,Ltd.
Original Assignee
Ningxia Orient Tantalum Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia Orient Tantalum Industry Co Ltd filed Critical Ningxia Orient Tantalum Industry Co Ltd
Priority to CN202110737910.8A priority Critical patent/CN113427008B/zh
Priority to KR1020247002145A priority patent/KR20240027010A/ko
Priority to PCT/CN2021/110476 priority patent/WO2023272871A1/zh
Priority to IL309426A priority patent/IL309426A/en
Priority to JP2023580732A priority patent/JP2024526261A/ja
Priority to EP21947813.8A priority patent/EP4364871A1/en
Publication of CN113427008A publication Critical patent/CN113427008A/zh
Application granted granted Critical
Publication of CN113427008B publication Critical patent/CN113427008B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种制备钽钨合金粉末的方法,包括以下步骤:提供钽钨合金铸锭;将所述钽钨合金铸锭熔炼反复熔炼多次;锻造上一步产物;将上一步产物至于氢气气氛下进行氢化热处理;机械破碎上一步产物,获得粗粉末;从粗粉末中筛分出粒径范围在aμm‑bμm的粉末,a=10~20,b=50~60;将上一步产物在真空下进行脱氢热处理;向上一步产物中加入镁粉,进行降氧热处理;对上一步产物进行等离子球化处理,使粉末球形度达到99%以上。

