WO2020101032A1 - 分子内s-s結合を有する環化ペプチドの製造方法 - Google Patents

分子内s-s結合を有する環化ペプチドの製造方法 Download PDF

Info

Publication number
WO2020101032A1
WO2020101032A1 PCT/JP2019/044962 JP2019044962W WO2020101032A1 WO 2020101032 A1 WO2020101032 A1 WO 2020101032A1 JP 2019044962 W JP2019044962 W JP 2019044962W WO 2020101032 A1 WO2020101032 A1 WO 2020101032A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
peptide
protected
groups
temporary
Prior art date
Application number
PCT/JP2019/044962
Other languages
English (en)
French (fr)
Inventor
高橋 大輔
辰治 猪股
裕樹 篠原
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to CN201980074871.9A priority Critical patent/CN113039193A/zh
Priority to EP19884349.2A priority patent/EP3882255A4/en
Priority to JP2020556201A priority patent/JP7476798B2/ja
Publication of WO2020101032A1 publication Critical patent/WO2020101032A1/ja
Priority to US17/319,346 priority patent/US11939404B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • C07K1/113General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure
    • C07K1/1133General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides without change of the primary structure by redox-reactions involving cystein/cystin side chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/067General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for sulfur-containing functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/107General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by chemical modification of precursor peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing a cyclized peptide having a crosslinked structure by an intramolecular SS bond (disulfide bond), which is useful in the field of peptide synthesis.
  • peptide drugs such as somatostatin, octreotide, and atosiban.
  • a cyclized peptide containing 4 or more SH groups in a molecule and having SH sites forming a S—S bond in the molecule to have a cyclization site by a plurality of S—S bridge structures eg, Research and development of linaclotide, plecanate, ziconotide, insulin detemir, insulin glulisine, etc. are underway.
  • Patent Document 1 by using an acid such as trifluoroacetic acid (TFA) in order to deprotect all protecting groups possessed by the peptide, the SH group in the peptide is also unprotected, and thus various deprotected There has been a problem that the SH group is alkylated by the debris of the protective group and the yield is lowered, and further, the impurity thereof causes the yield of the target peptide to be lowered in the subsequent cyclization reaction.
  • TFA trifluoroacetic acid
  • Patent Document 2 discloses that the SH group is protected by using a phenylacetamidomethyl group (Phacm group) as a protecting group for the SH group of a cysteine residue.
  • Phacm group a phenylacetamidomethyl group
  • the cyclization reaction due to intramolecular S—S bond formation is generally performed under low concentration conditions (excessive use of solvent in order to suppress the progress of side reaction of S—S bond formation between molecules).
  • the production efficiency was extremely low, which was another issue. Therefore, there has been a demand for a highly efficient production method capable of effectively promoting the desired cyclization reaction even if the substrate concentration during the cyclization reaction is increased.
  • the inventors of the present invention have made a peptide having two or more SH groups as a functional group on the peptide to form all of the SH groups temporarily, intermolecularly or intramolecularly, by a variety of preparation methods. , And by using a peptide in which other functional groups on the peptide are unprotected, and subjected to a folding step under redox conditions to reform the SS bond in the peptide molecule, The present invention has been completed by finding a method for producing a cyclized peptide that commonly includes a step of efficiently obtaining a target cyclized peptide. Specifically, the present invention is a method for producing a cyclized peptide, which comprises the following steps.
  • S-protected peptide Peptide that is protected by the formation of all other functional groups on the peptide and is deprotected (hereinafter sometimes referred to as “S-protected peptide”) by oxidation. Subjecting to a folding step under reducing conditions to obtain a cyclized peptide by reforming the SS bond in the peptide molecule, A method for producing a cyclized peptide containing:
  • step (1-A) the protection of the SH group in all the protected peptides is carried out both in the case of being protected by the protecting group of the SH group described below and in the case of being protected by the formation of a temporary SS bond. Is included.
  • step (2) the S-protected peptide of step (2) can be obtained by carrying out step (1-A) and step (1-B), but carrying out step (1-A) and step (1-B)
  • step (1-B) the order can be changed as appropriate according to the embodiment. Therefore, when the step (1-B) is performed after the step (1-A), when the step (1-A) is performed after the step (1-B), or when a combination of these is performed, both steps are simultaneously performed. In some cases, these are included in the scope of the present invention (hereinafter, step (1-A) and step (1-B) may be collectively referred to as step (1). ).
  • step (1-B) protection of all SH groups by formation of a temporary SS bond is described as "all SH groups are transient SS bonds within and / or between peptide molecules. Is formed ”(hereinafter, sometimes referred to as“ temporary S—S conversion ”in the present specification), or in the step (1-B), a temporary S— of all SH groups is formed.
  • step (1-B) The method for producing a cyclized peptide according to [1] or [2], wherein the S-protected peptide is obtained by any one of the following steps.
  • step (1-B) all the protected peptides are subjected to provisional SS formation, and a mixture of peptides crosslinked or linked by a temporary SS bond (hereinafter, referred to as " (Sometimes referred to as "temporary S-S-modified peptide mixture")
  • step (1-A) the S-protected peptide is deprotected by deprotecting the protecting groups of all functional groups other than the SH group protected by the temporary SS bond formation possessed by the temporary S-S-modified peptide mixture.
  • step (1-A) after deprotecting the protecting groups of all functional groups other than the SH group of all protected peptides, or at the same time, in step (1-B), the deprotected peptide is temporarily removed.
  • step 1-A) after deprotecting the protecting groups of all the functional groups other than the SH group of all the protected peptides, 2) Removing the protecting group of SH group, and further, 3) in step (1-B), subjecting to temporary S—S conversion to obtain a temporary S—S converted peptide mixture, or b) 1) total protection After removing the protecting group of SH group of the peptide, 2) In the step (1-B), a temporary SS-S-modified peptide mixture is obtained, and further, in the step (1-A), the temporary SS-S-modified peptide mixture is obtained.
  • step (1-A) To obtain a peptide protected by the formation of a temporary SS bond of In the step (1-A), a step of obtaining an S-protected peptide by deprotecting the protecting groups of all functional groups other than the SH group protected by the temporary SS bond of the peptide.
  • step (1-B) after subjecting all protected peptides to provisional S—S conversion to obtain a provisional S—S conversion peptide mixture,
  • step (1-A) the S-protected peptide is removed by deprotecting all the protecting groups of the functional groups other than the SH group protected by the temporary SS bond formation in the temporary S-S-modified peptide mixture.
  • [8] The method for producing a cyclized peptide according to [7], wherein the protecting group for the SH group in all protected peptides is a protecting group other than the S-based protecting group.
  • the protecting group for SH group in all protected peptides is trityl group (Trt group), acetamidomethyl group (Acm group), benzyl group (Bzl group), 4-methylbenzyl group (4-MeBzl group), or 4 -The method for producing a cyclized peptide according to [8], which is a methoxybenzyl group (MBzl group).
  • Trt group trityl group
  • Acm group acetamidomethyl group
  • Bzl group benzyl group
  • 4-methylbenzyl group (4-MeBzl group
  • 4-MeBzl group 4 -The method for producing a cyclized peptide according to [8], which is a methoxybenzyl group (MBzl group).
  • step (1-A) after deprotecting the protecting groups of all the functional groups other than the SH group of all the protected peptides, or at the same time, the deprotected peptide is subjected to provisional S-S conversion to obtain a provisional S-S conversion peptide mixture to obtain an S-protected peptide, [1] to [4] The method for producing a cyclized peptide according to 1. [13] The method for producing a cyclized peptide according to [12], wherein the protecting group for the SH group of all protected peptides is a protecting group other than the S-based protecting group.
  • the protecting group for SH group in all protected peptides is acetamidomethyl group (Acm group), t-butyl group (t-Bu group), trityl group (Trt group), benzyl group (Bzl group), 4-methyl
  • step (1-A) 1) In step (1-A), after deprotecting the protecting groups of all the functional groups except the SH group of all the protected peptides, 2) Removing the protecting group of SH group, and further, 3) in step (1-B), subjecting to temporary S—S conversion to obtain a temporary S—S converted peptide mixture, or b) 1) total protection After removing the protecting group of SH group of the peptide, 2) In the step (1-B), a temporary SS-S-modified peptide mixture is obtained, and further, in the step (1-A), the temporary SS-S-modified peptide mixture is obtained.
  • step (1-B) protection of all SH groups by formation of a temporary SS bond is performed by formation of a temporary SS bond with an S-based protecting group [1] to [3]. ] The manufacturing method of the cyclization peptide in any one of these. [24] In the step (1-B), protection of all SH groups by formation of a temporary SS bond is carried out by reprotecting the protecting group of the SH group from a protecting group other than the S protecting group with an S protecting group.
  • the S-based protecting group is a 3-nitro-2-pyridinesulfenyl group (Npys group), a t-butylmercapto group (StBu group), or an ethylmercapto group (S-Et group) [23] ] Or the manufacturing method of the cyclized peptide as described in [24].
  • step (1-B) a linear peptide having two or more SH groups protected by a protecting group as a functional group on the peptide, wherein the N-terminal amino group may be protected, Re-protecting the protecting group of SH group of a peptide in which all of the C-terminal carboxy group and other functional groups on the peptide are protected with an S-based protecting group or previously protecting with an S-based protecting group Gives a peptide in which all SH groups are protected by the formation of a temporary SS bond with an S-based protecting group,
  • step (1-A) S-protected peptides are obtained by deprotecting the protecting groups of all functional groups other than the SH group protected by the temporary SS bond of the peptide, [1] to [3] ] Or the method for producing the cyclized peptide according to any of [23] to [25].
  • step (2) The method for producing a cyclized peptide according to any one of [1] to [27], wherein the folding step under redox conditions in step (2) is performed in an aqueous solution having a pH of 6 or more.
  • step (2) The method for producing a cyclized peptide according to any one of [1] to [28], wherein the folding step under the redox condition of step (2) is performed in the coexistence of an oxidizing agent and a reducing agent.
  • [30] The method for producing a cyclized peptide according to any one of [1] to [29], wherein the number of SH groups as functional groups on the peptide in the S-protected peptide is 2.
  • the conventional method of reducing the yield due to alkylation of the SH group by the debris of various deprotected protecting groups and the desired cyclization reaction yield due to impurity by-product is used.
  • a cyclized peptide can be efficiently obtained under the folding step.
  • the cyclization reaction can be effectively carried out even under a relatively high concentration condition, and therefore, it is also very excellent from the viewpoint of production efficiency.
  • FIG. 1 shows an outline of an embodiment of the present invention.
  • “Embodiment 1-1”, “Embodiment 1-2”, “Embodiment 1-3” and “Embodiment 2-1” in the figure are the same as in step (1-A) and step (1-B). Corresponding to the embodiment.
  • the basic embodiment of the present invention is a method for producing a cyclized peptide having a crosslinked structure by an intramolecular SS bond, which comprises the following steps.
  • S-protected peptide A peptide that is protected by formation of a peptide and in which all protecting groups of functional groups on the other peptide have been deprotected (“S-protected peptide”) is subjected to a folding step under redox conditions to give a peptide molecule.
  • S-protected peptide A peptide that is protected by formation of a peptide and in which all protecting groups of functional groups on the other peptide have been deprotected.
  • the "all-protected peptide" used in this step corresponds to the sequence of the target cyclized peptide, and using a raw material known to those skilled in the art, a terminal amino group with a protecting group known in the art, A structural unit such as an amino acid in which a functional group including a terminal carboxy group and an SH group is appropriately protected by a protecting group is produced or purchased, and a deprotection reaction and a peptide chain extension reaction are repeated according to a method known per se or a method analogous thereto. It can be manufactured. Protection of the SH group can also be achieved by protecting the SH group by forming a temporary SS bond after peptide synthesis, as described below.
  • the target cyclized peptide may be naturally occurring peptide or non-naturally occurring peptide.
  • the amino acid or the like which is a constituent unit of the peptide produced by the method of the present invention, is a compound having an amino group and a carboxy group in the same molecule, and may be a natural amino acid or an unnatural amino acid. It may be a body or a racemate. Further, the constitutional unit is not limited to an amino acid, and may be a compound applicable to other peptide synthesis (hereinafter referred to as an amino acid analog). Those skilled in the art can appropriately select such an amino acid analog and manufacture or purchase it according to a method known per se or a method analogous thereto.
  • SH group as a functional group on the peptide examples include, but are not limited to, SH groups possessed by cysteine residues, homocysteine residues, 3-mercaptopropionyl groups and the like.
  • the position of the SH group is not particularly limited for any residue, and it may be arranged at either the terminal or the middle of the peptide sequence. Well, they may be adjacent to each other. It also includes the case where SH groups are present across multiple chains, such as insulin produced by cleavage from proinsulin.
  • N-terminal amino group protecting groups C-terminal carboxy group protecting groups, amino acids having SH groups as functional groups on peptides, or amino acid analogs, functional group protecting groups on peptides other than constituent units are known in the art. It may be selected from those usually used in the field, but depending on the selection of the protecting group for the SH group in step (1-A), a suitable protecting group for achieving the purpose of step (1-A) Can be selected.
  • step (1-A) the protecting groups of all functional groups other than the protected SH group of the “all-protected peptide” (including the pseudo solid-phase protecting group and solid-phase carrier described later) are deprotected.
  • a process. Deprotection in this step (1-A) includes cutting out of a pseudo solid-phase protecting group or solid-phase carrier.
  • the deprotection in this step (1-A) can be carried out by a method usually used in the art depending on the protecting group used. At the time of deprotection here, it is necessary that the protecting group of the SH group is not removed at the same time, so it is desirable to select an appropriate deprotection method depending on the protecting group of the SH group. In particular, when the SH group is protected by a temporary SS bond described below, it is appropriate to select one that can be deprotected in the absence of a reducing agent. A more specific deprotection method will be described later.
  • This step (1-B) is a step of protecting all SH groups in a linear peptide having two or more SH groups as functional groups on the peptide by forming a temporary SS bond.
  • a temporary SS bond is formed by forming a temporary SS bond with an S-based protecting group or by forming a temporary SS bond by temporary SS conversion. Other details, including the protecting group for the SH group, will be described later according to the embodiment.
  • the formation of the temporary SS bond in the step (1-B) is carried out by deprotecting the protecting groups of all functional groups other than the SH group (including the pseudo solid-phase protecting group described later) (step (1-A )) Before or after, or at the same time, at an appropriate time.
  • the order of the step (1-A) and the step (1-B) depends on the protecting group of the SH group used, the reaction mode of the temporary SS bond formation, and the deprotection conditions for the protecting group other than the SH group. , Etc. are appropriately determined in relation to the above, but preferred specific embodiments will be described later.
  • the step (1-A) and the step (1-B) can be performed under either solid phase conditions or liquid phase conditions (including pseudo solid phase conditions using a pseudo solid phase protecting group).
  • solid phase conditions or liquid phase conditions including pseudo solid phase conditions using a pseudo solid phase protecting group.
  • Those skilled in the art can appropriately select solid phase or liquid phase (pseudo solid phase using pseudo solid phase protecting groups) conditions depending on the structure of the desired cyclized peptide and the synthetic strategy such as production purpose (production scale etc.). can do.
  • step (1-A) and step (1-B) are performed under solid phase conditions, at least one of the functional groups on the peptide such as a terminal carboxy group or a functional group on the peptide (eg, carboxy group).
  • a terminal carboxy group or a functional group on the peptide eg, carboxy group
  • One is supported on a solid phase carrier by a method commonly used in peptide synthesis under solid phase conditions.
  • the solid phase carrier can be any solid phase carrier known in the art suitable for use in solid phase synthesis.
  • solid phase includes that the peptide is bound or linked to the above solid phase carrier via a conventional functional linker or handle group, and in the present context "solid phase".
  • the term "" implies such a linker.
  • solid phases are, for example, polystyrene supports (eg may be further functionalized with p-methylbenzyl-hydrylamine) or rigid bodies such as diatomaceous earth-encapsulated polydimethylacrylamide (Pepsin K), silica or microporous glass. It is a functionalized support.
  • the solid phase resin matrix may be composed of an amphipathic polystyrene-PEG resin or PEG-polyamide or PEG-polyester resin.
  • solid-phase carriers include Wang-PEG resin (Alko-PEG Resin), SAL-PEG Resin and Rink-amide PEG resin.
  • each protecting group can be introduced into each functional group according to a method commonly used in the art.
  • the protecting group other than the S-based protecting group for example, t-butyl group (t-Bu group), triphenylmethyl group (trityl).
  • Trt group methyltrityl group, methoxytrityl group, monomethoxytrityl group (MMTrt group), adamantyl group (Ad group), acetamidomethyl group (Acm group), trimethylacetamidomethyl group, phenylacetamidomethyl group (Phacm group) ), Benzyl group (Bzl group), 4-methylbenzyl group (4-MeBzl group), 3-methylbenzyl group, 2-methylbenzyl group, 4-methoxybenzyl group (MBzl group), 3-methoxybenzyl group, 2 -Methoxybenzyl group, 2,4,6-trimethoxybenzyl group, dabsyl group (Dbs group: 4-dimethylaminoazobenzene-4'-sulfonyl group), etc., and S-based protecting group (for example, 3-nitro- Examples thereof include 2-pyridinesulfenyl group (Npys group), t-butyl
  • N-terminal amino group-protecting group temporary protecting group
  • Fmoc group 9-fluorenylmethyloxycarbonyl group
  • Boc group A tert-butoxycarbonyl group
  • it is an Fmoc group.
  • protecting group for C-terminal carboxy group examples include an ester type protecting group, an amide type protecting group and a hydrazide type protecting group.
  • ester-type protecting group a substituted or unsubstituted alkyl ester or a substituted or unsubstituted aralkyl ester is preferably used.
  • substituted or unsubstituted alkyl ester methyl ester, ethyl ester, tert-butyl ester, cyclohexyl ester, trichloroethyl ester, phenacyl ester and the like are preferably used.
  • substituted or unsubstituted aralkyl ester benzyl ester, p-nitrobenzyl ester, p-methoxybenzyl ester, diphenylmethyl ester, 9-fluorenylmethyl (Fm) ester, 4-picolyl (Pic) ester and the like are preferable. Used.
  • amide-type protecting group examples include unsubstituted amides, primary amides such as N-methylamide, N-ethylamide and N-benzylamide, and secondary amides such as N, N-dimethylamide, pyrrolidinylamide and piperidinylamide. Amides and the like are preferably used.
  • hydrazide-type protecting group unsubstituted hydrazide, N-phenylhydrazide, N, N'-diisopropylhydrazide and the like are preferably used.
  • protecting group for functional group on peptide examples include basics and experiments on peptide synthesis, published by Maruzen Co., Ltd. (1985), Protective Groups in Organic Synthesis (PROTECTIVE GROUPS IN ORGANIC SYNTHESIS), No. 3 And the protecting groups described in, for example, John Willy & Sons (1999).
  • the functional group on the peptide is an amino group
  • a urethane type protecting group an acyl type protecting group, a sulfonyl type protecting group and the like can be mentioned.
  • urethane type protecting group for example, a methoxycarbonyl group, an ethoxycarbonyl group, a tert-butoxycarbonyl (Boc) group, etc. are used.
  • the Boc group is particularly preferably used because it can be selectively deprotected under mildly acidic conditions.
  • acyl-type protecting group for example, formyl group, acetyl group, trifluoroacetyl group and the like are preferably used.
  • sulfonyl-type protecting group for example, p-toluenesulfonyl (Ts) group, p-tolylmethanesulfonyl group, 4-methoxy-2,3,6-trimethylbenzenesulfonyl group and the like are preferably used.
  • the same protecting groups as those mentioned above can be mentioned as the protecting group for the C-terminal carboxy group.
  • the functional group on the peptide is a hydroxy group (including a phenolic hydroxy group)
  • an alkyl type protecting group, an alkoxyalkyl type protecting group, an acyl type protecting group, an alkylsilyl type protecting group and the like can be mentioned.
  • alkyl type protecting group examples include a methyl group, an ethyl group, a tert-butyl group and the like.
  • alkoxyalkyl type protecting group examples include a methoxymethyl group (MOM group), a 2-tetrahydropyranyl group (THP group), an ethoxyethyl group (EE group), and the like.
  • acyl-type protecting group examples include acetyl group, pivaloyl group, benzoyl group and the like.
  • alkylsilyl-type protecting group examples include trimethylsilyl group (TMS group), triethylsilyl group (TES group), tert-butyldimethylsilyl group (TBS group or TBDMS group), triisopropylsilyl group (TIPS group), tert- Butyldiphenylsilyl group (TBDPS group) and the like.
  • guanidino group of arginine can be protected by the p-toluenesulfonyl group.
  • the imidazole group of histidine can be protected with a trityl group, a benzyloxymethyl group, or the like.
  • the indole group of tryptophan can be protected by a formyl group.
  • the present invention When the present invention is carried out under liquid phase conditions, it is desirable that at least one of the C-terminal carboxy group and, when the functional group on the peptide is a carboxy group, be protected.
  • the protecting group for the carboxy group include the protecting groups (ester-type protecting group, amide-type protecting group, hydrazide-type protecting group, etc.) mentioned in the above-mentioned “C-terminal carboxy-group protecting group”. Of these, ester type protecting groups are preferred.
  • ester type protecting group a substituted or unsubstituted alkyl ester or a substituted or unsubstituted aralkyl ester is preferably used.
  • substituted or unsubstituted alkyl ester methyl ester, ethyl ester, tert-butyl ester, cyclohexyl ester, trichloroethyl ester, phenacyl ester and the like are preferably used.
  • substituted or unsubstituted aralkyl ester benzyl ester, p-nitrobenzyl ester, p-methoxybenzyl ester, diphenylmethyl ester, 9-fluorenylmethyl (Fm) ester, 4-picolyl (Pic) ester and the like are preferable.
  • tert-butyl ester, benzyl ester and the like are preferable.
  • pseudo solid phase protecting group When the present invention is carried out under liquid phase conditions, in order to simplify purification, at least one of the C-terminal carboxy group and the carboxy group when the functional group on the peptide is a carboxy group is required. May be protected by a pseudo solid-phase protecting group (hereinafter sometimes referred to as “anchor” in the present specification).
  • the method for purifying the peptide using the pseudo solid-phase protecting group is not particularly limited, but is a method known per se (JP 2000-44493 A, WO 2006/104166, WO 2007/034812, International Publication No. 2007/122847, International Publication No. 2010/113939, International Publication No. 2010/104169, International Publication No.
  • the pseudo solid-phase protecting group includes an anchor that is soluble in a halogen-based solvent or an ether-based solvent and insoluble in a polar solvent and has a molecular weight of 300 or more (for example, a benzyl compound, a diphenylmethane compound, or a fluorene compound).
  • a group which is capable of condensing with a carboxy group for example, a benzyl compound, a diphenylmethane compound, or a fluorene compound.
