WO2020099983A1 - 半導体装置、及び電子機器 - Google Patents

半導体装置、及び電子機器 Download PDF

Info

Publication number
WO2020099983A1
WO2020099983A1 PCT/IB2019/059516 IB2019059516W WO2020099983A1 WO 2020099983 A1 WO2020099983 A1 WO 2020099983A1 IB 2019059516 W IB2019059516 W IB 2019059516W WO 2020099983 A1 WO2020099983 A1 WO 2020099983A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
circuit
insulator
oxide
conductor
Prior art date
Application number
PCT/IB2019/059516
Other languages
English (en)
French (fr)
Inventor
大貫達也
松嵜隆徳
熱海知昭
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2020099983A1 publication Critical patent/WO2020099983A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/54Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using elements simulating biological cells, e.g. neuron
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • G11C5/04Supports for storage elements, e.g. memory modules; Mounting or fixing of storage elements on such supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • One embodiment of the present invention relates to a semiconductor device and an electronic device.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Therefore, more specifically, as technical fields of one embodiment of the present invention disclosed in this specification, a semiconductor device, a display device, a liquid crystal display device, a light-emitting device, a power storage device, an imaging device, a storage device, a signal processing device, and a processor.
  • Electronic devices, systems, driving methods thereof, manufacturing methods thereof, or inspection methods thereof can be given as examples.
  • Electronic components such as a central processing unit (CPU), a graphics processing unit (GPU), a storage device, and a sensor are used in various electronic devices such as personal computers, smartphones, and digital cameras.
  • the electronic components are miniaturized, And improvements are being made in various aspects such as low power consumption.
  • Patent Document 1 discloses a semiconductor device in which a backup circuit is provided in an arithmetic processing circuit and data is temporarily saved in the backup circuit before performing a power gating operation or the like.
  • a processor such as a CPU includes an arithmetic circuit and a cache memory, and by shortening the distance between the arithmetic circuit and the cache memory, the time and power required for data transfer can be reduced. You can However, since the processor is provided away from the main memory, the non-volatile memory, etc., the time and power required to transfer the data from the main memory, the non-volatile memory, etc. to the processor become high.
  • SRAM Static Random Access Memory
  • One object of one embodiment of the present invention is to provide a novel semiconductor device. Another object of one embodiment of the present invention is to provide a semiconductor device with low power consumption. Another object of one embodiment of the present invention is to provide a semiconductor device having a small circuit area. Another object of one embodiment of the present invention is to provide a semiconductor device in which the time required for data transfer is short. Another object of one embodiment of the present invention is to provide a novel electronic device including a semiconductor device.
  • the problem of one embodiment of the present invention is not limited to the problems listed above.
  • the issues listed above do not preclude the existence of other issues.
  • Other issues are the ones not mentioned in this item, which will be described below.
  • Problems that are not mentioned in this item can be derived from descriptions in the specification, drawings, and the like by those skilled in the art, and can be appropriately extracted from these descriptions.
  • one embodiment of the present invention is to solve at least one of the problems listed above and other problems. Note that according to one embodiment of the present invention, it is not necessary to solve all the problems listed above and other problems.
  • One embodiment of the present invention includes a first circuit and a second circuit positioned over the first circuit, the first circuit is electrically connected to the second circuit, and the first circuit is a memory cell.
  • the second circuit has a third circuit and a fourth circuit, the third circuit is electrically connected to the fourth circuit, and the third circuit performs arithmetic processing to
  • the fourth circuit has a function of outputting one data, the fourth circuit has a function of writing the first data to the memory cell, and a function of reading the second data from the memory cell.
  • the first circuit has a NAND memory and the NAND memory is a semiconductor device having a memory cell.
  • the second circuit is a unipolar circuit, the second circuit has a first transistor, and the first transistor is A semiconductor device having a metal oxide in a channel formation region.
  • the second circuit has a fifth circuit and the fifth circuit has a first circuit instead of the memory cell.
  • a semiconductor device having a function of storing data.
  • the arithmetic processing is arithmetic in a hierarchical neural network
  • the first data is a weighting factor and a neuron.
  • one embodiment of the present invention is an electronic device including the semiconductor device according to any one of (1) to (5) above and a housing.
  • a semiconductor device is a device utilizing semiconductor characteristics, and means a circuit including a semiconductor element (a transistor, a diode, a photodiode, or the like), a device including the circuit, or the like.
  • a semiconductor element a transistor, a diode, a photodiode, or the like
  • it refers to all devices that can function by utilizing semiconductor characteristics.
  • an integrated circuit, a chip including the integrated circuit, and an electronic component in which the chip is housed in a package are examples of semiconductor devices.
  • a memory device, a display device, a light-emitting device, a lighting device, an electronic device, or the like is a semiconductor device in its own right and may have a semiconductor device.
  • X and Y are connected, a case where X and Y are electrically connected and a case where X and Y are functionally connected are described. And the case where X and Y are directly connected are disclosed in this specification and the like. Therefore, it is not limited to a predetermined connection relation, for example, the connection relation shown in the drawing or the text, and other than the connection relation shown in the drawing or the text is also disclosed in the drawing or the text.
  • X and Y are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • an element for example, a switch, a transistor, a capacitance element, an inductor, a resistance element, a diode, a display, etc.
  • One or more devices, light emitting devices, loads, etc. can be connected between X and Y.
  • the switch has a function of controlling on / off. That is, the switch is in a conducting state (on state) or a non-conducting state (off state) and has a function of controlling whether or not to pass a current.
  • Examples of the case where X and Y are functionally connected include a circuit (for example, a logic circuit (inverter, NAND circuit, NOR circuit, etc.)) that enables functional connection between X and Y, and signal conversion.
  • Circuits digital-analog conversion circuits, analog-digital conversion circuits, gamma correction circuits, etc.), potential level conversion circuits (power supply circuits (step-up circuits, step-down circuits, etc.), level shifter circuits that change the potential level of signals), voltage sources, current sources , Switching circuits, amplifier circuits (circuits that can increase the signal amplitude or current amount, operational amplifiers, differential amplifier circuits, source follower circuits, buffer circuits, etc.), signal generation circuits, memory circuits, control circuits, etc. It is possible to connect more than one between and. As an example, even if another circuit is sandwiched between X and Y, if the signal output from X is transmitted to Y, it is assumed that X and Y are functional
  • X and Y, the source (or the first terminal or the like) of the transistor and the drain (or the second terminal or the like) are electrically connected to each other, and X, the source of the transistor (or 1 terminal), the drain of the transistor (or the second terminal, etc.), and Y are electrically connected in this order.
  • the source of the transistor (or the first terminal or the like) is electrically connected to X
  • the drain of the transistor (or the second terminal or the like) is electrically connected to Y
  • X, the source of the transistor ( Alternatively, the first terminal or the like), the drain of the transistor (or the second terminal, or the like), and Y are electrically connected in this order ”.
  • X is electrically connected to Y through a source (or a first terminal or the like) and a drain (or a second terminal or the like) of the transistor, and X, a source (or a first terminal) of the transistor, or the like. Terminal, etc.), the drain of the transistor (or the second terminal, etc.), and Y are provided in this connection order ”.
  • the source (or the first terminal or the like) of the transistor and the drain (or the second terminal or the like) are separated from each other by defining the order of connection in the circuit structure by using the expression method similar to these examples. Apart from this, the technical scope can be determined. Note that these expression methods are examples, and the present invention is not limited to these expression methods.
  • X and Y are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • a transistor has three terminals called a gate, a source, and a drain.
  • the gate is a control terminal that controls the conduction state of the transistor.
  • the two terminals functioning as a source or a drain are input / output terminals of the transistor.
  • One of the two input / output terminals serves as a source and the other serves as a drain depending on the conductivity type (n-channel type, p-channel type) of the transistor and the level of potential applied to the three terminals of the transistor. Therefore, in this specification and the like, the terms source and drain can be rephrased.
  • a transistor may have a back gate in addition to the above-described three terminals depending on the structure of the transistor.
  • one of the gate and the back gate of the transistor is referred to as a first gate
  • the other of the gate and the back gate of the transistor is referred to as a second gate.
  • the terms "gate” and “back gate” may be interchangeable with each other. In the case where the transistor has three or more gates, each gate is referred to as a first gate, a second gate, a third gate, or the like in this specification and the like.
  • a node can be restated as a terminal, a wiring, an electrode, a conductive layer, a conductor, an impurity region, or the like, depending on a circuit configuration, a device structure, or the like. Further, terminals, wirings, etc. can be paraphrased as nodes.
  • Voltage refers to a potential difference from a reference potential, and for example, when the reference potential is a ground potential (ground potential), “voltage” can be paraphrased to “potential”. The ground potential does not always mean 0V. Note that the potentials are relative, and the potential applied to the wiring or the like may be changed depending on the reference potential.
  • the "current” is a charge transfer phenomenon (electrical conduction).
  • the description "the electrical conduction of a positively charged body is occurring” means “the electrical conduction of a negatively charged body in the opposite direction.” Is happening. " Therefore, in this specification and the like, the term “current” refers to a charge transfer phenomenon (electric conduction) associated with carrier transfer, unless otherwise specified.
  • the carrier as used herein include electrons, holes, anions, cations, complex ions, and the like, and the carriers are different depending on the system in which current flows (for example, semiconductor, metal, electrolytic solution, in vacuum, etc.). Further, the “direction of current” in the wiring or the like is the direction in which positive carriers move, and is described as the amount of positive current.
  • the direction in which the negative carriers move is opposite to the direction of the current, and is expressed by the negative current amount. Therefore, in this specification and the like, unless otherwise specified as to whether the current is positive or negative (or the direction of the current), a description such as “a current flows from the element A to the element B" is "a current flows from the element B to the element A” or the like. Can be paraphrased into. Further, the description such as “current is input to the element A” can be translated into “current is output from the element A” and the like.
  • the ordinal numbers “first”, “second”, and “third” are added to avoid confusion among constituent elements. Therefore, the number of components is not limited. Moreover, the order of the components is not limited. For example, a constituent element referred to as “first” in one of the embodiments of the present specification and the like is a constituent element referred to as “second” in another embodiment or in the claims. There is also a possibility. Further, for example, the component referred to as “first” in one of the embodiments of the present specification and the like may be omitted in another embodiment or in the claims.
  • the terms “upper” and “lower” do not necessarily mean that the positional relationship of the constituent elements is directly above or below and is in direct contact with each other.
  • the expression “electrode B on insulating layer A” it is not necessary that the electrode B is directly formed on the insulating layer A, and another structure is provided between the insulating layer A and the electrode B. Do not exclude those that contain elements.
  • terms such as “film” and “layer” can be interchanged with each other depending on the situation.
  • the terms “insulating layer” and “insulating film” may be changed to the term “insulator”.
  • electrode and “wiring” do not limit the functional elements.
  • electrode may be used as part of “wiring” and vice versa.
  • electrode and wiring also include the case where a plurality of “electrodes” and “wirings” are integrally formed.
  • terms such as “wiring”, “signal line”, and “power line” can be interchanged with each other depending on the case or circumstances. For example, it may be possible to change the term “wiring” to the term “signal line”. Further, for example, it may be possible to change the term “wiring” to a term such as “power line”. Also, the reverse is also true, and in some cases it is possible to change the terms such as “signal line” and “power line” to the term “wiring”. In some cases, terms such as “power line” can be changed to terms such as “signal line”. Also, the reverse is also true, and in some cases, terms such as “signal line” can be changed to terms such as “power line”. In addition, the term “potential” applied to the wiring can be changed to the term “signal” or the like depending on the case or circumstances. Also, the reverse is also true, and in some cases, terms such as “signal” can be changed to the term “potential”.
  • the semiconductor impurities mean, for example, components other than the main components constituting the semiconductor layer.
  • an element whose concentration is less than 0.1 atomic% is an impurity. Due to the inclusion of impurities, for example, DOS (Density of States) may be formed in the semiconductor, carrier mobility may be reduced, and crystallinity may be reduced.
  • the impurities that change the characteristics of the semiconductor include, for example, a Group 1 element, a Group 2 element, a Group 13 element, a Group 14 element, a Group 15 element, and a component other than the main component.
  • transition metals and the like in particular hydrogen (also included in water), lithium, sodium, silicon, boron, phosphorus, carbon, nitrogen and the like.
  • the impurities that change the characteristics of the semiconductor include, for example, group 1 elements other than oxygen and hydrogen, group 2 elements, group 13 elements, group 15 elements, and the like. There is.
  • a switch refers to a switch which is in a conductive state (on state) or a non-conductive state (off state) and has a function of controlling whether or not to flow a current.
  • a switch has a function of selecting and switching a path through which current flows.
  • an electrical switch, a mechanical switch, or the like can be used. That is, the switch is not limited to a particular one as long as it can control the current.
  • Examples of electrical switches include transistors (for example, bipolar transistors and MOS transistors), diodes (for example, PN diodes, PIN diodes, Schottky diodes, MIM (Metal Insulator Metal) diodes, and MIS (Metal Insulator Semiconductor) diodes. , A diode-connected transistor, or the like, or a logic circuit in which these are combined. Note that when a transistor is used as a switch, the “conductive state” of the transistor means a state where the source and drain electrodes of the transistor can be regarded as being electrically short-circuited.
  • non-conduction state of a transistor refers to a state in which the source electrode and the drain electrode of the transistor can be regarded as being electrically disconnected. Note that when the transistor is operated as a simple switch, the polarity (conductivity type) of the transistor is not particularly limited.
  • a mechanical switch there is a switch using MEMS (micro electro mechanical system) technology.
  • the switch has a mechanically movable electrode, and the movement of the electrode controls conduction and non-conduction.
  • parallel means a state in which two straight lines are arranged at an angle of ⁇ 10 ° or more and 10 ° or less. Therefore, a case of -5 ° or more and 5 ° or less is also included.
  • substantially parallel or “substantially parallel” means a state in which two straight lines are arranged at an angle of ⁇ 30 ° or more and 30 ° or less.
  • vertical means a state in which two straight lines are arranged at an angle of 80 ° or more and 100 ° or less. Therefore, the case of 85 ° or more and 95 ° or less is also included.
  • substantially vertical or “generally vertical” means a state in which two straight lines are arranged at an angle of 60 ° or more and 120 ° or less.
  • a novel semiconductor device can be provided.
  • a semiconductor device with low power consumption can be provided.
  • a semiconductor device with a small circuit area can be provided.
  • a semiconductor device in which the time required for data transfer is short can be provided.
  • a novel electronic device including a semiconductor device can be provided.
  • the effects of one aspect of the present invention are not limited to the effects listed above.
  • the effects listed above do not prevent the existence of other effects.
  • the other effects are the effects which are not mentioned in this item, which will be described below.
  • the effects not mentioned in this item can be derived from the description such as the specification or the drawings by those skilled in the art, and can be appropriately extracted from these descriptions.
  • one embodiment of the present invention has at least one of the effects listed above and other effects. Therefore, one embodiment of the present invention may not have the effects listed above in some cases.
  • FIG. 1A, 1B, 1C, and 1D are schematic diagrams illustrating the structure of a semiconductor device.
  • FIG. 2 is a block diagram illustrating the configuration of the semiconductor device.
  • 3A and 3B are schematic diagrams illustrating the configuration of the semiconductor device.
  • FIG. 4 is a block diagram illustrating the configuration of the semiconductor device.
  • FIG. 5 is a block diagram illustrating the configuration of the semiconductor device.
  • FIG. 6 is a block diagram illustrating the configuration of the semiconductor device.
  • FIG. 7 is a block diagram illustrating a circuit included in the semiconductor device.
  • 8A, 8B, 8C, 8D, and 8E are circuit diagrams illustrating circuits included in a semiconductor device.
  • 9A and 9B are block diagrams each illustrating a circuit included in a semiconductor device.
  • 10A, 10B, 10C, 10D, and 10E are circuit diagrams illustrating circuits included in a semiconductor device.
  • 11A, 11B, and 11C are circuit diagrams illustrating circuits included in a semiconductor device.
  • FIG. 12 is a schematic sectional view illustrating the configuration of the semiconductor device.
  • FIG. 13 is a schematic sectional view illustrating the configuration of the semiconductor device.
  • FIG. 14 is a schematic sectional view illustrating the configuration of the semiconductor device.
  • 15A, 15B, and 15C are schematic cross-sectional views illustrating the structure of the semiconductor device.
  • 16A, 16B, 16C, and 16D are perspective views showing an example of a semiconductor wafer and electronic components.
  • FIG. 17 is a perspective view illustrating an example of a product.
  • 18A, 18B, and 18C are perspective views illustrating an example of a product.
  • a metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (Oxide Semiconductor or simply OS), and the like. For example, when a metal oxide is used for the active layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. That is, when a metal oxide can form a channel formation region of a transistor having at least one of an amplification function, a rectification function, and a switching function, the metal oxide is referred to as a metal oxide semiconductor. You can In addition, the term “OS transistor” can be rephrased as a transistor including a metal oxide or an oxide semiconductor.
  • metal oxides having nitrogen may be collectively referred to as metal oxides. Further, the metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • the contents described in one embodiment are different from the contents described in the embodiment (may be a part of the contents) and one or more different embodiments. It is possible to apply, combine, replace, or the like with respect to at least one of the contents described in the form (or a part of the contents).
  • the semiconductor device shown in FIG. 1A has a configuration in which the circuit OSC is superposed on the memory cell unit MCL.
  • the circuit OSC has a function of performing general-purpose processing such as various calculations and execution of programs, and a function of controlling the memory cell unit MCL. Examples of the operation include parallel processing of matrix calculation in graphic processing, parallel processing of product-sum operation of a neural network used for artificial intelligence, and the like.
  • the memory cell unit MCL has a function of temporarily holding data handled in the calculation in the circuit OSC.
  • a plurality of memory cells are configured on a substrate, and writing and reading of data is performed by a writing circuit and a reading circuit included in the circuit OSC.
  • the substrate applicable as the semiconductor device can be, for example, a single crystal semiconductor substrate made of silicon or silicon carbide, a polycrystalline semiconductor substrate, a compound semiconductor substrate made of silicon germanium, or the like.
  • the substrate may be, for example, an SOI substrate or a semiconductor substrate provided with a semiconductor element such as a strain transistor or a FIN type transistor.
  • a glass substrate of barium borosilicate glass, aluminoborosilicate glass, or the like, a ceramic substrate, a quartz substrate, a sapphire substrate, or the like can be used.
  • a flexible substrate flexible substrate (flexible substrate) may be used as the substrate.
  • the substrate is preferably a silicon substrate.
  • the memory cell unit MCL and the circuit OSC are electrically connected by the wiring EW.
  • the wiring EW functions as a wiring that electrically connects the memory cell included in the memory cell portion MCL and the circuit OSC.
  • the wiring EW can be one or more wirings selected from a bit line (a write bit line, a read bit line, or the like), a word line, a voltage line that supplies a constant voltage, and the like. The number and the number are determined according to the circuit configuration of the memory cell.
  • the memory cell unit MCL and the circuit OSC can be manufactured by different processes.
  • the transistors included in each of the memory cell unit MCL and the circuit OSC can have different configurations.
  • a transistor hereinafter referred to as Si transistor
  • Si transistor As the circuit OSC which controls the NAND memory element, an OS transistor in which a metal oxide is contained in a channel formation region can be applied.
  • the formation temperature of the OS transistor is lower than that of the Si transistor, the influence of heat given to the Si transistor included in the memory cell portion MCL can be reduced by configuring the circuit OSC as a unipolar circuit including the OS transistor. can do.
  • the circuit OSC is superposed above the memory cell portion MCL, it is possible to suppress an increase in the circuit area of the semiconductor device. Further, since the data movement distance between the memory cell unit MCL and the circuit OSC becomes short, it is possible to suppress an increase in power consumption.
  • the semiconductor device of one embodiment of the present invention may have a structure in which a plurality of circuit OSCs are overlapped.
  • the semiconductor device of one embodiment of the present invention may have a structure in which the circuit OSC1 is overlaid over the memory cell portion MCL and the circuit OSC2 is overlaid over the circuit OSC1.
  • the memory cell portion MCL and the circuit OSC1 are electrically connected by a wiring EW1
  • the circuit OSC1 and the circuit OSC2 are electrically connected by a wiring EW2.
  • each of the circuit OSC1 and the circuit OSC2 can be configured to have different functions.
  • the circuit OSC1 can have a function of controlling the memory cell portion MCL
  • the circuit OSC2 can have a function of performing general-purpose processing such as execution of various calculations and programs.
  • the semiconductor device of one embodiment of the present invention may have a structure in which the memory cell portion MCL is overlapped with the circuit OSC as illustrated in FIG. 1C.
  • the memory cell portion MCL and the circuit OSC are included in the same layer, or the height of the memory cell portion MCL and the circuit OSC is high. It is also possible to have a configuration in which they are aligned with each other.
  • FIG. 2 shows an example of the memory cell unit MCL and the circuit OSC included in the semiconductor device shown in FIG. 1A.
  • the memory cell unit MCL has a memory cell array MCA.
  • the memory cell array MCA has a plurality of memory cells MC, and the plurality of memory cells MC are arranged in a matrix.
  • the memory cell array MCA of FIG. 2 has m in one column and n in one row, that is, m ⁇ n memory cells MC.
  • the memory cell MC located in the i-th row and the j-th column (where i is an integer of 1 or more and m or less and j is an integer of 1 or more and n or less) is denoted by MC [i, j].
  • MC i, j
  • Each of the wiring WL, the wiring BL, and the wiring CL shown in FIG. 2 corresponds to the wiring EW shown in FIG. 1A.
  • the wirings WL are a plurality of word lines, and each of the wirings WL is electrically connected to the memory cells MC in each row of the matrix.
  • the wiring BL is a plurality of bit lines, and each wiring BL is electrically connected to the memory cell MC in each column of the matrix.
  • the wiring CL is a plurality of voltage lines, and each wiring CL is electrically connected to the memory cell MC for each row of the matrix.
  • the wiring WL, the wiring BL, and the wiring CL shown in the semiconductor device in FIG. 2 are examples, and the kind and the number of wiring are determined depending on the configuration of the memory cell MC.
  • the wiring BL is illustrated as a bit line in FIG. 2, but the bit line may be two write bit lines and read bit lines.
  • the wiring BL may be two wirings in order to transfer a digital signal for writing data and an inverted signal thereof. The case where the memory cell MC has an SRAM will be described in the second embodiment.
  • one wiring WL is electrically connected to one memory cell MC, but two or more wirings are connected to one memory cell MC.
  • WL may be electrically connected.
  • one wiring CL is electrically connected to one memory cell MC, but two or more wirings are connected to one memory cell MC. CL may be electrically connected.
  • the circuit OSC has, for example, a circuit ARP and a circuit PRPH.
  • the circuit ARP has a function of receiving an instruction (including input data necessary for an operation or the like) given to the semiconductor device and performing various operations and programs according to the instruction, and executing the operation or the program.
  • the circuit PRPH has a function of writing data to the memory cells MC included in the memory cell unit MCL during the execution of the calculation or the program, data of the execution result, or reading the data, and a function of reading the data.
  • a function of transmitting the received data to the circuit ARP is a function of transmitting data from the circuit ARP to the circuit PRPH. Note that, as a function of transmitting data from the circuit ARP to the circuit PRPH, information on an address indicating a storage destination of the data may be transmitted together with the data.
  • the circuit PRPH includes, for example, a circuit WLD, a circuit BLD, and a circuit CVC.
  • the circuit WLD functions as a word line driver circuit and is electrically connected to the wiring WL.
  • the circuit BLD functions as a bit line driver circuit and is electrically connected to the wiring BL.
  • the circuit CVC functions as a voltage source that generates a constant voltage and outputs the constant voltage, and is connected to the wiring CL.
  • the circuit CVC may not be included in the circuit PRPH and may be provided outside the semiconductor device, for example. In this case, the semiconductor device has a configuration in which a constant voltage is externally applied to the memory cell unit MCL.
  • the constant voltage applied from the wiring CL may not be required depending on the circuit configuration of the memory cell MC.
  • the semiconductor device of one embodiment of the present invention may have a structure without the wiring CL. That is, the circuit PRPH may be configured without the circuit CVC.
  • the memory cell MC is preferably included in a region where the circuit PRPH overlaps.
  • the memory cell MC including one of the plurality of memory cell arrays is preferably included in a region where one of the plurality of circuits PRPH of the circuit OSC is overlapped. ..
  • all or part of a wiring BL (or a plug in some cases) which electrically connects the memory cell MC and the circuit PRPH is provided approximately perpendicular to a substrate where a semiconductor device is provided.
  • a wiring BL or more preferably provided vertically.
  • the moving distance of data through the wiring BL can be shortened, so that power consumption required for moving data can be reduced. Further, not only the wiring BL but also the wiring WL and the wiring CL can be shortened, so that power consumption required for voltage input can be reduced.
  • the circuit ARP has a control circuit PRCR and an arithmetic circuit ARC.
  • the control circuit PRCR has a function of receiving a command (for example, a calculation, a program, etc.) and data from the outside of the semiconductor device, and causes the calculation circuit ARC to execute a process according to the command using the data. It has a function and a function of accessing the circuit PRPH and writing data to the memory cell portion MCL or reading data from the memory cell portion MCL.
  • the temporary data in the middle of the process or the data of the result of the process is transmitted from the control circuit PRCR to the circuit BLD included in the circuit PRPH, for example.
  • temporary data in the middle of the process or data resulting from the process may be directly transmitted from the arithmetic circuit ARC to the circuit BLD included in the circuit PRPH.
  • the temporary data in the middle of the process or the address of the storage destination of the data of the result of the process is transmitted from the control circuit PRCR to the circuit WLD and the circuit BLD, for example.
  • FIG. 2 illustrates the circuit OSC including the circuit PRPH for controlling the memory cell portion MCL and the ARP having an arithmetic function
  • a circuit OSM having a function of storing information which is a circuit different from the memory cell portion MCL, may be provided in the circuit OSC.
  • the circuit OSM can store temporary data in the middle of processing or data of a processing result. Further, by applying this configuration to the semiconductor device, when a defective cell is found in the memory cell portion MCL, the circuit OSM can be used as a data storage location instead of the defective cell.
  • FIG. 5 shows a configuration example in which the memory cell unit MCL of FIG. 1A has a NAND memory element.
  • the memory cell array MCA has a plurality of strings SRG.
  • the string SRG is electrically connected to the wiring BL.
  • the string SRG includes a plurality of transistors CTr electrically connected in series, and a transistor BTr and a transistor STr that are selection transistors. Note that one transistor CTr functions as a cell transistor and is included in the memory cell MC included in the string SRG.
  • a cell transistor is a transistor that operates with normally-on characteristics, and has a control gate and a charge storage layer.
  • the charge storage layer is provided in a region overlapping with the channel formation region via the tunnel insulating film
  • the control gate is provided in a region overlapping with the charge storage layer via the blocking film.
  • a write current is applied to the control gate and a predetermined potential is applied to one of the first terminal and the second terminal of the cell transistor, whereby a tunnel current is generated, and a tunnel current is generated from the channel formation region of the cell transistor. Electrons are injected into the charge storage layer. As a result, the threshold voltage of the cell transistor in which electrons are injected into the charge storage layer becomes high.
  • a floating gate may be used instead of the charge storage layer.
  • the channel formation region of the transistor BTr, the transistor CTr, and the transistor STr is selected from, for example, any one of silicon, germanium, gallium arsenide, silicon carbide (SiC), the metal oxide described in Embodiment 3, or the like. It is preferable to have a plurality of materials.
  • the channel formation region contains a metal oxide selected from one or more of indium, element M (as the element M, for example, aluminum, gallium, yttrium, tin, etc.) and zinc, the metal oxide
  • the object sometimes functions as a wide-gap semiconductor, and the transistor BTr, the transistor CTr, and the transistor STr including the metal oxide in the channel formation region have characteristics of extremely low off-state current. In other words, the leakage current in the transistor BTr, the transistor CTr, and the transistor STr in the off state can be reduced, so that power consumption of the semiconductor device can be reduced in some cases.
  • the first terminal of the transistor BTr is electrically connected to the wiring BL, and the first terminal of the transistor STr is electrically connected to the wiring CL.
  • the second terminal of the transistor BTr is electrically connected to one end of the plurality of transistors CTr electrically connected in series, and the other end of the plurality of transistors CTr electrically connected in series is The second terminal of the transistor STr is electrically connected.
  • the wiring BSL and the wiring SSL function as wirings for selecting a string to be subjected to an operation such as writing, reading, and erasing.
  • the wiring BSL is electrically connected to the gate of the transistor BTr included in the memory cell portion MCL
  • the wiring SSL is electrically connected to the gate of the transistor STr included in the memory cell portion MCL.
  • the memory cell portion MCL has a structure in which one string SRG is electrically connected to one wiring BL; however, one embodiment of the present invention is not limited to this.
  • the memory cell unit MCL may have a configuration in which a plurality of strings SRG are electrically connected to one wiring BL.
  • FIG. 7 illustrates an example of the circuit ARP and the circuit PRPH included in the semiconductor device of one embodiment of the present invention.
  • the circuit BLD has a function of transmitting the data signal WDATA sent from the control circuit PRCR to the wiring BL for writing in the memory cell MC, and appropriately processing the data read from the memory cell MC to obtain a data signal. It has a function of outputting to the control circuit PRCR as RDATA.
  • the circuit BLD can be configured to include a write circuit WC, a precharge circuit PRC, a sense amplifier SA, a column decoder CD, and an output circuit OPC.
  • the column decoder CD has a function of selecting the wiring BL including the memory cell MC to be written or read according to the address signal ADDR acquired from the control circuit PRCR.
  • the writing circuit WC has a function of transmitting the data signal WDATA to the wiring BL selected by the column decoder CD.
  • the precharge circuit PRC has a function of precharging the wiring BL with a constant voltage. Further, the sense amplifier SA has a function of amplifying the data signal read from the wiring BL. The amplified data signal is output as the data signal RDATA to the control circuit PRCR via the output circuit OPC.
  • the semiconductor device of one embodiment of the present invention is not limited to the semiconductor device including the circuit OSC illustrated in FIGS. 1A, 1B, 1C, 1D, 2, 3A, 3B, and 4 to 7. ..
  • a semiconductor device of one embodiment of the present invention is a semiconductor device including the circuit OSC illustrated in FIGS. 1A, 1B, 1C, 1D, 2, 3A, 3B, and 4 to 7 depending on circumstances. The configuration of may be changed.
  • circuit OSC including the arithmetic circuit ARC is preferably a unipolar circuit as described above
  • the configuration example of the arithmetic circuit ARC described below is also a unipolar circuit.
  • FIGS. 8A to 8D are examples of a logic circuit configured by a unipolar circuit, and when the arithmetic circuit ARC is configured as a logic circuit, the logic circuit illustrated in FIGS. 8A to 8D can be used. ..
  • FIG. 8A shows an example of an inverter circuit, where the terminal IT is an input terminal of the inverter circuit and the terminal OT is an output terminal of the inverter circuit.
  • the inverter circuit includes transistors TrA1 to TrA4 and a capacitive element CA1.
  • the transistors TrA1 to TrA4 are preferably transistors that can be manufactured by a process similar to that of other circuits included in the circuit OSC.
  • the material included in the channel formation regions of the transistors TrA1 to TrA4 be the same as the material contained in the channel formation regions of the other transistors included in the circuit OSC.
  • each of the transistors TrA1 to TrA4 is preferably an OS transistor.
  • a first terminal of the transistor TrA1 is electrically connected to the gate of the transistor TrA1 and the wiring VHL, and a second terminal of the transistor TrA1 has a first terminal of the transistor TrA2, a gate of the transistor TrA3, and a capacitor CA1. Of the transistor TrA2, and the second terminal of the transistor TrA2 is electrically connected to the wiring VLL.
  • the terminal IT is electrically connected to the gate of the transistor TrA2 and the gate of the transistor TrA4.
  • a first terminal of the transistor TrA3 is electrically connected to the wiring VHL, and a second terminal of the transistor TrA3 is electrically connected to the first terminal of the transistor TrA4, the second terminal of the capacitive element CA1, and the terminal OT. It is connected.
  • the second terminal of the transistor TrA4 is electrically connected to the wiring VLL.
  • Each of the wiring VHL and the wiring VLL functions as a wiring that gives a constant voltage.
  • the voltage supplied by the wiring VHL is preferably a high-level voltage (hereinafter referred to as VDD), and the voltage supplied by the wiring VLL is a low-level voltage (hereinafter referred to as VSS). preferable.
  • the transistors TrA2 and TrA4 are turned off. Since the transistor TrA1 is diode-connected, the potential of the first terminal (gate of the transistor TrA3) of the capacitive element CA1 rises.
  • the threshold voltage of the transistor TrA1 is V thA1
  • the transistor TrA1 is turned off. That is, the first terminal (gate of the transistor TrA3) of the capacitive element CA1 is in an electrically floating state.
  • the gate-source voltage of the transistor TrA3 becomes higher than the threshold voltage of the transistor TrA3, and the transistor TrA3 is turned on.
  • the potential of the terminal OT becomes high due to the current flowing from the wiring VHL. Since the first terminal of the capacitive element CA1 (the gate of the transistor TrA3) is in an electrically floating state, when the potential of the terminal OT becomes high, the capacitive coupling of the capacitive element CA1 causes the first terminal (transistor of the capacitive element CA1). The potential of the gate of TrA3) also becomes high. As a result, the transistor TrA3 can be maintained in the ON state, and finally the potential of the terminal OT becomes VDD.
  • the transistors TrA2 and TrA4 are turned on.
  • the potential of the first terminal (gate of the transistor TrA3) of the capacitive element CA1 becomes a voltage between VSS and VDD.
  • the gate-source voltage of the transistor TrA3 becomes lower than the threshold voltage of the transistor TrA3, and the transistor TrA3 is turned off.
  • the transistor TrA4 since the transistor TrA4 is on, current flows from the terminal OT to the wiring VLL, and finally the potential of the terminal OT becomes VSS.
  • the inverter circuit of FIG. 8A is electrically connected between the second terminal and the gate of the transistor TrA3 when the first terminal (gate of the transistor TrA3) of the capacitive element CA1 is in an electrically floating state.
  • the gate-source voltage of the transistor TrA3 can be held by the capacitive element CA1 that is provided. Therefore, when the voltage of VSS is input to the terminal IT, the voltage of the terminal OT can be increased to VDD.
  • the configuration of the inverter circuit shown in FIG. 8A can be changed to the inverter circuit shown in FIG. 8B.
  • the inverter circuit in FIG. 8B has a structure in which back gates are provided in the transistors TrA1 to TrA4 of the inverter circuit in FIG. 8A.
  • the inverter circuit in FIG. 8B has a structure in which the back gate is provided in all of the transistors TrA1 to TrA4, the back gate is provided in one or a plurality of transistors selected from the transistors TrA1 to TrA4. It may be configured.
  • the connection structure of the back gate is not shown in FIG. 8B, the electrical connection destination of the back gate can be determined at the design stage.
  • the gate and the back gate may be electrically connected to each other in order to increase the on-state current of the transistor.
  • a wiring electrically connected to an external circuit or the like is provided in order to change the threshold voltage of the transistor, and the back gate of the transistor is connected to the back gate of the transistor by the external circuit or the like.
  • An electric potential may be applied.
  • a back gate may be provided not only in FIG. 8B but also in transistors described in other parts of the specification or transistors illustrated in other drawings.
  • FIG. 8C shows an example of a NAND circuit.
  • the terminals IT1 and IT2 are input terminals of the NAND circuit, and the terminal OT is an output terminal of the NAND circuit.