Description

钽钨合金粉末及其制备方法
技术领域
本发明属于材料领域,具体涉及钽钨合金粉末及其制备方法。
背景技术
钽钨合金是一种高密度、高熔点、高强度的稀有金属合金材料,具有很高的高温强度、良好的延展性、可焊性和优良的耐腐蚀性能,适用于高温、高压、耐腐蚀等工作环境,近年来在工业上的发展很快,特别是在化工、航天和原子能工业等方面应用十分广泛,是一种十分重要的工程和功能材料。钨在钽中与钽形成置换式连续固溶体,起到固溶强化的作用,显著提高钽金属的室温和高温力学性能。
目前对于钽钨合金材料常规采用热加工挤压、锻造开坯,经过径锻、轧制等方式加工成坯料,后经过机加工等方式加工成所需要架构零部件。近几年随着3D打印的技术的发展,对于异形个性化要求产品,可以采用3D打印的方式来实现。国内目前对于纯钽球形粉的研究相对成熟,对于钽钨合金球形粉的研究尚不成熟。通过采用此方案制备出满足3D打印要求的钽钨合金球形粉。
发明内容
发明人发现,增材制造过程中,钽钨合金容易吸氧开裂和粉末球形度不够形成打印缺陷。
本发明提供一种增材制造用钽钨合金粉末及其制备方法。本发明提供的钽钨合金粉末,其合金成份均匀、粒度分布集中(例如粒径范围15-53μm)、球形度高、氧含量低(例如氧含量≤300ppm)。本发明的钽钨合金球形粉末可满足3D打印(增材制造)工艺要求。将本发明钽钨合金粉末用于3D打印技术,能够实现个性化、结构复杂零件的打印,进而推进钽钨合金在化工、航天、兵器和原子能工业等领域应用。
本公开提供一种制备钽钨合金粉末的方法,包括以下步骤:
提供钽钨合金铸锭;
将所述钽钨合金铸锭熔炼反复熔炼多次;
锻造上一步产物;
将上一步产物至于氢气气氛下进行氢化热处理;
机械破碎上一步产物,获得粗粉末;
从粗粉末中筛分出粒径范围在aμm-bμm的粉末,a=10~20,b=50~60;
将上一步产物在真空下进行脱氢热处理;
向上一步产物中加入镁粉(例如按0.1-1wt%添加),进行降氧热处理;
对上一步产物进行等离子球化处理,使粉末球形度达到99%以上。
采用上述特定工艺顺序,即制坯、氢化、破碎、脱氢、降氧、酸洗、等离子球形化处理,获得的球形钽钨合金粉末具有成份均匀、粒度分布集中、球形度高、氧含量低的优点。
在一些实施方案中,锻造温度为800~900℃。
在一些实施方案中,氢气气氛的氢气压力为0.16~0.19MPa。
在一些实施方案中,氢化热处理的温度为600~900℃。
在一些实施方案中,脱氢热处理的温度为600~900℃。
在一些实施方案中,降氧热处理的温度为500~1000℃。
在一些实施方案中,氢化热处理包括以下操作:
在T1热处理3~5小时(例如4小时),T1=500~800℃(例如600-700℃);
在T2热处理0.5-2.5小时(例如1-2小时),T2=600~900℃(例如700~800℃),T2-T1≥50。
在一些实施方案中,脱氢热处理包括以下操作:
在600-700℃(例如650℃)热处理60-90min(例如70~80min);
在880-920℃(例如900℃)热处理120-180min(例如140~160min)。
在一些实施方案中,降氧热处理包括以下操作:
在500-650℃(例如550~600℃)热处理60-90min(例如70~80min);
在800-900℃(例如850℃)热处理700-800min(例如750min)。
在一些实施方案中,在锻造步骤和氢化处理步骤之间,还包括酸洗的步骤。
在一些实施方案中,在降氧处理和等离子球化处理之间,还包括酸洗的步骤。
在一些实施方案中,酸洗使用的酸为氢氟酸、硝酸和盐酸的混合酸。
在一些实施方案中,所述钽钨合金包括钽元素和钨元素,其中钽元素的含量为85~95wt%,钨元素的含量为5~15wt%。
在一些实施方案中,所述钽钨合金粉末的粒径范围为15-60μm,氧含量<300ppm。
在一些实施方案中,等离子球化处理的边气为He气和Ar气、送粉载气为Ar、中心气Ar气、等离子体功率35-40KW、送粉速率25-30g/min。
在一些实施方案中,按照文字记载的顺序依次实施上述各个步骤。
在一些实施方案中,上述各步骤的实施循序是任意的,不限于文字记载的顺序。
在一些方面,本公开提供一种钽钨合金粉末,由上述任一项所述的方法制备获得。
本发明的有益效果:
目前采用常规工艺无法实现部分个性化、异形件产品加工。对于3D打印用钽钨合金合金球形钽粉目前尚无制备技术。
本发明一个或多个实施方案具有以下一个或多个有益效果:
(1)钽钨合金粉末的合金成份均匀;
(2)钽钨合金粉末的粒度分布集中;
(3)钽钨合金粉末的球形度高;
(4)钽钨合金粉末的氧含量低。
(5)本发明制造的钽钨合金球形粉,采用3D打印技术,可以实现个性化、小批量异形件的加工,提高材料利用率,降低制造成本。
术语说明
属于“等离子球化技术”是将金属粉体喷入感应等离子体流,在极高的温度下,这些粉体会立刻熔化,然后在表面张力的作用下自动变成球形。而这些球形的液态金属滴一旦离开等离子流就会立即冷却、硬化成球形的颗粒。
附图说明
图1是实施例1的球形钽钨合金粉末的放大100倍照片;
图2是实施例1的球形钽钨合金粉末的放大500倍照片;
具体实施方式
现在将详细提及本发明的具体实施方案。尽管结合这些具体的实施方案描述本发明,但应认识到不打算限制本发明到这些具体实施方案。相反,这些实施方案意欲覆盖可包括在由权利要求限定的发明精神和范围内的替代、改变或等价实施方案。在下面的描述中,阐述了大量具体细节以便提供对本发明的全面理解。本发明可在没有部分或全部这些具体细节的情况下被实施。在其它情况下,为了不使本发明不必要地模糊,没有详细描述熟知的工艺操作。
当与本说明书和附加权利要求中的“包括”、“方法包括”、或类似语言联合使用时,单数形式“某”、“某个”、“该”包括复数引用,除非上下文另外清楚指明。除非另外定义,本文中使用的所有技术和科学术语具有本发明所属技术领域的普通技术人员通常理解的相同含义。
除非特别说明,本发明采用的试剂、方法和设备为本领域常规食品级试剂、方法和设备。
除非特别说明,本发明实施例所用试验条件为本领域常规试验条件。除非特别说明,本发明实施例所用试剂均为市购。
实施例1
1)铸锭:使用ALD1200KW高真空电子束炉熔炼Ta10W钽钨合金(Ta90wt%-W10wt%)铸锭,反复2次熔炼,使钨的不均度在10%以内。
2)锻造:对1)得到的铸锭进行加热进行锻造,锻造温控850℃,锻造至50×120×Lmm,充分破碎铸态晶粒,获得破碎的内部组织;
3)机加工:对2)得到的锻坯车削两端面,单表车削1.5mm,铣削4边,彻底去除锻造折叠等缺陷;
4)酸洗:按HF(>40%):HNO3(65%-68%):HCl(36%-38%)=1:2:3(体积比)配比酸液,清洗上一步产物,去除表面杂质;