  • One embodiment of the anchor having a molecular weight of 300 or more that is soluble in the halogen-based solvent or ether-based solvent and insoluble in the polar solvent is a compound represented by the following formula (I). Among these, those having a molecular weight of 400 or more are preferable.
  • R 1 is a hydrogen atom, or when R b is a group represented by the following formula (a), R 1 together with R 3 represents a single bond, and together with ring A and ring B, fluorene is present. May form a ring; p R 2 's each independently represent an organic group having an aliphatic hydrocarbon group; p represents an integer of 1 to 4; Ring A includes, in addition to p OR 2 's, a halogen atom, a C 1-6 alkyl group optionally substituted with a halogen atom, and a C 1-6 alkoxy group optionally substituted with a halogen atom. May have a substituent selected from the group consisting of: R a represents a hydrogen atom or a phenyl group which may be substituted with a halogen atom; and R b represents a hydrogen atom or a formula (a):
  • r represents an integer of 0 to 4; r R 4 's each independently represent an organic group having an aliphatic hydrocarbon group; R 3 may represent a hydrogen atom, or may form a single bond together with R 1 to form a fluorene ring with Ring A and Ring B; and Ring B is r OR 4 in addition to further halogen atom, a C 1-6 alkyl group optionally substituted by a halogen atom, and a substituent is also selected from the group consisting of a C 1-6 alkoxy group optionally substituted by a halogen atom You may have.
  • Y represents a hydroxy group, NHR (R represents a hydrogen atom, an alkyl group or an aralkyl group), or a halogen atom. ]
  • the anchor represented by the above formula (I) binds to a compound intended to be protected. That is, an anchor in which Y is a hydroxy group, a —NHR group, or a halogen atom protects the compound by condensing with a carboxy group such as the C-terminus of an amino acid or peptide.
  • examples of the “alkyl group” represented by R include a linear or branched C 1-30 alkyl group, preferably a C 1-10 alkyl group, and more preferably a C 1-6 alkyl group. Is. Preferable specific examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl and the like, with methyl and ethyl being particularly preferable.
  • examples of the “aralkyl group” represented by R include a C 7-30 aralkyl group, preferably a C 7-20 aralkyl group, and more preferably a C 7-16 aralkyl group (C 6-10 aryl). —C 1-6 alkyl group).
  • Specific preferred examples include benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl, 1-naphthylethyl, 1-naphthylpropyl and the like, with benzyl being particularly preferred.
  • a hydrogen atom, a C 1-6 alkyl group or a C 7-16 aralkyl group is preferable, a hydrogen atom, methyl, ethyl or benzyl is more preferable, and a hydrogen atom is particularly preferable.
  • the “halogen atom” is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “halogen atom” represented by Y is preferably a chlorine atom, a bromine atom or an iodine atom, more preferably a bromine atom.
  • the “organic group having an aliphatic hydrocarbon group” represented as R 2 or R 4 is a monovalent organic group having an aliphatic hydrocarbon group in its molecular structure.
  • the "aliphatic hydrocarbon group” in the "organic group having an aliphatic hydrocarbon group” is a linear or branched saturated or unsaturated aliphatic hydrocarbon group, and an aliphatic hydrocarbon having 5 or more carbon atoms.
  • a group is preferable, an aliphatic hydrocarbon group having 5 to 60 carbon atoms is more preferable, an aliphatic hydrocarbon group having 5 to 30 carbon atoms is further preferable, and an aliphatic hydrocarbon group having 10 to 30 carbon atoms is particularly preferable.
  • the “aliphatic hydrocarbon group” site in the “aliphatic hydrocarbon group-containing organic group” is not particularly limited and may be present at the terminal (monovalent group) or at any other site. (For example, a divalent group).
  • Examples of the "aliphatic hydrocarbon group” include a monovalent group such as an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group and an alkynyl group, and a divalent group derived from them, preferably a methyl group, Ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, octyl, decyl, dodecyl, lauryl, tridecyl, myristyl, cetyl
  • Examples thereof include a monovalent group such as a group, a stearyl group, an aralkyl group, a behenyl group, an oleyl group and an isostearyl group, and a divalent group derived from them.
  • the site other than the "aliphatic hydrocarbon group" in the "organic group having an aliphatic hydrocarbon group” can be arbitrarily set. For example, it may have a moiety such as —O—, —S—, —COO—, —OCONH—, and —CONH— as a linker, and a hydrocarbon group (monovalent group or divalent group).
  • hydrocarbon group examples include an aliphatic hydrocarbon group, an araliphatic hydrocarbon group, a monocyclic saturated hydrocarbon group and an aromatic hydrocarbon group, and specifically, for example, an alkyl group.
  • a monovalent group such as an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group and an aralkyl group, and a divalent group derived therefrom are used.
  • alkyl group for example, a C 1-6 alkyl group and the like are preferable, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl and the like.
  • alkenyl group for example, a C 2-6 alkenyl group and the like are preferable, and examples thereof include vinyl, 1-propenyl, allyl, isopropenyl, butenyl, isobutenyl and the like.
  • alkynyl group for example, a C 2-6 alkynyl group and the like are preferable, and for example, ethynyl, propargyl, 1-propynyl and the like can be mentioned.
  • cycloalkyl group for example, a C 3-6 cycloalkyl group and the like are preferable, and examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • the “aryl group” is preferably, for example, a C 6-14 aryl group, and examples thereof include phenyl, 1-naphthyl, 2-naphthyl, biphenylyl, 2-anthryl and the like. Of these, a C 6-10 aryl group is more preferable, and phenyl is particularly preferable.
  • a C 7-20 aralkyl group is preferable, and for example, benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl, 1-naphthylethyl, 1-naphthylpropyl and the like. Is mentioned. Among them, a C 7-16 aralkyl group (C 6-10 aryl-C 1-6 alkyl group) is more preferable, and benzyl is particularly preferable.
  • the “hydrocarbon group” is a halogen atom (chlorine atom, bromine atom, fluorine atom, iodine atom), an alkyl group having 1 to 6 carbon atoms which may be substituted with one or more halogen atoms, an oxo group and the like. It may be substituted with a selected substituent.
  • the “organic group having an aliphatic hydrocarbon group” that constitutes the OR 2 group or OR 4 group in the above formula (I) may have a plurality of “aliphatic hydrocarbon groups” due to branching or the like. When a plurality of "aliphatic hydrocarbon groups" are present in the "organic group having an aliphatic hydrocarbon group", each of them may be the same or different.
  • the lower limit of the total carbon number is preferably 5, more preferably 10, more preferably 12, and 14 is Even more preferred, 16 is even more preferred, and 20 is especially preferred.
  • the upper limit of the total number of carbon atoms in the “organic group having an aliphatic hydrocarbon group” represented by R 2 or R 4 is preferably 200, more preferably 150, further preferably 120, even more preferably 100, 80 is particularly preferred, 60 is particularly preferred, 40 is even more preferred and 30 is most preferred. The larger the carbon number, the better the crystallinity of the compound represented by formula (I) in a polar solvent, even when the peptide chain is long.
  • the “OR 2 ” group or the “OR 4 ” group include dodecyloxy, cetyloxy, octadecyloxy, docosyloxy, docosyloxy-dodecyloxy, triacontyloxy and the like.
  • r is preferably an integer of 0 to 2.
  • substituents which ring A or ring B in the above formula (I) may have include a C 1-6 alkoxy group (eg, methoxy, ethoxy, propoxy, isopropoxy, butoxy, A C 1-4 alkoxy group such as isobutoxy, sec-butoxy, tert-butoxy), a C 1-6 alkyl group optionally substituted with one or more halogens (eg, methyl, ethyl, propyl, isopropyl, butyl, And C 1-6 alkyl groups such as isobutyl, sec-butyl, tert-butyl, pentyl and hexyl, halogen-substituted C 1-6 alkyl groups such as trifluoromethyl and trichloromethyl), or halogen atoms.
  • a C 1-6 alkoxy group is preferred.
  • Y is a hydroxy group
  • R 1 is a hydrogen atom
  • R 2 and / or R 4 is an aliphatic hydrocarbon group having 5 to 60 carbon atoms
  • p is an integer from 1 to 3
  • Y is a hydroxy group
  • R a , R b , and R 1 are both hydrogen atoms
  • R 2 is an aliphatic hydrocarbon group having 5 to 60 carbon atoms
  • Y is a hydroxy group
  • R a , R b , and R 1 are both hydrogen atoms
  • R 2 is an alkyl group having 10 to 40 carbon atoms
  • Y is a hydroxy group
  • R a , R b , and R 1 are both hydrogen atoms
  • R 2 is an alkyl group having 12 to 30 carbon atoms
  • Y is a hydroxy group
  • R a , R b , and R 1 are both hydrogen atoms
  • R 2 is a benzyl group having 1 to 3 alkoxy groups having 12 to 30 carbon atoms
  • Y is a hydroxy group
  • R a , R b , and R 1 are both hydrogen atoms
  • R 2 is a cyclohexylmethyl group having 1 to 3 alkoxy groups having 12 to 30 carbon atoms
  • the following anchors are preferable examples of the anchor having a molecular weight of 300 or more that is soluble in a halogen-based solvent or an ether-based solvent and insoluble in a polar solvent in the present invention.
  • k Ra 's each independently have at least one aliphatic hydrocarbon group having one or more branched chains, have a total number of branched chains of 3 or more, and have a total carbon number of 14 or more and 300 or less.
  • k represents an integer of 1 to 4;
  • R 1 is a hydrogen atom or, when Z is a group represented by the following formula (a), represents a single bond together with R 2 to form a fluorene ring together with ring B.
  • Ring A is, in addition to R 1 , k QR a , and C (X) (Y) Z, further a halogen atom, a C 1-6 alkyl group optionally substituted by one or more halogen atoms, And optionally have a substituent selected from the group consisting of C 1-6 alkoxy groups optionally substituted by one or more halogen atoms;
  • X represents a hydrogen atom or a phenyl group;
  • Y represents a hydroxyl group or a -NHR group (R represents a hydrogen atom, an alkyl group or an aralkyl group);
  • Z is a hydrogen atom or the formula (a):
  • m represents an integer of 0 to 4; m Qs are as defined above; m R b each independently have at least one aliphatic hydrocarbon group having one or more branched chains, have a total number of branched chains of 3 or more, and have a total carbon number of 14 or more and 300 or less.
  • R 2 may represent a hydrogen atom or may form a single bond together with R 1 to form a fluorene ring with Ring A; and Ring B represents m QR b and R.
  • a C 1-6 alkyl group optionally substituted by one or more halogen atoms and a C 1-6 alkoxy group optionally substituted by one or more halogen atoms
  • a substituent selected from the group consisting of: An organic group having at least one aliphatic hydrocarbon group having at least one branched chain in R a and R b, having a total number of branched chains of 3 or more, and having a total carbon number of 14 or more and 300 or less, Formula (b):
  • R 3 and R 4 each independently represent a hydrogen atom or a C 1-4 alkyl group
  • X 1 represents a single bond, a C 1-4 alkylene group or an oxygen atom.
  • R 3 and R 4 are not both hydrogen atoms.
  • n 18 represents 5 to 7.
  • a branched chain-containing aromatic compound selected from the group consisting of:
  • Other preferable pseudo solid-phase protecting groups include di (4-docosoxyphenyl) methylamine (NHCH 2 (Phe (4-OC 22 H 45 )) 2 ) and the like.
  • the method for producing the anchor is not particularly limited, but is a method known per se (Japanese Patent Application Laid-Open No. 2000-44493, International Publication No. 2006/104166, International Publication No. 2007/034812, International Publication No. 2007/122847, International Publication No. 2010/113939, International Publication No. 2010/104169, International Publication No. 2011/078295, International Publication No. 2012/029794, etc.) or a method analogous thereto, or a similar method. ..
  • the compound used as the raw material compound for example, a halide corresponding to the group R 2 or R 4 of the formula (I) is commercially available, or a method known per se or a method analogous thereto. Can be manufactured according to.
  • a deprotection method known per se can be adopted without particular limitation depending on the type of the protective group to be deprotected. It is necessary to choose conditions that do not adversely affect the protection of the SH group by the formation of transient SS bonds. For example, it is preferable to carry out in the absence of a reducing agent. Those skilled in the art can appropriately select appropriate conditions based on the overall synthesis strategy.
  • a lower alkyl group such as Me or Et can be deprotected by reacting with a base such as sodium hydroxide or potassium hydroxide in a solvent such as an aqueous organic solvent or a polar organic solvent.
  • a base such as sodium hydroxide or potassium hydroxide
  • a solvent such as an aqueous organic solvent or a polar organic solvent.
  • tBu it can be deprotected by reacting it with an acid such as trifluoroacetic acid (TFA) or hydrochloric acid in a solvent such as chloroform or ethyl acetate.
  • TFA trifluoroacetic acid
  • Bzl deprotection can be carried out in a solvent such as methanol or DMF, or by reacting with a strong acid such as hydrogen fluoride, trifluoromethanesulfonic acid or HBr.
  • the acid that can be used for deprotecting the Boc group is not particularly limited, but mineral acids such as hydrogen chloride, sulfuric acid, nitric acid, formic acid, carboxylic acids such as trifluoroacetic acid (TFA), methanesulfonic acid, p-toluenesulfonic acid And the like, or a mixture thereof.
  • mineral acids such as hydrogen chloride, sulfuric acid, nitric acid, formic acid
  • carboxylic acids such as trifluoroacetic acid (TFA), methanesulfonic acid, p-toluenesulfonic acid And the like, or a mixture thereof.
  • TFA trifluoroacetic acid
  • methanesulfonic acid methanesulfonic acid
  • p-toluenesulfonic acid And the like or a mixture thereof.
  • the mixture include hydrogen bromide / acetic acid, hydrogen chloride / dioxane, hydrogen chloride / acetic acid,
  • the organic base that can be used for deprotection of the Fmoc group is not particularly limited, but secondary amines such as diethylamine, piperidine and morpholine, diisopropylethylamine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0]- Tertiary amines such as 7-undecene (DBU), 1,4-diazabicyclo [2.2.2] octane (DABCO), 1,5-diazabicyclo [4.3.0] -5-nonene (DBN) Can be mentioned.
  • secondary amines such as diethylamine, piperidine and morpholine, diisopropylethylamine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0]- Tertiary amines such as 7-undecene (DBU), 1,4-diazabicyclo [2.2.2] octane (DABCO), 1,5-d
  • the deprotection of the Fmoc group is carried out by treatment with a non-nucleophilic organic base in a halogen solvent or an ether solvent. Deprotection is performed in a solvent that does not affect the reaction.
  • Non-nucleophilic bases include 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), 1,4-diazabicyclo [2.2.2] octane (DABCO), and 1,5. -Diazabicyclo [4.3.0] -5-nonene (DBN) and the like are mentioned, DBU and DBN are preferable, and DBU is more preferable.
  • Deprotection of the pseudo solid phase protecting group is preferably carried out by acid treatment.
  • the acid used for deprotection include trifluoroacetic acid (TFA), hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid and the like, and among them, TFA is preferable.
  • the solvent used for deprotection include chloroform, dichloromethane, 1,2-dichloroethane, a mixed solvent thereof, and the like.
  • the concentration of the acid used for deprotection is, for example, 0.1 w / v% to 5 w / v%.
  • the deprotection of the pseudo solid-phase protecting group can be carried out simultaneously with the protecting groups of other functional groups in the peptide.
  • a conventional method used in the field, particularly peptide synthesis, is used, but a method of adding an acid or the like is preferably adopted.
  • the acid trifluoroacetic acid (TFA), hydrochloric acid, sulfuric acid, mesylic acid, tosylic acid, trifluoroethanol, hexafluoroisopropanol or the like is used.
  • TFA trifluoroacetic acid
  • the amount of the acid used is appropriately set depending on the type of the acid used, and an amount suitable for removing the anchor group is used.
  • the amount of the acid used is preferably 3 mol or more, more preferably 5 mol or more, preferably 100 mol or less, more preferably 50 mol or less with respect to 1 mol of the peptide.
  • trifluoromethanesulfonic acid, trimethylsilyl trifluoromethanesulfonate, BF 3 .etherate, etc. can be added as a further strong acid source.
  • the conditions for deprotecting the above pseudo solid-phase protecting group can be appropriately selected by those skilled in the art according to the type of protecting group used.
  • the other protecting group can be appropriately deprotected according to the method commonly used in the art or the deprotecting method of the protecting group described in the present specification, depending on the type.
  • step (1-A) and step (1-B) When the “S-protected peptide” obtained in the above step (1-A) and step (1-B) is obtained under liquid phase conditions, it can be isolated by a method commonly used in the art. It can be purified and is subjected to step (2). On the other hand, when the “S-protected peptide” is obtained under solid phase conditions, it is cut out from the solid phase carrier by a conventional method and subjected to step (2).
  • step (1-A) and the process (1-B) have been described above.
  • the S-protected peptide of step (2) can be obtained by carrying out step (1-A) and step (1-B), but step (1-A) and step (1-B)
  • step (1-A) and step (1-B) The order before and after the execution of () is not limited to this order, and the order can be changed appropriately according to the embodiment. Therefore, when the step (1-B) is performed after the step (1-A), when the step (1-A) is performed after the step (1-B), or when a combination of these is performed, both steps are simultaneously performed. In some cases, there are cases, but both cases are included in the scope of the present invention.
  • the step (1-A) and the step (1-B) together form a step (1) for producing the “S-protected peptide” used in the subsequent step (2).
  • the step (1) can be rephrased as a step of obtaining an "S-protected peptide", which includes performing step (1-A) and step (1-B) in combination.
  • This step (2) is a “linear peptide having two or more SH groups as functional groups on the peptide obtained in step (1-A) and step (1-B)
  • a peptide in which the SH group is protected by the formation of a temporary SS bond and the protecting groups of all functional groups other than the SH group are deprotected (S-protected peptide) is folded under redox conditions.
  • S-protected peptide is folded under redox conditions.
  • a cyclized peptide is obtained by reforming the SS bond in the peptide molecule.
  • the temporary SS bond formed for protection of the SH group in the folding step is temporarily cleaved to form a stable (natural) higher-order structure so that the SS bond is formed.
  • the target cyclized peptide can be obtained by reforming.
  • the “S-protected peptide” is cleaved by reduction of the temporary SS bond and formation of the SS bond by oxidation, and further, the formed SS bond.
  • the S-S bond exchange reaction by reduction re-cleavage by reduction and re-formation by oxidation progresses in sequence, and finally a stable (or natural type, if the target cyclized peptide is a natural product) higher-order structure is formed.
  • a stable conformation conforms to the conformation.
  • One or more SS bonds will be formed between the SH groups selected to do so.
  • the target cyclized peptide can be obtained more simply and efficiently.
  • the “oxidation-reduction condition” in the present invention means that the “S-protected peptide” means that the temporary S—S bond is cleaved by reduction and the S—S bond is formed by oxidation, and further that the formed S—S bond is Re-cleavage due to reduction and exchange reaction due to re-formation due to oxidation proceed in sequence, and finally have stable (or natural, if the target cyclized peptide is a natural product) higher-order structure. It is a condition that leads to a cyclized peptide and is generally performed in the coexistence of an oxidizing agent and a reducing agent, but as described later, it is not essential to add the oxidizing agent from the outside only with the reducing agent. .. ⁇
  • a combination of disulfide type reagent / thiol type reagent for example, cystine / cysteine, glutathione oxidation type / Examples include a combination of an oxidizing agent and a reducing agent such as glutathione reduced type, cystamine / cysteamine, dithiodiethanol / ⁇ -mercaptoethanol and the like.
  • a combination of cystine / cysteine and glutathione oxidation type / glutathione reduction type can be mentioned.
  • the oxygen dissolved in the solvent acts as an oxidizing agent
  • the temporary SS bond itself existing in the S-protected peptide also acts as an oxidizing agent.
  • the embodiment using only the agent is also included in the folding step under redox conditions in step (2).
  • examples of the reducing agent include cysteine, glutathione reduced type, cysteamine, ⁇ - Examples thereof include mercaptoethanol and the like (preferred is cysteine), but the present invention is not limited thereto as long as it is commonly used in the art.
  • This step can be performed in a suitable solvent, but is preferably performed in a polar solvent (eg, water, alcohol such as ethanol, etc.) or a mixed solvent thereof.
  • a polar solvent eg, water, alcohol such as ethanol, etc.
  • a mixed solvent thereof e.g., water, alcohol such as ethanol, etc.
  • This step can be usually performed at pH 6 or higher (14 or lower), but is preferably performed under basic conditions, for example, pH 7 or higher (14 or lower), more preferably pH 8 or higher (14 or lower), It is particularly preferable to carry out at pH 8 or higher and 13 or lower.
  • This step can be performed according to the conditions under which a folding step is usually performed in this technical field.
  • the concentration of the "S-protected peptide" during the folding step is not particularly limited and can be appropriately determined by those skilled in the art according to the type of the "S-protected peptide". For example, from 0.1 mg / ml It can be carried out in the usual concentration range in the folding of 1 mg / ml. As a result of the investigation, it was confirmed that the desired cyclized peptide can be efficiently obtained even in a higher concentration range based on the fact that the SH group is protected by the temporary SS bond formation in the present invention.
  • this step can be carried out in the range of 1 mg / ml or more and 50 mg / ml, or 1 mg / ml or more and 25 mg / ml, or 1 mg / ml or more and 15 mg / ml.
  • the method for carrying out the folding step under other redox conditions can be appropriately selected by those skilled in the art according to the substrate peptide of interest according to methods known in the art, and for example, “peptide Reference can also be made to "Synthesis Basics and Experiments, Maruzen Co., Ltd. (1985)".
  • Step (1) [Regarding Step (1-A) and Step (1-B)]
  • Embodiment 1 In carrying out the present invention, in step (1-B), protection of all SH groups by formation of a temporary SS bond is carried out so that all SH groups are temporarily protected within and / or between peptide molecules. This can be done by forming an S—S bond (temporary S—S conversion).
  • a pair of SH groups of a linear peptide having two or more SH groups as functional groups on the peptide form temporary SS bonds within and / or between peptide molecules.
  • the SH group is protected, and a mixture of peptides crosslinked or linked by a temporary SS bond (temporary S—S-modified peptide mixture) is obtained.
  • a mixture of peptides linked by a temporary SS bond having various structures is obtained, but it is not necessary to perform purification or selection of a specific compound, and the whole mixture is used for the next step. It is useful because it can.
  • the provisional S-S conversion is performed under an appropriate combination with the protecting group of the SH group used in the target peptide and the method of temporary S-S bond formation.
  • the preferred embodiments will be described in detail in different cases.
  • Embodiment 1-1 In this embodiment, more specifically, in the step (1-B), after subjecting all protected peptides to provisional S—S conversion to obtain a provisional S—S conversion peptide mixture, In step (1-A), the S-protected peptide is deprotected by deprotecting the protecting groups of all functional groups other than the SH group protected by the temporary SS bond formation possessed by the temporary S-S-modified peptide mixture. Obtainable.
  • preferable SH group-protecting groups in all protected peptides include protecting groups other than S-based protecting groups (described later), for example, trityl group (Trt group), acetamidomethyl group (Acm group), Examples thereof include a benzyl group (Bzl group), a 4-methylbenzyl group (4-MeBzl group), and a 4-methoxybenzyl group (MBzl group).
  • the provisional SS conversion is performed by, for example, iodine treatment, thallium (III) trifluoroacetate treatment (Tl (OCOCF 3 ) 3 treatment), or the like, and is preferably performed by iodine treatment.
  • Each treatment such as the above-mentioned iodine treatment can be performed under the conditions usually performed in this technical field.
  • iodine treatment by treating all protected peptides with iodine in a solvent such as chloroform, acetic acid, an alcohol such as methanol, a solvent such as hexafluoroisopropanol, or a water-containing or mixed solvent thereof. It can be carried out.
  • Iodine is used in an amount of, for example, 0.3 to 8 equivalents, preferably 0.5 to 6 equivalents, based on the peptide structural unit (1 mol) having an SH group.
  • iodine is used in 1 to 6 equivalents, preferably 1 to 3 equivalents, relative to the peptide structural unit (1 mol) having an SH group.
  • the protecting group for SH group is acetamidomethyl group (Acm group)