  • the NAND circuit includes transistors TrB1 to TrB8, a capacitive element CB1, and a capacitive element CB2.
  • the transistors TrB1 to TrB8 are preferably transistors that can be manufactured by a process similar to that of other circuits included in the circuit OSC, like the transistors TrA1 to TrA4.
  • the material included in the channel formation regions of the transistors TrB1 to TrB8 is preferably the same as the material included in the channel formation regions of the other transistors included in the circuit OSC.
  • each of the transistors TrB1 to TrB8 is preferably an OS transistor.
  • the NAND circuit of FIG. 8C for example, when a voltage of VSS is input to at least one of the terminals IT1 and IT2, at least one of the transistors TrB6 and TrB7 is turned off, so that the wiring VLL and the terminal OT are connected to each other. Becomes non-conductive. Further, in the NAND circuit, similarly to the operation example of the inverter circuit in FIG. 8A, when the first terminal of the capacitive element CB1 (the gate of the transistor TrB5) is in an electrically floating state, the NAND circuit has a second terminal and a gate of the transistor TrB5.
  • the gate-source voltage of the transistor TrB5 can be held by the capacitor CB1 electrically connected between the two. Therefore, when the voltage of VSS is input to the terminal IT1, the voltage of the terminal OT can be increased to VDD.
  • the first terminal of the capacitive element CB2 (the gate of the transistor TrB8) is in an electrically floating state, the capacitive element CB2 electrically connected between the second terminal of the transistor TrB8 and the gate causes the transistor TrB8.
  • the gate-source voltage of can be held. Therefore, when the voltage of VSS is input to the terminal IT2, the voltage of the terminal OT increases to VDD.
  • the transistor TrB6 and the transistor TrB7 are turned on, so that the wiring VLL and the terminal OT are electrically connected. It becomes a state. Further, the potential of the first terminal (gate of the transistor TrB5) of the capacitive element CB1 becomes a voltage between VSS and VDD. At this time, the gate-source voltage of the transistor TrB5 becomes lower than the threshold voltage of the transistor TrB5, and the transistor TrB5 is turned off. Further, the potential of the first terminal (gate of the transistor TrB8) of the capacitive element CB2 also becomes a voltage between VSS and VDD.
  • the gate-source voltage of the transistor TrB8 becomes lower than the threshold voltage of the transistor TrB8, and the transistor TrB8 is turned off. Therefore, when the voltage of VDD is input to each of the terminals IT1 and IT2, the voltage of the terminal OT becomes VSS.
  • FIG. 8D shows an example of a NOR circuit, in which the terminals IT1 and IT2 are input terminals of the NOR circuit, and the terminal OT is an output terminal of the NOR circuit.
  • the NOR circuit includes transistors TrC1 to TrC8, a capacitive element CC1, and a capacitive element CC2.
  • the transistors TrC1 to TrC8 are preferably transistors that can be manufactured by a process similar to that of other circuits included in the circuit OSC, like the transistors TrA1 to TrA4.
  • the material included in the channel formation regions of the transistors TrC1 to TrC8 is preferably the same as the material included in the channel formation regions of the other transistors included in the circuit OSC.
  • each of the transistors TrC1 to TrC8 is preferably an OS transistor.
  • the NOR circuit for example, when a voltage of VDD is input to at least one of the terminals IT1 and IT2, at least one of the transistor TrC7 and the transistor TrC8 is turned on, so that the wiring VLL and the terminal OT are connected to each other. Becomes conductive.
  • the NOR circuit when the voltage of VDD is input to the terminal IT1, the potential of the first terminal of the capacitor CC2 (the gate of the transistor TrC6) becomes a voltage of VSS or higher and VDD or lower. At this time, the gate-source voltage of the transistor TrC6 becomes lower than the threshold voltage of the transistor TrC6, and the transistor TrC6 is turned off.
  • the potential of the first terminal of the capacitor CC1 (the gate of the transistor TrC5) becomes a voltage of VSS or higher and VDD or lower.
  • the gate-source voltage of the transistor TrC5 becomes lower than the threshold voltage of the transistor TrC5, and the transistor TrC5 is turned off. Therefore, when the voltage of VDD is input to at least one of the terminals IT1 and IT2, the voltage of the terminal OT becomes VSS.
  • the transistors TrC7 and TrC8 are turned off, so that the wiring VLL and the terminal OT are not connected to each other. It becomes conductive.
  • the NOR circuit similarly to the operation example of the inverter circuit of FIG. 8A, when the first terminal (gate of the transistor TrC5) of the capacitive element CC1 is in an electrically floating state, the NOR circuit has a second terminal and a gate of the transistor TrC5. The gate-source voltage of the transistor TrC5 can be held by the capacitor CC1 electrically connected between the two.
  • the arithmetic circuit ARC When the arithmetic circuit ARC is provided with, for example, an addition circuit and a multiplication circuit as a logic circuit, it can be configured by combining the logic circuits shown in FIGS. 8A to 8D.
  • FIG. 8E shows a differential amplifier (sometimes called an operational amplifier) which is an example of an analog circuit configured by a unipolar circuit.
  • the differential amplifier of FIG. 8E can be used.
  • the terminal IT1 functions as a non-inverting input terminal of the differential amplifier
  • the terminal IT2 functions as an inverting input terminal of the differential amplifier
  • the terminal OT is the differential circuit. Functions as the output terminal of the amplifier.
  • the differential amplifier includes transistors TrD1 to TrD7, a capacitive element CD1, and a capacitive element CD2.
  • the transistors TrD1 to TrD7 are preferably transistors that can be manufactured by a process similar to that of other circuits included in the circuit OSC, like the transistors TrA1 to TrA4. Further, it is preferable that the material included in the channel formation regions of the transistors TrD1 to TrD7 be the same as the material contained in the channel formation regions of the other transistors included in the circuit OSC.
  • each of the transistors TrD1 to TrD7 is preferably an OS transistor.
  • the transistors TrD1 and TrD4 preferably have the same configuration and size, and the transistors TrD3 and TrD6 preferably have the same configuration and size.
  • a first terminal of the transistor TrD1 is electrically connected to the wiring VHL, and a gate of the transistor TrD1 is electrically connected to a first terminal of the transistor TrD2 and a first terminal of the capacitive element CD1 so that the transistor TrD1 has a first terminal.
  • the second terminal is electrically connected to the first terminal of the transistor TrD3 and the first terminal of the capacitive element CD1.
  • the gate of the transistor TrD3 is electrically connected to the terminal IT1.
  • a first terminal of the transistor TrD4 is electrically connected to the wiring VHL, a gate of the transistor TrD4 is electrically connected to a first terminal of the transistor TrD5 and a first terminal of the capacitor CD2, and the gate of the transistor TrD4 is electrically connected.
  • the second terminal is electrically connected to the first terminal of the transistor TrD6, the first terminal of the capacitive element CD2, and the terminal OT.
  • the gate of the transistor TrD6 is electrically connected to the terminal IT2.
  • the wiring VBCS is electrically connected to the second terminal of the transistor TrD2, the second terminal of the transistor TrD5, and the wiring ST is electrically connected to the gate of the transistor TrD2 and the gate of the transistor TrD5.
  • a first terminal of the transistor TrD7 is electrically connected to a second terminal of the transistor TrD3 and a second terminal of the transistor TrD6, and a gate of the transistor TrD7 is electrically connected to the wiring VBIS.
  • the two terminals are electrically connected to the wiring VLL.
  • the wiring VBCS is a wiring for applying a first constant potential to the gate of a predetermined transistor and one of two pairs of terminals of a predetermined capacitive element.
  • the wiring ST is a wiring for applying a potential to the gate of a transistor used as a switching element, and switches the conductive state and the non-conductive state of the transistor.
  • the transistors used as the switching elements are the transistor TrD2 and the transistor TrD5.
  • the gate of the transistor TrD1 (first terminal of the capacitive element CD1) and the gate of the transistor TrD4 (first terminal of the capacitive element CD2) are connected.
  • Each potential is set to the first constant potential.
  • the wiring VBCS is used to connect the gate of the transistor TrD1 (first terminal of the capacitor CD1) and the transistor TrD4. This is performed by applying a first constant potential to each of the gate (first terminal of the capacitive element CD2).
  • the wiring VBIS is a wiring for applying the second constant potential to the gate of the transistor TrD7.
  • the transistor TrD7 functions as a constant current source that supplies a current according to the second constant potential.
  • a differential amplifier can be configured as a unipolar circuit. Then, when the arithmetic circuit ARC is configured by an analog circuit, the differential amplifier of FIG. 8E can be applied.
  • various circuits such as an addition circuit, a differentiation circuit, an integration circuit, and an activation function of a neural network may be configured in some cases.
  • FIG. 9A is an example of the product-sum operation circuit configured by a unipolar circuit, and when the operation-circuit ARC is provided with the product-sum operation circuit, the product-sum operation circuit illustrated in FIG. 9A can be used.
  • the product-sum operation circuit has an operation cell unit AMA, a circuit CME, a circuit WDD, a circuit WWD, and a circuit VLD.
  • the operation cell unit AMA includes operation cells AM [1] to operation cells AM [m] (m is an integer of 1 or more).
  • [] Attached to the operation cell AM indicates the address of the operation cell AM, and in the following description, the description of [] of the operation cell AM is omitted unless otherwise specified. Further, not only the operation cell AM, but also [] added to another code may be omitted as in the operation cell AM.
  • the operation cell AM has a function of retaining information.
  • each of the operation cells AM [1] to AM [m] holds the potential of W [1] to W [m] as the information.
  • the held information may be, for example, a resistance value, a current value, etc., in addition to the potential.
  • the circuit WDD is electrically connected to each of the operation cells AM [1] to AM [m] via the wiring WD.
  • the circuit WDD has a function of supplying potentials W [1] to W [m] to the calculation cells AM [1] to AM [m], respectively.
  • the circuit WWD is electrically connected to the arithmetic cell AM via the wiring WW.
  • the circuit WWD has a function of selecting the operation cell AM to which the data is to be written when writing data (W [1] to W [m]) to the operation cell AM.
  • the circuit VLD is electrically connected to the operation cell AM via the wiring VL.
  • the circuit VLD has a function of inputting a potential to the arithmetic cell AM. In this description, it is assumed that the potentials of X [1] to X [m] are input to the calculation cells AM [1] to AM [m], respectively.
  • the circuit CME is electrically connected to each of the operation cells AM [1] to AM [m] through the wiring IL.
  • the circuit CME has a function of supplying a current to each of the arithmetic cells AM [1] to AM [m].
  • I MAC is written as the sum of the currents flowing to the operation cells AM [1] to AM [m]. Further, since I MAC changes when the potential W held in the operation cell AM and / or the potential X input in the operation cell AM changes, the circuit CME is connected to the wiring IL each time. It has the function of setting the amount of output current.
  • the circuit CME has a plurality of current sources, has a function of setting a current amount with different current sources each time I MAC changes, and adds currents generated from different current sources, and / or It has a function of performing subtraction and outputting the current I out that is the surplus.
  • the operation cell AM has a transistor MO1, a transistor MO2, and a capacitive element CN.
  • a first terminal of the transistor MO1 is electrically connected to the wiring WD, a second terminal of the transistor MO1 is electrically connected to a first terminal of the capacitive element CN and a gate of the transistor MO2, and a gate of the transistor MO1 is , Are electrically connected to the wiring WW.
  • a first terminal of the transistor MO2 is electrically connected to the wiring VLL and a second terminal of the transistor MO1 is electrically connected to the wiring IL.
  • the second terminal of the capacitive element CN is electrically connected to the wiring VL.
  • the transistors MO1 and MO2 are preferably transistors that can be manufactured by a process similar to that of other circuits included in the circuit OSC, like the transistors TrA1 to TrA4.
  • the materials included in the channel formation regions of the transistors MO1 and MO2 be the same as the materials included in the channel formation regions of the other transistors included in the circuit OSC.
  • each of the transistors MO1 and MO2 is preferably an OS transistor.
  • the transistors MO1 and MO2 included in the arithmetic cell AM are similar to the other circuits included in the circuit OSC.
  • a transistor that can be manufactured by a process is preferable. Therefore, the transistors included in the circuit CME, the circuit WDD, the circuit WWD, and the circuit VLD are preferably OS transistors.
  • W 0 and W 1 (W 0 is a set of potentials of W 0 [1] to W 0 [m], and W 1 is a potential of W 1 [1] to W 1 [m].
  • W 0 is a potential set of X 0 [1] to X 0 [m]
  • X 1 is X 1
  • the drain current I ds of the transistor is expressed by the following equation by the gradient channel approximation model.
  • is a constant determined by the carrier mobility in the semiconductor of the transistor, the channel length, the channel width, and the gate capacitance.
  • V gs is a gate-source voltage of the transistor and V th is a threshold voltage of the transistor.
  • the arithmetic operation is performed.
  • the potential of the first terminal (gate of the transistor MO2) of the capacitive element CN of the cell AM varies depending on the potential of the wiring VL and the capacitive coupling coefficient of the arithmetic cell AM.
  • the capacitive coupling coefficient is calculated from the capacitance of the capacitive element CN, the gate capacitance of the transistor MO2, the parasitic capacitance, and the like.
  • the increase in the potential of the gate of the transistor MO2 is described as the same value as the increase in the potential of the wiring VL. This corresponds to setting the capacitive coupling coefficient in the operation cell AM to 1.
  • I MAC (W, X) When W is held in the arithmetic cell AM and X is input from the wiring VL to the arithmetic cell AM [i], when I MAC (W, X) is the current flowing in the wiring IL, I MAC (W 0 , X) 0 ), I MAC (W 1 , X 0 ), I MAC (W 0 , X 1 ), and I MAC (W 1 , X 1 ) are each represented by the following equations. Note that the potential of the wiring VLL here is zero.
  • X 1 ) to set the current I OUT output from the circuit CME to I OUT I MAC (W 1 , X 1 ) ⁇ I MAC (W 1 , X 0 ) ⁇ I MAC (W 0 , X 1 ) + I MAC (W 0 , X 0 ), I OUT is represented by the following equation.
  • Equation (E6) the product sum of ⁇ W corresponding to the first data and ⁇ X corresponding to the second data can be obtained.
  • the current amount of I MAC (W 0 , X 0 ), I MAC (W 1 , X 0 ), I MAC (W 0 , X 1 ), and I MAC (W 1 , X 1 ) is generated by the circuit CME as a current source. And by using the set current source, it is possible to execute the product-sum operation of the first data and the second data.
  • the circuit CME may have the circuit configuration shown in FIG. 9B, for example.
  • the circuit CME illustrated in FIG. 9B includes current source circuits CS1 to CS4, switches SW1 to SW4, a switch SWA, and a switch SWB.
  • Each of the current source circuits CS1 to CS4 may include a current source circuit and a current sink circuit, so that not only the set current is output from the current source, but also the set current is set. Can be drawn into the current source.
  • the first terminals of the switches SW1 to SW4 are electrically connected to the current source circuits CS1 to CS4, respectively, and the second terminals of the switches SW1 to SW4 are respectively the first terminals of the switch SWA. , And is electrically connected to the first terminal of the switch SWB.
  • the second terminal of the switch SWA is electrically connected to the wiring IL.
  • the switch SWA When the total sum I MAC of the currents flowing through the calculation cells AM [1] to AM [m] is set as the current source of the circuit CME, the switch SWA is turned on and the current source to be set among the switches SW1 to SW4. The switches electrically connected to are turned on, and the other switches are turned off. Further, when outputting I OUT from the circuit CME, the switch SWB and the switches SW1 to SW4 may be turned on.
  • the product-sum operation circuit shown in FIG. 9A can be used, for example, in a hierarchical neural network.
  • the above-mentioned first data ( ⁇ W) is information corresponding to the weighting coefficient
  • the above-mentioned second data ( ⁇ X) is output from all neurons included in the previous layer to one neuron included in the next layer.
  • the information corresponding to the generated signal it is possible to calculate the sum of products of the weighting coefficient and the signal.
  • the activation function is calculated using the result of the product-sum operation, the result of the product-sum operation, the result of the activation function calculation, and the like are stored in the memory cell unit MCL, the circuit OSM, and the like. It can be held temporarily.
  • the circuit OSC including the memory cell unit MCL, the circuit PRPH that is provided above the memory cell unit MCL for controlling the memory cell unit MCL, and the circuit ARP that performs the operation.
  • the semiconductor device of one embodiment of the present invention is not limited to the structure described in this embodiment.
  • the configurations of the memory cell unit MCL and the circuit OSC can be changed depending on the situation.
  • FIG. 10A shows a configuration example in which a DRAM (Dynamic Random Access Memory) is applied as the memory cell array MCA. Note that in FIG. 10A, only the memory cell MC located in the first row, first column, the first row, nth column, the mth row, first column, and the mth row, nth column in the memory cell array MCA of mth row and nth column is illustrated. Shows. Therefore, in FIG. 10A, the wiring WL in the first row is the wiring WL [1], the wiring WL in the mth row is the wiring WL [m], the wiring BL in the first column is the wiring BL [1], and the wiring in the nth row. BL is shown as a wiring BL [n].
  • BL is shown as a wiring BL [n].
  • the memory cell MC has a transistor M1 and a capacitive element C1.
  • the first terminal of the transistor M1 is electrically connected to the wiring BL [j]
  • the second terminal of the transistor M1 is electrically connected to the first terminal of the capacitor C1.
  • the gate of the transistor M1 is electrically connected to the wiring WL [i].
  • the second terminal of the capacitive element C1 is electrically connected to the wiring CL.
  • the constant potential input to the wiring CL may be, for example, a low level potential or a ground potential.
  • the transistor M1 is illustrated as an n-channel type transistor, but the transistor M1 may be a p-channel type transistor.
  • the n-channel type transistor illustrated in this specification and the like can be replaced with a p-channel type transistor in some cases.
  • the p-channel transistor illustrated in this specification and the like can be replaced with an n-channel transistor in some cases.
  • the transistors described in this specification and the like, including the transistor M1 included in the memory cell array MCA in FIG. 10A, can be Si transistors each including silicon in a channel formation region.
  • the silicon for example, hydrogenated amorphous silicon, microcrystalline silicon, polycrystalline silicon, single crystal silicon, or the like can be used.
  • the transistors described in this specification and the like can be OS transistors.
  • the OS transistor will be described later in Embodiment 3.
  • a transistor using a semiconductor such as Ge as an active layer a transistor using a compound semiconductor such as ZnSe, CdS, GaAs, InP, GaN, or SiGe as an active layer, a carbon nanotube is activated.
  • a transistor including a layer, a transistor including an organic semiconductor as an active layer, or the like can be used.
  • the metal oxide contained in the channel formation region is an oxide containing at least one of indium, element M (such as aluminum, gallium, yttrium, and tin) and zinc. More preferably.
  • the off-state current of an OS transistor in which the metal oxide is included in the channel formation region is 10 aA (1 ⁇ 10 ⁇ 17 A) or less per 1 ⁇ m channel width, preferably 1 aA (1 ⁇ 10 ⁇ 18 A) per 1 ⁇ m channel width.
  • the OS transistor has a low carrier concentration of metal oxide, the off-state current remains low even when the temperature of the OS transistor changes. For example, even when the temperature of the OS transistor is 150 ° C., the off-state current can be 100 zA per 1 ⁇ m of the channel width.
  • a DRAM using an OS transistor as the transistor M1 may be referred to as DOSRAM (Dynamic Oxide Semiconductor Random Access Memory).
  • DOSRAM Dynamic Oxide Semiconductor Random Access Memory
  • the memory cell array MCA is not limited to the circuit diagram shown in FIG. 10A, and may have a configuration in which the circuit diagram in FIG. 10A is appropriately changed.
  • the transistor M1 may be provided with a back gate.
  • the connection destination of the back gate of the transistor M1 can be determined according to the desired operation or characteristics of the transistor M1.
  • the back gate of the transistor M1 can be electrically connected to the gate of the transistor M1.
  • a current flowing when the transistor M1 is on can be increased.
  • a wiring for electrically connecting to an external circuit may be provided in the back gate of the transistor M1, and a potential may be applied to the back gate of the transistor M1 by the external circuit to increase the threshold voltage. ..
  • the off-state current of the transistor M1 can be reduced by an external circuit.
  • the transistor M1 having a back gate for example, the OS transistor described above can be used.
  • the back gate is provided in the transistor M1 of the memory cell array MCA in FIG. 10A
  • the back gate may be provided in a transistor included in another configuration. That is, the transistor described in this specification and the like can be a transistor including a back gate.
  • FIG. 10C shows a configuration example in which ReRAM (Resistive Random Access Memory) is applied as the memory cell array MCA.
  • ReRAM Resistive Random Access Memory
  • the memory cell MC has a transistor M1 and a resistance change element VR.
  • the memory cell unit MCL shown in FIG. 10C uses the resistance change element VR instead of the capacitive element C1 in the memory cell unit MCL of FIG. 10A.
  • FIG. 10D shows a configuration example in which an MRAM (Magnetoresistive Random Access Memory) is applied as the memory cell array MCA.
  • MRAM Magneticoresistive Random Access Memory
  • the memory cell MC has a transistor M1 and an MTJ (Magnetic Tunnel Junction) element MR.
  • the memory cell unit MCL shown in FIG. 10D uses the MTJ element MR instead of the capacitive element C1 in the memory cell unit MCL of FIG. 10A.
  • FIG. 10E shows a configuration example in which a phase change memory (a storage device including the phase change memory is sometimes called PRAM) is applied as the memory cell array MCA.
  • PRAM phase change memory
  • the memory cell MC has a transistor M1 and a phase change memory PCM.
  • the memory cell unit MCL shown in FIG. 10E uses the phase change memory PCM instead of the capacitive element C1 in the memory cell unit MCL of FIG. 10A.
  • the phase change memory PCM included in the PRAM can be manufactured by replacing the dielectric material of the capacitive element C1 used in the DRAM with the phase change material. That is, the PRAM can be manufactured by using the DRAM manufacturing apparatus.
  • FIG. 11A shows an example of a memory cell array MCA including memory cells each having a structure of two transistors and one capacitor. Note that FIG. 11A shows only the memory cell MC in the m-th row and n-th column memory cell array MCA, which is located in the first row, the first column, the first row, the n-th column, the m-th row, the first column, and the m-th row, n-th column. Shows. Therefore, in FIG. 11A, the wiring located in the first column is illustrated as the wiring RBL [1], the wiring WBL [1], and the wiring SL [1], and the wiring located in the nth column is the wiring RBL [n] and the wiring. WBL [n] and wiring SL [n] are shown, the wiring located in the first row is shown as wiring WL [1], wiring WRL [1], and the wiring located in the mth row is wiring WL [m] , Wiring WRL [m].
  • the memory cell MC has a transistor M2, a transistor M3, and a capacitive element C2.
  • the first terminal of the transistor M2 is electrically connected to the first terminal of the capacitor C2, and the second terminal of the transistor M2 is electrically connected to the wiring WBL [j].
  • the gate of the transistor M2 is electrically connected to the wiring WL [i].
  • the second terminal of the capacitor C2 is electrically connected to the wiring WRL [i].
  • a first terminal of the transistor M3 is electrically connected to the wiring RBL [j]
  • a second terminal of the transistor M3 is electrically connected to the wiring SL [j]
  • a gate of the transistor M3 has a gate of the capacitor C2. It is electrically connected to the first terminal. Note that in FIG. 11A, the wiring WL [i], the wiring RBL [j], the wiring WBL [j], and the wiring SL [j] are omitted.
  • the wiring WBL [j] functions as a write bit line
  • the wiring RBL [j] functions as a read bit line
  • each of the wiring WBL [j] and the wiring RBL [j] is described in Embodiment 1. It corresponds to the wiring BL.
  • the wiring WL [i] functions as a write word line.
  • the wiring WRL [i] functions as a read word line. For example, when writing data or reading data, a high-level potential is applied to the wiring WRL [i], and a low-level potential or a ground potential is applied to the wiring WRL [i] during data retention. Is preferably applied.
  • the wiring SL [j] functions as a wiring which gives a predetermined potential when being read from the memory cell MC. Note that the wiring SL [j] described here corresponds to the wiring CL described in Embodiment 1.
  • a high-level potential is applied to the wiring WL [i] to turn on the transistor M2, that is, the wiring WBL [j] and each memory cell MC. This is performed by setting a conductive state with the first terminal of the capacitive element C2. Specifically, when the transistor M2 is on, a potential corresponding to information to be recorded in the wiring WBL [j] is applied, and the potential is written to the first terminal of the capacitor C2 and the gate of the transistor M3. After that, a low-level potential is applied to the wiring WL [i] to turn off the transistor M2, so that the potential of the first terminal of the capacitor C2 and the potential of the gate of the transistor M3 are held.
  • Data is read from the memory cell MC in the i-th row and the j-th column by applying a predetermined potential to the wiring SL [j]. Since the current flowing between the source and drain of the transistor M3 and the potential of the first terminal of the transistor M3 are determined by the potential of the gate of the transistor M3 and the potential of the second terminal of the transistor M3, they are connected to the first terminal of the transistor M3. By reading the potential of the connected wiring RBL [j], the potential held in the first terminal of the capacitor C2 (or the gate of the transistor M3) can be read. That is, the information written in this memory cell can be read from the potential held in the first terminal of the capacitor C2 (or the gate of the transistor M3).
  • the memory cell MC described in the first embodiment is not limited to the memory cell MC shown in FIG. 11A.
  • the memory cell MC shown in FIG. 11A can have circuits removed or circuit connections changed depending on the situation. For example, a transistor provided with a back gate may be applied to the transistors M2 and M3.
  • the semiconductor device having the memory cell MC shown in FIG. 11A can be referred to as a NOSRAM (Nonvolatile Oxide Semiconductor Random Access Memory).
  • NOSRAM Nonvolatile Oxide Semiconductor Random Access Memory
  • FIG. 11B shows an example of SRAM (Static Random Access Memory) applicable to the memory cells MC of the memory cell array MCA.
  • the memory cell MC includes a transistor M4, a transistor M4r, a logic circuit INV1 and a logic circuit INV2.
  • the logic circuit INV1 and the logic circuit INV2 have a function of generating and outputting an inverted signal with respect to a signal input to the circuit.
  • an inverter circuit can be applied as the logic circuit INV1 and the logic circuit INV2, for example.
  • a NAND circuit, a NOR circuit, an XOR circuit, or a logic circuit combining these can be used as the logic circuit INV1 and the logic circuit INV2.
  • a first terminal of the transistor M4 is electrically connected to the wiring BL, a second terminal of the transistor M4 is electrically connected to an input terminal of the logic circuit INV1 and an output terminal of the logic circuit INV2, and a gate of the transistor M4 is wiring. It is electrically connected to WL.
  • a first terminal of the transistor M4r is electrically connected to the wiring BLB, a second terminal of the transistor M4r is electrically connected to an output terminal of the logic circuit INV1 and an input terminal of the logic circuit INV2, and a gate of the transistor M4r is a wiring. It is electrically connected to WL.
  • the high power supply input terminals of the logic circuit INV1 and the logic circuit INV2 are electrically connected to the wiring C1L, and the low power supply input terminals of the logic circuit INV1 and the logic circuit INV2 are electrically connected to the wiring C2L.
  • the wiring C1L functions as a wiring which gives a high-level potential
  • the wiring C2L functions as a wiring which gives a low-level potential
  • the wirings C1L and C2L correspond to the wiring CL described in Embodiment 1.
  • Data is written by applying a high-level potential to the wiring WL, turning on the transistor M4, and electrically connecting the wiring BL with the input terminal of the logic circuit INV1 and the output terminal of the logic circuit INV2. Done. At this time, the transistor M4r is also turned on, so that the wiring BLB and the output terminal of the logic circuit INV1 and the input terminal of the logic circuit INV2 are brought into conduction. Therefore, when writing data in the memory cell MC, a data signal for writing can be transmitted from each of the wirings BL and BLB.
  • the data signal for writing input to the wiring BL is preferably an inverted signal of the signal input to the wiring BLB.
  • the wiring BL and the wiring BLB correspond to the wiring BL described in Embodiment 1 and the wiring WL corresponds to the wiring WL described in Embodiment 1.
  • the memory cell MC described in the first embodiment is not limited to the memory cell MC shown in FIG. 11B.
  • circuits can be omitted or circuits can be connected or changed depending on circumstances.
  • the memory cell MC in FIG. 11B may be provided with the transistors M5 and M5r, the capacitor C3, and the capacitor C3r.
  • the first terminal of the transistor M5 is electrically connected to the second terminal of the transistor M4, the input terminal of the logic circuit INV1 and the output terminal of the logic circuit INV2, and the second terminal of the transistor M5 is connected to the capacitive element C3.
  • the gate of the transistor M5 is electrically connected to the wiring W2L.
  • the first terminal of the transistor M5r is electrically connected to the second terminal of the transistor M4r, the output terminal of the logic circuit INV1 and the input terminal of the logic circuit INV2, and the second terminal of the transistor M5r is connected to the capacitive element C3r.
  • the gate of the transistor M5r is electrically connected to the wiring W2L.
  • the second terminals of the capacitive element C3 and the capacitive element C3r are electrically connected to the wiring CL.
  • the wiring W1L illustrated in the memory cell MC in FIG. 11C corresponds to the wiring WL in FIG. 11B.
  • the wiring W2L functions as a second word line and switches between the conductive state and the non-conductive state of the transistors M5 and M5r.
  • the wiring W1L and the wiring W2L correspond to the wiring WL described in Embodiment 1.
  • the wiring CL functions as a wiring for applying a predetermined potential to the second terminals of the capacitive element C3 and the capacitive element C3r.
  • the wiring CL corresponds to the wiring CL described in Embodiment 1 together with the wiring C1L and the wiring C2L.
  • the first terminals of the capacitor C3 and the capacitor C3r can be set to a floating state, and the capacitor C3 and the capacitor C3r can be respectively turned on.
  • the potential written in the first terminal of can be held.
  • the transistors M5, M5r, the capacitor C3, and the capacitor C3r are connected. Data can be retained by.
  • the memory cell portion MCL of the semiconductor device of one embodiment of the present invention is not limited to each structural example shown in this embodiment.
  • the memory cell unit MCL of the semiconductor device of one embodiment of the present invention may have the circuit configuration of each configuration example changed depending on the situation.
  • the semiconductor device shown in FIG. 12 includes, for example, a storage unit 100 and a control unit 200.
  • the control unit 200 is provided so as to overlap with the storage unit 100.
  • the semiconductor device shown in FIG. 12 can be an example of the semiconductor device shown in FIGS. 2 and 4 to 6, for example.
  • the storage unit 100 corresponds to the memory cell unit MCL or the memory cell array MCA in any of FIGS. 2 and 4 to 6, and the control unit 200 controls the circuits in FIGS. 2 and 4 to 6. Corresponds to OSC.
  • transistors included in each of the memory portion 100 and the control portion 200 can have different structures.
  • the transistor included in the storage unit 100 can be a Si transistor
  • the transistor included in the control unit 200 can be an OS transistor. That is, by configuring the storage unit 100 and the control unit 200 to overlap with each other, transistors with different performances, configurations, and the like can be used in the same semiconductor device.
  • the semiconductor device shown in FIG. 12 includes a transistor 300 and a transistor 500.
  • 15A is a cross-sectional view of the transistor 500 in the channel length direction
  • FIG. 15B is a cross-sectional view of the transistor 500 in the channel width direction
  • FIG. 15C is a cross-sectional view of the transistor 300 in the channel width direction.
  • the transistor 500 is a transistor (OS transistor) having a metal oxide in a channel formation region. Since the off-state current of the transistor 500 is small, the transistor 500 can hold a written data voltage or charge for a long time by using it as an OS transistor included in a semiconductor device. That is, the frequency of refresh operation is low or the refresh operation is not necessary, so that power consumption of the semiconductor device can be reduced.
  • OS transistor transistor having a metal oxide in a channel formation region. Since the off-state current of the transistor 500 is small, the transistor 500 can hold a written data voltage or charge for a long time by using it as an OS transistor included in a semiconductor device. That is, the frequency of refresh operation is low or the refresh operation is not necessary, so that power consumption of the semiconductor device can be reduced.
  • the semiconductor device described in this embodiment includes a transistor 300 and a transistor 500 as shown in FIG.
  • the transistor 500 is provided above the transistor 300.
  • the transistor 300 is provided over the substrate 311, and includes a conductor 316, an insulator 315, a semiconductor region 313 which is part of the substrate 311, a low-resistance region 314a which functions as a source region or a drain region, and a low-resistance region 314b. .. Note that the transistor 300 can be applied to, for example, the transistor included in the string SRG, the memory cell MC, or the like in the above embodiment.
  • a semiconductor substrate for example, a single crystal substrate or a silicon substrate
  • the substrate 311 it is preferable to use a semiconductor substrate (for example, a single crystal substrate or a silicon substrate) as the substrate 311.
  • the transistor 300 As shown in FIG. 15C, in the transistor 300, the upper surface and the side surface in the channel width direction of the semiconductor region 313 are covered with the conductor 316 with the insulator 315 interposed therebetween. As described above, when the transistor 300 is a Fin type, the effective channel width is increased, so that the on-state characteristics of the transistor 300 can be improved. Further, since the electric field contribution of the gate electrode can be increased, the off characteristics of the transistor 300 can be improved.
  • the transistor 300 may be either a p-channel type or an n-channel type.
  • a region of the semiconductor region 313 in which a channel is formed, a region in the vicinity thereof, a low-resistance region 314a serving as a source region or a drain region, a low-resistance region 314b, or the like preferably contains a semiconductor such as a silicon-based semiconductor. It preferably includes crystalline silicon. Alternatively, it may be formed of a material having Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like. A configuration may be used in which silicon is used, in which the effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing. Alternatively, the transistor 300 may be a HEMT (High Electron Mobility Transistor) by using GaAs and GaAlAs.
  • HEMT High Electron Mobility Transistor
  • the low-resistance region 314a and the low-resistance region 314b impart an n-type conductivity imparting element such as arsenic or phosphorus or a p-type conductivity imparting boron, in addition to the semiconductor material applied to the semiconductor region 313. Including the element to do.
  • the conductor 316 functioning as a gate electrode is a semiconductor material such as silicon, a metal material, or an alloy containing an element imparting n-type conductivity such as arsenic or phosphorus, or an element imparting p-type conductivity such as boron.
  • a material or a conductive material such as a metal oxide material can be used.
  • the threshold voltage of the transistor can be adjusted by selecting the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Further, in order to achieve both conductivity and embedding properties, it is preferable to use a metal material such as tungsten or aluminum as a laminate for the conductor, and it is particularly preferable to use tungsten in terms of heat resistance.
  • the transistor 300 illustrated in FIGS. 12 and 15C is an example, and the structure thereof is not limited, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • the semiconductor device is a unipolar circuit including only OS transistors (meaning a circuit including only n-channel transistors and transistors having the same polarity)
  • the transistor 300 has a structure as shown in FIG.
  • the transistor 500 may have a structure similar to that of the transistor 500 including an oxide semiconductor. Note that details of the transistor 500 will be described later.
  • the type of substrate on which the semiconductor device of FIG. 13 is formed is not limited to a particular type.
  • the substrate include a semiconductor substrate (for example, a single crystal substrate or a silicon substrate), an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a sapphire glass substrate, a metal substrate, a stainless steel substrate, a stainless steel foil.
  • glass substrates include barium borosilicate glass, aluminoborosilicate glass, and soda lime glass.
  • Examples of the flexible substrate, the laminated film, the base film and the like include the following.
  • plastics represented by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), and polytetrafluoroethylene (PTFE).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • PTFE polytetrafluoroethylene
  • a synthetic resin such as acrylic resin.
  • polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, or the like can be used.
  • polyamide, polyimide, aramid, epoxy, inorganic vapor deposition film, paper, or the like can be given.
  • An insulator 320, an insulator 322, an insulator 324, and an insulator 326 are sequentially stacked so as to cover the transistor 300.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, or the like is used. Good.
  • silicon oxynitride refers to a material whose content of oxygen is higher than that of nitrogen
  • silicon oxynitride is a material whose content of nitrogen is higher than that of oxygen.
  • aluminum oxynitride refers to a material having a higher oxygen content than nitrogen as its composition
  • aluminum oxynitride as a material having a higher nitrogen content than oxygen as its composition. Indicates.
  • the insulator 322 may have a function as a flattening film for flattening a step caused by the transistor 300 and the like provided below the insulator 322.
  • the upper surface of the insulator 322 may be flattened by a flattening treatment using a chemical mechanical polishing (CMP) method or the like in order to improve flatness.
  • CMP chemical mechanical polishing
  • the insulator 324 it is preferable to use a film having a barrier property such that hydrogen and impurities do not diffuse from the substrate 311, the transistor 300, or the like to a region where the transistor 500 is provided.
  • a film having a barrier property against hydrogen for example, silicon nitride formed by a CVD method can be used.
  • silicon nitride formed by a CVD method when hydrogen is diffused into a semiconductor element including an oxide semiconductor, such as the transistor 500, characteristics of the semiconductor element may be deteriorated in some cases. Therefore, it is preferable to use a film which suppresses diffusion of hydrogen between the transistor 500 and the transistor 300.
  • the film that suppresses hydrogen diffusion is a film in which the amount of released hydrogen is small.
  • the desorption amount of hydrogen can be analyzed using, for example, a thermal desorption gas analysis method (TDS).
  • TDS thermal desorption gas analysis method
  • the desorption amount of hydrogen in the insulator 324 is calculated by converting the desorption amount converted into hydrogen atoms into the area of the insulator 324 when the surface temperature of the film is in the range of 50 ° C to 500 ° C. Therefore, it may be 10 ⁇ 10 15 atoms / cm 2 or less, preferably 5 ⁇ 10 15 atoms / cm 2 or less.
  • the insulator 326 preferably has a lower dielectric constant than the insulator 324.
  • the dielectric constant of the insulator 326 is preferably less than 4, and more preferably less than 3.
  • the relative dielectric constant of the insulator 326 is preferably 0.7 times or less, and more preferably 0.6 times or less that of the insulator 324.
  • a conductor 328 which is connected to the transistor 500, a conductor 330, and the like are embedded.
  • the conductor 328 and the conductor 330 have a function as a plug or a wiring.