5)氢化:将上一步产物装入反应弹中,抽真空至10-6kPa,升温:600℃/4小时,保温800℃/2小时,通氢气至压力0.19MPa。降温吸氢,实际温度降到100℃停止通氢。
6)破碎:将上一步产物采用颚式破碎机进行破碎,破碎至粒径不超过100μm;
7)筛粉:将上一步产物采用气体保护筛分机筛分,筛分出粒径范围为15-53μm的钽钨合金粉;
8)脱氢处理:对上一步产物装入反应弹进行脱氢处理,具体地,抽真空至10-6kPa,脱氢热处理包括:
650℃/85min;
900℃/175min;
9)降氧:按向上一步产物重量的0.2-0.8wt%,向其中掺镁粉,在氩气环境气氛热处理,参数包括:
在650℃热处理85min;
在900℃热处理750min;
10)酸洗:酸洗上一步产物以去除杂质,酸洗所用的酸的配方为HF(浓度>40%):HNO3(浓度65%-68%):HCl(浓度36%-38%)=1:2:3(体积比);
11)等离子球化:采用等离子球化技术对上一步产物进行球化处理,等离子球化参数如下:边气He60slpm、边气Ar50slpm、送粉载气Ar4slpm、中心气Ar18slpm、等离子体功率40KW、送粉速率30g/min。
实施例2
1)铸锭:使用ALD600KW高真空电子束炉熔炼Ta10W钽钨合金(Ta90wt%-W10wt%)铸锭,反复2次熔炼,使钨的不均度在10%以内。
2)锻造:对1)得到的铸锭进行加热进行锻造,锻造温控900℃,锻造至50×120×Lmm,充分破碎铸态晶粒,获得破碎的内部组织;
3)机加工:对2)得到的锻坯车削两端面,单表车削1.5mm,铣削4边,彻底去除锻造折叠等缺陷;
4)酸洗:按HF(>40%):HNO3(65%-68%):HCl(36%-38%)=1:2:3(体积比)配比酸液,清洗上一步产物,去除表面杂质;
5)氢化:将上一步产物装入反应弹中,抽真空至10-6kPa,升温:750℃/4小时,保温800℃/2小时,通氢气至压力0.19MPa。降温吸氢,实际温度降到100℃停止通氢。
6)破碎:将上一步产物采用颚式破碎机进行破碎,破碎至平均粒径为0-100μm的粉末;
7)筛粉:将上一步产物采用气体保护筛分机筛分,筛分出粒径范围为15-53μm的钽钨合金粉;
8)脱氢处理:对上一步产物装入反应弹进行脱氢处理,具体地,抽真空至10-6kPa,脱氢热处理包括:
700℃/85min;
900℃/175min;
9)降氧:按向上一步产物重量的0.5wt%,向其中掺镁粉,在氩气环境气氛热处理,参数包括:
在650℃热处理85min;
在900℃热处理750min;
10)酸洗:酸洗上一步产物以去除杂质,酸洗所用的酸的配方为HF(浓度>40%):HNO3(浓度65%-68%):HCl(浓度36%-38%)=1:2:3(体积比);
11)等离子球化:采用等离子球化技术对上一步产物进行球化处理,等离子球化参数如下:边气He60slpm、边气Ar50slpm、送粉载气Ar4slpm、中心气Ar18slpm、等离子体功率40KW、送粉速率30g/min。
对比例1
取10kg采用氢化脱氢法制备得到的钽粉粉末,然后在振动筛分设备上过100目筛网,去除粗颗粒。
采用等离子球化设备对上述钽粉粉末进行球化。其中,等离子炬为直流等离子炬,工作气体为氩气,等离子球化功率为5KW,工作气流量为20L/min,边气流量为100L/min,系统压力为80Kpa;并且球化后钽粉的氧含量为400ppm。
采用振动筛分设备对球化后钽粉进行筛分处理,其中筛网目数为100目,得到粒度小于等于150μm的钽粉。
采用氩气保护的气流分级机对上述粒度小于等于150μm的钽粉进行分级处理,得到粒度分布在53~150μm区间的球形粉末。
对比例2
选用钽含量达到99.995%以上的钽锭,将钽锭进行氢化破碎;将氢化后的钽屑进行球磨破碎,球磨破碎后的物料过400目筛,取400目筛下的钽粉,得到-400目的钽颗粒20kg;而后将该钽颗粒装入反应弹内,在抽空条件下加热,在750℃保温约120min,然后进行降温、出炉、过100筛得到脱氢的钽粉19.87kg;将脱氢后的钽粉装入气流磨中进行气流整形,该过程中工作压力6.5kg、一级、二级工作频率分别是40Hz、40Hz,整形15h后得到一级钽粉14.62kg,二级钽粉3.20kg;气流整形后的一级钽粉使用HNO3和HF的混合酸(HNO3、HF和水的体积比是4:1:20)酸洗去除金属杂质,烘干过筛,得到酸洗后的钽粉13.46kg;然后将酸洗后的钽粉在10-1Pa真空条件下热处理,1100℃保温60分钟,最后降温、钝化、出炉;热处理后的钽粉与以钽粉重量计的1.3%的镁粉混合,然后在惰性气体保护的情况下加热到750℃,保温2h,然后抽空排镁3h,最后降温、钝化、出炉,采用硝酸洗涤去掉多余的镁及氧化镁,然后用去离子水洗到中性,将钽粉烘干过筛,得到钽粉末12.74kg。
分析检测:
下面对上述实施例1~2和对比例1~2获得的产品粉末进行分析。
1、成分和形貌
图1和图2分别是实施例1的球形钽钨合金粉末的放大100倍和500倍的照片。如图1~2所示,实施例1的球形钽钨合金粉末粒径分布窄,球形度好。
对实施例1~2和对比例1~2获得的产品粉末进行球形度和氧含量的测量。球形度的检测方法:按“YS/T 1297-2019钛及钛合金粉末球形率测定方法”判定。氧含量的检测方法:按“GB/T15076.14-2008钽铌化学分析方法氧量的测定”测量。结果如下表所示:
表1
组别 材料 球形度 氧含量
实施例1 钽钨合金粉 99.2 170
实施例2 钽钨合金粉 99.6 142
对比例1 钽粉 99.7 325
对比例2 钽粉 / 180
由上可知,与对比例1~2相比,实施例1~2采用本公开特定工艺制备的钽钨合金粉具有较高的球形度和较低的氧含量。
2、粒度分析
按照“GB/T 1480-2012金属粉末干筛分法测定粒度”与“GB/T19077-2016粒度分析激光衍射法”综合判定方法,对实施例1~2获得的产品粉末进行了粒度分析,结果如下:
表2
组别 D10 D50 D90 平均粒径
实施例1 19.98 31.73 49.93 15~53
实施例2 20.85 31.68 50.83 15~53
由上可知,实施例1~2采用本公开特定工艺制备的钽钨合金粉具有较窄的粒径分布。
由上述实施例的实验数据可知,本公开制备的钽钨合金粉末具有以下一项或多项优点:
(1)钽钨合金粉末的合金成份均匀;
(2)钽钨合金粉末的粒度分布集中;
(3)钽钨合金粉末的球形度高;
(4)钽钨合金粉末的氧含量低。
本发明制造的钽钨合金球形粉,采用3D打印技术,可以实现个性化、小批量异形件的加工,提高材料利用率,降低制造成本。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (6)