  • it is used in an amount of 1 to 10 equivalents, preferably 1 to 5 equivalents.
  • the temperature during the treatment is not particularly limited and may be appropriately selected depending on the reaction within the temperature range of cooling to heating. For example, it can be performed at room temperature (normal temperature).
  • the temporary S—S conversion can be carried out under the same equivalence relation and temperature conditions even in the case of treatment with another oxidizing agent (thallium (III) trifluoroacetate etc.).
  • the thallium (III) trifluoroacetate treatment is a method using thallium (III) trifluoroacetate (Tl (OCOCF 3 ) 3 ) as an oxidizing agent.
  • Tl (OCOCF 3 ) 3 thallium (III) trifluoroacetate
  • all the protected peptides are treated in trifluoroacetic acid (TFA). It can be performed by treating with an oxidizing agent.
  • the protective groups for functional groups other than the SH group, the conditions for deprotecting them and the like can be carried out with reference to those mentioned above, but the deprotection is preferably treated with trifluoroacetic acid (TFA). It is done by doing.
  • TFA trifluoroacetic acid
  • step (1-A) after deprotecting the protecting groups of all the functional groups other than the SH group of all the protected peptides, or at the same time, the S-protected peptide can be obtained by subjecting the protected peptide to temporary S-S conversion to obtain a temporary S-S-modified peptide mixture.
  • preferred SH group protecting groups in all protected peptides include protecting groups other than S-based protecting groups such as acetamidomethyl group (Acm group), t-butyl group (t-Bu group). , Trityl group (Trt group), benzyl group (Bzl group), 4-methylbenzyl group (4-MeBzl group), and 4-methoxybenzyl group (MBzl group). ..
  • the provisional S—S conversion is performed by, for example, iodine treatment, DMSO / TFA (dimethyl sulfoxide / trifluoroacetic acid) treatment, thallium (III) trifluoroacetate treatment (Tl (OCOCF 3 ) 3 treatment) or the like. It is preferable that the treatment is performed by iodine treatment.
  • the deprotection in step (1-A) and the provisional SS conversion in step (1-B) can be performed simultaneously, for example, by using DMSO / TFA treatment.
  • the protective groups for functional groups other than the SH group and conditions for deprotecting them can be carried out by referring to those mentioned above, but deprotection is preferably carried out by treatment with trifluoroacetic acid.
  • Embodiment 1-3 in this embodiment, more specifically, a) 1) In step (1-A), after deprotecting the protecting groups of all the functional groups except the SH group of all the protected peptides, 2) Removing the protecting group of SH group, and further, 3) in step (1-B), subjecting to temporary S—S conversion to obtain a temporary S—S converted peptide mixture, or b) 1) total protection After removing the protecting group of SH group of the peptide, 2) In the step (1-B), a temporary SS compound is obtained by subjecting it to the temporary SS compound, and further, in 3) step (1-A), the temporary SS compound peptide mixture.
  • the S-protected peptide can be obtained by deprotecting the protecting groups of all functional groups other than the SH group protected by the temporary S—S bond formation.
  • preferred SH group protecting groups in all protected peptides include protecting groups other than S-based protecting groups such as phenylacetamidomethyl group (Phacm group), 4-methoxybenzyl group (MBzl group). , And a monomethoxytrityl group (MMTrt group).
  • the above-mentioned protecting group can be appropriately deprotected according to the method commonly used in the art or according to the deprotecting method of the protecting group described in the present specification, depending on the type.
  • the protecting group for the SH group is a phenylacetamidomethyl group (Phacm group)
  • its removal is preferably carried out by treatment with an aqueous solution in the presence of penicillinamide hydrolase (PGA).
  • PGA penicillinamide hydrolase
  • the protecting group for the SH group is a 4-methoxybenzyl group (MBzl group)
  • its removal is preferably performed by treatment with DDQ (dichlorodicyanobenzoquinone).
  • DDQ diichlorodicyanobenzoquinone
  • the protecting group for the SH group is a monomethoxytrityl group (MMTrt group)
  • its removal is preferably performed by treatment with a weak acid (for example, 1% TFA).
  • the provisional SS conversion is performed by, for example, iodine treatment, Npys-OMe treatment (methyl 3-nitro-2-pyridinesulfate treatment), thallium trifluoroacetate (III) treatment (Tl (OCOCF 3 ). 3 treatment), etc., preferably iodine treatment or Npys-OMe treatment, and more preferably iodine treatment.
  • Npys-OMe treatment (methyl 3-nitro-2-pyridinesulfate treatment) is a method of using Npys-OMe as an oxidant. It can be performed by treating with the oxidizing agent. Also in this treatment, it is possible to carry out under the same equivalence relation and temperature conditions as in the case of the above iodine treatment.
  • the protective groups for functional groups other than the SH group, conditions for deprotecting them, and the like can be carried out with reference to those mentioned above, but deprotection is preferably carried out by treatment with trifluoroacetic acid (TFA). ..
  • step (1-B) protection of all SH groups by forming a temporary SS bond may be carried out by forming a temporary SS bond with an S-based protecting group. it can.
  • Embodiment 2-1 In this embodiment, more specifically, (1) A linear peptide having two or more SH groups protected by a protecting group as a functional group on the peptide in step (i) (1-B), wherein the N-terminal amino group is protected.
  • the C-terminal carboxy group and the protecting group of the SH group of the peptide in which all other functional groups on the peptide are protected may be reprotected with an S-based protecting group, or (Ii) obtaining a peptide in which all SH groups have been protected by formation of a temporary SS bond with the S-based protecting group by previously protecting with the S-based protecting group,
  • step (1-A) the S-protected peptide can be obtained by deprotecting the protecting groups of all functional groups other than the SH group protected by the temporary SS bond of the peptide.
  • the formation of a temporary SS bond with the S-based protecting group can be carried out, for example, by a 3-nitro-2-pyridinesulfenyl group (Npys group), a t-butylmercapto group (StBu group), or an ethylmercapto group ( It can be carried out by treating with a reagent for introducing an S-based protecting group used in the art, such as S-Et group), under the conditions usually used.
  • a reagent for introducing an S-based protecting group used in the art such as S-Et group
  • the reaction can be carried out in chloroform, DMF, acetonitrile or a mixed solvent thereof.
  • the reagent for introducing the S-based protecting group is used in an amount of 1 to 6 equivalents, preferably 1 to 3 equivalents, relative to the peptide structural unit (1 mol) having an SH group (or a protected SH group).
  • the temperature during the treatment is not particularly limited and may be appropriately selected depending on the reaction within the temperature range of cooling to heating. For example, it can be performed at room temperature (normal temperature).
  • Re-protecting the SH-group protecting group of a peptide with an S-group protecting group means a reagent for introducing an S-group protecting group into a peptide whose SH group is protected by a protecting group other than the S-group protecting group. It is a mode in which all SH groups form a temporary SS bond with the S-based protecting group by being protected again by.
  • the S-protecting group is preferably a -nitro-2-pyridinesulfenyl group (Npys group).
  • “previously protecting with an S-based protecting group” means that a peptide raw material containing an SH group as a functional group (a cysteine residue, a homocysteine residue, a 3-mercaptopropionyl group, etc.) is previously protected with an S-based protecting group (for example, it is a mode protected by a t-butylmercapto group (S-tBu group), an ethylmercapto group (S-Et group), a 3-nitro-2-pyridinesulfenyl group (Npys group), and the like.
  • the S-protecting group is preferably a t-butylmercapto group (S-tBu group).
  • a protecting group other than the S-group is used as the SH-group protecting group, for example, a trityl group (Trt group) is used. To be done.
  • the protecting group for each functional group other than the SH group and the conditions for deprotecting them can be carried out by referring to those mentioned above, but deprotection is preferably carried out by treatment with trifluoroacetic acid (TFA). Be seen. ..
  • step (1) of the present invention has been described above.
  • the SH group of a peptide having an SH group as a functional group on the peptide was protected.
  • the SH group is alkylated by the debris of various deprotected groups, etc., and the yield is lowered.
  • the problem that the yield of the target peptide is unavoidably reduced can be solved.
  • step (2) Furthermore, by protecting the SH group by forming a temporary SS bond, the efficiency of folding in step (2) can be increased.
  • the folding step of step (2) is carried out in an aqueous solution having a pH of 6 or higher, preferably under basic conditions, for example, at a pH of 7 or higher (14 or less), and at a pH of 8 or higher (14 or less). It is more preferable to carry out, and it is particularly preferable to carry out at a pH of 8 to 13.
  • the in-situ concentration of the "S-protected peptide" in the folding step of step (2) is, for example, 0.1 mg / ml to 1 mg / ml in the usual concentration range for folding.
  • the in-system concentration of the "S-protected peptide" in the folding step of step (2) is in the concentration range of 1 mg / ml or more, for example, 1 mg / ml or more 50 mg / ml, or 1 mg / ml or more 25 mg / ml. ml, or in the range of 1 mg / ml to 15 mg / ml.
  • the step (2) of the present invention has been described above, it has a great advantage in that the cyclization reaction can be performed at a higher concentration than usual folding conditions. Even in the folding step of the present invention, the reagent used as the redox agent rarely by-produces an additional impurity which is SS-bonded with the peptide. However, in a usual method, the by-product impurity has a large molecular weight. In the method of the present invention, even if additional impurities are by-produced, it is not a multimer having a large molecular weight, and the type is a single impurity. Therefore, the subsequent purification load can be greatly reduced. The step (2) of the present invention also has such a great advantage.
  • the number of SH groups that the S-protected peptide has is two or more, but in one preferred embodiment, the number of SH groups that the S-protected peptide has is two.
  • the number of SH groups contained in the S-protected peptide is 4 or more, preferably an even number.
  • the number of residues of the constituent units such as amino acids and amino acid analogs constituting the S-protected peptide is not particularly limited, but is usually 4 or more and 100 or less. It is preferably 6 or more and 80 or less, and more preferably 8 or more and 60 or less.
  • the type of the target cyclized peptide is not particularly limited, and may be, for example, a drug. Further, it may be a natural product or a non-natural product. Examples of such a cyclized peptide include somatostatin, octreotide, atosiban, linaclotide, precanatide, plecanatide, zicotinidetide, zicotinidetide, and ziconotidetide. (Insulin glulisine) and the like, but not limited thereto.
  • a cyclized peptide having a stable (or natural type if the target cyclized peptide is a natural) higher-order structure is introduced. It is preferable to target them.
  • Peptide B in-line perfect protector 3-Mercapto (Trt) propionyl-O-Ethyl-D-Tyr-Ile-Thr (tBu) -Asn (Trt) -Cys (Trt) -Pro-Orn (Boc) -Gly-OBzl (3,4,5- OPhy)
  • the “totally protected peptide” is a concept in which the N-terminal amino group may be protected and includes the case where it is not protected. It will be referred to as "protection body”.
  • the N-terminal Fmoc group of the following peptide was cleaved with a base according to a conventional method.
  • Example 1 Temporary SS conversion route by iodine oxidation (folding concentration: 1 mg / ml) 100 mg of in-line perfect protected form of peptide A was dissolved in 3.4 ml of chloroform and 0.6 ml of MeOH (methanol), and 3 equivalent of iodine, 17.2 mg was added. After the reaction, 39.7 mg of ascorbic acid was dissolved in 3.4 ml of water, and the solution was separated twice, and then washed twice with 20% NaCl (sodium chloride) solution. The obtained organic layer was concentrated with an evaporator and dried.
  • Cyclized peptide A H-Cys 1 -Cys 2 -Glu 3 -Tyr 4 -Cys 5 -Cys 6 -Asn 7 -Pro 8 -Ala 9 -Cys 10 -Thr 11 -Gly 12 -Cys 13 -Tyr 14 -OH (Here, an SS bond between Cys 1 and Cys 6 , Cys 2 and Cys 10 , and Cys 5 and Cys 13 ) (Sequence Listing 1) m / z [M + H] + 1526.3
  • Example 2 Temporary SS conversion route by iodine oxidation (folding concentration: 4 mg / ml) To a mixed solution of 1 ml of water, 1 ml of EtOH, 1.0 mg of cystine, and 0.3 mg of cysteine, 8.0 mg of the deprotected / temporary S-S-modified peptide mixture obtained in Example 1 was added, and 6 ⁇ l of ammonia water was added. The pH was adjusted to 9.3. After 6 hours, the reaction solution was analyzed by HPLC. As a result, it was confirmed that 2.2 mg of cyclized peptide A was produced with a purity of 81% (yield 54% vs. complete protected tandem body of peptide A).
  • Example 3 Temporary SS conversion route by iodine oxidation (folding concentration: 10 mg / ml) To a mixed solution of 1 ml of water, 1 ml of EtOH, 1.0 mg of cystine, and 0.3 mg of cysteine, 20.0 mg of the deprotected / temporary S-S-modified peptide mixture obtained in Example 1 was added, and 6 ⁇ l of aqueous ammonia was added. The pH was adjusted to 9.8. After 6 hours, the reaction solution was analyzed by HPLC. As a result, it was confirmed that cyclized peptide A was produced in a purity of 72% and 4.9 mg (yield 48% vs. complete protected tandem body of peptide A).
  • Example 4 10% DMSO oxidation / temporary S-S conversion route by TFA (folding concentration: 1 mg / ml) 50 mg of the in-line perfect protected form of peptide A was added to a mixed solution of 1.0 ml of TFA and 0.1 ml of DMSO (dimethyl sulfoxide), and deprotection was performed at room temperature for 5 hours. 5 ml of IPE was added and the precipitate was filtered and dried to obtain 19.4 mg of the deprotected / temporary S-S-modified peptide mixture.
  • Example 5 Temporary SS bond formation route by the Npys group of the S protecting group (folding concentration: 1 mg / ml) 100 mg of the in-line complete protected form of peptide A was dissolved in 3.4 ml of chloroform and 0.6 ml of MeOH, and 6 equivalent of Npys-Cl (3-nitro-2-pyridinesulfenyl chloride), 25.8 mg was added. After the reaction, 39.7 mg of ascorbic acid was dissolved in 3.4 ml of water, and the solution was separated twice, and then washed twice with 20% NaCl aqueous solution. The obtained organic layer was concentrated with an evaporator and dried.
  • Example 6 Temporary SS route by iodine oxidation (folding concentration: 10 mg / ml) 137 mg of in-line perfect protected form of peptide A ′ was dissolved in 3.4 ml of chloroform and 0.6 ml of MeOH, 3 equivalents of iodine, 17.2 mg, and 0.068 mmol were added, and the mixture was stirred at room temperature for 2 hours. After the reaction, 39.7 mg of ascorbic acid was dissolved in 3.4 ml of water, and the solution was separated twice, and then washed twice with 3.4 ml of 20% NaCl aqueous solution. The obtained organic layer was concentrated with an evaporator and dried.
  • the solid was added to a mixed solution of 1.95 ml of TFA, 0.05 ml of water, 10 equivalents of p-cresol and 24.4 mg, and deprotected at room temperature for 5 hours. After washing the resin with 2 ml of TFA by filtration, 10 ml of IPE was added to the filtrate, the precipitate was filtered, and dried to obtain 34.5 mg of the deprotected / temporary S-S-modified peptide mixture.
  • Example 7 Temporary SS conversion route by iodine oxidation (folding concentration: 1 mg / ml) 1.0 g of the in-line complete protected form of peptide B was dissolved in 16.8 ml of CPME (cyclopentyl methyl ether) and 4.2 ml of MeOH, and 1 equivalent of iodine, 48.4 mg was added. After the reaction, 671 mg of ascorbic acid was dissolved in 21 ml of water, and the solution was separated twice, and then washed twice with 20% NaCl aqueous solution. The obtained organic layer was concentrated with an evaporator and dried to obtain 894 mg of a solid.
  • CPME cyclopentyl methyl ether
  • Cyclized peptide B 3-Mercaptopropionyl-O-Ethyl-D-Tyr-Ile-Thr-Asn-Cys-Pro-Orn-Gly-NH 2 (Where the SS bond between 3-mercaptopropionyl and Cys) m / z [M + H] + 994.4
  • Example 8 Temporary SS conversion route by iodine oxidation (folding concentration: 6.5 mg / ml) To a mixed solution of 1 ml of water, 1 ml of EtOH, 1.0 mg of cystine and 0.3 mg of cysteine, 13.0 mg of the deprotected / temporary S-S-modified peptide mixture obtained in Example 7 was added, and 3 ⁇ l of aqueous ammonia was added. The pH was adjusted to 8.9. After 1 hour, the reaction solution was analyzed by HPLC, and it was confirmed that the cyclized peptide B was produced in a purity of 77%.
  • Comparative Example 1 Conventional route (folding concentration: 1 mg / ml) 6.00 g of the in-line complete protected form of peptide A was added to a mixed solution of 114 ml of TFA, 3 ml of water, 3 ml of TIPS (triisopropylsilane) and 1.44 g of 10-mercaptopropionic acid, and deprotected at 10 ° C. for 5 hours. went. IPE (600 ml) was added and the precipitate was filtered and dried to obtain a peptide A tandem body.
  • Comparative Example 2 Conventional route (folding concentration: 10 mg / ml) To a mixed solution of 1.0 ml of water, 1.0 ml of EtOH, 1.0 mg of cystine, and 0.3 mg of cysteine, 20 mg of the peptide A tandem body obtained in Comparative Example 1 was added, and 3 ⁇ l of ammonia water was added to adjust the pH to 9. It was adjusted to 1 and stirred at room temperature. After 1 hour, the reaction solution was analyzed by HPLC, and it was confirmed that cyclized peptide A was produced in an amount of 0.4 mg with a purity of 8% (yield 2% vs in-line complete protected form of peptide A).
  • Comparative Example 3 Conventional route (folding concentration: 1 mg / ml) 1.0 g of in-line perfect protected form of peptide B was added to a mixed solution of 7.60 ml of TFA, 0.20 ml of water, 0.20 ml of triisopropylsilane, 10 equivalents of 3-mercaptopropionic acid, 405 mg, 10 equivalents of p-cresol and 412 mg. , Deprotected. 40 ml of IPE was added, the precipitate was filtered, and dried to obtain a peptide B tandem body.
  • Comparative Example 4 Conventional route (folding concentration: 6.5 mg / ml) To a mixed solution of 1 ml of water, 1 ml of EtOH, 0.3 mg of cystine and 0.1 mg of cysteine, 13.0 mg of the peptide B series product obtained in Comparative Example 3 was added, and 3 ⁇ l of ammonia water was added to adjust the pH to 9.6. It was adjusted. After 6 hours, the reaction solution was analyzed by HPLC, and it was confirmed that cyclized peptide B was produced in a purity of 17%.
  • Comparative Example 5 Conventional route (folding concentration: 10 mg / ml) 67.8 mg of the in-line complete protected form of peptide A ′ was added to a mixed solution of 1.9 ml of TFA, 50 ⁇ l of water, 50 ⁇ l of triisopropylsilane and 240 mg of 100 equivalents of 3-mercaptopropionic acid, and deprotection was performed at room temperature for 5 hours. After the resin was washed with 2 ml of TFA by filtration, 20 ml of IPE was added to the filtrate and the precipitate was filtered and dried to obtain 15.6 mg of peptide A tandem body.
  • Example 9 Folding with reducing agent alone (folding concentration: 2 mg / ml) To a mixed solution of 1 ml of water, 1 ml of EtOH and 0.3 mg of cysteine, 4.0 mg of the deprotected / provisional S-S-modified peptide mixture obtained in Example 1 was added, and 3 ⁇ l of aqueous ammonia was added to adjust the pH to 9.9. Adjusted to. After 6 hours, the reaction solution was analyzed by HPLC, and it was confirmed that cyclized peptide A was produced in an amount of 3.1 mg with a purity of 77.8% (yield 77% vs. in-line completely protected form of peptide A). ..
  • Example 10 Folding with different oxidizing / reducing agents (folding concentration: 1 mg / ml) To a mixed solution of 1 ml of water, 1 ml of EtOH, 6.0 mg of glutathione oxidation type, and 2.0 mg of glutathione reduction type, 2.0 mg of the deprotected / temporary S-S-modified peptide mixture obtained in Example 1 was added, and aqueous ammonia was added. Was added to adjust the pH to 9.3. After 1 hour, the reaction solution was analyzed by HPLC, and it was confirmed that cyclized peptide A was produced in an amount of 0.9 mg with a purity of 65.0% (yield 56% vs. complete protected tandem body of peptide A). ..
  • a tandem perfect protected form of peptide A ′′ having the following sequence was synthesized according to a conventional method.
  • the N-terminal Fmoc group of the following peptide was cleaved with a base according to a conventional method.
  • Peptide A '' tandem perfect protector H-Cys (S-tBu) -Cys (S-tBu) -Glu (OtBu) -Tyr (tBu) -Cys (S-tBu) -Cys (S-tBu) -Asn (Trt) -Pro-Ala-Cys (S-tBu) -Thr (tBu) -Gly-Cys (S-tBu) -Tyr (tBu) -Alko-PEG Resin
  • Example 11 Temporary SS bond formation route by S-protecting group (folding concentration: 1 mg / ml) Deprotection was carried out by adding 160 mg of the in-line fully protected form of peptide A ′′ to a mixed solution of 2.59 ml of TFA, 66.5 ⁇ l of water, 10 equivalents of p-cresol and 32.4 mg. 30 ml of IPE was added, the precipitate was filtered, and dried to obtain 48.6 mg of the following peptide A ′′ tandem body.
  • Peptide A '' tandem: H-Cys (S-tBu) -Cys (S-tBu) -Glu-Tyr-Cys (S-tBu) -Cys (S-tBu) -Asn-Pro-Ala-Cys (S-tBu) -Thr-Gly -Cys (S-tBu) -Tyr-OH
  • Example 12 Deprotection of SH protecting group / provisional SS conversion route by iodine oxidation (folding concentration: 1 mg / ml) 160 mg of in-line complete protected form of peptide A ′′ was added to a mixed solution of 2 ml of water, 60 equivalents of DTT (dithiothreitol), 278 mg, and 3 ⁇ L of aqueous ammonia to selectively deprotect the S-tBu group. The resin was washed by filtration to obtain the selective deprotected product. The selective deprotected form was dissolved in a mixed solution of 1.7 ml of chloroform and 0.3 ml of methanol, and 12 equivalent of iodine, 91.4 mg was added.
  • Example 13 Temporary SS conversion route by thallium trifluoroacetate oxidation (folding concentration: 1 mg / ml) 50 mg of the in-line complete protected form of peptide A was dissolved in 0.85 ml of chloroform and 0.05 ml of MeOH, and 6 equivalents of thallium (III) trifluoroacetate (36.8 mg) was added. After the reaction, the solution was separated twice with a 20% NaCl aqueous solution. The obtained organic layer was concentrated with an evaporator and dried. The solid was added to a mixed solution of 0.975 ml of TFA, 0.025 ml of water and 24.4 mg of p-cresol for deprotection.
  • Peptide A ′′ ′ tandem perfect protector H-Cys (Acm) -Cys (Acm) -Glu (OtBu) -Tyr (tBu) -Cys (Acm) -Cys (Acm) -Asn (Trt) -Pro-Ala-Cys (Acm) -Thr (tBu) -Gly-Cys (Acm) -Tyr (tBu) -Alko-PEG Resin
  • Example 14 Final deprotection / provisional SS conversion route (folding concentration: 1 mg / ml) Deprotection was carried out by adding the in-line fully protected form of peptide A ′′ ′ to a mixed solution of 2.85 ml of TFA, 75 ⁇ l of water and 75 ⁇ l of TIPS. 30 ml of IPE was added and the precipitate was filtered and dried to obtain 108 mg of a tandem body of peptide A ′ ′′ having the following sequence.
  • Peptide C in-line perfect protector H-Arg (Pbf) -Gly-Asn (Trt) -Cys (Trt) -Ala-Tyr (tBu) -His (Trt) -Lys (Boc) -Gly-Gln (Trt) -Ile-Ile-Trp (Boc) ) -Cys (Trt) -Thr (tBu) -Tyr (tBu) -His (Trt) -NH-SAL-PEG Resin
  • Example 15 Temporary SS conversion route by iodine oxidation (folding concentration: 1 mg / ml) 409 mg of the peptide C in series protected form was mixed and dissolved in 13.6 ml of chloroform and 2.4 ml of MeOH, and 1.5 equivalent of iodine and 9.5 mg were added. After the reaction, 44.0 mg of ascorbic acid was dissolved in 16.0 ml of water, and the solution was separated twice, and then washed twice with 20% NaCl aqueous solution. The obtained organic layer was concentrated with an evaporator and dried. The solid was added to a mixed solution of 8.39 ml of TFA, 0.21 ml of water and 27.0 mg of p-cresol for deprotection.
  • Cyclized peptide C H-Arg 1 -Gly 2 -Asn 3 -Cys 4 -Ala 5 -Tyr 6 -His 7 -Lys 8 -Gly 9 -Gln 10 -Ile 11 -Ile 12 -Trp 13 -Cys 14 -Thr 15 -Tyr 16- His 17 -OH (Here, the SS bond between Cys 4 and Cys 14 ) (Sequence Listing 2) m / z [M + H] + 2088.9
  • Example 16 Temporary SS conversion route by iodine oxidation (folding concentration: 10 mg / ml) To a mixed solution of 0.15 ml of water, 0.15 ml of EtOH, 0.3 mg of cystine, and 0.9 mg of cysteine, 3.0 mg of the deprotected / temporary S-S-modified peptide mixture obtained in Example 15 was added, and aqueous ammonia was added. Was added to adjust the pH to 8.5. After 3 hours, the reaction solution was analyzed by HPLC, and it was confirmed that the cyclized peptide C was produced in a purity of 55%.
  • Peptide D in-line full protector H-Met-Cys (Trt) -Met-Pro-Cys (Trt) -Phe-Thr (tBu) -Thr (tBu) -Asp (OtBu) -His (Trt) -Gln (Trt) -Met-Ala-Arg.
  • Example 17 Temporary SS conversion route by iodine oxidation (folding concentration: 1 mg / ml) Peptide D in-line perfect protected form (200 mg) was dissolved in chloroform (3.4 ml) and MeOH (methanol) (0.6 ml), and iodine was added at 8 equivalents (45.7 mg). After the reaction, 39.6 mg of ascorbic acid was dissolved in 3.4 ml of water, and the solution was separated twice, and then washed twice with 20% NaCl aqueous solution. The obtained organic layer was concentrated with an evaporator and dried.
  • Cyclized peptide D H-Met 1 -Cys 2 -Met 3 -Pro 4 -Cys 5 -Phe 6 -Thr 7 -Thr 8 -Asp 9 -His 10 -Gln 11 -Met 12 -Ala 13 -Arg 14 -Lys 15 -Cys 16- Asp 17 -Asp 18 -Cys 19 -Cys 20 -Gly 21 -Gly 22 -Lys 23 -Gly 24 -Arg 25 -Gly 26 -Lys 27 -Cys 28 -Tyr 29 -Gly 30 -Pro 31 -Gln 32 -Cys 33 -Leu 34 -Cys 35 -Arg 36 -NH 2 (Here, SS bond between Cys 2 and Cys 19 , Cys 5 and Cys 28 , Cys 16 and Cys 33 , Cys 20 and Cys 35 ) (Sequence Listing 3) m /
  • the present invention provides a method for producing a cyclized peptide having a crosslinked structure with one or more intramolecular SS bonds, which is useful in the field of peptide synthesis.