  • the conductor having a function as a plug or a wiring may have a plurality of structures collectively given the same reference numeral. In this specification and the like, the wiring and the plug connected to the wiring may be integrated. That is, part of the conductor may function as a wiring, and part of the conductor may function as a plug.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is used as a single layer or a laminated layer. be able to. It is preferable to use a high melting point material such as tungsten or molybdenum, which has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed of a low resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low-resistance conductive material.
  • a wiring layer may be provided on the insulator 326 and the conductor 330.
  • an insulator 350, an insulator 352, and an insulator 354 are sequentially stacked and provided.
  • a conductor 356 is formed over the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 has a function as a plug connected to the transistor 300 or a wiring. Note that the conductor 356 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the insulator 350 is preferably an insulator having a barrier property against hydrogen, like the insulator 324.
  • the conductor 356 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a hydrogen barrier property is formed in an opening portion of the insulator 350 having a hydrogen barrier property.
  • tantalum nitride or the like may be used as the conductor having a barrier property against hydrogen.
  • tantalum nitride and tungsten having high conductivity diffusion of hydrogen from the transistor 300 can be suppressed while maintaining conductivity as a wiring.
  • the tantalum nitride layer having a barrier property against hydrogen be in contact with the insulator 350 having a barrier property against hydrogen.
  • a wiring layer may be provided on the insulator 354 and the conductor 356.
  • an insulator 360, an insulator 362, and an insulator 364 are sequentially stacked and provided.
  • a conductor 366 is formed over the insulator 360, the insulator 362, and the insulator 364.
  • the conductor 366 has a function as a plug or a wiring. Note that the conductor 366 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the insulator 360 is preferably an insulator having a barrier property against hydrogen, like the insulator 324.
  • the conductor 366 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a hydrogen barrier property is formed in the opening of the insulator 360 having a hydrogen barrier property.
  • a wiring layer may be provided on the insulator 364 and the conductor 366.
  • an insulator 370, an insulator 372, and an insulator 374 are sequentially stacked and provided. Further, a conductor 376 is formed over the insulator 370, the insulator 372, and the insulator 374.
  • the conductor 376 has a function as a plug or a wiring. Note that the conductor 376 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the insulator 370 is preferably an insulator having a barrier property against hydrogen, like the insulator 324.
  • the conductor 376 preferably includes a conductor having a barrier property against hydrogen.
  • a conductor having a hydrogen barrier property is formed in the opening of the insulator 370 having a hydrogen barrier property.
  • a wiring layer may be provided on the insulator 374 and the conductor 376.
  • an insulator 380, an insulator 382, and an insulator 384 are sequentially stacked and provided.
  • a conductor 386 is formed over the insulator 380, the insulator 382, and the insulator 384.
  • the conductor 386 has a function as a plug or a wiring. Note that the conductor 386 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the insulator 380 it is preferable to use an insulator having a barrier property against hydrogen, like the insulator 324.
  • the conductor 386 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening portion of the insulator 380 having a barrier property against hydrogen.
  • the semiconductor device has been described above, the semiconductor device according to this embodiment It is not limited to this.
  • the number of wiring layers similar to the wiring layer including the conductor 356 may be three or less, or the number of wiring layers similar to the wiring layer including the conductor 356 may be five or more.
  • An insulator 510, an insulator 512, an insulator 514, and an insulator 516 are sequentially stacked on the insulator 384. Any of the insulator 510, the insulator 512, the insulator 514, and the insulator 516 is preferably formed using a substance having a barrier property against oxygen and hydrogen.
  • insulator 510 and the insulator 514 for example, a film having a barrier property such that hydrogen and impurities do not diffuse from the substrate 311 or a region where the transistor 300 is provided to a region where the transistor 500 is provided is used. Is preferred. Therefore, a material similar to that of the insulator 324 can be used.
  • silicon nitride formed by a CVD method can be used as an example of a film having a barrier property against hydrogen.
  • silicon nitride formed by a CVD method when hydrogen is diffused into a semiconductor element including an oxide semiconductor, such as the transistor 500, characteristics of the semiconductor element may be deteriorated in some cases. Therefore, it is preferable to use a film which suppresses diffusion of hydrogen between the transistor 500 and the transistor 300.
  • the film that suppresses hydrogen diffusion is a film in which the amount of released hydrogen is small.
  • a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide is preferably used for the insulator 510 and the insulator 514.
  • aluminum oxide has a high blocking effect that does not allow the film to permeate both oxygen and impurities such as hydrogen and water that cause fluctuations in the electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 500 during and after the manufacturing process of the transistor. Further, release of oxygen from the oxide included in the transistor 500 can be suppressed. Therefore, it is suitable to be used as a protective film for the transistor 500.
  • the same material as that of the insulator 320 can be used for the insulator 512 and the insulator 516. Further, by applying a material having a relatively low dielectric constant to these insulators, it is possible to reduce the parasitic capacitance generated between the wirings.
  • a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 512 and the insulator 516.
  • a conductor 518, a conductor (eg, a conductor 503) included in the transistor 500, and the like are embedded in the insulator 510, the insulator 512, the insulator 514, and the insulator 516.
  • the conductor 518 has a function as a plug connected to the transistor 300 or a wiring.
  • the conductor 518 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • the conductor 510 in a region which is in contact with the insulator 510 and the insulator 514 be a conductor having a barrier property against oxygen, hydrogen, and water.
  • the transistor 300 and the transistor 500 can be separated by a layer having a barrier property against oxygen, hydrogen, and water, and diffusion of hydrogen from the transistor 300 to the transistor 500 can be suppressed.
  • the transistor 500 is provided above the insulator 516.
  • a transistor 500 includes a conductor 503 arranged so as to be embedded in an insulator 514 and an insulator 516 and an insulator 520 arranged over the insulator 516 and the conductor 503.
  • a conductor 560 that is formed.
  • an insulator 544 is preferably provided between the oxide 530a, the oxide 530b, the conductor 542a, and the insulator 580 and the insulator 580.
  • the conductor 560 includes a conductor 560a provided inside the insulator 550 and a conductor 560b provided so as to be embedded inside the conductor 560a. It is preferable to have.
  • the insulator 574 is preferably provided over the insulator 580, the conductor 560, and the insulator 550.
  • the oxide 530a, the oxide 530b, and the oxide 530c may be collectively referred to as the oxide 530.
  • the transistor 500 has a structure in which three layers of the oxide 530a, the oxide 530b, and the oxide 530c are stacked in the region where the channel is formed and in the vicinity thereof, the present invention is not limited to this. Not a thing. For example, a single layer of the oxide 530b, a two-layer structure of the oxide 530b and the oxide 530a, a two-layer structure of the oxide 530b and the oxide 530c, or a stacked structure of four or more layers may be provided. Further, in the transistor 500, the conductor 560 is shown as a stacked structure of two layers, but the present invention is not limited to this. For example, the conductor 560 may have a single-layer structure or a stacked structure including three or more layers. In addition, the transistor 500 illustrated in FIGS. 12, 15A, and 15B is an example, and the structure is not limited thereto, and an appropriate transistor may be used depending on a circuit configuration or a driving method.
  • the conductor 560 functions as a gate electrode of the transistor, and the conductors 542a and 542b function as a source electrode or a drain electrode, respectively.
  • the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and the region between the conductors 542a and 542b.
  • the arrangement of the conductor 560, the conductor 542a, and the conductor 542b is selected in a self-aligned manner with respect to the opening of the insulator 580. That is, in the transistor 500, the gate electrode can be arranged between the source electrode and the drain electrode in a self-aligned manner. Therefore, the conductor 560 can be formed without providing a positioning margin, so that the area occupied by the transistor 500 can be reduced. As a result, miniaturization and high integration of the semiconductor device can be achieved.
  • the conductor 560 is formed in a region between the conductor 542a and the conductor 542b in a self-aligned manner, the conductor 560 does not have a region overlapping with the conductor 542a or the conductor 542b. Accordingly, parasitic capacitance formed between the conductor 560 and the conductors 542a and 542b can be reduced. Therefore, the switching speed of the transistor 500 can be improved and high frequency characteristics can be provided.
  • the conductor 560 may function as a first gate (also referred to as a top gate) electrode. Further, the conductor 503 may function as a second gate (also referred to as a bottom gate) electrode. In that case, the threshold voltage of the transistor 500 can be controlled by changing the potential applied to the conductor 503 independently of the potential applied to the conductor 560 and without changing the potential. In particular, by applying a negative potential to the conductor 503, the threshold voltage of the transistor 500 can be higher than 0 V and the off-state current can be reduced. Therefore, applying a negative potential to the conductor 503 can reduce the drain current when the potential applied to the conductor 560 is 0 V, as compared to the case where no potential is applied.
  • the conductor 503 is arranged so as to overlap with the oxide 530 and the conductor 560. Thus, when a potential is applied to the conductor 560 and the conductor 503, the electric field generated from the conductor 560 and the electric field generated from the conductor 503 are connected to cover a channel formation region formed in the oxide 530.
  • a structure of a transistor which electrically surrounds a channel formation region by an electric field of the first gate electrode and the second gate electrode is referred to as a surrounded channel (S-channel) structure.
  • the conductor 503 has the same structure as the conductor 518, and the conductor 503a is formed in contact with the inner walls of the openings of the insulator 514 and the insulator 516, and the conductor 503b is formed further inside.
  • the transistor 500 has a structure in which the conductor 503a and the conductor 503b are stacked, the present invention is not limited to this.
  • the conductor 503 may have a single-layer structure or a stacked structure including three or more layers.
  • the conductor 503a is made of a conductive material having a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms (the above impurities are difficult to permeate).
  • impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms
  • a conductive material having a function of suppressing diffusion of oxygen eg, at least one of oxygen atoms and oxygen molecules
  • the function of suppressing the diffusion of impurities or oxygen is the function of suppressing the diffusion of any one or all of the impurities or oxygen.
  • the conductor 503a since the conductor 503a has a function of suppressing diffusion of oxygen, it is possible to prevent the conductor 503b from being oxidized and being reduced in conductivity.
  • the conductor 503 also has a function of wiring
  • the conductor 503b be formed using a conductive material having high conductivity, which contains tungsten, copper, or aluminum as its main component.
  • the conductor 505 is not necessarily provided.
  • the conductor 503b is illustrated as a single layer, it may have a laminated structure, for example, a laminate of titanium or titanium nitride and the above conductive material.
  • the insulator 520, the insulator 522, and the insulator 524 have a function as a second gate insulating film.
  • the insulator 524 which is in contact with the oxide 530, it is preferable to use an insulator containing more oxygen than that satisfying the stoichiometric composition. That is, it is preferable that the insulator 524 be formed with an excess oxygen region. By providing such an insulator containing excess oxygen in contact with the oxide 530, oxygen vacancies in the oxide 530 can be reduced and the reliability of the transistor 500 can be improved.
  • an oxide material in which part of oxygen is released by heating is preferably used as the insulator having an excess oxygen region.
  • the oxide that desorbs oxygen by heating means that the amount of desorbed oxygen in terms of oxygen atoms is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 1 or more by TDS (Thermal Desorption Spectroscopy) analysis. It is an oxide film having a concentration of 0.0 ⁇ 10 19 atoms / cm 3 or more, more preferably 2.0 ⁇ 10 19 atoms / cm 3 or more, or 3.0 ⁇ 10 20 atoms / cm 3 or more.
  • the surface temperature of the film during the TDS analysis is preferably 100 ° C. or higher and 700 ° C. or lower, or 100 ° C. or higher and 400 ° C. or lower.
  • any one or more of heat treatment, microwave treatment, and RF treatment may be performed by contacting the oxide 530 with the insulator having the excess oxygen region.
  • water or hydrogen in the oxide 530 can be removed.
  • reactions occur that binding of V O H is disconnected, when other words happening reaction of "V O H ⁇ V O + H", can be dehydrogenated.
  • Part of the hydrogen generated at this time may be combined with oxygen and converted into H 2 O, which is removed from the oxide 530 or the insulator in the vicinity of the oxide 530.
  • part of hydrogen may be diffused or captured (also referred to as gettering) in the conductors 542a and 542b.
  • a device having a power source for generating high-density plasma or a device having a power source for applying RF to the substrate side for the microwave treatment.
  • a gas containing oxygen and using high-density plasma high-density oxygen radicals can be generated, and by applying RF to the substrate side, oxygen radicals generated by high-density plasma can be generated.
  • the pressure may be 133 Pa or higher, preferably 200 Pa or higher, more preferably 400 Pa or higher.
  • oxygen and argon are used, and the oxygen flow rate ratio (O 2 / (O 2 + Ar)) is 50% or less, preferably 10% or more 30 % Or less is recommended.
  • heat treatment is preferably performed with the surface of the oxide 530 exposed.
  • the heat treatment may be performed at 100 ° C to 450 ° C inclusive, more preferably 350 ° C to 400 ° C inclusive, for example.
  • the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing an oxidizing gas in an amount of 10 ppm or more, 1% or more, or 10% or more.
  • the heat treatment is preferably performed in an oxygen atmosphere. Accordingly, oxygen can be supplied to the oxide 530 to reduce oxygen vacancies (V 2 O 3 ).
  • the heat treatment may be performed under reduced pressure.
  • the heat treatment may be performed in an atmosphere containing an oxidizing gas in an amount of 10 ppm or higher, 1% or higher, or 10% or higher in order to supplement desorbed oxygen after the heat treatment is performed in a nitrogen gas or inert gas atmosphere.
  • heat treatment may be performed in an atmosphere containing an oxidizing gas in an amount of 10 ppm or more, 1% or more, or 10% or more, and then continuously performed in an atmosphere of nitrogen gas or an inert gas.
  • the insulator 522 when the insulator 524 has an excess oxygen region, the insulator 522 preferably has a function of suppressing diffusion of oxygen (eg, oxygen atoms, oxygen molecules) (the oxygen is less likely to permeate).
  • oxygen eg, oxygen atoms, oxygen molecules
  • the insulator 522 has a function of suppressing diffusion of oxygen and impurities, oxygen contained in the oxide 530 does not diffuse to the insulator 520 side, which is preferable. Further, the conductor 503 can be prevented from reacting with the insulator 524 and the oxygen contained in the oxide 530.
  • the insulator 522 is, for example, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or It is preferable to use an insulator containing a so-called high-k material such as (Ba, Sr) TiO 3 (BST) in a single layer or a laminated layer. As miniaturization and higher integration of transistors progress, problems such as leakage current may occur due to thinning of the gate insulating film. By using a high-k material for the insulator functioning as a gate insulating film, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • a so-called high-k material such as (Ba, Sr) TiO 3 (BST)
  • an insulator containing an oxide of one or both of aluminum and hafnium which is an insulating material having a function of suppressing diffusion of impurities and oxygen (the oxygen is difficult to permeate).
  • the insulator containing one or both oxides of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like.
  • the insulator 522 is formed using such a material, the insulator 522 suppresses release of oxygen from the oxide 530 and mixture of impurities such as hydrogen from the peripheral portion of the transistor 500 into the oxide 530. Functions as a layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon oxide, silicon oxynitride, or silicon nitride may be stacked on the above insulator and used.
  • the insulator 520 is preferably thermally stable.
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • the insulator 520 and the insulator 526 which are thermally stable and have a high relative dielectric constant can be obtained.
  • an insulator 520, an insulator 522, and an insulator 524 are illustrated as the second gate insulating film having a stacked-layer structure of three layers.
  • the insulating film may have a single layer, two layers, or a laminated structure of four or more layers.
  • the laminated structure is not limited to the same material, and may be a laminated structure made of different materials.
  • the oxide 530 including the channel formation region is preferably a metal oxide functioning as an oxide semiconductor.
  • an In-M-Zn oxide (the element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium).
  • the In-M-Zn oxide that can be used as the oxide 530 is preferably the CAAC-OS or the CAC-OS described in Embodiment 4.
  • an In—Ga oxide or an In—Zn oxide may be used.
  • a metal oxide having a low carrier concentration for the transistor 500 it is preferable to use a metal oxide having a low carrier concentration for the transistor 500.
  • the concentration of impurities in the metal oxide may be lowered and the density of defect states may be lowered.
  • low impurity concentration and low defect level density are referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • the impurities in the metal oxide include, for example, hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • hydrogen contained in a metal oxide reacts with oxygen bonded to a metal atom to be water, which may cause oxygen vacancies in the metal oxide.
  • oxygen vacancies and hydrogen combine to form a V O H.
  • V O H acts as a donor, sometimes electrons serving as carriers are generated.
  • part of hydrogen may be bonded to oxygen which is bonded to a metal atom to generate an electron which is a carrier. Therefore, a transistor including a metal oxide containing a large amount of hydrogen is likely to have normally-on characteristics.
  • the metal oxide easily moves due to stress such as heat and an electric field; therefore, when a large amount of hydrogen is contained in the metal oxide, reliability of the transistor might be deteriorated.
  • the highly purified intrinsic or substantially highly purified intrinsic it is preferable that the highly purified intrinsic or substantially highly purified intrinsic.
  • the impurities such as hydrogen (dehydration, may be described as dehydrogenation.)
  • oxygenation treatment it is important to supply oxygen to the metal oxide to fill oxygen vacancies (sometimes referred to as oxygenation treatment).
  • the metal oxide impurities is sufficiently reduced such V O H By using the channel formation region of the transistor, it is possible to have stable electrical characteristics.
  • the metal oxide may be evaluated not by the donor concentration but by the carrier concentration. Therefore, in this specification and the like, the carrier concentration which is assumed to be a state where no electric field is applied may be used as the parameter of the metal oxide, instead of the donor concentration. That is, the “carrier concentration” described in this specification and the like can be called the “donor concentration” in some cases.
  • the hydrogen concentration obtained by secondary ion mass spectroscopy is less than 1 ⁇ 10 20 atoms / cm 3 , preferably 1 ⁇ 10 19 atoms / cm 3. It is less than 3 , more preferably less than 5 ⁇ 10 18 atoms / cm 3 , and even more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • the metal oxide has a high bandgap, is an intrinsic (also referred to as I-type) semiconductor, or is a substantially intrinsic semiconductor and has a channel formation region.
  • the carrier concentration of the metal oxide is preferably less than 1 ⁇ 10 18 cm ⁇ 3 , more preferably less than 1 ⁇ 10 17 cm ⁇ 3 , and further preferably less than 1 ⁇ 10 16 cm ⁇ 3. It is preferably less than 1 ⁇ 10 13 cm ⁇ 3 , more preferably less than 1 ⁇ 10 12 cm ⁇ 3 .
  • the lower limit of the carrier concentration of the metal oxide in the channel formation region is not particularly limited, but can be set to, for example, 1 ⁇ 10 ⁇ 9 cm ⁇ 3 .
  • the conductor 542a (the conductor 542b) and the oxide 530 are in contact with each other, so that oxygen in the oxide 530 diffuses into the conductor 542a (the conductor 542b),
  • the conductor 542a (conductor 542b) may be oxidized. Oxidation of the conductor 542a (conductor 542b) is likely to reduce the conductivity of the conductor 542a (conductor 542b). Note that diffusion of oxygen in the oxide 530 to the conductor 542a (conductor 542b) can be restated as absorption of oxygen in the oxide 530 by the conductor 542a (conductor 542b).
  • the oxide 530 diffuses into the conductors 542a and 542b, so that different layers are formed between the conductor 542a and the oxide 530b and between the conductor 542b and the oxide 530b. May be done. Since the different layer contains more oxygen than the conductor 542a and the conductor 542b, it is estimated that the different layer has an insulating property.
  • the three-layer structure of the conductor 542a and the conductor 542b, the different layer, and the oxide 530b can be regarded as a three-layer structure including metal-insulator-semiconductor, and MIS (Metal-Insulator-). It may be called a "Semiconductor structure" or a diode junction structure mainly composed of a MIS structure.
  • the different layer is not limited to being formed between the conductor 542a (conductor 542b) and the oxide 530b; for example, the different layer may include the conductor 542a (conductor 542b) and the oxide 530c. May be formed between the conductor 542a (conductor 542b) and the oxide 530b, and between the conductor 542a (conductor 542b) and the oxide 530c.
  • a metal oxide having a bandgap of 2 eV or more, preferably 2.5 eV or more as a metal oxide which functions as a channel formation region in the oxide 530.
  • the oxide 530 has the oxide 530a below the oxide 530b, diffusion of impurities into the oxide 530b from a structure formed below the oxide 530a can be suppressed. Further, by including the oxide 530c over the oxide 530b, diffusion of impurities from the structure formed above the oxide 530c into the oxide 530b can be suppressed.
  • the oxide 530 preferably has a stacked structure due to oxides in which the atomic ratio of each metal atom is different.
  • the atomic ratio of the element M in the constituent elements is higher than the atomic ratio of the element M in the constituent elements in the metal oxide used for the oxide 530b.
  • the atomic ratio of the element M to In is preferably higher than the atomic ratio of the element M to In in the metal oxide used for the oxide 530b.
  • the atomic ratio of In to the element M is preferably higher than the atomic ratio of In to the element M in the metal oxide used for the oxide 530a.
  • a metal oxide that can be used for the oxide 530a or the oxide 530b can be used.
  • the energy at the bottom of the conduction band of the oxide 530a and the oxide 530c be higher than the energy at the bottom of the conduction band of the oxide 530b.
  • the electron affinity of the oxide 530a and the oxide 530c be smaller than the electron affinity of the oxide 530b.
  • the energy level at the bottom of the conduction band changes gently at the junction of the oxide 530a, the oxide 530b, and the oxide 530c.
  • the energy levels at the bottoms of the conduction bands at the junctions of the oxide 530a, the oxide 530b, and the oxide 530c are continuously changed or continuously joined.
  • the density of defect states in the mixed layer formed at the interface between the oxide 530a and the oxide 530b and the interface between the oxide 530b and the oxide 530c may be low.
  • the oxide 530a and the oxide 530b, and the oxide 530b and the oxide 530c have a common element other than oxygen (as a main component), so that a mixed layer with low density of defect states is formed.
  • the oxide 530b is an In—Ga—Zn oxide, In—Ga—Zn oxide, Ga—Zn oxide, gallium oxide, or the like may be used as the oxide 530a and the oxide 530c.
  • the main carrier path is the oxide 530b.
  • the oxide 530a and the oxide 530c have the above structure, the density of defect states in the interface between the oxide 530a and the oxide 530b and the interface between the oxide 530b and the oxide 530c can be reduced. Therefore, the influence of interface scattering on carrier conduction is reduced and the transistor 500 can obtain high on-state current.
  • the conductor 542a and the conductor 542b which function as a source electrode and a drain electrode are provided over the oxide 530b.
  • Examples of the conductor 542a and the conductor 542b include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, and ruthenium. It is preferable to use a metal element selected from iridium, strontium, and lanthanum, an alloy containing the above metal element as a component, an alloy in which the above metal elements are combined, or the like.
  • tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, or the like is used.
  • tantalum nitride, titanium nitride, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, and oxide containing lanthanum and nickel are difficult to oxidize. It is preferable because it is a conductive material or a material that maintains conductivity even when absorbing oxygen. Further, a metal nitride film such as tantalum nitride is preferable because it has a barrier property against hydrogen or oxygen.
  • the conductor 542a and the conductor 542b are shown as a single layer structure, but may be a laminated structure of two or more layers.
  • a tantalum nitride film and a tungsten film may be stacked.
  • a titanium film and an aluminum film may be stacked.
  • a two-layer structure in which an aluminum film is stacked over a tungsten film a two-layer structure in which a copper film is stacked over a copper-magnesium-aluminum alloy film, a two-layer structure in which a copper film is stacked over a titanium film, and a tungsten film is formed over the tungsten film.
  • a two-layer structure in which copper films are laminated may be used.
  • a titanium film or a titanium nitride film a three-layer structure in which an aluminum film or a copper film is stacked over the titanium film or the titanium nitride film, and a titanium film or a titanium nitride film is further formed thereover, a molybdenum film, or
  • a molybdenum nitride film and an aluminum film or a copper film are stacked over the molybdenum film or the molybdenum nitride film, and a molybdenum film or a molybdenum nitride film is formed thereover.
  • a transparent conductive material containing indium oxide, tin oxide, or zinc oxide may be used.
  • a region 543a and a region 543b may be formed as low resistance regions at and near the interface between the oxide 530 and the conductor 542a (conductor 542b).
  • the region 543a functions as one of the source region and the drain region
  • the region 543b functions as the other of the source region and the drain region.
  • a channel formation region is formed in a region between the region 543a and the region 543b.
  • the oxygen concentration in the region 543a (region 543b) may be reduced.
  • a metal compound layer containing a metal contained in the conductor 542a (conductor 542b) and a component of the oxide 530 may be formed in the region 543a (region 543b). In such a case, the carrier concentration in the region 543a (region 543b) increases, and the region 543a (region 543b) becomes a low resistance region.
  • the insulator 544 is provided so as to cover the conductors 542a and 542b and suppresses oxidation of the conductors 542a and 542b. At this time, the insulator 544 may be provided so as to cover a side surface of the oxide 530 and be in contact with the insulator 524.
  • the insulator 544 one or two or more kinds of metal oxides selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, neodymium, lanthanum, magnesium, and the like are included. Can be used. Alternatively, as the insulator 544, silicon nitride oxide, silicon nitride, or the like can be used.
  • the insulator 544 an oxide containing one or both of aluminum and hafnium, such as aluminum oxide, hafnium oxide, aluminum, or an oxide containing hafnium (hafnium aluminate).
  • hafnium aluminate has higher heat resistance than a hafnium oxide film. Therefore, crystallization is less likely to occur in heat treatment in a later step, which is preferable.
  • the insulator 544 is not an essential component if the conductors 542a and 542b are materials having oxidation resistance or if the conductivity does not significantly decrease even when oxygen is absorbed. It may be appropriately designed depending on the desired transistor characteristics.
  • impurities such as water and hydrogen contained in the insulator 580 can be suppressed from diffusing into the oxide 530b through the oxide 530c and the insulator 550.
  • oxidation of the conductor 560 due to excess oxygen in the insulator 580 can be suppressed.
  • the insulator 550 functions as a first gate insulating film.
  • the insulator 550 is preferably arranged in contact with the inside (top surface and side surface) of the oxide 530c.
  • the insulator 550 is preferably formed using an insulator which contains excess oxygen and releases oxygen by heating.
  • silicon oxide containing excess oxygen, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, carbon oxide added with carbon, and nitrogen are added.
  • the silicon oxide which it has can be used.
  • silicon oxide and silicon oxynitride are preferable because they are stable to heat.
  • oxygen is effectively supplied from the insulator 550 to the channel formation region of the oxide 530b through the oxide 530c. Can be supplied. Further, like the insulator 524, the concentration of impurities such as water or hydrogen in the insulator 550 is preferably reduced.
  • the thickness of the insulator 550 is preferably 1 nm or more and 20 nm or less.
  • a metal oxide may be provided between the insulator 550 and the conductor 560 in order to efficiently supply the excess oxygen included in the insulator 550 to the oxide 530.
  • the metal oxide preferably suppresses oxygen diffusion from the insulator 550 to the conductor 560.
  • diffusion of excess oxygen from the insulator 550 to the conductor 560 is suppressed. That is, a decrease in the amount of excess oxygen supplied to the oxide 530 can be suppressed.
  • oxidation of the conductor 560 due to excess oxygen can be suppressed.
  • a material that can be used for the insulator 544 may be used.
  • the insulator 550 may have a stacked structure like the second gate insulating film.
  • an insulator functioning as a gate insulating film is formed using a high-k material and a thermal insulator.
  • a layered structure of a stable material it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness. Further, it is possible to obtain a laminated structure that is thermally stable and has a high relative dielectric constant.
  • the conductor 560 functioning as the first gate electrode is shown as a two-layer structure in FIGS. 15A and 15B, it may have a single-layer structure or a stacked structure of three or more layers.
  • the conductor 560a has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitric oxide molecules (N 2 O, NO, NO 2, etc.), and copper atoms. It is preferable to use materials. Alternatively, a conductive material having a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms and oxygen molecules) is preferably used. Since the conductor 560a has a function of suppressing diffusion of oxygen, oxygen contained in the insulator 550 can prevent oxidation of the conductor 560b and decrease in conductivity.
  • impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitric oxide molecules (N 2 O, NO, NO 2, etc.), and copper atoms. It is preferable to use materials. Alternatively, a conductive material having a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms and oxygen molecules) is preferably used. Since the
  • the conductive material having a function of suppressing diffusion of oxygen for example, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used.
  • an oxide semiconductor which can be used for the oxide 530 can be used as the conductor 560a. In that case, by forming a film of the conductor 560b by a sputtering method, the electric resistance value of the conductor 560a can be reduced to be a conductor. This can be called an OC (Oxide Conductor) electrode.
  • the conductor 560b is preferably made of a conductive material containing tungsten, copper, or aluminum as a main component. Since the conductor 560b also functions as a wiring, it is preferable to use a conductor having high conductivity. For example, a conductive material containing tungsten, copper, or aluminum as its main component can be used.
  • the conductor 560b may have a stacked structure, for example, a stacked structure of titanium or titanium nitride and the above conductive material.
  • the insulator 580 is provided on the conductor 542a and the conductor 542b through the insulator 544.
  • the insulator 580 preferably has an excess oxygen region.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, fluorine-added silicon oxide, carbon-added silicon oxide, carbon, and nitrogen-added silicon oxide a voided oxide
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • silicon oxide and silicon oxide having vacancies are preferable because an excess oxygen region can be easily formed in a later step.
  • the insulator 580 preferably has an excess oxygen region. By providing the insulator 580 from which oxygen is released by heating in contact with the oxide 530c, oxygen in the insulator 580 can be efficiently supplied to the oxide 530 through the oxide 530c. Note that the concentration of impurities such as water or hydrogen in the insulator 580 is preferably reduced.
  • the opening of the insulator 580 is formed so as to overlap with a region between the conductor 542a and the conductor 542b. Accordingly, the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and the region between the conductor 542a and the conductor 542b.
  • the conductor 560 When miniaturizing semiconductor devices, it is necessary to shorten the gate length, but it is necessary to prevent the conductivity of the conductor 560 from decreasing. Therefore, if the thickness of the conductor 560 is increased, the conductor 560 can have a shape with a high aspect ratio. In this embodiment mode, the conductor 560 is provided so as to be embedded in the opening of the insulator 580; therefore, even if the conductor 560 has a high aspect ratio, the conductor 560 can be formed without being destroyed during the process. You can
  • the insulator 574 is preferably provided in contact with the top surface of the insulator 580, the top surface of the conductor 560, and the top surface of the insulator 550.
  • an excess oxygen region can be provided in the insulator 550 and the insulator 580. Accordingly, oxygen can be supplied into the oxide 530 from the excess oxygen region.
  • insulator 574 a metal oxide containing one kind or two or more kinds selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, or the like is used. You can
  • aluminum oxide has a high barrier property and can suppress the diffusion of hydrogen and nitrogen even if it is a thin film of 0.5 nm or more and 3.0 nm or less. Therefore, the aluminum oxide film formed by a sputtering method can have a function as a barrier film against impurities such as hydrogen as well as an oxygen supply source.
  • the insulator 581 functioning as an interlayer film over the insulator 574.
  • the insulator 581 preferably has a reduced concentration of impurities such as water or hydrogen in the film.
  • the conductors 540a and 540b are arranged in the openings formed in the insulator 581, the insulator 574, the insulator 580, and the insulator 544.
  • the conductor 540a and the conductor 540b are provided to face each other with the conductor 560 interposed therebetween.
  • the conductors 540a and 540b have the same structures as conductors 546 and 548 described later.
  • An insulator 582 is provided on the insulator 581.
  • the insulator 582 it is preferable to use a substance having a barrier property against oxygen and hydrogen. Therefore, a material similar to that of the insulator 514 can be used for the insulator 582.
  • the insulator 582 is preferably formed using a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide.
  • aluminum oxide has a high blocking effect that does not allow the film to permeate both oxygen and impurities such as hydrogen and moisture that cause fluctuations in the electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 500 during and after the manufacturing process of the transistor. Further, release of oxygen from the oxide included in the transistor 500 can be suppressed. Therefore, it is suitable to be used as a protective film for the transistor 500.
  • an insulator 586 is provided on the insulator 582.
  • a material similar to that of the insulator 320 can be used.
  • a material having a relatively low dielectric constant to these insulators, it is possible to reduce the parasitic capacitance generated between the wirings.
  • a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 586.
  • the insulator 520, the insulator 522, the insulator 524, the insulator 544, the insulator 580, the insulator 574, the insulator 581, the insulator 582, and the insulator 586 include the conductor 546, the conductor 548, and the like. Is embedded.
  • the conductor 546 and the conductor 548 have a function as a plug or a wiring which is connected to the transistor 500 or the transistor 300.
  • the conductor 546 and the conductor 548 can be provided using a material similar to that of the conductor 328 and the conductor 330.
  • an opening may be formed so as to surround the transistor 500, and an insulator having a high barrier property against hydrogen or water may be formed so as to cover the opening.
  • an insulator having a high barrier property against hydrogen or water By wrapping the transistor 500 with the above-described insulator having a high barrier property, moisture and hydrogen can be prevented from entering from the outside.
  • the plurality of transistors 500 may be collectively wrapped with an insulator having a high barrier property against hydrogen or water.
  • an opening reaching the insulator 514 or the insulator 522 is formed and the above-described insulator having a high barrier property is provided so as to be in contact with the insulator 514 or the insulator 522.
  • the formation is preferable because it can serve as part of a manufacturing process of the transistor 500.
  • the insulator having a high barrier property against hydrogen or water a material similar to that of the insulator 522 may be used, for example.
  • a conductor 610 can be provided on the insulator 586.
  • the conductor 610 has a function as a plug or a wiring for electrically connecting the transistor 500 and the transistor 300.
  • the conductor 612 may be provided over the conductor 546 and the conductor 548.
  • the conductor 612 has a function of a plug connected to the transistor 500 or a wiring. Note that the conductor 612 and the conductor 610 can be formed at the same time.
  • a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or a metal nitride film containing the above element as a component (Tantalum nitride film, titanium nitride film, molybdenum nitride film, tungsten nitride film) or the like can be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, or silicon oxide is added.
  • a conductive material such as indium tin oxide described above can also be applied.
  • the conductor 612 and the conductor 610 have a single-layer structure in FIG. 12, the structure is not limited thereto and may be a stacked structure of two or more layers.
  • a conductor having a barrier property and a conductor having high adhesion to the conductor having a high conductivity may be formed between the conductor having a barrier property and the conductor having high conductivity.
  • An insulator 640 is provided on the insulator 630.
  • the insulator 640 can be provided using a material similar to that of the insulator 320. Further, the insulator 640 may function as a flattening film that covers the uneven shape below the insulator 640.
  • the storage unit 100 of the semiconductor device in FIG. 12 may have a configuration including a NAND memory element having a three-dimensional structure.
  • FIG. 14 shows an example of the configuration of the semiconductor device in which the storage unit 100 has a NAND memory element having a three-dimensional structure.
  • the storage unit 100 of the semiconductor device illustrated in FIG. 14 includes a transistor 700, a plurality of transistors 800, and a transistor 900 as components of a NAND memory element having a three-dimensional structure.
  • the transistor 700 corresponds to the transistor BTr in FIG. 5
  • the transistor 800 corresponds to the transistor CTr in FIG. 5
  • the storage unit 100 shown in FIG. 14 is provided on the substrate.
  • the memory portion 100 has an insulator 111 to an insulator 117, an insulator 121, an insulator 122, an insulator 131, an insulator 132, an insulator 133, a conductor 151 to a conductor 156, a semiconductor above the substrate. 141 to semiconductor 143.
  • the substrate for example, the same substrate as the substrate applicable to the semiconductor device in FIG. 13 described above can be used in some cases.
  • the insulator 111 is provided above the substrate included in the semiconductor device.
  • the insulator 111 functions as a base film of the substrate, the insulator 111 is preferably formed by, for example, a film formation method with good flatness.
  • insulator 111 for example, a material containing silicon oxide or silicon oxynitride can be used. Further, for example, insulation containing a material selected from boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, tantalum, etc.