1.一种制备增材制造用钽钨合金粉末的方法,包括以下步骤:
提供钽钨合金铸锭,所述钽钨合金包括钽元素和钨元素,其中钽元素的含量为85~95wt%,钨元素的含量为5~15wt%;
将所述钽钨合金铸锭熔炼反复熔炼多次;
在800~900℃锻造上一步产物,以充分破碎铸态晶粒,获得破碎的内部组织;
酸洗上一步产物,以去除表面杂质;
将上一步产物至于氢气气氛下进行氢化热处理;
机械破碎上一步产物,获得粗粉末;
从粗粉末中筛分出粒径范围在aμm-bμm的粉末,a=10~20,b=50~60;
将上一步产物在真空下进行脱氢热处理;
向上一步产物中加入镁粉,进行降氧热处理;
对上一步产物进行等离子球化处理,等离子球化处理的边气为He气和Ar气、送粉载气为Ar、中心气Ar气、等离子体功率35-40KW、送粉速率25-30g/min,使粉末球形度达到99%以上;
其中,所述钽钨合金粉末的粒径范围为10-60μm,氧含量<300ppm;
其中,氢化热处理包括以下操作:
在T1热处理3~5小时,T1=500~800℃;
在T2热处理0.5-2.5小时,T2=600~900℃;
T2-T1≥50;
其中,脱氢热处理包括以下操作:
在600-700℃热处理60-90min;
在880-920℃热处理120-180min;
其中,降氧热处理包括以下操作:
在500-650℃热处理60-90min;
在800-900℃热处理700-800min。
2.根据权利要求1所述的方法,其中,降氧热处理包括以下操作:
在550-600℃热处理70-80min;
在800-900℃热处理700-800min。
3.根据权利要求1所述的方法,其中,在降氧处理和等离子球化处理之间,还包括酸洗的步骤。
4.根据权利要求1或3所述的方法,酸洗使用的酸为氢氟酸、硝酸和盐酸的混合酸。
5.根据权利要求1所述的方法,所述钽钨合金包括钽元素和钨元素,其中钽元素的含量为90wt%,钨元素的含量为10wt%。
6.一种钽钨合金粉末,由权利要求1~5任一项所述的方法制备获得。
CN202110737910.8A 2021-06-30 2021-06-30 钽钨合金粉末及其制备方法 Active CN113427008B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202110737910.8A CN113427008B (zh) 2021-06-30 2021-06-30 钽钨合金粉末及其制备方法
KR1020247002145A KR20240027010A (ko) 2021-06-30 2021-08-04 탄탈럼-텅스텐 합금 분말 및 그의 제조방법
PCT/CN2021/110476 WO2023272871A1 (zh) 2021-06-30 2021-08-04 钽钨合金粉末及其制备方法
IL309426A IL309426A (en) 2021-06-30 2021-08-04 Tantalum-tungsten alloy powder and the preparation method thereof
JP2023580732A JP2024526261A (ja) 2021-06-30 2021-08-04 タンタル-タングステン合金粉およびその調製方法
EP21947813.8A EP4364871A1 (en) 2021-06-30 2021-08-04 Tantalum-tungsten alloy powder and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110737910.8A CN113427008B (zh) 2021-06-30 2021-06-30 钽钨合金粉末及其制备方法