Abstract

本発明は、以下に示される1または2以上の分子内S-S結合による架橋構造を有する環化ペプチドの製造方法を提供する。 (1-A)ペプチド上の官能基としてSH基を2個以上有する直鎖状ペプチドであって、全てのSH基が保護されており、N末端アミノ基が保護されていてもよく、C末端カルボキシ基、およびその他のペプチド上の官能基の全てが保護されている直鎖状ペプチド(「全保護ペプチド」)において、当該ペプチドが有する保護されたSH基以外の全ての官能基の保護基を脱保護する工程、 (1-B)ペプチド上の官能基としてSH基を2個以上有する直鎖状ペプチドにおいて、全てのSH基を一時的S-S結合の形成により保護する工程、 および、 (2)上記工程(1-A)、および、工程(1-B)で得られた、ペプチド上の官能基としてSH基を2個以上有し、全てのSH基が一時的S-S結合の形成により保護されており、その他のペプチド上の官能基の全ての保護基が脱保護されているペプチド(「S保護ペプチド」)を、酸化還元条件下のフォールディング工程に付して、ペプチド分子内でのS-S結合の再形成により環化ペプチドを得る工程、 を含む環化ペプチドの製造方法。

Description

分子内S-S結合を有する環化ペプチドの製造方法
 本発明は、分子内S-S結合(ジスルフィド結合)による架橋構造を有する環化ペプチドの製造方法に関し、ペプチド合成の分野において有用である。
 古くからS-S結合を含むペプチドは、ソマトスタチン(somatostatin)、オクトレオチド(octreotide)、アトシバン(atosiban)など、数多くがペプチド医薬品として知られている。近年では、分子内に4個以上のSH基を含み、それらSH基が分子内でS-S結合を形成することにより複数のS-S架橋構造による環化部位を有する環化ペプチド(例えば、リナクロチド(linaclotide)、プレカナチド(plecanatide)、ジコノチド(ziconotide)、インスリン デテミル(insulin detemir)、インスリン グルリジン(insulin glulisine)、等)の研究・開発が進められている。
 従来、分子内のS-S結合の形成により環化したペプチドの合成においては、目的とする環化ペプチドのアミノ酸配列に対応する直鎖状ペプチドを製造後、SH基の保護基も含めて構成アミノ酸残基の官能基の保護基を全て脱保護して無保護の直鎖状ペプチドを得、このようにして得られた当該ペプチドを酸化的条件下にてS-S結合を形成させることにより目的とする架橋構造を有する環化ペプチドを合成することが行われてきた(例えば、特許文献1参照)。特許文献1では、ペプチドが有する全ての保護基を脱保護するためトリフルオロ酢酸(TFA)などの酸を使用することで、ペプチド中のSH基も無保護となるため、脱保護された各種の保護基の残骸などによってSH基がアルキル化され収率が低下し、更に、その不純物が、続く環化反応で目的ペプチドの収率低下を招くという課題があった。
 不純物副生による、環化反応における目的ペプチドの収率低下に関しては、特許文献2に、システイン残基のSH基の保護基にフェニルアセトアミドメチル基(Phacm基)を用いることで、SH基を保護したまま直鎖状ペプチドのシステイン残基以外のアミノ酸残基の官能基の保護基を脱保護した後、Phacm保護基の脱保護とS-S結合の形成を固相条件下に行うペプチドの製造方法が記載されている。
 4個以上のSH基を含む環化ペプチドの製造においては、S-S結合形成の組み合わせが2以上存在するため、製造工程において目的とするSH基間で選択的にS-S結合を形成させる必要性があった。また、環化反応の収率低下に関しては、ペプチド中のSH基がアルキル化された不純物は分子内のSH基の数が奇数となる場合があり、この場合、目的とする複数のS-S結合を形成することができず、ペプチド中の無保護のSH基が残存し、分子間での副反応物を生じたり、このSH基自体が還元剤として作用して、形成されたS-S結合を開裂させる副反応を生じたり、環化収率を低下させるという課題もあった。
 この点に関しては、特許文献3には、S-S結合の形成を企図するペプチド中のSH基の組み合わせに応じて別種の保護基(アセトアミドメチル基(Acm基)および4-メチルベンジル基)によりSH基を予め保護した直鎖状ペプチドを設計した後、保護基の種類に応じて順次SH基の保護基の脱保護工程と酸化工程を繰り返すことにより目的とするペプチド中のSH基間にS-S結合を形成させる固相条件下でのペプチドの製造方法が記載されている。
 上記に加えて、従来の方法では、分子内S-S結合形成による環化反応は、分子間でのS-S結合形成という副反応の進行を抑制するため一般に低濃度条件(溶媒の過剰使用下)で行う必要があり、生産効率が著しく低いことも課題となっていた。よって、環化反応時の基質濃度を高めても目的とする環化反応を効果的に進行させ得る高効率の製造方法が求められていた。
国際公開第2014/188011号 国際公開第2017/134687号 米国特許第7304036号明細書
 当技術分野では、S-S架橋構造を有する環化ペプチドを製造する際の課題解決のための検討が従来よりなされてきたが、いずれも、ペプチド中のSH基の保護基の選択によるS-S結合の形成に基づくものであった。従って、より簡便、かつ、効率的な環化ペプチドの新しい製造方法の開発が望まれていた。本発明はこのような課題に応えるものである。
 本発明者は、ペプチド上の官能基としてSH基を2個以上有するペプチドにおいて、様々な調製方法によって、全てのSH基を分子間、分子内を問わず一時的にS-S結合を形成させ、かつ、ペプチド上のその他の官能基が無保護であるペプチドを用いて、酸化還元条件下のフォールディング工程に付して、ペプチド分子内でのS-S結合を再形成するという新しい方法論により、目的とする環化ペプチドを効率的に得る工程を共通に含む、環化ペプチドの製造方法を見出し、本発明を完成した。具体的には、本発明は、以下の工程を含む環化ペプチドの製造方法である。
[1](1-A)ペプチド上の官能基としてSH基を2個以上有する直鎖状ペプチドであって、全てのSH基が保護されており、N末端アミノ基が保護されていてもよく、C末端カルボキシ基、およびその他のペプチド上の官能基の全てが保護されている直鎖状ペプチド(以後、本明細書中で「全保護ペプチド」と呼称する場合がある)において、当該ペプチドが有する保護されたSH基以外の全ての官能基の保護基を脱保護する工程、
(1-B)ペプチド上の官能基としてSH基を2個以上有する直鎖状ペプチドにおいて、全てのSH基を一時的S-S結合の形成により保護する工程、
および、
(2)上記工程(1-A)、および、工程(1-B)で得られた、ペプチド上の官能基としてSH基を2個以上有し、全てのSH基が一時的S-S結合の形成により保護されており、その他のペプチド上の官能基の全ての保護基が脱保護されているペプチド(以後、本明細書中で「S保護ペプチド」と呼称する場合がある)を、酸化還元条件下のフォールディング工程に付して、ペプチド分子内でのS-S結合の再形成により環化ペプチドを得る工程、
を含む環化ペプチドの製造方法。
 工程(1-A)における、全保護ペプチドにおけるSH基の保護は、後述するSH基の保護基により保護されている場合と一時的S-S結合の形成により保護されている場合の両方の態様を含むものである。
 本発明では、工程(1-A)と工程(1-B)の実施により工程(2)のS保護ペプチドを得ることができるが、工程(1-A)と工程(1-B)の実施の前後関係は、この順序に限定されるものではなく、実施態様により適宜順序を変更して実施することができる。従って、工程(1-A)の後に工程(1-B)を行う場合、工程(1-B)の後に工程(1-A)を行う場合、これらの組み合わせにより行う場合、両工程を同時に行う場合、があり得るが、いずれの場合も本発明の範囲内に包含される(以下、工程(1-A)と工程(1-B)を総称して工程(1)と呼称する場合がある)。
[2]工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護が、「全てのSH基がペプチド分子内および/またはペプチド分子間で一時的S-S結合を形成する」(以後、本明細書中で「仮S-S化」と呼称する場合がある)ことによりなされるか、または
 工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護が、S系保護基との一時的S-S結合形成によりなされる[1]に記載の環化ペプチドの製造方法。
[3]S保護ペプチドが、以下の工程のいずれか一つにより得られる[1]または[2]に記載の環化ペプチドの製造方法。
(1)工程(1-B)において、全保護ペプチドを、仮S-S化に付して、一時的S-S結合で架橋もしくは連結されたペプチドの混合物(以後、本明細書中で「仮S-S化ペプチド混合物」と呼称する場合がある)を得た後、
 工程(1-A)において、当該仮S-S化ペプチド混合物が有する一時的S-S結合形成により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得る工程; 
(2)工程(1-A)において、全保護ペプチドの、SH基以外の全ての官能基の保護基を脱保護した後、または同時に、工程(1-B)において、当該脱保護ペプチドを仮S-S化に付して、仮S-S化ペプチド混合物を得ることによりS保護ペプチドを得る工程; 
(3)a)1)工程(1-A)において、全保護ペプチドの、SH基以外の全ての官能基の保護基を脱保護した後、
  2)SH基の保護基を除去し、さらに
  3)工程(1-B)において、仮S-S化に付して、仮S-S化ペプチド混合物を得るか、または
b)1)全保護ペプチドの、SH基の保護基を除去した後、
  2)工程(1-B)において、仮S-S化に付して、仮S-S化ペプチド混合物を得て、さらに
  3)工程(1-A)において、当該仮S-S化ペプチド混合物が有する一時的S-S結合形成により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得る工程;または
(4)工程(1-B)において、ペプチド上の官能基として保護基により保護されたSH基を2個以上有する直鎖状ペプチドであって、N末端アミノ基が保護されていてもよく、C末端カルボキシ基、およびその他のペプチド上の官能基の全てが保護されているペプチドのSH基の保護基をS系保護基で再保護化するか、または、予めS系保護基で保護することにより、全てのSH基がS系保護基との一時的S-S結合の形成により保護されているペプチドを得て、
 工程(1-A)において、当該ペプチドの一時的S-S結合により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得る工程。
[4]工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護が、仮S-S化によりなされる[1]~[3]のいずれかに記載の環化ペプチドの製造方法。
[5]仮S-S化が、ヨウ素処理、またはトリフルオロ酢酸タリウム(III)処理により行われる[4]に記載の環化ペプチドの製造方法。
[6]仮S-S化が、ヨウ素処理により行われる[5]に記載の環化ペプチドの製造方法。
[7]工程(1-B)において、全保護ペプチドを、仮S-S化に付して、仮S-S化ペプチド混合物を得た後、
 工程(1-A)において、当該仮S-S化ペプチド混合物が有する一時的S-S結合形成により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得る、[1]~[6]のいずれかに記載の環化ペプチドの製造方法。
[8]全保護ペプチドにおけるSH基の保護基が、S系保護基以外の保護基である[7]に記載の環化ペプチドの製造方法。
[9]全保護ペプチドにおけるSH基の保護基が、トリチル基(Trt基)、アセトアミドメチル基(Acm基)、ベンジル基(Bzl基)、4-メチルベンジル基(4-MeBzl基)、または4-メトキシベンジル基(MBzl基)である[8]に記載の環化ペプチドの製造方法。
[10]仮S-S化が、ヨウ素処理、またはトリフルオロ酢酸タリウム(III)処理により行われる[7]~[9]のいずれかに記載の環化ペプチドの製造方法。
[11]仮S-S化が、ヨウ素処理により行われる[10]に記載の環化ペプチドの製造方法。
[12]工程(1-A)において、全保護ペプチドの、SH基以外の全ての官能基の保護基を脱保護した後、または同時に、
 工程(1-B)において、当該脱保護ペプチドを仮S-S化に付して、仮S-S化ペプチド混合物を得ることによりS保護ペプチドを得る、[1]~[4]のいずれかに記載の環化ペプチドの製造方法。
[13]全保護ペプチドのSH基の保護基が、S系保護基以外の保護基である[12]に記載の環化ペプチドの製造方法。
[14]全保護ペプチドにおけるSH基の保護基が、アセトアミドメチル基(Acm基)、t-ブチル基(t-Bu基)、トリチル基(Trt基)、ベンジル基(Bzl基)、4-メチルベンジル基(4-MeBzl基)、または4-メトキシベンジル基(MBzl基)である[13]に記載の環化ペプチドの製造方法。
[15]仮S-S化が、ヨウ素処理、DMSO/TFA処理、またはトリフルオロ酢酸タリウム(III)処理により行われる[12]~[14]のいずれかに記載の環化ペプチドの製造方法。
[16]仮S-S化が、ヨウ素処理により行われる[15]に記載の環化ペプチドの製造方法。
[17]
a)1)工程(1-A)において、全保護ペプチドの、SH基以外の全ての官能基の保護基を脱保護した後、
  2)SH基の保護基を除去し、さらに
  3)工程(1-B)において、仮S-S化に付して、仮S-S化ペプチド混合物を得るか、または
b)1)全保護ペプチドの、SH基の保護基を除去した後、
  2)工程(1-B)において、仮S-S化に付して、仮S-S化ペプチド混合物を得て、さらに
  3)工程(1-A)において、当該仮S-S化ペプチド混合物が有する一時的S-S結合形成により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得る、[1]~[4]のいずれかに記載の環化ペプチドの製造方法。
[18]SH基の保護基が、S系保護基以外の保護基である[17]に記載の環化ペプチドの製造方法。
[19]SH基の保護基が、フェニルアセトアミドメチル基(Phacm基)、4-メトキシベンジル基(MBzl基)、またはモノメトキシトリチル基(MMTrt基)である[18]に記載の環化ペプチドの製造方法。
[20]SH基の保護基の除去が、ペニシリンアミドヒドロラーゼ(PGA)存在下の水溶液による処理、DDQによる処理、または弱酸による処理で行われる[19]に記載の環化ペプチドの製造方法。
[21]仮S-S化が、ヨウ素処理、Npys-OMe処理、またはトリフルオロ酢酸タリウム(III)処理により行われる[17]~[20]のいずれかに記載の環化ペプチドの製造方法。
[22]仮S-S化が、ヨウ素処理により行われる[21]に記載の環化ペプチドの製造方法。
[23]工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護が、S系保護基との一時的S-S結合形成によりなされる[1]~[3]のいずれかに記載の環化ペプチドの製造方法。
[24]工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護が、SH基の保護基をS系保護基以外の保護基からS系保護基で再保護化することによりなされる[23]に記載の環化ペプチドの製造方法。
[25]S系保護基が、3-ニトロ-2-ピリジンスルフェニル基(Npys基)、t-ブチルメルカプト基(S-tBu基)、またはエチルメルカプト基(S-Et基)である[23]または[24]に記載の環化ペプチドの製造方法。
[26]工程(1-B)において、ペプチド上の官能基として保護基により保護されたSH基を2個以上有する直鎖状ペプチドであって、N末端アミノ基が保護されていてもよく、C末端カルボキシ基、およびその他のペプチド上の官能基の全てが保護されているペプチドのSH基の保護基をS系保護基で再保護化するか、または、予めS系保護基で保護することにより、全てのSH基がS系保護基との一時的S-S結合の形成により保護されているペプチドを得て、
 工程(1-A)において、当該ペプチドの一時的S-S結合により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得る、[1]~[3]または[23]~[25]のいずれかに記載の環化ペプチドの製造方法。
[27]脱保護が、還元剤の非存在下に行われる[1]~[26]のいずれかに記載の環化ペプチドの製造方法。
[28]工程(2)の酸化還元条件下のフォールディング工程が、pH6以上の水溶液中で行われる[1]~[27]のいずれかに記載の環化ペプチドの製造方法。
[29]工程(2)の酸化還元条件下のフォールディング工程が、酸化剤と還元剤の共存下で行われる[1]~[28]のいずれかに記載の環化ペプチドの製造方法。
[30]S保護ペプチドにおけるペプチド上の官能基として有するSH基の数が、2個である[1]~[29]のいずれかに記載の環化ペプチドの製造方法。
[31]S保護ペプチドにおけるペプチド上の官能基として有するSH基の数が、4個以上である[1]~[29]のいずれかに記載の環化ペプチドの製造方法。
[32]S保護ペプチドにおけるペプチド上の官能基として有するSH基の数が、偶数である[1]~[31]のいずれかに記載の環化ペプチドの製造方法。
 本発明においては、脱保護された各種の保護基の残骸などによってSH基がアルキル化されることによる収率の低下や、不純物副生による目的とする環化反応収率の低下という従来法の課題を克服しつつSH基を一時的にS-S結合の形成により保護することにより、フォールディング工程下で効率的に環化ペプチドを得ることができる。本発明では、比較的高濃度の条件下でも効果的に環化反応を行うことができるため、生産効率の観点からも非常に優れたものである。
図1は、本発明の実施態様の概要を示す。図中の「実施態様1-1」、「実施態様1-2」、「実施態様1-3」および「実施態様2-1」は、工程(1-A)および工程(1-B)での実施態様に対応する。
 上記の通り、本発明の基本となる実施態様は、以下の工程を含む分子内S-S結合による架橋構造を有する環化ペプチドの製造方法である。
[1](1-A)ペプチド上の官能基としてSH基を2個以上有する直鎖状ペプチドであって、全てのSH基が保護されており、N末端アミノ基が保護されていてもよく、C末端カルボキシ基、およびその他のペプチド上の官能基の全てが保護されている直鎖状ペプチド(「全保護ペプチド」)において、当該ペプチドが有する保護されたSH基以外の全ての官能基の保護基を脱保護する工程、
(1-B)ペプチド上の官能基としてSH基を2個以上有する直鎖状ペプチドにおいて、全てのSH基を一時的S-S結合の形成により保護する工程、
および、
(2)上記工程(1-A)、および、工程(1-B)で得られた、ペプチド上の官能基としてSH基を2個以上有し、全てのSH基が一時的S-S結合の形成により保護されており、その他のペプチド上の官能基の全ての保護基が脱保護されているペプチド(「S保護ペプチド」)を、酸化還元条件下のフォールディング工程に付して、ペプチド分子内でのS-S結合の再形成により環化ペプチドを得る工程、
を含む環化ペプチドの製造方法。
 以下、本発明について詳述するが、文中で特に断らない限り、本明細書で用いるすべての技術用語および科学用語は、本発明が属する技術分野の当業者に一般に理解されるものと同じ意味をもつ。本明細書に記載されたものと同様または同等の任意の方法および材料は、本発明の実施または試験において使用することができるが、好ましい方法および材料を以下に記載する。本明細書で言及したすべての刊行物および特許は、例えば、記載された発明に関連して使用されうる刊行物に記載されている、構築物および方法論を記載および開示する目的で、参照として本明細書に組み入れられる。
[工程(1-A)、および、工程(1-B)について]
 本工程で用いられる「全保護ペプチド」は、目的とする環化ペプチドの配列に対応させて、当業者であれば公知の原料を用いて、当技術分野で公知の保護基により末端アミノ基、末端カルボキシ基、SH基を含む官能基が適宜保護基により保護されたアミノ酸等の構成単位を製造あるいは購入し、自体公知の方法またはこれらに準じる方法に従って脱保護反応とペプチド鎖伸長反応とを繰り返すことにより製造することができる。SH基の保護は、ペプチド合成後にSH基を一時的S-S結合の形成により保護することによっても行うことができ、これについては後述する。
 目的とする環化ペプチドは、天然に存在するもの、または存在しないもの、のいずれであってもよい。
 本発明の方法により製造されるペプチドの構成単位となるアミノ酸等は、同一分子内にアミノ基とカルボキシ基を有する化合物であって、天然アミノ酸でも、非天然アミノ酸でもよく、またL体でも、D体でも、あるいはラセミ体でもよい。また、構成単位は、アミノ酸に限定されず、その他のペプチド合成に適用できる化合物(以下、アミノ酸類似体という)であってもよい。当業者であれば、適宜そのようなアミノ酸類似体を選択し、自体公知の方法またはこれらに準じる方法に従って製造あるいは購入することができる。
 ペプチド上の官能基としてのSH基としては、システイン残基、ホモシステイン残基、3-メルカプトプロピオニル基等が有するSH基が挙げられるが、これに限られない。
 ペプチド上の官能基としてのSH基は、ペプチド配列中に存在していれば、その存在位置は、いずれの残基についても特に限定されず、ペプチド配列の末端、中間のいずれに配置されてもよく、また、互いに隣接していてもよい。また、プロインスリンから切り出されて生成するインスリンのように複数の鎖中にSH基がまたがって存在する場合も含まれる。
 N末端アミノ基の保護基、C末端カルボキシ基の保護基、ペプチド上の官能基としてSH基を有するアミノ酸、またはアミノ酸類似体、以外の構成単位のペプチド上の官能基の保護基は、当技術分野で通常使用されるものから選択することができるが、工程(1-A)におけるSH基の保護基の選択に応じて、工程(1-A)の目的を達成する上で適当な保護基を選択することができる。
 本工程(1-A)は、「全保護ペプチド」が有する保護されたSH基以外の全ての官能基の保護基(後述の疑似固相保護基や固相担体も含めて)を脱保護する工程をいう。
 本工程(1-A)における脱保護には、疑似固相保護基や固相担体の切り出しも含まれる。本工程(1-A)における脱保護は、使用された保護基に応じて、当技術分野における通常使用される方法により行うことができる。ここでの脱保護時にはSH基の保護基が併せて除去されないことが必要であるため、SH基の保護基に応じて、適宜脱保護方法を選択することが望ましい。特に、SH基の保護が後述の一時的S-S結合によりなされている場合には、還元剤の非存在下に脱保護できるものを選択することが適当である。より具体的な脱保護方法については後述する。
 本工程(1-B)は、ペプチド上の官能基としてSH基を2個以上有する直鎖状ペプチドにおいて、全てのSH基を一時的S-S結合の形成により保護する工程をいう。
 一時的S-S結合の形成は、S系保護基との一時的S-S結合の形成、または仮S-S化による一時的S-S結合の形成により行われる。その他、SH基の保護基も含めて、それらの詳細については、実施の態様に応じて、後述する。
 工程(1-B)での一時的S-S結合の形成は、SH基以外の全ての官能基の保護基(後述の疑似固相保護基も含めて)の脱保護(工程(1-A))の前もしくは後、または同時の適切なタイミングで行われる。かかる工程(1-A)と工程(1-B)との前後関係は、使用されるSH基の保護基、一時的S-S結合形成の反応様式、SH基以外の保護基の脱保護条件、等との関係で適宜決定されるが、好ましい具体的な実施態様は後述する。
 工程(1-A)および工程(1-B)は、固相条件または液相条件(擬似固相保護基を使用する擬似固相条件を含む)のいずれでも行うことができる。目的とする環化ペプチドの構造や製造目的(製造スケール等)等の合成戦略に応じて、当業者は固相または液相(擬似固相保護基を使用する擬似固相)の条件を適宜選択することができる。
 工程(1-A)および工程(1-B)が、固相条件で行われる場合には、末端カルボキシ基またはペプチド上の官能基(例えば、カルボキシ基)等のペプチド上の官能基の少なくとも一つは、固相条件下でのペプチド合成において慣用の方法により固相担体に担持される。
 固相担体は、固相合成での使用に適した当技術分野において知られているあらゆる固相担体でありうる。本明細書中、「固相」という用語は、ペプチドが慣用される機能的リンカー又はハンドル基を介して上記の固相担体に結合又はリンクされることを含んでおり、本文脈で「固相」と言うときにはこのようなリンカーも含意している。固相の例は、例えば、ポリスチレン支持体(例えばp-メチルベンジル-ヒドリルアミンによってさらに機能化されてもよい)、又は、珪藻土封入ポリジメチルアクリルアミド(ペプシンK)、シリカ又は微細孔性ガラスなどの剛直な機能化支持体である。固相の樹脂マトリクスは、両親媒性のポリスチレン-PEG樹脂又はPEG-ポリアミド又はPEG-ポリエステル樹脂によって構成されてもよい。固相担体として、例えば、Wang-PEG レジン(Alko-PEG Resin)、SAL-PEG ResinやRink-アミド PEG レジンも含まれる。
 以下、本発明のペプチドに関して用いられる各種保護基について説明する。各保護基は、当技術分野で通常行われる方法に従って、各官能基に導入することができる。
 「全保護ペプチド」におけるSH基が保護基により保護される場合の保護基としては、S系保護基以外の保護基(例えば、t-ブチル基(t-Bu基)、トリフェニルメチル基(トリチル基:Trt基)、メチルトリチル基、メトキシトリチル基、モノメトキシトリチル基(MMTrt基)、アダマンチル基(Ad基)、アセトアミドメチル基(Acm基)、トリメチルアセトアミドメチル基、フェニルアセトアミドメチル基(Phacm基)、ベンジル基(Bzl基)、4-メチルベンジル基(4-MeBzl基)、3-メチルベンジル基、2-メチルベンジル基、4-メトキシベンジル基(MBzl基)、3-メトキシベンジル基、2-メトキシベンジル基、2,4,6-トリメトキシベンジル基、ダブシル基(Dbs基:4-ジメチルアミノアゾベンゼン-4’-スルホニル基)等)、および、S系保護基(例えば、3-ニトロ-2-ピリジンスルフェニル基(Npys基)、t-ブチルメルカプト基(S-tBu基)、エチルメルカプト基(S-Et基)等)が挙げられる。これらに限定されることなく、当業者であれば、本発明を実施するにあたっての全体的な合成戦略に沿って適宜SH基の保護基を選択することができるが、好適な実施態様については、後述する。
 以下、「全保護ペプチド」が有するSH基以外の官能基の保護基について説明する。
 (N末端アミノ基の保護基)
 工程(1-A)を実施する上では必ずしも必要ではないが、N末端アミノ基の保護基(一時保護基)としては、例えば、9-フルオレニルメチルオキシカルボニル基(以下、Fmoc基ともいう。)、tert-ブトキシカルボニル基(以下、Boc基ともいう。)、等が挙げられる。好ましくは、Fmoc基である。