  • the body can be used in a single layer or in layers.
  • the conductor 151 is laminated on the insulator 111.
  • the conductor 151 may function as the wiring CL in FIG.
  • the conductor 151 is selected from, for example, aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium and ruthenium. It is possible to use a material containing one or more kinds of metal elements. Alternatively, a semiconductor having high electric conductivity, which is typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used. Alternatively, a conductive material containing oxygen and a metal element contained in the metal oxide described in Embodiment 3 may be used.
  • a conductive material containing a metal element such as titanium or tantalum and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • indium gallium zinc oxide containing nitrogen or the like may be used. By using such a material, hydrogen or water mixed in from a surrounding insulator or the like can be captured in some cases.
  • the method of forming the conductor 151 is not particularly limited.
  • a film is formed by a sputtering method, a CVD method (including a thermal CVD method, a MOCVD method, a PECVD method, etc.), an MBE (Molecular Beam Epitaxy) method, an ALD (Atomic Layer Deposition) method, a PLD (Pulsed Laser Deposition) method, or the like. be able to.
  • an insulator 112 On the conductor 151, an insulator 112, a conductor 152, an insulator 113, a conductor 153, and an insulator 114 are sequentially laminated and provided. Further, a conductor 154, an insulator 115, a conductor 155, an insulator 116, a conductor 156, and an insulator 117 are provided above the insulator 114.
  • the same material as the insulator 111 can be used.
  • a material having a low dielectric constant is preferably used.
  • the parasitic capacitance values of the conductors 152 to 156 and the insulators 112 to 117 can be reduced. Therefore, the drive speed of the storage unit 100 can be improved.
  • the method for forming the insulator 112 to the insulator 117 is not particularly limited.
  • a film can be formed by a sputtering method, a CVD method (including a thermal CVD method, a MOCVD method, a PECVD method, or the like), an MBE method, an ALD method, a PLD method, or the like.
  • the conductor 152 functions as the gate of the transistor 900 (transistor STr in FIG. 5) and the wiring SSL in FIG.
  • the conductors 153 to 155 function as the gates of the plurality of transistors 800 (the transistor CTr in FIG. 5) and the wiring WL in FIG.
  • the conductor 156 functions as the gate of the transistor 700 (the transistor BTr in FIG. 5) and the wiring BSL in FIG.
  • the same material as the conductor 151 can be used.
  • a method for forming the conductors 152 to 156 a method similar to that of the conductor 151 can be used.
  • openings are provided in the insulators 112 to 117 and the conductors 152 to 156.
  • An insulator 121, an insulator 122, insulators 131 to 133, semiconductors 141 to 143, and a conductor 157 are provided in the opening.
  • the semiconductor 141 is provided so as to be in contact with part of the side surface and the bottom surface of the opening. Specifically, the semiconductor 141 is provided over part of the conductor 151 and covers part of the insulator 112 on the side surface of the opening.
  • the semiconductor 141 is preferably, for example, silicon in which impurities are diffused.
  • An n-type impurity (donor) can be used as the impurity.
  • As the n-type impurity for example, phosphorus or arsenic can be used.
  • a p-type impurity (acceptor) can be used as the impurity.
  • As the p-type impurity for example, boron, aluminum, gallium, or the like can be used.
  • the silicon for example, single crystal silicon, hydrogenated amorphous silicon, microcrystalline silicon, polycrystalline silicon, or the like can be used.
  • a metal oxide having a high carrier concentration may be applicable other than silicon.
  • a semiconductor such as Ge or a compound semiconductor such as ZnSe, CdS, GaAs, InP, GaN, or SiGe may be applicable in some cases.
  • the materials applied to the semiconductors 142 and 143 described later are preferably the same materials as the semiconductor 141, and the carrier concentration of the semiconductor 142 may be preferably lower than that of the semiconductors 141 and 143.
  • n-type impurities such as boron, aluminum, and gallium are added to the semiconductor 141 after the semiconductor 141 is formed over the conductor 151. Is preferred. As a result, a p-type region is formed in the semiconductor 141. Further, for example, when silicon in which n-type impurities are diffused is applied, it is preferable to add n-type impurities such as phosphorus and arsenic to the semiconductor 141 after forming the semiconductor 141 on the conductor 151. As a result, the n-type region is formed in the semiconductor 141.
  • a metal oxide is used as the semiconductor 141
  • a metal element or the like be added to the semiconductor 141 after the semiconductor 141 is formed over the conductor 151.
  • the carrier concentration in the semiconductor 141 can be increased.
  • an n-type region (n + region) is formed in the semiconductor 141.
  • heat treatment may be performed after adding water, hydrogen, or the like to generate oxygen vacancies in the semiconductor 141. Since the n-type region is formed in the region where oxygen deficiency occurs in the semiconductor 141, the carrier concentration of the semiconductor 141 is increased as a result.
  • the insulator 121 is provided so as to contact the bottom surface of part of the opening. Specifically, the insulator 121 is provided so as to cover part of the semiconductor 141 and the conductor 152 on the side surface of the opening.
  • the insulator 121 functions as a gate insulating film of the transistor 900.
  • the insulator 121 for example, silicon oxide, silicon oxynitride, or the like can be used.
  • the insulator 121 is preferably a material that releases oxygen by heating.
  • the method for forming the insulator 121 is not particularly limited; however, since the insulator 121 is formed on the side surfaces of the openings provided in the insulator 112, the conductor 152, and the insulator 113, the insulator 121 has a high film-forming property. Membrane methods are needed. Examples of the film forming method having high film forming property include the ALD method.
  • the insulator 131 is provided so as to contact a part of the side surface of the opening. Specifically, the insulator 131 is provided so as to cover the conductors 153 to 155 on the side surface of the opening. Therefore, the insulator 131 is provided so as to also cover the insulator 114 and the insulator 115 on the side surface of the opening.
  • the insulator 132 is provided so as to be in contact with the insulator 131.
  • the insulator 133 is provided so as to be in contact with the insulator 132. That is, the insulators 131 to 133 are sequentially stacked from the side surface of the opening toward the center.
  • the insulator 131 functions as a gate insulating film of the transistor 800. Further, the insulator 132 functions as a charge storage layer of the transistor 800. The insulator 133 also functions as a tunnel insulating film of the transistor 800.
  • the insulator 131 for example, it is preferable to use silicon oxide or silicon oxynitride.
  • silicon oxide or silicon oxynitride for example, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium, or the like can be used. Further, the insulator 131 may be an insulator in which these are stacked. By making the insulator 131 thicker than the insulator 133, charge can be transferred from the semiconductor 142 to be described later to the insulator 132 through the insulator 133.
  • the insulator 132 for example, silicon nitride or silicon nitride oxide can be used. However, the material applicable to the insulator 132 is not limited to these.
  • the insulator 133 for example, it is preferable to use silicon oxide or silicon oxynitride.
  • silicon oxide or silicon oxynitride for example, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium, or the like may be used. Further, the insulator 133 may be an insulator in which these are stacked.
  • the insulator 122 is provided so as to contact a part of the side surface of the opening. Specifically, it is provided so as to cover the conductor 156 on the side surface of the opening.
  • the insulator 122 functions as a gate insulating film of the transistor 700.
  • the same material as the insulator 121 can be used.
  • the insulator 122 can be formed by a method similar to that of the insulator 121.
  • the semiconductor 142 is provided so as to be in contact with the side surfaces of the insulator 121, the insulator 133, and the insulator 122 formed in the opening.
  • the semiconductor 142 functions as a wiring for electrically connecting the transistor 700, the transistor 800, a channel formation region of the transistor 900, and the transistor 700, the transistor 800, and the transistor 900 in series.
  • silicon for example.
  • silicon for example, single crystal silicon, hydrogenated amorphous silicon, microcrystalline silicon, polycrystalline silicon, or the like can be used.
  • a metal oxide other than silicon may be applicable in some cases.
  • a semiconductor such as Ge or a compound semiconductor such as ZnSe, CdS, GaAs, InP, GaN, or SiGe may be applicable in some cases.
  • the semiconductor 142 is preferably a semiconductor containing no impurities.
  • the semiconductor 142 is preferably an intrinsic semiconductor.
  • impurities here refer to hydrogen, water, and the like
  • the semiconductor 143 is provided so as to fill the opening after the semiconductor 141, the semiconductor 142, the insulator 121, the insulator 122, the insulator 131, the insulator 132, and the insulator 133 are formed in the opening. Specifically, the semiconductor 143 is provided so as to be in contact with the insulator 122 and the semiconductor 142 and a side surface of the insulator 117.
  • the semiconductor 143 is preferably made of the same material as the semiconductor 141, for example. Therefore, it is preferable that the semiconductor 141 and the semiconductor 143 have the same polarity.
  • the semiconductor device of one embodiment of the present invention is not limited to the structure of the NAND memory element included in the memory portion 100 illustrated in FIG.
  • the NAND memory element applied to the semiconductor device of one embodiment of the present invention may have a structure different from that of the NAND memory element illustrated in FIG.
  • control unit 200 the content of the description of FIGS. 12, 13, 15A, and 15B is referred to.
  • a metal oxide that can be used for the OS transistor described in any of the above embodiments is a CAC-OS (Cloud-Aligned Composite Oxide Semiconductor) and a CAAC-OS (c-Axis Aligned Crystal Oxide Semiconductor). ) Will be described. Note that in this specification and the like, CAC represents an example of a function or a structure of a material, and CAAC represents an example of a crystal structure.
  • the CAC-OS or the CAC-metal oxide has a conductive function in a part of the material and an insulating function in a part of the material, and the whole material has a function as a semiconductor.
  • a conductive function is a function of flowing electrons (or holes) serving as carriers
  • an insulating function is an electron serving as carriers. It is a function that does not flow.
  • the CAC-OS or the CAC-metal oxide has a conductive area and an insulating area.
  • the conductive region has the above-mentioned conductive function
  • the insulating region has the above-mentioned insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material.
  • the conductive region may be observed as a cloudy connection at the periphery and connected in a cloud shape.
  • the conductive region and the insulating region are each dispersed in the material in a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm. There is.
  • CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • the CAC-OS or CAC-metal oxide is composed of a component having a wide gap due to the insulating region and a component having a narrow gap due to the conductive region.
  • the carrier when the carrier is flown, the carrier mainly flows in the component having the narrow gap.
  • the component having the narrow gap acts complementarily to the component having the wide gap, and the carrier also flows to the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or CAC-metal oxide is used in the channel formation region of the transistor, a high current driving force, that is, a high on-current and a high field-effect mobility can be obtained in the on state of the transistor.
  • the CAC-OS or the CAC-metal oxide can also be referred to as a matrix composite material or a metal matrix composite material.
  • Oxide semiconductors are classified into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single-crystal oxide semiconductor include a CAAC-OS, a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), and a non-single-crystal oxide semiconductor.
  • amorphous oxide semiconductors and the like There are amorphous oxide semiconductors and the like.
  • CAAC-OS has a crystal structure having a c-axis orientation and a plurality of nanocrystals connected in the ab plane direction and having a strain.
  • the strain refers to a portion where the orientation of the lattice arrangement is changed between a region where the lattice arrangement is uniform and another region where the lattice arrangement is uniform in the region where a plurality of nanocrystals are connected.
  • Nanocrystals are basically hexagonal, but they are not limited to regular hexagons and may be non-regular hexagons.
  • the strain may have a lattice arrangement such as a pentagon and a heptagon.
  • a clear crystal grain boundary also referred to as a grain boundary
  • the distortion of the lattice arrangement suppresses the formation of crystal grain boundaries. This is because the CAAC-OS can tolerate strain due to a non-dense arrangement of oxygen atoms in the ab plane direction, a change in bond distance between atoms due to substitution with a metal element, or the like. It is thought to be because.
  • the CAAC-OS is a layered crystal in which a layer containing indium and oxygen (hereinafter, an In layer) and a layer containing elements M, zinc, and oxygen (hereinafter, a (M, Zn) layer) are stacked. It tends to have a structure (also called a layered structure).
  • indium and the element M can be replaced with each other, and when the element M of the (M, Zn) layer is replaced with indium, it can be expressed as an (In, M, Zn) layer.
  • the indium of the In layer is replaced with the element M, it can be expressed as an (In, M) layer.
  • CAAC-OS is an oxide semiconductor with high crystallinity.
  • the CAAC-OS a clear crystal grain boundary cannot be confirmed, so that it can be said that a decrease in electron mobility due to the crystal grain boundary is unlikely to occur.
  • the crystallinity of an oxide semiconductor might be lowered due to the inclusion of impurities, the generation of defects, or the like; therefore, it can be said that the CAAC-OS is an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, the oxide semiconductor including the CAAC-OS has stable physical properties. Therefore, the oxide semiconductor including the CAAC-OS is highly heat resistant and highly reliable. Further, the CAAC-OS is stable even at a high temperature (so-called thermal budget) in the manufacturing process. Therefore, when the CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be increased.
  • Nc-OS has a periodic atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less). Moreover, in the nc-OS, no regularity is found in the crystal orientation between different nanocrystals. Therefore, no orientation is seen in the entire film. Therefore, the nc-OS may be indistinguishable from the a-like OS or the amorphous oxide semiconductor depending on the analysis method.
  • the a-like OS is an oxide semiconductor having a structure between the nc-OS and the amorphous oxide semiconductor.
  • the a-like OS has a void or a low density region. That is, the crystallinity of the a-like OS is lower than that of the nc-OS and the CAAC-OS.
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor of one embodiment of the present invention may include two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS.
  • the carrier concentration of the oxide semiconductor can be the carrier concentration of the oxide 530 to which the metal oxide is applied, which is described in Embodiment 3.
  • the density of trap states may be low.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear and may behave as if it were a fixed charge. Therefore, a transistor in which a channel formation region is formed in an oxide semiconductor with a high trap level density might have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms / cm 3 or less. , Preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • a defect level might be formed and a carrier might be generated. Therefore, a transistor including an oxide semiconductor containing an alkali metal or an alkaline earth metal is likely to have normally-on characteristics. Therefore, it is preferable to reduce the concentration of alkali metal or alkaline earth metal in the oxide semiconductor.
  • the concentration of an alkali metal or an alkaline earth metal in the oxide semiconductor obtained by SIMS is 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the oxide semiconductor when nitrogen is contained, electrons that are carriers are generated, the carrier concentration is increased, and n-type is easily generated. As a result, a transistor including an oxide semiconductor containing nitrogen as a semiconductor is likely to have normally-on characteristics. Therefore, in the oxide semiconductor, nitrogen is preferably reduced as much as possible.
  • the concentration of nitrogen in the oxide semiconductor is less than 5 ⁇ 10 19 atoms / cm 3 in SIMS, preferably 5 ⁇ 10 18. Atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less, and further preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor reacts with oxygen which is bonded to a metal atom to be water, which might cause oxygen deficiency.
  • oxygen When hydrogen enters the oxygen vacancies, electrons that are carriers may be generated. Further, part of hydrogen may be bonded to oxygen which is bonded to a metal atom to generate an electron which is a carrier. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to have normally-on characteristics. Therefore, it is preferable that hydrogen in the oxide semiconductor be reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , and more preferably 5 ⁇ 10 18 atoms / cm 3. It is less than 3 , and more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • This embodiment mode shows an example of a semiconductor wafer in which the semiconductor device or the like shown in the above embodiment mode is formed and an electronic component in which the semiconductor device is incorporated.
  • a semiconductor wafer 4800 illustrated in FIG. 16A includes a wafer 4801 and a plurality of circuit portions 4802 provided on the top surface of the wafer 4801. A portion without the circuit portion 4802 on the upper surface of the wafer 4801 is a spacing 4803, which is a dicing area.
  • the semiconductor wafer 4800 can be manufactured by forming a plurality of circuit portions 4802 on the surface of the wafer 4801 by a previous process. After that, the surface of the wafer 4801 opposite to the surface on which the plurality of circuit portions 4802 are formed may be ground to reduce the thickness of the wafer 4801. Through this step, warpage of the wafer 4801 can be reduced and the size of the component can be reduced.
  • the next step is the dicing process.
  • the dicing is performed along the scribe line SCL1 and the scribe line SCL2 (which may be referred to as a dicing line or a cutting line) indicated by the one-dot chain line.
  • the spacing 4803 is provided so that the plurality of scribe lines SCL1 are parallel to each other and the plurality of scribe lines SCL2 are parallel to each other in order to easily perform the dicing process, and the scribe lines SCL1 and SCL2 are It is preferable that they are provided vertically.
  • a chip 4800a as shown in FIG. 16B can be cut out from the semiconductor wafer 4800.
  • the chip 4800a includes a wafer 4801a, a circuit portion 4802, and a spacing 4803a. Note that it is preferable that the spacing 4803a be as small as possible. In this case, the width of the spacing 4803 between the adjacent circuit portions 4802 may be substantially equal to the cut margin of the scribe line SCL1 or the cut margin of the scribe line SCL2.
  • the shape of the element substrate of one embodiment of the present invention is not limited to the shape of the semiconductor wafer 4800 illustrated in FIG. 16A.
  • it may be a semiconductor wafer having a rectangular shape.
  • the shape of the element substrate can be changed as appropriate depending on a manufacturing process of the element and an apparatus for manufacturing the element.
  • FIG. 16C shows a perspective view of electronic component 4700 and a substrate (mounting substrate 4704) on which electronic component 4700 is mounted.
  • the electronic component 4700 illustrated in FIG. 16C includes the lead 4701 and the chip 4800a described above, and functions as an IC chip or the like.
  • the electronic component 4700 includes, for example, a wire bonding step of electrically connecting the lead 4701 of the lead frame and the electrode on the chip 4800a with a thin metal wire, a molding step of sealing with an epoxy resin, and a lead frame. It can be manufactured by performing a plating process on the lead 4701 and a printing process on the surface of the package. Further, in the wire bonding process, for example, ball bonding, wedge bonding or the like can be used. Further, in FIG. 16C, QFP (Quad Flat Package) is applied to the package of the electronic component 4700, but the form of the package is not limited to this.
  • QFP Quad Flat Package
  • the electronic component 4700 is mounted on, for example, a printed circuit board 4702.
  • a plurality of such IC chips are combined and electrically connected to each other on the printed board 4702, whereby the mounting board 4704 is completed.
  • FIG. 16D shows a perspective view of the electronic component 4730.
  • the electronic component 4730 is an example of SiP (System in package) or MCM (Multi Chip Module).
  • an interposer 4731 is provided on a package substrate 4732 (printed circuit board), and a semiconductor device 4735 and a plurality of semiconductor devices 4710 are provided on the interposer 4731.
  • the electronic component 4730 has a semiconductor device 4710.
  • the semiconductor device 4710 for example, the semiconductor device described in the above embodiment, a wide band memory (HBM: High Bandwidth Memory), or the like can be used.
  • the semiconductor device 4735 an integrated circuit (semiconductor device) such as a CPU, a GPU, an FPGA, or a memory device can be used.
  • the package substrate 4732 a ceramic substrate, a plastic substrate, a glass epoxy substrate, or the like can be used.
  • the interposer 4731 a silicon interposer, a resin interposer, or the like can be used.
  • the interposer 4731 has a plurality of wirings and has a function of electrically connecting a plurality of integrated circuits having different terminal pitches.
  • the plurality of wirings are provided in a single layer or a multilayer.
  • the interposer 4731 has a function of electrically connecting an integrated circuit provided over the interposer 4731 to an electrode provided over the package substrate 4732.
  • an interposer may be called a "redistribution board" or an "intermediate board.”
  • a through electrode may be provided in the interposer 4731, and the integrated circuit and the package substrate 4732 may be electrically connected using the through electrode.
  • TSV Three Silicon Via
  • a silicon interposer As the interposer 4731. Since a silicon interposer does not need to have an active element, it can be manufactured at lower cost than an integrated circuit. On the other hand, since the wiring of the silicon interposer can be formed by a semiconductor process, it is easy to form fine wiring, which is difficult with the resin interposer.
  • the interposer on which the HBM is mounted is required to form fine and high-density wiring. Therefore, it is preferable to use the silicon interposer as the interposer for mounting the HBM.
  • a heat sink may be provided so as to overlap with the electronic component 4730.
  • the heat sink it is preferable that the heights of the integrated circuits provided on the interposer 4731 be uniform.
  • the semiconductor device 4710 and the semiconductor device 4735 have the same height.
  • An electrode 4733 may be provided on the bottom of the package substrate 4732 in order to mount the electronic component 4730 on another substrate.
  • FIG. 16D shows an example in which the electrodes 4733 are formed of solder balls.
  • BGA All Grid Array
  • the electrode 4733 may be formed using a conductive pin.
  • PGA Peripheral Component Interconnect
  • the electronic component 4730 can be mounted on another board using various mounting methods other than BGA and PGA.
  • SPGA Sttaggered Pin Grid Array
  • LGA Land Grid Array
  • QFP Quad Flat Package
  • QFJ Quad Flat J-leaded package
  • QFN Quad-on-Flag
  • FIG. 17 illustrates a state where an electronic component 4700 including the semiconductor device is included in each electronic device.
  • the information terminal 5500 illustrated in FIG. 17 is a mobile phone (smartphone) that is a type of information terminal.
  • the information terminal 5500 includes a housing 5510 and a display portion 5511.
  • a touch panel is provided in the display portion 5511 and a button is provided in the housing 5510 as an input interface.
  • the information terminal 5500 can execute an application utilizing artificial intelligence.
  • an application using artificial intelligence for example, an application for recognizing a conversation and displaying the content of the conversation on the display unit 5511, a character input by a user on a touch panel included in the display unit 5511, a figure, etc. are recognized, An application displayed on the display portion 5511, an application for biometric authentication such as a fingerprint or a voiceprint, and the like can be given.
  • FIG. 17 shows a smart watch 5900 as an example of a wearable terminal.
  • the smartwatch 5900 includes a housing 5901, a display portion 5902, operation buttons 5903, operators 5904, a band 5905, and the like.
  • the wearable terminal can execute an application using artificial intelligence by applying the semiconductor device described in the above embodiments.
  • applications using artificial intelligence include an application that manages the health condition of a person wearing a wearable terminal, and a navigation system that selects and guides an optimal route by inputting a destination.
  • FIG. 17 shows a desktop information terminal 5300.
  • the desktop information terminal 5300 has a main body 5301 of the information terminal, a display 5302, and a keyboard 5303.
  • the desktop information terminal 5300 can execute an application using artificial intelligence by applying the semiconductor device described in the above embodiment.
  • applications using artificial intelligence include design support software, text correction software, and menu automatic generation software. Further, by using the desktop information terminal 5300, new artificial intelligence can be developed.
  • a smartphone and a desktop information terminal are shown as examples of electronic devices in FIG. 17, but information terminals other than the smartphone and the desktop information terminal can be applied.
  • information terminals other than smartphones and desktop information terminals include PDAs (Personal Digital Assistants), notebook information terminals, workstations, and the like.
  • FIG. 17 illustrates an electric refrigerator-freezer 5800 as an example of an electric appliance.
  • the electric refrigerator-freezer 5800 includes a housing 5801, a refrigerator compartment door 5802, a freezer compartment door 5803, and the like.
  • the electric refrigerator-freezer 5800 having artificial intelligence can be realized.
  • the electric refrigerator-freezer 5800 has a function of automatically generating a menu based on the food items stored in the electric refrigerator-freezer 5800, the expiration date of the foodstuff, and the electric refrigerator-freezer 5800. It can have a function of automatically adjusting the temperature to match the food.
  • an electric refrigerator / freezer is described as an electric appliance, but other electric appliances include, for example, a vacuum cleaner, a microwave oven, a microwave oven, a rice cooker, a water heater, an IH cooker, a water server, and an air conditioner including an air conditioner. Examples include appliances, washing machines, dryers and audiovisual equipment.
  • FIG. 17 illustrates a portable game machine 5200, which is an example of a game machine.
  • the portable game machine 5200 includes a housing 5201, a display portion 5202, buttons 5203, and the like.
  • FIG. 17 illustrates a stationary game machine 7500 which is an example of a game machine.
  • the stationary game machine 7500 has a main body 7520 and a controller 7522.
  • a controller 7522 can be connected to the main body 7520 wirelessly or by wire.
  • the controller 7522 can include a display unit for displaying a game image, a touch panel or a stick that serves as an input interface other than buttons, a rotary knob, a slide knob, and the like.
  • the controller 7522 is not limited to the shape shown in FIG. 17, and the shape of the controller 7522 may be variously changed according to the genre of the game.
  • a trigger can be used as a button and a controller simulating a gun can be used.
  • a controller having a shape imitating a musical instrument, a musical instrument, or the like can be used.
  • the stationary game machine may be provided with a camera, a depth sensor, a microphone, etc. instead of using the controller, and may be operated by the game player's gesture and / or voice.
  • the video image of the game machine described above can be output by a display device such as a television device, a display for personal computer, a display for game, or a head mounted display.
  • a display device such as a television device, a display for personal computer, a display for game, or a head mounted display.
  • the portable game machine 5200 with low power consumption can be realized. Further, since the heat generation from the circuit can be reduced by the low power consumption, the influence of the heat generation on the circuit itself, the peripheral circuit, and the module can be reduced.
  • the portable game machine 5200 having artificial intelligence can be realized.
  • expressions such as the progress of the game, the behaviors of the creatures appearing in the game, and the phenomena occurring in the game are determined by the program included in the game.
  • artificial intelligence to the portable game machine 5200, It enables expressions that are not limited to game programs. For example, it is possible to express that the content that the player asks, the progress status of the game, the time, and the behavior of the person who appears in the game changes.
  • the artificial intelligence can configure the game player as an anthropomorphic person. You can play games.
  • a portable game machine is illustrated as an example of a game machine, but the electronic device of one embodiment of the present invention is not limited to this.
  • Examples of the electronic device of one embodiment of the present invention include a stationary game machine for home use, an arcade game machine installed in an entertainment facility (game center, amusement park, etc.), and a batting practice pitch installed in a sports facility. Machines and the like.
  • the semiconductor device described in any of the above embodiments can be applied to an automobile which is a moving object and the periphery of a driver's seat of the automobile.
  • FIG. 17 shows an automobile 5700, which is an example of a moving body.
  • an instrument panel that provides various information by displaying speedometer, tachometer, mileage, fuel gauge, gear status, air conditioning settings, etc.
  • a display device showing the information may be provided around the driver's seat.
  • a driver by projecting an image from an imaging device (not shown) provided in the automobile 5700 on the display device, a driver can be provided with a field of view blocked by a pillar or the like and a blind spot in the driver's seat. .. That is, by displaying an image from an imaging device provided outside the automobile 5700, a blind spot can be compensated and safety can be improved.
  • the semiconductor device described in the above embodiment can be applied as a component of artificial intelligence, for example, the semiconductor device described in the above embodiment can be used for the automatic driving system of the automobile 5700.
  • the semiconductor device can be used for a system that performs road guidance, risk prediction, or the like.
  • the display device may be configured to display information such as road guidance and risk prediction.
  • a car is described as an example of the moving body, but the moving body is not limited to a car.
  • a moving object a train, a monorail, a ship, an flying object (a helicopter, an unmanned aerial vehicle (drone), an airplane, a rocket), or the like can be given, and the computer of one embodiment of the present invention is applied to these moving objects.
  • a system using artificial intelligence can be added.
  • FIG. 17 shows a digital camera 6240 which is an example of an image pickup apparatus.
  • the digital camera 6240 includes a housing 6241, a display portion 6242, operation buttons 6243, a shutter button 6244, and the like, and a detachable lens 6246 is attached to the digital camera 6240.
  • the digital camera 6240 is configured such that the lens 6246 can be removed from the housing 6241 and replaced here, the lens 6246 and the housing 6241 may be integrated. Further, the digital camera 6240 may be configured such that a strobe device, a viewfinder, etc. can be separately mounted.
  • the digital camera 6240 with low power consumption can be realized. Further, since the heat generation from the circuit can be reduced by the low power consumption, the influence of the heat generation on the circuit itself, the peripheral circuit, and the module can be reduced.
  • Video camera The semiconductor device described in any of the above embodiments can be applied to a video camera.
  • FIG. 17 shows a video camera 6300, which is an example of an imaging device.
  • the video camera 6300 includes a first housing 6301, a second housing 6302, a display portion 6303, operation keys 6304, a lens 6305, a connecting portion 6306, and the like.
  • the operation key 6304 and the lens 6305 are provided in the first housing 6301, and the display portion 6303 is provided in the second housing 6302.
  • the first housing 6301 and the second housing 6302 are connected by the connecting portion 6306, and the angle between the first housing 6301 and the second housing 6302 can be changed by the connecting portion 6306. is there.
  • the image on the display portion 6303 may be switched according to the angle between the first housing 6301 and the second housing 6302 in the connection portion 6306.
  • the video camera 6300 can perform pattern recognition by artificial intelligence at the time of encoding. By this pattern recognition, it is possible to calculate difference data of a person, an animal, an object, etc. included in continuous captured image data, and compress the data.
  • ICD implantable defibrillator
  • FIG. 17 shows a schematic sectional view showing an example of the ICD.
  • the ICD main body 5400 includes at least a battery 5401, an electronic component 4700, a regulator, a control circuit, an antenna 5404, a wire 5402 to the right atrium, and a wire 5403 to the right ventricle.
  • the ICD main body 5400 is placed inside the body by surgery, and two wires are passed through the subclavian vein 5405 and the superior vena cava 5406 of the human body, one wire tip is placed in the right ventricle, and the other wire tip is placed in the right atrium. To be done.
  • the ICD main body 5400 has a function as a pacemaker, and performs pacing for the heart when the heart rate is out of the specified range. If pacing does not improve heart rate (eg, fast ventricular tachycardia or ventricular fibrillation), treatment with electric shock is given.
  • heart rate eg, fast ventricular tachycardia or ventricular fibrillation
  • the ICD main body 5400 needs to constantly monitor the heart rate in order to properly perform pacing and electric shock. Therefore, the ICD main body 5400 has a sensor for detecting the heart rate. Further, the ICD main body 5400 can store heart rate data acquired by the sensor or the like, the number of times of pacing treatment, time, and the like.
  • the antenna 5404 can receive electric power, and the electric power is charged in the battery 5401. Further, since the ICD main body 5400 has a plurality of batteries, safety can be improved. Specifically, even if a part of the battery of the ICD main body 5400 becomes unusable, the remaining battery can be made to function, so that it also functions as an auxiliary power source.
  • an antenna capable of transmitting a physiological signal may be provided, and for example, a physiological signal such as pulse rate, respiration rate, heart rate, body temperature, etc. can be confirmed by an external monitor device.
  • a system for monitoring active heart activity may be configured.
  • the ICD main body 5400 having artificial intelligence can be realized.
  • the ICD main body 5400 can monitor heart activity such as pulse rate, respiration rate, and heart rate, and appropriately perform pacing or electric shock treatment according to the content of the heart activity. Sometimes you can.
  • the semiconductor device described in the above embodiment can be applied to a computer such as a PC (Personal Computer) or an expansion device for an information terminal.
  • a computer such as a PC (Personal Computer) or an expansion device for an information terminal.
  • FIG. 18A shows, as an example of the expansion device, an expansion device 6100 externally attached to a PC, which is equipped with a portable, arithmetic-processing chip.
  • the expansion device 6100 can perform arithmetic processing by the chip by connecting to the PC with, for example, a USB (Universal Serial Bus) or the like.
  • FIG. 18A illustrates the portable expansion device 6100, the expansion device according to one embodiment of the present invention is not limited to this; It may be a large form of expansion device.
  • the expansion device 6100 has a housing 6101, a cap 6102, a USB connector 6103, and a board 6104.
  • the substrate 6104 is housed in the housing 6101.
  • a circuit for driving the semiconductor device and the like described in the above embodiment is provided on the substrate 6104.
  • a chip 6105 for example, the semiconductor device described in the above embodiment, an electronic component 4700, a memory chip, or the like
  • a controller chip 6106 are attached to the substrate 6104.
  • the USB connector 6103 functions as an interface for connecting to an external device.
  • the processing capacity of the PC can be increased. As a result, even a PC with insufficient processing capacity can perform calculations such as artificial intelligence and moving image processing.
  • FIG. 18B schematically shows data transmission in the broadcasting system. Specifically, FIG. 18B shows a path through which a radio wave (broadcast signal) transmitted from the broadcasting station 5680 reaches a television receiver (TV) 5600 in each home.
  • the TV 5600 includes a receiving device (not shown), and the broadcast signal received by the antenna 5650 is transmitted to the TV 5600 via the receiving device.
  • the antenna 5650 is a UHF (Ultra High Frequency) antenna.
  • a BS / 110 ° CS antenna, a CS antenna, or the like can be applied as the antenna 5650.
  • Radio waves 5675A and 5675B are broadcast signals for terrestrial broadcasting, and a radio tower 5670 amplifies the received radio wave 5675A and transmits the radio wave 5675B. In each home, the reception of the radio wave 5675B by the antenna 5650 allows the terrestrial broadcast to be viewed on the TV 5600.
  • the broadcasting system is not limited to the terrestrial broadcasting shown in FIG. 18B, and satellite broadcasting using an artificial satellite, data broadcasting using an optical line, etc. may be used.
  • the broadcasting system described above may be a broadcasting system using artificial intelligence by applying the semiconductor device described in the above embodiments.
  • the encoder compresses the broadcasting data
  • the decoder of the receiving device included in the TV 5600 decodes the broadcasting data. Restore is performed.
  • the artificial intelligence it is possible to recognize the display pattern included in the display image in the motion compensation prediction which is one of the encoder compression methods. It is also possible to perform intra-frame prediction using artificial intelligence. Further, for example, when receiving broadcast data having a low resolution and displaying the broadcast data on the TV 5600 having a high resolution, an image interpolation process such as up-conversion can be performed when the decoder restores the broadcast data.
  • the above-mentioned broadcasting system using artificial intelligence is suitable for ultra-high definition television (UHDTV: 4K, 8K) broadcasting in which the amount of broadcasting data increases.
  • UHDTV ultra-high definition television
  • the TV 5600 may be provided with a recording device having artificial intelligence.
  • the program can be automatically recorded by allowing the recording apparatus to learn the user's preference by artificial intelligence.
  • FIG. 18C shows a palm print authentication device, which includes a housing 6431, a display portion 6432, a palm print reading portion 6433, and a wiring 6434.
  • FIG. 18C shows how the palmprint authentication device acquires the palmprint of hand 6435.
  • the acquired palm print is subjected to pattern recognition processing using artificial intelligence, and it is possible to determine whether or not the palm print belongs to the person. As a result, it is possible to construct a system that performs highly secure authentication.
  • the authentication system according to one embodiment of the present invention is not limited to a palm print authentication device, and is a device for performing biometric authentication by acquiring biometric information such as a fingerprint, vein, face, iris, voiceprint, gene, and physique. Good.
  • MCL memory cell part
  • OSC circuit, OSC1: circuit, OSC2: circuit
  • OSM circuit
  • ARP circuit
  • PRPH circuit
  • ARC arithmetic circuit
  • PRCR control circuit
  • WLD circuit
  • BLD circuit
  • OPC Output circuit
  • CD column decoder
  • SA sense amplifier
  • PRC precharge circuit
  • WC write circuit
  • CVC circuit
  • CME circuit
  • WDD circuit
  • WWD circuit
  • VLD circuit
  • AMA arithmetic cell unit
  • AM [m] arithmetic cell
  • CS1 current source circuit
  • CS2 current source circuit
  • CS3 current source circuit
  • CS4 current source circuit
  • MCA memory cell array
  • SRG string
  • MC Memory cell
  • MC [1,1] memory cell
  • MC [i, 1] memory cell
  • MC [m, 1] memory cell
  • MC [1, j] memory cell
  • PCM phase change memory
  • WL [1] wiring, WL [m]: wiring, W1L: wiring, W2L: wiring, RBL: wiring, WBL: wiring, SL: wiring, C1L: wiring, C2L: wiring, BLB: wiring
  • 4800 Semiconductor wafer, 4800a: Chip, 4801: Wafer, 4801a: Wafer, 4802: Circuit part, 4803: Spacing, 4803a: Spacing, 5200: Handheld game machine, 5201: Housing, 5202: Display part, 5203 : Button, 5300: Desktop information terminal, 5301: Main body, 5302: Display, 5303: Keyboard, 5400: ICD main body, 5401: Battery, 5402: Wire, 5403: Wire, 5404: Antenna, 5405: Subclavian vein, 5406 : Superior vena cava, 5500: information terminal, 5510: housing, 5511: display unit, 5600: TV, 5650: antenna, 5670: radio tower, 5675A: radio wave, 5675B: radio wave, 5680: broadcasting station, 5700: automobile, 5800: electric freezer / refrigerator, 5801: housing, 5802: refrigerating room door, 5803: freezing room door, 5901: housing, 5902