Publications (2)

Publication Number Publication Date
CN113427008A CN113427008A (zh) 2021-09-24
CN113427008B true CN113427008B (zh) 2022-02-08

Family

ID=77758161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110737910.8A Active CN113427008B (zh) 2021-06-30 2021-06-30 钽钨合金粉末及其制备方法

Country Status (6)

Country Link
EP (1) EP4364871A1 (zh)
JP (1) JP2024526261A (zh)
KR (1) KR20240027010A (zh)
CN (1) CN113427008B (zh)
IL (1) IL309426A (zh)
WO (1) WO2023272871A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367669B (zh) * 2021-12-15 2024-04-30 重庆材料研究院有限公司 一种3D打印用TaW10合金球形粉末的制备方法
CN114888291B (zh) * 2022-05-20 2023-05-26 西北有色金属研究院 一种提高粉末冶金高钨钽合金塑性的方法
CN115106540B (zh) * 2022-07-26 2024-05-28 宁夏东方智造科技有限公司 钽钨合金制品及其制备方法
CN116652198A (zh) * 2023-05-31 2023-08-29 西安建筑科技大学 一种等离子旋转电极气雾化制备钽粉的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091843A (ja) * 2002-08-30 2004-03-25 Hitachi Metals Ltd 高純度高融点金属粉末の製造方法
JP2008101274A (ja) * 1998-05-06 2008-05-01 Hc Starck Inc 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
CN101182602A (zh) * 2006-11-14 2008-05-21 宁夏东方钽业股份有限公司 粉末冶金用钽和/或铌粉末及其制备方法
CN103600086A (zh) * 2013-12-03 2014-02-26 宁夏东方钽业股份有限公司 粉末冶金用钽和/或铌粉及其制备方法
CN107427925A (zh) * 2015-06-03 2017-12-01 宁夏东方钽业股份有限公司 一种微细钽粉及其制备方法
CN108296490A (zh) * 2017-01-13 2018-07-20 龙岩紫荆创新研究院 一种球形钨钽合金粉的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999623A (en) 1975-08-20 1976-12-28 Honeywell Inc. Frame distortion relief steering control system
US5261942A (en) * 1987-11-30 1993-11-16 Cabot Corporation Tantalum powder and method of making same
CN108788129B (zh) * 2018-06-29 2021-07-06 宁夏东方钽业股份有限公司 一种难熔金属粉、其制备方法与一种金属制品
CN112846195B (zh) * 2021-01-08 2024-01-02 广东省科学院新材料研究所 一种增材制造用钛钽合金粉末及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101274A (ja) * 1998-05-06 2008-05-01 Hc Starck Inc 気体状マグネシウムを用いる酸化物の還元により製造される金属粉末
JP2004091843A (ja) * 2002-08-30 2004-03-25 Hitachi Metals Ltd 高純度高融点金属粉末の製造方法
CN101182602A (zh) * 2006-11-14 2008-05-21 宁夏东方钽业股份有限公司 粉末冶金用钽和/或铌粉末及其制备方法
CN103600086A (zh) * 2013-12-03 2014-02-26 宁夏东方钽业股份有限公司 粉末冶金用钽和/或铌粉及其制备方法
CN107427925A (zh) * 2015-06-03 2017-12-01 宁夏东方钽业股份有限公司 一种微细钽粉及其制备方法
CN108296490A (zh) * 2017-01-13 2018-07-20 龙岩紫荆创新研究院 一种球形钨钽合金粉的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
铸锭氢化制备钽钨合金粉末的研究;梁静等;《金属材料与冶金工程》;20170228(第01期);第3-7、13页 *