(C末端カルボキシ基の保護基)
 C末端カルボキシ基の保護基としては、エステル型保護基、アミド型保護基、ヒドラジド型保護基等を挙げることができる。
 エステル型保護基としては、置換若しくは無置換のアルキルエステル、置換若しくは無置換のアラルキルエステルが好ましく用いられる。置換若しくは無置換のアルキルエステルとしては、メチルエステル、エチルエステル、tert-ブチルエステル、シクロヘキシルエステル、トリクロロエチルエステル、フェナシルエステル等が好ましく用いられる。置換若しくは無置換のアラルキルエステルとしては、ベンジルエステル、p-ニトロベンジルエステル、p-メトキシベンジルエステル、ジフェニルメチルエステル、9-フルオレニルメチル(Fm)エステル、4-ピコリル(Pic)エステル等が好ましく用いられる。
 アミド型保護基としては、無置換のアミド、N-メチルアミド、N-エチルアミド、N-ベンジルアミド等の1級アミド、N,N-ジメチルアミド、ピロリジニルアミド、ピペリジニルアミド等の2級アミド等が好ましく用いられる。
 ヒドラジド型保護基としては、無置換のヒドラジド、N-フェニルヒドラジド、N,N’-ジイソプロピルヒドラジド等が好ましく用いられる。
(ペプチド上の官能基の保護基)
 ペプチド上の官能基の保護基としては、例えば、ペプチド合成の基礎と実験、丸善株式会社出版(1985年)や、プロテクティブ・グループス・イン・オーガニック・シンセシス(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS)、第3版、ジョン・ウィリー・アンド・サンズ(JOHN WILLY&SONS)出版(1999年)等に記載されている保護基を挙げることができる。
 ペプチド上の官能基がアミノ基である場合は、ウレタン型保護基、アシル型保護基、スルホニル型保護基等を挙げることができる。
 ウレタン型保護基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル(Boc)基、等が用いられる。中でもBoc基は、穏和な酸性条件下で選択的に脱保護ができることから、特に好ましく用いられる。
 アシル型保護基としては、例えば、ホルミル基、アセチル基、トリフルオロアセチル基等が好ましく用いられる。
 スルホニル型保護基としては、例えば、p-トルエンスルホニル(Ts)基、p-トリルメタンスルホニル基、4-メトキシ-2,3,6-トリメチルベンゼンスルホニル基等が好ましく用いられる。
 ペプチド上の官能基がカルボキシ基である場合は、C末端カルボキシ基の保護基として上記したものと同じ保護基を挙げることができる。
 ペプチド上の官能基がヒドロキシ基である場合(フェノール性ヒドロキシ基を含む)は、アルキル型保護基、アルコキシアルキル型保護基、アシル型保護基、アルキルシリル型保護基等を挙げることできる。
 アルキル型保護基としては、例えば、メチル基、エチル基、tert-ブチル基等、が挙げられる。
 アルコキシアルキル型保護基としては、例えば、メトキシメチル基 (MOM基)、2-テトラヒドロピラニル基 (THP基)、エトキシエチル基(EE基)、等が挙げられる。
 アシル型保護基としては、例えば、アセチル基、ピバロイル基、ベンゾイル基、等が挙げられる。
 アルキルシリル型保護基としては、例えば、トリメチルシリル基(TMS基)、トリエチルシリル基(TES基)、tert-ブチルジメチルシリル基(TBS基またはTBDMS基)、トリイソプロピルシリル基(TIPS基)、tert-ブチルジフェニルシリル基(TBDPS基)、等が挙げられる。
 その他の官能基についても、当技術分野で慣用の保護基により保護することができる。例えば、アルギニンのグアニジノ基は、p-トルエンスルホニル基により保護することができる。ヒスチジンのイミダゾール基は、トリチル基、ベンジルオキシメチル基、等により保護することができる。また、トリプトファンのインドール基は、ホルミル基により保護することができる。
 ペプチド上の官能基の保護基について上述したが、当業者であれば本発明を実施するに際しての全体的な合成戦略に沿って選択される当技術分野における保護スキーム(例えば、Fmoc/tBuストラテジー、tBu/Bzlストラテジー、Bzl/tBuストラテジー、等)に応じて、適宜選択して本工程を実施することができる。中でも、Fmoc/tBuストラテジーが好ましい。
 本発明が液相条件下に行われる場合には、C末端カルボキシ基、およびペプチド上の官能基がカルボキシ基である場合には当該カルボキシ基の少なくとも一つが、保護されていることが望ましい。カルボキシ基の保護基としては、前述の「C末端カルボキシ基の保護基」に挙げた保護基(エステル型保護基、アミド型保護基、ヒドラジド型保護基等)が挙げられる。このうち、エステル型保護基が好ましい。エステル型保護基としては、置換若しくは無置換のアルキルエステル、置換若しくは無置換のアラルキルエステルが好ましく用いられる。置換若しくは無置換のアルキルエステルとしては、メチルエステル、エチルエステル、tert-ブチルエステル、シクロヘキシルエステル、トリクロロエチルエステル、フェナシルエステル等が好ましく用いられる。置換若しくは無置換のアラルキルエステルとしては、ベンジルエステル、p-ニトロベンジルエステル、p-メトキシベンジルエステル、ジフェニルメチルエステル、9-フルオレニルメチル(Fm)エステル、4-ピコリル(Pic)エステル等が好ましく用いられる。特に、tert-ブチルエステル、ベンジルエステル等が好ましい。
(疑似固相保護基)
 本発明が液相条件下に行われる場合には、精製を簡便にする上で、C末端カルボキシ基、およびペプチド上の官能基がカルボキシ基である場合には当該カルボキシ基の少なくとも一つが、必要により、疑似固相保護基(以後、本明細書中で「アンカー」と呼称する場合がある)により保護されていてもよい。疑似固相保護基を用いたペプチドの精製法としては、特に限定されないが、自体公知の方法(特開2000-44493号公報、国際公開第2006/104166号、国際公開第2007/034812号、国際公開第2007/122847号、国際公開第2010/113939号、国際公開第2010/104169号、国際公開第2011/078295号、国際公開第2012/029794号、等を参照)またはこれらに準じる方法に従って行うことができる。ここで、疑似固相保護基とは、ハロゲン系溶媒またはエーテル系溶媒に可溶で、かつ極性溶媒に不溶な分子量が300以上のアンカー(例えば、ベンジル化合物、ジフェニルメタン化合物、またはフルオレン化合物)を含む基であって、カルボキシ基と縮合できる基をいう。
 上記のハロゲン系溶媒またはエーテル系溶媒に可溶で、かつ極性溶媒に不溶な分子量が300以上のアンカーの一実施態様は、下記式(I)で表される化合物である。これらの中でも、分子量400以上のものが好ましい。式(I):
Figure JPOXMLDOC01-appb-C000001
[式中、
は、水素原子であるか、あるいはRが下記式(a)で表される基である場合には、Rと一緒になって単結合を示して、環Aおよび環Bと共にフルオレン環を形成していてもよく;
p個のRは、独立してそれぞれ脂肪族炭化水素基を有する有機基を示し;
pは、1~4の整数を示し;
環Aは、p個のORに加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、およびハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよく;
は、水素原子、またはハロゲン原子により置換されていてもよいフェニル基を示し;かつ
は、水素原子、または式(a):
Figure JPOXMLDOC01-appb-C000002
(式中、は結合位置を示し;
rは、0~4の整数を示し;
r個のRは、独立してそれぞれ脂肪族炭化水素基を有する有機基を示し;
は、水素原子を示すか、またはRと一緒になって単結合を示して、環Aおよび環Bと共にフルオレン環を形成していてもよく;かつ
環Bは、r個のORに加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、およびハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。)で表される基を示し;かつYは、ヒドロキシ基、NHR(Rは水素原子、アルキル基またはアラルキル基を示す。)、またはハロゲン原子を示す。]
 上記式(I)で表されるアンカーは、保護化を意図する化合物と結合する。すなわち、Yが、ヒドロキシ基、-NHR基、またはハロゲン原子であるアンカーは、アミノ酸またはペプチドのC末端等のカルボキシ基と縮合することにより、化合物を保護化する。
 本明細書中、Rで示される「アルキル基」としては、直鎖または分岐鎖のC1-30アルキル基が挙げられ、好ましくはC1-10アルキル基、より好ましくはC1-6アルキル基である。好適な具体例としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル等が挙げられ、特にメチル、エチルが好ましい。
 本明細書中、Rで示される「アラルキル基」としては、C7-30アラルキル基が挙げられ、好ましくはC7-20アラルキル基、より好ましくはC7-16アラルキル基(C6-10アリール-C1-6アルキル基)である。好適な具体例としては、ベンジル、1-フェニルエチル、2-フェニルエチル、1-フェニルプロピル、ナフチルメチル、1-ナフチルエチル、1-ナフチルプロピル等が挙げられ、特にベンジルが好ましい。
 Rとしては、水素原子、C1-6アルキル基またはC7-16アラルキル基が好ましく、水素原子、メチル、エチルまたはベンジルがより好ましく、水素原子が特に好ましい。
 本明細書中、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、またはヨウ素原子である。本明細書中、Yで示される「ハロゲン原子」としては、塩素原子、臭素原子、ヨウ素原子が好ましく、臭素原子がより好ましい。
 本明細書中、RまたはRとして示される「脂肪族炭化水素基を有する有機基」とは、その分子構造中に脂肪族炭化水素基を有する1価の有機基である。
 「脂肪族炭化水素基を有する有機基」における「脂肪族炭化水素基」とは、直鎖または分岐状の飽和または不飽和の脂肪族炭化水素基であり、炭素数5以上の脂肪族炭化水素基が好ましく、炭素数5~60の脂肪族炭化水素基がより好ましく、炭素数5~30の脂肪族炭化水素基がさらに好ましく、炭素数10~30の脂肪族炭化水素基が特に好ましい。
 「脂肪族炭化水素基を有する有機基」における「脂肪族炭化水素基」の部位は、特に限定されず、末端に存在しても(1価基)、それ以外の部位に存在してもよい(例えば2価基)。
 「脂肪族炭化水素基」としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基等の1価基およびそれらから誘導される2価基が挙げられ、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、ラウリル基、トリデシル基、ミリスチル基、セチル基、ステアリル基、アラキル基、ベヘニル基、オレイル基、イソステアリル基等の1価基およびそれらから誘導される2価基が挙げられる。
 「脂肪族炭化水素基を有する有機基」中の「脂肪族炭化水素基」以外の部位は任意に設定することができる。例えば、リンカーとして-O-、-S-、-COO-、-OCONH-、および-CONH-、並びに、炭化水素基(1価基または2価基)等の部位を有していてもよい。「炭化水素基」としては、例えば、脂肪族炭化水素基、芳香脂肪族炭化水素基、単環式飽和炭化水素基および芳香族炭化水素基等が挙げられ、具体的には、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基等の1価基およびそれらから誘導される2価基が用いられる。「アルキル基」としては、例えば、C1-6アルキル基等が好ましく、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル等が挙げられる。「アルケニル基」としては、例えば、C2-6アルケニル基等が好ましく、例えば、ビニル、1-プロペニル、アリル、イソプロペニル、ブテニル、イソブテニル等が挙げられる。「アルキニル基」としては、例えば、C2-6アルキニル基等が好ましく、例えば、エチニル、プロパルギル、1-プロピニル等が挙げられる。「シクロアルキル基」としては、例えば、C3-6シクロアルキル基等が好ましく、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等が挙げられる。「アリール基」は、例えば、C6-14アリール基等が好ましく、例えば、フェニル、1-ナフチル、2-ナフチル、ビフェニリル、2-アンスリル等が挙げられる。中でもC6-10アリール基がより好ましく、フェニルが特に好ましい。「アラルキル基」としては、例えば、C7-20アラルキル基が好ましく、例えば、ベンジル、1-フェニルエチル、2-フェニルエチル、1-フェニルプロピル、ナフチルメチル、1-ナフチルエチル、1-ナフチルプロピル等が挙げられる。中でも、C7-16アラルキル基(C6-10アリール-C1-6アルキル基)がより好ましく、ベンジルが特に好ましい。当該「炭化水素基」は、ハロゲン原子(塩素原子、臭素原子、フッ素原子、ヨウ素原子)、1個以上のハロゲン原子により置換されていてもよい炭素数1~6のアルキル基、オキソ基等から選択される置換基で置換されていてもよい。
 上記式(I)中のOR基またはOR基を構成する「脂肪族炭化水素基を有する有機基」は、分岐等によって複数の「脂肪族炭化水素基」が存在してもよい。「脂肪族炭化水素基を有する有機基」中に「脂肪族炭化水素基」が複数存在する場合には、その各々は同一のものであっても異なるものであってもよい。
 上記式(I)中のRまたはRとして示される「脂肪族炭化水素基を有する有機基」における、炭素数合計の下限は5が好ましく、10がより好ましく、12が更に好ましく、14が更に一層好ましく、16が殊更好ましく、20が特に好ましい。一方、RまたはRとして示される「脂肪族炭化水素基を有する有機基」における、炭素数合計の上限は、200が好ましく、150がより好ましく、120が更に好ましく、100が更に一層好ましく、80が殊更好ましく、60が特に好ましく、40が特に一層好ましく、30が最も好ましい。当該炭素数が大きいほど、ペプチド鎖が長鎖となった場合でも、式(I)で表される化合物の極性溶媒における結晶性が良好となる。
 「OR」基または「OR」基の好適な具体例として、ドデシルオキシ、セチルオキシ、オクタデシルオキシ、ドコシルオキシ、ドコシルオキシ-ドデシルオキシ、トリアコンチルオキシ等が挙げられる。「OR」基または「OR」基は合計でpまたはr個存在し(pは1~4の整数であり、rは0~4の整数である。)、pは好ましくは2または3であり、rは好ましくは0~2の整数である。
 上記式(I)中の環Aまたは環B中に有していてもよい置換基の好適な具体例としては、C1-6アルコキシ基(例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ等のC1-4アルコキシ基)、1個以上のハロゲンで置換されていてもよいC1-6アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル等のC1-6アルキル基、トリフルオロメチル、トリクロロメチル等のハロゲン置換されたC1-6アルキル基)、またはハロゲン原子が挙げられ、中でもC1-6アルコキシ基が好ましい。
 上記式(I)で表されるアンカーの好ましい態様としては、式(I)中、Yがヒドロキシ基であり;
が水素原子であり;
および/またはRが炭素数5~60の脂肪族炭化水素基であり;
pが1~3の整数であり;
rが0~2の整数である化合物である。
 上記式(I)で表されるアンカーの別の好ましい態様としては、式(I)中、
Yがヒドロキシ基であり;
、R、およびRが共に水素原子であり;
が炭素数5~60の脂肪族炭化水素基であり;
pが1~3の整数である化合物である。
 上記式(I)で表されるアンカーの別の好ましい態様としては、式(I)中、
Yがヒドロキシ基であり;
、R、およびRが共に水素原子であり;
が炭素数10~40のアルキル基であり;
pが2または3である化合物である。
 上記式(I)で表されるアンカーの別の好ましい態様としては、式(I)中、
Yがヒドロキシ基であり;
、R、およびRが共に水素原子であり;
が炭素数12~30のアルキル基であり;
pが2または3である化合物である。
 上記式(I)で表されるアンカーの別の好ましい態様としては、式(I)中、
Yがヒドロキシ基であり;
、R、およびRが共に水素原子であり;
が炭素数12~30のアルコキシ基を1~3個有するベンジル基であり;
pが1~3の整数である化合物である。
 上記式(I)で表されるアンカーの別の好ましい態様としては、式(I)中、
Yがヒドロキシ基であり;
、R、およびRが共に水素原子であり;
が炭素数12~30のアルコキシ基を1~3個有するシクロヘキシルメチル基であり;
pが1~3の整数である化合物である。
 本発明におけるハロゲン系溶媒またはエーテル系溶媒に可溶で、かつ極性溶媒に不溶な分子量が300以上のアンカーの好ましい例としては、以下のアンカーが挙げられる。
3,4,5-トリ(オクタデシルオキシ)ベンジルアルコール、
2,4-ジ(ドコシルオキシ)ベンジルアルコール、
4-メトキシ-2-[3’,4’,5’-トリ(オクタデシルオキシ)ベンジルオキシ]ベンジルアルコール、
4-メトキシ-2-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール、
2-メトキシ-4-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール、
4-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール、
3,5-ジメトキシ-4-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール、
2,4-ジ(ドデシルオキシ)ベンジルアルコール、
3,4,5-トリ(オクタデシルオキシ)ベンジルアミン、
ビス(4-ドコシルオキシフェニル)メタノール、
ビス(4-ドコシルオキシフェニル)メチルアミン、および
2-(12-ドコシルオキシ-ドデシルオキシ)-9-(3-フルオロフェニル)-9-ブロモフルオレン。
 別の好ましい疑似固相保護基としては、以下のものが挙げられる。
式(II):
Figure JPOXMLDOC01-appb-C000003
[式中、
k個のQは、単結合を示すか、あるいは-O-、-S-、-C(=O)O-、-C(=O)NH-または-NH-を示し;
k個のRは、独立してそれぞれ、分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基を示し;
kは、1~4の整数を示し;
は、水素原子であるか、あるいはZが下記式(a)で表される基である場合には、Rと一緒になって単結合を示して、環Bと共にフルオレン環を形成していてもよく;
環Aは、R、k個のQR、およびC(X)(Y)Zに加えて、さらにハロゲン原子、1個以上のハロゲン原子により置換されていてもよいC1-6アルキル基、および1個以上のハロゲン原子により置換されていてもよいC1-6アルコキシ基からなる群から選ばれる置換基を有していてもよく;
Xは、水素原子またはフェニル基を示し;
Yは、ヒドロキシル基または-NHR基(Rは水素原子、アルキル基またはアラルキル基を示す)を示し;かつ
Zは、水素原子または式(a):
Figure JPOXMLDOC01-appb-C000004
(式中、は結合位置を示し;
mは、0~4の整数を示し;
m個のQは、前記と同意義を示し;
m個のRは、独立してそれぞれ、分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基を示し;
は、水素原子を示すか、またはRと一緒になって単結合を示して、環Aと共にフルオレン環を形成していてもよく;かつ
環Bは、m個のQR、およびRに加えて、さらにハロゲン原子、1個以上のハロゲン原子により置換されていてもよいC1-6アルキル基、および1個以上のハロゲン原子により置換されていてもよいC1-6アルコキシ基からなる群から選ばれる置換基を有していてもよい)で表される基を示し;
前記RおよびRにおける分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基が、式(b):
Figure JPOXMLDOC01-appb-C000005
(式中、は、隣接原子との結合位置を示し;
およびRは、独立してそれぞれ、水素原子またはC1-4アルキル基を示し;
は、単結合、C1-4アルキレン基または酸素原子を示す。
但し、RおよびRが共に水素原子であることはない。)で表される同一または異なる2価の基を3以上有する基である。]で表される分岐鎖含有芳香族化合物が挙げられる。
 より好ましくは、以下の化合物が挙げられる。
2,4-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
3,5-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
1-[(2-クロロ-5-(2’,3’-ジヒドロフィチルオキシ)フェニル)]-1-フェニルメタンアミン;
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
2-[3’,4’,5’-トリ(2’’,3’’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアミン;
2,2,4,8,10,10-ヘキサメチル-5-ドデカン酸(4-ヒドロキシメチル)フェニルアミド;
4-(3,7,11-トリメチルドデシルオキシ)ベンジルアルコール;
2-(3,7,11-トリメチルドデシルオキシ)-9-フェニルフルオレン-9-オール;
式:
Figure JPOXMLDOC01-appb-C000006
(式中、n16は、23または34を示す。)で表される化合物;
式:
Figure JPOXMLDOC01-appb-C000007
(式中、n17は、23または34を示す。)で表される化合物;
式:
Figure JPOXMLDOC01-appb-C000008
(式中、n18は、5~7を示す。)で表される化合物;および
式:
Figure JPOXMLDOC01-appb-C000009
で表される化合物、からなる群から選択される分岐鎖含有芳香族化合物。
 その他の好ましい疑似固相保護基としては、ジ(4-ドコソキシフェニル)メチルアミン(NHCH(Phe(4-OC2245)))などが挙げられる。
 前記アンカーの製造方法としては、特に限定されないが、自体公知の方法(特開2000-44493号公報、国際公開第2006/104166号、国際公開第2007/034812号、国際公開第2007/122847号、国際公開第2010/113939号、国際公開第2010/104169号、国際公開第2011/078295号、国際公開第2012/029794号、等を参照)またはこれらに準じる方法に従って原料化合物から製造することができる。なお、原料化合物として使用する化合物、例えば、式(I)の基RまたはRに対応するハロゲン化物等は、市販品として入手可能であるか、あるいは、自体公知の方法またはこれらに準じる方法に従って製造することができる。
 以下、全保護ペプチドが有するSH基以外の官能基の保護基の脱保護について説明する。
 本工程(1-A)での保護基の脱保護は、脱保護される保護基の種類に応じて自体公知の脱保護方法を特に制限なく採用することができるが、SH基の保護基や一時的S-S結合の形成によるSH基の保護に悪影響を与えない条件を選択することが必要である。例えば、還元剤の非存在下に行うことが好ましい。当業者であれば、全体的な合成戦略に基づいて適宜適切な条件を選択することができる。
 例えば、Me、Etなどの低級アルキル基の場合は、水性有機溶媒や極性有機溶媒などの溶媒中、水酸化ナトリウムや水酸化カリウムなどの塩基と反応させることにより脱保護することができる。
 tBuの場合は、クロロホルム、酢酸エチルなどの溶媒中、トリフルオロ酢酸(TFA)、塩酸などの酸と反応させることにより脱保護することができる。
 Bzlの場合は、メタノールやDMFなどの溶媒中、あるいは、フッ化水素、トリフルオロメタンスルホン酸、HBrなどの強酸と反応させることにより脱保護することができる。
 Boc基の脱保護に使用し得る酸としては特に限定されないが、塩化水素、硫酸、硝酸等の鉱酸類、ギ酸、トリフルオロ酢酸(TFA)等のカルボン酸類、メタンスルホン酸、p-トルエンスルホン酸等のスルホン酸類等、またはこれらの混合物を用いることができる。混合物としては、例えば、臭化水素/酢酸、塩化水素/ジオキサン、塩化水素/酢酸等を挙げることができる。
 Fmoc基の脱保護に使用し得る有機塩基としては特に限定されないが、ジエチルアミン、ピペリジン、モルホリン等の2級アミン類、ジイソプロピルエチルアミン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)等の3級アミン類が挙げられる。
 より好ましくは、Fmoc基の脱保護は、ハロゲン系溶媒またはエーテル系溶媒中で、求核性のない有機塩基で処理することにより行われる。脱保護は、その反応に影響を及ぼさない溶媒中で行われる。
 求核性のない塩基としては、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、および1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)等が挙げられ、DBUおよびDBNが好ましく、DBUがより好ましい。
 疑似固相保護基の脱保護は、好適には酸処理により行われる。脱保護に使用する酸としては、トリフルオロ酢酸(TFA)、塩酸、硫酸、メタンスルホン酸、p-トルエンスルホン酸等が挙げられ、中でも、TFAが好ましい。脱保護に使用する溶媒としては、例えば、クロロホルム、ジクロロメタン、1,2-ジクロロエタンまたはこれらの混合溶媒等が挙げられる。脱保護に使用する酸の濃度は、例えば、0.1w/v%~5w/v%である。
 疑似固相保護基の脱保護は、ペプチド中の他の官能基の保護基と同時に脱保護することも可能である。その場合には、当該分野、特にペプチド合成、において行われている慣用の方法が用いられるが、酸などを加える方法が好適に採用される。酸としてトリフルオロ酢酸(TFA)、塩酸、硫酸、メシル酸、トシル酸、トリフルオロエタノール、ヘキサフルオロイソプロパノール等が使用される。中でもTFAが特に好ましい。酸の使用量は、用いる酸の種類によって適宜設定され、アンカー基を除去するのに適当な量が用いられる。酸の使用量は、ペプチド1モルに対して、好ましくは3モル以上、より好ましくは5モル以上であり、好ましくは100モル以下、より好ましくは50モル以下である。これらの使用とともに、更なる強酸源として、トリフルオロメタンスルホン酸や、トリフルオロメタンスルホン酸トリメチルシリル、BF・エーテラートなどを加えることもできる。