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Neurology (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)

Abstract

要約書 少ない消費電力で演算処理を行う半導体装置を提供する。 基板上に位置する第1回路と、第1回路上に位置する第2回路と、を有する半導体装置である。第 2回路は、第3回路と、第4回路と、を有する。第1回路は、メモリセルを有する記憶回路であっ て、第3回路は、演算処理を行う回路であって、第4回路は、メモリセルへのデータの書き込みと、 メモリセルからのデータの読み出しと、を行う機能を有する回路である。メモリセルを第4回路が 重畳している領域に設け、かつメモリセルと第4回路を電気的に接続する配線の一部又は全部を、 基板に対して垂直に設けることによって、メモリセルと第4回路との間のデータ転送に必要な時間 を短くする。

Description

半導体装置、及び電子機器
 本発明の一態様は、半導体装置、及び電子機器に関する。
 なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、又は、製造方法に関するものである。又は、本発明の一態様は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、蓄電装置、撮像装置、記憶装置、信号処理装置、プロセッサ、電子機器、システム、それらの駆動方法、それらの製造方法、又はそれらの検査方法を一例として挙げることができる。
 パーソナルコンピュータ、スマートフォン、デジタルカメラなどさまざまな電子機器に、セントラルプロセシングユニット(CPU)、グラフィクスプロセシングユニット(GPU)、記憶装置、センサなどの電子部品が用いられており、当該電子部品は、微細化、及び低消費電力など様々な面で改良が進んでいる。
 特に、近年、上述した電子部品などによって扱われるデータ量は増加している。データ量が増加するほど、データの転送量も多くなり、また、電子部品が行う処理の数も多くなる。そのため、電子部品における消費電力が高くなる傾向があり、当該消費電力を低くするために、ボルテージスケーリング動作、パワーゲーティング動作などの技術が考えられている。特許文献1には、演算処理回路にバックアップ回路が設けられて、パワーゲーティング動作などを行う前にバックアップ回路に一時的にデータを退避させる半導体装置について開示されている。
特開2016−42352号公報
 一般的には、CPUなどのプロセッサには、演算回路とキャッシュメモリが含まれており、演算回路とキャッシュメモリとの距離を短くすることで、データ転送に必要な時間、及び電力を低減することができる。但し、プロセッサは、メインメモリ、不揮発性メモリなどから距離が離れて設けられるため、メインメモリ、不揮発性メモリなどからプロセッサへのデータの転送に必要な時間、及び電力は高くなる。また、キャッシュメモリとしては、SRAM(Static Random Access Memory)が多く採用されており、SRAMは揮発性メモリであるため、プロセッサが駆動中の時には、常に電力を消費する。
 本発明の一態様は、新規な半導体装置を提供することを課題の一とする。また、本発明の一態様は、消費電力が小さい半導体装置を提供することを課題の一とする。また、本発明の一態様は、回路面積が小さい半導体装置を提供することを課題の一とする。また、本発明の一態様は、データ転送に要する時間が短い半導体装置を提供することを課題の一とする。また、本発明の一態様は、半導体装置を有する新規な電子機器を提供することを課題の一とする。
 なお本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した課題、及び他の課題のうち、少なくとも一つの課題を解決するものである。なお、本発明の一態様は、上記列挙した課題、及び他の課題の全てを解決する必要はない。
(1)
 本発明の一態様は、第1回路と、第1回路上に位置する第2回路と、を有し、第1回路は、第2回路に電気的に接続され、第1回路は、メモリセルを有し、第2回路は、第3回路と、第4回路と、を有し、第3回路は、第4回路に電気的に接続され、第3回路は、演算処理を行って、第1データを出力する機能を有し、第4回路は、メモリセルに第1データを書き込む機能と、メモリセルから第2データを読み出す機能と、を有し、メモリセルは、第4回路が重畳している領域に含まれている半導体装置である。
(2)
 又は、本発明の一態様は、上記(1)の構成において、第1回路は、NANDメモリを有し、NANDメモリは、メモリセルを有する半導体装置である。
(3)
 又は、本発明の一態様は、上記(1)、又は(2)の構成において、第2回路は、単極性回路であって、第2回路は、第1トランジスタを有し、第1トランジスタは、チャネル形成領域に金属酸化物を有する半導体装置である。
(4)
 又は、本発明の一態様は、上記(1)乃至(3)のいずれか一の構成において、第2回路は、第5回路を有し、第5回路は、メモリセルの代わりに、第1データを記憶する機能を有する半導体装置である。
(5)
 又は、本発明の一態様は、上記(1)乃至(4)のいずれか一の構成において、演算処理は、階層型のニューラルネットワークにおける演算であって、第1データは、重み係数と、ニューロンの出力信号と、に応じたデータである半導体装置である。
(6)
 又は、本発明の一態様は、上記(1)乃至(5)のいずれか一の半導体装置と、筐体と、を有する電子機器である。
 なお、本明細書等において、半導体装置とは、半導体特性を利用した装置であり、半導体素子(トランジスタ、ダイオード、フォトダイオード等)を含む回路、同回路を有する装置等をいう。また、半導体特性を利用することで機能しうる装置全般をいう。例えば、集積回路、集積回路を備えたチップや、パッケージにチップを収納した電子部品は半導体装置の一例である。また、記憶装置、表示装置、発光装置、照明装置及び電子機器等は、それ自体が半導体装置であり、半導体装置を有している場合がある。
 また、本明細書等において、XとYとが接続されていると記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図又は文章に示された接続関係に限定されず、図又は文章に示された接続関係以外のものも、図又は文章に開示されているものとする。X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層など)であるとする。
 XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示デバイス、発光デバイス、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。
 XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(デジタルアナログ変換回路、アナログデジタル変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅又は電流量などを大きくできる回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。
 なお、XとYとが電気的に接続されている、と明示的に記載する場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とを含むものとする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続されている、とのみ明示的に記載されている場合と同じであるとする。
 また、例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。又は、「トランジスタのソース(又は第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。又は、「Xは、トランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
 また、本明細書等において、トランジスタは、ゲート、ソース、及びドレインと呼ばれる3つの端子を有する。ゲートは、トランジスタの導通状態を制御する制御端子である。ソース又はドレインとして機能する2つの端子は、トランジスタの入出力端子である。2つの入出力端子は、トランジスタの導電型(nチャネル型、pチャネル型)及びトランジスタの3つの端子に与えられる電位の高低によって、一方がソースとなり他方がドレインとなる。このため、本明細書等においては、ソースやドレインの用語は、言い換えることができるものとする。また、本明細書等では、トランジスタの接続関係を説明する際、「ソース又はドレインの一方」(又は第1電極、又は第1端子)、「ソース又はドレインの他方」(又は第2電極、又は第2端子)という表記を用いる。なお、トランジスタの構造によっては、上述した3つの端子に加えて、バックゲートを有する場合がある。この場合、本明細書等において、トランジスタのゲート又はバックゲートの一方を第1ゲートと呼称し、トランジスタのゲート又はバックゲートの他方を第2ゲートと呼称することがある。更に、同じトランジスタにおいて、「ゲート」と「バックゲート」の用語は互いに入れ換えることができる場合がある。また、トランジスタが、3以上のゲートを有する場合は、本明細書等においては、それぞれのゲートを第1ゲート、第2ゲート、第3ゲートなどと呼称することがある。
 また、本明細書等において、ノードは、回路構成やデバイス構造等に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、配線等をノードと言い換えることが可能である。
 また、本明細書等において、「電圧」と「電位」は、適宜言い換えることができる。「電圧」は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、「電圧」を「電位」に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
「電流」とは、電荷の移動現象(電気伝導)のことであり、例えば、「正の荷電体の電気伝導が起きている」という記載は、「その逆向きに負の荷電体の電気伝導が起きている」と換言することができる。そのため、本明細書等において、「電流」とは、特に断らない限り、キャリアの移動に伴う電荷の移動現象(電気伝導)をいうものとする。ここでいうキャリアとは、電子、正孔、アニオン、カチオン、錯イオン等が挙げられ、電流の流れる系(例えば、半導体、金属、電解液、真空中など)によってキャリアが異なる。また、配線等における「電流の向き」は、正のキャリアが移動する方向とし、正の電流量で記載する。換言すると、負のキャリアが移動する方向は、電流の向きと逆の方向となり、負の電流量で表現される。そのため、本明細書等において、電流の正負(又は電流の向き)について断りがない場合、「素子Aから素子Bに電流が流れる」等の記載は「素子Bから素子Aに電流が流れる」等に言い換えることができるものとする。また、「素子Aに電流が入力される」等の記載は「素子Aから電流が出力される」等に言い換えることができるものとする。
 また、本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において省略することもありうる。
 また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている場合がある。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書等で説明した語句に限定されず、状況に応じて適切に言い換えることができる。例えば、「導電体の上面に位置する絶縁体」の表現では、示している図面の向きを180度回転することによって、「導電体の下面に位置する絶縁体」と言い換えることができる。
 また、「上」や「下」の用語は、構成要素の位置関係が直上又は直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
 また、本明細書等において、「膜」、「層」などの語句は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。又は、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。又は、場合によっては、又は、状況に応じて、「膜」、「層」などの語句を使わずに、別の用語に入れ替えることが可能である。例えば、「導電層」又は「導電膜」という用語を、「導電体」という用語に変更することが可能な場合がある。又は、例えば、「絶縁層」「絶縁膜」という用語を、「絶縁体」という用語に変更することが可能な場合がある。
 また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
 また、本明細書等において、「配線」、「信号線」、「電源線」などの用語は、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「配線」という用語を、「信号線」という用語に変更することが可能な場合がある。また、例えば、「配線」という用語を、「電源線」などの用語に変更することが可能な場合がある。また、その逆も同様で、「信号線」「電源線」などの用語を、「配線」という用語に変更することが可能な場合がある。「電源線」などの用語は、「信号線」などの用語に変更することが可能な場合がある。また、その逆も同様で「信号線」などの用語は、「電源線」などの用語に変更することが可能な場合がある。また、配線に印加されている「電位」という用語を、場合によっては、又は、状況に応じて、「信号」などという用語に変更することが可能な場合がある。また、その逆も同様で、「信号」などの用語は、「電位」という用語に変更することが可能な場合がある。
 本明細書等において、半導体の不純物とは、例えば、半導体層を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることにより、例えば、半導体にDOS(Density of States)が形成されることや、キャリア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。具体的には、半導体がシリコン層である場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
 本明細書等において、スイッチとは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。又は、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。一例としては、電気的なスイッチ、機械的なスイッチなどを用いることができる。つまり、スイッチは、電流を制御できるものであればよく、特定のものに限定されない。
 電気的なスイッチの一例としては、トランジスタ(例えば、バイポーラトランジスタ、MOSトランジスタなど)、ダイオード(例えば、PNダイオード、PINダイオード、ショットキーダイオード、MIM(Metal Insulator Metal)ダイオード、MIS(Metal Insulator Semiconductor)ダイオード、ダイオード接続のトランジスタなど)、又はこれらを組み合わせた論理回路などがある。なお、スイッチとしてトランジスタを用いる場合、トランジスタの「導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に短絡されているとみなせる状態をいう。また、トランジスタの「非導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に遮断されているとみなせる状態をいう。なおトランジスタを単なるスイッチとして動作させる場合には、トランジスタの極性(導電型)は特に限定されない。
 機械的なスイッチの一例としては、MEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いたスイッチがある。そのスイッチは、機械的に動かすことが可能な電極を有し、その電極が動くことによって、導通と非導通とを制御して動作する。
 本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」又は「概略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」又は「概略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
 本発明の一態様によって、新規な半導体装置を提供することができる。また、本発明の一態様によって、消費電力が小さい半導体装置を提供することができる。また、本発明の一態様によって、回路面積が小さい半導体装置を提供することができる。また、本発明の一態様によって、データ転送に要する時間が短い半導体装置を提供することができる。また、本発明の一態様によって、半導体装置を有する新規な電子機器を提供することができる。
 なお本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、及び他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一態様は、場合によっては、上記列挙した効果を有さない場合もある。
図1A、図1B、図1C、図1Dは半導体装置の構成を説明する模式図である。
図2は半導体装置の構成を説明するブロック図である。
図3A、図3Bは半導体装置の構成を説明する模式図である。
図4は半導体装置の構成を説明するブロック図である。
図5は半導体装置の構成を説明するブロック図である。
図6は半導体装置の構成を説明するブロック図である。
図7は半導体装置に含まれている回路を説明するブロック図である。
図8A、図8B、図8C、図8D、図8Eは半導体装置に含まれている回路を説明する回路図である。
図9A、図9Bは半導体装置の含まれている回路を説明するブロック図である。
図10A、図10B、図10C、図10D、図10Eは半導体装置に含まれている回路を説明する回路図である。
図11A、図11B、図11Cは半導体装置に含まれている回路を説明する回路図である。
図12は半導体装置の構成を説明する断面模式図である。
図13は半導体装置の構成を説明する断面模式図である。
図14は半導体装置の構成を説明する断面模式図である。
図15A、図15B、図15Cは半導体装置の構成を説明する断面模式図である。
図16A、図16B、図16C、図16Dは半導体ウェハと電子部品の一例を示す斜視図である。
図17は製品の一例を説明する斜視図である。
図18A、図18B、図18Cは製品の一例を説明する斜視図である。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductor又は単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅作用、整流作用、及びスイッチング作用の少なくとも1つを有するトランジスタのチャネル形成領域を構成し得る場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)と呼ぶことができる。また、OSトランジスタと記載する場合においては、金属酸化物又は酸化物半導体を有するトランジスタと換言することができる。
 また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
 また、本明細書等において、各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、互いに構成例を適宜組み合わせることが可能である。
 なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)と、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)との少なくとも一つの内容に対して、適用、組み合わせ、又は置き換えなどを行うことができる。
 なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
 なお、ある一つの実施の形態において述べる図は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)と、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)との少なくとも一つの図に対して、組み合わせることにより、さらに多くの図を構成させることができる。
 本明細書に記載の実施の形態について図面を参照しながら説明している。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなく、その形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態の発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、斜視図などにおいて、図面の明確性を期すために、一部の構成要素の記載を省略している場合がある。
 本明細書等において、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“_1”、“[n]”、“[m,n]”等の識別用の符号を付記して記載する場合がある。
 また、本明細書の図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
(実施の形態1)
 本実施の形態では、本発明の一態様である半導体装置について説明する。
 図1Aに示す半導体装置は、回路OSCがメモリセル部MCLに重畳する構成を有する。回路OSCは、各種演算やプログラムの実行など、汎用の処理を行う機能と、メモリセル部MCLを制御する機能と、を有する。演算の一例としては、グラフィック処理における行列計算の並列処理、人工知能に用いられるニューラルネットワークなどの積和演算の並列処理などが挙げられる。メモリセル部MCLは、回路OSCにおいて当該演算で扱われるデータを一時的に保持する機能を有する。
 メモリセル部MCLは、例えば、基板上に複数のメモリセルが構成され、回路OSCに含まれる書き込み回路、読み出し回路などによってデータの書き込み、読み出しが行われる。
 当該半導体装置として適用できる基板は、例えば、シリコンや炭化シリコンなどを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウムなどを材料とした化合物半導体基板等とすることができる。また、基板としては、例えば、SOI基板や、半導体基板上に歪トランジスタやFIN型トランジスタなどの半導体素子が設けられたものなどとすることもできる。また、バリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板、セラミック基板、石英基板、サファイア基板などを用いることもできる。更に、基板としては、例えば、可撓性基板(フレキシブル基板)を用いてもよい。
 当該基板は、メモリセル部MCLに含まれているメモリセルの構成に応じて選択することが好ましい。例えば、メモリセル部MCLとして、3次元構造のNANDメモリ素子を適用する場合、当該基板としては、シリコン基板とするのが好ましい。
 メモリセル部MCLと回路OSCとは、配線EWによって電気的に接続されている。配線EWは、メモリセル部MCLに含まれているメモリセルと、回路OSCと、を電気的に接続する配線として機能する。なお、配線EWは、ビット線(書き込みビット線、読み出しビット線など)、ワード線、定電圧を供給する電圧線などから選ばれた一種以上の配線とすることができ、選ばれた配線の種類及び本数は、当該メモリセルの回路構成に応じて決められる。
 回路OSCは、メモリセル部MCLの上方に重畳しているため、メモリセル部MCLと回路OSCはそれぞれ異なるプロセスで作製することができる。具体的には、メモリセル部MCLと回路OSCとのそれぞれに含まれるトランジスタを互いに異なる構成にすることができる。例えば、メモリセル部MCLとして3次元構造のNANDメモリ素子を適用する場合、NANDメモリ素子には、シリコンがチャネル形成領域に含まれているトランジスタ(以後、Siトランジスタと呼称する。)を適用し、NANDメモリ素子を制御する回路OSCは、金属酸化物がチャネル形成領域に含まれているOSトランジスタを適用することができる。特に、OSトランジスタは、Siトランジスタよりも形成温度が低いため、回路OSCをOSトランジスタによる単極性回路として構成することで、メモリセル部MCLに含まれているSiトランジスタに与えられる熱の影響を少なくすることができる。また、メモリセル部MCLの上方に回路OSCが重畳するため、半導体装置の回路面積の増加を抑えることができる。また、メモリセル部MCLと回路OSCとの間のデータ移動距離が短くなるため、消費電力の増加を抑えることができる。
 また、本発明の一態様の半導体装置は、回路OSCが複数個、重畳された構成としてもよい。例えば、本発明の一態様の半導体装置は、図1Bに示すとおり、メモリセル部MCLの上方に回路OSC1が重畳され、回路OSC1の上方に回路OSC2が重畳された構成としてもよい。なお、図1Bにおいて、メモリセル部MCLと回路OSC1とは配線EW1によって電気的に接続され、回路OSC1と回路OSC2とは配線EW2によって電気的に接続されている。また、この場合、回路OSC1及び回路OSC2のそれぞれは、異なる機能を有する構成にすることができる。例えば、回路OSC1は、メモリセル部MCLを制御する機能を有し、回路OSC2は、各種演算やプログラムの実行など、汎用の処理を行う機能を有する構成にすることができる。
 また、本発明の一態様の半導体装置は、図1Cに示すとおり、メモリセル部MCLは、回路OSCに重畳している構成としてもよい。
 また、本発明の一態様の半導体装置は、図1Dに示すとおり、メモリセル部MCLと回路OSCとが同一の層に含まれている構成、又はメモリセル部MCLと回路OSCとの高さが互いに揃っている構成としてもよい。
 次に、メモリセル部MCLと回路OSCの構成について説明する。
 図2は、図1Aに示した半導体装置に含まれるメモリセル部MCLと回路OSCとの一例を示している。
 メモリセル部MCLは、メモリセルアレイMCAを有する。メモリセルアレイMCAは、複数のメモリセルMCを有し、複数のメモリセルMCは、マトリクス状に配置されている。なお、図2のメモリセルアレイMCAは、1列にm個、1行にn個、つまりm×n個のメモリセルMCを有する。また、図2では、i行j列(ここでのiは1以上m以下の整数であって、jは1以上n以下の整数である。)に位置するメモリセルMCを、MC[i,j]と表記している。但し、図2では、メモリセルMC[1,1]、メモリセルMC[i,1]、メモリセルMC[m,1]、メモリセルMC[1,j]、メモリセルMC[i,j]、メモリセルMC[m,j]、メモリセルMC[1,n]、メモリセルMC[i,n]、メモリセルMC[m,n]のみ図示しており、それ以外のメモリセルMCについては図示を省略している。
 図2に示す配線WL、配線BL、配線CLのそれぞれは、図1Aに示す配線EWに相当する。配線WLは、複数のワード線であって、配線WLのそれぞれは、マトリクスの行毎に、メモリセルMCに電気的に接続されている。また、配線BLは、複数のビット線であって、配線BLのそれぞれは、マトリクスの列毎に、メモリセルMCに電気的にされている。また、配線CLは、複数の電圧線であって、配線CLのそれぞれは、マトリクスの行毎に、メモリセルMCに電気的に接続されている。
 なお、図2の半導体装置に示している配線WL、配線BL、配線CLは、一例であって、メモリセルMCの構成に応じて、配線の種類及び本数が決まる。例えば、配線BLは、図2では、ビット線として図示しているが、当該ビット線を書き込みビット線と読み出しビット線の2本としてもよい。また、メモリセルMCの構成がSRAM(Static Random Access Memory)である場合、データを書き込むデジタルの信号と、その反転信号のそれぞれを転送するため、配線BLは2本の配線としてもよい。なお、メモリセルMCの構成がSRAMである場合については、実施の形態2で説明する。また、例えば、図2では、1つのメモリセルMCに対して1本の配線WLが電気的に接続されている構成を図示しているが、1つのメモリセルMCに対して2本以上の配線WLが電気的に接続されていてもよい。また、例えば、図2では、1つのメモリセルMCに対して1本の配線CLが電気的に接続されている構成を図示しているが、1つのメモリセルMCに対して2本以上の配線CLが電気的に接続されていてもよい。
 回路OSCは、一例として、回路ARPと、回路PRPHと、を有する。回路ARPは、半導体装置に与えられた命令(演算などに必要な入力データを含む)を受け取って、当該命令に従って、各種演算やプログラムの実行などを行う機能と、当該演算や当該プログラムの実行中に生じる一時的なデータ、又は実行結果のデータを、メモリセル部MCLに保持するために、回路PRPHに送信する機能と、を有する。回路PRPHは、メモリセル部MCLに含まれるメモリセルMCに対して、当該演算や当該プログラムの実行中に生じたデータ、又は実行結果のデータの書き込み、又は当該データの読み出しを行う機能と、読み出したデータを回路ARPに送信する機能と、を有する。なお、回路ARPから回路PRPHにデータを送信する機能として、当該データの保存先を示すアドレスの情報も当該データと共に送信してもよい。
 回路PRPHは、一例として、回路WLDと、回路BLDと、回路CVCと、を有する。回路WLDは、ワード線ドライバ回路として機能し、配線WLに電気的に接続されている。回路BLDは、ビット線ドライバ回路として機能し、配線BLに電気的に接続されている。回路CVCは、定電圧を生成し、かつ当該定電圧を出力する電圧源として機能し、配線CLに接続されている。なお、回路CVCは、回路PRPHに含まれていなくてもよく、例えば、半導体装置の外部に設けられていてもよい。この場合、半導体装置は、外部からメモリセル部MCLに定電圧が与えられる構成となる。
 なお、メモリセルMCの回路構成によっては、配線CLから印加される定電圧を必要としなくてもよい場合がある。その場合、本発明の一態様の半導体装置は、配線CLを有さない構成としてもよい。つまり、回路PRPHは、回路CVCを有さない構成としてよい。
 また、メモリセルMCは、回路PRPHが重畳している領域に含まれていることが好ましい。具体的には、図3Aに示すとおり、複数のメモリセルアレイの一が含まれているメモリセルMCは、回路OSCの複数の回路PRPHの一が重畳している領域に含まれていることが好ましい。また、メモリセルMCと回路PRPHとを電気的に接続する配線BL(またはプラグという場合がある。)の全て、又は一部は、半導体装置が設けられている基板に対して、概略垂直に設けられることが好ましく、又は、垂直に設けられることがより好ましい。この構成にすることによって、メモリセルMCと回路PRPHとを電気的に接続している配線BLを長く引き回す必要がなくなるため、配線BLを短くすることができる。これにより、配線BLを介することによるデータの移動距離を短くすることができるため、データの移動に必要な消費電力を低減することができる。また、配線BLだけでなく、配線WL、配線CLも短くすることができるため、電圧入力に必要な消費電力を低減することができる。
 回路ARPは、制御回路PRCRと、演算回路ARCと、を有する。制御回路PRCRは、一例として、半導体装置の外部から命令(例えば、演算、プログラムなど)とデータを受け取る機能と、演算回路ARCに対して、当該データを用いて当該命令に応じた処理を実行させる機能と、回路PRPHにアクセスして、メモリセル部MCLへのデータの書き込み、又は、メモリセル部MCLからのデータの読み出しを行う機能と、を有する。
 なお、当該処理の途中の一時的なデータ、又は当該処理の結果のデータは、例えば、制御回路PRCRから回路PRPHが有する回路BLDに送信される。なお、当該処理の途中の一時的なデータ、又は当該処理の結果のデータは、演算回路ARCから直接、回路PRPHが有する回路BLDに送信される場合でもよい。また、当該処理の途中の一時的なデータ、又は当該処理の結果のデータの保存先のアドレスは、例えば、制御回路PRCRから回路WLD、及び回路BLDに送信される。
 なお、図2では、回路OSCは、メモリセル部MCLを制御する回路PRPHと演算機能を有するARPとを有する構成を図示しているが、本発明の一態様は、これに限定されない。例えば、図4に示すとおり、メモリセル部MCLとは別の回路である、情報を記憶する機能を有する回路OSMを、回路OSCに設けてもよい。図4に示す半導体装置は、メモリセル部MCLだけでなく、回路OSMに、処理途中の一時的なデータ、又は処理結果のデータを記憶させることができる。また、この構成を半導体装置に適用することによって、メモリセル部MCLに不良セルが発見されたときに、不良セルの代わりに回路OSMをデータの記憶場所として用いることができる。
 次に、図2の半導体装置が有するメモリセル部MCLの構成が異なる、半導体装置の構成について説明する。
 図5には、図1Aのメモリセル部MCLが、NANDメモリ素子を有する構成例を示している。
 メモリセルアレイMCAは、複数本のストリングSRGを有する。ストリングSRGは、配線BLに電気的に接続されている。ストリングSRGは、直列に電気的に接続された複数のトランジスタCTrと、選択用トランジスタであるトランジスタBTr及びトランジスタSTrと、を有する。なお、1個のトランジスタCTrは、セルトランジスタとして機能し、ストリングSRGが有するメモリセルMCに含まれる。
 一般的に、セルトランジスタは、ノーマリーオン特性で動作するトランジスタであり、制御ゲートと、電荷蓄積層と、を有する。電荷蓄積層は、トンネル絶縁膜を介して、チャネル形成領域と重畳する領域に設けられ、制御ゲートは、ブロッキング膜を介して、電荷蓄積層と重畳する領域に設けられる。セルトランジスタは、制御ゲートに書き込み電位を印加し、かつセルトランジスタの第1端子、又は第2端子の一方に所定の電位を与えることによってトンネル電流が発生して、当該セルトランジスタのチャネル形成領域から電荷蓄積層に電子が注入される。これにより、電荷蓄積層に電子が注入されたセルトランジスタでは、しきい値電圧が高くなる。なお、電荷蓄積層の代わりとして、浮遊ゲートを用いてもよい。
 トランジスタBTr、トランジスタCTr、トランジスタSTrのチャネル形成領域は、例えば、シリコン、ゲルマニウム、ガリウムヒ素、シリコンカーバイド(SiC)、実施の形態3で説明する金属酸化物などのいずれか一、又は上記から選ばれた複数の材料を有することが好ましい。特に、当該チャネル形成領域において、インジウム、元素M(元素Mとしては、例えば、アルミニウム、ガリウム、イットリウム、錫など)、亜鉛から一、又は複数選ばれた金属酸化物が含まれる場合、当該金属酸化物は、ワイドギャップ半導体として機能することがあり、当該金属酸化物がチャネル形成領域に含まれているトランジスタBTr、トランジスタCTr、トランジスタSTrは、オフ電流が非常に低い特性を有する。つまり、オフ状態となっているトランジスタBTr、トランジスタCTr、トランジスタSTrにおけるリーク電流を低くすることができるため、半導体装置の消費電力を低減することができる場合がある。
 次に、配線BLに電気的に接続されているストリングSRGの接続構成を説明する。トランジスタBTrの第1端子は配線BLに電気的に接続され、トランジスタSTrの第1端子は、配線CLに電気的に接続されている。直列に電気的に接続されている複数のトランジスタCTrの一端には、トランジスタBTrの第2端子が電気的に接続され、直列に電気的に接続されている複数のトランジスタCTrの他端には、トランジスタSTrの第2端子が電気的に接続されている。
 配線BSL、配線SSLは、書き込み、読み出し、消去などの動作を行うときに、当該動作を施されるストリングを選択するための配線として機能する。配線BSLは、メモリセル部MCLに含まれるトランジスタBTrのゲートに電気的に接続され、配線SSLは、メモリセル部MCLに含まれるトランジスタSTrのゲートに電気的に接続されている。
 なお、図5において、メモリセル部MCLは、1本の配線BLにつき1本のストリングSRGが電気的に接続されている構成としているが、本発明の一態様は、これに限定されない。例えば、図6に示すとおり、メモリセル部MCLは、1本の配線BLにつき複数本のストリングSRGが電気的に接続された構成としてもよい。
 ここで、図2、図4乃至図6に示す回路ARPと回路PRPHの詳細について説明する。図7は、本発明の一態様の半導体装置に含まれる回路ARPと回路PRPHの一例を示している。
 回路BLDは、制御回路PRCRから送られてきたデータ信号WDATAを、メモリセルMCに書き込むために配線BLに送信する機能と、メモリセルMCから読み出されたデータを適切に処理して、データ信号RDATAとして制御回路PRCRに出力する機能と、有する。
 例えば、回路BLDは、書き込み回路WC、プリチャージ回路PRC、センスアンプSA、カラムデコーダCD、出力回路OPCを有する構成とすることができる。
 カラムデコーダCDは、制御回路PRCRから取得したアドレス信号ADDRに応じて、書き込み、又は読み出しの対象となるメモリセルMCを有する配線BLを選択する機能を有する。書き込み回路WCは、カラムデコーダCDによって選択された配線BLにデータ信号WDATAを送信する機能を有する。
 プリチャージ回路PRCは、配線BLに定電圧をプリチャージする機能を有する。また、センスアンプSAは、配線BLから読み出されたデータ信号を増幅する機能を有する。なお、増幅されたデータ信号は、データ信号RDATAとして、出力回路OPCを介して、制御回路PRCRに出力される。
 なお、本発明の一態様の半導体装置は、図1A、図1B、図1C、図1D、図2、図3A、図3B、図4乃至図7に示した回路OSCを含む半導体装置に限定されない。本発明の一態様の半導体装置は、状況に応じて、図1A、図1B、図1C、図1D、図2、図3A、図3B、図4乃至図7に示した回路OSCを含む半導体装置の構成を変更してもよい。
 ここで、演算回路ARCに適用できる回路の例について説明する。なお、演算回路ARCを含む回路OSCは、上述の通り、単極性回路であることが好ましいため、以下に説明する演算回路ARCの構成例も、単極性回路としている。
<論理回路の例>
 図8A乃至図8Dのそれぞれは、単極性回路で構成された論理回路の一例であって、演算回路ARCを論理回路として構成する場合、図8A乃至図8Dに図示した論理回路を用いることができる。
 図8Aには、インバータ回路の一例を示しており、端子ITは当該インバータ回路の入力端子であって、端子OTは当該インバータ回路の出力端子である。
 当該インバータ回路は、トランジスタTrA1乃至トランジスタTrA4と、容量素子CA1と、を有する。
 なお、本明細書等において、トランジスタTrA1乃至トランジスタTrA4は、回路OSCに含まれている他の回路と同様のプロセスで作製できるトランジスタであることが好ましい。また、トランジスタTrA1乃至トランジスタTrA4のそれぞれのチャネル形成領域に含まれる材料は、回路OSCに含まれている他のトランジスタのチャネル形成領域に含まれる材料と同じであることが好ましい。例えば、トランジスタTrA1乃至トランジスタTrA4のそれぞれは、OSトランジスタであることが好ましい。
 トランジスタTrA1の第1端子は、トランジスタTrA1のゲートと、配線VHLと、に電気的に接続され、トランジスタTrA1の第2端子は、トランジスタTrA2の第1端子と、トランジスタTrA3のゲートと、容量素子CA1の第1端子と、に電気的に接続され、トランジスタTrA2の第2端子は、配線VLLに電気的に接続されている。端子ITは、トランジスタTrA2のゲートと、トランジスタTrA4のゲートと、に電気的に接続されている。トランジスタTrA3の第1端子は、配線VHLに電気的に接続され、トランジスタTrA3の第2端子は、トランジスタTrA4の第1端子と、容量素子CA1の第2端子と、端子OTと、に電気的に接続されている。トランジスタTrA4の第2端子は、配線VLLに電気的に接続されている。
 配線VHL、配線VLLのそれぞれは、定電圧を与える配線として機能する。特に、配線VHLが与える電圧は、高レベル電圧(以下、VDDと呼称する。)であるのが好ましく、配線VLLが与える電圧は、低レベル電圧(以下、VSSと呼称する。)であるのが好ましい。
 次に、当該インバータ回路の動作について説明する。例えば、端子ITにVSSが入力されたとき、トランジスタTrA2及びトランジスタTrA4は、オフ状態になる。また、トランジスタTrA1は、ダイオード接続となっているため、容量素子CA1の第1端子(トランジスタTrA3のゲート)の電位は上昇する。トランジスタTrA1のしきい値電圧をVthA1としたとき、容量素子CA1の第1端子(トランジスタTrA3のゲート)の電位がVDD−VthA1に達したとき、トランジスタTrA1はオフ状態になる。つまり、容量素子CA1の第1端子(トランジスタTrA3のゲート)は電気的に浮遊状態になる。また、このとき、トランジスタTrA3のゲート−ソース電圧がトランジスタTrA3のしきい値電圧よりも高くなるものとし、トランジスタTrA3がオン状態になる。ここで、端子OTが定電圧を与える配線などに接続されていない場合、端子OTの電位は、配線VHLから流れる電流によって、高くなる。容量素子CA1の第1端子(トランジスタTrA3のゲート)は電気的に浮遊状態になっているため、端子OTの電位が高くなると、容量素子CA1の容量結合によって、容量素子CA1の第1端子(トランジスタTrA3のゲート)の電位も高くなる。これによって、トランジスタTrA3はオン状態を維持することができ、最終的に、端子OTの電位はVDDとなる。
 また、例えば、端子ITにVDDが入力されたとき、トランジスタTrA2及びトランジスタTrA4は、オン状態になる。このとき、容量素子CA1の第1端子(トランジスタTrA3のゲート)の電位は、VSS以上VDD以下の電圧となる。また、このとき、トランジスタTrA3のゲート−ソース電圧がトランジスタTrA3のしきい値電圧よりも低くなるものとし、トランジスタTrA3がオフ状態になる。また、トランジスタTrA4がオン状態になっているため、端子OTから配線VLLに電流が流れ、最終的に、端子OTの電位はVSSとなる。
 図8Aのインバータ回路は、上述のとおり、容量素子CA1の第1端子(トランジスタTrA3のゲート)が電気的に浮遊状態のとき、トランジスタTrA3の第2端子とゲートとの間に電気的に接続されている容量素子CA1によって、トランジスタTrA3のゲート−ソース電圧を保持することができる。このため、端子ITにVSSの電圧が入力されたとき、端子OTの電圧をVDDまで高くすることができる。
 なお、図8Aに示すインバータ回路は、図8Bに示すインバータ回路に構成を変更することができる。図8Bのインバータ回路は、図8Aのインバータ回路のトランジスタTrA1乃至トランジスタTrA4にバックゲートを設けた構成となっている。なお、図8Bのインバータ回路では、トランジスタTrA1乃至トランジスタTrA4の全てにバックゲートを設けた構成としているが、トランジスタTrA1乃至トランジスタTrA4から選ばれた一、又は複数のトランジスタに対してバックゲートを設けた構成としてもよい。また、図8Bには、当該バックゲートの接続構成については図示されていないが、当該バックゲートの電気的な接続先は、設計の段階で決めることができる。例えば、バックゲートを有するトランジスタにおいて、そのトランジスタのオン電流を高めるために、ゲートとバックゲートとを電気的に接続してもよい。また、例えば、バックゲートを有するトランジスタにおいて、そのトランジスタのしきい値電圧を変動させるために、外部回路などと電気的に接続されている配線を設けて、当該外部回路などによってトランジスタのバックゲートに電位を与えてもよい。なお、これについては、図8Bだけでなく、明細書の他の箇所に記載されているトランジスタ、又は他の図面に図示されているトランジスタについても同様に、バックゲートを設けてもよい。
 図8Cには、NAND回路の一例を示しており、端子IT1、端子IT2は当該NAND回路の入力端子であって、端子OTは当該NAND回路の出力端子である。
 当該NAND回路は、トランジスタTrB1乃至トランジスタTrB8と、容量素子CB1と、容量素子CB2と、を有する。
 なお、本明細書等において、トランジスタTrB1乃至トランジスタTrB8は、トランジスタTrA1乃至トランジスタTrA4と同様に、回路OSCに含まれている他の回路と同様のプロセスで作製できるトランジスタであることが好ましい。また、トランジスタTrB1乃至トランジスタTrB8のそれぞれのチャネル形成領域に含まれる材料は、回路OSCに含まれている他のトランジスタのチャネル形成領域に含まれる材料と同じであることが好ましい。例えば、トランジスタTrB1乃至トランジスタTrB8のそれぞれは、OSトランジスタであることが好ましい。
 次に、図8CのNAND回路の動作例について説明する。当該NAND回路において、例えば、端子IT1、又は端子IT2の少なくとも一方にVSSの電圧が入力されたとき、トランジスタTrB6、又はトランジスタTrB7の少なくとも一方がオフ状態となるため、配線VLLと端子OTとの間が非導通状態となる。また、当該NAND回路は、図8Aのインバータ回路の動作例と同様に、容量素子CB1の第1端子(トランジスタTrB5のゲート)が電気的に浮遊状態のとき、トランジスタTrB5の第2端子とゲートとの間に電気的に接続されている容量素子CB1によって、トランジスタTrB5のゲート−ソース電圧を保持することができる。このため、端子IT1にVSSの電圧が入力されたとき、端子OTの電圧をVDDまで高くすることができる。また、容量素子CB2の第1端子(トランジスタTrB8のゲート)が電気的に浮遊状態のとき、トランジスタTrB8の第2端子とゲートとの間に電気的に接続されている容量素子CB2によって、トランジスタTrB8のゲート−ソース電圧を保持することができる。そのため、端子IT2にVSSの電圧が入力されたとき、端子OTの電圧がVDDまで高くなる。
 また、例えば、当該NAND回路において、また、端子IT1、端子IT2のそれぞれにVDDの電圧が入力されたとき、トランジスタTrB6及びトランジスタTrB7がオン状態となるため、配線VLLと端子OTとの間が導通状態となる。また、容量素子CB1の第1端子(トランジスタTrB5のゲート)の電位は、VSS以上VDD以下の電圧となる。このとき、トランジスタTrB5のゲート−ソース電圧がトランジスタTrB5のしきい値電圧よりも低くなるものとし、トランジスタTrB5がオフ状態になる。更に、容量素子CB2の第1端子(トランジスタTrB8のゲート)の電位も、VSS以上VDD以下の電圧となる。このとき、トランジスタTrB8のゲート−ソース電圧がトランジスタTrB8のしきい値電圧よりも低くなるものとし、トランジスタTrB8がオフ状態になる。そのため、端子IT1、端子IT2のそれぞれにVDDの電圧が入力されたとき、端子OTの電圧はVSSとなる。
 また、図8Dには、NOR回路の一例を示しており、端子IT1、端子IT2は当該NOR回路の入力端子であって、端子OTは当該NOR回路の出力端子である。
 当該NOR回路は、トランジスタTrC1乃至トランジスタTrC8と、容量素子CC1と、容量素子CC2と、を有する。
 なお、本明細書等において、トランジスタTrC1乃至トランジスタTrC8は、トランジスタTrA1乃至トランジスタTrA4と同様に、回路OSCに含まれている他の回路と同様のプロセスで作製できるトランジスタであることが好ましい。また、トランジスタTrC1乃至トランジスタTrC8のそれぞれのチャネル形成領域に含まれる材料は、回路OSCに含まれている他のトランジスタのチャネル形成領域に含まれる材料と同じであることが好ましい。例えば、トランジスタTrC1乃至トランジスタTrC8のそれぞれは、OSトランジスタであることが好ましい。
 次に、図8DのNOR回路の動作例について説明する。当該NOR回路において、例えば、端子IT1、又は端子IT2の少なくとも一にVDDの電圧が入力されたとき、トランジスタTrC7、又はトランジスタTrC8の少なくとも一方がオン状態となるため、配線VLLと端子OTとの間が導通状態となる。また、当該NOR回路において、端子IT1にVDDの電圧が入力されたとき、容量素子CC2の第1端子(トランジスタTrC6のゲート)の電位は、VSS以上VDD以下の電圧となる。このとき、トランジスタTrC6のゲート−ソース電圧がトランジスタTrC6のしきい値電圧よりも低くなるものとし、トランジスタTrC6がオフ状態になる。また、当該NOR回路において、端子IT2にVDDの電圧が入力されたとき、容量素子CC1の第1端子(トランジスタTrC5のゲート)の電位は、VSS以上VDD以下の電圧となる。このとき、トランジスタTrC5のゲート−ソース電圧がトランジスタTrC5のしきい値電圧よりも低くなるものとし、トランジスタTrC5がオフ状態になる。そのため、端子IT1、端子IT2の少なくとも一にVDDの電圧が入力されたとき、端子OTの電圧はVSSとなる。
 また、例えば、当該NOR回路において、また、端子IT1、端子IT2のそれぞれにVSSの電圧が入力されたとき、トランジスタTrC7及びトランジスタTrC8がオフ状態となるため、配線VLLと端子OTとの間が非導通状態となる。また、当該NOR回路は、図8Aのインバータ回路の動作例と同様に、容量素子CC1の第1端子(トランジスタTrC5のゲート)が電気的に浮遊状態のとき、トランジスタTrC5の第2端子とゲートとの間に電気的に接続されている容量素子CC1によって、トランジスタTrC5のゲート−ソース電圧を保持することができる。このため、端子IT1にVSSの電圧が入力されたとき、トランジスタTrC5の第2端子の電位は最終的にVDDまで高くなる。更に、当該NOR回路は、容量素子CC2の第1端子(トランジスタTrC6のゲート)が電気的に浮遊状態のとき、トランジスタTrC6の第2端子とゲートとの間に電気的に接続されている容量素子CC2によって、トランジスタTrC6のゲート−ソース電圧を保持することができる。このため、端子IT1にVSSの電圧が入力されたとき、トランジスタTrC6の第2端子の電位は、最終的にトランジスタTrC5の第2端子の電位となる。つまり、端子IT1、端子IT2のそれぞれにVSSの電圧が入力されることで、トランジスタTrC5、トランジスタTrC6がオン状態となり、端子OTの電位は、最終的にVDDまで高くなる。
 演算回路ARCに、例えば、加算回路、乗算回路などを論理回路で設ける場合、図8A乃至図8Dに図示した論理回路を組み合わせることで、構成することができる。
<アナログ回路の例>
 図8Eには、単極性回路で構成したアナログ回路の一例である、差動増幅器(オペアンプという場合がある。)を示している。演算回路ARCをアナログ回路として構成する場合、図8Eの差動増幅器を用いることができる。
 図8Eに示した差動増幅器の例では、端子IT1は当該差動増幅器の非反転入力端子として機能し、端子IT2は当該差動増幅器の反転入力端子として機能し、端子OTは、当該差動増幅器の出力端子として機能する。
 当該差動増幅器は、トランジスタTrD1乃至トランジスタTrD7と、容量素子CD1と、容量素子CD2と、を有する。
 なお、本明細書等において、トランジスタTrD1乃至トランジスタTrD7は、トランジスタTrA1乃至トランジスタTrA4と同様に、回路OSCに含まれている他の回路と同様のプロセスで作製できるトランジスタであることが好ましい。また、トランジスタTrD1乃至トランジスタTrD7のそれぞれのチャネル形成領域に含まれる材料は、回路OSCに含まれている他のトランジスタのチャネル形成領域に含まれる材料と同じであることが好ましい。例えば、トランジスタTrD1乃至トランジスタTrD7のそれぞれは、OSトランジスタであることが好ましい。
 なお、トランジスタTrD1とトランジスタTrD4の構成、サイズはそれぞれ等しいことが好ましく、また、トランジスタTrD3とトランジスタTrD6の構成、サイズはそれぞれ等しいことが好ましい。
 トランジスタTrD1の第1端子は、配線VHLに電気的に接続され、トランジスタTrD1のゲートは、トランジスタTrD2の第1端子と、容量素子CD1の第1端子と、に電気的に接続され、トランジスタTrD1の第2端子は、トランジスタTrD3の第1端子と、容量素子CD1の第1端子と、に電気的に接続されている。トランジスタTrD3のゲートは、端子IT1に電気的に接続されている。トランジスタTrD4の第1端子は、配線VHLに電気的に接続され、トランジスタTrD4のゲートは、トランジスタTrD5の第1端子と、容量素子CD2の第1端子と、に電気的に接続され、トランジスタTrD4の第2端子は、トランジスタTrD6の第1端子と、容量素子CD2の第1端子と、端子OTと、に電気的に接続されている。トランジスタTrD6のゲートは、端子IT2に電気的に接続されている。配線VBCSは、トランジスタTrD2の第2端子と、トランジスタTrD5の第2端子と、配線STは、トランジスタTrD2のゲートと、トランジスタTrD5のゲートと、に電気的に接続されている。トランジスタTrD7の第1端子は、トランジスタTrD3の第2端子と、トランジスタTrD6の第2端子と、に電気的に接続され、トランジスタTrD7のゲートは、配線VBISに電気的に接続され、トランジスタTrD7の第2端子は、配線VLLに電気的に接続されている。
 配線VBCSは、所定のトランジスタのゲート、及び所定の容量素子の2対の端子の一方に第1定電位を印加するための配線である。また、配線STは、スイッチング素子として用いるトランジスタのゲートに電位を印加するための配線であり、これによって当該トランジスタの導通状態、非導通状態の切り替えを行う。当該スイッチング素子として用いるトランジスタは、トランジスタTrD2、トランジスタTrD5である。
 例えば、図8Eの差動増幅器の動作を行うとき、初期の動作として、トランジスタTrD1のゲート(容量素子CD1の第1端子)と、トランジスタTrD4のゲート(容量素子CD2の第1端子)と、のそれぞれの電位を第1定電位にする。この動作は、配線STに高レベル電位を入力して、トランジスタTrD2とトランジスタTrD5とをオン状態にすることで、配線VBCSからトランジスタTrD1のゲート(容量素子CD1の第1端子)と、トランジスタTrD4のゲート(容量素子CD2の第1端子)と、のそれぞれに第1定電位が与えられることによって行われる。その後、配線STに低レベル電位を入力して、トランジスタTrD2とトランジスタTrD5とをオフ状態にすることで、トランジスタTrD1のゲート(容量素子CD1の第1端子)と、トランジスタTrD4のゲート(容量素子CD2の第1端子)と、のそれぞれの第1定電位を保持することができる。
 また、配線VBISは、トランジスタTrD7のゲートに第2定電位を印加するための配線である。これにより、トランジスタTrD7は、第2定電位に応じた電流を流す定電流源として機能する。
 図8Eに示すとおり、単極性回路として、差動増幅器を構成することができる。そして、演算回路ARCをアナログ回路で構成するとき、図8Eの差動増幅器を適用することができる。また、差動増幅器を適用することで、例えば、加算回路、微分回路、積分回路、ニューラルネットワークの活性化関数などの様々な回路を構成することができる場合がある。
<積和演算回路の例>
 図9Aは、単極性回路で構成された積和演算回路の一例であって、演算回路ARCに積和演算回路を設ける場合、図9Aに図示した積和演算回路を用いることができる。
 当該積和演算回路は、演算セル部AMAと、回路CMEと、回路WDDと、回路WWDと、回路VLDと、を有する。
 演算セル部AMAは、演算セルAM[1]乃至演算セルAM[m](mは1以上の整数である。)を有する。なお、演算セルAMなどに付加している[ ]は、演算セルAMのアドレスを示すものであり、以下の説明では、特に断らない限り、演算セルAMの[ ]の記載を省略する。また、演算セルAMに限らず、別の符合に付加している[ ]についても、演算セルAMと同様に省略することがある。