Also Published As

Publication number Publication date
EP4364871A1 (en) 2024-05-08
IL309426A (en) 2024-02-01
JP2024526261A (ja) 2024-07-17
CN113427008A (zh) 2021-09-24
KR20240027010A (ko) 2024-02-29
WO2023272871A1 (zh) 2023-01-05

Similar Documents

Publication Publication Date Title
CN113427008B (zh) 钽钨合金粉末及其制备方法
WO2019236160A2 (en) Powder metallurgy sputtering targets and methods of producing same
TWI611025B (zh) 一種高純鉭粉及其製備方法
CN108788129B (zh) 一种难熔金属粉、其制备方法与一种金属制品
CN107427925A (zh) 一种微细钽粉及其制备方法
CN107952966A (zh) 球形钛铝基合金粉末的制备方法
CN114367669A (zh) 一种3D打印用TaW10合金球形粉末的制备方法
CN111922330B (zh) 一种用于激光增材制造钨制品的金属钨粉和钨制品及其制备方法
CN111872414B (zh) 一种微纳米预合金粉的制备方法
KR20080047167A (ko) 티타늄 분말 제조방법
CN110066952B (zh) 一种氧化锆增强钼合金棒材的制备方法
CN113862507B (zh) 一种高致密高铜含量铜钨复合材料的制备方法
CN114381644B (zh) 一种钒钛基储氢合金粉末及其制备方法
CN115194161A (zh) 一种高纯钽粉的生产工艺
CN108927527B (zh) 一种纳米W-xCu合金的制备方法、纳米W-xCu合金
CN113620296B (zh) 一种利用含钨废料生产粗颗粒碳化钨粉的方法
CN112475302B (zh) 一种超细纳米晶vn合金粉末的制备方法
CN115156542B (zh) 一种低氧铌粉的制备方法
JP6649430B2 (ja) 高純度タンタル粉末及びその調製方法
CN114985725B (zh) 一种二维片状低氧金属铬粉的制备方法
CN117051264A (zh) 一种半导体用钽粉的氢气还原降氧方法
CN117778789A (zh) 一种高铍含量铍铝合金的制备方法
CN117248127A (zh) 一种冶炼制备金属钒的方法
CN112247139A (zh) 一种降低细钛粉氧含量的方法
CN115572843A (zh) 一种高纯金属钽的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220307

Address after: 75119, Great Wall Road, wuzuishan Autonomous District, Ningxia

Patentee after: Ningxia Dongfang Zhizao Technology Co.,Ltd.

Address before: 753000 No. 119 metallurgical Road, Dawukou District, the Ningxia Hui Autonomous Region, Shizuishan

Patentee before: NINGXIA ORIENT TANTALUM INDUSTRY Co.,Ltd.

TR01 Transfer of patent right