 以上の疑似固相保護基の脱保護の条件は、当業者であれば使用される保護基の種類に応じて適宜選択することができる。
 その他の保護基は、その種類に応じて、当技術分野で通常行われる方法もしくは本明細書に記載された保護基の脱保護方法に準じて適宜脱保護することができる。
 上記工程(1-A)、および、工程(1-B)で得られた「S保護ペプチド」は、液相条件下で得られた場合には、当技術分野で慣用の方法により単離・精製することができ、工程(2)に付される。他方、「S保護ペプチド」が固相条件下で得られた場合には、慣用の方法により固相担体から切り出され、工程(2)に付される。
 以上、工程(1-A)と工程(1-B)について説明した。前記の通り本発明では、工程(1-A)と工程(1-B)の実施により工程(2)のS保護ペプチドを得ることができるが、工程(1-A)と工程(1-B)の実施の前後関係は、この順序に限定されるものではなく、実施態様により適宜順序を変更して実施することができる。従って、工程(1-A)の後に工程(1-B)を行う場合、工程(1-B)の後に工程(1-A)を行う場合、これらの組み合わせにより行う場合、両工程を同時に行う場合、があり得るが、いずれの場合も本発明の範囲内に包含される。
 従って、工程(1-A)と工程(1-B)とは、一体となって後続する工程(2)で使用される「S保護ペプチド」を製造するための工程(1)を構成することとなる。すなわち、当該工程(1)は、工程(1-A)と工程(1-B)とを組み合わせて実施することを含む、「S-保護ペプチド」を得る工程、と言い換えることができる。
[工程(2)について]
 本工程(2)は、工程(1-A)、および、工程(1-B)で得られた「ペプチド上の官能基としてSH基を2個以上有する直鎖状ペプチドであって、全てのSH基が一時的S-S結合の形成により保護されており、当該SH基以外の全ての官能基の保護基が脱保護されているペプチド(S保護ペプチド)」を、酸化還元条件下にフォールディング工程に付して、ペプチド分子内でのS-S結合の再形成により環化ペプチドを得る工程である。
 本工程では、フォールディング工程に付してSH基の保護のために形成された一時的S-S結合を一旦切断し、安定型(天然型)の高次構造を構築するようにS-S結合を再形成させることにより、目的とする環化ペプチドを得ることができる。
 本工程のフォールディング工程では、酸化還元条件下で、「S保護ペプチド」が、その一時的S-S結合の還元による切断と酸化によるS-S結合の形成、さらには形成されたS-S結合の還元による再切断と酸化による再形成によるS-S結合の交換反応が順次進行し、最終的には安定型(目的環化ペプチドが天然物である場合は、天然型)の高次構造を有する環化ペプチドへと導かれる。特に、4個以上のSH基を有するペプチドの場合には、2種以上のSH基間でのS-S結合の形成の組み合わせが存在するが、本工程では当該安定型の高次構造に適合するように選択されたSH基の間で、1または2以上のS-S結合が形成されることとなる。従来の方法では、例えば、予めS-S結合を形成させようとするSH基の組み合わせに応じて異なる保護基によりSH基を保護するという直鎖状ペプチドの設計段階での対応が必要であったが、本発明ではより簡便かつ効率的に目的とする環化ペプチドを得ることができる。
 本発明における「酸化還元条件下」とは、「S保護ペプチド」が、その一時的S-S結合の還元による切断と酸化によるS-S結合の形成、さらには形成されたS-S結合の還元による再切断と酸化による再形成によるS-S結合の交換反応が順次進行し、最終的には安定型(目的環化ペプチドが天然物である場合は、天然型)の高次構造を有する環化ペプチドへと導かれる条件下であり、一般的には、酸化剤と還元剤の共存下に行われるが、後述するとおり、還元剤のみで、酸化剤を外部から加えることは必須ではない。  
 本工程で用いられる酸化剤と還元剤の組み合わせは、当技術分野で通常用いられるものを活用することができるが、ジスルフィド系試薬/チオール系試薬の組合せ、例えば、シスチン/システイン、グルタチオン酸化型/グルタチオン還元型、シスタミン/システアミン、ジチオジエタノール/β-メルカプトエタノール等、酸化剤と還元剤の組み合わせが挙げられる。「酸化剤と還元剤の組み合わせ」の好ましい態様としては、シスチン/システイン、グルタチオン酸化型/グルタチオン還元型、の組み合わせが挙げられる。
 先述のとおり、溶媒中に溶存する酸素が酸化剤として作用し、また、S保護ペプチドに存在する一時的S-S結合自体も酸化剤として作用するため、外部から酸化剤を添加せず、還元剤のみ使用する実施態様も、工程(2)での酸化還元条件下でのフォールディング工程に包含される。外部から酸化剤を添加せず、溶存酸素やS保護ペプチドに存在する一時的S-S結合自体が酸化剤として機能する場合、還元剤としては、例えば、システイン、グルタチオン還元型、システアミン、β-メルカプトエタノール等(好ましいものとして、システイン)が挙げられるが、当技術分野で通常用いられるものであればこれに限られない。
 本工程は、適当な溶媒中で行うことができるが、極性溶媒中(例えば、水、エタノールなどのアルコール、等)またはそれらの混合溶媒中で行うことが好ましい。
 本工程は、通常pH6以上(14以下)で行うことができるが、塩基性条件下、例えば、pH7以上(14以下)で行うことが好ましく、pH8以上(14以下)で行うことがより好ましく、pH8以上13以下で行うことが特に好ましい。
 本工程は、当技術分野で通常フォールディング工程が行われる条件に従って、行うことができる。
 フォールディング工程実施時の「S保護ペプチド」の濃度は、特に限定されず、当業者であれば「S保護ペプチド」の種類に応じて適宜決定することができるが、例えば、0.1mg/mlから1mg/mlのフォールディングにおける通常の濃度範囲で行うことができる。検討の結果、本発明においては、SH基が一時的S-S結合形成により保護されていることに基づいて、より高い濃度範囲でも効率良く目的とする環化ペプチドを得られることが確認されており、例えば1mg/ml以上50mg/ml、あるいは1mg/ml以上25mg/ml、もしくは1mg/ml以上15mg/mlの範囲でも本工程を実施できる。
 その他の酸化還元条件下でのフォールディング工程の実施方法については、当技術分野で公知の方法に準じて適宜対象となる基質ペプチドに応じて当業者であれば選択することができ、例えば、「ペプチド合成の基礎と実験、丸善株式会社出版(1985年)」などを参照することもできる。
 以上、本発明の基本となる実施態様について説明したが、以下順次好ましい実施態様について説明する。
工程(1):[工程(1-A)、および、工程(1-B)について]
実施態様1
 本発明を実施するにあたっては、工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護を、全てのSH基がペプチド分子内および/またはペプチド分子間で一時的S-S結合を形成する(仮S-S化)ことにより行うことができる。
 この実施態様では、ペプチド上の官能基としてSH基を2個以上有する直鎖状ペプチドの任意の一組のSH基どうしがペプチド分子内および/またはペプチド分子間で一時的S-S結合が形成されることにより、SH基が保護され、一時的S-S結合で架橋もしくは連結されたペプチドの混合物(仮S-S化ペプチド混合物)が得られる。ここでは、種々の構造を有する一時的S-S結合で連結されたペプチドの混合物が得られるが、特に精製や特定化合物の選別を行う必要はなく、この混合物の全てを、次のステップに使用できるため有用である。
 仮S-S化は、対象となるペプチドにおいて使用されるSH基の保護基や一時的S-S結合形成の方法との適切な組み合わせの下で行われる。以下、好ましい実施態様について場合に分けて具体的に説明する。
実施態様1-1
 この実施態様では、より具体的には、
工程(1-B)において、全保護ペプチドを、仮S-S化に付して、仮S-S化ペプチド混合物を得た後、
工程(1-A)において、当該仮S-S化ペプチド混合物が有する一時的S-S結合形成により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得ることができる。 
 この実施態様では、全保護ペプチドにおける好ましいSH基の保護基としては、S系保護基(後述)以外の保護基が挙げられ、例えば、トリチル基(Trt基)、アセトアミドメチル基(Acm基)、ベンジル基(Bzl基)、4-メチルベンジル基(4-MeBzl基)、4-メトキシベンジル基(MBzl基)が挙げられる。
 この実施態様では、仮S-S化は、例えば、ヨウ素処理、トリフルオロ酢酸タリウム(III)処理(Tl(OCOCF処理)、等により行われ、ヨウ素処理により行われることが好ましい。
 上記のヨウ素処理などの各処理は、この技術分野で通常行われる条件で行うことができる。例えば、ヨウ素処理の場合には、クロロホルム、酢酸、メタノール等のアルコール、ヘキサフルオロイソプロパノール等の溶媒中で、あるいはこれらの含水系もしくは混合系の溶媒中で、全保護ペプチドをヨウ素で処理することにより行うことができる。ヨウ素はSH基を有するペプチド構成単位(1mol)に対して、例えば、0.3~8当量、好ましくは0.5~6当量使用される。別の態様においては、ヨウ素はSH基を有するペプチド構成単位(1mol)に対して1~6当量、好ましくは1~3当量使用される。SH基の保護基がアセトアミドメチル基(Acm基)である場合には、1~10当量、好ましくは1~5当量使用される。
 処理時の温度は、特に限定されず、冷却下~加熱下の温度範囲内で、反応に応じて適宜選択して実施することができる。例えば、室温(常温)下で行うことができる。
 仮S-S化においては、他の酸化剤(トリフルオロ酢酸タリウム(III)等)により処理する場合においても、同様の当量関係、温度条件で実施することができる。
 トリフルオロ酢酸タリウム(III)処理は、トリフルオロ酢酸タリウム(III)(Tl(OCOCF)を酸化剤として用いる方法であり、例えば、トリフルオロ酢酸(TFA)中で、全保護ペプチドを当該酸化剤で処理することにより行うことができる。
 この実施態様では、SH基以外の官能基の保護基、それらの脱保護の条件などは上述したものを参照して実施することができるが、脱保護は好ましくはトリフルオロ酢酸(TFA)により処理することにより行われる。
実施態様1-2
 この実施態様では、より具体的には、
工程(1-A)において、全保護ペプチドの、SH基以外の全ての官能基の保護基を脱保護した後、または同時に、
工程(1-B)において、当該保護ペプチドを仮S-S化に付して、仮S-S化ペプチド混合物を得ることによりS保護ペプチドを得ることができる。
 この実施態様では、全保護ペプチドにおける好ましいSH基の保護基としては、S系保護基以外の保護基が挙げられ、例えば、アセトアミドメチル基(Acm基)、t-ブチル基(t-Bu基)、トリチル基(Trt基)、ベンジル基(Bzl基)、4-メチルベンジル基(4-MeBzl基)、4-メトキシベンジル基(MBzl基)が挙げられる。 
 この実施態様では、仮S-S化は、例えば、ヨウ素処理、DMSO/TFA(ジメチルスルホキシド/トリフルオロ酢酸)処理、トリフルオロ酢酸タリウム(III)処理(Tl(OCOCF処理)等により行われ、ヨウ素処理により行われることが好ましい。
 この実施態様では、工程(1-A)の脱保護と工程(1-B)の仮S-S化を同時に行うこともでき、例えば、DMSO/TFA処理を用いることによって行うことができる。具体的には、10%DMSO/TFA(DMSO:TFA=1:10)等を用いることができる。
 本処理においても、上記のヨウ素処理の場合と同様の当量関係、温度条件で実施することができる。
 ヨウ素処理、および、トリフルオロ酢酸タリウム(III)処理の詳細は、上記を参照することができる。
 SH基以外の官能基の保護基、それらの脱保護の条件などは上述したものを参照して実施することができるが、脱保護は好ましくはトリフルオロ酢酸により処理することにより行われる。
実施態様1-3
 この実施態様では、より具体的には、
  a)1)工程(1-A)において、全保護ペプチドの、SH基以外の全ての官能基の保護基を脱保護した後、
  2)SH基の保護基を除去し、さらに
  3)工程(1-B)において、仮S-S化に付して、仮S-S化ペプチド混合物を得るか、または
b)1)全保護ペプチドの、SH基の保護基を除去した後、
  2)工程(1-B)において、仮S-S化に付して、仮S-S化ペプチド混合物を得て、さらに
  3)工程(1-A)において、当該仮S-S化ペプチド混合物が有する一時的S-S結合形成により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得ることができる。
 この実施態様では、全保護ペプチドにおける好ましいSH基の保護基としては、S系保護基以外の保護基が挙げられ、例えば、フェニルアセトアミドメチル基(Phacm基)、4-メトキシベンジル基(MBzl基)、モノメトキシトリチル基(MMTrt基)が挙げられる。
 上記の保護基は、その種類に応じて、当技術分野で通常行われる方法もしくは本明細書に記載された保護基の脱保護方法に準じて適宜脱保護することができる。この実施態様では、SH基の保護基がフェニルアセトアミドメチル基(Phacm基)である場合は、その除去は、ペニシリンアミドヒドロラーゼ(PGA)存在下の水溶液による処理で行なうことが好ましい。SH基の保護基が4-メトキシベンジル基(MBzl基)である場合は、その除去は、DDQ(ジクロロジシアノベンゾキノン)による処理で行なうことが好ましい。SH基の保護基がモノメトキシトリチル基(MMTrt基)である場合は、その除去は、弱酸(例えば、1%TFA)による処理で行なうことが好ましい。
 この実施態様では、仮S-S化は、例えば、ヨウ素処理、Npys-OMe処理(メチル 3-ニトロ-2-ピリジンスルフェネート処理)、トリフルオロ酢酸タリウム(III)処理(Tl(OCOCF処理)、等により行われ、ヨウ素処理、または、Npys-OMe処理により行われることが好ましく、ヨウ素処理により行われることがより好ましい。
 Npys-OMe処理(メチル 3-ニトロ-2-ピリジンスルフェネート処理)は、Npys-OMeを酸化剤として用いる方法であり、例えば、クロロホルム、DMF、アセトニトリル、それら混合溶媒中で、全保護ペプチドを当該酸化剤で処理することにより行うことができる。
 本処理においても、上記のヨウ素処理の場合と同様の当量関係、温度条件で実施することができる。
 ヨウ素処理、および、トリフルオロ酢酸タリウム(III)処理の詳細は、上記を参照することができる。
 SH基以外の官能基の保護基、それらの脱保護の条件などは上述したものを参照して実施することができるが、脱保護は好ましくはトリフルオロ酢酸(TFA)により処理することにより行われる。
実施態様2
 本発明を実施するにあたっては、工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護を、S系保護基との一時的S-S結合形成により行うことができる。
実施態様2-1
 この実施態様では、より具体的には、
(1)(i)工程(1-B)において、ペプチド上の官能基として保護基により保護されたSH基を2個以上有する直鎖状ペプチドであって、N末端アミノ基が保護されていてもよく、C末端カルボキシ基、およびその他のペプチド上の官能基の全てが保護されているペプチドのSH基の保護基をS系保護基で再保護化するか、または、
(ii)予めS系保護基で保護することにより、全てのSH基がS系保護基との一時的S-S結合の形成により保護されているペプチドを得て、
(2)工程(1-A)において、当該ペプチドの一時的S-S結合により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得ることができる。
 S系保護基との一時的S-S結合の形成は、例えば、3-ニトロ-2-ピリジンスルフェニル基(Npys基)、t-ブチルメルカプト基(S-tBu基)、またはエチルメルカプト基(S-Et基)などの当技術分野で用いられているS系保護基を導入するための試薬により通常使用される条件で処理することにより行うことができる。例えば、3-ニトロ-2-ピリジンスルフェニル基(Npys基)を導入するための試薬としてNpysClを使用する場合、クロロホルム、DMF、アセトニトリル、それら混合溶媒中で反応させることができる。
 S系保護基を導入するための試薬は、SH基(もしくは保護されたSH基)を有するペプチド構成単位(1mol)に対して1~6当量、好ましくは1~3当量使用される。また、処理時の温度は、特に限定されず、冷却下~加熱下の温度範囲内で、反応に応じて適宜選択して実施することができる。例えば、室温(常温)下で行うことができる。
 「ペプチドのSH基の保護基をS系保護基で再保護化する」とは、S系保護基以外の保護基でSH基が保護されたペプチドを、S系保護基を導入するための試薬により再度保護することで全てのSH基がS系保護基と一時的S-S結合の形成させる態様である。この場合、S系保護基としては-ニトロ-2-ピリジンスルフェニル基(Npys基)が好ましい。
 一方、「予めS系保護基で保護する」とは、官能基としてSH基を含有するペプチド原料(システイン残基、ホモシステイン残基、3-メルカプトプロピオニル基等)が、予めS系保護基(例えば、t-ブチルメルカプト基(S-tBu基)、エチルメルカプト基(S-Et基)、3-ニトロ-2-ピリジンスルフェニル基(Npys基)、等)で保護された態様である。この場合、S系保護基としてはt-ブチルメルカプト基(S-tBu基)が好ましい。
 「ペプチドのSH基の保護基をS系保護基で再保護化する」場合の、SH基の保護基としては、S系以外の保護基が使用され、例えば、トリチル基(Trt基)が使用される。
 SH基以外の各官能基の保護基、それらの脱保護の条件などは上述したものを参照して実施することができるが、脱保護は好ましくはトリフルオロ酢酸(TFA)により処理することにより行われる。 
 以上、本発明の工程(1)における工程(1-A)、および、(1-B)の実施態様について説明したが、ペプチド上の官能基としてSH基を有するペプチドのSH基が保護された状態でSH基以外の保護基を脱保護するため、「脱保護された各種の保護基の残骸などによってSH基がアルキル化され収率が低下し、更に、不純物副生による、環化反応における目的ペプチドの収率低下が免れないとの課題」を解決することができる。
 さらに、SH基を一時的S-S結合の形成により保護することにより、工程(2)のフォールディングの効率性を高めることができる。
[工程(2)について]
実施態様1
 この実施態様では、工程(2)のフォールディング工程は、pH6以上の水溶液中で行われるが、塩基性条件下、例えば、pH7以上(14以下)で行うことが好ましく、pH8以上(14以下)で行うことがより好ましく、pH8以上13以下で行うことが特に好ましい。
実施態様2
 この実施態様では、工程(2)のフォールディング工程における「S保護ペプチド」の系内での濃度は、例えば、0.1mg/mlから1mg/mlのフォールディングにおける通常の濃度範囲で行われる。
実施態様2-1
 この実施態様では、工程(2)のフォールディング工程おける「S保護ペプチド」の系内での濃度は、1mg/ml以上の濃度範囲、例えば1mg/ml以上50mg/ml、あるいは1mg/ml以上25mg/ml、もしくは1mg/ml以上15mg/mlの範囲で行われる。
 以上本発明の工程(2)の実施態様について説明したが、通常のフォールディング条件より高濃度での環化反応を行うことができる点で大きな利点を有するものである。
 本発明のフォールディング工程においても、酸化還元剤として使用した試剤がペプチドとS-S結合した付加不純物を副生する場合が稀にあるが、通常の方法では、副生する不純物は分子量の大きい多量化体であり、その種類も複数種となるのに対して、本発明の方法では、仮に付加不純物が副生した場合でも、分子量の大きい多量化体ではなく、かつ種類も単一の不純物であるため、その後の精製負荷が大きく低減できる。本発明の工程(2)は、このような大きな利点をも有するものである。
 その他、全般的な観点からの本発明の好ましい実施態様について説明する。
 本発明を実施するにあたっては、S保護ペプチドが有するSH基の数は、2個以上であるが、一つの好ましい実施態様においては、S保護ペプチドが有するSH基の数は、2個である。
 別の好ましい実施態様においては、S保護ペプチドが有するSH基の数は、4個以上であり、偶数個が好ましい。
 本発明を実施するにあたっては、S保護ペプチドを構成するアミノ酸やアミノ酸類似体等の構成単位の残基数は、特に限定はされないが、通常4個以上100個以下である。好ましくは、6個以上80個以下であり、より好ましくは、8個以上60個以下である。
 本発明を実施するにあたっては、対象となる環化ペプチドの種類は特に限定はされず、例えば、医薬品であってもよい。また、天然物であっても、非天然物であってもよい。
このような環化ペプチドとしては、例えば、ソマトスタチン(somatostatin)、オクトレオチド(octreotide)、アトシバン(atosiban)、リナクロチド(linaclotide)、プレカナチド(plecanatide)、ジコノチド(ziconotide)、インスリン デテミル(insulin detemir)、インスリン グルリジン(insulin glulisine)等が挙げられるが、これに限られない。
 本発明を実施するにあたっては、本発明の酸化還元条件下のフォールディング工程において、安定型(目的環化ペプチドが天然物である場合は、天然型)の高次構造を有する環化ペプチドへと導かれるものを対象とすることが好ましい。
 以下、実施例に沿って本発明をさらに詳細に説明するが、これら実施例は本発明の範囲を何ら限定するものではない。また、本発明において使用する試薬や装置、材料は特に言及されない限り、商業的に入手可能である。また、本明細書において、アミノ酸等を略号で表示する場合、各表示は、IUPAC-IUB Commission on Biochemical Nomenclatureによる略号あるいは当該分野における慣用略号に基づくものである。
 また、使用される試薬について当量の記載がある場合は、原料となるペプチドの直列体(例えば、ペプチドAの直列完全保護体)を基準とする当量を意味するものである。
製造例1:ペプチドAの直列完全保護体
 Fmoc-Tyr(tBu)-OH、Fmoc-Cys(Trt)-OH、Fmoc-Gly-OH、Fmoc-Thr(tBu)-OH、Fmoc-Ala-OH、Fmoc-Pro-OH、Fmoc-Asn(Trt)-OH、Fmoc-Glu(OtBu)-OHを原料として用い、3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(HO-Bzl(3,4,5-OPhy)と表記する)を疑似固相保護基として用い、常法(国際公開第2012/029794号;Angew Chem.Int.Ed. 2017. 27, (56), 7803参照)に従って、以下の配列を有するペプチドAの直列完全保護体を合成した。なお、本明細書では「全保護ペプチド」は、N末端アミノ基は保護されていてもよく、無保護の場合も含む概念であることから、N末が無保護のペプチドも「ペプチドの直列完全保護体」と表記することとする。下記ペプチドのN末のFmoc基は常法に従い、塩基で切断した。
ペプチドAの直列完全保護体
H-Cys(Trt)-Cys(Trt)-Glu(OtBu)-Tyr(tBu)-Cys(Trt)-Cys(Trt)-Asn(Trt)-Pro-Ala-Cys(Trt)-Thr(tBu)-Gly-Cys(Trt)-Tyr(tBu)-OBzl(3,4,5-OPhy)
製造例2:ペプチドBの直列完全保護体
 3-メルカプト(Trt)プロピオン酸、Fmoc-O-Ethyl-D-Tyr-OH、Fmoc-Ile-OH、Fmoc-Thr(tBu)-OH、Fmoc-Asn(Trt)-OH、Fmoc-Cys(Trt)-OH、Fmoc-Pro-OH、Fmoc-Orn(Boc)-OH、Fmoc-Gly-OHを原料として用い、3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(HO-Bzl(3,4,5-OPhy)と表記する)を疑似固相保護基として用い、常法(国際公開第2012/029794号;Angew Chem.Int.Ed. 2017. 27, (56), 7803参照)に従って、以下の配列を有するペプチドBの直列完全保護体を合成した。
ペプチドBの直列完全保護体:
3-メルカプト(Trt)プロピオニル-O-Ethyl-D-Tyr-Ile-Thr(tBu)-Asn(Trt)-Cys(Trt)-Pro-Orn(Boc)-Gly-OBzl(3,4,5-OPhy)
製造例3:ペプチドA’の直列完全保護体
 Fmoc-Tyr(tBu)-OH、Fmoc-Cys(Trt)-OH、Fmoc-Gly-OH、Fmoc-Thr(tBu)-OH、Fmoc-Ala-OH、Fmoc-Pro-OH、Fmoc-Asn(Trt)-OH、Fmoc-Glu(OtBu)-OHを原料として用い、Alko-PEG Resin(渡辺化学工業社製 Wang-PEG レジン)を固相保護基として用い、常法に従って、以下の配列を有する全保護ペプチドA´を合成した。なお、本明細書では「全保護ペプチド」として、N末端アミノ基は保護されていてもよく、無保護の場合も含む概念であることから、N末が無保護のペプチドも「ペプチドの直列完全保護体」と表記することとする。なお、下記ペプチドのN末のFmoc基は常法に従い、塩基で切断した。
ペプチドA’の直列完全保護体:
H-Cys(Trt)-Cys(Trt)-Glu(OtBu)-Tyr(tBu)-Cys(Trt)-Cys(Trt)-Asn(Trt)-Pro-Ala-Cys(Trt)-Thr(tBu)-Gly-Cys(Trt)-Tyr(tBu)-Alko-PEG Resin
実施例1:ヨウ素酸化による仮S-S化ルート(フォールディング濃度:1mg/ml)
 ペプチドAの直列完全保護体100mgをクロロホルム3.4ml、MeOH(メタノール)0.6mlに溶解させ、ヨウ素を3当量、17.2mgを添加した。反応後、アスコルビン酸39.7mgを水3.4mlに溶解させた水溶液で2回分液後、20%NaCl(塩化ナトリウム)水溶液で2回洗浄した。得られた有機層をエバポレーターで濃縮して乾燥させた。その固体をTFA(トリフルオロ酢酸)0.975ml、水0.025ml、p-クレゾール2当量、24.4mgの混合溶液中に加え、脱保護を行った。IPE(イソプロピルエーテル)5mlを加えて沈殿物をろ過し、乾燥させ、脱保護・仮S-S化ペプチド混合物を67.7mg得た。
 水1ml、EtOH(エタノール)1ml、シスチン1.0mg、システイン0.3mgの混合溶液に、上記で得られた脱保護・仮S-S化ペプチド混合物を2.0mg添加し、アンモニア水を3μl加えてpHを9.8に調整した。6時間後、反応液をHPLCにて分析すると、以下の構造を有する環化ペプチドAが純度82%で0.6mg生成していることを確認した(収率52%vsペプチドAの直列体完全保護体)。
<溶出条件>
溶出時間:4.05min
使用機器:WATERS ACQUITY UPLC
カラム:BEH Shield RP18 1.7μm 2.1×100mm
温度:40℃
流速:0.30ml/min
移動相:A液;0.05%TFA/HO B液;0.05%TFA/MeCN(20)THF(80)
タイムプログラム(A液比率)
0.00-0.05min 99%
0.05-13.00min 99-1%
環化ペプチドA:
H-Cys-Cys-Glu-Tyr-Cys-Cys-Asn-Pro-Ala-Cys10-Thr11-Gly12-Cys13-Tyr14-OH
(ここで、CysとCysの間、CysとCys10の間、CysとCys13の間でS-S結合)(配列表1)
m/z[M+H] 1526.3
実施例2:ヨウ素酸化による仮S-S化ルート(フォールディング濃度:4mg/ml)
 水1ml、EtOH1ml、シスチン1.0mg、システイン0.3mgの混合溶液に、上記実施例1で得られた脱保護・仮S-S化ペプチド混合物を8.0mg添加し、アンモニア水を6μl加えてpHを9.3に調整した。6時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度81%で2.2mg生成していることを確認した(収率54%vsペプチドAの直列体完全保護体)。
実施例3:ヨウ素酸化による仮S-S化ルート(フォールディング濃度:10mg/ml)
 水 1ml、EtOH1ml、シスチン1.0mg、システイン0.3mgの混合溶液に、上記実施例1で得られた脱保護・仮S-S化ペプチド混合物を20.0mg添加し、アンモニア水を6μl加えてpHを9.8に調整した。6時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度72%で4.9mg生成していることを確認した(収率48%vsペプチドAの直列体完全保護体)。
実施例4:10%DMSO酸化/TFAによる仮S-S化ルート(フォールディング濃度:1mg/ml)
 ペプチドAの直列完全保護体50mgをTFA1.0ml、DMSO(ジメチルスルホキシド)0.1mlの混合溶液中に加え、室温で5時間、脱保護を行った。IPE5mlを加えて沈殿物をろ過し、乾燥させて、脱保護・仮S-S化ペプチド混合物を19.4mg得た。
 水1.0ml、EtOH1.0ml、シスチン1.0mg、システイン0.3mgの混合溶液に、上記で得られた脱保護・仮S-S化ペプチド混合物2.0mgを添加し、アンモニア水3μlを加えてpHを9.5に調整して室温で攪拌した。5時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度81%で0.9mg生成していることを確認した(収率48%vsペプチドAの直列完全保護体)。
実施例5:S系保護基のNpys基による一時的S-S結合形成ルート(フォールディング濃度:1mg/ml)
 ペプチドAの直列完全保護体100mgをクロロホルム3.4ml、MeOH0.6mlに溶解させ、Npys-Cl(3-ニトロ-2-ピリジンスルフェニルクロリド)を6当量、25.8mgを添加した。反応後、アスコルビン酸39.7mgを水3.4mlに溶解させた水溶液で2回分液後、20%NaCl水溶液で2回洗浄した。得られた有機層をエバポレーターで濃縮して乾燥させた。その固体をTFA1.95ml、水0.05ml、p-クレゾール10当量、24.4mgの混合溶液中に加え、脱保護を行った。IPE10mlを加えて沈殿物をろ過し、乾燥させ、脱保護・S系保護基のNpys基保護ペプチドを84.7mg得た。
 水1ml、EtOH1ml、シスチン1.0mg、システイン0.3mgの混合溶液に、上記で得られた脱保護・S系保護基のNpys基保護ペプチドを2.0mg添加し、アンモニア水を3μl加えてpHを9.8に調整した。2時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度73%で0.8mgが生成していることを確認した(収率56%vsペプチドAの直列体完全保護体)。
実施例6:ヨウ素酸化による仮S-S化ルート(フォールディング濃度:10mg/ml)
 ペプチドA’の直列完全保護体137mgをクロロホルム3.4ml、MeOH0.6mlに溶解させ、ヨウ素3当量、17.2mg,0.068mmolを添加して、室温で2時間攪拌した。反応後、アスコルビン酸39.7mgを水3.4mlに溶解させた水溶液で2回分液後、20%NaCl水溶液3.4mlで2回洗浄した。得られた有機層をエバポレーターで濃縮して乾燥させた。その固体をTFA1.95ml、水0.05ml、p-クレゾール10当量、24.4mgの混合溶液中に加え、室温で5時間、脱保護を行った。ろ過により樹脂をTFA2mlで洗浄した後、ろ液にIPE10mlを加えて、沈殿物をろ過し、乾燥させて、脱保護・仮S-S化ペプチド混合物を34.5mg得た。
 水1.7ml、EtOH1.7ml、シスチン1.7mg、システイン0.6mgの混合溶液に、上記で得られた脱保護・仮S-S化ペプチド混合物34.5mgを添加し、アンモニア水60μlを加えてpHを9.2に調整して室温で攪拌した。1時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度68%で17mg生成していることを確認した(収率49%vsペプチドA’の直列完全保護体)。
実施例7:ヨウ素酸化による仮S-S化ルート(フォールディング濃度:1mg/ml)
 ペプチドBの直列完全保護体1.0gをCPME(シクロペンチルメチルエーテル)16.8ml、MeOH4.2mlに溶解させ、ヨウ素を1当量、48.4mgを添加した。反応後、アスコルビン酸671mgを水21mlに溶解させた水溶液で2回分液後、20%NaCl水溶液で2回洗浄した。得られた有機層をエバポレーターで濃縮して乾燥させて固体を894mg得た。
 その固体300mgをTFA5.85ml、水0.25ml、p-クレゾール10当量、150mgの混合溶液中に加え、脱保護を行った。IPE24mlを加えて沈殿物をろ過し、乾燥させ、脱保護・仮S-S化ペプチド混合物を得た。
 水1ml、EtOH1ml、シスチン1.0mg、システイン0.3mgの混合溶液に、上記で得られた脱保護・仮S-S化ペプチド混合物を2.0mg添加し、アンモニア水を3μl加えてpHを9.8に調整した。6時間後、反応液をHPLCにて分析すると、環化ペプチドBが純度85%で生成していることを確認した。
<溶出条件>
溶出時間:4.90min
使用機器:WATERS ACQUITY UPLC
カラム:BEH Shield RP18 1.7μm 2.1×100mm
温度:40℃
流速:0.30ml/min
移動相:A液;0.05%TFA/HO B液;0.05%TFA/MeCN(20)THF(80)
タイムプログラム(A液比率)
0.00-0.05min 99%
0.05-13.00min 99-1%
環化ペプチドB:
3-メルカプトプロピオニル-O-Ethyl-D-Tyr-Ile-Thr-Asn-Cys-Pro-Orn-Gly-NH
(ここで、3-メルカプトプロピオニルとCysの間でS-S結合)
m/z[M+H] 994.4
実施例8:ヨウ素酸化による仮S-S化ルート(フォールディング濃度:6.5mg/ml)
 水1ml、EtOH1ml、シスチン1.0mg、システイン0.3mgの混合溶液に、上記実施例7で得られた脱保護・仮S-S化ペプチド混合物を13.0mg添加し、アンモニア水を3μl加えてpHを8.9に調整した。1時間後、反応液をHPLCにて分析すると、環化ペプチドBが純度77%で生成していることを確認した。
比較例1:従来ルート(フォールディング濃度:1mg/ml)
 ペプチドAの直列完全保護体6.00gをTFA114ml、水3ml、TIPS(トリイソプロピルシラン)3ml、3-メルカプトプロピオン酸10当量1.44gの混合溶液中に加え、10℃で5時間、脱保護を行った。IPE600mlを加えて沈殿物をろ過し、乾燥させ、ペプチドA直列体を得た。
 水1.0ml、EtOH1.0ml、シスチン1.0mg、システイン0.3mgの混合溶液に、上記で得られたペプチドA直列体2.0mgを添加し、アンモニア水3μlを加えてpHを10.0に調整して室温で攪拌した。1時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度72%で0.6mg生成していることを確認した(収率39%vsペプチドAの直列完全保護体)。
比較例2:従来ルート(フォールディング濃度:10mg/ml)
 水1.0ml、EtOH1.0ml、シスチン1.0mg、システイン0.3mgの混合溶液に、上記比較例1で得られたペプチドA直列体20mgを添加し、アンモニア水3μlを加えてpHを9.1に調整して室温で攪拌した。1時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度8%で0.4mg生成していることを確認した(収率2%vsペプチドAの直列完全保護体)。
比較例3:従来ルート(フォールディング濃度:1mg/ml)
 ペプチドBの直列完全保護体1.0gをTFA7.60ml、水0.20ml、トリイソプロピルシラン0.20ml、3-メルカプトプロピオン酸10当量、405mg、p-クレゾール10当量、412mgの混合溶液中に加え、脱保護を行った。IPE40mlを加えて沈殿物をろ過し、乾燥させ、ペプチドB直列体を得た。
 水1ml、EtOH1ml、シスチン1.0mg、システイン0.3mgの混合溶液に、上記で得られたペプチドB直列体を2.0mg添加し、アンモニア水を3μl加えてpHを9.7に調整した。6時間後、反応液をHPLCにて分析すると、環化ペプチドBが純度61%で生成していることを確認した。
比較例4:従来ルート(フォールディング濃度:6.5mg/ml)
 水1ml、EtOH1ml、シスチン0.3mg、システイン0.1mgの混合溶液に、上記比較例3で得られたペプチドB直列体を13.0mg添加し、アンモニア水を3μl加えてpHを9.6に調整した。6時間後、反応液をHPLCにて分析すると、環化ペプチドBが純度17%で生成していることを確認した。
比較例5:従来ルート(フォールディング濃度:10mg/ml)
 ペプチドA’の直列完全保護体67.8mgをTFA1.9ml、水50μl、トリイソプロピルシラン50μl、3-メルカプトプロピオン酸100当量240mgの混合溶液中に加え、室温で5時間、脱保護を行った。ろ過により樹脂をTFA2mlで洗浄した後、ろ液にIPE20mlを加えて沈殿物をろ過し、乾燥させ、ペプチドA直列体を15.6mg得た。
 水0.5ml、EtOH0.5ml、シスチン5.0mg、システイン0.2mgの混合溶液に、上記で得られたペプチドA直列体10.0mgを添加し、アンモニア水3μlを加えてpHを9.5に調整して室温で攪拌した。1時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度23%で2.4mg生成していることを確認した(収率21%vsペプチドA’の直列完全保護体)。
実施例9:還元剤のみによるフォールディング(フォールディング濃度:2mg/ml)
 水1ml、EtOH1ml、システイン0.3mgの混合溶液に、上記実施例1で得られた脱保護・仮S-S化ペプチド混合物を4.0mg添加し、アンモニア水を3μl加えてpHを9.9に調整した。6時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度77.8%で3.1mg生成していることを確認した(収率77%vsペプチドAの直列体完全保護体)。
実施例10:異なる酸化剤/還元剤によるフォールディング(フォールディング濃度:1mg/ml)
 水1ml、EtOH1ml、グルタチオン酸化型6.0mg、グルタチオン還元型2.0mgの混合溶液に、上記実施例1で得られた脱保護・仮S-S化ペプチド混合物を2.0mg添加し、アンモニア水を3μl加えてpHを9.3に調整した。1時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度65.0%で0.9mg生成していることを確認した(収率56%vsペプチドAの直列体完全保護体)。
製造例4:ペプチドA’’の直列完全保護体
Fmoc-Tyr(tBu)-OH、Fmoc-Cys(S-tBu)-OH、Fmoc-Gly-OH、Fmoc-Thr(tBu)-OH、Fmoc-Ala-OH、Fmoc-Pro-OH、Fmoc-Asn(Trt)-OH、Fmoc-Glu(OtBu)-OHを原料として用い、Alko-PEG Resin(渡辺化学工業社製 Wang-PEG レジン)を固相保護基として用い、常法に従って、以下の配列を有するペプチドA’’の直列完全保護体を合成した。なお、下記ペプチドのN末のFmoc基は常法に従い、塩基で切断した。
ペプチドA’’の直列完全保護体:
H-Cys(S-tBu)-Cys(S-tBu)-Glu(OtBu)-Tyr(tBu)-Cys(S-tBu)-Cys(S-tBu)-Asn(Trt)-Pro-Ala-Cys(S-tBu)-Thr(tBu)-Gly-Cys(S-tBu)-Tyr(tBu)-Alko-PEG Resin
実施例11:S系保護基による一時的S-S結合形成ルート(フォールディング濃度:1mg/ml)
 ペプチドA’’の直列完全保護体160mgをTFA2.59ml、水66.5μl、p-クレゾール10当量、32.4mgの混合溶液中に加え、脱保護を行った。IPE30mlを加えて沈殿物をろ過し、乾燥させ、以下のペプチドA’’直列体を48.6mg得た。
ペプチドA’’の直列体:
H-Cys(S-tBu)-Cys(S-tBu)-Glu-Tyr-Cys(S-tBu)-Cys(S-tBu)-Asn-Pro-Ala-Cys(S-tBu)-Thr-Gly-Cys(S-tBu)-Tyr-OH
 水1ml、EtOH1ml、システイン10mgの混合溶液に、上記で得られたペプチドA’’の直列体を2.0mg添加し、アンモニア水を2μl加えてpHを9.3に調整した。16時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度52.2%で1.0mg生成していることを確認した(収率51%vsペプチドA’’の直列体)。
<溶出条件>
溶出時間:4.10min
使用機器:WATERS ACQUITY UPLC
カラム:BEH Shield RP18 1.7μm 2.1×100mm
温度:40℃
流速:0.30ml/min
移動相:A液;0.05%TFA/HO B液;0.05%TFA/MeCN(20)THF(80)
タイムプログラム(A液比率)
0.00-0.05min 99%
0.05-13.00min 99-1%
実施例12:SH保護基の脱保護/ヨウ素酸化による仮S-S化ルート(フォールディング濃度:1mg/ml)
 ペプチドA’’の直列完全保護体160mgを水2ml、DTT(ジチオトレイトール)60当量、278mg、アンモニア水3μLの混合溶液中に加え、S-tBu基の選択的脱保護を行った。樹脂を濾過により洗浄し、当該選択的脱保護体を得た。当該選択的脱保護体をクロロホルム1.7ml、メタノール0.3mlの混合溶液に溶解させ、ヨウ素12当量、91.4mgを添加した。反応後、樹脂を濾過により洗浄した。この固体をTFA2.59ml、水66.5ml、p-クレゾール32,4mgの混合溶液中に加え、脱保護を行った。IPE20mlを加えて沈殿物をろ過し、乾燥させ、脱保護・仮S-S化ペプチド混合物を45.6mg得た。
 水1ml、EtOH1ml、シスチン0.3mg、システイン0.3mgの混合溶液に、上記で得られた脱保護・仮S-S化ペプチド混合物を2.0mg添加し、アンモニア水を3μl加えてpHを9.5に調整した。20時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度73%で1.6g生成していることを確認した(収率80%vs脱保護・仮S-S化ペプチド混合物)。
実施例13:トリフルオロ酢酸タリウム酸化による仮S-S化ルート(フォールディング濃度:1mg/ml)
 ペプチドAの直列完全保護体50mgをクロロホルム0.85ml、MeOH0.05mlに溶解させ、トリフルオロ酢酸タリウム(III)を6当量、36.8mgを添加した。反応後、20%NaCl水溶液で2回分液した。得られた有機層をエバポレーターで濃縮して乾燥させた。その固体をTFA0.975ml、水0.025ml、p-クレゾール24.4mgの混合溶液中に加え、脱保護を行った。IPE20mlを加えて沈殿物をろ過し、乾燥させ、脱保護・仮S-S化ペプチド混合物を30.1mg得た。
 水1ml、EtOH1ml、シスチン0.3mg、システイン0.3mgの混合溶液に、上記で得られた脱保護・仮S-S化ペプチド混合物を2.0mg添加し、アンモニア水を3μl加えてpHを9.4に調整した。4時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度76%で1.3g生成していることを確認した(収率91%vsペプチドAの直列完全保護体)。
製造例5:ペプチドA’’’の直列完全保護体
 Fmoc-Tyr(tBu)-OH、Fmoc-Cys(Acm)-OH、Fmoc-Gly-OH、Fmoc-Thr(tBu)-OH、Fmoc-Ala-OH、Fmoc-Pro-OH、Fmoc-Asn(Trt)-OH、Fmoc-Glu(OtBu)-OHを原料として用い、Alko-PEG Resin(渡辺化学工業社製 Wang-PEG レジン)を固相保護基として用い、常法に従って、以下の配列を有するペプチドA’’’の直列完全保護体を合成した。なお、下記ペプチドのN末のFmoc基は常法に従い、塩基で切断した。
ペプチドA’’’の直列完全保護体:
H-Cys(Acm)-Cys(Acm)-Glu(OtBu)-Tyr(tBu)-Cys(Acm)-Cys(Acm)-Asn(Trt)-Pro-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Acm)-Tyr(tBu)-Alko-PEG Resin
実施例14:最終脱保護/仮S-S化ルート(フォールディング濃度:1mg/ml)
 ペプチドA’’’の直列完全保護体をTFA2.85ml、水75μl、TIPS75μlの混合溶液中に加え、脱保護を行った。IPE30mlを加えて沈殿物をろ過し、乾燥させ、下記の配列を有するペプチドA’’’の直列体を108mg得た。
ペプチドA’’’の直列体:
H-Cys(Acm)-Cys(Acm)-Glu-Tyr-Cys(Acm)-Cys(Acm)-Asn-Pro-Ala-Cys(Acm)-Thr-Gly-Cys(Acm)-Tyr-OH
 ペプチドA’’’の直列体10mgを酢酸800μL、水200μLの混合溶液中に溶解させ、ヨウ素24当量、10.4mgを添加した。16時間の反応後、残留ヨウ素をクロロホルム1mlで10回抽出した。得られた水層をエバポレーターで濃縮し、IPEを加えて沈殿物を濾過し、乾燥させ、脱保護・仮S-S化ペプチド混合物を得た。
 水1ml、EtOH1ml、シスチン0.1mg、システイン0.1mgの混合溶液に、上記で得られた脱保護・仮S-S化ペプチド混合物を2.0mg添加し、アンモニア水を3μl加えてpHを9.75に調整した。16時間後、反応液をHPLCにて分析すると、環化ペプチドAが純度72%で1.4g生成していることを確認した(収率70%vs脱保護・仮S-S化ペプチド混合物)。
製造例6:ペプチドCの直列完全保護体
 Fmoc-Arg(Pbf)-OH、Fmoc-Gly-OH、Fmoc-Asn(Trt)-OH、Fmoc-Cys(Trt)-OH、Fmoc-Ala-OH、Fmoc-Tyr(tBu)-OH、Fmoc-His(Trt)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Gln(Trt)-OH、Fmoc-Ile-OH、Fmoc-Trp(Boc)-OH、Fmoc-Thr(tBu)-OH、Fmoc-NH-SAL-PEG Resinを固相保護基として用い、常法に従って、以下の配列を有する全保護ペプチドCを合成した。なお、下記ペプチドのN末のFmoc基は常法に従い、塩基で切断した。
ペプチドCの直列完全保護体:
H-Arg(Pbf)-Gly-Asn(Trt)-Cys(Trt)-Ala-Tyr(tBu)-His(Trt)-Lys(Boc)-Gly-Gln(Trt)-Ile-Ile-Trp(Boc)-Cys(Trt)-Thr(tBu)-Tyr(tBu)-His(Trt)-NH-SAL-PEG Resin
実施例15:ヨウ素酸化による仮S-S化ルート(フォールディング濃度:1mg/ml)
 ペプチドCの直列完全保護体409mgをクロロホルム13.6ml、MeOH2.4mlに混合溶解させ、ヨウ素を1.5当量、9.5mgを添加した。反応後、アスコルビン酸44.0mgを水16.0mlに溶解させた水溶液で2回分液後、20%NaCl水溶液で2回洗浄した。得られた有機層をエバポレーターで濃縮して乾燥させた。その固体をTFA8.39ml、水0.21ml、p-クレゾール27.0mgの混合溶液中に加え、脱保護を行った。IPE20mlを加えて沈殿物をろ過し、乾燥させ、脱保護・仮S-S化ペプチド混合物を30.1mg得た。
 水1.5ml、EtOH1.5ml、シスチン0.3mg、システイン0.9mgの混合溶液に、上記で得られた脱保護・仮S-S化ペプチド混合物を3.0mg添加し、アンモニア水を3μl加えてpHを9.0に調整した。3時間後、反応液をHPLCにて分析すると、環化ペプチドCが純度56%で生成していることを確認した。
<溶出条件>
溶出時間:3.78min
使用機器:WATERS ACQUITY UPLC
カラム:BEH Shield RP18 1.7μm 2.1×100mm
温度:40℃
流速:0.30ml/min
移動相:A液;0.05%TFA/HO B液;0.05%TFA/MeCN(20)THF(80)
タイムプログラム(A液比率)
0.00-0.05min 99%
0.05-13.00min 99-1%
環化ペプチドC:
H-Arg―Gly-Asn-Cys-Ala-Tyr-His-Lys-Gly-Gln10-Ile11-Ile12-Trp13-Cys14-Thr15-Tyr16-His17-OH
(ここで、CysとCys14の間でS-S結合)(配列表2)
m/z[M+H]+ 2088.9
実施例16:ヨウ素酸化による仮S-S化ルート(フォールディング濃度:10mg/ml)
 水0.15ml、EtOH0.15ml、シスチン0.3mg、システイン0.9mgの混合溶液に、上記実施例15で得られた脱保護・仮S-S化ペプチド混合物を3.0mg添加し、アンモニア水を3μl加えてpHを8.5に調整した。3時間後、反応液をHPLCにて分析すると、環化ペプチドCが純度55%で生成していることを確認した。
製造例7:ペプチドDの直列完全保護体
Fmoc-Met-OH、Fmoc-Cys(Trt)-OH、Fmoc-Pro-OH、Fmoc-Phe-OH、Fmoc-Thr(tBu)-OH、Fmoc-Asp(OtBu)-OH、Fmoc-His(Trt)-OH、Fmoc-Gln(Trt)-OH、Fmoc-Ala-OH、Fmoc-Arg(Pbf)-OH、Fmoc-Lys(Boc)-OH、Fmoc-Gly-OH、Fmoc-Tyr(tBu)-OH、Fmoc-Leu-OHを原料として用い、ジ(4-ドコソキシフェニル)メチルアミン(NHCH(Phe(4-OC2245))と表記する)を疑似固相保護基として用い、常法(国際公開第2012/029794号;Angew Chem.Int.Ed. 2017. 27, (56), 7803参照)に従って、以下の配列を有するペプチドDの直列完全保護体を合成した。なお、本明細書では「全保護ペプチド」は、N末端アミノ基は保護されていてもよく、無保護の場合も含む概念であることから、N末が無保護のペプチドも「ペプチドの直列完全保護体」と表記することとする。下記ペプチドのN末のFmoc基は常法に従い、塩基で切断した。
ペプチドDの直列完全保護体:
H-Met-Cys(Trt)-Met-Pro-Cys(Trt)-Phe-Thr(tBu)-Thr(tBu)-Asp(OtBu)-His(Trt)-Gln(Trt)-Met-Ala-Arg(Pbf)-Lys(Boc)-Cys(Trt)-Asp(OtBu)-Asp(OtBu)-Cys(Trt)-Cys(Trt)-Gly-Gly-Lys(Boc)-Gly-Arg(Pbf)-Gly-Lys(Boc)-Cys(Trt)-Tyr(tBu)-Gly-Pro-Gln(Trt)-Cys(Trt)-Leu-Cys(Trt)-Arg(Pbf)-NHCH(Phe(4-OC2245))
実施例17:ヨウ素酸化による仮S-S化ルート(フォールディング濃度:1mg/ml)
 ペプチドDの直列完全保護体200mgをクロロホルム3.4ml、MeOH(メタノール)0.6mlに溶解させ、ヨウ素を8当量、45.7mgを添加した。反応後、アスコルビン酸39.6mgを水3.4mlに溶解させた水溶液で2回分液後、20%NaCl水溶液で2回洗浄した。得られた有機層をエバポレーターで濃縮して乾燥させた。その固体をTFA3.9ml、水0.1ml、p-クレゾール24.3mgの混合溶液中に加え、脱保護を行った。IPE20mlを加えて沈殿物をろ過し、乾燥させ、脱保護・仮S-S化ペプチド混合物を得た。
 水1ml、EtOH1ml、シスチン0.3mg、システイン0.3mgの混合溶液に、上記で得られた脱保護・仮S-S化ペプチド混合物を2.0mg添加し、アンモニア水を3μl加えてpHを9.1に調整した。1時間後、反応液をHPLCにて分析すると、環化ペプチドDが純度49.9%で生成していることを確認した。
<溶出条件>
溶出時間:3.26min
使用機器:WATERS ACQUITY UPLC
カラム:BEH Shield RP18 1.7μm 2.1×100mm
温度:40℃
流速:0.30ml/min
移動相:A液;0.05%TFA/HO B液;0.05%TFA/MeCN(20)THF(80)
タイムプログラム(A液比率)
0.00-0.05min 99%
0.05-13.00min 99-1%
環化ペプチドD:
H-Met-Cys-Met-Pro-Cys-Phe-Thr-Thr-Asp-His10-Gln11-Met12-Ala13-Arg14-Lys15-Cys16-Asp17-Asp18-Cys19-Cys20-Gly21-Gly22-Lys23-Gly24-Arg25-Gly26-Lys27-Cys28-Tyr29-Gly30-Pro31-Gln32-Cys33-Leu34-Cys35-Arg36-NH
(ここで、CysとCys19、CysとCys28、Cys16とCys33、Cys20とCys35の間でS-S結合)(配列表3)
m/z[M+4H]4+ 999.6
 本発明は、ペプチド合成の分野において有用な、1または2以上の分子内S-S結合による架橋構造を有する環化ペプチドの製造方法を提供するものである。
 本出願は、日本で2018年11月16日に出願された特願2018-216024号を基礎としており、その内容は本明細書にすべて包含される。

Claims (31)

  1. (1-A)ペプチド上の官能基としてSH基を2個以上有する直鎖状ペプチドであって、全てのSH基が保護されており、N末端アミノ基が保護されていてもよく、C末端カルボキシ基、およびその他のペプチド上の官能基の全てが保護されている直鎖状ペプチド(以後、「全保護ペプチド」とする)において、当該ペプチドが有する保護されたSH基以外の全ての官能基の保護基を脱保護する工程、
    (1-B)ペプチド上の官能基としてSH基を2個以上有する直鎖状ペプチドにおいて、全てのSH基を一時的S-S結合の形成により保護する工程、
    および、
    (2)上記工程(1-A)、および、工程(1-B)で得られた、ペプチド上の官能基としてSH基を2個以上有し、全てのSH基が一時的S-S結合の形成により保護されており、その他のペプチド上の官能基の全ての保護基が脱保護されているペプチド(以後、「S保護ペプチド」とする)を、酸化還元条件下のフォールディング工程に付して、ペプチド分子内でのS-S結合の再形成により環化ペプチドを得る工程、
    を含む環化ペプチドの製造方法。
  2.  工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護が、全てのSH基がペプチド分子内および/またはペプチド分子間で一時的S-S結合を形成する(以後、「仮S-S化」とする)ことによりなされるか、または
     工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護が、S系保護基との一時的S-S結合形成によりなされる、
    請求項1に記載の環化ペプチドの製造方法。
  3.  工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護が、仮S-S化によりなされる請求項2に記載の環化ペプチドの製造方法。
  4.  仮S-S化が、ヨウ素処理、またはトリフルオロ酢酸タリウム(III)処理により行われる請求項3に記載の環化ペプチドの製造方法。
  5.  仮S-S化が、ヨウ素処理により行われる請求項4に記載の環化ペプチドの製造方法。
  6.  工程(1-B)において、全保護ペプチドを、仮S-S化に付して、一時的S-S結合で架橋もしくは連結されたペプチドの混合物(以後、「仮S-S化ペプチド混合物」とする)を得た後、
     工程(1-A)において、当該仮S-S化ペプチド混合物が有する一時的S-S結合形成により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得る、請求項3に記載の環化ペプチドの製造方法。
  7.  全保護ペプチドにおけるSH基の保護基が、S系保護基以外の保護基である請求項6に記載の環化ペプチドの製造方法。
  8.  全保護ペプチドにおけるSH基の保護基が、トリチル基(Trt基)、アセトアミドメチル基(Acm基)、ベンジル基(Bzl基)、4-メチルベンジル基(4-MeBzl基)、または4-メトキシベンジル基(MBzl基)である請求項7に記載の環化ペプチドの製造方法。
  9.  仮S-S化が、ヨウ素処理、またはトリフルオロ酢酸タリウム(III)処理により行われる請求項6~8のいずれか1項に記載の環化ペプチドの製造方法。
  10.  仮S-S化が、ヨウ素処理により行われる請求項9に記載の環化ペプチドの製造方法。
  11.  工程(1-A)において、全保護ペプチドの、SH基以外の全ての官能基の保護基を脱保護した後、または同時に、
    工程(1-B)において、当該脱保護ペプチドを仮S-S化に付して、仮S-S化ペプチド混合物を得ることによりS保護ペプチドを得る、請求項3に記載の環化ペプチドの製造方法。
  12.  全保護ペプチドのSH基の保護基が、S系保護基以外の保護基である請求項11に記載の環化ペプチドの製造方法。
  13.  全保護ペプチドにおけるSH基の保護基が、アセトアミドメチル基(Acm基)、t-ブチル基(t-Bu基)、トリチル基(Trt基)、ベンジル基(Bzl基)、4-メチルベンジル基(4-MeBzl基)、または4-メトキシベンジル基(MBzl基)である請求項12に記載の環化ペプチドの製造方法。
  14.  仮S-S化が、ヨウ素処理、DMSO/TFA処理、またはトリフルオロ酢酸タリウム(III)処理により行われる請求項11~13のいずれか1項に記載の環化ペプチドの製造方法。
  15.  仮S-S化が、ヨウ素処理により行われる請求項14に記載の環化ペプチドの製造方法。
  16. a)1)工程(1-A)において、全保護ペプチドの、SH基以外の全ての官能基の保護基を脱保護した後、
      2)SH基の保護基を除去し、さらに
      3)工程(1-B)において、仮S-S化に付して、仮S-S化ペプチド混合物を得るか、または
    b)1)全保護ペプチドの、SH基の保護基を除去した後、
      2)工程(1-B)において、仮S-S化に付して、仮S-S化ペプチド混合物を得て、さらに
      3)工程(1-A)において、当該仮S-S化ペプチド混合物が有する一時的S-S結合形成により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得る、請求項3に記載の環化ペプチドの製造方法。
  17.  SH基の保護基が、S系保護基以外の保護基である請求項16に記載の環化ペプチドの製造方法。
  18.  SH基の保護基が、フェニルアセトアミドメチル基(Phacm基)、4-メトキシベンジル基(MBzl基)、またはモノメトキシトリチル基(MMTrt基)である請求項17に記載の環化ペプチドの製造方法。
  19.  SH基の保護基の除去が、ペニシリンアミドヒドロラーゼ(PGA)存在下の水溶液による処理、DDQによる処理、または弱酸による処理で行われる請求項18に記載の環化ペプチドの製造方法。
  20.  仮S-S化が、ヨウ素処理、Npys-OMe処理、またはトリフルオロ酢酸タリウム(III)処理により行われる請求項16~19のいずれか1項に記載の環化ペプチドの製造方法。
  21.  仮S-S化が、ヨウ素処理により行われる請求項20に記載の環化ペプチドの製造方法。
  22.  工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護が、S系保護基との一時的S-S結合形成によりなされる請求項2に記載の環化ペプチドの製造方法。
  23.  工程(1-B)において、全てのSH基の一時的S-S結合の形成による保護が、SH基の保護基をS系保護基以外の保護基からS系保護基で再保護化することによりなされる請求項22に記載の環化ペプチドの製造方法。
  24.  S系保護基が、3-ニトロ-2-ピリジンスルフェニル基(Npys基)、t-ブチルメルカプト基(S-tBu基)、またはエチルメルカプト基(S-Et基)である請求項22または23に記載の環化ペプチドの製造方法。
  25.  工程(1-B)において、ペプチド上の官能基として保護基により保護されたSH基を2個以上有する直鎖状ペプチドであって、N末端アミノ基が保護されていてもよく、C末端カルボキシ基、およびその他のペプチド上の官能基の全てが保護されているペプチドのSH基の保護基をS系保護基で再保護化するか、または、予めS系保護基で保護することにより、全てのSH基がS系保護基との一時的S-S結合の形成により保護されているペプチドを得て、
    工程(1-A)において、当該ペプチドの一時的S-S結合により保護されたSH基以外の全ての官能基の保護基を脱保護することによりS保護ペプチドを得る、請求項22~24のいずれか1項に記載の環化ペプチドの製造方法。
  26.  脱保護が、還元剤の非存在下に行われる請求項1~25のいずれか1項に記載の環化ペプチドの製造方法。
  27.  工程(2)の酸化還元条件下のフォールディング工程が、pH6以上の水溶液中で行われる請求項1~26のいずれか1項に記載の環化ペプチドの製造方法。
  28.  工程(2)の酸化還元条件下のフォールディング工程が、酸化剤と還元剤の共存下で行われる請求項1~27のいずれか1項に記載の環化ペプチドの製造方法。
  29.  S保護ペプチドにおけるペプチド上の官能基として有するSH基の数が、2個である請求項1~28のいずれか1項に記載の環化ペプチドの製造方法。
  30.  S保護ペプチドにおけるペプチド上の官能基として有するSH基の数が、4個以上である請求項1~28のいずれか1項に記載の環化ペプチドの製造方法。
  31.  S保護ペプチドにおけるペプチド上の官能基として有するSH基の数が、偶数である請求項1~30のいずれか1項に記載の環化ペプチドの製造方法。
PCT/JP2019/044962 2018-11-16 2019-11-15 分子内s-s結合を有する環化ペプチドの製造方法 WO2020101032A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980074871.9A CN113039193A (zh) 2018-11-16 2019-11-15 具有分子内s-s键的环化肽的制造方法
EP19884349.2A EP3882255A4 (en) 2018-11-16 2019-11-15 PROCESS FOR THE PREPARATION OF CYCLIZED PEPTIDE WITH INTRAMOLECULAR S-S BOND
JP2020556201A JP7476798B2 (ja) 2018-11-16 2019-11-15 分子内s-s結合を有する環化ペプチドの製造方法
US17/319,346 US11939404B2 (en) 2018-11-16 2021-05-13 Method for producing cyclized peptide having intramolecular S-S bond

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-216024 2018-11-16
JP2018216024 2018-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/319,346 Continuation US11939404B2 (en) 2018-11-16 2021-05-13 Method for producing cyclized peptide having intramolecular S-S bond

Publications (1)

Publication Number Publication Date
WO2020101032A1 true WO2020101032A1 (ja) 2020-05-22

Family

ID=70731443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044962 WO2020101032A1 (ja) 2018-11-16 2019-11-15 分子内s-s結合を有する環化ペプチドの製造方法

Country Status (5)

Country Link
US (1) US11939404B2 (ja)
EP (1) EP3882255A4 (ja)
JP (1) JP7476798B2 (ja)
CN (1) CN113039193A (ja)
WO (1) WO2020101032A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097500A1 (ja) * 2020-11-09 2022-05-12 国立大学法人 鹿児島大学 ペプチド架橋剤及び当該架橋剤で架橋された架橋ペプチド

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2250471A1 (en) * 2022-04-19 2023-10-20 Daniel Aili Formation of cross-linked hydrogels

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310600A (ja) * 1998-05-14 1998-11-24 Dai Ichi Pure Chem Co Ltd 新規生理活性ペプチド及びその用途
JP2000044493A (ja) 1998-07-27 2000-02-15 Asahi Chem Ind Co Ltd 化合物ライブラリー合成用保護基
WO2001064716A1 (fr) * 2000-03-03 2001-09-07 Nobutaka Fujii Composes antiviraux
WO2006104166A1 (ja) 2005-03-29 2006-10-05 National University Corporation, Tokyo University Of Agriculture And Technology 晶析分離用担体及び化合物の分離方法
WO2007034812A1 (ja) 2005-09-20 2007-03-29 National University Corporation, Tokyo University Of Agriculture And Technology 分離用担体、化合物の分離方法、及びこれを用いたペプチド合成方法
WO2007122847A1 (ja) 2006-03-24 2007-11-01 National University Corporation, Tokyo University Of Agriculture And Technology 有機合成用試薬、及び当該試薬を用いた有機合成反応方法
US7304036B2 (en) 2003-01-28 2007-12-04 Microbia, Inc. Methods and compositions for the treatment of gastrointestinal disorders
WO2010104169A1 (ja) 2009-03-12 2010-09-16 味の素株式会社 フルオレン化合物
WO2010113939A1 (ja) 2009-03-30 2010-10-07 味の素株式会社 ジフェニルメタン化合物
WO2011078295A1 (ja) 2009-12-25 2011-06-30 味の素株式会社 ベンジル化合物
WO2012029794A1 (ja) 2010-08-30 2012-03-08 味の素株式会社 分岐鎖含有芳香族化合物
WO2014188011A2 (en) 2014-09-25 2014-11-27 Lonza Ltd Method for preparation of linaclotide
WO2017134687A1 (en) 2016-02-03 2017-08-10 Cipla Limited A process for the preparation of guanylate cyclase 2c agonist

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521249A (ja) * 2012-07-12 2016-07-21 フォレスト ラボラトリーズ ホールディングス リミテッド リナクロチド組成物
US11572386B2 (en) * 2014-09-08 2023-02-07 Auro Peptides Ltd. Process for the preparation of linaclotide
CN106167514A (zh) * 2016-08-29 2016-11-30 杭州湃肽生化科技有限公司 一种利那洛肽的合成和纯化方法
CN106967155B (zh) * 2017-03-17 2018-05-15 兰州凯博药业股份有限公司 一种多肽液相合成缩宫素的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10310600A (ja) * 1998-05-14 1998-11-24 Dai Ichi Pure Chem Co Ltd 新規生理活性ペプチド及びその用途
JP2000044493A (ja) 1998-07-27 2000-02-15 Asahi Chem Ind Co Ltd 化合物ライブラリー合成用保護基
WO2001064716A1 (fr) * 2000-03-03 2001-09-07 Nobutaka Fujii Composes antiviraux
US7304036B2 (en) 2003-01-28 2007-12-04 Microbia, Inc. Methods and compositions for the treatment of gastrointestinal disorders
WO2006104166A1 (ja) 2005-03-29 2006-10-05 National University Corporation, Tokyo University Of Agriculture And Technology 晶析分離用担体及び化合物の分離方法
WO2007034812A1 (ja) 2005-09-20 2007-03-29 National University Corporation, Tokyo University Of Agriculture And Technology 分離用担体、化合物の分離方法、及びこれを用いたペプチド合成方法
WO2007122847A1 (ja) 2006-03-24 2007-11-01 National University Corporation, Tokyo University Of Agriculture And Technology 有機合成用試薬、及び当該試薬を用いた有機合成反応方法
WO2010104169A1 (ja) 2009-03-12 2010-09-16 味の素株式会社 フルオレン化合物
WO2010113939A1 (ja) 2009-03-30 2010-10-07 味の素株式会社 ジフェニルメタン化合物
WO2011078295A1 (ja) 2009-12-25 2011-06-30 味の素株式会社 ベンジル化合物
WO2012029794A1 (ja) 2010-08-30 2012-03-08 味の素株式会社 分岐鎖含有芳香族化合物
WO2014188011A2 (en) 2014-09-25 2014-11-27 Lonza Ltd Method for preparation of linaclotide
WO2017134687A1 (en) 2016-02-03 2017-08-10 Cipla Limited A process for the preparation of guanylate cyclase 2c agonist

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"PEPTIDE GOUSEI NO KISO TO JIKKEN", 1985, MARUZEN PUBLISHING CO., LTD.
"PROTECTIVE GROUPS IN ORGANIC SYNTHESIS", 1999, JOHN WILLY&SONS
ANGEW CHEM. INT. ED., vol. 27, no. 56, 2017, pages 7803
See also references of EP3882255A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097500A1 (ja) * 2020-11-09 2022-05-12 国立大学法人 鹿児島大学 ペプチド架橋剤及び当該架橋剤で架橋された架橋ペプチド

Also Published As

Publication number Publication date
EP3882255A4 (en) 2022-09-21
US20210277063A1 (en) 2021-09-09
US11939404B2 (en) 2024-03-26
EP3882255A1 (en) 2021-09-22
JP7476798B2 (ja) 2024-05-01
CN113039193A (zh) 2021-06-25
JPWO2020101032A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP6350632B2 (ja) ペプチドの製造方法
US20110319594A1 (en) Method for producing bivalirudin
US20100240865A1 (en) Process for production of cyclic peptides
US10647742B2 (en) Method for synthesizing etelcalcetide
US11939404B2 (en) Method for producing cyclized peptide having intramolecular S-S bond
US20160362445A1 (en) Solid phase peptide synthesis via side chain attachment
JP6136934B2 (ja) Fmoc基の除去方法
US20210388051A1 (en) Solid phase peptide synthesis of insulin using side chain anchored lysine
TW200831527A (en) Method of peptide synthesis
US20220033440A1 (en) An improved process for the preparation of plecanatide
US20160137689A1 (en) Peptide-resin conjugate and use thereof
JP2014162722A (ja) 側鎖結合を介する固相ペプチド合成
US20220177512A1 (en) Cyclic peptide production method
KR102159138B1 (ko) 측쇄 부착을 통한 고상 펩타이드 합성 방법
JP6289937B2 (ja) リラキシンの製造方法
CN114805480A (zh) 一种奥曲肽的制备方法
JP4793644B2 (ja) ケージドペプチドの合成法
US20130131286A1 (en) Compound for use in peptide synthesis
JP6707576B2 (ja) 側鎖結合を介する固相ペプチド合成
AU2013250755B2 (en) Solid phase peptide synthesis of insulin using side chain anchored lysine
WO2022149612A1 (ja) ペプチドの製造方法
WO2013132505A1 (en) Improved process for preparation of octreotide by solution phase peptide synthesis
JP2559767B2 (ja) 新規カルシトニン誘導体及びその塩
KR20100021501A (ko) 고체상 합성법을 이용한 옥트레오타이드의 제조방법
US20120004457A1 (en) Method for producing peptide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556201

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019884349

Country of ref document: EP

Effective date: 20210616