 演算セルAMは、情報の保持を行う機能を有する。本説明では、演算セルAM[1]乃至演算セルAM[m]のそれぞれは、当該情報として、W[1]乃至W[m]の電位を保持するものとする。なお、演算セルAMの回路構成によっては、保持する情報としては、電位以外には、例えば、抵抗値、電流値などにすることができる。
 回路WDDは、配線WDを介して、演算セルAM[1]乃至演算セルAM[m]のそれぞれに電気的に接続されている。回路WDDは、演算セルAM[1]乃至演算セルAM[m]のそれぞれに対して、W[1]乃至W[m]の電位を供給する機能を有する。
 回路WWDは、配線WWを介して、演算セルAMに電気的に接続されている。回路WWDは、演算セルAMにデータ(W[1]乃至W[m])を書き込む際に、当該データの書き込み先となる演算セルAMを選択する機能を有する。
 回路VLDは、配線VLを介して、演算セルAMに電気的に接続されている。回路VLDは、演算セルAMに対して、電位を入力する機能を有する。本説明では、演算セルAM[1]乃至演算セルAM[m]のそれぞれには、X[1]乃至X[m]の電位が入力されるものとする。
 回路CMEは、配線ILを介して、演算セルAM[1]乃至演算セルAM[m]のそれぞれに電気的に接続されている。回路CMEは、演算セルAM[1]乃至演算セルAM[m]のそれぞれに対して電流を供給する機能を有する。また、図9Aでは、演算セルAM[1]乃至演算セルAM[m]のそれぞれに対して流れる電流の総和としてIMACと表記している。また、IMACは、演算セルAMに保持されている電位W、及び/又は、演算セルAMに入力されている電位Xが変化したときに変化するため、回路CMEは、その都度、配線ILに出力する電流量を設定する機能を有する。また、回路CMEは、複数の電流源を有して、IMACが変化する度に異なる電流源で電流量の設定を行う機能と、異なる電流源から生成された電流同士で加算、及び/又は減算を行って、その余剰となる電流Ioutを出力する機能を有する。
 演算セルAMは、トランジスタMO1と、トランジスタMO2と、容量素子CNと、を有する。トランジスタMO1の第1端子は、配線WDに電気的に接続され、トランジスタMO1の第2端子は、容量素子CNの第1端子と、トランジスタMO2のゲートに電気的に接続され、トランジスタMO1のゲートは、配線WWに電気的に接続されている。トランジスタMO2の第1端子は、配線VLLに電気的に接続され、トランジスタMO1の第2端子は、配線ILに電気的に接続されている。容量素子CNの第2端子は、配線VLに電気的に接続されている。
 なお、本明細書等において、トランジスタMO1、トランジスタMO2は、トランジスタTrA1乃至トランジスタTrA4と同様に、回路OSCに含まれている他の回路と同様のプロセスで作製できるトランジスタであることが好ましい。また、トランジスタMO1、トランジスタMO2のそれぞれのチャネル形成領域に含まれる材料は、回路OSCに含まれている他のトランジスタのチャネル形成領域に含まれる材料と同じであることが好ましい。例えば、トランジスタMO1、トランジスタMO2のそれぞれは、OSトランジスタであることが好ましい。
 また、演算セルAMに含まれるトランジスタMO1、トランジスタMO2だけでなく、回路CME、回路WDD、回路WWD、及び回路VLDに含まれているトランジスタも、回路OSCに含まれている他の回路と同様のプロセスで作製できるトランジスタであることが好ましい。そのため、回路CME、回路WDD、回路WWD、及び回路VLDに含まれているトランジスタもOSトランジスタであることが好ましい。
 ここで、演算セルAMにW、W(WはW[1]乃至W[m]の電位の組であり、WはW[1]乃至W[m]の電位の組である)の一方が保持され、配線VLから演算セルAMにX、X(XはX[1]乃至X[m]の電位の組であり、XはX[1]乃至X[m]の電位の組である)の一方が入力されたときに、トランジスタMO2の第1端子−第2端子間に流れる電流について考える。なお、W[i]、W[i]は、W[i]−W[i](=ΔW[i])が第1データに相当する電位となるように設定し、X[i]、X[i]は、X[i]−X[i](=ΔX[i])が第2データに相当する電位となるように設定する。
 トランジスタが飽和領域で動作しているとき、当該トランジスタのドレイン電流Idsは、グラジュアルチャネル近似モデルによって、次の式で表される。
Figure JPOXMLDOC01-appb-M000001
 なお、βは、当該トランジスタの半導体中のキャリア移動度、チャネル長、チャネル幅、およびゲート容量によって決まる定数である。また、Vgsは、当該トランジスタのゲート−ソース間電圧であり、Vthは、当該トランジスタのしきい値電圧である。
 また、演算セルAMの容量素子CNの第1端子(トランジスタMO2のゲート)が電気的に浮遊状態であり、かつ演算セルAMに配線VLからX、Xの一方が入力されたとき、演算セルAMの容量素子CNの第1端子(トランジスタMO2のゲート)の電位は、配線VLの電位と、演算セルAMの容量結合係数に応じて、変動する。該容量結合係数は、容量素子CNの容量、トランジスタMO2のゲート容量、寄生容量などによって算出される。ここでは、説明の煩雑さを避けるため、トランジスタMO2のゲートの電位の増加分は、配線VLの電位の増加分と同じ値として説明する。これは、演算セルAMにおける容量結合係数を1としていることに相当する。
 演算セルAMにWが保持され、配線VLから演算セルAM[i]にXが入力されたとき、配線ILに流れる電流をIMAC(W,X)としたとき、IMAC(W,X)、IMAC(W,X)、IMAC(W,X)、IMAC(W,X)は、それぞれ次の式で表される。なお、ここでの配線VLLの電位は0としている。
Figure JPOXMLDOC01-appb-M000002
 ここで、回路CMEに含まれる複数の電流源において、それぞれIMAC(W,X)、IMAC(W,X)、IMAC(W,X)、IMAC(W,X)を設定して、回路CMEから出力される電流IOUTを、IOUT=IMAC(W,X)−IMAC(W,X)−IMAC(W,X)+IMAC(W,X)と定義すると、IOUTは次の式で表される。
Figure JPOXMLDOC01-appb-M000003
 式(E6)より、第1データに応じたΔWと、第2データに応じたΔXと、の積和を求めることができる。
 したがって、回路CMEによってIMAC(W,X)、IMAC(W,X)、IMAC(W,X)、IMAC(W,X)の電流量を電流源に設定し、かつ設定された電流源を用いることによって、第1データと第2データとの積和演算を実行することができる。
 この場合、回路CMEは、例えば、図9Bに示す回路構成とすればよい。図9Bに示す回路CMEは、一例として、電流源回路CS1乃至電流源回路CS4と、スイッチSW1乃至スイッチSW4と、スイッチSWAと、スイッチSWBと、を有する。電流源回路CS1乃至電流源回路CS4のそれぞれは、電流ソース回路と、電流シンク回路と、を備えることができ、これにより、設定された電流を電流源から出力するだけでなく、設定された電流を電流源に引き込むことができる。
 電流源回路CS1乃至電流源回路CS4のそれぞれには、スイッチSW1乃至スイッチSW4の第1端子が電気的に接続され、スイッチSW1乃至スイッチSW4のそれぞれの第2端子は、スイッチSWAの第1端子と、スイッチSWBの第1端子と、に電気的に接続されている。スイッチSWAの第2端子は、配線ILに電気的に接続されている。
 演算セルAM[1]乃至演算セルAM[m]に流れる電流の総和IMACを回路CMEの電流源に設定するとき、スイッチSWAをオン状態にし、スイッチSW1乃至スイッチSW4のうち、設定する電流源に電気的に接続されているスイッチをオン状態にし、それ以外のスイッチをオフ状態にすればよい。また、回路CMEからIOUTを出力するときは、スイッチSWBと、スイッチSW1乃至スイッチSW4をオン状態にすればよい。
 図9Aに示す積和演算回路は、例えば、階層型のニューラルネットワークに用いることができる。具体的には、上述の第1データ(ΔW)は重み係数に対応した情報とし、上述の第2データ(ΔX)は前層に含まれる全てのニューロンから次層に含まれる一のニューロンに出力された信号に対応した情報とすることで、当該重み係数と当該信号との積和を演算することができる。また、階層型のニューラルネットワークでは、積和演算の結果を用いて、活性化関数の計算を行うため、積和演算の結果、活性化関数の計算結果などをメモリセル部MCL、回路OSMなどに一時的に保持することができる。また、メモリセル部MCL、回路OSMなどに別の重み係数を保持しておき、必要に応じて、図9Aの積和演算回路の演算セルAMに保持されている重み係数を、メモリセル部MCL、回路OSMなどに保持されている別の重み係数に書き換えてもよい。
 なお、本実施の形態では、メモリセル部MCLと、メモリセル部MCLの上方に設けられた、メモリセル部MCLを制御する回路PRPHと、演算を行う回路ARPと、を有する回路OSCの構成例について説明した。なお、本発明の一態様の半導体装置は、本実施の形態で説明した構成に限定されない。メモリセル部MCL、回路OSCは、状況に応じて、構成を変更することができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態2)
 本実施の形態では、実施の形態1で説明したメモリセル部MCLに含まれるメモリセルMCの構成例について説明する。
<構成例1>
 図10Aは、メモリセルアレイMCAとしてDRAM(Dynamic Random Access Memory)を適用した構成例を示している。なお、図10Aでは、m行n列のメモリセルアレイMCAであって、1行目1列、1行目n列、m行目1列、m行目n列に位置するメモリセルMCのみを図示している。そのため、図10Aでは、1行目の配線WLを配線WL[1]、m行目の配線WLを配線WL[m]、1列目の配線BLを配線BL[1]、n行目の配線BLを配線BL[n]と図示している。
 図10AのメモリセルアレイMCAにおいて、メモリセルMCは、トランジスタM1と、容量素子C1と、を有する。
 i行目j列目のメモリセルMCにおいて、トランジスタM1の第1端子は、配線BL[j]に電気的に接続され、トランジスタM1の第2端子は、容量素子C1の第1端子に電気的に接続され、トランジスタM1のゲートは、配線WL[i]に電気的に接続されている。容量素子C1の第2端子は、配線CLに電気的に接続されている。
 配線CLに入力される定電位としては、例えば、低レベル電位、接地電位などとすることができる。
 なお、図10AのメモリセルアレイMCAにおいて、トランジスタM1は、nチャネル型トランジスタとして図示しているが、トランジスタM1は、pチャネル型トランジスタとしてもよい。また、図10AのメモリセルアレイMCAだけでなく、本明細書等に図示しているnチャネル型トランジスタは、pチャネル型トランジスタに置き換えることができる場合がある。また、逆に、本明細書等に図示しているpチャネル型トランジスタは、nチャネル型トランジスタに置き換えることができる場合がある。
 また、図10AのメモリセルアレイMCAに含まれるトランジスタM1をはじめとして、本明細書等に記載しているトランジスタは、チャネル形成領域にシリコンを含むSiトランジスタとすることができる。また、シリコンとしては、例えば、水素化アモルファスシリコン、微結晶シリコン、多結晶シリコン、単結晶シリコンなどを用いることができる。また、本明細書等に記載しているトランジスタは、OSトランジスタとすることができる。また、OSトランジスタについては、実施の形態3で後述する。また、OSトランジスタ、Siトランジスタ以外のトランジスタとしては、Geなどの半導体を活性層としたトランジスタ、ZnSe、CdS、GaAs、InP、GaN、SiGeなどの化合物半導体を活性層としたトランジスタ、カーボンナノチューブを活性層としたトランジスタ、有機半導体を活性層としたトランジスタ等を用いることができる。
 特に、OSトランジスタにおいて、チャネル形成領域に含まれる金属酸化物は、インジウム、元素M(元素Mとしては、アルミニウム、ガリウム、イットリウム、スズなどが挙げられる。)、亜鉛の少なくとも一を含む酸化物であることがより好ましい。また、当該金属酸化物がチャネル形成領域に含まれるOSトランジスタのオフ電流は、チャネル幅1μmあたり10aA(1×10−17A)以下、好ましくはチャネル幅1μmあたり1aA(1×10−18A)以下、さらには好ましくはチャネル幅1μmあたり10zA(1×10−20A)以下、さらに好ましくはチャネル幅1μmあたり1zA(1×10−21A)以下、さらに好ましくはチャネル幅1μmあたり100yA(1×10−22A)以下とすることができる。また当該OSトランジスタは、金属酸化物のキャリア濃度が低いため、OSトランジスタの温度が変化した場合でも、オフ電流は低いままとなる。例えば、OSトランジスタの温度が150℃であっても、オフ電流を、チャネル幅1μmあたり100zAとすることもできる。
 特に、トランジスタM1としてOSトランジスタを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)と呼称する場合がある。
<構成例2>
 メモリセルアレイMCAは、図10Aに示す回路図に限定されず、図10Aの回路図を適宜変更した構成としてもよい。例えば、図10Bに示すとおり、図10AのメモリセルアレイMCAにおいて、トランジスタM1にバックゲートを設けた構成としてもよい。
 図10Bでは、トランジスタM1のバックゲートの電気的な接続を図示していないが、所望するトランジスタM1の動作又は特性に応じて、トランジスタM1のバックゲートの接続先を決めることができる。例えば、トランジスタM1のバックゲートの電気的な接続先としては、トランジスタM1のゲートとすることができる。トランジスタM1のゲートとバックゲートを電気的に接続することによって、トランジスタM1のオン状態のときに流れる電流を大きくすることができる。また、例えば、トランジスタM1のバックゲートに、外部回路と電気的に接続するための配線を設けて、当該外部回路によってトランジスタM1のバックゲートに電位を与えて、しきい値電圧を上げてもよい。このような構成にすることにより、外部回路によってトランジスタM1のオフ電流を小さくすることができる。
 図10BのメモリセルアレイMCAにおいて、バックゲートを有するトランジスタM1としては、例えば、上述したOSトランジスタを用いることができる。
 なお、本構成例では、図10AのメモリセルアレイMCAのトランジスタM1にバックゲートを設けた構成を説明したが、別の構成に含まれているトランジスタにバックゲートを設けてもよい。つまり、本明細書等に記載しているトランジスタを、バックゲートを有するトランジスタとすることができる。
<構成例3>
 図10Cは、メモリセルアレイMCAとしてReRAM(Resistive Random Access Memory)を適用した構成例を示している。
 図10Cのメモリセル部MCLにおいて、メモリセルMCは、トランジスタM1と、抵抗変化素子VRと、を有する。図10Cに示すメモリセル部MCLは、図10Aのメモリセル部MCLにおいて、容量素子C1の代わりに抵抗変化素子VRを用いている。
<構成例4>
 図10Dは、メモリセルアレイMCAとしてMRAM(Magnetoresistive Random Access Memory)を適用した構成例を示している。
 図10Dのメモリセル部MCLにおいて、メモリセルMCは、トランジスタM1と、MTJ(Magnetic Tunnnel Junction)素子MRと、を有する。図10Dに示すメモリセル部MCLは、図10Aのメモリセル部MCLにおいて、容量素子C1の代わりにMTJ素子MRを用いている。
<構成例5>
 図10Eは、メモリセルアレイMCAとして相変化メモリ(相変化メモリを含む記憶装置をPRAMと呼ぶ場合がある)を適用した構成例を示している。
 図10Eのメモリセル部MCLにおいて、メモリセルMCは、トランジスタM1と、相変化メモリPCMと、を有する。図10Eに示すメモリセル部MCLは、図10Aのメモリセル部MCLにおいて、容量素子C1の代わりに相変化メモリPCMを用いている。
 製造工程において、PRAMに含まれる相変化メモリPCMは、DRAMに用いられる容量素子C1の誘電体材料を相変化材料に置き換えることによって、作製することができる。つまり、DRAMの製造装置を利用することによって、PRAMを作製することができる。
<構成例6>
 図11Aは、2トランジスタ1容量素子の構成となっているメモリセルを含むメモリセルアレイMCAの例を示している。なお、図11Aでは、m行n列のメモリセルアレイMCAであって、1行目1列、1行目n列、m行目1列、m行目n列に位置するメモリセルMCのみを図示している。そのため、図11Aでは、1列目に位置する配線を配線RBL[1]、配線WBL[1]、配線SL[1]と図示し、n列目に位置する配線を配線RBL[n]、配線WBL[n]、配線SL[n]と図示し、1行目に位置する配線を配線WL[1]、配線WRL[1]と図示し、m行目に位置する配線を配線WL[m]、配線WRL[m]と図示している。
 メモリセルMCは、トランジスタM2、トランジスタM3と、容量素子C2と、を有する。
 i行目j列目のメモリセルMCにおいて、トランジスタM2の第1端子は、容量素子C2の第1端子と電気的に接続され、トランジスタM2の第2端子は、配線WBL[j]と電気的に接続され、トランジスタM2のゲートは、配線WL[i]と電気的に接続されている。容量素子C2の第2端子は、配線WRL[i]と電気的に接続されている。トランジスタM3の第1端子は、配線RBL[j]と電気的に接続され、トランジスタM3の第2端子は、配線SL[j]と電気的に接続され、トランジスタM3のゲートは、容量素子C2の第1端子と電気的に接続されている。なお、図11Aでは、配線WL[i]、配線RBL[j]、配線WBL[j]、配線SL[j]を省略している。
 配線WBL[j]は、書き込みビット線として機能し、配線RBL[j]は、読み出しビット線として機能し、配線WBL[j]及び配線RBL[j]のそれぞれは、実施の形態1で説明した配線BLに相当する。また、配線WL[i]は、書き込みワード線として機能する。配線WRL[i]は、読み出しワード線として機能する。例えば、データの書き込み時、データの読み出し時には、配線WRL[i]には高レベル電位を印加しておき、データ保持の最中には、配線WRL[i]には低レベル電位、接地電位などを印加することが好ましい。配線SL[j]は、メモリセルMCから読み出すときに、所定の電位を与える配線として機能する。なお、ここで述べた配線SL[j]は、実施の形態1で説明した配線CLに相当する。
 i行目j列目のメモリセルMCにデータの書き込みを行う場合、配線WL[i]に高レベル電位を印加し、トランジスタM2をオン状態、つまり、配線WBL[j]とそれぞれのメモリセルMCの容量素子C2の第1端子との間を導通状態にすることによって行われる。具体的には、トランジスタM2がオン状態のときに、配線WBL[j]に記録する情報に対応する電位を印加し、容量素子C2の第1端子、及びトランジスタM3のゲートに該電位を書き込む。その後、配線WL[i]に低レベル電位を印加し、トランジスタM2をオフ状態にすることによって、容量素子C2の第1端子の電位、及びトランジスタM3のゲートの電位を保持する。
 i行目j列目のメモリセルMCからデータの読み出しを行う場合、配線SL[j]に所定の電位を印加することによって行われる。トランジスタM3のソース−ドレイン間に流れる電流、及びトランジスタM3の第1端子の電位は、トランジスタM3のゲートの電位、及びトランジスタM3の第2端子の電位によって決まるので、トランジスタM3の第1端子に接続されている配線RBL[j]の電位を読み出すことによって、容量素子C2の第1端子(又はトランジスタM3のゲート)に保持されている電位を読み出すことができる。つまり、容量素子C2の第1端子(又はトランジスタM3のゲート)に保持されている電位から、このメモリセルに書き込まれている情報を読み出すことができる。
 また、実施の形態1で説明したメモリセルMCは、図11Aに示すメモリセルMCに限定されない。図11Aに示すメモリセルMCは、状況に応じて、回路の取捨、回路の接続の変更などをすることができる。例えば、トランジスタM2、トランジスタM3に、バックゲートが設けられたトランジスタを適用してもよい。
 特に、トランジスタM2としてOSトランジスタを適用した場合、図11Aに示すメモリセルMCを有する半導体装置をNOSRAM(Nonvolatile Oxide Semiconductor Random Access Memory)と呼称することができる。
<構成例7>
 図11Bには、メモリセルアレイMCAのメモリセルMCに適用できるSRAM(Static Random Access Memory)の一例を示している。メモリセルMCは、トランジスタM4、トランジスタM4rと、論理回路INV1、論理回路INV2と、を有する。
 論理回路INV1、論理回路INV2は、その回路に入力された信号に対する反転信号を生成して出力する機能を有する。論理回路INV1、論理回路INV2としては、例えば、インバータ回路を適用することができる。また、インバータ回路以外では、例えば、NAND回路、NOR回路、XOR回路、又はこれらを組み合わせた論理回路などとすることができる。
 トランジスタM4の第1端子は配線BLに電気的に接続され、トランジスタM4の第2端子は論理回路INV1の入力端子と論理回路INV2の出力端子とに電気的に接続され、トランジスタM4のゲートは配線WLに電気的に接続されている。トランジスタM4rの第1端子は配線BLBに電気的に接続され、トランジスタM4rの第2端子は論理回路INV1の出力端子と論理回路INV2の入力端子とに電気的に接続され、トランジスタM4rのゲートは配線WLに電気的に接続されている。
 論理回路INV1、論理回路INV2のそれぞれの高電源入力端子は配線C1Lに電気的に接続され、論理回路INV1、論理回路INV2のそれぞれの低電源入力端子は配線C2Lに電気的に接続されている。配線C1Lは高レベル電位を与える配線として機能し、配線C2Lは低レベル電位を与える配線として機能し、また、配線C1L、配線C2Lは、実施の形態1で説明した配線CLに相当する。
 データの書き込みは、配線WLに高レベル電位を印加し、トランジスタM4をオン状態にし、配線BLと、論理回路INV1の入力端子及び論理回路INV2の出力端子と、の間を導通状態にすることによって行われる。また、このとき、トランジスタM4rもオン状態となり、配線BLBと、論理回路INV1の出力端子及び論理回路INV2の入力端子と、の間が導通状態になる。そのため、メモリセルMCにデータを書き込む際、配線BL、BLBのそれぞれから書き込み用のデータ信号を送信することができる。なお、配線BLに入力される書き込み用のデータ信号は、配線BLBに入力される信号の反転信号とするのが好ましい。また、配線BL、配線BLBは、実施の形態1で説明した配線BLに相当し、配線WLは、実施の形態1で説明した配線WLに相当する。
 また、実施の形態1で説明したメモリセルMCは、図11Bに示すメモリセルMCに限定されない。図11Bに示すメモリセルMCは、状況に応じて、回路の取捨、回路の接続の変更などをすることができる。例えば、図11Cに示すとおり、図11BのメモリセルMCにトランジスタM5、トランジスタM5rと、容量素子C3、容量素子C3rと、を設けた構成としてもよい。
 トランジスタM5の第1端子は、トランジスタM4の第2端子と、論理回路INV1の入力端子と、論理回路INV2の出力端子と、に電気的に接続され、トランジスタM5の第2端子は、容量素子C3の第1端子に電気的に接続され、トランジスタM5のゲートは配線W2Lに電気的に接続されている。トランジスタM5rの第1端子は、トランジスタM4rの第2端子と、論理回路INV1の出力端子と、論理回路INV2の入力端子と、に電気的に接続され、トランジスタM5rの第2端子は、容量素子C3rの第1端子に電気的に接続され、トランジスタM5rのゲートは配線W2Lに電気的に接続されている。容量素子C3、容量素子C3rのそれぞれの第2端子は、配線CLに電気的に接続されている。
 なお、図11CのメモリセルMCに図示している配線W1Lは、図11Bにおける配線WLに相当する。配線W2Lは、第2のワード線として機能し、トランジスタM5、M5rの導通状態、非導通状態の切り替えを行う。また、配線W1L、配線W2Lは、実施の形態1で説明した配線WLに相当する。
 配線CLは、容量素子C3、容量素子C3rのそれぞれの第2端子に所定の電位を印加するための配線として機能する。なお、配線CLは、配線C1L、配線C2Lと共に、実施の形態1で説明した配線CLに相当する。
 配線W2Lによって、トランジスタM5、トランジスタM5rをオン状態にすることによって、トランジスタM4の第2端子と、容量素子C3の第1端子と、の間が導通状態になり、トランジスタM4rの第2端子と、容量素子C3rの第1端子と、の間が導通状態になる。これによって、容量素子C3の第1端子に、論理回路INV1の入力端子、及び論理回路INV2の出力端子の電位が書き込まれ、容量素子C3rの第1端子に、論理回路INV1の出力端子、及び論理回路INV2の入力端子の電位が書き込まれる。その後、配線W2Lによって、トランジスタM5、トランジスタM5rをオフ状態にすることによって、容量素子C3、容量素子C3rのそれぞれの第1端子をフローティング状態にすることができ、容量素子C3、容量素子C3rのそれぞれの第1端子に書き込まれた電位を保持することができる。このとき、配線C1L、配線C2Lからの電圧の供給を一時的に停止して、論理回路INV1、論理回路INV2の駆動を停止しても、トランジスタM5、トランジスタM5rと容量素子C3、容量素子C3rとによってデータの保持を行うことができる。
 なお、本発明の一態様の半導体装置のメモリセル部MCLは、本実施の形態に示したそれぞれの構成例に限定されない。本発明の一態様の半導体装置のメモリセル部MCLは、状況に応じて、それぞれの構成例の回路構成を変更したものとしてもよい。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
 本実施の形態では、上記実施の形態で説明した半導体装置の構成例、及び当該半導体装置に適用可能なトランジスタの構成例について説明する。
 図12に示す半導体装置は、一例として、記憶部100と、制御部200と、を有する。図12において、制御部200は、記憶部100の上方に重畳するように設けられている。図12に示す半導体装置は、例えば、図2、図4乃至図6に示す半導体装置の一例とすることができる。具体的には、記憶部100は、図2、図4乃至図6のいずれかにおけるメモリセル部MCL、又はメモリセルアレイMCAに相当し、制御部200は、図2、図4乃至図6における回路OSCに相当する。
 本発明の一態様の半導体装置を図12に示す構成にすることによって、記憶部100と、制御部200と、のそれぞれに含まれるトランジスタを互いに異なる構成にすることができる。具体的には、例えば、記憶部100に含まれるトランジスタをSiトランジスタとし、制御部200に含まれるトランジスタをOSトランジスタとすることができる。つまり、記憶部100と、制御部200と、を互いに重畳した構成にすることによって、性能、構成などが異なるトランジスタを同一の半導体装置に用いることができる。
 図12に示す半導体装置は、トランジスタ300と、トランジスタ500と、を有している。図15Aはトランジスタ500のチャネル長方向の断面図であり、図15Bはトランジスタ500のチャネル幅方向の断面図であり、図15Cはトランジスタ300のチャネル幅方向の断面図である。
 トランジスタ500は、チャネル形成領域に金属酸化物を有するトランジスタ(OSトランジスタ)である。トランジスタ500は、オフ電流が小さいため、これを半導体装置が有するOSトランジスタに用いることにより、長期にわたり書き込んだデータ電圧あるいは電荷を保持することが可能である。つまり、リフレッシュ動作の頻度が少ない、あるいは、リフレッシュ動作を必要としないため、半導体装置の消費電力を低減することができる。
 本実施の形態で説明する半導体装置は、図12に示すようにトランジスタ300、トランジスタ500を有する。トランジスタ500はトランジスタ300の上方に設けられている。
 トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域又はドレイン領域として機能する低抵抗領域314a、及び低抵抗領域314bを有する。なお、トランジスタ300は、例えば、上記実施の形態におけるストリングSRG、メモリセルMCなどが有するトランジスタ等に適用することができる。
 また、基板311としては、半導体基板(例えば単結晶基板又はシリコン基板)を用いるのが好ましい。
 トランジスタ300は、図15Cに示すように、半導体領域313の上面及びチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ300をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ300のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ300のオフ特性を向上させることができる。
 なお、トランジスタ300は、pチャネル型、nチャネル型のいずれでもよい。
 半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、又はドレイン領域となる低抵抗領域314a、及び低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。又は、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。又はGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
 低抵抗領域314a、及び低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、又はホウ素などのp型の導電性を付与する元素を含む。
 ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。
 なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
 なお、図12及び図15Cに示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみの単極性回路(nチャネル型トランジスタのみ、などと同極性のトランジスタで構成された回路を意味する)とする場合、図13に示すとおり、トランジスタ300の構成を、酸化物半導体を用いているトランジスタ500と同様の構成にすればよい。なお、トランジスタ500の詳細については後述する。
 また、図13の半導体装置が形成される基板の種類としては、特定のものに限定されることはない。例えば、その基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、サファイアガラス基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、又は紙類などがある。
 トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326が順に積層して設けられている。
 絶縁体320、絶縁体322、絶縁体324、及び絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
 なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 また、絶縁体324には、基板311、又はトランジスタ300などから、トランジスタ500が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
 水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
 なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
 また、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326にはトランジスタ500と接続する導電体328、及び導電体330等が埋め込まれている。なお、導電体328、及び導電体330は、プラグ又は配線としての機能を有する。また、プラグ又は配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。
 各プラグ、及び配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、又は金属酸化物材料などの導電性材料を、単層又は積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。又は、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
 絶縁体326、及び導電体330上に、配線層を設けてもよい。例えば、図12において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ300と接続するプラグ、又は配線としての機能を有する。なお導電体356は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
 絶縁体354、及び導電体356上に、配線層を設けてもよい。例えば、図12において、絶縁体360、絶縁体362、及び絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、及び絶縁体364には、導電体366が形成されている。導電体366は、プラグ又は配線としての機能を有する。なお導電体366は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体364、及び導電体366上に、配線層を設けてもよい。例えば、図12において、絶縁体370、絶縁体372、及び絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、及び絶縁体374には、導電体376が形成されている。導電体376は、プラグ又は配線としての機能を有する。なお導電体376は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体374、及び導電体376上に、配線層を設けてもよい。例えば、図12において、絶縁体380、絶縁体382、及び絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、及び絶縁体384には、導電体386が形成されている。導電体386は、プラグ又は配線としての機能を有する。なお導電体386は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、及び導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
 絶縁体384上には絶縁体510、絶縁体512、絶縁体514、及び絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、及び絶縁体516のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
 例えば、絶縁体510、及び絶縁体514には、例えば、基板311、又はトランジスタ300を設ける領域などから、トランジスタ500を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
 水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 また、水素に対するバリア性を有する膜として、例えば、絶縁体510、及び絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、及びトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中及び作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、例えば、絶縁体512、及び絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、及び絶縁体516として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
 また、絶縁体510、絶縁体512、絶縁体514、及び絶縁体516には、導電体518、及びトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、トランジスタ300と接続するプラグ、又は配線としての機能を有する。導電体518は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 特に、絶縁体510、及び絶縁体514と接する領域の導電体518は、酸素、水素、及び水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ500とは、酸素、水素、及び水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体516の上方には、トランジスタ500が設けられている。
 図15A、図15Bに示すように、トランジスタ500は、絶縁体514及び絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516及び導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542a及び導電体542bと、導電体542a及び導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面及び側面に配置された酸化物530cと、酸化物530cの形成面に配置された絶縁体550と、絶縁体550の形成面に配置された導電体560と、を有する。
 また、図15A、図15Bに示すように、酸化物530a、酸化物530b、導電体542a、及び導電体542bと、絶縁体580との間に絶縁体544が配置されることが好ましい。また、図15A、図15Bに示すように、導電体560は、絶縁体550の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図15A、図15Bに示すように、絶縁体580、導電体560、及び絶縁体550の上に絶縁体574が配置されることが好ましい。
 なお、以下において、酸化物530a、酸化物530b、及び酸化物530cをまとめて酸化物530という場合がある。
 なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、酸化物530b、及び酸化物530cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、酸化物530bと酸化物530aの2層構造、酸化物530bと酸化物530cの2層構造、又は4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ500では、導電体560を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構造であってもよいし、3層以上の積層構造であってもよい。また、図12、図15A、図15Bに示すトランジスタ500は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
 ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542a及び導電体542bは、それぞれソース電極又はドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542a及び導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
 さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542a又は導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542a及び導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
 導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 導電体503は、酸化物530、及び導電体560と、重なるように配置する。これにより、導電体560、及び導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。本明細書等において、第1のゲート電極、及び第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
 また、導電体503は、導電体518と同様の構成であり、絶縁体514及び絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503a及び導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、又は3層以上の積層構造として設ける構成にしてもよい。
 ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、又は酸素の拡散を抑制する機能とは、上記不純物、又は上記酸素のいずれか一又は、すべての拡散を抑制する機能とする。
 例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
 また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、又はアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。その場合、導電体505は、必ずしも設けなくともよい。なお、導電体503bを単層で図示したが、積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層としてもよい。
 絶縁体520、絶縁体522、及び絶縁体524は、第2のゲート絶縁膜としての機能を有する。
 ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。つまり、絶縁体524には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損を低減し、トランジスタ500の信頼性を向上させることができる。
 過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、又は3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、又は100℃以上400℃以下の範囲が好ましい。
 また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、酸化物530中の水、または水素を除去することができる。例えば、酸化物530において、VHの結合が切断される反応が起きる、別言すると「VH→V+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してHOとして、酸化物530、または酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542a、及び導電体542bに拡散または捕獲(ゲッタリングともいう)される場合がある。
 また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、または酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O/(O+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。
 また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
 なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「V+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
 また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
 絶縁体522が、酸素や不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524や、酸化物530が有する酸素と反応することを抑制することができる。
 絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、又は(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層又は積層で用いることが好ましい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
 特に、不純物、及び酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出や、トランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
 又は、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。又はこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコン又は窒化シリコンを積層して用いてもよい。
 また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため、好適である。また、high−k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体520や、絶縁体526を得ることができる。
 なお、図15A、図15Bのトランジスタ500では、3層の積層構造からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、及び絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、又は4層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
 トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物530として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムなどから選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、酸化物530として適用できるIn−M−Zn酸化物は、実施の形態4で説明するCAAC−OS、CAC−OSであることが好ましい。また、酸化物530として、In−Ga酸化物、In−Zn酸化物を用いてもよい。
 また、トランジスタ500には、キャリア濃度の低い金属酸化物を用いることが好ましい。金属酸化物のキャリア濃度を低くする場合においては、金属酸化物中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、金属酸化物中の不純物としては、例えば、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
 特に、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、金属酸化物中に酸素欠損を形成する場合がある。また、酸化物530中の酸素欠損に水素が入った場合、酸素欠損と水素とが結合しVHを形成する場合がある。VHはドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。また、金属酸化物中の水素は、熱、電界などのストレスによって動きやすいため、金属酸化物に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された金属酸化物を得るには、金属酸化物中の水分、水素などの不純物を除去すること(脱水、脱水素化処理と記載する場合がある。)と、金属酸化物に酸素を供給して酸素欠損を補填すること(加酸素化処理と記載する場合がある。)が重要である。VHなどの不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 酸素欠損に水素が入った欠陥は、金属酸化物のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、金属酸化物においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、金属酸化物のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。
 よって、金属酸化物を酸化物530に用いる場合、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。水素などの不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 また、酸化物530に金属酸化物を用いる場合、当該金属酸化物は、バンドギャップが高く、真性(I型ともいう。)、又は実質的に真性である半導体であって、かつチャネル形成領域の金属酸化物のキャリア濃度は、1×1018cm−3未満であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。なお、チャネル形成領域の金属酸化物のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。
 また、酸化物530に金属酸化物を用いる場合、導電体542a(導電体542b)と酸化物530とが接することで、酸化物530中の酸素が導電体542a(導電体542b)へ拡散し、導電体542a(導電体542b)が酸化する場合がある。導電体542a(導電体542b)が酸化することで、導電体542a(導電体542b)の導電率が低下する蓋然性が高い。なお、酸化物530中の酸素が導電体542a(導電体542b)へ拡散することを、導電体542a(導電体542b)が酸化物530中の酸素を吸収する、と言い換えることができる。
 また、酸化物530中の酸素が導電体542a及び導電体542bへ拡散することで、導電体542aと酸化物530bとの間、および、導電体542bと酸化物530bとの間に異層が形成される場合がある。当該異層は、導電体542a及び導電体542bよりも酸素を多く含むため、当該異層は絶縁性を有すると推定される。このとき、導電体542a及び導電体542bと、当該異層と、酸化物530bとの3層構造は、金属−絶縁体−半導体からなる3層構造とみなすことができ、MIS(Metal−Insulator−Semiconductor)構造と呼ぶ、またはMIS構造を主としたダイオード接合構造と呼ぶ場合がある。
 なお、上記異層は、導電体542a(導電体542b)と酸化物530bとの間に形成されることに限られず、例えば、異層が、導電体542a(導電体542b)と酸化物530cとの間に形成される場合や、導電体542a(導電体542b)と酸化物530bとの間、および導電体542a(導電体542b)と酸化物530cとの間に形成される場合がある。
 また、酸化物530においてチャネル形成領域として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
 酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。また、酸化物530b上に酸化物530cを有することで、酸化物530cよりも上方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。
 なお、酸化物530は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物530cは、酸化物530a又は酸化物530bに用いることができる金属酸化物を、用いることができる。
 また、酸化物530a及び酸化物530cの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530a及び酸化物530cの電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
 ここで、酸化物530a、酸化物530b、及び酸化物530cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530a、酸化物530b、及び酸化物530cの接合部における伝導帯下端のエネルギー準位は、連続的に変化又は連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、酸化物530aと酸化物530b、酸化物530bと酸化物530cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn−Ga−Zn酸化物の場合、酸化物530a及び酸化物530cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
 このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530a、酸化物530cを上述の構成とすることで、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
 酸化物530b上には、ソース電極、及びドレイン電極として機能する導電体542a、及び導電体542bが設けられる。導電体542a、及び導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、又は上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、又は、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素又は酸素に対するバリア性があるため好ましい。
 また、図15A、図15Bでは、導電体542a、及び導電体542bを単層構造として示したが、2層以上の積層構造としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
 また、チタン膜又は窒化チタン膜と、そのチタン膜又は窒化チタン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にチタン膜又は窒化チタン膜を形成する三層構造、モリブデン膜又は窒化モリブデン膜と、そのモリブデン膜又は窒化モリブデン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にモリブデン膜又は窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫又は酸化亜鉛を含む透明導電材料を用いてもよい。
 また、図15Aに示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、及び領域543bが形成される場合がある。このとき、領域543aはソース領域又はドレイン領域の一方として機能し、領域543bはソース領域又はドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
 酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア濃度が増加し、領域543a(領域543b)は、低抵抗領域となる。
 絶縁体544は、導電体542a、及び導電体542bを覆うように設けられ、導電体542a、及び導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
 絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタン又は、マグネシウムなどから選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコン又は窒化シリコンなども用いることができる。
 特に、絶縁体544として、アルミニウム、又はハフニウムの一方又は双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、及びハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、及び導電体542bが耐酸化性を有する材料、又は、酸素を吸収しても著しく導電性が低下しない場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
 絶縁体544を有することで、絶縁体580に含まれる水、及び水素などの不純物が酸化物530c、絶縁体550を介して、酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体560が酸化するのを抑制することができる。
 絶縁体550は、第1のゲート絶縁膜として機能する。絶縁体550は、酸化物530cの内側(上面、及び側面)に接して配置することが好ましい。絶縁体550は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
 具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、及び酸化窒化シリコンは熱に対し安定であるため好ましい。
 加熱により酸素が放出される絶縁体を、絶縁体550として、酸化物530cの上面に接して設けることにより、絶縁体550から、酸化物530cを通じて、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体550中の水又は水素などの不純物濃度が低減されていることが好ましい。絶縁体550の膜厚は、1nm以上20nm以下とするのが好ましい。
 また、絶縁体550が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体550と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体550から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体550から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
 なお、絶縁体550は、第2のゲート絶縁膜と同様に、積層構造としてもよい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high−k材料と、熱的に安定している材料との積層構造とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構造とすることができる。
 第1のゲート電極として機能する導電体560は、図15A、図15Bでは2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
 導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体550に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、又は酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
 また、導電体560bは、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層構造としてもよい。
 絶縁体580は、絶縁体544を介して、導電体542a、及び導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコン、又は樹脂などを有することが好ましい。特に、酸化シリコン、及び酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
 絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を、酸化物530cと接して設けることで、絶縁体580中の酸素を、酸化物530cを通じて、酸化物530へと効率良く供給することができる。なお、絶縁体580中の水又は水素などの不純物濃度が低減されていることが好ましい。
 絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
 半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
 絶縁体574は、絶縁体580の上面、導電体560の上面、及び絶縁体550の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体550、及び絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
 例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、又はマグネシウムなどから選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。
 特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、及び窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
 また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水又は水素などの不純物濃度が低減されていることが好ましい。
 また、絶縁体581、絶縁体574、絶縁体580、及び絶縁体544に形成された開口に、導電体540a、及び導電体540bを配置する。導電体540a及び導電体540bは、導電体560を挟んで対向して設ける。導電体540a及び導電体540bは、後述する導電体546、及び導電体548と同様の構成である。
 絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素や水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、及びトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中及び作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
 また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、及び絶縁体586には、導電体546、及び導電体548等が埋め込まれている。
 導電体546、及び導電体548は、トランジスタ500、又はトランジスタ300と接続するプラグ、又は配線としての機能を有する。導電体546、及び導電体548は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体514または絶縁体522に達する開口を形成し、絶縁体514または絶縁体522に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522と同様の材料を用いればよい。
 絶縁体586上に、導電体610を設けることができる。導電体610は、トランジスタ500とトランジスタ300とを電気的に接続するプラグ、又は配線としての機能を有する。
 また、導電体546、及び導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、又は配線としての機能を有する。なお、導電体612、及び導電体610は、同時に形成することができる。
 導電体612、及び導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、又は上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
 図12では、導電体612、及び導電体610は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、及び導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 絶縁体630上には、絶縁体640が設けられている。絶縁体640は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体640は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
 なお、本発明の一態様は、図12に示す半導体装置の構成に限定されない。例えば、図12の半導体装置の記憶部100は、3次元構造のNANDメモリ素子を有する構成としてもよい。
 図14は、半導体装置の構成として、記憶部100が3次元構造のNANDメモリ素子を有する例を示している。図14に示す半導体装置の記憶部100は、3次元構造のNANDメモリ素子の構成要素として、トランジスタ700と、複数のトランジスタ800と、トランジスタ900と、を有する。なお、トランジスタ700は、図5におけるトランジスタBTrに相当し、トランジスタ800は、図5におけるトランジスタCTrに相当し、図5におけるトランジスタSTrに相当する。
 図14に示す記憶部100は、基板上に設けられている。また、記憶部100は、当該基板の上方において、絶縁体111乃至絶縁体117、絶縁体121、絶縁体122、絶縁体131、絶縁体132、絶縁体133、導電体151乃至導電体156、半導体141乃至半導体143を有する。
 なお、当該基板としては、例えば、上述した、図13の半導体装置に適用できる基板と同じものを用いることができる場合がある。
 絶縁体111は、半導体装置が備える基板の上方に設けられている。絶縁体111が当該基板の下地膜として機能する場合、絶縁体111としては、例えば、平坦性のよい成膜方法によって、形成されるのが好ましい。
 絶縁体111としては、例えば、酸化シリコン又は酸化窒化シリコンを含む材料を用いることができる。また、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、タンタルなどから選ばれた材料を含む絶縁体を、単層で、又は積層で用いることができる。
 導電体151は、絶縁体111に積層して設けられている。導電体151は、図5における配線CLとして機能する場合がある。
 導電体151としては、例えば、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。また、実施の形態3で説明する金属酸化物に含まれる金属元素及び酸素を含む導電性材料を用いてもよい。また、チタン、タンタルなどの金属元素及び窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、例えば、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物などを用いてもよい。また、例えば、窒素を含むインジウムガリウム亜鉛酸化物などを用いてもよい。このような材料を用いることで、周辺の絶縁体などから混入する水素、又は水を捕獲することができる場合がある。
 導電体151の形成方法に特に限定は無い。例えば、スパッタリング法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE(Molecular Beam Epitaxy)法、ALD(Atomic Layer Deposition)法、PLD(Pulsed Laser Deposition)法などによって成膜することができる。
 導電体151上には、絶縁体112、導電体152、絶縁体113、導電体153、及び絶縁体114が順に積層して設けられている。また、絶縁体114の上方には、導電体154、絶縁体115、導電体155、絶縁体116、導電体156、絶縁体117が設けられている。
 絶縁体112乃至絶縁体117としては、例えば、絶縁体111と同様の材料を用いることができる。また、絶縁体112乃至絶縁体117としては、例えば、誘電率の低い材料を用いることが好ましい。絶縁体112乃至絶縁体117として、誘電率の低い材料を用いることで、導電体152乃至導電体156と、絶縁体112乃至絶縁体117によって生じる寄生容量の値を低くすることができる。そのため、記憶部100の駆動速度を向上させることができる。
 絶縁体112乃至絶縁体117の形成方法に特に限定は無い。例えば、スパッタリング法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE法、ALD法、PLD法などによって成膜することができる。
 導電体152は、トランジスタ900(図5におけるトランジスタSTr)のゲート、及び図5における配線SSLとして機能する。また、導電体153乃至導電体155は、複数のトランジスタ800(図5におけるトランジスタCTr)のゲート、及び図5における配線WLとして機能する。また、導電体156は、トランジスタ700(図5におけるトランジスタBTr)のゲート、及び図5における配線BSLとして機能する。
 導電体152乃至導電体156としては、例えば、導電体151と同様の材料を用いることができる。また、導電体152乃至導電体156の形成方法としては、導電体151と同様の方法を用いることができる。
 また、絶縁体112乃至絶縁体117、導電体152乃至導電体156には、開口部が設けられている。当該開口部には、絶縁体121、絶縁体122、絶縁体131乃至絶縁体133、半導体141乃至半導体143、導電体157が設けられている。
 半導体141は、当該開口部の一部の側面、及び底面に接するように設けられている。具体的には、半導体141は、一部の導電体151上に設けられ、かつ開口部の側面の絶縁体112の一部を覆うように設けられている。
 半導体141としては、例えば、不純物が拡散されたシリコンとするのが好ましい。当該不純物としては、n型不純物(ドナー)を用いることができる。n型不純物としては、例えば、リン、ヒ素などを用いることができる。また、当該不純物としてp型不純物(アクセプタ)を用いることができる。p型不純物としては、例えば、ボロン、アルミニウム、ガリウムなどを用いることができる。また、シリコンとしては、例えば、単結晶シリコン、水素化アモルファスシリコン、微結晶シリコン、または多結晶シリコン等を用いることができる。また、半導体141としては、シリコン以外では、キャリア濃度の高い金属酸化物を適用できる場合がある。また、Geなどの半導体、ZnSe、CdS、GaAs、InP、GaN、SiGeなどの化合物半導体を適用できる場合がある。
 なお、後述する半導体142、半導体143に適用する材料は、半導体141と同じ材料であることが好ましく、半導体142のキャリア濃度は、半導体141、半導体143よりも低いことが好ましい場合がある。
 例えば、半導体141として、p型不純物が拡散されたシリコンを適用する場合、半導体141を導電体151上に形成した後に、半導体141に対して、ボロン、アルミニウム、ガリウムなどのp型不純物を添加するのが好ましい。これにより、半導体141にはp型領域が形成される。また、例えば、n型不純物が拡散されたシリコンを適用する場合、半導体141を導電体151上に形成した後に、半導体141に対して、リン、ヒ素などのn型不純物を添加するのが好ましい。これにより、半導体141にはn型領域が形成される。
 また、半導体141として、一例として、金属酸化物を適用する場合、半導体141を導電体151上に形成した後に、半導体141に対して、金属元素などを添加するのが好ましい。これにより、半導体141においてキャリア濃度を増やすことができる。特に、半導体141として実施の形態3で説明する金属酸化物を適用する場合、半導体141にはn型領域(n領域)が形成される。また、半導体141に対して、金属元素などを添加するのではなく、水、水素などを添加後に熱処理を行って、半導体141に酸素欠損を生じさせてもよい。半導体141において酸素欠損が生じた領域にはn型領域が形成されるため、結果的に半導体141のキャリア濃度が増えることになる。
 絶縁体121は、当該開口部の一部の底面に接するように設けられている。具体的には、絶縁体121は、半導体141上の一部と、開口部の側面の導電体152を覆うように設けられている。
 絶縁体121は、トランジスタ900のゲート絶縁膜として機能する。
 絶縁体121としては、例えば、酸化シリコン、酸化窒化シリコンなどを用いることができる。特に、後述する半導体142として金属酸化物を用いる場合、絶縁体121は、加熱によって酸素を離脱する材料であることが好ましい。酸素を含む絶縁体121を半導体142として適用している金属酸化物に接して設けることにより、当該金属酸化物中の酸素欠損を低減し、トランジスタ900の信頼性を向上させることができる。
 絶縁体121の成膜方法に特に限定は無いが、絶縁体121は、絶縁体112、導電体152、及び絶縁体113に設けられた開口部の側面に形成されるため、被膜性の高い成膜方法が求められる。被膜性の高い成膜方法としては、例えば、ALD法などが挙げられる。
 絶縁体131は、当該開口部の一部の側面に接するように設けられている。具体的には、絶縁体131は、当該開口部の側面の導電体153乃至導電体155を覆うように設けられている。そのため、絶縁体131は、開口部の側面の絶縁体114、絶縁体115も覆うように設けられている。
 絶縁体132は、絶縁体131に接するように設けられている。また、絶縁体133は、絶縁体132に接するように設けられている。つまり、絶縁体131乃至絶縁体133は、当該開口部の側面から中心に向かって、順に積層されている。
 絶縁体131は、トランジスタ800のゲート絶縁膜として機能する。また、絶縁体132は、トランジスタ800の電荷蓄積層として機能する。また、絶縁体133は、トランジスタ800のトンネル絶縁膜として機能する。
 絶縁体131としては、例えば、酸化シリコンや、酸化窒化シリコンを用いることが好ましい。また、絶縁体131としては、例えば、酸化アルミニウム、酸化ハフニウム、またはアルミニウムおよびハフニウムを有する酸化物などを用いることができる。また、絶縁体131としては、これらを積層した絶縁体としてもよい。そして、絶縁体131を絶縁体133よりも厚くすることで、後述する半導体142から、絶縁体133を介して、絶縁体132に電荷の移動を行わせることができる。
 絶縁体132としては、例えば、窒化シリコンや、窒化酸化シリコンを用いることができる。ただし、絶縁体132に適用できる材料は、これらに限定されない。
 絶縁体133としては、例えば、酸化シリコン、又は酸化窒化シリコンを用いることが好ましい。また、絶縁体133としては、例えば、酸化アルミニウム、酸化ハフニウム、又は、アルミニウム及びハフニウムを有する酸化物などを用いてもよい。また、絶縁体133としては、これらを積層した絶縁体としてもよい。
 絶縁体122は、当該開口部の一部の側面に接するように設けられている。具体的には、開口部の側面の導電体156を覆うように設けられている。
 絶縁体122は、トランジスタ700のゲート絶縁膜として機能する。
 絶縁体122としては、例えば、絶縁体121と同様の材料を用いることができる。また、絶縁体122の形成方法としては、絶縁体121と同様の方法とすることができる。
 半導体142は、当該開口部において、形成された絶縁体121、絶縁体133、及び絶縁体122の側面に接するように、設けられている。
 半導体142は、トランジスタ700、トランジスタ800、トランジスタ900のチャネル形成領域、及びトランジスタ700、トランジスタ800、トランジスタ900を直列に電気的に接続するための配線として機能する。
 半導体142としては、例えば、シリコンを用いることが好ましい。また、シリコンとしては、例えば、単結晶シリコン、水素化アモルファスシリコン、微結晶シリコン、または多結晶シリコン等を用いることができる。また、半導体142としては、シリコン以外では、金属酸化物を適用できる場合がある。また、Geなどの半導体、ZnSe、CdS、GaAs、InP、GaN、SiGeなどの化合物半導体を適用できる場合がある。
 また、半導体142は、不純物を含まない半導体であることが好ましい。半導体142としてシリコンを適用する場合、半導体142は真性半導体であることが好ましい。また、半導体142として金属酸化物を用いる場合、不純物濃度(ここでの不純物とは、水素、水などを指す。)が低く、欠陥準位密度が低いことが好ましい。
 半導体143は、当該開口部に半導体141、半導体142、絶縁体121、絶縁体122、絶縁体131、絶縁体132、絶縁体133が形成された後に、当該開口部を埋めるように設けられる。具体的には、半導体143は、絶縁体122上、及び、半導体142上に接し、絶縁体117の側面に接するように、設けられる。
 半導体143としては、例えば、半導体141と同様の材料にすることが好ましい。そのため、半導体141と半導体143のそれぞれの極性は等しくすることが好ましい。
 なお、本発明の一態様の半導体装置は、図12に示した記憶部100が有するNANDメモリ素子の構成に限定されない。本発明の一態様の半導体装置に適用するNANDメモリ素子は、図12に示したNANDメモリ素子とは異なる構成としてもよい。
 なお、制御部200については、図12、図13、図15A、図15Bの説明の内容を参酌する。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物であるCAC−OS(Cloud−Aligned Composite Oxide Semiconductor)、及びCAAC−OS(c−Axis Aligned Crystal Oxide Semiconductor)の構成について説明する。なお、本明細書等において、CACは機能、または材料の構成の一例を表し、CAACは結晶構造の一例を表す。
<金属酸化物の構成>
 CAC−OS又はCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OS又はCAC−metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(又はホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OS又はCAC−metal oxideに付与することができる。CAC−OS又はCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
 また、CAC−OS又はCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
 また、CAC−OS又はCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
 また、CAC−OS又はCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OS又はCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OS又はCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
 すなわち、CAC−OS又はCAC−metal oxideは、マトリックス複合材(matrix composite)、又は金属マトリックス複合材(metal matrix composite)と呼称することもできる。
<金属酸化物の構造>
 酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)及び非晶質酸化物半導体などがある。
 CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
 ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、及び七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 また、CAAC−OSは、インジウム、及び酸素を有する層(以下、In層)と、元素M、亜鉛、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
 CAAC−OSは結晶性の高い酸化物半導体である。一方、CAAC−OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 また、トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。例えば、酸化物半導体のキャリア濃度は、実施の形態3で説明した、金属酸化物を適用した酸化物530のキャリア濃度とすることができる。
 また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体において、窒素はできる限り低減されていることが好ましい、例えば、酸化物半導体中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態は、上記実施の形態に示す半導体装置などが形成された半導体ウェハ、及び当該半導体装置が組み込まれた電子部品の一例を示す。
<半導体ウェハ>
 初めに、半導体装置などが形成された半導体ウェハの例を、図16Aを用いて説明する。
 図16Aに示す半導体ウェハ4800は、ウェハ4801と、ウェハ4801の上面に設けられた複数の回路部4802と、を有する。なお、ウェハ4801の上面において、回路部4802の無い部分は、スペーシング4803であり、ダイシング用の領域である。
 半導体ウェハ4800は、ウェハ4801の表面に対して、前工程によって複数の回路部4802を形成することで作製することができる。また、その後に、ウェハ4801の複数の回路部4802が形成された反対側の面を研削して、ウェハ4801の薄膜化してもよい。この工程により、ウェハ4801の反りなどを低減し、部品としての小型化を図ることができる。
 次の工程としては、ダイシング工程が行われる。ダイシングは、一点鎖線で示したスクライブラインSCL1及びスクライブラインSCL2(ダイシングライン、又は切断ラインと呼ぶ場合がある)に沿って行われる。なお、スペーシング4803は、ダイシング工程を容易に行うために、複数のスクライブラインSCL1が平行になるように設け、複数のスクライブラインSCL2が平行になるように設け、スクライブラインSCL1とスクライブラインSCL2が垂直になるように設けるのが好ましい。
 ダイシング工程を行うことにより、図16Bに示すようなチップ4800aを、半導体ウェハ4800から切り出すことができる。チップ4800aは、ウェハ4801aと、回路部4802と、スペーシング4803aと、を有する。なお、スペーシング4803aは、極力小さくなるようにするのが好ましい。この場合、隣り合う回路部4802の間のスペーシング4803の幅が、スクライブラインSCL1の切りしろと、又はスクライブラインSCL2の切りしろとほぼ同等の長さであればよい。
 なお、本発明の一態様の素子基板の形状は、図16Aに図示した半導体ウェハ4800の形状に限定されない。例えば、矩形の形状の半導体ウェハであってもよい。素子基板の形状は、素子の作製工程、及び素子を作製するための装置に応じて、適宜変更することができる。
<電子部品>
 次に、チップ4800aが組み込まれた電子部品の例を、図16C、図16Dを用いて説明を行う。
 図16Cに電子部品4700および電子部品4700が実装された基板(実装基板4704)の斜視図を示す。図16Cに示す電子部品4700は、リード4701と、上述したチップ4800aと、を有し、ICチップ等として機能する。
 電子部品4700は、例えば、リードフレームのリード4701とチップ4800a上の電極とを金属の細線(ワイヤー)で電気的に接続するワイヤーボンディング工程と、エポキシ樹脂等によって封止するモールド工程と、リードフレームのリード4701へのメッキ処理と、パッケージの表面への印字処理と、を行うことで作製することができる。また、ワイヤーボンディング工程は、例えば、ボールボンディングや、ウェッジボンディングなどを用いることができる。また、図16Cでは、電子部品4700のパッケージにQFP(Quad Flat Package)を適用しているが、パッケージの態様はこれに限定されない。
 電子部品4700は、例えばプリント基板4702に実装される。このようなICチップが複数組み合わされて、それぞれがプリント基板4702上で電気的に接続されることで実装基板4704が完成する。
 図16Dに電子部品4730の斜視図を示す。電子部品4730は、SiP(System in package)またはMCM(Multi Chip Module)の一例である。電子部品4730は、パッケージ基板4732(プリント基板)上にインターポーザ4731が設けられ、インターポーザ4731上に半導体装置4735、および複数の半導体装置4710が設けられている。
 電子部品4730では、半導体装置4710を有する。半導体装置4710としては、例えば、上記実施の形態で説明した半導体装置、広帯域メモリ(HBM:High Bandwidth Memory)などとすることができる。また、半導体装置4735は、CPU、GPU、FPGA、記憶装置などの集積回路(半導体装置)を用いることができる。
 パッケージ基板4732は、セラミック基板、プラスチック基板、またはガラスエポキシ基板などを用いることができる。インターポーザ4731は、シリコンインターポーザ、樹脂インターポーザなどを用いることができる。
 インターポーザ4731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ4731は、インターポーザ4731上に設けられた集積回路をパッケージ基板4732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ4731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板4732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることも出来る。
 インターポーザ4731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行なうことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いたSiPやMCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 また、電子部品4730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ4731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品4730では、半導体装置4710と半導体装置4735の高さを揃えることが好ましい。
 電子部品4730を他の基板に実装するため、パッケージ基板4732の底部に電極4733を設けてもよい。図16Dでは、電極4733を半田ボールで形成する例を示している。パッケージ基板4732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極4733を導電性のピンで形成してもよい。パッケージ基板4732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品4730は、BGAおよびPGAに限らず様々な実装方法を用いて他の基板に実装することができる。例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、またはQFN(Quad Flat Non−leaded package)などの実装方法を用いることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態6)
 本実施の形態では、上記実施の形態で説明した半導体装置を有する電子機器の一例について説明する。なお、図17には、当該半導体装置を有する電子部品4700が各電子機器に含まれている様子を図示している。
[携帯電話]
 図17に示す情報端末5500は、情報端末の一種である携帯電話(スマートフォン)である。情報端末5500は、筐体5510と、表示部5511と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。
 情報端末5500は、上記実施の形態で説明した半導体装置を適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、会話を認識してその会話内容を表示部5511に表示するアプリケーション、表示部5511に備えるタッチパネルに対してユーザが入力した文字、図形などを認識して、表示部5511に表示するアプリケーション、指紋や声紋などの生体認証を行うアプリケーションなどが挙げられる。
[ウェアラブル端末]
 また、図17には、ウェアラブル端末の一例としてスマートウォッチ5900が図示されている。スマートウォッチ5900は、筐体5901、表示部5902、操作ボタン5903、操作子5904、バンド5905などを有する。
 ウェアラブル端末は、先述した情報端末5500と同様に、上記実施の形態で説明した半導体装置を適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、ウェアラブル端末を装着した人の健康状態を管理するアプリケーション、目的地を入力することで最適な道を選択して誘導するナビゲーションシステムなどが挙げられる。
[情報端末]
 また、図17には、デスクトップ型情報端末5300が図示されている。デスクトップ型情報端末5300は、情報端末の本体5301と、ディスプレイ5302と、キーボード5303と、を有する。
 デスクトップ型情報端末5300は、先述した情報端末5500と同様に、上記実施の形態で説明した半導体装置を適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、設計支援ソフトウェア、文章添削ソフトウェア、献立自動生成ソフトウェアなどが挙げられる。また、デスクトップ型情報端末5300を用いることで、新規の人工知能の開発を行うことができる。
 なお、上述では、電子機器としてスマートフォン、及びデスクトップ用情報端末を例として、それぞれ図17に図示したが、スマートフォン、及びデスクトップ用情報端末以外の情報端末を適用することができる。スマートフォン、及びデスクトップ用情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、ノート型情報端末、ワークステーションなどが挙げられる。
[電化製品]
 また、図17には、電化製品の一例として電気冷凍冷蔵庫5800が図示されている。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
 電気冷凍冷蔵庫5800に上記実施の形態で説明した半導体装置を適用することによって、人工知能を有する電気冷凍冷蔵庫5800を実現することができる。人工知能を利用することによって電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などを基に献立を自動生成する機能や、電気冷凍冷蔵庫5800に保存されている食材に合わせた温度に自動的に調節する機能などを有することができる。
 本一例では、電化製品として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電子オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
[ゲーム機]
 また、図17には、ゲーム機の一例である携帯ゲーム機5200が図示されている。携帯ゲーム機5200は、筐体5201、表示部5202、ボタン5203等を有する。
 更に、図17には、ゲーム機の一例である据え置き型ゲーム機7500が図示されている。据え置き型ゲーム機7500は、本体7520と、コントローラ7522を有する。なお、本体7520には、無線または有線によってコントローラ7522を接続することができる。また、図17には示していないが、コントローラ7522は、ゲームの画像を表示する表示部、ボタン以外の入力インターフェースとなるタッチパネルやスティック、回転式つまみ、スライド式つまみなどを備えることができる。また、コントローラ7522は、図17に示す形状に限定されず、ゲームのジャンルに応じて、コントローラ7522の形状を様々に変更してもよい。例えば、FPS(First Person Shooter)などのシューティングゲームでは、トリガーをボタンとし、銃を模した形状のコントローラを用いることができる。また、例えば、音楽ゲームなどでは、楽器、音楽機器などを模した形状のコントローラを用いることができる。更に、据え置き型ゲーム機は、コントローラを使わず、代わりにカメラ、深度センサ、マイクロフォンなどを備えて、ゲームプレイヤーのジェスチャー、及び/又は音声によって操作する形式としてもよい。
 また、上述したゲーム機の映像は、テレビジョン装置、パーソナルコンピュータ用ディスプレイ、ゲーム用ディスプレイ、ヘッドマウントディスプレイなどの表示装置によって、出力することができる。
 携帯ゲーム機5200に上記実施の形態で説明した半導体装置を適用することによって、低消費電力の携帯ゲーム機5200を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
 更に、携帯ゲーム機5200に上記実施の形態で説明した半導体装置を適用することによって、人工知能を有する携帯ゲーム機5200を実現することができる。
 本来、ゲームの進行、ゲーム上に登場する生物の言動、ゲーム上で発生する現象などの表現は、そのゲームが有するプログラムによって定められているが、携帯ゲーム機5200に人工知能を適用することにより、ゲームのプログラムに限定されない表現が可能になる。例えば、プレイヤーが問いかける内容、ゲームの進行状況、時刻、ゲーム上に登場する人物の言動が変化するといった表現が可能となる。
 また、携帯ゲーム機5200で複数のプレイヤーが必要なゲームを行う場合、人工知能によって擬人的にゲームプレイヤーを構成することができるため、対戦相手を人工知能によるゲームプレイヤーとすることによって、1人でもゲームを行うことができる。
 図17では、ゲーム機の一例として携帯ゲーム機を図示しているが、本発明の一態様の電子機器はこれに限定されない。本発明の一態様の電子機器としては、例えば、家庭用の据え置き型ゲーム機、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
[移動体]
 上記実施の形態で説明した半導体装置は、移動体である自動車、及び自動車の運転席周辺に適用することができる。
 図17には移動体の一例である自動車5700が図示されている。
 自動車5700の運転席周辺には、スピードメーターやタコメーター、走行距離、燃料計、ギア状態、空調の設定などを表示することで、様々な情報を提供するインストゥルメントパネルが備えられている。また、運転席周辺には、それらの情報を示す表示装置が備えられていてもよい。
 特に当該表示装置には、自動車5700に設けられた撮像装置(図示しない。)からの映像を映し出すことによって、ピラーなどで遮られた視界、運転席の死角などを運転手に提供することができる。すなわち、自動車5700の外側に設けられた撮像装置からの画像を表示することによって、死角を補い、安全性を高めることができる。
 上記実施の形態で説明した半導体装置は人工知能の構成要素として適用できるため、例えば、当該上記実施の形態で説明した半導体装置を自動車5700の自動運転システムに用いることができる。また、当該半導体装置を道路案内、危険予測などを行うシステムに用いることができる。当該表示装置には、道路案内、危険予測などの情報を表示する構成としてもよい。
 なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のコンピュータを適用して、人工知能を利用したシステムを付与することができる。
[カメラ]
 上記実施の形態で説明した半導体装置は、カメラに適用することができる。
 図17には、撮像装置の一例であるデジタルカメラ6240が図示されている。デジタルカメラ6240は、筐体6241、表示部6242、操作ボタン6243、シャッターボタン6244等を有し、また、デジタルカメラ6240には、着脱可能なレンズ6246が取り付けられている。なお、ここではデジタルカメラ6240を、レンズ6246を筐体6241から取り外して交換することが可能な構成としたが、レンズ6246と筐体6241とが一体となっていてもよい。また、デジタルカメラ6240は、ストロボ装置や、ビューファインダー等を別途装着することができる構成としてもよい。
 デジタルカメラ6240に上記実施の形態で説明した半導体装置を適用することによって、低消費電力のデジタルカメラ6240を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
[ビデオカメラ]
 上記実施の形態で説明した半導体装置は、ビデオカメラに適用することができる。
 図17には、撮像装置の一例であるビデオカメラ6300が図示されている。ビデオカメラ6300は、第1筐体6301、第2筐体6302、表示部6303、操作キー6304、レンズ6305、接続部6306等を有する。操作キー6304及びレンズ6305は第1筐体6301に設けられており、表示部6303は第2筐体6302に設けられている。そして、第1筐体6301と第2筐体6302とは、接続部6306により接続されており、第1筐体6301と第2筐体6302の間の角度は、接続部6306により変更が可能である。表示部6303における映像を、接続部6306における第1筐体6301と第2筐体6302との間の角度に従って切り替える構成としてもよい。
 ビデオカメラ6300で撮影した映像を記録する際、データの記録形式に応じたエンコードを行う必要がある。人工知能を利用することによって、ビデオカメラ6300は、エンコードの際に、人工知能によるパターン認識を行うことができる。このパターン認識によって、連続する撮像画像データに含まれる人、動物、物体などの差分データを算出して、データの圧縮を行うことができる。
[ICD]
 上記実施の形態で説明した半導体装置は、植え込み型除細動器(ICD)に適用することができる。
 図17には、ICDの一例を示す断面模式図が図示されている。ICD本体5400は、バッテリー5401と、電子部品4700と、レギュレータと、制御回路と、アンテナ5404と、右心房へのワイヤ5402、右心室へのワイヤ5403とを少なくとも有している。
 ICD本体5400は手術により体内に設置され、二本のワイヤは、人体の鎖骨下静脈5405及び上大静脈5406を通過させて一方のワイヤ先端が右心室、もう一方のワイヤ先端が右心房に設置されるようにする。
 ICD本体5400は、ペースメーカのとしての機能を有し、心拍数が規定の範囲から外れた場合に心臓に対してペーシングを行う。また、ペーシングによって心拍数が改善しない場合(速い心室頻拍や心室細動など)、電気ショックによる治療が行われる。
 ICD本体5400は、ペーシング及び電気ショックを適切に行うため、心拍数を常に監視する必要がある。そのため、ICD本体5400は、心拍数を検知するためのセンサを有する。また、ICD本体5400は、当該センサなどによって取得した心拍数のデータ、ペーシングによる治療を行った回数、時間などを記憶することができる。
 また、アンテナ5404で電力が受信でき、その電力はバッテリー5401に充電される。また、ICD本体5400は複数のバッテリーを有することにより、安全性を高くすることができる。具体的には、ICD本体5400の一部のバッテリーが使えなくなったとしても残りのバッテリーが機能させることができるため、補助電源としても機能する。
 また、電力を受信できるアンテナ5404とは別に、生理信号を送信できるアンテナを有していてもよく、例えば、脈拍、呼吸数、心拍数、体温などの生理信号を外部のモニタ装置で確認できるような心臓活動を監視するシステムを構成してもよい。
 更に、ICD本体5400に上記実施の形態で説明した半導体装置を適用することによって、人工知能を有するICD本体5400を実現することができる。人工知能を利用することによってICD本体5400は、脈拍、呼吸数、心拍数などの心臓活動を監視して、当該心臓活動の内容に応じて、適切にペーシングや電気ショックなどの治療を行うことができる場合がある。
[PC用の拡張デバイス]
 上記実施の形態で説明した半導体装置は、PC(Personal Computer)などの計算機、情報端末用の拡張デバイスに適用することができる。
 図18Aは、当該拡張デバイスの一例として、持ち運びのできる、演算処理が可能なチップが搭載された、PCに外付けする拡張デバイス6100を示している。拡張デバイス6100は、例えば、USB(Universal Serial Bus)などでPCに接続することで、当該チップによる演算処理を行うことができる。なお、図18Aは、持ち運びが可能な形態の拡張デバイス6100を図示しているが、本発明の一態様に係る拡張デバイスは、これに限定されず、例えば、冷却用ファンなどを搭載した比較的大きい形態の拡張デバイスとしてもよい。
 拡張デバイス6100は、筐体6101、キャップ6102、USBコネクタ6103及び基板6104を有する。基板6104は、筐体6101に収納されている。基板6104には、上記実施の形態で説明した半導体装置などを駆動する回路が設けられている。例えば、基板6104には、チップ6105(例えば、上記実施の形態で説明した半導体装置、電子部品4700、メモリチップなど。)、コントローラチップ6106が取り付けられている。USBコネクタ6103は、外部装置と接続するためのインターフェースとして機能する。
 拡張デバイス6100をPCなど用いることにより、当該PCの演算処理能力を高くすることができる。これにより、処理能力の足りないPCでも、例えば、人工知能、動画処理などの演算を行うことができる。
[放送システム]
 上記実施の形態で説明した半導体装置は、放送システムに適用することができる。
 図18Bは、放送システムにおけるデータ伝送を模式的に示している。具体的には、図18Bは、放送局5680から送信された電波(放送信号)が、各家庭のテレビジョン受信装置(TV)5600に届くまでの経路を示している。TV5600は、受信装置を備え(図示しない。)、アンテナ5650で受信された放送信号は、当該受信装置を介して、TV5600に送信される。
 図18Bでは、アンテナ5650は、UHF(Ultra High Frequency)アンテナを図示しているが、アンテナ5650としては、BS・110°CSアンテナ、CSアンテナなども適用できる。
 電波5675A、電波5675Bは地上波放送用の放送信号であり、電波塔5670は受信した電波5675Aを増幅して、電波5675Bの送信を行う。各家庭では、アンテナ5650で電波5675Bを受信することで、TV5600で地上波放送を視聴することができる。なお、放送システムは、図18Bに示す地上波放送に限定せず、人工衛星を用いた衛星放送、光回線によるデータ放送などとしてもよい。
 上述した放送システムは、上記実施の形態で説明した半導体装置を適用して、人工知能を利用した放送システムとしてもよい。放送局5680から各家庭のTV5600に放送データを送信するとき、エンコーダによって放送データの圧縮が行われ、アンテナ5650が当該放送データを受信したとき、TV5600に含まれる受信装置のデコーダによって当該放送データの復元が行われる。人工知能を利用することによって、例えば、エンコーダの圧縮方法の一である動き補償予測において、表示画像に含まれる表示パターンの認識を行うことができる。また、人工知能を利用したフレーム内予測などを行うこともできる。また、例えば、解像度の低い放送データを受信して、解像度の高いTV5600で当該放送データの表示を行うとき、デコーダによる放送データの復元において、アップコンバートなどの画像の補間処理を行うことができる。
 上述した人工知能を利用した放送システムは、放送データの量が増大する超高精細度テレビジョン(UHDTV:4K、8K)放送に対して好適である。
 また、TV5600側における人工知能の応用として、例えば、TV5600に人工知能を有する録画装置を設けてもよい。このような構成にすることによって、当該録画装置にユーザの好みを人工知能に学習させることで、ユーザの好みにあった番組を自動的に録画することができる。
[認証システム]
 上記実施の形態で説明した半導体装置は、認証システムに適用することができる。
 図18Cは、掌紋認証装置を示しており、筐体6431、表示部6432、掌紋読み取り部6433、配線6434を有している。
 図18Cには、掌紋認証装置が手6435の掌紋を取得する様子を示している。取得した掌紋は、人工知能を利用したパターン認識の処理が行われ、当該掌紋が本人のものであるかどうかの判別を行うことができる。これにより、セキュリティの高い認証を行うシステムを構築することができる。また、本発明の一態様に係る認証システムは、掌紋認証装置に限定されず、指紋、静脈、顔、虹彩、声紋、遺伝子、体格などの生体情報を取得して生体認証を行う装置であってもよい。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
MCL:メモリセル部、OSC:回路、OSC1:回路、OSC2:回路、OSM:回路、ARP:回路、PRPH:回路、ARC:演算回路、PRCR:制御回路、WLD:回路、BLD:回路、OPC:出力回路、CD:カラムデコーダ、SA:センスアンプ、PRC:プリチャージ回路、WC:書き込み回路、CVC:回路、CME:回路、WDD:回路、WWD:回路、VLD:回路、AMA:演算セル部、AM[1]:演算セル、AM[m]:演算セル、CS1:電流源回路、CS2:電流源回路、CS3:電流源回路、CS4:電流源回路、MCA:メモリセルアレイ、SRG:ストリング、MC:メモリセル、MC[1,1]:メモリセル、MC[i,1]:メモリセル、MC[m,1]:メモリセル、MC[1,j]:メモリセル、MC[i,j]:メモリセル、MC[m,j]:メモリセル、BTr:トランジスタ、STr:トランジスタ、CTr:トランジスタ、TrA1:トランジスタ、TrA2:トランジスタ、TrA3:トランジスタ、TrA4:トランジスタ、TrB1:トランジスタ、TrB2:トランジスタ、TrB3:トランジスタ、TrB4:トランジスタ、TrB5:トランジスタ、TrB6:トランジスタ、TrB7:トランジスタ、TrB8:トランジスタ、TrC1:トランジスタ、TrC2:トランジスタ、TrC3:トランジスタ、TrC4:トランジスタ、TrC5:トランジスタ、TrC6:トランジスタ、TrC7:トランジスタ、TrC8:トランジスタ、TrD1:トランジスタ、TrD2:トランジスタ、TrD3:トランジスタ、TrD4:トランジスタ、TrD5:トランジスタ、TrD6:トランジスタ、TrD7:トランジスタ、MO1:トランジスタ、MO2:トランジスタ、CA1:容量素子、CB1:容量素子、CB2:容量素子、CC1:容量素子、CC2:容量素子、CD1:容量素子、CD2:容量素子、CN:容量素子、SW1:スイッチ、SW2:スイッチ、SW3:スイッチ、SW4:スイッチ、SWA:スイッチ、SWB:スイッチ、EW:配線、EW1:配線、EW2:配線、WL:配線、BL:配線、CL:配線、BSL:配線、SSL:配線、VHL:配線、VLL:配線、ST:配線、VBCS:配線、VBIS:配線、WD:配線、WW:配線、IL:配線、VL:配線、M1:トランジスタ、M2:トランジスタ、M3:トランジスタ、M4:トランジスタ、M4r:トランジスタ、M5:トランジスタ、M5r:トランジスタ、C1:容量素子、C2:容量素子、C3:容量素子、C3r:容量素子、VR:抵抗変化素子、MR:MTJ素子、PCM:相変化メモリ、WL[1]:配線、WL[m]:配線、W1L:配線、W2L:配線、RBL:配線、WBL:配線、SL:配線、C1L:配線、C2L:配線、BLB:配線、INV1:論理回路、INV2:論理回路、100:記憶部、111:絶縁体、112:絶縁体、113:絶縁体、114:絶縁体、115:絶縁体、116:絶縁体、117:絶縁体、121:絶縁体、122:絶縁体、131:絶縁体、132:絶縁体、133:絶縁体、141:半導体、142:半導体、143:半導体、151:導電体、152:導電体、153:導電体、154:導電体、155:導電体、156:導電体、157:導電体、200:制御部、300:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、350:絶縁体、352:絶縁体、354:絶縁体、356:導電体、360:絶縁体、362:絶縁体、364:絶縁体、366:導電体、370:絶縁体、372:絶縁体、374:絶縁体、376:導電体、380:絶縁体、382:絶縁体、384:絶縁体、386:導電体、500:トランジスタ、503:導電体、503a:導電体、503b:導電体、505:導電体、510:絶縁体、512:絶縁体、514:絶縁体、516:絶縁体、518:導電体、520:絶縁体、522:絶縁体、524:絶縁体、526:絶縁体、530:酸化物、530a:酸化物、530b:酸化物、530c:酸化物、540a:導電体、540b:導電体、542a:導電体、542b:導電体、543a:領域、543b:領域、544:絶縁体、546:導電体、548:導電体、550:絶縁体、560:導電体、560a:導電体、560b:導電体、574:絶縁体、580:絶縁体、581:絶縁体、582:絶縁体、586:絶縁体、610:導電体、612:導電体、630:絶縁体、640:絶縁体、700:トランジスタ、800:トランジスタ、900:トランジスタ、4700:電子部品、4701:リード、4702:プリント基板、4704:実装基板、4710:半導体装置、4730:電子部品、4731:インターポーザ、4732:パッケージ基板、4733:電極、4735:半導体装置、4800:半導体ウェハ、4800a:チップ、4801:ウェハ、4801a:ウェハ、4802:回路部、4803:スペーシング、4803a:スペーシング、5200:携帯ゲーム機、5201:筐体、5202:表示部、5203:ボタン、5300:デスクトップ型情報端末、5301:本体、5302:ディスプレイ、5303:キーボード、5400:ICD本体、5401:バッテリー、5402:ワイヤ、5403:ワイヤ、5404:アンテナ、5405:鎖骨下静脈、5406:上大静脈、5500:情報端末、5510:筐体、5511:表示部、5600:TV、5650:アンテナ、5670:電波塔、5675A:電波、5675B:電波、5680:放送局、5700:自動車、5800:電気冷凍冷蔵庫、5801:筐体、5802:冷蔵室用扉、5803:冷凍室用扉、5901:筐体、5902:表示部、5903:操作ボタン、5904:操作子、5905:バンド、6100:拡張デバイス、6101:筐体、6102:キャップ、6103:USBコネクタ、6104:基板、6105:チップ、6106:コントローラチップ、6240:デジタルカメラ、6241:筐体、6242:表示部、6243:操作ボタン、6244:シャッターボタン、6246:レンズ、6300:ビデオカメラ、6301:第1筐体、6302:第2筐体、6303:表示部、6304:操作キー、6305:レンズ、6306:接続部、6431:筐体、6432:表示部、6433:掌紋読み取り部、6434:配線、6435:手、7520:本体、7522:コントローラ

Claims (6)

  1.  第1回路と、前記第1回路上に位置する第2回路と、を有し、
     前記第1回路は、メモリセルを有し、
     前記第2回路は、第3回路と、第4回路と、を有し、
     前記第3回路は、演算処理を行って、第1データを第4回路に出力する機能を有し、
     前記第4回路は、前記メモリセルに前記第1データを書き込む機能と、前記メモリセルから第2データを読み出す機能と、を有し、
     前記メモリセルと前記第4回路は重畳している領域を有する半導体装置。
  2.  請求項1において、
     前記第1回路は、NANDメモリを有し、
     前記NANDメモリは、前記メモリセルを有する半導体装置。
  3.  請求項1、又は請求項2において、
     前記第2回路は、単極性回路であって、
     前記第2回路は、第1トランジスタを有し、
     前記第1トランジスタは、チャネル形成領域に金属酸化物を有する半導体装置。
  4.  請求項1乃至請求項3のいずれか一において、
     前記第2回路は、第5回路を有し、
     前記第5回路は、前記第1データを記憶する機能を有する半導体装置。
  5.  請求項1乃至請求項4のいずれか一において、
     前記演算処理は、階層型のニューラルネットワークにおける演算であって、
     前記第1データは、重み係数と、ニューロンの出力信号と、に応じたデータである半導体装置。
  6.  請求項1乃至請求項5のいずれか一の半導体装置と、筐体と、を有する電子機器。
PCT/IB2019/059516 2018-11-16 2019-11-06 半導体装置、及び電子機器 WO2020099983A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018215190 2018-11-16
JP2018-215190 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020099983A1 true WO2020099983A1 (ja) 2020-05-22

Family

ID=70731328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/059516 WO2020099983A1 (ja) 2018-11-16 2019-11-06 半導体装置、及び電子機器

Country Status (1)

Country Link
WO (1) WO2020099983A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188071A (ja) * 2014-03-14 2015-10-29 株式会社半導体エネルギー研究所 半導体装置
JP2016219011A (ja) * 2015-05-21 2016-12-22 株式会社半導体エネルギー研究所 電子装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188071A (ja) * 2014-03-14 2015-10-29 株式会社半導体エネルギー研究所 半導体装置
JP2016219011A (ja) * 2015-05-21 2016-12-22 株式会社半導体エネルギー研究所 電子装置

Similar Documents

Publication Publication Date Title
JP7364586B2 (ja) 半導体装置、及び電子機器
WO2020095140A1 (ja) 半導体装置、及び電子機器
JP7391874B2 (ja) 半導体装置
JP7514240B2 (ja) 記憶装置、半導体装置、及び電子機器
WO2020165685A1 (ja) 半導体装置、及び電子機器
JP2024091895A (ja) 半導体装置および電子機器
US12033694B2 (en) Semiconductor device and electronic device
KR20230047117A (ko) 반도체 장치
KR20220128347A (ko) 반도체 장치, 반도체 장치의 구동 방법, 및 전자 기기
WO2022029534A1 (ja) 半導体装置の駆動方法
WO2020099983A1 (ja) 半導体装置、及び電子機器
CN115836293A (zh) 半导体装置及电子设备
WO2021209858A1 (ja) 半導体装置
WO2022064304A1 (ja) 半導体装置の駆動方法
WO2021105811A1 (ja) 記憶装置、および電子機器
WO2023148580A1 (ja) 半導体装置の動作方法
WO2023144652A1 (ja) 記憶装置
WO2021099885A1 (ja) 半導体装置および電子機器
WO2022084802A1 (ja) 半導体装置、および半導体装置の駆動方法
WO2022064318A1 (ja) 半導体装置、半導体装置の駆動方法、および電子機器
JP2024058633A (ja) 半導体装置
JP2021043712A (ja) 半導体装置、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP