WO2020165685A1 - 半導体装置、及び電子機器 - Google Patents

半導体装置、及び電子機器 Download PDF

Info

Publication number
WO2020165685A1
WO2020165685A1 PCT/IB2020/050821 IB2020050821W WO2020165685A1 WO 2020165685 A1 WO2020165685 A1 WO 2020165685A1 IB 2020050821 W IB2020050821 W IB 2020050821W WO 2020165685 A1 WO2020165685 A1 WO 2020165685A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
input
circuit
transistor
current
Prior art date
Application number
PCT/IB2020/050821
Other languages
English (en)
French (fr)
Inventor
木村 肇
黒川 義元
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US17/427,697 priority Critical patent/US11776586B2/en
Priority to DE112020000823.1T priority patent/DE112020000823T5/de
Priority to CN202080011459.5A priority patent/CN113383342A/zh
Priority to JP2020571923A priority patent/JP7443263B2/ja
Priority to KR1020217026023A priority patent/KR20210125004A/ko
Publication of WO2020165685A1 publication Critical patent/WO2020165685A1/ja
Priority to US18/375,573 priority patent/US20240046967A1/en
Priority to JP2024024504A priority patent/JP2024061728A/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1006Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/048Activation functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/065Analogue means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/54Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using elements simulating biological cells, e.g. neuron
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/405Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with three charge-transfer gates, e.g. MOS transistors, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only

Definitions

  • One embodiment of the present invention relates to a semiconductor device and an electronic device.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Therefore, more specifically, as technical fields of one embodiment of the present invention disclosed in this specification, a semiconductor device, a display device, a liquid crystal display device, a light-emitting device, a power storage device, an imaging device, a storage device, a signal processing device, and a processor.
  • Electronic devices, systems, driving methods thereof, manufacturing methods thereof, or inspection methods thereof can be given as examples.
  • the integrated circuit incorporates the brain mechanism as an electronic circuit and has circuits corresponding to “neurons” and “synapses” in the human brain. Therefore, such an integrated circuit may be called “neuromorphic", “brain morphic”, or “brain inspire”.
  • the integrated circuit has a non-Neumann type architecture and is expected to perform parallel processing with extremely low power consumption as compared with the Neumann type architecture in which power consumption increases as the processing speed increases.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose an arithmetic device that constitutes an artificial neural network using SRAM (Static Random Access Memory).
  • calculation is performed by multiplying the connection strength of synapse connecting two neurons (sometimes called a weighting coefficient) and the signal transmitted between the two neurons.
  • the coupling strength of each synapse between the plurality of first neurons of the first layer and one of the second neurons of the second layer, and the plurality of first neurons of the first layer It is necessary to multiply each of the signals input to one of the second neurons of the second layer from each other by the sum, and, for example, depending on the scale of the artificial neural network, for example, the number of the connection strength, a parameter indicating the signal, and the like. Is determined. That is, in the artificial neural network, as the number of layers and the number of neurons increase, the number of circuits corresponding to each of “neurons” and “synapses” increases and the amount of calculation may increase.
  • the power consumption increases as the number of circuits that make up the chip increases, and the amount of heat generated when driving the device also increases.
  • the higher the amount of heat generated the more the characteristics of the circuit element included in the chip are affected. Therefore, it is preferable that the circuit forming the chip has a circuit element that is not easily affected by temperature. Further, if the characteristics of the transistors, current sources, etc. included in the chip vary, the calculation results also vary.
  • An object of one embodiment of the present invention is to provide a semiconductor device in which a hierarchical artificial neural network is built. Alternatively, it is an object of one embodiment of the present invention to provide a semiconductor device or the like with low power consumption. Alternatively, it is an object of one embodiment of the present invention to provide a semiconductor device or the like that is less likely to be affected by the temperature of the environment. Alternatively, according to one embodiment of the present invention, it is an object to provide a semiconductor device or the like which is less likely to be affected by variation in characteristics of transistors. Alternatively, it is an object of one embodiment of the present invention to provide a semiconductor device or the like that is less likely to be affected by a characteristic variation of a current source. Alternatively, it is an object of one embodiment of the present invention to provide a novel semiconductor device or the like.
  • problems of one embodiment of the present invention are not limited to the problems listed above.
  • the issues listed above do not preclude the existence of other issues.
  • the other issues are the ones not mentioned in this item, which will be described below.
  • Problems that are not mentioned in this item can be derived from descriptions in the specification, drawings, and the like by those skilled in the art, and can be appropriately extracted from these descriptions.
  • one embodiment of the present invention is to solve at least one of the above-mentioned problems and other problems. Note that one embodiment of the present invention does not need to solve all of the problems listed above and other problems.
  • One embodiment of the present invention is a semiconductor device including a first circuit and a second circuit, the first circuit including a first holding portion and a first driving transistor, and the second circuit A second holding portion and a second driving transistor, and the first circuit is electrically connected to the first input wiring, the second input wiring, the first wiring, and the second wiring, The circuit is electrically connected to the first input wiring, the second input wiring, the first wiring, and the second wiring, and the first holding unit flows from the first wiring to the source-drain of the first driving transistor.
  • the second holding unit has a function of holding the first potential according to the first current, and the second holding unit holds the second potential according to the second current flowing between the source and the drain of the second drive transistor from the second wiring.
  • the first drive transistor has a function of flowing a first current according to the held first potential between the source and the drain of the first drive transistor, and the second drive transistor has a second drive function.
  • the first circuit has a function of flowing a second current corresponding to the held second potential between the source and the drain of the transistor, and the first circuit has the first level potential input to the first input wiring and the second input wiring.
  • To output the first current to the first wiring when the second level potential is input to the first input wiring the second level potential is input to the first input wiring, and the first level potential is input to the second input wiring.
  • the second circuit has a function of not outputting the current to the first wiring and the second wiring, and the second circuit inputs the first level potential to the first input wiring and inputs the second level potential to the second input wiring.
  • the first level potential and the second level potential input to each of the fourth input wirings are semiconductor devices that are determined according to the second data.
  • one embodiment of the present invention is a semiconductor device including a first circuit and a second circuit, the first circuit including a first holding portion and a first driving transistor, and a second circuit.
  • the circuit has a second holding unit and a second drive transistor, and the first circuit is electrically connected to the first input wiring, the second input wiring, the first wiring, and the second wiring,
  • the second circuit is electrically connected to the first input wiring, the second input wiring, the first wiring, and the second wiring, and the first holding unit is between the first wiring and the source-drain of the first driving transistor.
  • the first drive transistor has a function of holding, the first drive transistor has a function of flowing a first current according to the held first potential between the source and the drain of the first drive transistor, and the second drive transistor is a first drive transistor.
  • the second drive transistor has a function of flowing a second current according to the held second potential between the source and the drain of the driving transistor, and the first circuit inputs the first level potential to the first input wiring in the first period.
  • the second circuit has a function of not outputting the first current to the first wiring and the second wiring when the second level potential is input to the two-input wiring, and the second circuit has the first input during the first period.
  • Each of the two currents has a current amount according to the first data, and the first level potential, the second level potential, and the length of the first period input to each of the first input wiring and the second input wiring. Is a semiconductor device determined according to the second data.
  • the first period has a second period and a third period
  • the first input wiring has a first circuit in the second period.
  • a second circuit having a function of giving a first level potential or a second level potential to the second circuit
  • the second input wiring has a first level potential or a second level potential in both the first circuit and the second circuit in the second period.
  • the first input wiring has a function of outputting a two-level potential
  • the first input wiring has a function of applying a first-level potential or a second-level potential to both the first circuit and the second circuit in the third period
  • the input wiring has a function of outputting the first level potential or the second level potential to both the first circuit and the second circuit in the third period
  • the length of the third period is the length of the second period.
  • the semiconductor device is twice as large as
  • the first circuit has a first transistor, a second transistor, a third transistor, and a first capacitor.
  • the second circuit includes a fourth transistor, a fifth transistor, a sixth transistor, and a second capacitor, and the first holding unit includes the first transistor and the first capacitor.
  • the second holding portion has a fourth transistor and a second capacitor, and the first terminal of the first transistor is electrically connected to the first terminal of the first capacitor and the gate of the first driving transistor.
  • the second terminal of the first transistor is electrically connected to the first wiring, and the first terminal of the first driving transistor is connected to the first terminal of the second transistor and the first terminal of the third transistor.
  • the second terminal of the second transistor is electrically connected to the first wiring, the gate of the second transistor is electrically connected to the first input wiring, and the second terminal of the third transistor is electrically connected to the first input wiring.
  • the second terminal is electrically connected to the second wiring, the gate of the third transistor is electrically connected to the second input wiring, the first terminal of the fourth transistor is the first terminal of the second capacitor,
  • the second drive transistor is electrically connected to the gate, the fourth transistor has a second terminal electrically connected to the second wiring, and the second drive transistor has a first terminal connected to the fifth transistor first terminal.
  • the second terminal of the sixth transistor is electrically connected to the first wiring, and the gate of the sixth transistor is electrically connected to the second input wiring.
  • the first circuit has a seventh transistor
  • the second circuit has an eighth transistor
  • the first terminal of the seventh transistor is The first terminal of the first driving transistor, the first terminal of the second transistor, and the first terminal of the third transistor are electrically connected
  • the second terminal of the seventh transistor is the first terminal of the first transistor.
  • the first terminal of the eighth transistor is electrically connected to one of the terminal or the second terminal
  • the first terminal of the eighth transistor is the first terminal of the second driving transistor, the first terminal of the fifth transistor, and the first terminal of the sixth transistor.
  • the second terminal of the eighth transistor is electrically connected to one of the first terminal and the second terminal of the fourth transistor, and the gate of the first transistor is of the fourth transistor.
  • the semiconductor device is electrically connected to the gate, the gate of the seventh transistor, and the gate of the eighth transistor.
  • the first circuit includes a first transistor, a second transistor, a third transistor, and a first capacitor.
  • the second circuit has a fourth transistor, a fifth transistor, a sixth transistor, and a second capacitor
  • the first holding unit has a first transistor and a first capacitor.
  • the second holding unit has a fourth transistor and a second capacitor, and the first terminal of the first transistor is electrically connected to the first terminal of the first capacitor and the gate of the first driving transistor,
  • the first terminal of the first drive transistor is electrically connected to the second terminal of the first transistor, the first terminal of the second transistor, and the first terminal of the third transistor, and the second terminal of the second transistor is electrically connected.
  • the terminal is electrically connected to the first wiring
  • the gate of the second transistor is electrically connected to the first input wiring
  • the second terminal of the third transistor is electrically connected to the second wiring
  • the gate of the third transistor is electrically connected to the second input wiring
  • the first terminal of the fourth transistor is electrically connected to the first terminal of the second capacitor and the gate of the second driving transistor
  • the first terminal of the second driving transistor is electrically connected to the second terminal of the fourth transistor, the first terminal of the fifth transistor, and the first terminal of the sixth transistor, and the second terminal of the fifth transistor.
  • the gate of the fifth transistor is electrically connected to the first input wiring
  • the second terminal of the sixth transistor is electrically connected to the first wiring.
  • the gate of the 6-transistor is a semiconductor device that is electrically connected to the second input wiring.
  • the first circuit has a third holding portion and a third driving transistor
  • the second circuit has , A fourth holding unit and a fourth driving transistor
  • the first circuit is electrically connected to the third wiring
  • the second circuit is electrically connected to the third wiring
  • the third holding unit is provided.
  • the portion has a function of holding a third potential according to a third current flowing from the first wiring to the source-drain of the third driving transistor, and the fourth holding portion holds the third wiring from the second wiring to the fourth driving transistor.
  • the third driving transistor has a function of holding a fourth potential according to the fourth current flowing between the source and the drain, and the third driving transistor has a third potential according to the held third potential between the source and the drain of the third driving transistor.
  • the third drive transistor has a function of supplying a third current
  • the fourth drive transistor has a function of supplying a fourth current corresponding to the held fourth potential between the source and the drain of the fourth drive transistor and is input to the third wiring.
  • a third circuit, a fourth circuit, and a fifth circuit are provided, and the third circuit is A function of supplying a first current corresponding to the first data to the first circuit via one wiring, and a second current corresponding to the first data to the second circuit via a second wiring.
  • the fifth circuit compares the currents flowing from the first wiring and the second wiring, respectively, and outputs from the output terminal of the fifth circuit.
  • a semiconductor device having a function of outputting a potential according to a product of the first data and the second data.
  • one embodiment of the present invention is a semiconductor device including a first circuit and a second circuit, the first circuit including a first holding portion, a first driving transistor, and a third driving transistor, And the second circuit has a second holding portion, a second driving transistor, and a fourth driving transistor, and the first circuit has a first input wiring, a second input wiring, and a third input wiring. Electrically connected to the fourth input wiring, the first wiring, and the second wiring, and the second circuit includes the first input wiring, the second input wiring, the third input wiring, the fourth input wiring, and the first wiring. And electrically connected to the second wiring, the first holding portion has a function of holding a first potential according to a first current flowing from the first wiring to the source-drain of the first driving transistor.
  • the second holding unit has a function of holding a second potential according to a second current flowing between the source and the drain of the second drive transistor from the second wiring, and the first drive transistor is the first drive transistor.
  • the second driving transistor has a function of flowing a first current corresponding to the held first potential between the source and the drain, and the second driving transistor responds to the held second potential between the source and the drain of the second driving transistor.
  • the third drive transistor has a function of supplying a second current, and the third drive transistor has a function of supplying a third current according to the held first potential between the source and the drain of the third drive transistor.
  • the transistor has a function of flowing a fourth current according to the held second potential between the source and the drain of the fourth driving transistor, and the first circuit receives the first level potential to the first input wiring. And a function of outputting the first current to the first wiring when the second level potential is input to the second input wiring, and the second level potential being input to the first input wiring and the second input wiring. The function of outputting the first current to the second wiring when the first level potential is input, and the second level potential is input to the first input wiring and the second level potential is input to the second input wiring. And the function of not outputting the first current to the first wiring and the second wiring, and the first level potential is input to the third input wiring and the second level potential is input to the fourth input wiring.
  • the third current is output to the first line.
  • the second circuit has a function of not outputting to the second input line, and the second circuit outputs the second current to the second current when the first level potential is input to the first input line and the second level potential is input to the second input line. And a function of outputting a second current to the first wiring when a second level potential is input to the first input wiring and a first level potential is input to the second input wiring.
  • the level potential is a semiconductor device that is determined according to the second data.
  • one embodiment of the present invention is a semiconductor device including a first circuit and a second circuit, the first circuit including a first holding portion, a first driving transistor, and a third driving transistor, And the second circuit has a second holding portion, a second driving transistor, and a fourth driving transistor, and the first circuit has a first input wiring, a second input wiring, and a third input wiring. Electrically connected to the fourth input wiring, the first wiring, and the second wiring, and the second circuit includes the first input wiring, the second input wiring, the third input wiring, the fourth input wiring, and the first wiring.
  • the first holding portion has a function of holding a first potential according to a first current flowing from the first wiring to the source-drain of the first driving transistor.
  • the second holding unit has a function of holding a second potential according to a second current flowing between the source and the drain of the second drive transistor from the second wiring, and the first drive transistor is the first drive transistor.
  • the second driving transistor has a function of flowing a first current corresponding to the held first potential between the source and the drain, and the second driving transistor responds to the held second potential between the source and the drain of the second driving transistor.
  • the third drive transistor has a function of supplying a third current according to the held first potential between the source and the drain of the third drive transistor, and the third drive transistor has a function of supplying a second current.
  • the transistor has a function of flowing a fourth current according to the held second potential between the source and the drain of the fourth drive transistor, and the first circuit has a first input wiring in the first input wiring during the first period.
  • Is input and the first level potential is input to the second input wiring, the function of outputting the first current to the second wiring and the second level potential input to the first input wiring during the first period And a function of not outputting the first current to the first wiring and the second wiring when the second level potential is input to the second input wiring and the first level to the third input wiring during the first period.
  • a potential is input and a second level potential is input to the fourth input wiring, a function of outputting a third current to the first wiring, and a second level potential to the third input wiring during the first period
  • the function of outputting the third current to the second wiring when the first level potential is input to the fourth input wiring, and the second level potential is input to the third input wiring during the first period.
  • the second circuit has a function of not outputting the third current to the first wiring and the second wiring when the second level potential is input to the wiring, and the second circuit supplies the first input wiring to the first input wiring during the first period.
  • the function of outputting the fourth current to the first wiring and the second level potential to the third input wiring during the first period And a function of not outputting the fourth current to the first wiring and the second wiring when the second level potential is input to the fourth input wiring, the first current, the second current,
  • Each of the third current and the fourth current has a current amount according to the first data, and is input to each of the first input wiring, the second input wiring, the third input wiring, and the fourth input wiring.
  • the level potential, the second level potential, and the length of the first period are semiconductor devices that are determined according to the second data.
  • the first period has a second period and a third period
  • the first input wiring has a first circuit in the second period.
  • a second circuit having a function of supplying a first level potential or a second level potential to the second circuit
  • the second input wiring has a first level potential or a second level potential in both the first circuit and the second circuit in the second period.
  • the third input wiring has a function of giving a two-level potential, has a function of giving a first level potential or a second level potential to both the first circuit and the second circuit in the second period, and has a fourth input
  • the wiring has a function of giving a first level potential or a second level potential to both the first circuit and the second circuit in the second period, and the first input wiring has a function of applying the first circuit and the second circuit in the third period.
  • the second input wiring has a function of giving a first level potential or a second level potential to both of the two circuits, and the second input wiring has a first level potential or a second level in both the first circuit and the second circuit in the third period.
  • the third input wiring has a function of giving a potential, has a function of giving a first level potential or a second level potential to both the first circuit and the second circuit in the third period, and the fourth input wiring is , And has a function of applying the first level potential or the second level potential to both the first circuit and the second circuit in the third period, and the length of the third period is twice the length of the second period.
  • the third circuit has a third circuit, a fourth circuit, and a fifth circuit.
  • the semiconductor device has a function of outputting a potential corresponding to the product of the first data and the second data from the output terminals of the five circuits.
  • one embodiment of the present invention is a semiconductor device including a first circuit and a second circuit, the first circuit including a first holding portion and a first driving transistor, and a second circuit.
  • the circuit includes a second holding unit and a second drive transistor, the first circuit is electrically connected to the first input wiring and the first wiring, and the second circuit is the first input wiring.
  • Electrically connected to the second wiring the first holding unit has a function of holding a first potential according to a first current flowing from the first wiring to the source-drain of the first driving transistor,
  • the second holding unit has a function of holding a second potential according to a second current flowing between the source and the drain of the second drive transistor from the second wiring, and the first drive transistor is the source of the first drive transistor.
  • the second drive transistor has a function of flowing a first current according to the held first potential between the drains, and the second drive transistor has a first current according to the held second potential between the source and the drain of the second drive transistor.
  • the first circuit has a function of supplying two currents, and the first circuit outputs the first current to the first wiring when the first level potential is input to the first input wiring, and the first circuit has the second input wiring.
  • the second circuit has a function of not outputting the first current to the first wiring when the level potential is input, and the second circuit outputs the second current when the first level potential is input to the first input wiring.
  • the first current and the second current Each have a current amount according to the first data, and the first level potential and the second level potential input to each of the first input wiring and the second input wiring are determined according to the second data.
  • one embodiment of the present invention is a semiconductor device including a first circuit and a second circuit, the first circuit including a first holding portion and a first driving transistor, and a second circuit.
  • the circuit includes a second holding unit and a second drive transistor, the first circuit is electrically connected to the first input wiring and the first wiring, and the second circuit is the first input wiring.
  • Electrically connected to the second wiring the first holding unit has a function of holding a first potential according to a first current flowing from the first wiring to the source-drain of the first driving transistor,
  • the second holding unit has a function of holding a second potential according to a second current flowing between the source and the drain of the second drive transistor from the second wiring, and the first drive transistor is the source of the first drive transistor.
  • the second drive transistor has a function of flowing a first current according to the held first potential between the drains, and the second drive transistor has a first current according to the held second potential between the source and the drain of the second drive transistor.
  • the first circuit has a function of supplying two currents, and the first circuit outputs the first current to the first wiring when the first level potential is input to the first input wiring during the first period.
  • the second circuit has a function of not outputting the first current to the first wiring when the second level potential is input to the first input wiring during the first period.
  • Each of the first current and the second current has a current amount according to the first data and is input to each of the first input wiring and the second input wiring.
  • the first level potential and the second level potential are semiconductor devices that are determined according to the second data.
  • the first period has a second period and a third period
  • the first input wiring has a first circuit in the second period.
  • a second circuit having a function of applying a first level potential or a second level potential to each other
  • the first input wiring has a first level potential or a second level potential in both the first circuit and the second circuit in the third period.
  • a semiconductor device which has a function of applying a two-level potential and in which the length of the third period is twice the length of the second period.
  • the first circuit has a first transistor, a second transistor, and a first capacitor.
  • the second circuit has a fourth transistor, a fifth transistor, and a second capacitor
  • the first holding unit has a first transistor and a first capacitor
  • the second holding unit has a first capacitor.
  • the first terminal of the first transistor is electrically connected to the first terminal of the first capacitor and the gate of the first driving transistor
  • the second terminal of the first transistor The terminal is electrically connected to the first wiring
  • the first terminal of the first driving transistor is electrically connected to the first terminal of the second transistor
  • the second terminal of the second transistor is connected to the first wiring.
  • the gate of the second transistor is electrically connected to the first input wiring
  • the first terminal of the fourth transistor is electrically connected to the first terminal of the second capacitor and the gate of the second driving transistor.
  • the second terminal of the fourth transistor is electrically connected to the second wiring
  • the first terminal of the second driving transistor is electrically connected to the first terminal of the fifth transistor
  • a second terminal of the transistor is a semiconductor device electrically connected to the second wiring
  • a gate of the fifth transistor is electrically connected to the first input wiring.
  • one embodiment of the present invention is an electronic device including the semiconductor device according to any one of (1) to (16) above and a housing, and performing neural network calculation by the semiconductor device.
  • a semiconductor device is a device utilizing semiconductor characteristics, and means a circuit including a semiconductor element (a transistor, a diode, a photodiode, or the like), a device including the circuit, or the like.
  • it refers to all devices that can function by utilizing semiconductor characteristics.
  • an integrated circuit, a chip including the integrated circuit, and an electronic component in which the chip is housed in a package are examples of semiconductor devices.
  • a memory device, a display device, a light-emitting device, a lighting device, an electronic device, and the like are semiconductor devices themselves, and may include semiconductor devices.
  • X and Y are connected, X and Y are electrically connected, and X and Y are functionally connected. And the case where X and Y are directly connected are disclosed in this specification and the like. Therefore, it is not limited to a predetermined connection relation, for example, the connection relation shown in the drawing or the text, and other than the connection relation shown in the drawing or the text is also disclosed in the drawing or the text.
  • X and Y are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • an element for example, a switch, a transistor, a capacitance element, an inductor, a resistance element, a diode, a display, etc.
  • One or more devices, light emitting devices, loads, etc. can be connected between X and Y.
  • the switch has a function of controlling on/off. That is, the switch is in a conducting state (on state) or a non-conducting state (off state) and has a function of controlling whether or not to pass a current.
  • Examples of the case where X and Y are functionally connected include a circuit (for example, a logic circuit (inverter, NAND circuit, NOR circuit, etc.)) that enables functional connection between X and Y, and signal conversion.
  • Circuits digital-analog conversion circuits, analog-digital conversion circuits, gamma correction circuits, etc.), potential level conversion circuits (power supply circuits (step-up circuits, step-down circuits, etc.), level shifter circuits that change the potential level of signals), voltage sources, current sources , Switching circuits, amplifier circuits (circuits that can increase signal amplitude or current amount, operational amplifiers, differential amplifier circuits, source follower circuits, buffer circuits, etc.), signal generation circuits, memory circuits, control circuits, etc. It is possible to connect more than one between and. As an example, even if another circuit is sandwiched between X and Y, if the signal output from X is transmitted to Y, it is assumed that X and Y are functionally
  • X and Y, the source (or the first terminal or the like) of the transistor and the drain (or the second terminal or the like) are electrically connected to each other, and X, the source (or the first terminal) of the transistor, or the like. 1 terminal), the drain of the transistor (or the second terminal, etc.), and Y are electrically connected in this order.”
  • the source of the transistor (or the first terminal or the like) is electrically connected to X
  • the drain of the transistor (or the second terminal or the like) is electrically connected to Y
  • X, the source of the transistor ( Alternatively, the first terminal or the like), the drain of the transistor (or the second terminal, or the like), and Y are electrically connected in this order”.
  • X is electrically connected to Y via a source (or a first terminal or the like) and a drain (or a second terminal or the like) of the transistor, and X or the source (or the first terminal) of the transistor is connected. Terminal and the like), the drain of the transistor (or the second terminal and the like), and Y are provided in this connection order”.
  • the source (or the first terminal or the like) of the transistor and the drain (or the second terminal or the like) are separated from each other by defining the order of connection in the circuit structure using the expression method similar to these examples. Apart from this, the technical scope can be determined. Note that these expression methods are examples and are not limited to these expression methods.
  • X and Y are objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • a “resistive element” is a circuit element, a wiring, or the like having a resistance value. Therefore, in this specification and the like, a “resistive element” includes a wiring having a resistance value, a transistor in which a current flows between a source and a drain, a diode, a coil, and the like. Therefore, the term “resistive element” can be translated into terms such as “resistance”, “load”, and “region having a resistance value”, and conversely, the terms “resistance”, “load”, and “region having a resistance value” are , “Resistive element” and the like.
  • the resistance value can be, for example, preferably 1 m ⁇ or more and 10 ⁇ or less, more preferably 5 m ⁇ or more and 5 ⁇ or less, and further preferably 10 m ⁇ or more and 1 ⁇ or less. Further, for example, it may be 1 ⁇ or more and 1 ⁇ 10 9 ⁇ or less.
  • capacitor element means a circuit element having a capacitance value, a wiring region having a capacitance value, a parasitic capacitance, a gate capacitance of a transistor, or the like. Therefore, in this specification and the like, a “capacitance element” is not only a circuit element including a pair of electrodes and a dielectric contained between the electrodes but also a parasitic element appearing between wirings. It includes capacitance, gate capacitance that appears between the gate and one of the source and the drain of the transistor, and the like.
  • capacitor element means “capacitance element”, “parasitic capacitance”, and “parasitic capacitance”. It can be translated into a term such as “gate capacitance”.
  • a pair of electrodes of "capacity” can be restated as "a pair of conductors", "a pair of conductive regions", "a pair of regions", and the like.
  • the capacitance value may be, for example, 0.05 fF or more and 10 pF or less. Further, for example, it may be 1 pF or more and 10 ⁇ F or less.
  • a transistor has three terminals called a gate, a source, and a drain.
  • the gate is a control terminal that controls the conduction state of the transistor.
  • the two terminals functioning as a source or a drain are input/output terminals of the transistor.
  • One of the two input/output terminals serves as a source and the other serves as a drain depending on the conductivity type of the transistor (n-channel type or p-channel type) and the level of potential applied to the three terminals of the transistor. Therefore, in this specification and the like, the terms source and drain can be rephrased.
  • a back gate may be provided in addition to the above-described three terminals.
  • one of the gate and the back gate of the transistor is referred to as a first gate
  • the other of the gate and the back gate of the transistor is referred to as a second gate.
  • the terms "gate” and “back gate” may be interchangeable with each other. In the case where a transistor has three or more gates, each gate is referred to as a first gate, a second gate, a third gate, or the like in this specification and the like.
  • a node can be restated as a terminal, a wiring, an electrode, a conductive layer, a conductor, an impurity region, or the like depending on a circuit configuration, a device structure, or the like.
  • terminals, wirings, etc. can be paraphrased as nodes.
  • ground potential ground potential
  • the ground potential does not always mean 0V. Note that the potentials are relative, and the potential applied to wiring or the like may be changed depending on the reference potential.
  • current refers to a phenomenon of electric charge transfer (electrical conduction), and for example, "the electric conduction of a positively charged body occurs” means “electrical conduction of a negatively charged body in the opposite direction”. In other words, conduction is occurring.” Therefore, in this specification and the like, the term “current” refers to a charge transfer phenomenon (electric conduction) associated with carrier transfer, unless otherwise specified.
  • the carrier as used herein include electrons, holes, anions, cations, complex ions, and the like, and the carriers differ depending on the system through which the current flows (for example, semiconductor, metal, electrolytic solution, in vacuum, etc.).
  • the “direction of current” in the wiring or the like is the direction in which positive carriers move, and is described as the amount of positive current.
  • the direction in which the negative carriers move is opposite to the direction of the current, and is expressed by the negative current amount. Therefore, in this specification and the like, unless otherwise specified as to whether the current is positive or negative (or the direction of current), the description such as “current flows from element A to element B” is “current flows from element B to element A” or the like. Can be paraphrased into. Further, the description such as “current is input to the element A” can be translated into “current is output from the element A” and the like.
  • the ordinal numbers “first”, “second”, and “third” are added to avoid confusion among constituent elements. Therefore, the number of components is not limited. Moreover, the order of the components is not limited. For example, a constituent element referred to as “first” in one of the embodiments of the present specification and the like is a constituent element referred to as “second” in another embodiment or in the claims. There is also a possibility. Further, for example, the component referred to as “first” in one of the embodiments of the present specification and the like may be omitted in another embodiment or the claims.
  • the terms “upper” and “lower” do not necessarily mean that the positional relationship of the constituent elements is directly above or below and is in direct contact with each other.
  • the expression “electrode B on insulating layer A” it is not necessary that the electrode B is formed directly on the insulating layer A, and another structure is provided between the insulating layer A and the electrode B. Do not exclude those that contain elements.
  • terms such as “film” and “layer” can be replaced with each other depending on the situation.
  • the terms such as “film” and “layer” can be replaced with another term without using the terms.
  • electrode may be used as part of “wiring” and vice versa.
  • the terms “electrode” and “wiring” include the case where a plurality of “electrodes” and “wirings” are integrally formed.
  • terminal may be used as part of “wiring” or “electrode”, and vice versa.
  • terminal includes a case where a plurality of "electrodes”, “wirings”, “terminals”, etc. are integrally formed.
  • the “electrode” can be part of the “wiring” or the “terminal”, and the “terminal” can be part of the “wiring” or the “electrode”, for example.
  • terms such as “electrode”, “wiring”, and “terminal” may be replaced with terms such as “region” in some cases.
  • terms such as “wiring”, “signal line”, and “power line” can be interchanged with each other depending on the case or circumstances. For example, it may be possible to change the term “wiring” to the term “signal line”. Further, for example, it may be possible to change the term “wiring” to a term such as “power line”. In addition, the reverse is also true, and in some cases it is possible to change the terms such as “signal line” and “power line” to the term “wiring”. In some cases, a term such as “power line” can be changed to a term such as “signal line”. Also, the reverse is also true, and in some cases, terms such as “signal line” can be changed to terms such as “power line”. Further, the term “potential” applied to the wiring can be changed to a term such as "signal” depending on the case or circumstances. Also, the reverse is also true, and in some cases, terms such as “signal” can be changed to the term “potential”.
  • the term “semiconductor impurities” refers to, for example, components other than the main constituents of the semiconductor layer.
  • an element whose concentration is less than 0.1 atomic% is an impurity. Due to the inclusion of impurities, for example, DOS (Density of States) may be formed in the semiconductor, carrier mobility may be reduced, and crystallinity may be reduced.
  • examples of impurities that change the characteristics of the semiconductor include elements other than Group 1 elements, Group 2 elements, Group 13 elements, Group 14 elements, Group 15 elements, and main components.
  • the impurities that change the characteristics of the semiconductor include, for example, group 1 elements other than oxygen and hydrogen, group 2 elements, group 13 elements, group 15 elements, and the like. There is.
  • a switch refers to a switch which is in a conductive state (on state) or a non-conductive state (off state) and has a function of controlling whether or not to flow a current.
  • a switch has a function of selecting and switching a path through which current flows.
  • an electric switch, a mechanical switch, or the like can be used. That is, the switch is not limited to a particular one as long as it can control the current.
  • Examples of electrical switches include transistors (eg, bipolar transistors, MOS transistors, etc.), diodes (eg, PN diodes, PIN diodes, Schottky diodes, MIM (Metal Insulator Metal) diodes, MIS (Metal Insulator Semiconductor) diodes. , A diode-connected transistor, or the like, or a logic circuit in which these are combined. Note that when a transistor is used as a switch, the “conductive state” of the transistor means a state where the source and drain electrodes of the transistor can be regarded as being electrically short-circuited.
  • non-conduction state of a transistor refers to a state in which it can be considered that the source electrode and the drain electrode of the transistor are electrically disconnected. Note that when the transistor is operated as a simple switch, the polarity (conductivity type) of the transistor is not particularly limited.
  • a mechanical switch there is a switch using MEMS (micro electro mechanical system) technology.
  • the switch has a mechanically movable electrode, and movement of the electrode controls conduction and non-conduction.
  • parallel means a state in which two straight lines are arranged at an angle of ⁇ 10° or more and 10° or less. Therefore, the case of -5° or more and 5° or less is also included.
  • substantially parallel or “substantially parallel” means a state in which two straight lines are arranged at an angle of ⁇ 30° or more and 30° or less.
  • vertical means a state in which two straight lines are arranged at an angle of 80° or more and 100° or less. Therefore, the case of 85° or more and 95° or less is also included.
  • substantially vertical or “generally vertical” means a state in which two straight lines are arranged at an angle of 60° or more and 120° or less.
  • a semiconductor device in which a hierarchical artificial neural network is built can be provided.
  • a semiconductor device or the like with low power consumption can be provided.
  • a semiconductor device or the like which is less likely to be affected by the temperature of the environment can be provided.
  • a semiconductor device or the like which is less likely to be affected by variation in transistor characteristics can be provided.
  • a semiconductor device or the like which is less likely to be affected by characteristic variations of a current source can be provided.
  • a novel semiconductor device or the like can be provided.
  • the effects of one aspect of the present invention are not limited to the effects listed above.
  • the effects listed above do not prevent the existence of other effects.
  • the other effects are the effects described in the following description and not mentioned in this item.
  • the effects not mentioned in this item can be derived from the description such as the specification or the drawings by those skilled in the art, and can be appropriately extracted from these descriptions.
  • one embodiment of the present invention has at least one of the effects listed above and other effects. Therefore, one embodiment of the present invention may not have the effects listed above in some cases.
  • FIG. 1A and 1B are diagrams for explaining a hierarchical neural network.
  • FIG. 2 is a circuit diagram showing a configuration example of a semiconductor device.
  • FIG. 3 is a circuit diagram showing a configuration example of a semiconductor device.
  • FIG. 4 is a circuit diagram showing a configuration example of a semiconductor device.
  • 5A, 5B, 5C, 5D, 5E, and 5F are circuit diagrams showing configuration examples of circuits included in the semiconductor device.
  • 6A, 6B, 6C, 6D, 6E, and 6F are circuit diagrams showing configuration examples of circuits included in the semiconductor device.
  • FIG. 7 is a circuit diagram showing a configuration example of a semiconductor device.
  • 8A, 8B, and 8C are circuit diagrams illustrating configuration examples of circuits included in the semiconductor device.
  • FIG. 10 is a circuit diagram illustrating a configuration example of a circuit included in a semiconductor device.
  • FIG. 11 is a circuit diagram showing a configuration example of a semiconductor device.
  • FIG. 12 is a circuit diagram showing a configuration example of a semiconductor device.
  • FIG. 13 is a circuit diagram showing a configuration example of a semiconductor device.
  • FIG. 14 is a circuit diagram showing a configuration example of a semiconductor device.
  • 15A, 15B, and 15C are circuit diagrams illustrating configuration examples of circuits included in the semiconductor device.
  • 16A and 16B are circuit diagrams each illustrating a structural example of a circuit included in a semiconductor device.
  • 17A, 17B, and 17C are circuit diagrams each illustrating a configuration example of a circuit included in the semiconductor device.
  • 18A, 18B, and 18C are timing charts illustrating an operation example of the semiconductor device.
  • 19A, 19B, and 19C are timing charts illustrating an operation example of the semiconductor device.
  • 20A, 20B, and 20C are timing charts illustrating an operation example of the semiconductor device.
  • 21A and 21B are circuit diagrams each illustrating a configuration example of a circuit included in the semiconductor device.
  • 22A and 22B are circuit diagrams each illustrating a structural example of a circuit included in a semiconductor device.
  • 23A and 23B are circuit diagrams each illustrating a structural example of a circuit included in the semiconductor device.
  • FIG. 24 is a circuit diagram illustrating a configuration example of a circuit included in a semiconductor device.
  • FIG. 25 is a circuit diagram illustrating a configuration example of a circuit included in a semiconductor device.
  • FIG. 26 is a circuit diagram illustrating a configuration example of a circuit included in a semiconductor device.
  • FIG. 27 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • FIG. 28 is a circuit diagram illustrating a configuration example of a circuit included in a semiconductor device.
  • FIG. 29 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • 30A and 30B are circuit diagrams each illustrating a structural example of a circuit included in the semiconductor device.
  • FIG. 31 is a circuit diagram illustrating a configuration example of a circuit included in a semiconductor device.
  • 32 is a circuit diagram illustrating a configuration example of a circuit included in a semiconductor device.
  • FIG. 33 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • FIG. 34 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • FIG. 35 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • FIG. 36 is a circuit diagram illustrating a configuration example of a circuit included in a semiconductor device.
  • FIG. 37 is a circuit diagram showing a configuration example of a circuit included in a semiconductor device.
  • FIG. 38 is a circuit diagram illustrating a configuration example of a circuit included in the semiconductor device.
  • FIG. 39 is a circuit diagram illustrating a configuration example of a circuit included in a semiconductor device.
  • 40 is a circuit diagram illustrating a configuration example of a circuit included in a semiconductor device.
  • 41A, 41B, and 41C are circuit diagrams each illustrating a configuration example of a circuit included in the semiconductor device.
  • 42 is a circuit diagram illustrating a configuration example of a circuit included in a semiconductor device.
  • FIG. 43 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • FIG. 44 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • FIG. 45 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • FIG. 46 is a circuit diagram showing a structural example of a circuit included in a semiconductor device.
  • 47A and 47B are circuit diagrams each illustrating a configuration example of a circuit included in the semiconductor device.
  • 48A, 48B, and 48C are timing charts illustrating an operation example of the semiconductor device.
  • 49A, 49B, and 49C are timing charts illustrating an operation example of the semiconductor device.
  • FIG. 50 is a circuit diagram showing a structural example of a circuit included in a semiconductor device.
  • FIG. 51 is a circuit diagram showing a structural example of a circuit included in a semiconductor device.
  • FIG. 52 is a circuit diagram showing a structural example of a circuit included in a semiconductor device.
  • FIG. 53 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • 54A and 54B are circuit diagrams each illustrating a configuration example of a circuit included in the semiconductor device.
  • 55A, 55B, and 55C are circuit diagrams each illustrating a structural example of a circuit included in a semiconductor device.
  • 56A and 56B are circuit diagrams each illustrating a structural example of a circuit included in the semiconductor device.
  • FIG. 57 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • FIG. 58 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • FIG. 59 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • FIG. 60 is a circuit diagram illustrating a structural example of a circuit included in a semiconductor device.
  • FIG. 61 is a schematic sectional view illustrating the configuration of the semiconductor device.
  • FIG. 62 is a schematic sectional view illustrating the structure of the semiconductor device.
  • 63A, 63B, and 63C are schematic cross-sectional views illustrating the structure of the semiconductor device.
  • 64A and 64B are schematic cross-sectional views each illustrating a structural example of a transistor.
  • FIG. 65 is a schematic cross-sectional view illustrating a structural example of a semiconductor device.
  • 66A and 66B are schematic cross-sectional views each illustrating a structural example of a transistor.
  • FIG. 67 is a schematic cross-sectional view illustrating a structural example of a semiconductor device.
  • FIGS. 68A is a top view showing a configuration example of a capacitor
  • FIGS. 68B and 68C are cross-sectional perspective views showing a configuration example of a capacitor.
  • 69A is a top view showing a configuration example of a capacitor
  • FIG. 69B is a sectional view showing a configuration example of a capacitor
  • FIG. 69C is a sectional perspective view showing a configuration example of a capacitor
  • 70A is a perspective view showing an example of a semiconductor wafer
  • FIG. 70B is a perspective view showing an example of a chip
  • FIGS. 70C and 70D are perspective views showing examples of electronic components.
  • FIG. 71 is a perspective view showing an example of an electronic device.
  • 72A, 72B, and 72C are perspective views illustrating examples of electronic devices.
  • the synaptic connection strength can be changed by giving existing information to the neural network.
  • the process of giving existing information to the neural network and determining the coupling strength may be called “learning”.
  • new information can be output based on the bond strength.
  • the process of outputting new information based on the given information and the connection strength may be called “inference” or “cognition”.
  • a neural network having a multilayer structure may be referred to as a “deep neural network” (DNN), and machine learning by a deep neural network may be referred to as “deep learning”.
  • DNN deep neural network
  • a metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as Oxide Semiconductor or simply OS), and the like. For example, when a metal oxide is used for the active layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. That is, when a metal oxide can form a channel formation region of a transistor having at least one of an amplifying action, a rectifying action, and a switching action, the metal oxide is abbreviated as a metal oxide semiconductor. It can be called OS.
  • the term “OS transistor” can be rephrased as a transistor including a metal oxide or an oxide semiconductor.
  • metal oxides having nitrogen may be collectively referred to as metal oxides. Further, the metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • the contents described in one embodiment are different from the contents described in the embodiment (may be a part of the contents) and one or more different embodiments. It is possible to apply, combine, replace, or the like with respect to at least one of the contents described in the form (or a part of the contents).
  • the size, the layer thickness, or the region is exaggerated for clarity in some cases. Therefore, it is not necessarily limited to that scale. It should be noted that the drawings schematically show ideal examples and are not limited to the shapes or values shown in the drawings. For example, it can include a signal, voltage, or current variation due to noise, or a signal, voltage, or current variation due to a timing shift.
  • the hierarchical neural network has, for example, one input layer, one or more intermediate layers (hidden layers), and one output layer, and is configured by a total of three or more layers.
  • the hierarchical neural network 100 shown in FIG. 1A shows an example thereof, and the neural network 100 has first to R-th layers (R in this case can be an integer of 4 or more). ing.
  • R in this case can be an integer of 4 or more.
  • the first layer corresponds to the input layer
  • the R layer corresponds to the output layer
  • the other layers correspond to the intermediate layer.
  • FIG. 1A illustrates the (k-1)th layer and the kth layer (k is an integer of 3 or more and R-1 or less) as intermediate layers, and other intermediate layers. Are not shown.
  • Each layer of the neural network 100 has one or more neurons.
  • the first layer includes neurons N 1 (1) to N p (1) (where p is an integer of 1 or more), and the (k ⁇ 1)th layer includes neurons N 1 (1).
  • ( K ⁇ 1) to neurons N m (k ⁇ 1) (where m is an integer of 1 or more)
  • the k-th layer includes neurons N 1 (k) to neurons N n (k) (
  • n is an integer of 1 or more.
  • the R-th layer has neurons N 1 (R) to neurons N q (R) (q is an integer of 1 or more). ..
  • the k-th layer neuron N j (k) (where j is an integer of 1 or more and n or less) is illustrated, and the other neurons are not illustrated.
  • Figure 1B is a neuron N j of the k-th layer (k), shows the signal which is input to the neuron N j (k), a signal output from the neuron N j (k), the.
  • the output signals z 1 (k-1) to z m (k- ) of the neurons N 1 (k-1) to N m (k-1) of the (k-1) -th layer are respectively output. 1) is output to the neuron N j (k) . Then, the neuron N j (k) is, z 1 (k-1) to z m (k-1) to generate a z j (k) in response to, the z j (k) is an output signal (k + 1 ) Output to each neuron of the layer (not shown).
  • the degree of signal transmission of a signal input from a neuron in the previous layer to a neuron in the next layer is determined by the coupling strength of synapses connecting these neurons (hereinafter referred to as a weighting coefficient).
  • the signals output from the neurons in the previous layer are multiplied by the corresponding weighting factors and input to the neurons in the next layer.
  • the synaptic weighting factor between the neuron N i (k ⁇ 1) of the (k ⁇ 1) th layer and the neuron N j (k) of the kth layer is w i (k ⁇ 1) j (k)
  • the signal input to the k-th layer neuron N j (k) can be expressed by equation (1.1).
  • the neuron N j (k) produces an output signal z j (k) according to u j (k) .
  • the output signal z j (k) from the neuron N j (k) is defined by the following equation.
  • the function f(u j (k) ) is an activation function in a hierarchical neural network, and a step function, a linear ramp function, a sigmoid function, or the like can be used.
  • the activation function may be the same or different in all neurons.
  • the activation function of the neuron may be the same or different in each layer.
  • the signal output from the neuron in each layer, the weighting coefficient w, or the bias b may be an analog value or a digital value.
  • the digital value may be binary or ternary, for example. A larger number of bits may be used.
  • a linear ramp function, a sigmoid function, or the like may be used as the activation function.
  • binary digital values for example, a step function with an output of -1 or 1, or 0 or 1 may be used.
  • the signals output from the neurons of each layer may have three or more values.
  • a step function whose output is -1, 0, or 1
  • a step function such as 0, 1, or 2
  • a step function such as -2, -1, 0, 1, or 2
  • the circuit scale can be reduced, the power consumption can be reduced, or the operation speed can be increased. You can do things, etc. Further, by using an analog value for at least one of the signal output from the neuron of each layer, the weighting coefficient w, or the bias b, it is possible to improve the calculation accuracy.
  • the neural network 100 when an input signal is input to the first layer (input layer), the layers from the first layer (input layer) to the last layer (output layer) are sequentially input from the previous layer. Based on the signal, an output signal is generated by using the equation (1.1), the equation (1.2) (or the equation (1.3)), and the equation (1.4), and the output signal is generated in the next layer. To output to. The signal output from the last layer (output layer) corresponds to the result calculated by the neural network 100.
  • the weighting coefficients of the synapse circuits of the neural network 100 are binary (a combination of “ ⁇ 1” and “+1”, or a combination of “0” and “+1”, etc.), 3 Value (combination of "-1", “0", “1”, etc.) or multi-value of 4 or more values (in the case of 5 values, "-2”, “-1", "0", “1”) , A combination of “2”), and the activation function of the neuron is binary (a combination of “ ⁇ 1” and “+1”, or a combination of “0” and “+1”, etc.) and a three-value (“ ⁇ 1”).
  • the weighting coefficient of the synapse circuit of the neural network 100 and the calculated value are not limited to digital values, and analog values can be used for at least one of them.
  • the arithmetic circuit 110 illustrated in FIG. 2 is, for example, a semiconductor device including an array unit ALP, a circuit ILD, a circuit WLD, a circuit XLD, and a circuit AFP.
  • the arithmetic circuit 110 outputs the signals z 1 (k-1) to z m (k-1) input to the neurons N 1 (k) to N n (k) of the kth layer in FIGS. 1A and 1B. It is a circuit that processes and generates signals z 1 (k) to z n (k) output from the neurons N 1 (k) to N n (k) , respectively.
  • the entire arithmetic circuit 110 or a part thereof may be used for purposes other than the neural network and AI.
  • the whole or a part of the arithmetic circuit 110 may be used to perform the process. That is, not only the calculation for AI but also the calculation circuit 110 may be entirely or partially used for general calculation.
  • the circuit ILD is electrically connected to the wirings IL[1] to IL[n] and the wirings ILB[1] to ILB[n], for example.
  • the circuit WLD is electrically connected to the wirings WLS[1] to WLS[m], for example.
  • the circuit XLD is electrically connected to the wirings XLS[1] to XLS[m], for example.
  • the circuit AFP is electrically connected to the wirings OL[1] to OL[n] and the wirings OLB[1] to OLB[n], for example.
  • the array unit ALP has m ⁇ n circuits MP as an example.
  • the circuits MP are, for example, arranged in a matrix of m rows and n columns in the array unit ALP. Note that, in FIG. 2, the circuit MP located at the i-th row and the j-th column (where i is an integer of 1 or more and m or less and j is an integer of 1 or more and n or less) is represented by the circuit MP[i, j]. However, in FIG. 2, only the circuit MP[1,1], the circuit MP[m,1], the circuit MP[i,j], the circuit MP[1,n], and the circuit MP[m,n] are illustrated. The other circuits MP are not shown.
  • the circuit MP[i,j] includes the wiring IL[j], the wiring ILB[j], the wiring WLS[i], the wiring XLS[i], the wiring OL[j], and the wiring OLB[. j] and are electrically connected to.
  • the circuit MP[i,j] may be referred to as a weighting coefficient (one of the first data and the second data ) between the neuron N i (k ⁇ 1) and the neuron N j (k) .
  • it has a function of holding (referred to as first data).
  • the circuit MP[i,j] has information (eg, potential, resistance value, current) corresponding to the first data (weighting coefficient) input from the wiring IL[j] and the wiring ILB[j]. Value etc.) is retained.
  • the circuit MP[i,j] may be referred to as the signal z i (k ⁇ 1) (the other of the first data and the second data ) output from the neuron N i (k ⁇ 1) .
  • the second data z i (k ⁇ 1) is input from the wiring XLS[i], and thus the product of the first data and the second data is obtained.
  • the corresponding information (for example, current or voltage) or information (for example, current or voltage) related to the product of the first data and the second data is output to the wiring OL[j] and the wiring OLB[j]. ..
  • the wiring IL[j] and the wiring ILB[j] are provided is described; however, one embodiment of the present invention is not limited to this. Only one of the wiring IL[j] and the wiring ILB[j] may be arranged.
  • the circuit ILD includes the circuits MP[1, 1] to MP[m, through the wirings IL[1] to IL[n] and the wirings ILB[1] to ILB[n].
  • n information corresponding to the first data w 1 (k ⁇ 1) 1 (k) to w m (k ⁇ 1) n (k) that are weighting factors (for example, potential, resistance value, It has a function to input the current value).
  • the circuit ILD has information (for example, potential, resistance ) corresponding to the first data w i (k ⁇ 1) j (k) , which is a weighting coefficient, for the circuit MP[i,j]. Value, current value, or the like) is supplied through the wiring IL[j] and the wiring ILB[j].
  • the circuit XLD includes a neuron N 1 (k ⁇ 1 ) for each of the circuits MP[1,1] to MP[m,n] via the wirings XLS[1] to wiring XLS[n]. ) Through neuron N m (k), the second data z 1 (k-1) through z m (k-1) corresponding to the calculated value is supplied. Specifically, the circuit XLD outputs the second data z i (k ⁇ 1) output from the neuron N i (k ⁇ 1) to the circuits MP[i,1] to MP[i,n]. The information (for example, potential, current value, etc.) corresponding to is supplied by the wiring XLS[i].
  • the wiring XLS[i] may be a plurality of wirings.
  • the example in which the wiring XLS[i] is provided is described; however, one embodiment of the present invention is not limited to this.
  • a wiring that transmits an inverted signal of a signal input to the wiring XLS[i] may be separately arranged.
  • the circuit WLD has, for example, a function of selecting a circuit MP to which information (for example, potential, resistance value, current value, etc.) according to the first data input from the circuit ILD is written. For example, when information (for example, a potential, a resistance value, a current value, or the like) is written to the circuits MP[i, 1] to MP[i, n] located in the i-th row of the array portion ALP, the circuit WLD is , For example, a signal for turning on or off a writing switching element included in the circuits MP[i, 1] to MP[i, n] is supplied to the wiring WLS[i] and other than the i-th row The potential for turning off the writing switching element included in the circuit MP may be supplied to the wiring WLS.
  • information for example, a potential, resistance value, current value, etc.
  • the wiring WLS[i] is provided; however, one embodiment of the present invention is not limited to this.
  • a wiring that transmits an inverted signal of a signal input to the wiring WLS[i] may be separately provided.
  • the arithmetic circuit 110 in FIG. 2 illustrates a structural example in which the wiring WLS[i] is provided, one embodiment of the present invention is not limited to this.
  • the wiring WLS[i] may be replaced with a plurality of wirings.
  • the wiring X1L[i] of the arithmetic circuit 120 in FIG. 3 may also be used as a selection signal line for writing information to the circuits MP[i,1] to MP[i,n].
  • the wiring X1L[i] of the arithmetic circuit 120 is used as a wiring WX1L[i], and the wiring WX1L is electrically connected to the circuit WLD and the circuit XLD. It may have been done. Note that when a signal for turning on or off the writing switching element included in the circuits MP[i, 1] to MP[i, n] is supplied from the circuit WLD to the wiring WX1L[i],
  • the circuit XLD preferably has a function of bringing the circuit XLD and the wiring WX1L into a non-conductive state.
  • the second data z 1 (k-1) to z m (k ) corresponding to the calculation values output from the neurons N 1 (k-1) to N m (k) via the wiring WX1L[i].
  • the circuit WLD has a function of bringing the circuit WLD and the wiring WX1L into a non-conduction state. Is preferred.
  • the circuit AFP includes circuits ACTF[1] to ACTF[n], for example.
  • the circuit ACTF[j] is electrically connected to each of the wiring OL[j] and the wiring OLB[j], for example.
  • the circuit ACTF[j] for example, generates a signal according to each information (for example, potential, current value, etc.) input from the wiring OL[j] and the wiring OLB[j].
  • the pieces of information (for example, potential and current value) input from the wiring OL[j] and the wiring OLB[j] are compared with each other, and a signal corresponding to the comparison result is generated.
  • each of the circuits ACTF[1] to ACTF[n] functions as a circuit that calculates the activation function of the neural network described above.
  • the circuits ACTF[1] to ACTF[n] may each have a function of converting an analog signal into a digital signal.
  • the circuits ACTF[1] to ACTF[n] may have a function of amplifying and outputting an analog signal, that is, a function of converting output impedance.
  • the circuits ACTF[1] to ACTF[n] may each have a function of converting current or charge into voltage.
  • the circuits ACTF[1] to ACTF[n] may have a function of initializing the potentials of the wiring OL[j] and the wiring OLB[j].
  • the arithmetic circuit 110, the arithmetic circuit 120, and the arithmetic circuit 130 illustrated in FIGS. 2 to 4 each include the circuit ACTF, an example of the present invention is not limited thereto. ..
  • the circuit ACTF may not be arranged in the circuit AFP.
  • FIG. 5A illustrates, as an example, a circuit that generates a signal z j (k) according to a current input from the wiring OL[j] and the wiring OLB[j].
  • FIG. 5A shows an example of an activation function arithmetic circuit that outputs an output signal z j (k) represented by two values.
  • the circuit ACTF[j] has a resistor RE, a resistor REB, and a comparator CMP.
  • the resistors RE and REB have a function of converting current into voltage. Therefore, as long as it is an element or a circuit having a function of converting current into voltage, it is not limited to resistance.
  • the wiring OL[j] is electrically connected to the first terminal of the resistor RE and the first input terminal of the comparator CMP, and the wiring OLB[j] is connected to the first terminal of the resistor REB and the comparator CMP. It is electrically connected to the second input terminal.
  • the second terminal of the resistor RE is electrically connected to the wiring VAL
  • the second terminal of the resistor REB is electrically connected to the wiring VAL.
  • the second terminal of the resistor RE and the second terminal of the resistor REB may be connected to the same wiring. Alternatively, it may be connected to another wiring having the same potential.
  • the resistance values of the resistors RE and REB are preferably equal to each other. For example, it is desirable that the difference between the resistance values of the resistors RE and REB be within 10%, and more preferably within 5%. However, one embodiment of the present invention is not limited to this. Depending on the case or the situation, the resistance values of the resistors RE and REB may be different from each other.
  • the wiring VAL functions as a wiring that gives a constant voltage, for example.
  • the constant voltage can be, for example, a high level potential VDD, a low level potential VSS, a ground potential (GND), or the like.
  • the constant voltage is appropriately set according to the configuration of the circuit MP.
  • the wiring VAL may be supplied with a pulse signal instead of a constant voltage.
  • the voltage between the first terminal and the second terminal of the resistor RE is determined according to the current flowing from the wiring OL[j]. Therefore, the resistance value of the resistor RE and the voltage corresponding to the current are input to the first input terminal of the comparator CMP.
  • the voltage between the first terminal and the second terminal of the resistor REB is determined according to the current flowing from the wiring OLB[j]. Therefore, the resistance value of the resistor REB and the voltage corresponding to the current are input to the second input terminal of the comparator CMP.
  • the comparator CMP has a function of comparing the voltages input to the first input terminal and the second input terminal and outputting a signal from the output terminal of the comparator CMP according to the comparison result.
  • the comparator CMP outputs a high level potential from the output terminal of the comparator CMP when the voltage input to the second input terminal is higher than the voltage input to the first input terminal, and the second input terminal When the voltage input to the first input terminal is higher than the voltage input to, the low level potential can be output from the output terminal of the comparator CMP.
  • the output signal z j (k) output from the circuit ACTF[j] should be binary.
  • the high level potential and the low level potential output from the output terminal of the comparator CMP can correspond to “+1” and “ ⁇ 1” as the output signal z j (k) .
  • the high-level potential and the low-level potential output from the output terminal of the comparator CMP may correspond to “+1” and “0” as the output signal z j (k) .
  • the resistors RE and REB are used, but the elements or circuits having the function of converting current into voltage are not limited to resistors. Therefore, the resistors RE and REB of the circuit ACTF[j] in FIG. 5A can be replaced with other circuit elements.
  • the circuit ACTF[j] illustrated in FIG. 5B is a circuit in which the resistor RE and the resistor REB included in the circuit ACTF[j] in FIG. 5A are replaced with a capacitor CE and a capacitor CEB. ], and almost the same operation can be performed.
  • the capacitances of the capacitance CE and the capacitance CEB are preferably equal to each other.
  • the difference between the capacitance values of the capacitance CE and the capacitance CEB is within 10%, more preferably within 5%.
  • a circuit for initializing the electric charge accumulated in the capacitors CE and CEB may be provided.
  • a switch may be provided in parallel with the capacitor CE. That is, the second terminal of the switch is connected to the wiring VAL, and the first terminal of the switch is connected to the first terminal of the capacitance CE, the wiring OL[j], and the first input terminal of the comparator CMP. Good.
  • the second terminal of the switch is connected to a wiring different from the wiring VAL
  • the first terminal of the switch is connected to the first terminal of the capacitor CE, the wiring OL[j], and the first input terminal of the comparator CMP. It may be connected.
  • the circuit ACTF[j] illustrated in FIG. 5C is a circuit in which the resistors RE and REB included in the circuit ACTF[j] in FIG. 5A are replaced with a diode element DE and a diode element DEB, respectively. An operation similar to that of [j] can be performed. It is desirable that the directions of the diode element DE and the diode element DEB (connection points between the anode and the cathode) are appropriately changed depending on the magnitude of the potential of the wiring VAL.
  • comparator CMP included in the circuits ACTF[j] of FIGS. 5A to 5C can be replaced with the operational amplifier OP as an example.
  • the circuit ACTF[j] illustrated in FIG. 5D is a circuit diagram in which the comparator CMP of the circuit ACTF[j] in FIG. 5A is replaced with the operational amplifier OP.
  • the circuit ACTF[j] in FIG. 5B may be provided with the switch S01a and the switch S01b. Accordingly, the circuit ACTF[j] can hold potentials corresponding to currents input from the wiring OL[j] and the wiring OLB[j] to the capacitors CE and CEB, respectively.
  • the wiring OL[j] is electrically connected to the first terminal of the switch S01a, and the second terminal of the switch S01a is compared with the first terminal of the capacitor CE.
  • the Device CMP is electrically connected to the first input terminal of the switch C01b, the wiring OLB[j] is electrically connected to the first terminal of the switch S01b, and the second terminal of the switch S01b is connected to the first terminal of the capacitor CEB and the comparator.
  • the second input terminal of the CMP may be electrically connected.
  • the switch S01a and the switch S01b are operated. This can be done by turning each on.
  • the potentials input to the first and second input terminals of the comparator CMP can be held in the capacitors CE and CEB, respectively.
  • the switches S01a and S01b for example, electrical switches such as analog switches and transistors can be used.
  • the switches S01a and S01b for example, mechanical switches may be applied.
  • the transistor when a transistor is used for the switch S01a and the switch S01b, the transistor can be an OS transistor or a transistor including silicon in a channel formation region (hereinafter referred to as a Si transistor).
  • the voltage values of the capacitors CE and CEB can be controlled by controlling the period during which the switches S01a and S01b are kept on. For example, when the current values flowing through the capacitors CE and CEB are large, the voltage values of the capacitors CE and CEB are increased by shortening the period in which the switches S01a and S01b are kept in the ON state. You can prevent too much.
  • the comparator CMP included in the circuits ACTF[j] of FIGS. 5A to 5C and 5E can be, for example, a chopper type comparator.
  • the comparator CMP shown in FIG. 5F shows a chopper type comparator, and the comparator CMP includes a switch S02a, a switch S02b, a switch S03, a capacitor CC, and an inverter circuit INV3.
  • the switch S02a, the switch S02b, and the switch S03 can be mechanical switches, transistors such as OS transistors, and Si transistors as in the above-described switches S01a and S01b.
  • the first terminal of the switch S02a is electrically connected to the terminal VinT
  • the first terminal of the switch S02b is electrically connected to the terminal VrefT
  • the second terminal of the switch S02a is the second terminal of the switch S02b
  • It is electrically connected to the first terminal of the capacitor CC.
  • the second terminal of the capacitor CC is electrically connected to the input terminal of the inverter circuit INV3 and the first terminal of the switch S03.
  • the terminal VoutT is electrically connected to the output terminal of the inverter circuit INV3 and the second terminal of the switch S03.
  • the terminal VinT functions as a terminal for inputting an input potential to the comparator CMP
  • the terminal VrefT functions as a terminal for inputting a reference potential to the comparator CMP
  • the terminal VoutT is an output potential from the comparator CMP. Functions as a terminal for outputting.
  • the terminal VinT corresponds to one of the first terminal and the second terminal of the comparator CMP of FIGS. 5A to 5C and 5E
  • the terminal VrefT is the terminal of the comparator CMP of FIGS. 5A to 5C and 5E. It can correspond to the other of the one terminal or the second terminal.
  • Circuit ACTF in FIGS. 5A to 5E [j] is a calculation circuit of the activation function for outputting an output signal z j (k) expressed by binary
  • circuit ACTF [j] is the output signal z j ( k) may be output in three or more values or as an analog value.
  • 6A to 6F are circuits that generate a signal z j (k) in accordance with a current input from the wiring OL[j] and the wiring OLB[j], and are output signals z j represented by three values.
  • An example of an activation function arithmetic circuit that outputs (k) is shown.
  • the circuit ACTF[j] shown in FIG. 6A has a resistor RE, a resistor REB, a comparator CMPa, and a comparator CMPb.
  • the wiring OL[j] is electrically connected to the first terminal of the resistor RE and the first input terminal of the comparator CMPa
  • the wiring OLB[j] is connected to the first terminal of the resistor REB and the comparator CMPb. It is electrically connected to the first input terminal.
  • the second input terminal of the comparator CMPa and the second input terminal of the comparator CMPb are electrically connected to the wiring VrefL.
  • the second terminal of the resistor RE is electrically connected to the wiring VAL
  • the second terminal of the resistor REB is electrically connected to the wiring VAL.
  • VrefL functions as a voltage line that supplies a constant voltage Vref, and Vref is preferably GND or more and VDD or less, for example. Further, depending on the situation, V ref may be a potential lower than GND or a potential higher than VDD. V ref is treated as a reference potential (comparison potential) in the comparator CMPa and the comparator CMPb.
  • the voltage between the first terminal and the second terminal of the resistor RE is determined according to the current flowing from the wiring OL[j]. Therefore, the resistance value of the resistor RE and the voltage corresponding to the current are input to the first input terminal of the comparator CMPa.
  • the voltage between the first terminal and the second terminal of the resistor REB is determined according to the current flowing from the wiring OLB[j]. Therefore, the resistance value of the resistor REB and the voltage corresponding to the current are input to the first input terminal of the comparator CMPb.
  • the comparator CMPa compares the voltages input to the first input terminal and the second input terminal, and outputs a signal from the output terminal of the comparator CMPa according to the comparison result. For example, the comparator CMPa outputs a high level potential from the output terminal of the comparator CMPa when the voltage (V ref ) input to the second input terminal is higher than the voltage input to the first input terminal. When the voltage input to the first input terminal is higher than the voltage (V ref ) input to the second input terminal, the low-level potential can be output from the output terminal of the comparator CMPa.
  • the comparator CMPb compares the voltages input to the first input terminal and the second input terminal, and outputs a signal from the output terminal of the comparator CMPb according to the comparison result. To do. For example, the comparator CMPb outputs a high level potential from the output terminal of the comparator CMPb when the voltage (V ref ) input to the second input terminal is higher than the voltage input to the first input terminal, When the voltage input to the first input terminal is higher than the voltage (V ref ) input to the second input terminal, the low-level potential can be output from the output terminal of the comparator CMPb.
  • a ternary output signal z j (k) can be represented according to the potentials output from the output terminals of the comparator CMPa and the comparator CMPb. For example, when a high level potential is output from the output terminal of the comparator CMPa and a low level potential is output from the output terminal of the comparator CMPb, the output signal z j (k) is set to “+1” and the output of the comparator CMPa is output. When the low level potential is output from the terminal and the high level potential is output from the output terminal of the comparator CMPb, the output signal z j (k) is “ ⁇ 1”, and the low level potential is output from the output terminal of the comparator CMPa. When it is output and a low level potential is output from the output terminal of the comparator CMPb, the output signal z j (k) can be “+0”.
  • the circuit ACTF[j] is not limited to the circuit configuration illustrated in FIG. 6A and can be changed depending on the situation.
  • the conversion circuit TRF may be provided in the circuit ACTF[j].
  • the circuit ACTF[j] in FIG. 6B is a configuration example in which the conversion circuit TRF is provided in the circuit ACTF[j] in FIG. 6A, and the output terminals of the comparator CMPa and the comparator CMPb are the input terminals of the conversion circuit TRF. Is electrically connected to.
  • a digital-analog conversion circuit in this case, the signal z j (k) becomes an analog value
  • the wiring VrefL electrically connected to the second input terminals of the comparator CMPa and the comparator CMPb may be replaced with separate wirings Vref1L and Vref2L.
  • the second terminal of the comparator CMPa included in the circuit ACTF[j] of FIG. 6A is electrically connected to the wiring Vref1L instead of the wiring VrefL, and the second terminal of the comparator CMPb is included.
  • the terminal is electrically connected to the wiring Vref2L instead of the wiring VrefL.
  • an amplifier circuit or an impedance conversion circuit may be used as a configuration different from the circuit ACTF[j] of FIGS. 6A to 6C.
  • the circuit ACTF[j] illustrated in FIG. 6D can be applied to the circuit AFP of the arithmetic circuit 110 in FIG.
  • the circuit ACTF[j] in FIG. 6D has a resistor RE, a resistor REB, an operational amplifier OPa, and an operational amplifier OPb, and functions as an amplifier circuit.
  • the wiring OL[j] is electrically connected to the first terminal of the resistor RE and the non-inverting input terminal of the operational amplifier OPa
  • the wiring OLB[j] is the first terminal of the resistor REB and the non-inverting input terminal of the operational amplifier OPb. It is electrically connected to the input terminal.
  • the inverting input terminal of the operational amplifier OPa is electrically connected to the output terminal of the operational amplifier OPa
  • the inverting input terminal of the operational amplifier OPb is electrically connected to the output terminal of the operational amplifier OPb.
  • the second terminal of the resistor RE is electrically connected to the wiring VAL
  • the second terminal of the resistor REB is electrically connected to the wiring VAL.
  • the operational amplifiers OPa and OPb included in the circuit ACTF[j] of FIG. 6D have a voltage follower connection configuration.
  • the potential output from the output terminal of the operational amplifier OPa becomes substantially equal to the potential input to the non-inverting input terminal of the operational amplifier OPa
  • the potential output from the output terminal of the operational amplifier OPb is the non-inverting input terminal of the operational amplifier OPb. It is almost equal to the potential input to the terminal.
  • the output signal z j (k) is output from the circuit ACTF[j] as two analog values.
  • the output terminal of the operational amplifier OPa and the output terminal of the operational amplifier OPb may be connected to the input terminals of the comparator CMP, respectively. Then, the output from the comparator CMP may be used as the output signal z j (k) .
  • an integration circuit, a current-voltage conversion circuit, or the like may be used as a configuration different from the circuit ACTF[j] of FIGS. 6A to 6D.
  • an operational amplifier may be used to configure an integration circuit or a current-voltage conversion circuit.
  • the circuit ACTF[j] illustrated in FIG. 6E can be applied to the circuit AFP of the arithmetic circuit 110 in FIG.
  • the circuit ACTF[j] in FIG. 6E includes an operational amplifier OPa, an operational amplifier OPb, a load LEa, and a load LEb.
  • the wiring OL[j] is electrically connected to the first input terminal (for example, the inverting input terminal) of the operational amplifier OPa and the first terminal of the load LEa, and the wiring OLB[j] is the first input terminal of the operational amplifier OPb.
  • the input terminal (for example, an inverting input terminal) is electrically connected to the first terminal of the load LEb.
  • the second input terminal (for example, non-inverting input terminal) of the operational amplifier OPa is electrically connected to the wiring Vref1L
  • the second input terminal (for example, non-inverting input terminal) of the operational amplifier OPb is electrically connected to the wiring Vref2L. It is connected to the.
  • the second terminal of the load LEa is electrically connected to the output terminal of the operational amplifier OPa
  • the second terminal of the load LEa is electrically connected to the output terminal of the operational amplifier OPb.
  • the wiring Vref1L and the wiring Vref2L here function as wirings that supply a voltage equal to or different from each other. Therefore, the wiring Vref1L and the wiring Vref2L can be combined into one wiring in some cases.
  • the load LEa and the load LEb can be resistors and capacitors, for example.
  • the operational amplifier OPa and the load LEa, and the operational amplifier OPb and the load LEb function as an integrating circuit, respectively. That is, charge is stored in each of the capacitors (load LEa and load LEb) depending on the amount of current flowing through the wiring OL[j] or the wiring OLB[j]. That is, the current flowing from the wiring OL[j] and the wiring OLB[j] is converted into a voltage by the integrating circuit and the integrated current amount is output as a signal z j (k) .
  • the output terminal of the operational amplifier OPa and the output terminal of the operational amplifier OPb may be connected to the input terminals of the comparator CMP, respectively. Then, the output from the comparator CMP may be used as the output signal z j (k) .
  • a circuit for initializing the electric charge accumulated in the capacitances of the loads LEa and LEb may be provided.
  • a switch may be provided in parallel with the load LEa (capacity). That is, the second terminal of the switch is connected to the output terminal of the operational amplifier OPa, and the first terminal of the switch is connected to the wiring OL[j] and the first input terminal (for example, inverting input terminal) of the operational amplifier OPa. May be.
  • the load LEa and the load LEb are resistors other than the capacitance. Can be used.
  • the circuit ACTF[j] shown in FIG. 6F can be applied to the circuit AFP of the arithmetic circuit 110 of FIG. 2 as a configuration different from the circuit ACTF[j] of FIGS. 6A to 6E.
  • the circuit ACTF[j] in FIG. 4F includes a resistor RE, a resistor REB, an analog-digital conversion circuit ADCa, and an analog-digital conversion circuit ADCb.
  • the wiring OL[j] is electrically connected to the input terminal of the analog-digital conversion circuit ADCa and the first terminal of the resistor RE, and the wiring OLB[j] is connected to the input terminal of the analog-digital conversion circuit ADCb and the resistor. It is electrically connected to the first terminal of REB.
  • the second terminal of the resistor RE is electrically connected to the wiring VAL, and the second terminal of the resistor REB is electrically connected to the wiring VAL.
  • the potentials of the first terminals of the resistors RE and REB are determined according to the currents flowing from the wirings OL[j] and OLB[j]. Then, the circuit ACTF[j] converts the potential, which is an analog value, into a binary value or a digital value of three values or more (for example, 256 values) by the analog-digital conversion circuit ADCa and the analog-digital conversion circuit ADCb. , And output as signals z j (k) .
  • the resistors RE and REB shown in FIGS. 6A to 6D and 6F can be replaced with the capacitance CE, the capacitance CEB, or the diode element DE and the diode element DEB, as in FIGS. 5B and 5C.
  • the resistors RE and REB shown in FIGS. 6A to 6D and 6F are replaced with capacitors CE and CEB, by further providing a switch S01a and a switch S01b similarly to FIG. 5E, the wiring OL[j] , The potential input from the wiring OLB[j] can be held.
  • the wiring IL, the wiring ILB, the wiring OL, and the wiring OLB are arranged in each of the arithmetic circuit 110, the arithmetic circuit 120, and the arithmetic circuit 130. Aspects are not limited to this.
  • the wiring IL and the wiring OL may be combined into one wiring
  • the wiring ILB and the wiring OLB may be combined into one wiring.
  • FIG. 7 shows a specific configuration thereof.
  • the arithmetic circuit 140 illustrated in FIG. 7 includes the switching circuits TW[1] to TW[n].
  • Each of the switching circuits TW[1] to TW[n] has a terminal TSa, a terminal TSaB, a terminal TSb, a terminal TSbB, a terminal TSc, and a terminal TScB.
  • the terminal TSa is electrically connected to the wiring OL[j]
  • the terminal TSbB is electrically connected to the circuit ILD
  • the terminal TSc is electrically connected to the circuit ACTF[i].
  • the terminal TSaB is electrically connected to the wiring OLB[j]
  • the terminal TSbB is electrically connected to the circuit ILD
  • the terminal TScB is electrically connected to the circuit ACTF[j].
  • the switching circuit TW[j] has a function of bringing the terminal TSa and one of the terminal TSb and the terminal TSc into a conductive state and making the terminal TSa and the other of the terminal TSb and the terminal TSc into a non-conductive state. ..
  • the switching circuit TW[j] has a function of bringing the terminal TSaB and one of the terminal TSbB or the terminal TScB into a conductive state and making the terminal TSaB and the other of the terminal TSbB or the terminal TScB into a non-conductive state.
  • the first data w 1 (k ⁇ 1) 1 (k) to w m (k ⁇ 1) n which is a weighting coefficient for any one of the circuits MP[1,j] to MP[m,j] ).
  • the terminals TSa and TSb are brought into conduction, and the terminals TSaB and TSbB.
  • the first data w 1 (k ⁇ 1) 1 (k) to w m (k ⁇ 1) n from the circuit ILD to the wiring OL[j] and the wiring OLB[j] by making the wirings conductive with each other.
  • Information corresponding to k) (for example, potential, resistance value, current value, etc.) can be supplied.
  • the result of the product sum (equation (1.2)) of the weighting factor and the neuron signal calculated by the circuit ACTF[j] by the circuits MP[1,j] to MP[m,j] is obtained.
  • the switching circuit TW[j] the terminals TSa and TSc are brought into conduction and the terminals TSaB and TScB are brought into conduction, whereby the wiring OL[j] and the wiring OLB[ Information corresponding to the result of the sum of products (for example, potential, current value, etc.) can be supplied from j] to the circuit ACTF[j].
  • the value of the activation function is calculated from the input result of the sum of products, and the signal z j (k) can be obtained as the output signal of the neuron.
  • FIG. 8A shows a configuration example of the switching circuit TW[j] and the circuit ILD which can be applied to the arithmetic circuit 140. Note that in FIG. 8A, a wiring OL[j], a wiring OLB[j], and a circuit AFP are also illustrated in order to show a configuration of electrical connection between the switching circuit TW[j] and the circuit ILD. ing.
  • the switching circuit TW[j] has, for example, a switch SWI, a switch SWIB, a switch SWO, a switch SWOB, a switch SWL, a switch SWLB, a switch SWH, and a switch SWHB.
  • the circuit ILD has, for example, a current source circuit ISC.
  • the current source circuit ISC may not be provided and a voltage source circuit may be arranged instead.
  • the current source circuit ISC has a function of flowing a current corresponding to the weighting coefficient (first data) input to the circuit MP, to the wiring OL[j] and/or the wiring OLB[j].
  • at least one current source circuit ISC may be provided as a separate circuit for the wiring OL[j] and as a circuit for the wiring OLB[j].
  • at least one current source circuit ISC may be provided for a pair of wirings OL[j] and OLB[j].
  • the current source circuit ISC has one or a plurality of constant current sources, and in FIG. 8A, as an example, as the plurality of constant current sources, a constant current source circuit ISC1, a constant current source circuit ISC2, And a constant current source circuit ISC3. Further, the current source circuit ISC has a plurality of switches for selecting a plurality of constant current sources as an example, and in FIG. 8A, the plurality of switches are a switch SWC1, a switch SWC2, and a switch SWC3. And. When the current source circuit ISC has only one constant current source, the constant current source circuit ISC does not need to have a switch.
  • the switch SWC1 and the switch SWC2 may not be provided.
  • the currents flowing through the wirings OL[j] and OLB[j] are generated by the same current source circuit ISC, as shown in FIG. 8A.
  • currents flowing through the wiring OL[j] and the wiring OLB[j] are generated by different current source circuits, variations in characteristics of the transistor may occur due to a manufacturing process of the transistor or the like, which is different. There may be a difference in performance between the current source circuits.
  • the same current source circuit it is possible to supply the same amount of current to the wiring OL[j] and the wiring OLB[j], and it is possible to improve the calculation accuracy.
  • the switch SWI, the switch SWIB, the switch SWO, the switch SWOB, the switch SWL, the switch SWLB, the switch SWH, the switch SWHB, the switch SWC1, the switch SWC2, and the switch SWC3 described in FIG. 8A are, for example, the switch S01a and the switch S01b.
  • an analog switch, an electric switch such as a transistor, or a mechanical switch can be applied.
  • the terminal TSa is electrically connected to the first terminal of the switch SWI, the first terminal of the switch SWO, the first terminal of the switch SWL, and the first terminal of the switch SWH. It is connected.
  • the terminal TSaB is electrically connected to the first terminal of the switch SWIB, the first terminal of the switch SWOB, the first terminal of the switch SWLB, and the first terminal of the switch SWHB.
  • the second terminal of the switch SWI is electrically connected to the terminal TSb1.
  • the second terminal of the switch SWIB is electrically connected to the terminal TSbB1.
  • the second terminal of the switch SWO is electrically connected to the terminal TSc.
  • the second terminal of the switch SWOB is electrically connected to the terminal TScB.
  • the second terminal of the switch SWL is electrically connected to the terminal TSb2.
  • the second terminal of the switch SWLB is electrically connected to the terminal TSbB2.
  • the second terminal of the switch SWH is electrically connected to the terminal TSb3.
  • the second terminal of the switch SWHB is electrically connected to the terminal TSbB3.
  • the terminals TSb1, TSb2, and TSb3 illustrated in FIG. 8A correspond to the terminals TSb illustrated in FIG. 7. Further, the terminal TSbB1, the terminal TSbB2, and the terminal TSbB3 illustrated in FIG. 8A correspond to the terminal TSbB illustrated in FIG. 7.
  • the terminal TSb1 is electrically connected to the first terminal of the switch SWC1, the first terminal of the switch SWC2, and the first terminal of the switch SWC3.
  • the terminal TSbB1 is electrically connected to the first terminal of the switch SWC1, the first terminal of the switch SWC2, and the first terminal of the switch SWC3.
  • the second terminal of the switch SWC1 is electrically connected to the output terminal of the constant current source circuit ISC1, the second terminal of the switch SWC2 is electrically connected to the output terminal of the constant current source circuit ISC2, and the second terminal of the switch SWC3 is electrically connected.
  • the two terminals are electrically connected to the output terminal of the constant current source circuit ISC3.
  • the input terminal of the constant current source circuit ISC1, the input terminal of the constant current source circuit ISC2, and the input terminal of the constant current source circuit ISC3 are electrically connected to the wiring VSO.
  • the output terminals of the constant current source circuit ISC1, the constant current source circuit ISC2, and the constant current source circuit ISC3 are electrically connected to the terminals of the respective switches, and the input terminals are electrically connected to the wiring VSO.
  • the input terminal is electrically connected to the terminal of each switch, and the output terminal is electrically connected to the wiring VSO. It may be configured to have.
  • the wiring VCN2 may be provided in order to initialize the potentials of the wirings OL[j] and OLB[j] before the current is output from the circuit MP.
  • the wiring VCN2 is connected to the wiring OL[j] through the switch SWH.
  • the wiring VCN2 is connected to the wiring OLB[j] via the switch SWHB.
  • the wiring VCN2 can supply a potential different from that of the wiring VCN. For example, when VSS or the ground potential is supplied to the wiring VCN, VDD or the like is supplied to the wiring VCN2. Accordingly, the potential of the wiring OL[j] and the wiring OLB[j] can be changed by the current output from the circuit MP.
  • the constant current source circuit ISC1 (constant current source circuit ISC2, constant current source circuit ISC3) illustrated in FIG. 8B includes a p-channel transistor, and the first terminal of the transistor is electrically connected to the wiring VSO. The second terminal of the transistor is electrically connected to the second terminal of the switch SWC1 (switch SWC2, switch SWC3), and the gate of the transistor is electrically connected to the wiring VB.
  • the constant current source circuit ISC1 constant current source circuit ISC2, constant current source circuit ISC3 illustrated in FIG.
  • the wiring VB functions as a wiring for inputting a bias voltage to the gate of each transistor. ..
  • a pulse signal may be supplied to the wiring VB. This makes it possible to control whether or not to output a current from each constant current source circuit. In that case, the switch SWC1, the switch SWC2, and the switch SWC3 may not be provided. Alternatively, an analog voltage may be supplied to the wiring VB. Thereby, the analog current can be supplied from the constant current source circuit.
  • the wiring VSO functions as a wiring that supplies a constant voltage to each of the constant current source circuit ISC1, the constant current source circuit ISC2, and the constant current source circuit ISC3.
  • the constant voltage is higher than the ground potential (eg, VDD).
  • the constant current source circuit ISC1 constant current source circuit ISC2, constant current source circuit ISC3 shown in FIG. 8B.
  • the constant voltage is higher than the ground potential, lower than the high-level potential, or ground.
  • constant current source circuit ISC1 constant current source circuit ISC2, constant current source circuit ISC3
  • a current flowing from the circuit ILD to the wiring OL or the wiring OLB through the switching circuit TW[j] may be referred to as a positive current. Therefore, a current flowing from the wiring OL or the wiring OLB to the circuit ILD through the switching circuit TW[j] may be referred to as a negative current.
  • the current supplied by the constant current source circuit ISC1 is I ut
  • the current supplied by the constant current source circuit ISC2 is preferably 2 I ut
  • the current supplied by the constant current source circuit ISC3 is 4 I ut .
  • the current source circuit ISC has P (P is an integer of 1 or more) constant current sources
  • the p-th (p is an integer of 1 or more and P or less) constant current source flows.
  • the current is preferably 2 (p-1) x I ut . In this way, the magnitude of the current flowing from the current source circuit ISC can be changed.
  • the current output from the current source circuit ISC has eight values (“0”, “I ut ”, “2I ut ”, “3I ut ”, “4I ut ”, “5I ut ”, “6I ut ”, “7I ut ”).
  • the number of constant current sources may be four or more.
  • any one of eight values of current can be supplied to the wiring OLB[j].
  • the switches SWC1 to SWC3 of the current source circuit ISC may not be turned off, but the switches SWI and SWIB of the switching circuit TW may be turned off.
  • DA conversion can be easily realized. It should be noted that only one current source circuit may be arranged and operated so as to change the current value output in an analog manner.
  • the terminal TSb2 is electrically connected to the wiring VCN, and the terminal TSbB2 is electrically connected to the wiring VCN.
  • the wiring VCN functions as a wiring that supplies a constant voltage to the wiring OL[j] and/or the wiring OLB[j].
  • a current a positive current
  • the constant voltage supplied by the wiring VCN is a low-level potential (eg VSS). Is preferred.
  • the constant potential given by the wiring VCN is a high-level potential. preferable.
  • the constant voltage supplied by the wiring VCN is preferably a high-level potential (eg, VDD). That is, when a constant voltage is supplied from the wiring VCN, it is desirable that the potential difference across the capacitor C3 be close to zero. In other words, it is desirable that the circuit MC supply a potential to the wiring VCN so that no current is output.
  • the terminal TSb3 is electrically connected to the wiring VCN2, and the terminal TSbB3 is electrically connected to the wiring VCN2.
  • the wiring VCN2 functions as a wiring that supplies a constant voltage to the wiring OL[j] and/or the wiring OLB[j].
  • the constant voltage supplied by the wiring VCN is a high-level potential (eg, VDD). Is preferred.
  • the constant potential given by the wiring VCN is a low-level potential. preferable.
  • the switching circuit TW[j] switches each of the switch SWI, the switch SWIB, the switch SWO, the switch SWOB, the switch SWL, the switch SWLB, the switch SWH, and the switch SWHB to an on state or an off state to thereby change the wiring OL[j] and A circuit which is brought into conduction with the wiring OLB[j] can be changed.
  • a current corresponding to the weighting coefficient may be input to the wiring OL[j] and a constant potential given by the wiring VCN may be input to the wiring OLB[j].
  • the current source circuit ISC and the wiring OL[j] are brought into conduction
  • the current source circuit ISC and the wiring OLB[j] are brought out of conduction
  • the circuit AFP and the wiring OL[j] are connected. Between the circuit AFP and the wiring OLB[j], and between the wiring VCN and the wiring OL[j], and the wiring VCN and the wiring OLB[j].
  • the wiring VCN2 and the wiring OL[j] may be rendered non-conductive, and the wiring VCN2 and the wiring OLB[j] may be rendered non-conductive. That is, in the switching circuit TW[j], the switches SWI and SWLB may be turned on, and each of the switch SWIB, the switch SWO, the switch SWOB, the switch SWL, the switch SWH, and the switch SWHB may be turned off. Accordingly, the current source circuit ISC and the wiring OL[j] are brought into conduction with each other, so that a current can flow from the current source circuit ISC to the circuit MP via the wiring OL[j].
  • the current becomes any one of 2 P ⁇ 1 values (zero current is not included). Since the positive weighting factor input to the circuit MP is determined according to the current, the weighting factor can be any one of 2 P -1 values. Further, since the wiring VCN and the wiring OLB[j] are brought into conduction, a constant voltage from the wiring VCN is input to the wiring OLB[j].
  • a current corresponding to the weighting coefficient may be input to the wiring OLB[j] and a constant potential given by the wiring VCN may be input to the wiring OL[j].
  • the current source circuit ISC and the wiring OL[j] are brought out of conduction, the current source circuit ISC and the wiring OLB[j] are brought into conduction, and the circuit AFP and the wiring OL[j] are connected. Between the circuit AFP and the wiring OLB[j], and between the wiring VCN and the wiring OL[j], and the wiring VCN and the wiring OLB[j]. Between the wiring VCN2 and the wiring OL[j], and between the wiring VCN2 and the wiring OLB[j].
  • the switch SWIB and the switch SWL may be turned on and the switch SWI, the switch SWO, the switch SWOB, the switch SWLB, the switch SWH, and the switch SWHB may be turned off. Accordingly, the current source circuit ISC and the wiring OLB[j] are brought into conduction with each other, so that a current can flow from the current source circuit ISC to the circuit MP via the wiring OLB[j].
  • the current becomes any one of 2 P ⁇ 1 values (zero current is not included). Since the negative weighting factor input to the circuit MP is determined according to the current, the weighting factor can be any one of 2 P -1 values.
  • the wiring VCN and the wiring OL[j] are brought into electrical conduction, a constant voltage from the wiring VCN is input to the wiring OL[j].
  • the constant potential given by the wiring VCN may be input to each of the wiring OL[j] and the wiring OLB[j].
  • the current source circuit ISC and the wiring OL[j] are made non-conductive
  • the current source circuit ISC and the wiring OLB[j] are made non-conductive
  • the circuit AFP and the wiring OL[j] are made.
  • the wiring VCN2 and the wiring OL[j] may be made non-conductive
  • the wiring VCN2 and the wiring OLB[j] may be made non-conductive.
  • the switch SWL and the switch SWLB may be turned on, and the switch SWI, the switch SWIB, the switch SWO, and the switch SWOB may be turned off.
  • the wiring VCN and the wiring OL[j] are brought into conduction and the wiring VCN and the wiring OLB[j] are brought into conduction, and thus the wirings OL[j] and OLB[j] are A constant voltage is input from the wiring VCN.
  • the number of weighting factors (the total of the positive weighting factor, the negative weighting factor, and the weighting factor of 0) that can be input to the circuit MP is 2 It becomes P+1 ⁇ 1.
  • the predetermined potential is preferably a high-level potential.
  • the predetermined potential is preferably a low-level potential.
  • the current source circuit ISC and the wiring OL[j] are brought into a non-conducting state, and the current source circuit ISC is And the wiring OLB[j] are brought out of conduction, the circuit AFP and the wiring OL[j] are brought out of conduction, and the circuit AFP and the wiring OLB[j] are brought out of conduction.
  • the VCN and the wiring OL[j] are brought out of conduction, the wiring VCN and the wiring OLB[j] are brought out of conduction, and the wiring VCN2 and the wiring OL[j] are brought into conduction.
  • the VCN2 and the wiring OLB[j] may be brought into conduction. That is, in the switching circuit TW[j], the switch SWH and the switch SWHB may be turned on, and the switch SWI, the switch SWIB, the switch SWO, the switch SWOB, the switch SWL, and the switch SWLB may be turned off. Accordingly, the wiring OL[j] and the wiring VCN2 are brought into conduction and the wiring OLB[j] and the wiring VCN2 are brought into conduction, so that the wiring OL and the wiring OLB are fixed to each other from the wiring VCN2. The voltage is input.
  • the current source circuit ISC and the wiring OL[j] are brought into a non-conducting state, and the current source
  • the circuit ISC and the wiring OLB[j] are brought out of conduction
  • the circuit AFP and the wiring OL[j] are brought into conduction
  • the circuit AFP and the wiring OLB[j] are brought into conduction.
  • VCN and the wiring OL[j] are brought out of conduction
  • wiring VCN and the wiring OLB[j] are brought out of conduction
  • wiring VCN2 and the wiring OL[j] are brought out of conduction.
  • the wiring VCN2 and the wiring OLB[j] may be made non-conductive. That is, in the switching circuit TW[j], the switch SWO and the switch SWOB may be turned on, and the switch SWI, the switch SWIB, the switch SWL, the switch SWLB, the switch SWH, and the switch SWHB may be turned off. Accordingly, the circuit AFP and the circuit MP[i,j] are brought into conduction, so that information (for example, potential, current, and the like) can be supplied from the circuit MP[i,j] to the circuit AFP.
  • information for example, potential, current, and the like
  • FIG. 9A shows a configuration example of the circuit MP[i,j] applicable to the arithmetic circuit 140, and the circuit MP[i,j] includes, for example, a circuit MC and a circuit MCr.
  • the circuit MC and the circuit MCr are circuits that calculate the product of the weight coefficient and the input signal (calculated value) of the neuron in the circuit MP.
  • the circuit MC can have a structure similar to that of the circuit MCr or a structure different from that of the circuit MCr. Therefore, in order to distinguish the circuit MCr from the circuit MC, “r” is added to the code. Further, the reference numeral of a circuit element, which will be described later, included in the circuit MCr is also attached with “r”.
  • the circuit MC has a holding unit HC as an example, and the circuit MCr has a holding unit HCr.
  • the holding unit HC and the holding unit HCr each have a function of holding information (for example, potential, resistance value, current value, etc.).
  • the first data w i (k ⁇ 1) j (k) set in the circuit MP[i,j] is information (eg, potential, resistance) held in each of the holding unit HC and the holding unit HCr. Value, current value, etc.). Therefore, each of the holding unit HC and the holding unit HCr supplies the wiring OL[ that supplies information (for example, potential, resistance value, current value, etc.) according to the first data w i (k ⁇ 1) j (k) . j] and the wiring OLB[j].
  • the circuit MP[i,j] is electrically connected to the wiring VE[j] and the wiring VEr[j].
  • the wiring VE[j] and the wiring VEr[j] function as wirings that supply a constant voltage.
  • the wiring VE[j] also functions as a wiring that discharges current from the wiring OL through the circuit MC.
  • the wiring VEr[j] also functions as a wiring that discharges current from the wiring OLB through the circuit MCr.
  • the wiring WL[i] illustrated in FIG. 9A corresponds to the wiring WL[i] in FIG. 7.
  • the wiring WL[i] is electrically connected to each of the holding portion HC and the holding portion HCr.
  • Information for example, potential, resistance value, current value, etc.
  • the wiring OL[j] and the holding portion HC are brought into conduction and the wiring OLB[j] and the holding portion HCr are brought into conduction. Put in a state.
  • the holding portion HC and the holding portion HCr are respectively supplied.
  • the potential or the like can be input to.
  • a predetermined potential is supplied to the wiring WL[i] so that the wiring OL[j] and the holding portion HC are brought out of conduction and the wiring OLB[j] and the holding portion HCr are brought out of conduction.
  • the holding unit HC and the holding unit HCr hold respective currents corresponding to the first data w i (k ⁇ 1) j (k) .
  • the first data w i (k ⁇ 1) j (k) takes one of three values “ ⁇ 1”, “0”, and “1”.
  • a current corresponding to “1” is supplied from the wiring OL[j] to the wiring VE[j] via the circuit MC.
  • the holding portion HC is supplied with the potential V 0 so that the holding portion HC holds a predetermined potential. Retained.
  • the holding unit HCr holds the potential V 0 in the holding unit HC so that a current corresponding to “ ⁇ 1” flows from the wiring OLB[j] through the circuit MCr to the wiring VEr[j]. A predetermined potential is maintained. Then, when the first data w i (k ⁇ 1) j (k) is “0”, as an example, a current is prevented from flowing from the wiring OL[j] to the wiring VE[j] through the circuit MC.
  • V 0 which the holding unit HC, and via a circuit MC from wiring OLB [j] so that no current flows through the wiring VEr [j], potential V 0 which is held by the holder HCr.
  • the potential V 0 can be a potential given by the wiring VCN in the description of FIGS.
  • the first data w i (k ⁇ 1) j (k) is an analog value, specifically, a “negative analog value”, “0”, or a “positive analog value”.
  • the “positive analog value” is transferred from the wiring OL[j] to the wiring VE[j] via the circuit MC.
  • "Holding unit HC holds a predetermined potential so that an analog current corresponding to the electric current flows, and the holding unit HC does not flow a current from the wiring OLB[j] to the wiring VEr[j] through the circuit MCr.”
  • the potential V 0 is held in HCr.
  • the first data w i (k ⁇ 1) j (k) is a “negative analog value”, as an example, a current flows from the wiring OL[j] to the wiring VE[j] through the circuit MC. So that the potential V 0 is held in the holding portion HC and an analog current corresponding to the “negative analog value” flows from the wiring OLB[j] to the wiring VEr[j] via the circuit MCr.
  • the holding portion HCr holds a predetermined potential. Then, when the first data w i (k ⁇ 1) j (k) is “0”, as an example, a current is prevented from flowing from the wiring OL[j] to the wiring VE[j] through the circuit MC.
  • V 0 which the holding unit HC, and via a circuit MC from wiring OLB [j] so that no current flows through the wiring VEr [j], potential V 0 which is held by the holder HCr.
  • the potential V 0 can be a potential given by the wiring VCN in the description of FIG. 8 as in the above example.
  • the circuit MC supplies a current or the like corresponding to information (for example, a potential, a resistance value, or a current value) held in the holding unit HC to the wiring OL[j] or the wiring OLB[j].
  • the circuit MCr has a function of outputting to one side, and the circuit MCr supplies the wiring OL[j] or the wiring OLB with a current or the like corresponding to the information (eg, potential, resistance value, or current value) held in the holding portion HCr. It has a function of outputting to the other of [j].
  • the circuit MC supplies a current having a first current value from the wiring OL[j] or the wiring OLB[j] to the wiring VE, and When the second potential is held, the circuit MC supplies a current having the second current value from the wiring OL[j] or the wiring OLB[j] to the wiring VE.
  • the circuit MCr is assumed to pass a current having the first current value from the wiring OL[j] or the wiring OLB[j] to the wiring VEr.
  • the circuit MCr supplies a current having the second current value from the wiring OL[j] or the wiring OLB[j] to the wiring VE.
  • the magnitudes of the first current value and the second current value are determined by the value of the first data w i (k ⁇ 1) j (k) .
  • the first current value may be larger or smaller than the second current value.
  • one of the first current value and the second current value may be zero current, that is, the current value may be zero.
  • the current flowing direction may be different between the current having the first current value and the current having the second current value.
  • the first current value or the second current value it is preferable to configure the circuits MC and MCr so that one of them becomes zero.
  • the first data w i (k ⁇ 1) j (k) has an analog value, for example, “negative analog value”, “0”, or “positive analog value”
  • the first current The value or the second current value can also be an analog value, for example.
  • a current flowing from the wiring OL[j] or the wiring OLB[j] to the wiring VE via the circuit MC and a current flowing from the wiring OL[j] or the wiring OLB[j] to the wiring VEr via the circuit MCr When and are equal, the characteristics of the transistor may vary due to the manufacturing process of the transistor and the like, so that the potential held in the circuit MC and the potential held in the circuit MCr may not be equal to each other.
  • the amount of current flowing from the wiring OL[j] or the wiring OLB[j] to the wiring VE through the circuit MC is changed to the wiring OL[J] even if there is variation in transistor characteristics.
  • j] or the wiring OLB[j] can be made substantially equal to the amount of current flowing through the wiring VEr through the circuit MCr.
  • a current or a voltage in accordance with information (eg, a potential, a resistance value, a current value, or the like) held in the holding portion HC and the holding portion HCr is a positive current or voltage, or the like. May be used, a negative current or voltage may be used, a zero current or zero voltage may be used, or positive, negative and zero may be mixed. That is, for example, a current or a voltage corresponding to the information (for example, the potential, the resistance value, the current value, or the like) held in the holding unit HC is stored in the wiring OL[j] or the wiring OLB[j].
  • the circuit MCr has a function of outputting to one side, and the circuit MCr outputs a current or a voltage corresponding to the information (eg, potential, resistance value, or current value) held in the holding unit HCr to the wiring OL[j] or
  • the description “having a function of outputting to the other side of the wiring OLB[j]” indicates that “current, voltage, etc.
  • the circuit MCr has a function of discharging from one of the wiring OL[j] and the wiring OLB[j], and the circuit MCr responds to information (eg, a potential, a resistance value, or a current value) held in the holding portion HCr. In other words, it has a function of discharging current, voltage, or the like from the other of the wiring OL[j] and the wiring OLB[j]."
  • the wiring X1L[i] and the wiring X2L[i] illustrated in FIG. 9A correspond to the wiring XLS[i] in FIG. 7.
  • the second data z i (k ⁇ 1) input to the circuit MP[i,j] is determined by potentials or currents of the wiring X1L[i] and the wiring X2L[i], for example.
  • the potentials corresponding to the second data z i (k ⁇ 1) are input to the circuits MC and MCr, for example, through the wiring X1L[i] and the wiring X2L[i].
  • the circuit MC is electrically connected to the wiring OL[j] and the wiring OLB[j]
  • the circuit MCr is electrically connected to the wiring OL[j] and the wiring OLB[j].
  • the circuit MC and the circuit MCr are, for example, the first data in the wiring OL[j] and the wiring OLB[j] according to the potential or the current input to the wiring X1L[i] and the wiring X2L[i].
  • the current or the potential according to the product of w i (k ⁇ 1) j (k) and the second data z i (k ⁇ 1) is output.
  • the output destination of the current from the circuits MC and MCr is determined by the potentials of the wiring X1L[i] and the wiring X2L[i].
  • the current output from the circuit MC flows to one of the wiring OL[j] and the wiring OLB[j]
  • the current output from the circuit MCr flows to the wiring OL[j] or the wiring OLB.
  • the circuit configuration is such that it flows to the other side of [j]. That is, the respective currents output from the circuits MC and MCr flow not in the same wiring but in different wirings. Note that as an example, current may not flow from the circuit MC and the circuit MCr to either the wiring OL[j] or the wiring OLB[j].
  • the second data z i (k ⁇ 1) takes one of three values “ ⁇ 1”, “0”, and “1”.
  • the circuit MP brings the circuit MC and the wiring OL[j] into a conductive state and connects the circuit MCr and the wiring OLB[j].
  • the circuit MP brings the circuit MC and the wiring OLB[j] into a conductive state and connects the circuit MCr and the wiring OL[j]. The two are electrically connected.
  • the circuit MP brings the circuit MC and the wiring OL[j] and the circuit MC and the wiring OLB[j] into a non-conducting state, and the circuit MCr and the wiring OL[j]. And the circuit MC and the wiring OLB[j] are brought out of conduction.
  • a current may flow from the wiring OL[j] or the wiring OLB[j] to the wiring VEr[j] via the circuit MCr.
  • the circuit MC and the wiring OL[j] and the circuit MCr and the wiring OLB[j] are brought into conduction.
  • the circuit MC and the wiring OLB[j] and the circuit MCr and the wiring OL[j] are brought into conduction. ..
  • the first data w i (k ⁇ 1) j (k) is “1” and the second data z i (k ⁇ 1) is “1”.
  • the current I1[i,j] having the first current value flows from the circuit MC to the wiring OL[j]
  • the magnitude of the second current value is, for example, zero.
  • the first data w i (k ⁇ 1) j (k) is “ ⁇ 1” and the second data z i (k ⁇ 1) is “1”, for example, from the circuit MC to the wiring OL[j ], the current I1[i, j] having the second current value flows, and the circuit MCr flows the current I2[i, j] having the first current value to the wiring OLB[j].
  • the magnitude of the second current value is, for example, zero.
  • the first line from the circuit MC to the wiring OL[j] is A current I1[i,j] having two current values flows, and a current I2[i,j] having a second current value flows from the circuit MCr to the wiring OLB[j].
  • the magnitude of the second current value is, for example, zero.
  • the circuit MC When the first data w i (k ⁇ 1) j (k) is “1” and the second data z i (k ⁇ 1) is “ ⁇ 1”, the circuit MC to the wiring OLB[j ], the current I1[i, j] having the first current value flows, and the circuit MCr flows the current I2[i, j] having the second current value to the wiring OL[j]. At this time, the magnitude of the second current value is, for example, zero. When the first data w i (k ⁇ 1) j (k) is “ ⁇ 1” and the second data z i (k ⁇ 1) is “ ⁇ 1”, the circuit MC to the wiring OLB[j].
  • the current I1[i,j] having the second current value flows through the line MC, and the current I2[i,j] having the first current value flows through the wiring OL[j] from the circuit MCr.
  • the magnitude of the second current value is, for example, zero.
  • the circuit MC changes to the wiring OLB[j].
  • the current I1[i,j] having the second current value flows, and the current I2[i,j] having the second current value flows from the circuit MCr to the wiring OL[j].
  • the magnitude of the second current value is, for example, zero.
  • the circuit MC Alternatively, current flows from the circuit MCr to the wiring OL[j]. At this time, when the first data w i (k-1) j (k) has a positive value, a current flows from the circuit MC to the wiring OL[j], and the first data w i (k-1) j. When (k) has a negative value, a current flows from the circuit MCr to the wiring OL[j].
  • the sum of the currents output from the plurality of circuits MC or the circuits MCr connected to the wiring OL[j] flows to the wiring OL[j]. That is, a current having a sum of positive values flows through the wiring OL[j].
  • the total sum of the currents output from the plurality of circuits MC or the circuits MCr connected to the wiring OLB[j] flows to the wiring OLB[j]. That is, in the wiring OLB[j], a current having a sum of negative values flows.
  • the total current value flowing in the wiring OL[j] that is, the sum of positive values
  • the total current value flowing in the wiring OLB[j] that is, the sum of negative values are used.
  • the product-sum calculation process can be performed. For example, when the total current value flowing through the wiring OL[j] is larger than the total current value flowing through the wiring OLB[j], it is determined that the sum of products operation has a positive value. You can When the total current value flowing through the wiring OL[j] is smaller than the total current value flowing through the wiring OLB[j], it can be determined that the product-sum operation has a negative value. .. When the total current value flowing through the wiring OL[j] and the total current value flowing through the wiring OLB[j] are approximately the same value, it is determined that the result of the product-sum calculation is zero. You can
  • the second data z i (k ⁇ 1) is any two values of “ ⁇ 1”, “0”, and “1”, for example, two values “ ⁇ 1” and “1”.
  • the same operation can be performed in the case of binary values of “0” and “1”.
  • the first data w i (k ⁇ 1) j (k) is one of two values “ ⁇ 1”, “0”, and “1”, for example, “ ⁇ 1”, “1”. The same operation can be performed in the case of "2” or in the case of "0" or "1".
  • the first data w i (k ⁇ 1) j (k) may take an analog value or a multi-bit (multi-value) digital value.
  • a “negative analog value” may be taken instead of “ ⁇ 1”
  • a “positive analog value” may be taken instead of “1”.
  • the magnitude of the current flowing from the circuit MC or the circuit MCr is also an analog value corresponding to the absolute value of the value of the first data w i (k ⁇ 1) j (k) , for example.
  • circuit MP[i,j] in FIG. 9A is modified.
  • the parts different from the circuit MP[i,j] of FIG. 9A will be mainly described, and the parts common to the circuit MP[i,j] of FIG. 9A will be described. Description may be omitted.
  • the circuit MP[i,j] illustrated in FIG. 9B has a structure in which the wiring W1L is replaced with the wiring WX1L. That is, in the circuit MP[i,j] in FIG. 9B, the wiring WX1L and the wiring WL are switched between the wiring OL[j] and the holding portion HC between the conductive state and the non-conductive state and the wiring OLB[j]. In order to switch between the holding portion HCr and the holding portion HCr to be in a conductive state or a non-conductive state, it functions as a wiring which supplies a predetermined potential. Further, in the circuit MP[i,j] in FIG. 9B, the wiring X1L and the wiring X2L generate a current, a voltage, or the like according to the second data z i (k ⁇ 1) input to the circuit MP[i,j]. Functions as a wiring to give.
  • the circuit MP[i,j] in FIG. 9B includes the wiring IL and the wiring ILB like the arithmetic circuit 130 illustrated in FIG. 13 and the wiring WX1L and the arithmetic circuit 140 illustrated in FIG. It can be applied to non-arithmetic circuits. Specifically, the circuit MP[i,j] in FIG. 9B can be applied to the circuit MP[i,j] in the arithmetic circuit 150 illustrated in FIG. 11.
  • the circuit MP[i,j] illustrated in FIG. 9C is a modified example of the circuit MP[i,j] illustrated in FIG. 9A.
  • the circuit MP[i,j] in FIG. 9C includes a circuit MC and a circuit MCr, similar to the circuit MP[i,j] in FIG. 9A.
  • the circuit MP[i,j] of FIG. 9C is different from the circuit MP[i,j] of FIG. 9A in that the circuit MCr does not include the holding unit HCr.
  • the circuit MCr does not include the holding portion HCr, the arithmetic circuit to which the circuit MP[i,j] in FIG. 9C is applied has the wiring ILB[j] for supplying the potential held in the holding portion HCr. You don't have to. In addition, the circuit MCr does not need to be electrically connected to the wiring WL[i].
  • the holding unit HC included in the circuit MC is electrically connected to the circuit MCr. That is, the circuit MP[i,j] in FIG. 9C has a configuration in which the circuit MCr and the circuit MC share the holding unit HC with each other. As an example, an inverted signal of the signal held in the holding unit HC can be supplied from the holding unit HC to the circuit MCr. As a result, the circuit MC and the circuit MCr can perform different operations.
  • the circuit MC and the circuit MCr are made to have different internal circuit configurations, and as a result, the magnitude of the current output by the circuit MC and the circuit MCr with respect to the same signal held by the holding unit HC. It is also possible that they are different.
  • the potential corresponding to the first data w i (k ⁇ 1) j (k) is held in the holding unit HC, and the potential corresponding to the second data z i (k ⁇ 1) is applied to the wiring X1L[i] and
  • the circuit MP[i,j] causes the wiring OL[j] and the wiring OLB[j] to have the first data w i (k ⁇ 1) j (k) and the second data. It is possible to output a current according to the product of the data z i (k-1) .
  • the arithmetic circuit 110 to which the circuit MP of FIG. 9C is applied can be changed to the circuit configuration of the arithmetic circuit 160 shown in FIG.
  • the arithmetic circuit 160 has a structure in which the wirings ILB[1] to ILB[m] are removed from the arithmetic circuit 110 in FIG.
  • the circuit MP[i,j] shown in FIG. 9D is a modification of the circuit MP[i,j] shown in FIG. 9A, and specifically, the circuit MP[i,j] applicable to the arithmetic circuit 160 shown in FIG. It is a configuration example of.
  • the circuit MP[i,j] in FIG. 9D includes a circuit MC and a circuit MCr, similar to the circuit MP[i,j] in FIG. 9A.
  • the circuit MP[i,j] of FIG. 9D and the circuit MP[i,j] of FIG. 9A have different wiring configurations electrically connected.
  • the wiring W1L[i] and the wiring W2L[i] illustrated in FIG. 9D correspond to the wiring WLS[i] in FIG.
  • the wiring W1L[i] is electrically connected to the holding portion HC, and the wiring W2L[i] is electrically connected to the holding portion HCr.
  • the wiring IL[j] is electrically connected to the holding unit HC and the holding unit HCr.
  • the circuit MP[i,j] of FIG. 9D when different information (for example, voltage, resistance value, current, etc.) is held in each of the holding unit HC and the holding unit HCr, the information to the holding unit HC and the holding unit HCr is held. It is preferable to carry out the holding operation of (1) sequentially rather than simultaneously.
  • the first data w i (k ⁇ 1) j (k) of the circuit MP[i,j] can be expressed by holding the first information in the holding unit HC and the second information in the holding unit HCr.
  • a predetermined potential is applied to each of the wiring W1L[i] and the wiring W2L[i] so that the holding portion HC and the wiring IL[j] are brought into conduction and the holding portion HCr and the wiring IL[j]. ]
  • the first information can be given to the holding portion HC by supplying a current, a voltage, or the like according to the first information to the wiring IL[j].
  • a predetermined potential is applied to each of the wiring W1L[i] and the wiring W2L[i] to bring the holding portion HC and the wiring IL[j] into a non-conductive state, and the holding portion HCr and the wiring IL[]. j] is brought into conduction.
  • the circuit MP[i,j] can set w i (k ⁇ 1) j (k) as the first data.
  • the circuit MP[i,j] in FIG. 9D holds the potential according to the first data w i (k ⁇ 1) j (k) in the holding unit HC and the holding unit HCr, and the second data z i (k).
  • the wiring OL[j] and the wiring OLB[j] are provided as in the circuit MP[i,j] in FIG. 9A.
  • the circuit MP[i,j] shown in FIG. 9E is a modification of the circuit MP[i,j] shown in FIG. 9D.
  • the circuit MP[i,j] in FIG. 9E includes a circuit MC and a circuit MCr, similar to the circuit MP[i,j] in FIG. 9D.
  • the circuit MP[i,j] in FIG. 9E and the circuit MP[i,j] in FIG. 9D differ in the configuration of the electrically connected wiring.
  • the wiring ILB[j] is added to the circuit MP in FIG. 9D and the wiring W1L[i] and the wiring W2L[i are electrically connected to the circuit MP in FIG. 9D. ] Is replaced with the wiring WL[i].
  • the wiring IL[j] is electrically connected to the holding portion HC
  • the wiring ILB[j] is electrically connected to the holding portion HCr. That is, in the circuit MP of FIG. 9D, the wiring IL[j] is a wiring that supplies a current, a voltage, or the like according to information (eg, voltage, resistance value, current, or the like) to each of the holding portion HC and the holding portion HCr.
  • the wiring IL[j] functions as a wiring that supplies a current, a voltage, and the like according to information to the holding portion HC
  • the wiring ILB[j] serves as information to the holding portion HC. It functions as a wiring that supplies current, voltage, etc. according to.
  • the wiring IL[j] and the wiring ILB[j] are electrically connected to the holding portion HC and the holding portion HCr, respectively. It is possible to supply a current, a voltage, etc. according to information (eg, voltage, resistance value, current, etc.) at the same time. Therefore, the holding portion HC and the wiring IL[j] are switched to a conductive state or a non-conductive state, and the holding portion HCr and the wiring ILB[j] are switched to a conductive state or a non-conductive state. Can be done at the same time.
  • the wiring W1L is shown as a wiring for controlling switching between the holding portion HC and the wiring IL[j] in a conductive state or a non-conductive state, and the holding portion HCr and the wiring ILB[j] are connected to each other.
  • the wiring W2L is illustrated as a wiring for controlling switching between the conductive state and the non-conductive state between the wirings, in the circuit MP in FIG. 9E, the wiring W1L and the wiring W2L are combined into a wiring WL[i]. Is illustrated.
  • the circuit MP of FIG. 9E can be applied to the arithmetic circuit 110 of FIG. 2 and the arithmetic circuit 120 of FIG. 3, for example.
  • the circuit MP[i,j] shown in FIG. 9F is a modification of the circuit MP[i,j] shown in FIG. 9A.
  • the circuit MP[i,j] in FIG. 9F includes a circuit MC and a circuit MCr, similar to the circuit MP[i,j] in FIG. 9A.
  • the circuit MC is not electrically connected to the wiring OLB[j] and the circuit MCr is not electrically connected to the wiring OL[j].
  • the wiring WL[i] illustrated in FIG. 9F is electrically connected to the holding unit HC and the holding unit HCr.
  • the wiring XL[i] illustrated in FIG. 9F is electrically connected to the circuit MC and the common path MCr.
  • the circuit MC is not electrically connected to the wiring OLB[j] and the circuit MCr is not electrically connected to the wiring OL[j], as described later. That is, in the circuit MP[i,j] in FIG. 9F, unlike the circuit MP[i,j] in FIGS. 9A to 9E, the current output from the circuit MC does not flow to the wiring OLB[j] and the circuit MCr The output current does not flow through the wiring OL[j].
  • the circuit MP[i,j] of FIG. 9F is preferably applied to the arithmetic circuit when the second data z i (k ⁇ 1) is a binary value of “0” or “1”.
  • the circuit MP brings the circuit MC and the wiring OL[j] into a conductive state and connects the circuit MCr and the wiring OLB[j]. Make the space conductive.
  • the current output by each of the circuit MC and the circuit MCr is output to either the wiring OL[j] or the wiring OLB[j].
  • the circuit MP brings the circuit MC and the wiring OL[j] and the circuit MC and the wiring OLB[j] into a non-conducting state, and the circuit MCr and the wiring OL[j]. And the circuit MCr and the wiring OLB[j] are made non-conductive.
  • the circuit MP[i,j] of FIG. 9F is applied to the arithmetic circuit 110, and as an example, the first data w i (k ⁇ 1) j (k) is “ ⁇ 1”, “0”, “. It is possible to perform an operation in the case where the second data z i (k ⁇ 1) takes one of the three values of “1” and the two values of “0” and “1”. It should be noted that the first data w i (k ⁇ 1) j (k) has a binary value of “ ⁇ 1”, “0”, or “1”, for example, “ ⁇ 1” or “1”. The operation can be performed in the case of binary or in the case of binary of "0" and "1".
  • the first data w i (k ⁇ 1) j (k) may take an analog value or a multi-bit (multi-value) digital value.
  • a “negative analog value” may be taken instead of “ ⁇ 1”
  • a “positive analog value” may be taken instead of “1”.
  • the magnitude of the current flowing from the circuit MC or the circuit MCr is also an analog value corresponding to the absolute value of the value of the first data w i (k ⁇ 1) j (k) , for example.
  • the circuit MP[i,j] of FIG. 10 can be applied to the arithmetic circuit 110 of FIG. 2, for example.
  • the circuit MP[i,j] in FIG. 10 has a transistor MZ in addition to the circuit MC and the circuit MCr.
  • the first terminal of the transistor MZ is electrically connected to the first terminal of the circuit MC and the first terminal of the circuit MCr.
  • the second terminal of the transistor MZ is electrically connected to the wiring VL.
  • the gate of the transistor MZ is electrically connected to the wiring XL[i].
  • the wiring VL functions as a wiring that gives a constant voltage, for example.
  • the constant voltage is preferably determined by the configuration of the circuit MP[i,j] and the arithmetic circuit 110.
  • the constant voltage can be, for example, VDD which is a high level potential, VSS which is a low level potential, ground potential and the like.
  • the wiring WL[i] shown in FIG. 10 corresponds to the wiring WLS[i] in the arithmetic circuit 110 of FIG.
  • the wiring WL[i] is electrically connected to the holding portion HC and the holding portion HCr.
  • the wiring OL[j] is electrically connected to the second terminal of the circuit MC.
  • the wiring OLB[j] is electrically connected to the second terminal of the circuit MCr.
  • the wiring IL[j] is electrically connected to the holding unit HC, and the wiring ILB[j] is electrically connected to the holding unit HCr.
  • the circuit MC supplies a current according to the potential held in the holding unit HC when the constant voltage given by the wiring VL is supplied to the first terminal of the circuit MC. , Has a function of flowing between the first terminal and the second terminal of the circuit MC. Further, the circuit MCr supplies a current corresponding to the potential held in the holding portion HCr to the first terminal of the circuit MCr and the second terminal when the constant voltage given by the wiring VL is supplied to the first terminal of the circuit MC. It has a function of flowing between terminals.
  • the circuit MC (circuit MCr) may be, for example, the first terminal and the second terminal of the circuit MC (circuit MCr). A current may not be applied between and.
  • the circuit MC causes a predetermined current to flow between the first terminal and the second terminal of the circuit MC. Therefore, a current flows between the circuit MC and the wiring OL.
  • the circuit MCr does not flow a current between the first terminal and the second terminal of the circuit MCr. Therefore, no current flows between the circuit MCr and the wiring OLB.
  • the wiring VL is connected to the circuit MC.
  • the circuit MCr causes a predetermined current to flow between the first terminal and the second terminal of the circuit MCr when the constant voltage is applied. Therefore, a current flows between the circuit MCr and the wiring OLB. At this time, the circuit MC does not flow a current between the first terminal and the second terminal of the circuit MC. Therefore, no current flows between the circuit MC and the wiring OL.
  • the circuit MC does not pass a current between the first terminal and the second terminal of the circuit MC, and the circuit MCr does not connect the first terminal and the second terminal of the circuit MCr. Do not apply current between them. That is, no current flows between the circuit MC and the wiring OL, and no current flows between the circuit MCr and the wiring OLB.
  • circuit MP[i,j] of FIG. 10 a specific example of the potential according to the first data w i (k ⁇ 1) j (k) held in the holding unit HC and the holding unit HCr is as follows. The description of the circuit MP[i,j] in FIG. 9A is referred to. Further, in the circuit MP[i,j] of FIG. 10, the holding unit HC and the holding unit HCr hold information such as current and resistance value instead of the potential similarly to the circuit MP[i,j] of FIG. 9A.
  • the circuit MC and the circuit MCr may have a function of supplying a current corresponding to the information.
  • the wiring XL[i] illustrated in FIG. 10 corresponds to the wiring XL[i] in the arithmetic circuit 110 in FIG.
  • the second data z i (k ⁇ 1) input to the circuit MP[i,j] is determined by the potential of the wiring XL[i], a current, or the like, for example. Therefore, a potential according to the second data z i (k ⁇ 1) is input to the gate of the transistor MZ via the wiring XL[i], for example.
  • the second data z i (k ⁇ 1) takes one of two values “0” and “1”.
  • the second data z i (k ⁇ 1) is “1”
  • a high-level potential is applied to the wiring XL[i].
  • the transistor MZ is turned on, so that the circuit MP brings the wiring VL and the first terminal of the circuit MC into conduction and the wiring VL and the first terminal of the circuit MCr into conduction. .. That is, when the second data z i (k ⁇ 1) is “1”, the constant voltage from the wiring VL is applied to the circuit MC and the circuit MCr.
  • the circuit MC and the wiring OL are As a result, no current flows between the circuit MCr and the wiring OLB.
  • the second data z i (k ⁇ 1) is “0”
  • the first data w i (k ⁇ 1) j (k) is “ ⁇ 1”, “0”, or “1”. In either case, no current flows between the circuit MC and the wiring OL and between the circuit MCr and the wiring OLB.
  • the circuit MP[i,j] of FIG. 10 has, as an example, the first data w i (k ⁇ 1) j (k) of “ ⁇ 1” similarly to the circuit MP[i,j] of FIG. 9F. , “0”, “1”, and the second data z i (k ⁇ 1) takes two values “0”, “1”. Further, similarly to the circuit MP[i,j] of FIG. 9F, the circuit MP[i,j] of FIG. 10 has the first data w i (k ⁇ 1) j (k) of “ ⁇ 1” and “0”. It is possible to operate even in the case of any two values of "" and "1", for example, the values of "-1" and "1", or the values of "0" and "1". it can.
  • the first data w i (k ⁇ 1) j (k) may take an analog value or a multi-bit (multi-value) digital value.
  • a “negative analog value” may be taken instead of “ ⁇ 1”
  • a “positive analog value” may be taken instead of “1”.
  • the magnitude of the current flowing from the circuit MC or the circuit MCr is also an analog value corresponding to the absolute value of the value of the first data w i (k ⁇ 1) j (k) , for example.
  • the arithmetic circuit 140 of FIG. 13 is illustrated focusing on the circuit located in the j-th column of the arithmetic circuit 140 of FIG. 7. That is, the arithmetic circuit 140 of FIG. 13 outputs signals from the neurons N 1 (k-1) to N m (k-1) input to the neurons N j (k) in the neural network 100 shown in FIG. 1A.
  • a product-sum operation of the signals z 1 (k-1) to z m (k-1) and the weighting factors w 1 (k-1) j (k) to w m (k-1) j (k) which corresponds to a circuit for performing and performing an activation function operation using the result of the product-sum operation.
  • the circuit MP included in the array unit ALP of the arithmetic circuit 110 in FIG. 13 is assumed to be the circuit MP in FIG. 9B.
  • the first data w 1 (k ⁇ 1) j (k) to w m (k ⁇ 1) j (k) are added to the circuits MP[1,j] to MP[m,j]. Is set.
  • a predetermined potential is sequentially input to the wirings WLS[1] to WLS[m] by the circuit WLD and the circuit MP[1 , J] to circuit MP[m, j] are sequentially selected, and a circuit MC is included in the selected circuit MP and a holding unit HC and a holding unit HCr of the circuit MCr.
  • the ILD supplies a potential, a current, or the like according to the first data through the switching circuit TW[j], the wirings OL[j], and OLB[j]. Then, after the supply of the potential, the current, and the like, the circuits MP[1,j] to MP[m,j] are deselected by the circuit WLD, whereby the circuits MP[1,j] to MP[m]. , J] of the circuit MC and the holding unit HC of the circuit MCr and the holding unit HCr of the first data w 1 (k ⁇ 1) j (k) to w m (k ⁇ 1) j (k ). ) , the electric potential, the electric current, etc. according to it can be hold
  • the holding unit HC stores that positive value. A value corresponding to a positive value is input, and a value corresponding to zero is input to the holding unit HCr.
  • the holding unit HC corresponds to zero. The value corresponding to the absolute value of the negative value is input to the holding unit HCr.
  • the second data z 1 (k-1) to z m (k- 1) is supplied.
  • the second data z 1 (k ⁇ 1) is supplied to the wiring X1L[i] and the wiring X2L[i].
  • the wiring X1L[i] and the wiring X2L[i] correspond to the wiring XLS[i] of the arithmetic circuit 140 illustrated in FIG. 7.
  • the circuit MP[1,j] According to the second data z 1 (k ⁇ 1) to z m (k ⁇ 1) input to each of the circuits MP[1,j] to MP[m,j], the circuit MP[1,j].
  • the conduction states of the circuit MC and the circuit MCr included in the circuit MP[m,j], the wiring OL[j], and the wiring OLB[j] are determined.
  • the circuit MP[i,j] “the circuit MC and the wiring OL[j] are electrically connected to each other according to the second data z i (k ⁇ 1) , and the circuit MCr and the wiring are connected.
  • a state in which "conduction between OLB[j] is conducted” and a state in which "conduction is established between circuit MC and wiring OLB[j] and conduction is established between circuit MCr and wiring OL[j]” One of the “state where the circuit MC and the circuit MCr are non-conductive with the wiring OL[j] and the wiring OLB[j], respectively” is set.
  • the second data z 1 (k ⁇ 1) takes a positive value
  • the wiring X1L[1] is electrically connected between the circuit MC and the wiring OL[j]
  • a value that can bring the circuit MCr and the wiring OLB[j] into a conductive state is input.
  • the wiring X2L[1] a value that allows non-conduction between the circuit MC and the wiring OLB[j] and non-conduction between the circuit MCr and the wiring OL[j]. Enter.
  • the wiring X1L[1] has a conductive state between the circuit MC and the wiring OLB[j]
  • a value that allows conduction between MCr and the wiring OL[j] is input.
  • the wiring X2L[1] a value that allows non-conduction between the circuit MC and the wiring OL[j] and non-conduction between the circuit MCr and the wiring OLB[j]. Enter.
  • the wiring X1L[1] is not electrically connected between the circuit MC and the wiring OLB[j], and A value that allows non-conduction between the circuit MCr and the wiring OL[j] is input. Then, in the wiring X2L[1], a value that allows non-conduction between the circuit MC and the wiring OL[j] and non-conduction between the circuit MCr and the wiring OLB[j]. Enter.
  • current is input/output between the circuit MC and the circuit MCr and the wiring OL[j] and the wiring OLB[j]. ..
  • the amount of the current is determined according to the first data w i (k ⁇ 1) j (k) and/or the second data z i (k ⁇ 1) set in the circuit MP[i,j]. ..
  • the current flowing from the wiring OL[j] to the circuit MC or the circuit MCr is I[i,j]
  • the current flowing from the wiring OLB[j] to the circuit MC or the circuit MCr Be IB [i,j].
  • I out [j] is a current flowing from the circuit ACTF[j] to the wiring OL[j]
  • I Bout [j] is a current flowing from the wiring OLB[j] to the circuit ACTF[j]
  • I out [j] j] and I Bout [j] can be expressed by the following equations.
  • the circuit MC discharges I(+1) and the circuit MCr outputs I(+1). ⁇ 1) is discharged, and when the first data w i (k ⁇ 1) j (k) is “ ⁇ 1”, the circuit MC discharges I( ⁇ 1) and the circuit MCr discharges I(+1). ) Is discharged, and when the first data w i (k ⁇ 1) j (k) is “0”, the circuit MC discharges I( ⁇ 1) and the circuit MCr discharges I( ⁇ 1). Shall be discharged.
  • the circuit MP[i,j] has “a conduction between the circuit MC and the wiring OL[j], and the circuit MCr and the wiring.
  • the circuit MC and the wiring OLB[j] are non-conducting, and the circuit MCr and the wiring OL[j] are non-conducting.
  • the data z i (k ⁇ 1) is “ ⁇ 1”
  • the circuit MC and the wiring OLB[j] are in conduction
  • the circuit MCr and the wiring OL[j] are in conduction
  • the circuit The MC and the wiring OL[j] are non-conductive
  • the circuit MCr and the wiring OLB[j] are non-conductive
  • the second data z i (k-1) is "0".
  • circuit MC and the wiring OL[j] and the circuit MC and the wiring OLB[j] are not electrically connected, and the circuit MCr and the wiring OL[j] are , The circuit MCr and OLB[j] are in a non-conducting state.
  • I B [i,j] are as shown in the table below.
  • the circuit MP[i,j] may be configured so that the current amount of I( ⁇ 1) becomes zero.
  • the current I[i,j] may be a current flowing from the circuit MC or the circuit MCr to the wiring OL[j].
  • the current I B [i,j] may be a current flowing from the circuit MC or the circuit MCr to the wiring OLB[j].
  • each of I out [j] and I Bout [j] flowing from each of the wiring OL[j] and the wiring OLB[j] is input to the circuit ACTF[j], whereby the circuit ACTF[j]. j], for example, compares I out [j] and I Bout [j].
  • the circuit ACTF[j] outputs the signal z j (k) that the neuron N j (k) transmits to the (k+1) -th layer neuron according to the result of the comparison.
  • the signal z 1 (k-1) from the neuron N 1 (k-1) to the neuron N m (k-1) input to the neuron N j (k) by the arithmetic circuit 140 of FIG. 13 is used.
  • the activation function used can be calculated.
  • n columns of the circuit MP in the array unit ALP of the arithmetic circuit of FIG. 13 a circuit equivalent to the arithmetic circuit 140 of FIG. 7 can be configured. That is, the arithmetic circuit 140 of FIG. 7 simultaneously performs the product-sum operation and the activation function operation using the result of the product-sum operation in each of the neurons N 1 (k) to N n (k). It can be carried out.
  • Each of the arithmetic circuit 110, the arithmetic circuit 120, the arithmetic circuit 130, the arithmetic circuit 140, the arithmetic circuit 150, and the arithmetic circuit 160 described above is a circuit that performs the arithmetic operation of the equation (1.3) instead of the arithmetic operation of the equation (1.2).
  • Can be changed to Expression (1.3) corresponds to an operation in which the result of the product sum of Expression (1.2) is biased.
  • each of the arithmetic circuit 110, the arithmetic circuit 120, the arithmetic circuit 130, the arithmetic circuit 140, the arithmetic circuit 150, and the arithmetic circuit 160 may be provided with a circuit which gives a bias value to the wiring OL and the wiring OLB.
  • the arithmetic circuit 170 shown in FIG. 14 has a circuit configuration in which the circuits BS[1] to BS[n] are added to the array unit ALP of the arithmetic circuit 150 in FIG.
  • the circuit BS[j] is electrically connected to the wiring OL[j], the wiring OLB[j], the wiring WLBS, and the wiring WXBS.
  • the wiring WLBS is similar to the wirings WLS[1] to WLS[m] in the arithmetic circuit 110 and the like in FIG. 2 and the wirings WL[1] to WL[m] in the arithmetic circuit 140 in FIG. 7 and the circuit BS[ 1] to circuit BS[n] function as a wiring for supplying a signal for turning on or off the writing switching element. Therefore, the wiring WLBS can be supplied from the circuit WLD to the wiring WLBS by being electrically connected to the circuit WLD.
  • Wiring WXBS similarly to the wiring XLS [1] to the wiring XLS [m] of the arithmetic circuit 110 in FIG. 2, the neuron N i (k-1) second data z i outputted from the (k-1)
  • the wiring functions to supply corresponding information (for example, a potential and a current value) to the circuits BS[1] to BS[n]. Therefore, the wiring WXBS can be electrically connected to the circuit XLD, whereby the information can be supplied from the circuit XLD to the wiring WXBS.
  • the wiring WXBS is a selection signal line for writing information in the circuits BS[1] to BS[n], like the wirings WX1L[1] to WX1L[n] in the arithmetic circuit 140 in FIG. You may also use it.
  • the arithmetic circuit 170 in FIG. 14 an example in which the wiring WXBS is electrically connected to the circuit WLD is shown. In such a structure, the circuit WLD sends a signal to each of the wiring WLBS and the wiring WXBS to turn on or off the writing switching element included in the circuits BS[1] to BS[n]. Can be supplied.
  • the amount of current flowing from the circuit MP[1, j] to the circuit MP[m, j] to the wiring OL[j] or the wiring OLB[j] is calculated by the equation (1. 5) and the formula (1.6). Since each of the wiring OL[j] and the wiring OLB[j] is electrically connected to the circuit BS[j], a current flowing from the circuit BS[j] to the wiring OL[j] is I BIAS [ j], and the current flowing from the circuit BS[j] to the wiring OLB[j] is IBIASB [j], the equations (1.5) and (1.6) can be rewritten as the following equations. it can.
  • I out [j] and I Bout [j] including the bias can be generated as the calculation of the equation (1.3). Further, I out [j] and I Bout [j] including the bias are input to the circuit ACTF [j], so that the output signal z j (k ) from the neuron N j (k) is biased. ) Can be generated.
  • the circuits BS[1] to BS[n] are provided for one row with respect to the array portion ALP, but one embodiment of the present invention is not limited to this.
  • the circuits BS[1] to BS[n] may be provided in two or more rows for the array unit ALP.
  • the transistors included in each of the array unit ALP, the circuit ILD, the circuit WLD, the circuit XLD, the circuit AFP, the circuit MP, and the switching circuit TW described above are, for example, OS transistors.
  • the transistor having a function of retaining charge accumulated in a capacitor or the like is preferably an OS transistor.
  • the OS transistor when an OS transistor is used as the transistor, the OS transistor preferably has the structure of the transistor described in Embodiment 4.
  • the metal oxide contained in the channel formation region of the OS transistor can be a material selected from one or more of indium, an element M (the element M is aluminum, gallium, yttrium, or tin), or zinc.
  • a metal oxide including indium, gallium, and zinc is a semiconductor that has a high bandgap and is intrinsic (also referred to as I-type) or substantially intrinsic, and the carrier concentration of the metal oxide is 1 It is preferably ⁇ 10 18 cm -3 or less, more preferably less than 1 ⁇ 10 17 cm -3 , further preferably less than 1 ⁇ 10 16 cm -3 , and 1 ⁇ 10 13 cm -3. Less than 1 ⁇ 10 12 cm ⁇ 3 , and more preferably less than 1 ⁇ 10 12 cm ⁇ 3 .
  • the off-state current of the OS transistor in which the metal oxide is included in the channel formation region is 10 aA (1 ⁇ 10 ⁇ 17 A) or less per 1 ⁇ m of the channel width, preferably 1 aA (1 ⁇ 10 ⁇ 18 A) per 1 ⁇ m of the channel width. Or less, more preferably 10 zA (1 ⁇ 10 ⁇ 20 A) or less per 1 ⁇ m channel width, further preferably 1 zA (1 ⁇ 10 ⁇ 21 A) or less per 1 ⁇ m channel width, and further preferably 100 yA (1 ⁇ 1 per 1 ⁇ m channel width). It can be 10 ⁇ 22 A) or less. Since the OS transistor has a low carrier concentration of metal oxide, the off-state current remains low even when the temperature of the OS transistor changes. For example, even when the temperature of the OS transistor is 150° C., the off-state current can be 100 zA per 1 ⁇ m of the channel width.
  • transistors included in the array portion ALP, the circuit ILD, the circuit WLD, the circuit XLD, the circuit AFP, the circuit MP, the switching circuit TW, and the like are not necessarily OS transistors. Good.
  • OS transistors for example, a transistor including silicon in a channel formation region (hereinafter referred to as a Si transistor) may be used.
  • silicon for example, single crystal silicon, hydrogenated amorphous silicon, microcrystalline silicon, polycrystalline silicon, or the like can be used.
  • transistors other than the OS transistor and the Si transistor for example, a transistor having a semiconductor such as Ge as an active layer, a transistor having a compound semiconductor such as ZnSe, CdS, GaAs, InP, GaN, or SiGe as an active layer, a carbon nanotube.
  • a transistor including an active layer, a transistor including an organic semiconductor as an active layer, or the like can be used.
  • an n-type semiconductor can be manufactured using a metal oxide containing indium (eg, In oxide) or a metal oxide containing zinc (eg, Zn oxide) in the metal oxide of the semiconductor layer of the OS transistor.
  • the arithmetic circuit 110, the arithmetic circuit 120, the arithmetic circuit 130, the arithmetic circuit 140, the arithmetic circuit 150, the arithmetic circuit 160, and the arithmetic circuit 170 include the array portion ALP, the circuit ILD, the circuit WLD, the circuit XLD, the circuit AFP, the circuit MP, and the like.
  • An OS transistor may be applied as the n-channel transistor included in the above, and a Si transistor may be applied as the p-channel transistor.
  • the reference numeral of the circuit MP includes [1,1], [i,j], [m,n], etc. indicating the position in the array portion ALP, but in the present embodiment, Unless otherwise specified, the description of [1, 1], [i, j], [m, n], etc. with respect to the code of the circuit MP is omitted.
  • the circuit MP illustrated in FIG. 15A is an example of a configuration of the circuit MP in FIG. 9B, and the circuit MC included in the circuit MP in FIG. 15A includes transistors M1 to M4 and a capacitor C1 as an example. Have. Note that, for example, the holding unit HC is configured by the transistor M2 and the capacitor C1.
  • the circuit MCr has almost the same circuit configuration as the circuit MC. Therefore, in order to distinguish the circuit element or the like included in the circuit MCr from the circuit element or the like included in the circuit MC, the symbol is attached with “r”.
  • the transistors M1 to M4 illustrated in FIG. 15A are, for example, n-channel transistors of a multi-gate structure having gates above and below a channel, and each of the transistors M1 to M4 has a first gate and a second gate. And a gate.
  • the transistors M3 and M4 have the same size.
  • the first gate is described as a gate (may be referred to as a front gate) and the second gate is described as a back gate.
  • the second gate can be interchanged. Therefore, in this specification and the like, the phrase “gate” can be replaced with the phrase “backgate”. Similarly, the phrase “backgate” can be interchanged with the phrase “gate”.
  • connection configuration of “the gate is electrically connected to the first wiring and the back gate is electrically connected to the second wiring” is “the back gate is electrically connected to the first wiring.
  • the gate is electrically connected to the second wiring”.
  • the back gate of the transistor M1 may be electrically connected to the first terminal of the capacitor C1 and the first terminal of the transistor M2.
  • the semiconductor device of one embodiment of the present invention does not depend on the back gate connection structure of the transistor.
  • a back gate is illustrated in each of the transistors M1 to M4 illustrated in FIG. 15A, and a connection configuration of the back gate is not illustrated, but an electrical connection destination of the back gate is determined at a design stage. I can decide.
  • the gate and the back gate may be electrically connected to each other in order to increase the on-state current of the transistor. That is, for example, the gate of the transistor M2 and the back gate may be electrically connected.
  • a wiring electrically connected to an external circuit or the like is provided in order to change the threshold voltage of the transistor or reduce the off-state current of the transistor. Then, a potential may be applied to the back gate of the transistor by the external circuit or the like. Note that this is the same not only in FIG. 15A but also in transistors described in other parts of the specification or transistors illustrated in other drawings.
  • the semiconductor device of one embodiment of the present invention does not depend on the structure of the transistor included in the semiconductor device.
  • the transistors M1 to M4 illustrated in FIG. 15A may have a structure without a back gate, that is, a single-gate transistor as illustrated in FIG. 15C. Further, some of the transistors may have a back gate and some of the other transistors may not have a back gate. Note that this applies not only to the circuit diagram shown in FIG. 15A, but also to transistors described in other parts of the specification or transistors illustrated in other drawings.
  • transistors with various structures can be used as transistors. Therefore, there is no limitation on the type of transistor used.
  • a transistor including single crystal silicon or a non-single-crystal semiconductor film typified by amorphous silicon, polycrystalline silicon, microcrystal (also referred to as microcrystal, nanocrystal, or semiamorphous) silicon, or the like is used.
  • a transistor or the like included therein can be used.
  • a thin film transistor (TFT) in which these semiconductors are thinned can be used. There are various advantages when using TFTs.
  • the manufacturing apparatus since it can be manufactured at a lower temperature than in the case of single crystal silicon, it is possible to reduce the manufacturing cost or increase the size of the manufacturing apparatus. Since the manufacturing apparatus can be enlarged, it can be manufactured on a large substrate. Therefore, since a large number of display devices can be manufactured at the same time, the manufacturing cost can be reduced.
  • the manufacturing temperature is low, a substrate having low heat resistance can be used. Therefore, a transistor can be manufactured over a light-transmitting substrate. Alternatively, light transmission through a display element can be controlled using a transistor over a light-transmitting substrate. Alternatively, since the transistor has a small thickness, part of the film forming the transistor can transmit light. Therefore, the aperture ratio can be improved.
  • a compound semiconductor eg, SiGe, GaAs, or the like
  • an oxide semiconductor eg, Zn—O, In—Ga—Zn—O, In—Zn—O, In—Sn—O( A transistor including (ITO), Sn-O, Ti-O, Al-Zn-Sn-O (AZTO), In-Sn-Zn-O, or the like
  • ITO ITO
  • Sn-O Sn-O
  • Ti-O Ti-O
  • Al-Zn-Sn-O AZTO
  • In-Sn-Zn-O or the like
  • the manufacturing temperature can be lowered, so that the transistor can be manufactured at room temperature, for example.
  • the transistor can be formed directly on a substrate having low heat resistance, such as a plastic substrate or a film substrate.
  • a substrate having low heat resistance such as a plastic substrate or a film substrate.
  • these compound semiconductors or oxide semiconductors can be used not only for the channel portion of the transistor but also for other purposes.
  • these compound semiconductors or oxide semiconductors can be used for wirings, resistance elements, pixel electrodes, light-transmitting electrodes, or the like. Since they can be formed or formed at the same time as the transistor, cost can be reduced.
  • a transistor formed by an inkjet method or a printing method can be used. As a result, they can be manufactured at room temperature, manufactured at a low degree of vacuum, or manufactured on a large substrate. Therefore, manufacturing can be performed without using a mask (reticle), so that the layout of the transistor can be easily changed. Alternatively, since it can be manufactured without using a resist, the material cost can be reduced and the number of steps can be reduced. Alternatively, since the film can be attached only to a necessary portion, the material is not wasted and the cost can be reduced as compared with the manufacturing method of etching after forming the film on the entire surface.
  • a transistor having an organic semiconductor or a carbon nanotube, or the like can be used as an example of the transistor. With these, a transistor can be formed over a bendable substrate. A device using a transistor having an organic semiconductor or a carbon nanotube can be resistant to shock.
  • transistors having various structures can be used as the transistor.
  • a MOS transistor, a junction transistor, a bipolar transistor, or the like can be used as the transistor.
  • MOS transistor the size of the transistor can be reduced. Therefore, a large number of transistors can be mounted.
  • bipolar transistor a large amount of current can flow. Therefore, the circuit can be operated at high speed.
  • the MOS transistor and the bipolar transistor may be mixed and formed on one substrate. As a result, low power consumption, miniaturization, high speed operation, etc. can be realized.
  • a transistor having a structure in which gate electrodes are provided above and below an active layer can be applied.
  • the gate electrodes With the structure in which the gate electrodes are arranged above and below the active layer, a circuit configuration in which a plurality of transistors are connected in parallel is obtained. Therefore, the channel formation region is increased, so that the current value can be increased.
  • a structure in which the gate electrodes are provided above and below the active layer facilitates formation of a depletion layer, so that the S value can be improved.
  • examples of a transistor include a structure in which a gate electrode is provided over an active layer, a structure in which a gate electrode is provided under an active layer, a positive stagger structure, an inverted stagger structure, and a plurality of channel regions.
  • a transistor having a divided structure, a structure in which active layers are connected in parallel, a structure in which active layers are connected in series, or the like can be used.
  • a planar type, a FIN type (fin type), a TRI-GATE type (tri-gate type), a top gate type, a bottom gate type, a double gate type (a gate is arranged above and below a channel), and the like, Can take various configurations.
  • a transistor having a structure in which a source electrode and a drain electrode overlap with an active layer (or part of it) can be used.
  • the structure in which the source electrode and the drain electrode overlap with the active layer (or part thereof) it is possible to prevent the operation from becoming unstable due to the accumulation of charges in part of the active layer.
  • a structure having an LDD region can be applied.
  • the LDD region By providing the LDD region, off current can be reduced or the withstand voltage of the transistor can be improved (reliability can be improved).
  • the drain current when operating in the saturation region, even if the voltage between the drain and the source changes, the drain current does not change so much and a voltage-current characteristic with a flat slope can be obtained. it can.
  • a transistor can be formed using various substrates.
  • the type of substrate is not limited to a particular type.
  • the substrate include a semiconductor substrate (for example, a single crystal substrate or a silicon substrate), an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a sapphire glass substrate, a metal substrate, a stainless steel substrate, and a stainless steel foil.
  • glass substrates include barium borosilicate glass, aluminoborosilicate glass, and soda lime glass.
  • Examples of the flexible substrate, the laminated film, the base film and the like include the following.
  • plastics represented by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), and polytetrafluoroethylene (PTFE).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyether sulfone
  • PTFE polytetrafluoroethylene
  • a synthetic resin such as acrylic resin.
  • polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, or the like can be used.
  • polyamide, polyimide, aramid, epoxy resin, inorganic vapor deposition film, paper, or the like can be given.
  • a transistor using a semiconductor substrate, a single crystal substrate, an SOI substrate, or the like, a transistor with small variation in characteristics, size, shape, or the like, high current capability, and small size can be manufactured. ..
  • a circuit is formed using such a transistor, low power consumption of the circuit or high integration of the circuit can be achieved.
  • a flexible substrate may be used as the substrate, and the transistor may be formed directly on the flexible substrate.
  • a separation layer may be provided between the substrate and the transistor.
  • the peeling layer can be used for separating a semiconductor device over a part or the whole of the semiconductor layer, separating it from the substrate, and transferring the semiconductor device to another substrate. At that time, the transistor can be transferred to a substrate having poor heat resistance or a flexible substrate.
  • a structure having a laminated structure of an inorganic film of a tungsten film and a silicon oxide film, a structure in which an organic resin film such as polyimide is formed on a substrate, or the like can be used.
  • a transistor may be formed using one substrate, and then the transistor may be transferred to another substrate and the transistor may be placed on another substrate.
  • a substrate on which a transistor is transferred in addition to a substrate on which the above transistor can be formed, a paper substrate, a cellophane substrate, an aramid film substrate, a polyimide film substrate, a stone substrate, a wood substrate, a cloth substrate (natural fiber) (Including silk, cotton, hemp), synthetic fiber (nylon, polyurethane, polyester) or recycled fiber (acetate, cupra, rayon, recycled polyester, etc.), leather substrate, or rubber substrate.
  • the cost can be reduced by reducing the number of components, or the reliability can be improved by reducing the number of connection points with circuit components.
  • part of a circuit necessary for realizing a predetermined function is formed over one substrate and another part of a circuit necessary for realizing the predetermined function is formed over another substrate. It is possible. For example, part of a circuit necessary for realizing a predetermined function is formed over a glass substrate and another part of a circuit necessary for realizing the predetermined function is a single crystal substrate (or an SOI substrate). Can be formed into. Then, a single crystal substrate (also referred to as an IC chip) on which another part of the circuit necessary for realizing a predetermined function is formed is connected to the glass substrate by COG (Chip On Glass), and the glass substrate is connected.
  • COG Chip On Glass
  • the IC chip can be placed in the.
  • the IC chip can be connected to the glass substrate by using TAB (Tape Automated Bonding), COF (Chip On Film), SMT (Surface Mount Technology), or a printed circuit board.
  • TAB Transmission Automated Bonding
  • COF Chip On Film
  • SMT Surface Mount Technology
  • a printed circuit board As described above, since part of the circuit is formed over the same substrate as the pixel portion, cost can be reduced by reducing the number of parts or reliability can be improved by reducing the number of connection points with circuit parts. ..
  • power consumption is often large in a circuit having a high driving voltage or a circuit having a high driving frequency. Therefore, such a circuit is formed over a substrate (for example, a single crystal substrate) different from the pixel portion to form an IC chip. By using this IC chip, it is possible to prevent an increase in power consumption.
  • the first terminal of the transistor M1 is electrically connected to the wiring VE.
  • the second terminal of the transistor M1 is electrically connected to the first terminal of the transistor M3 and the first terminal of the transistor M4.
  • the gate of the transistor M1 is electrically connected to the first terminal of the capacitor C1 and the first terminal of the transistor M2.
  • the second terminal of the capacitor C1 is electrically connected to the wiring VE.
  • the second terminal of the transistor M2 is electrically connected to the wiring OL.
  • the gate of the transistor M2 is electrically connected to the wiring WL.
  • the second terminal of the transistor M3 is electrically connected to the wiring OL, and the gate of the transistor M3 is electrically connected to the wiring WX1L.
  • the second terminal of the transistor M4 is electrically connected to the wiring OLB, and the gate of the transistor M4 is electrically connected to the wiring X2L.
  • the connection configuration of the circuit MCr different from that of the circuit MC will be described.
  • the second terminal of the transistor M3r is electrically connected to the wiring OLB instead of the wiring OL
  • the second terminal of the transistor M4r is electrically connected to the wiring OL instead of the wiring OLB.
  • the first terminal of the transistor M1r and the first terminal of the capacitor C1r are electrically connected to the wiring VEr.
  • the first terminal of the transistor M1 may be electrically connected to another wiring VLm instead of the wiring VE.
  • the first terminal of the transistor M1r may be electrically connected to another wiring VEmr instead of the wiring VEr.
  • the first terminal of M1r may be electrically connected to another wiring VEmr instead of the wiring VEr.
  • an electrical connection point between the gate of the transistor M1, the first terminal of the capacitor C1, and the first terminal of the transistor M2 is a node n1.
  • the holding unit HC has a function of holding a potential according to the first data, as an example.
  • the potential in the holding portion HC included in the circuit MC in FIG. 15A when the transistor M2 and the transistor M3 are turned on, the potential is input from the wiring OL and written to the capacitor C1 and then Then, the transistor M2 is turned off. Accordingly, the potential of the node n1 can be held as the potential according to the first data. At this time, a current can be input from the wiring OL and a potential having a magnitude corresponding to the magnitude of the current can be held in the capacitor C1. Therefore, the influence of variations in the current characteristics of the transistor M1 can be reduced.
  • the transistor M1 holds the potential of the node n1 for a long time, it is preferable to use a transistor with a small off-state current.
  • a transistor with low off-state current for example, an OS transistor can be used.
  • a transistor having a back gate may be used as the transistor M1 and a low-level potential may be applied to the back gate to shift the threshold voltage to the plus side to reduce off current.
  • both ends of the wiring OL illustrated in FIG. 15A are referred to as a node ina and a node outa
  • both ends of the wiring OLB are referred to as a node inb and a node outb, respectively. ..
  • the wiring VE functions as a wiring that supplies a constant voltage, for example.
  • the constant voltage for example, when the transistor M3, the transistor M3r, the transistor M4, or the transistor M4r is an n-channel transistor, and/or the potential given by the wiring VSO in FIG. 8 is a high-level potential, for example, , VSS which is a low level potential, a ground potential, or a low level potential other than them.
  • the wiring VEm, the wiring VEr, and the wiring VLmr each function as a voltage line that supplies a constant voltage, and the constant voltage is a low-level potential other than VSS and VSS which are low-level potentials. , Ground potential, etc.
  • the constant voltage may be VDD, which is a high level potential.
  • the constant voltage given by the wiring VAL electrically connected to the circuits ACTF[1] to ACTF[n] is a potential VDD given by the wiring VE and the wiring VEr. It is preferable that the potential is higher than that.
  • the constant voltage supplied by each of the wiring VE, the wiring VEm, the wiring VEr, and the wiring VEmr may be different from each other, or some or all of them may be the same. Further, when the voltages supplied to the respective wirings are the same, these wirings may be selected to be the same wiring. For example, when the constant voltage applied to each of the wiring VE, the wiring VEm, the wiring VEr, and the wiring VEmr is substantially equal, the wiring VEm, the wiring VEr, and the wiring VEmr are the same wiring as the wiring VE as in the circuit MP of FIG. 16B. can do.
  • the wiring VL and the wiring VLr can be one and the same wiring.
  • the wiring VLs and the wiring VLsr can be one and the same wiring.
  • the wiring VL and the wiring VLr may be one and the same wiring, and the wiring VLm and the wiring VLmr may be one and the same wiring.
  • the wiring VL and the wiring VLmr may be one and the same wiring, and the wiring VLm and the wiring VLr may be one and the same wiring.
  • each of the transistor M1, the transistor M1r, the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r of the circuit MP of FIG. 15A is a p-channel type transistor M1p, transistor M1pr, transistor M3p, and transistor M3p. It may be replaced with M3pr, transistor M4p, and transistor M4pr.
  • the transistor M3p, the transistor M3pr, the transistor M4p, and the transistor M4pr for example, a p-channel transistor having an SOI (Silicon On Insulator) structure can be applied.
  • SOI Silicon On Insulator
  • the constant voltage applied to the wiring VE and the wiring VEr be VDD, which is a high-level potential.
  • 5A to 5E as the circuits ACTF[1] to ACTF[n] of the arithmetic circuit 110, the arithmetic circuit 120, the arithmetic circuit 130, the arithmetic circuit 140, the arithmetic circuit 150, and the arithmetic circuit 160 in addition to this case.
  • the constant voltage given by the wiring VAL electrically connected to the circuits ACTF[1] to ACTF[n] is the ground potential, or It is preferably VSS. In this way, when the potential of the wiring is changed, the direction in which the current flows will also be changed.
  • the transistor M2 may be replaced with a p-channel type transistor.
  • each of the transistors M4 and M4r of the circuit MP of FIG. 15A may be replaced with p-channel transistors M4p and M4pr.
  • the wirings connected to the gates of the transistor M3, the transistor M3r, the transistor M4p, and the transistor M4pr are combined into one wiring WXL, whereby the circuit MP allows the first data other than 0 (for example, a weighting coefficient) to be obtained. Can be held.
  • each of the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r of the circuit MP of FIG. 15A may be replaced with an analog switch AS3, an analog switch AS4, an analog switch AS3r, and an analog switch AS4r. ..
  • FIG. 17C also illustrates a wiring WX1LB and a wiring X2LB in order to operate the analog switch AS3, the analog switch AS4, the analog switch AS3r, and the analog switch AS4r.
  • the wiring WX1LB is electrically connected to the analog switch AS3 and the analog switch AS3r
  • the wiring X2LB is electrically connected to the analog switch AS4 and the analog switch AS4r.
  • an inverted signal of the signal input to the wiring WX1L is input to the wiring WX1LB
  • an inverted signal of the signal input to the wiring X2L is input to the wiring X2LB.
  • the wiring WX1L and the wiring X2L may be combined into one wiring
  • the wiring WX1LB and the wiring X2LB may be combined into one wiring (not shown).
  • the analog switch AS3, the analog switch AS4, the analog switch AS3r, and the analog switch AS4r may have a CMOS configuration using an n-channel transistor and a p-channel transistor.
  • the sizes of the transistors M3, M3r, M4, and M4r illustrated in FIGS. 15A to 15C and 16A to 16C, for example, the channel length and the channel width are preferably equal to each other. With such a circuit configuration, there is a possibility that the layout can be efficiently performed. In addition, there is a possibility that the currents flowing through the transistors M3, M3r, M4, and M4r can be made uniform. Similarly, it is preferable that the sizes of the transistor M1 and the transistor M1r illustrated in FIGS. 15A to 15C and 16A to 16C are equal to each other. Similarly, the sizes of the transistor M2 and the transistor M2r illustrated in FIGS. 15A to 15C and 16A to 16C are preferably equal to each other.
  • the transistor M1p and the transistor M1pr illustrated in FIG. 16C have the same size.
  • the transistor M3p, the transistor M3pr, the transistor M4p, and the transistor M4pr illustrated in FIG. 16C have the same size.
  • FIGS. 18 to 20 are timing charts showing an operation example of the circuit MP and show fluctuations in the potentials of the wiring WL, the wiring WX1L, the wiring X2L, the node n1, and the node n1r, respectively. Note that high in FIGS. 18 to 20 indicates a high-level potential and low indicates a low-level potential. Further, in this operation example, from the wiring OL to node outa (or the wiring OL from node outa) the amount of current output is set to I OL. The amount of current output from the wiring OLB to the node outb (or from the node outb to the wiring OLB) is IOLB . In the timing chart shown in FIGS. 18 to 20, I OL, also illustrates the variation of I OLB.
  • the constant voltage given by the wiring VE, the wiring VEm, the wiring VEr, and the wiring VEmr is VSS (low level potential).
  • VSS low level potential
  • a high-level potential is applied to the wiring VSO, and current flows from the wiring VSO to the wiring VE or the wiring VEr through the switching circuit TW and the wiring OL.
  • a current flows from the wiring VSO to the wiring VE or the wiring VEr through the switching circuit TW and the wiring OLB.
  • the potential given by the wiring VCN is VSS in FIG.
  • VSS is applied to the second terminal of the transistor M1.
  • the potential of the gate of the transistor M1 also becomes VSS, so that the transistor M1 is turned off.
  • the wiring VCN and the second terminal of the transistor M1r are brought into conduction, the potential of the second terminal of the transistor M1r and the gate becomes VSS, so that the transistor M1r is turned off.
  • the transistor M1 when the transistors M2 and M3 are in the ON state, the transistor M1 has a diode connection configuration. Therefore, when a current flows from the wiring OL to the circuit MC, the potentials of the second terminal of the transistor M1 and the gate of the transistor M1 are substantially equal to each other. The potential is determined by the amount of current flowing from the wiring OL to the circuit MC, the potential of the first terminal of the transistor M1 (here, VSS), and the like.
  • the transistor M1 functions as a current source for flowing a current according to the potential of the gate of the transistor M1. Therefore, the influence of variations in the current characteristics of the transistor M1 can be reduced.
  • the potential of the gate (node n1) of the transistor M1 becomes V 1.
  • V 1 is held by the holding unit HC by turning off the transistor M2. Accordingly, transistor M1, the potential VSS of the first terminal of the transistor M1, the I 1 is a current corresponding to the potential V 1 of the gate of the transistor M1 source of the transistor M1 - can flow between the drain.
  • the amount of current flowing from the wiring OL to the circuit MC is three types of 0, I 1 , and I 2 . Therefore, the amount of current set in the transistor M1 is three kinds of 0, I 1 , and I 2 .
  • the potential of the gate of the transistor M1 held in the holding portion HC is VSS
  • the potentials of the first terminal and the second terminal of the transistor M1 are also VSS, and thus the threshold voltage of the transistor M1. Is higher than 0, the transistor M1 is turned off. Therefore, since no current flows between the source and drain of the transistor M1, it can be said that the amount of current flowing between the source and drain of the transistor M1 is set to zero.
  • the transistor M1 held in the holding unit HC when the potential of the gate of the transistor M1 held in the holding unit HC is V 1 , and the threshold voltage of the transistor M1 is lower than V 1 ⁇ VSS, the transistor M1 is turned on. .. At this time, the amount of current flowing through the transistor M1 is I 1 . Therefore, it can be said that when the potential of the gate of the transistor M1 is V 1 , the amount of current flowing between the source and drain of the transistor M1 is set to I 1 . Further, for example, held in the holding section HC, when the potential of the gate of the transistor M1 is V 2, if the threshold voltage of the transistor M1 is lower than V 2 -VSS, transistor M1 is turned on .. At this time, the amount of current flowing through the transistor M1 is I 2 . Therefore, when the potential of the gate of the transistor M1 is V 2, the source of the transistor M1 - the amount of current flowing between the drain may be referred to, is set to I 2.
  • the current amount of I 1 is larger than 0 and smaller than I 2 .
  • the potential V 1 is higher than VSS and lower than V 2 .
  • the threshold voltage of the transistor M1 is higher than 0 and lower than V 1 -VSS.
  • I 1 can be replaced with, for example, I ut generated by the constant current source circuit ISC1 in the description of FIG. 8, and I 2 can be replaced by the constant current source circuit ISC2 in the description of FIG. It can be replaced with the generated 2I ut .
  • the first data (for example, here, a weighting coefficient) held by the circuit MP is defined as follows.
  • the circuit MP holds “0” as the first data (weighting coefficient).
  • V 1 is held at the node n1 of the holding unit HC and VSS is held at the node n1r of the holding unit HCr
  • the circuit MP is supposed to hold “+1” as the first data (weighting coefficient).
  • the second data (for example, the value of the neuron signal (calculated value) here) input to the circuit MP is defined as follows as an example.
  • “+1” is input to the circuit MP as the second data (the value of the neuron signal).
  • “ ⁇ 1” is input to the circuit MP as the second data (the value of the neuron signal).
  • the high-level potential is VDD or a potential higher than VDD by 10% or more, or 20% or more.
  • the transistor M1 and the transistor M1r include a case where the transistor M1 and the transistor M1r are finally operated in a saturation region in an on state. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage within the operating range in the saturation region.
  • the transistor M1 and the transistor M1r may operate in the linear region. Note that when the first data (weighting coefficient) is an analog value, for example, the transistor M1 and the transistor M1r operate in a linear region depending on the size of the first data (weighting coefficient). The case of operating in the saturation region may be mixed.
  • the transistor M2, the transistor M2r, the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r are in the ON state and finally operate in the linear region unless otherwise specified.
  • the transistor M2, the transistor M2r, the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r may operate in the saturation region when in the on state, and may operate in the linear region and the saturation region. The cases and may be mixed.
  • FIG. 18A is a timing chart of the circuit MP in that case.
  • the initial potential is held in the holding unit HC and the holding unit HCr.
  • the node n1 and the node n1r are assumed to hold potentials higher than the potential VSS as initial potentials.
  • a low level potential is applied to the wiring WL, the wiring WX1L, and the wiring X2L. Accordingly, low-level potentials are input to the gates of the transistor M2, the transistor M2r, the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r, and thus the transistor M2, the transistor M2r, the transistor M3, the transistor M3r, and the transistor M3r. Each of M4 and the transistor M4r is turned off.
  • a high-level potential is applied to the wiring WL and the wiring WX1L from time T2 to time T3. Accordingly, high-level potentials are input to the gates of the transistor M2, the transistor M2r, the transistor M3, and the transistor M3r, so that the transistor M2, the transistor M2r, the transistor M3, and the transistor M3r are turned on.
  • V ini is applied as an initialization potential to each of the wiring OL and the wiring OLB. Since each of the transistor M2, the transistor M2r, the transistor M3, and the transistor M3r is on, the potentials of the node n1 of the holding portion HC and the node n1r of the holding portion HCr become V ini . That is, between time T2 and time T3, the potentials of the node n1 of the holding unit HC and the node n1r of the holding unit HCr are initialized.
  • the initialization potential V ini is preferably, for example, the ground potential.
  • the initialization potential V ini may be VSS, a potential higher than the ground potential, or a potential lower than the ground potential.
  • the initialization potential V ini applied to the wiring OL and the wiring OLB may be different from each other. Note that the initialization potential V ini may not be input to each of the wiring OL and the wiring OLB. Note that the period from time T2 to time T3 does not necessarily have to be provided. Alternatively, the initialization does not necessarily have to be performed from the time T2 to the time T3.
  • the potential VSS is input from the wiring OL to the circuit MC and the potential VSS is input from the wiring OLB to the circuit MCr.
  • This is performed by turning on the switch SWL and the switch SWLB and turning off the switch SWI, the switch SWIB, the switch SWO, the switch SWOB, the switch SWH, and the switch SWHB in FIG.
  • the potential of the node n1 of the holding unit HC becomes VSS and the potential of the node n1r of the holding unit HCr becomes VSS.
  • the transistor M1 is set so that 0 is supplied as a current amount, so that no current flows from the wiring OL to the wiring VE through the circuit MC.
  • the transistor M1r is set so as to flow 0 as the amount of current; therefore, no current flows from the wiring OLB to the wiring VEr through the circuit MCr.
  • the transistors M1 and M1r are turned off, so that the wiring OL and the wiring VE are brought out of conduction and the wiring OLB and the wiring VEr are brought out of conduction. It becomes a state.
  • a low-level potential is applied to the wiring WL and the wiring WX1L from time T4 to time T5. Accordingly, the low-level potential is input to the gates of the transistor M2, the transistor M2r, the transistor M3, and the transistor M3r, so that the transistor M2, the transistor M2r, the transistor M3, and the transistor M3r are turned off.
  • the potential VSS of the node n1 of the holding portion HC is held and the potential VSS of the node n1r of the holding portion HCr is held. Further, when the transistor M3 is turned off, no current flows from the wiring OL to the wiring VE through the circuit MC.
  • the switch SWH and the switch SWHB illustrated in FIG. 8A may be turned on to initialize the potentials of the wiring OL and the wiring OLB.
  • the potentials of the wiring OL and the wiring OLB can be changed by the current output from the circuit MP after time T5.
  • the switch SWI, the switch SWIB, the switch SWO, the switch SWOB, the switch SWL, and the switch SWLB in FIG. 8 may be turned off.
  • the switch SWH and the switch SWHB may be turned on to initialize the potentials of the wiring OL and the wiring OLB. After the potentials of the wiring OL and the wiring OLB are initialized, the switches SWH and SWHB may be turned off.
  • a high-level potential is input to the wiring WX1L and a low-level potential is input to the wiring X2L as a neuron signal (calculated value) “+1” to the circuit MP.
  • the high-level potential is input to the gates of the transistor M3 and the transistor M3r, and the low-level potential is input to the gates of the transistor M4 and the transistor M4r. Therefore, the transistors M3 and M3r are turned on, and the transistors M4 and M4r are turned off. That is, by this operation, the circuit MC and the wiring OL and the circuit MCr and the wiring OLB are brought into conduction, and the circuit MC and the wiring OLB and the circuit MCr and the wiring OL are connected. It becomes non-conductive.
  • the switches SWO and SWOB are turned on, the switches SWI, the switches SWIB, the switches SWL, the switches SWLB, the switches SWHB, and the switches SWHB are turned off, and each of the wiring OL and the wiring OLB and the circuit AFP. It makes a continuity between and. Note that since the transistor M1 is off (because it is set to flow 0 as the amount of current), no current flows in the circuit MC between the wiring OL and the wiring OLB to the wiring VE. Similarly, since the transistor M1r is in the off state (because the current amount is set to flow 0), no current flows between the wiring OL and the wiring OLB to the wiring VEr in the circuit MCr. ..
  • the current I OL output from the node outa of the wiring OL and the current I OLB output from the node outb of the wiring OLB do not change before and after the time T5. Therefore, the current I OL does not flow between the circuit AFP and the wiring OL, and the current I OLB does not flow between the circuit AFP and the wiring OLB.
  • the first data (weighting coefficient) is “0”
  • the second data the value of the neuron signal (calculated value)) input to the circuit MP is “+1”. .. 1
  • the product of the first data (weighting coefficient) and the second data is "0”.
  • the result that the product of the first data (weighting coefficient) and the second data (the value of the signal of the neuron) is “0” is that the operation of the circuit MP changes the current I OL and the current I OLB after time T5. It corresponds when not doing.
  • the result that the product of the first data (weighting coefficient) and the second data (the value of the signal of the neuron) is “0” is output as the signal z j (k) from the circuit AFP in FIG.
  • the first data for example, the weighting factor
  • the second data the value of the signal of the neuron or the calculated value
  • power consumption can be reduced.
  • it is necessary to hold the first data (weighting coefficient) for a long time At this time, for example, when an OS transistor is used, it is possible to hold the first data (weighting coefficient) for a long time by utilizing the fact that the off current is low.
  • FIG. 18B is a timing chart of the circuit MP in that case.
  • the operation from the time T1 to the time T3 is similar to the operation from the time T1 to the time T3 of the condition 1, so the description of the operation from the time T1 to the time T3 of the condition 1 will be referred to. ..
  • I 1 is input as the amount of current from the wiring OL to the circuit MC
  • the potential VSS is input from the wiring OLB to the circuit MCr.
  • the transistors M1 is to be configured to stream I 1 as the current amount, I 1 flows as the current amount of wiring VE from the wiring OL via the circuit MC.
  • the transistor M1r is set so that 0 is supplied as the amount of current; therefore, no current flows from the wiring OLB to the wiring VEr through the circuit MCr.
  • a low-level potential is applied to the wiring WL and the wiring WX1L. Accordingly, low-level potentials are input to the gates of the transistor M2, the transistor M2r, the transistor M3, and the transistor M3r, so that the transistor M2, the transistor M2r, the transistor M3, and the transistor M3r are turned off. ..
  • the transistor M2 and the transistor M2r are turned off, the potential V 1 of the node n1 in the holding portion HC is held and the potential VSS of the node n1r in the holding portion HCr is held. Further, when the transistor M3 is turned off, no current flows from the wiring OL to the wiring VE through the circuit MC.
  • the switch SWH and the switch SWHB illustrated in FIG. 8A may be turned on to initialize the potentials of the wiring OL and the wiring OLB.
  • the potentials of the wiring OL and the wiring OLB can be changed by the current output from the circuit MP after time T5.
  • the switches SWI, SWIB, SWO, SWOB, SWL, and SWLB in FIG. 8 may be turned off.
  • the switches SWH and SWHB may be turned on to initialize the potentials of the wiring OL and the wiring OLB. After the potentials of the wiring OL and the wiring OLB are initialized, the switches SWH and SWHB may be turned off.
  • a high-level potential is input to the wiring WX1L and a low-level potential is input to the wiring X2L as input of the second data (value of neuron signal (calculated value) “+1” to the circuit MP.
  • the high-level potential is input to the gates of the transistor M3 and the transistor M3r
  • the low-level potential is input to the gates of the transistor M4 and the transistor M4r. Therefore, the transistors M3 and M3r are turned on, and the transistors M4 and M4r are turned off. That is, by this operation, the circuit MC and the wiring OL and the circuit MCr and the wiring OLB are brought into conduction, and the circuit MC and the wiring OLB and the circuit MCr and the wiring OL are connected. It becomes non-conductive.
  • the switch SWO and the switch SWOB are turned on, and the switch SWI, the switch SWIB, the switch SWL, the switch SWLB, the switch SWH, and the switch SWHB are turned off, and the wiring OL and the wiring OLB are respectively connected.
  • the circuit AFP is electrically connected.
  • the transistor M3 since the transistor M3 is on and the transistor M1r is on (because I 1 is set to flow as the amount of current), the distance from the wiring OL to the wiring VE Current flows through. Further, in the circuit MC, since the transistor M4 is off, current does not flow from the wiring OLB to the wiring VE.
  • the transistor M3r is in the on state, but the transistor M1 is in the off state (because the current amount is set to flow 0). Therefore, from the wiring OLB to the wiring Ver. No current flows between them. Further, in the circuit MCr, since the transistor M4r is off, current does not flow from the wiring OL to the wiring VEr. From the above, the current I OL output from the node outa of the wiring OL increases by I 1 after the time T5, and the current I OLB output from the node outb of the wiring OLB does not change before and after the time T5. Therefore, the current I OL having the current amount I 1 flows between the circuit AFP and the wiring OL, and the current I OLB does not flow between the circuit AFP and the wiring OLB.
  • the first data (weighting coefficient) is “+1” and the second data (the value of the signal of the neuron) input to the circuit MP is “+1”.
  • the product of the first data (weighting coefficient) and the second data becomes “+1”.
  • a first data (weighting factor) results which the product is "+1" of the second data (the value of the neurons of the signal), the operation of the circuit MP, a current I OL is I 1 increased in subsequent time T5, the current I It corresponds to the case where the OLB does not change.
  • the result that the product of the first data (weighting factor) and the second data (the value of the neuron signal) is "+1” is output from the circuit AFP as a signal z j (k) in FIG.
  • the current flowing from the wiring OL to the circuit MC is set to I 2 instead of I 1 , so that V 2 can be held in the holding portion HC. ..
  • "+2" is set as the first data (weighting coefficient) of the circuit MP.
  • the first data (weighting coefficient) and the second data can be calculated from the equation (1.1).
  • the product of (the value of the signal of the neuron) is "+2".
  • a first data (weighting factor) results which the product is "+2" of the second data (the value of the neurons of the signal), the operation of the circuit MP, a current I OL is I 2 increase at later time T5, the current I It corresponds to the case where the OLB does not change.
  • a positive value other than “+1” is set as the first data (weighting coefficient) of the circuit MP. Can be set.
  • FIG. 18C is a timing chart of the circuit MP in that case.
  • the operation from the time T1 to the time T3 is similar to the operation from the time T1 to the time T3 of the condition 1, so the description of the operation from the time T1 to the time T3 of the condition 1 will be referred to. ..
  • the potential VSS is input from the wiring OL to the circuit MC, and I 1 is input as the amount of current from the wiring OLB to the circuit MCr.
  • This is performed by turning on the switch SWIB and the switch SWL and turning off the switch SWI, the switch SWO, the switch SWOB, the switch SWLB, the switch SWH, and the switch SWHB in FIG.
  • the potential of the node n1 of the holding unit HC becomes VSS
  • the potential of the node n1r of the holding unit HCr becomes V 1 .
  • the transistor M1 is set to flow 0 as a current amount, so that no current flows from the wiring OL to the wiring VE through the circuit MC. Further, in the circuit MCr, transistor M1r is to be configured to stream I 1 as the current amount, I 1 flows as the current amount of wiring VEr from the wiring OLB through the circuit MCr.
  • a low-level potential is applied to the wiring WL and the wiring WX1L. Accordingly, low-level potentials are input to the gates of the transistor M2, the transistor M2r, the transistor M3, and the transistor M3r, so that the transistor M2, the transistor M2r, the transistor M3, and the transistor M3r are turned off. ..
  • the potential VSS of the node n1 in the holding portion HC is held and the potential V 1 of the node n1r in the holding portion HCr is held. Further, when the transistor M3 is turned off, no current flows from the wiring OL to the wiring VE through the circuit MC.
  • the switch SWH and the switch SWHB illustrated in FIG. 8A may be turned on to initialize the potentials of the wiring OL and the wiring OLB.
  • the potentials of the wiring OL and the wiring OLB can be changed by the current output from the circuit MP after time T5.
  • “-1" is set as the first data (weighting factor) of the circuit MP by the operation from time T1 to time T5.
  • the switch SWI, the switch SWIB, the switch SWO, the switch SWOB, the switch SWL, and the switch SWLB in FIG. 8 may be turned off.
  • the switches SWH and SWHB may be turned on to initialize the potentials of the wiring OL and the wiring OLB. After the potentials of the wiring OL and the wiring OLB are initialized, the switches SWH and SWHB may be turned off.
  • a high-level potential is input to the wiring WX1L and a low-level potential is input to the wiring X2L as input of the second data (value of neuron signal (calculated value) “+1” to the circuit MP.
  • the high-level potential is input to the gates of the transistor M3 and the transistor M3r
  • the low-level potential is input to the gates of the transistor M4 and the transistor M4r. Therefore, the transistors M3 and M3r are turned on, and the transistors M4 and M4r are turned off. That is, by this operation, the circuit MC and the wiring OL and the circuit MCr and the wiring OLB are brought into conduction, and the circuit MC and the wiring OLB and the circuit MCr and the wiring OL are connected. It becomes non-conductive.
  • the switch SWO and the switch SWOB are turned on, and the switch SWI, the switch SWIB, the switch SWL, the switch SWLB, the switch SWH, and the switch SWHB are turned off, and the wiring OL and the wiring OLB are respectively connected.
  • the circuit AFP is electrically connected.
  • the transistor M3 is in the on state, but the transistor M1 is in the off state (because it is set to pass 0 as the amount of current). Therefore, between the wiring OL and the wiring VE. No current flows. Further, in the circuit MC, since the transistor M4 is off, current does not flow from the wiring OLB to the wiring VE.
  • the wiring OLB to the wiring VEr An electric current flows between them. Further, in the circuit MCr, since the transistor M4r is off, current does not flow from the wiring OL to the wiring VEr. From the above, the current I OL outputted from the node outa wiring OL does not change before and after the time T5, the current I OLB outputted from the node outb wiring OLB is I 1 increases after a time T5. Therefore, the current I OL does not flow between the circuit AFP and the wiring OL, and the current I OLB of the current amount I 1 flows between the circuit AFP and the wiring OLB.
  • the expression ( 1.1) the product of the first data (weighting coefficient) and the second data (value of the neuron signal) is "-1".
  • the result that the product of the first data (weighting coefficient) and the second data (the value of the signal of the neuron) is "-1" is that the current IOL does not change after the time T5 in the operation of the circuit MP and the current IOL does not change. OLB corresponds to the case where I 1 increases.
  • the result of the product of the first data (weighting factor) and the second data (the value of the neuron signal) being "-1" is output from the circuit AFP as the signal z j (k) in FIG.
  • the result of the product of the first data (weighting coefficient) and the second data (the value of the signal of the neuron) being "-2" is that the current IOL does not change after time T5 in the operation of the circuit MP and the current IOL does not change. It corresponds to the case where OLB increases by I 2 .
  • a positive value other than “+1” is set as the weighting factor of the circuit MP.
  • FIG. 19A is a timing chart of the circuit MP in that case.
  • the operation from the time T1 to the time T5 is the same as the operation from the time T1 to the time T5 of the condition 1, so the description of the operation from the time T1 to the time T5 of the condition 1 is referred to. ..
  • the low-level potential is input to the wiring WX1L and the high-level potential is input to the wiring X2L as the input of the second data (value of neuron signal (calculated value)) “ ⁇ 1” to the circuit MP.
  • the low-level potential is input to the gates of the transistor M3 and the transistor M3r, and the high-level potential is input to the gates of the transistor M4 and the transistor M4r. Therefore, the transistor M3 and the transistor M3r are turned off, and the transistor M4 and the transistor M4r are turned on.
  • the circuit MC and the wiring OL and the circuit MCr and the wiring OLB are brought out of electrical conduction, so that the circuit MC and the wiring OLB and between the circuit MCr and the wiring OL. Becomes conductive.
  • the switch SWO and the switch SWOB are turned on, the switch SWI, the switch SWIB, the switch SWL, and the switch SWLB are turned off, and the wiring OL and the wiring OLB are respectively connected to the circuit AFP.
  • the transistor M1 is off (because it is set to flow 0 as the amount of current)
  • no current flows in the circuit MC between the wiring OL and the wiring OLB to the wiring VE. That is, the current I OL output from the node outa of the wiring OL and the current I OLB output from the node outb of the wiring OLB do not change before and after the time T5.
  • the first data (weighting coefficient) is “0”
  • the second data (value of neuron signal (calculated value) input to the circuit MP is “ ⁇ 1”.
  • the product of the first data (weighting coefficient) and the second data becomes “0”.
  • the result that the product of the first data (weighting coefficient) and the second data (value of the signal of the neuron) is “0” is that the current I OL and the current I OLB change after the time T6 in the operation of the circuit MP. This corresponds to the case where the circuit operation is not performed, which is consistent with the result of the circuit operation under the condition 1.
  • FIG. 19B is a timing chart of the circuit MP in that case.
  • the operation from time T1 to time T5 is the same as the operation from time T1 to time T5 of condition 2, so the description of the operation from time T1 to time T5 of condition 2 will be referred to. ..
  • the low-level potential is input to the wiring WX1L and the high-level potential is input to the wiring X2L as the input of the second data (value of neuron signal (calculated value)) “ ⁇ 1” to the circuit MP.
  • the low-level potential is input to the gates of the transistor M3 and the transistor M3r, and the high-level potential is input to the gates of the transistor M4 and the transistor M4r. Therefore, the transistor M3 and the transistor M3r are turned off, and the transistor M4 and the transistor M4r are turned on.
  • the circuit MC and the wiring OL and the circuit MCr and the wiring OLB are brought out of electrical conduction, so that the circuit MC and the wiring OLB and between the circuit MCr and the wiring OL. Becomes conductive.
  • the switch SWO and the switch SWOB are turned on, and the switch SWI, the switch SWIB, the switch SWL, the switch SWLB, the switch SWH, and the switch SWHB are turned off, and the wiring OL and the wiring OLB are respectively connected.
  • the circuit AFP is electrically connected.
  • the transistor M3 since the transistor M3 is off, current does not flow from the wiring OL to the wiring VE.
  • the transistor M4 since the transistor M4 is on and the transistor M1r is on (because I 1 is set to flow as the amount of current), the wiring OLB to the wiring VE are connected. An electric current flows between them.
  • the transistor M3r since the transistor M3r is off, current does not flow from the wiring OLB to the wiring VEr.
  • the transistor M4r In the circuit MCr, the transistor M4r is in the on state, and the transistor M1 is in the off state (because the current amount is set to flow 0). No current flows between the two. From the above, the current I OL outputted from the node outa wiring OL does not change before and after the time T5, the current I OLB outputted from the node outb wiring OLB is I 1 increases after a time T5. Therefore, the current I OL does not flow between the circuit AFP and the wiring OL, and the current I OLB of the current amount I 1 flows between the circuit AFP and the wiring OLB.
  • the first data (weighting coefficient) is “+1” and the second data (value of neuron signal (calculated value)) input to the circuit MP is “ ⁇ 1”.
  • the product of the first data (weighting coefficient) and the second data is "-1".
  • the result that the product of the first data (weighting coefficient) and the second data (the value of the signal of the neuron) is "-1" is that the current IOL does not change after the time T5 in the operation of the circuit MP and the current IOL does not change.
  • OLB corresponds to the case where I 1 is increased, which is consistent with the result of the circuit operation of Condition 3.
  • the result of the product of the first data (weighting coefficient) and the second data (the value of the signal of the neuron) being "-1" is that the signal z j (k) from the circuit AFP in FIG. ) Is output.
  • the current flowing from the wiring OL to the circuit MC is set to I 2 instead of I 1 , and V 2 is applied to the holding unit HC. May be held.
  • "+2" is set as the first data (weighting coefficient) of the circuit MP.
  • the first data (weighting coefficient) and the second data can be calculated from the equation (1.1).
  • the product of the data (the value of the neuron signal) is "-2".
  • the result of the product of the first data (weighting coefficient) and the second data (the value of the signal of the neuron) being "-2" is that the current IOL does not change after time T5 in the operation of the circuit MP and the current IOL does not change. It corresponds to the case where OLB increases by I 2 .
  • a positive value other than “+1” can be set as the weighting factor of the circuit MP. it can.
  • FIG. 19C is a timing chart of the circuit MP in that case.
  • the operation from time T1 to time T5 is the same as the operation from time T1 to time T5 of condition 3, so the description of the operation from time T1 to time T5 of condition 3 will be referred to. ..
  • the low-level potential is input to the wiring WX1L and the high-level potential is input to the wiring X2L as the input of the second data (value of neuron signal (calculated value)) “ ⁇ 1” to the circuit MP.
  • the low-level potential is input to the gates of the transistor M3 and the transistor M3r, and the high-level potential is input to the gates of the transistor M4 and the transistor M4r. Therefore, the transistor M3 and the transistor M3r are turned off, and the transistor M4 and the transistor M4r are turned on.
  • the circuit MC and the wiring OL and the circuit MCr and the wiring OLB are brought out of electrical conduction, so that the circuit MC and the wiring OLB and between the circuit MCr and the wiring OL. Becomes conductive.
  • the switch SWO and the switch SWOB are turned on, and the switch SWI, the switch SWIB, the switch SWL, the switch SWLB, the switch SWH, and the switch SWHB are turned off, and the wiring OL and the wiring OLB are respectively connected.
  • the circuit AFP is electrically connected.
  • the transistor M3 since the transistor M3 is off, current does not flow from the wiring OL to the wiring VE.
  • the transistor M4 is in the on state, but the transistor M1 is in the off state (because the current amount is set to flow 0). Therefore, the wiring OLB to the wiring VE are connected. No current flows between them.
  • the circuit MCr since the transistor M3r is off, current does not flow from the wiring OLB to the wiring VEr.
  • the transistor M4r since the transistor M4r is on and the transistor M1 is on (because the current I 1 is set to flow), the wiring OL to the wiring Ver An electric current flows between them. From the above, the current I OL output from the node outa of the wiring OL increases by I 1 after the time T5, and the current I OLB output from the node outb of the wiring OLB does not change before and after the time T5. Therefore, the current I OL having the current amount I 1 flows between the circuit AFP and the wiring OL, and the current I OLB does not flow between the circuit AFP and the wiring OLB.
  • the first data (weighting coefficient) is “ ⁇ 1”
  • the second data (value of neuron signal (calculated value) input to the circuit MP is “ ⁇ 1”. If (1.1) is used, the product of the first data (weighting coefficient) and the second data (the value of the neuron signal) will be "+1”.
  • the result that the product of the first data (weighting coefficient) and the second data (the value of the signal of the neuron) is “+1” is that the current I OL changes and the current I OLB changes after time T6 in the operation of the circuit MP. Corresponding to the case where there is no change, this agrees with the result of the circuit operation of Condition 2.
  • a first data (weighting factor) results which the product is "+2" of the second data (the value of the neurons of the signal), the operation of the circuit MP, does not change the current I OL at later time T5, the current I OLB Corresponds to an increase in I 2 .
  • a positive value other than “+1” can be set as the weighting factor of the circuit MP. it can.
  • the operation from the time T1 to the time T5 is the same as the operation from the time T1 to the time T5 of the condition 1, so the description of the operation from the time T1 to the time T5 of the condition 1 is referred to. ..
  • the low-level potential is input to the wiring WX1L and the low-level potential is input to the wiring X2L as input of the second data (value of neuron signal (calculated value) “0” to the circuit MP.
  • a low-level potential is input to the gates of the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r. Therefore, each of the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r is turned off. That is, by this operation, the circuit MC and the wiring OL, the circuit MCr and the wiring OLB, the circuit MC and the wiring OLB, and the circuit MCr and the wiring OL are brought out of electrical conduction.
  • the switch SWO and the switch SWOB are turned on, and the switch SWI, the switch SWIB, the switch SWL, the switch SWLB, the switch SWH, and the switch SWHB are turned off, whereby the wiring OL, and even conducting state between each of the circuit AFP wiring OLB, as described above, the current between the no flow current I OL between the circuit AFP and wiring OL, and a circuit AFP and wiring OLB I OLB does not flow.
  • the first data (weighting coefficient) is “0” and the second data (value of neuron signal (calculated value)) input to the circuit MP is “0”. .. 1), the product of the first data (weighting coefficient) and the second data (value of the neuron signal) is "0".
  • the result that the product of the first data (weighting coefficient) and the second data (the value of the signal of the neuron) is “0” is that the operation of the circuit MP changes the current I OL and the current I OLB after time T5. This corresponds to the case where it is not performed, and this coincides with the result of the circuit operation under the conditions 1 and 4.
  • the operation from time T1 to time T5 is the same as the operation from time T1 to time T5 of condition 2, so the description of the operation from time T1 to time T5 of condition 2 will be referred to. ..
  • the low-level potential is input to the wiring WX1L and the low-level potential is input to the wiring X2L as input of the second data (value of neuron signal (calculated value)) “0” to the circuit MP.
  • a low-level potential is input to the gates of the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r. Therefore, each of the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r is turned off. That is, similar to the condition 7, regardless of the set amount of current flowing through each of the transistor M1 and the transistor M1r by this operation, between the circuit MC and the wiring OL and between the circuit MCr and the wiring OLB.
  • the circuit MC and the wiring OLB, and the circuit MCr and the wiring OL are brought out of conduction. Therefore, no current flows between the wiring OL and one of the wiring VE and the wiring VEr, and no current flows between the wiring OLB and the other of the wiring VE and the wiring VEr. Therefore, from the node outa of the wiring OL.
  • the output current I OL and the current I OLB output from the node outb of the wiring OLB do not change before and after the time T5.
  • the switch SWO and the switch SWOB are turned on, and the switch SWI, the switch SWIB, the switch SWL, and the switch SWLB are turned off, so that the wiring OL and the wiring OLB are connected to the circuit. Even if the AFP is brought into conduction, as described above, the current I OL does not flow between the circuit AFP and the wiring OL, and the current I OLB does not flow between the circuit AFP and the wiring OLB.
  • the first data (weighting coefficient) is “+1”, and the second data (value of neuron signal (calculated value) input to the circuit MP is “0”. .. 1), the product of the first data (weighting coefficient) and the second data (value of the neuron signal) is "0".
  • the result that the product of the first data (weighting coefficient) and the second data (the value of the signal of the neuron) is “0” is that the operation of the circuit MP changes the current I OL and the current I OLB after time T5. This corresponds to the case of not performing, and this coincides with the result of the circuit operation under the conditions 1, 4, and 7.
  • the result of the product of the first data (weighting factor) and the second data (the value of the signal of the neuron) being “0” is the same as in Condition 1, Condition 4, and Condition 7 in FIG. It is output as the signal z j (k) .
  • the operation from time T1 to time T5 is the same as the operation from time T1 to time T5 of condition 3, so the description of the operation from time T1 to time T5 of condition 3 will be referred to. ..
  • the low-level potential is input to the wiring WX1L and the low-level potential is input to the wiring X2L as input of the second data (value of neuron signal (calculated value)) “0” to the circuit MP.
  • a low-level potential is input to the gates of the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r. Therefore, the transistors M3, M3r, the transistor M4, and the transistor M4r are turned off. That is, similar to Condition 7, regardless of the amount of set current flowing in each of the transistor M1 and the transistor M1r by this operation, between the circuit MC and the wiring OL and between the circuit MCr and the wiring OLB.
  • the circuit MC and the wiring OLB, and the circuit MCr and the wiring OL are brought out of conduction. Therefore, no current flows between the wiring OL and one of the wiring VE and the wiring VEr, and no current flows between the wiring OLB and the other of the wiring VE and the wiring VEr. Therefore, from the node outa of the wiring OL.
  • the output current I OL and the current I OLB output from the node outb of the wiring OLB do not change before and after the time T5.
  • the switch SWO and the switch SWOB are turned on, and the switch SWI, the switch SWIB, the switch SWL, the switch SWLB, the switch SWH, and the switch SWHB are turned off, whereby the wiring OL, and even conducting state between each of the circuit AFP wiring OLB, as described above, the current between the no flow current I OL between the circuit AFP and wiring OL, and a circuit AFP and wiring OLB I OLB does not flow.
  • the first data (weighting coefficient) is “ ⁇ 1” and the second data (the value of the neuron signal (calculated value)) input to the circuit MP is “0”.
  • the product of the first data (weighting coefficient) and the second data becomes “0”.
  • the result that the product of the first data (weighting coefficient) and the second data (value of the signal of the neuron) is “0” is that the current I OL and the current I OLB change after the time T6 in the operation of the circuit MP. This corresponds to the case of not performing, and this coincides with the result of the circuit operation of Condition 1, Condition 4, Condition 7, and Condition 8.
  • the result that the product of the first data (weighting coefficient) and the second data (the value of the signal of the neuron) is "0" is similar to the condition 1, condition 4, condition 7, and condition 8 in FIG. It is output from the circuit AFP as a signal z j (k) .
  • the case where one circuit MC and one circuit MCr are connected to the wiring OL and the wiring OLB is shown as an example.
  • a plurality of circuits MC and a plurality of circuits MCr are connected to the wiring OL and the wiring OLB.
  • the currents output from the circuits MC and MCr are added up based on Kirchhoff's current law.
  • the sum operation is performed. That is, a product operation is performed in the circuit MC and the circuit MCr, and a sum operation is performed by adding the currents from the plurality of circuits MC and circuit MCr.
  • the product-sum calculation process is performed.
  • the first data weighting coefficient
  • the second data value of the signal of the neuron
  • the first data weighting coefficient
  • the second data value of the neuron signal
  • the potentials held in the holding portions HC and HCr of the circuits MC and MCr of the circuit MP are multivalued such as VSS, V 1 and V 2 , but the holding portion HC,
  • the HCr may hold a binary value or a potential showing an analog value. For example, when the first data (weighting factor) is a “positive analog value”, the node n1 of the holding unit HC holds a high level analog potential, and the node n1r of the holding unit HCr holds a low level potential.
  • the first data is a “negative analog value”
  • the node n1 of the holding unit HC holds the low level potential and the node n1r of the holding unit HCr holds the high level analog potential.
  • the magnitudes of the currents I OL and I OLB are according to the analog potential.
  • holding the potential indicating an analog value in the holding units HC and HCr is not limited to the operation example of the circuit MP in FIG. 15A, and may be performed for other circuits MP described in this specification and the like. Good.
  • the circuit MP shown in FIG. 21A shows a configuration example of the circuit MP of FIG. 9B.
  • the difference from the circuit MP of FIG. 15A is that the second terminal of the transistor M2 is not the wiring OL but the second terminal of the transistor M1.
  • the point electrically connected to the first terminal of the transistor M3 and the first terminal of the transistor M4, and the second terminal of the transistor M2r is not the wiring OLB but the second terminal of the transistor M1r and the transistor M3r.
  • a point electrically connected to the first terminal of the transistor M4r and the first terminal of the transistor M4r is not the wiring OL but the second terminal of the transistor M1.
  • the circuit MP of FIG. 21A can operate similarly to the circuit MP of FIG. 15A.
  • the circuit MP shown in FIG. 21B shows a configuration example of the circuit MP of FIG. 9B.
  • the difference from the circuit MP of FIG. 15A is that the circuit MC includes a transistor M1c and the first terminal of the transistor M4 is a transistor.
  • the second terminal of M1 and the second terminal of the transistor M3 are not electrically connected to the transistor M1c
  • the circuit MCr includes the transistor M1cr
  • the first terminal of the transistor M4r corresponds to the first terminal of the transistor M1r. This is that the two terminals are electrically connected to the transistor M1cr, not to the second terminal of the transistor M3r.
  • the transistor M1c and the transistor M1cr include the case where the transistor M1c and the transistor M1cr finally operate in a saturation region in the on state. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage in the range of operating in the linear region.
  • the transistor M1c and the transistor M1cr may operate in the linear region.
  • the transistor M1c and the transistor M1cr are linear depending on the size of the first data (weighting coefficient).
  • the case of operating in the region and the case of operating in the saturated region may be mixed.
  • the first terminal of the transistor M1c is electrically connected to the wiring VE.
  • the gate of the transistor M1c is electrically connected to the gate of the transistor M1, the first terminal of the transistor M2, and the first terminal of the capacitor C1.
  • the second terminal of the transistor M1c is electrically connected to the first terminal of the transistor M4.
  • the circuit MCr has a circuit configuration similar to that of the circuit MC. Therefore, in order to distinguish the circuit element or the like included in the circuit MCr from the circuit element or the like included in the circuit MC, the symbol is attached with “r”.
  • the currents flowing in the transistors M3 and M4 are determined by the potentials of the gates of the transistors M1 and M1c, respectively.
  • the sizes of the transistor M1 and the transistor M1c, for example, the channel length and the channel width are preferably equal to each other. With such a circuit configuration, there is a possibility that the layout can be efficiently performed. Further, there is a possibility that the currents flowing through the transistors M3 and M4 can be made uniform.
  • the circuit MP of FIG. 21B can operate similarly to the circuit MP of FIG. 15A.
  • the circuit MP shown in FIG. 22A shows a configuration example of the circuit MP of FIG. 9E.
  • the difference from the circuit MP of FIG. 15A is that the circuit MC includes the transistor M5 and the circuit MCr includes the transistor M5r. And that the circuit MP is electrically connected to the wiring IL and the wiring ILB.
  • the transistor M5 and the transistor M5r include a case where the transistor M5 and the transistor M5r finally operate in a linear region when they are in an on state. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage in the range of operating in the linear region.
  • the first terminal of the transistor M5 is electrically connected to the second terminal of the transistor M2 and the wiring IL.
  • the second terminal of the transistor M5 is electrically connected to the second terminal of the transistor M1, the first terminal of the transistor M3, and the first terminal of the transistor M4.
  • the gate of the transistor M5 is electrically connected to the wiring WL.
  • the circuit MCr has almost the same circuit configuration as the circuit MC. Therefore, in order to distinguish the circuit element or the like included in the circuit MCr from the circuit element or the like included in the circuit MC, the symbol is attached with “r”.
  • the sizes of the transistors M1, M2, M3, and M4, for example, the channel length and the channel width are the transistor M1r, the transistor M2r, and the transistor M2r, respectively. It is preferably equal to the size of M3r and the transistor M4r. With such a circuit configuration, there is a possibility that the layout can be efficiently performed.
  • the size of the transistor M5 is preferably equal to the size of the transistor M5r.
  • a high-level potential is applied to the wiring WL to turn on the transistors M2, M2r, M5, and M5r.
  • a low-level potential is applied to the wiring WL in order to hold the potentials set in the holding portion HC and the holding portion HCr, so that the transistors M2 and M2r, The transistor M5 and the transistor M5r may be turned off.
  • the wiring that transmits the second data (for example, the value of the signal of the neuron here) and the first data (for example, the weighting factor here) are provided to the circuit MP.
  • wiring for supplying or holding information (for example, voltage, current, etc.) and wiring WX1L are collectively referred to as wiring WX1L.
  • a wiring for transmitting a signal value) is a wiring X1L
  • a wiring for supplying or holding information (eg, voltage or current) according to the first data (weighting coefficient) to the circuit MP is a wiring WL.
  • FIG. 22B shows a circuit configuration different from the circuit MP of FIG. 22A.
  • the circuit MP shown in FIG. 22B has a configuration in which the electrical connection of the first terminals of the transistor M5 and the transistor M5r of the circuit MP of FIG. 22A is changed. Specifically, in the circuit MP of FIG. 22B, the first terminal of the transistor M5 is electrically connected to the first terminal of the transistor M2, the gate of the transistor M1, and the first terminal of the capacitor C1. ..
  • the circuit MP of FIG. 22B operates almost the same as the circuit MP of FIG. 22A.
  • the circuits MP illustrated in FIGS. 22A and 22B may each have a structure in which the wiring IL is combined with the wiring OL and the wiring ILB is combined with the wiring OLB.
  • the wiring IL is combined with the wiring OL and the wiring ILB is combined with the wiring OLB, whereby the structure of the circuit MP illustrated in FIG. 23A can be obtained.
  • the wiring IL is combined with the wiring OL and the wiring ILB is combined with the wiring OLB, whereby the structure of the circuit MP illustrated in FIG. 23B can be obtained.
  • each circuit MP in FIGS. 23A and 23B has a circuit configuration that can be applied to the circuit MP illustrated in FIG. 9A, and the operation of each circuit MP in FIGS. 23A and 23B is the same as the circuit MP in FIG. 15A. Refer to the explanation of the operation of.
  • the circuit MP illustrated in FIG. 24 is an example of a circuit including not only the holding unit HC and the holding unit HCr but also the holding unit HCs and the holding unit HCsr, unlike the circuit MP of FIG. 15A.
  • the circuit MC included in the circuit MP in FIG. 24 includes a transistor M1s, a transistor M2s, a transistor M6, a transistor M6s, and a capacitor C1s in addition to the circuit elements included in the circuit MP in FIG. 21A.
  • the circuit MCr included in the circuit MP of FIG. 20 includes the same circuit elements as the circuit MC, and thus corresponds to the transistor M1s, the transistor M2s, the transistor M6, the transistor M6s, and the capacitor C1s of the circuit MC, respectively. , A transistor M1sr, a transistor M2sr, a transistor M6r, a transistor M6sr, and a capacitor C1sr.
  • the transistor M2s and the capacitor C1s are included in the holding unit HCs, and the transistor M2sr and the capacitor C1sr are included in the holding unit HCs.
  • the transistor M2s, the transistor M6, the transistor M6s, the transistor M6r, and the transistor M6sr include the case where the transistor M2s, the transistor M6s, the transistor M6sr, and the transistor M6sr are finally operated in a linear region unless otherwise specified. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage in the range of operating in the linear region.
  • the second terminal of the transistor M1 is electrically connected to the second terminal of the transistor M2 and the first terminal of the transistor M6.
  • the second terminal of the transistor M6 is electrically connected to the first terminal of the transistor M3 and the second terminal of the transistor M4.
  • the gate of the transistor M6 is electrically connected to the wiring S1L.
  • a first terminal of the transistor M1s is electrically connected to the wiring VE.
  • the second terminal of the transistor M1s is electrically connected to the first terminal of the transistor M6s.
  • the gate of the transistor M1s is electrically connected to the first terminal of the capacitor C1s and the first terminal of the transistor M2s.
  • the second terminal of the capacitor C1s is electrically connected to the wiring VE.
  • the second terminal of the transistor M2 is electrically connected to the second terminal of the transistor M1s and the first terminal of the transistor M6s.
  • the second terminal of the transistor M6s is electrically connected to the first terminal of the transistor M3 and the second terminal of the transistor M4.
  • the gate of the transistor M6s is electrically connected to the wiring S2L.
  • the circuit MCr has a circuit configuration substantially similar to that of the circuit MC. Therefore, in order to distinguish the circuit element or the like included in the circuit MCr from the circuit element or the like included in the circuit MC, the symbol is attached with “r”.
  • the wiring S1L functions as a voltage line that supplies a potential for turning on or off the transistor M6 and the transistor M6r
  • the wiring S2L is for turning on or off the transistor M6s and the transistor M6sr. It functions as a voltage line that supplies a potential.
  • the sizes of the transistor M6, the transistor M6s, the transistor M6r, and the transistor M6sr, for example, the channel length and the channel width are equal to each other. With such a circuit configuration, there is a possibility that the layout can be efficiently performed.
  • the circuit MP of the arithmetic circuit 150 receives the first data (for example, a weighting coefficient here). It can hold two. Specifically, the circuit MP of FIG. 24 holds the potential corresponding to the first piece of the first data (weighting coefficient) in the holding unit HC of the circuit MC and the holding unit HCr of the circuit MCr. The potential corresponding to the first data (weighting coefficient) can be held in the holding unit HCs of the circuit MC and the holding unit HCsr of the circuit MC. Further, the circuit MP in FIG.
  • the 24 can switch the first data (weighting coefficient) used for the calculation depending on the potentials applied from the wiring S1L and the wiring S2L.
  • the first data (weighting factor) w 1 (k ⁇ 1) j is stored in each of the holding units HC and the holding units HCr included in the circuits MP[1,j] to MP[m,j] of the arithmetic circuit 150.
  • the circuits MP[1,j] to MP[m,j] of the arithmetic circuit 150 include weighting factors w 1 (k ⁇ 1) j (k) to w m (k ⁇ 1) j (k) and a signal z 1. (k-1) to be able to perform the calculation of the sum-of-products and activation function of z m (k-1). Further, a low-level potential is applied to the wiring S1L to turn off the transistors M6 and M6r, and a high-level potential is applied to the wiring S2L to turn on the transistors M6s and M6sr.
  • the circuits MP[1,j] to MP[m,j] of the circuit 150 have weighting factors w 1 (k ⁇ 1) h (k) to w m (k ⁇ 1) h (k) and a signal z 1 ( k-1) to be able to perform the calculation of the sum-of-products and activation function of z m (k-1).
  • the arithmetic circuit 150 that constitutes the circuit MP of FIG. 24 is effective, for example, when the number of neurons in the kth layer is larger than n, when performing an arithmetic operation in an intermediate layer different from the kth layer, and the like. Further, in the circuit MP of FIG. 24, the circuit MC and the circuit MCr each have two holding units, but each of the circuit MC and the circuit MCr has three or more holding units depending on the situation. You may.
  • the circuit MP included in the semiconductor device of one embodiment of the present invention is not limited to the circuit MP in FIG.
  • the circuit configuration of the circuit MP of the semiconductor device of one embodiment of the present invention can be changed depending on the situation.
  • the circuit MP shown in FIG. 25 has a circuit configuration in which the circuit MP shown in FIG. 24 is changed.
  • a transistor M3s, a transistor M4s, a transistor M3sr, and a transistor M4sr are added to the circuit MP of FIG. 24, and the electrical connection is changed.
  • a first terminal of the transistor M3s is electrically connected to a second terminal of the transistor M6s and a first terminal of the transistor M4s, and a second terminal of the transistor M3s is electrically connected to the wiring OL and the transistor M3s.
  • the second terminal of the transistor M4s is electrically connected to the wiring OLB, and the gate of the transistor M4s is electrically connected to the wiring X2L.
  • the circuit MCr has substantially the same circuit configuration as the circuit MC. Therefore, in order to distinguish the circuit element or the like included in the circuit MCr from the circuit element or the like included in the circuit MC, the symbol is attached with “r”.
  • the second terminal of the transistor M3sr is electrically connected to the wiring OL and the second terminal of the transistor M4sr is electrically connected to the wiring OLB.
  • the sizes of the transistor M3, the transistor M3s, the transistor M3r, the transistor M3sr, the transistor M4, the transistor M4s, the transistor M4r, and the transistor M4sr, for example, the channel length and the channel width are equal to each other. With such a circuit configuration, there is a possibility that the layout can be efficiently performed.
  • the circuit MP of FIG. 25 can hold two first data (weighting factors) by performing the same operation as the circuit MP of FIG. 24, and switches the first data (weighting factor), The product sum and the activation function can be calculated. Further, in the circuit MP of FIG. 25, the circuit MC and the circuit MCr each have two holding units, but each of the circuit MC and the circuit MCr has three or more holding units depending on the situation. You may.
  • the circuit MP shown in FIG. 26 differs from the circuit MP of FIG. 21A in that the circuit MC has a different ratio between the channel width (hereinafter, referred to as W length) and the channel length (hereinafter, referred to as L length).
  • the transistor M1, the transistor M1-2b, and the transistor M1-3b are included as an example. Note that not only the transistors M1, M1-2b, and M1-3b but also more transistors may be included, or the transistors M1-3b and M1-2b may not be included.
  • the circuit MC included in the circuit MP in FIG. 26 further includes a transistor M3-2b, a transistor M4-2b, a transistor M3-3b, and a transistor M4-3b in addition to the circuit elements included in the circuit MP in FIG. 21A. ..
  • the transistor M1-2b and the transistor M1-3b include the case where the transistor M1-2b and the transistor M1-3b finally operate in the saturation region in the on state unless otherwise specified. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage within the operating range in the saturation region. However, one embodiment of the present invention is not limited to this. In order to reduce the amplitude value of the supplied voltage, the transistors M1-2b and M1-3b may operate in the linear region.
  • the transistor M1-2b and the transistor M1- are set according to the size of the first data (weighting coefficient). 3b may coexist when operating in the linear region and when operating in the saturation region.
  • the transistor M3-2b, the transistor M4-2b, the transistor M3-3b, and the transistor M4-3b finally operate in a linear region in the ON state unless otherwise specified.
  • the first terminal of the transistor M1-2b is electrically connected to the wiring VE.
  • the second terminal of the transistor M1-2b is electrically connected to the first terminal of the transistor M3-2b and the first terminal of the transistor M4-2b.
  • the gate of the transistor M1-2b is electrically connected to the first terminal of the transistor M2 and the first terminal of the capacitor C1.
  • the second terminal of the transistor M3-2b is electrically connected to the wiring OL.
  • the gate of the transistor M3-2b is electrically connected to the wiring X1L2b.
  • the second terminal of the transistor M4-2b is electrically connected to the wiring OLB.
  • the gate of the transistor M4-2b is electrically connected to the wiring X2L2b.
  • a first terminal of the transistor M1-3b is electrically connected to the wiring VE.
  • the second terminal of the transistor M1-3b is electrically connected to the first terminal of the transistor M3-3b and the first terminal of the transistor M4-3b.
  • the gate of the transistor M1-3b is electrically connected to the first terminal of the transistor M2 and the first terminal of the capacitor C1.
  • the second terminal of the transistor M3-3b is electrically connected to the wiring OL.
  • the gate of the transistor M3-3b is electrically connected to the wiring X1L3b.
  • the second terminal of the transistor M4-3b is electrically connected to the wiring OLB.
  • the gate of the transistor M4-3b is electrically connected to the wiring X2L3b.
  • the circuit MCr has a circuit configuration similar to that of the circuit MC. Therefore, in order to distinguish the circuit element or the like included in the circuit MCr from the circuit element or the like included in the circuit MC, the symbol is attached with “r”.
  • the second terminal of the transistor M3-2br is electrically connected to the wiring OLB
  • the second terminal of the transistor M4-2br is electrically connected to the wiring OL
  • the second terminal of the transistor M3-3br is
  • the transistor M4-3br is electrically connected to the wiring OLB
  • the second terminal of the transistor M4-3br is electrically connected to the wiring OL.
  • the sizes of the M4-2br and the transistor M4-3br, for example, the channel length and the channel width are preferably equal to each other. With such a circuit configuration, there is a possibility that the layout can be efficiently performed.
  • the wiring X1L2b is a wiring for switching the transistor M3-2b and the transistor M3-2br between an on state and an off state
  • the wiring X2L2b turns the transistor M4-2b and the transistor M4-2br into an on state and an off state
  • the wiring X1L3b is a wiring for switching the transistor M3-3b and the transistor M3-3br between an on state and an off state
  • the wiring X2L3b is a transistor M4-3b and This is a wiring for switching the transistor M4-3br between an on state and an off state.
  • the ratio of the W length and the L length of the transistor M1 is W/L
  • the ratio of the W length and the L length of the transistor M1-2b is preferably 2 ⁇ W/L and the W length of the transistor M1-3b is W.
  • the ratio of the length to the L length is preferably 4 ⁇ W/L. Since the current flowing between the source and the drain of the transistor is proportional to the channel width/channel length, when the transistor M1, the transistor M1-2b, and the transistor M1-3b have the same structure or configuration conditions other than the channel width/channel length, The currents flowing in the transistors M1-2b and M1-3b are approximately twice and approximately four times the currents flowing in the transistor M1, respectively.
  • the ratio of the amounts of current flowing through the transistor M1, the transistor M1-2b, and the transistor M1-3b is approximately 1:2:4.
  • the circuit MC included in the circuit MP in FIG. 26 has a larger number of transistors M1, for example, Q transistors (Q is an integer of 4 or more).
  • the first transistor is the transistor M1
  • the second transistor is the transistor M1-2b
  • the third transistor is the transistor M1-3b
  • the W length and the L length of the qth transistor (q is an integer of 4 or more and Q or less)
  • the ratio is 2 (q-1) times the ratio of the W length and the L length of the transistor M1
  • the amount of current flowing through each of the first transistor, the second transistor, the third transistor, and the qth transistor is The ratio is 1:2:4:2 (q-1) .
  • the circuit MC included in the circuit MP in FIG. 26 may include Q transistors so that the amount of current flowing through each of them becomes a power of 2.
  • the amount of current flowing between the source and drain of the transistor M1 is I ut , from the channel width/channel length of the transistor M1, the transistor M1-2b, and the transistor M1-3b, the transistor M1-2b, And the amounts of currents flowing through the transistors M1-3b are 2I ut and 4I ut , respectively.
  • the ratio of the W length and the L length of the transistor M1r is preferably equal to the ratio of the W length and the L length of the transistor M1.
  • the ratio of the W length and the L length of the transistor M1-2br is the W length of the transistor M1-2b. It is preferable that the ratio between the length and the L length is equal, and the ratio between the W length and the L length of the transistor M1-3br is preferably equal to the ratio between the W length and the L length of the transistor M1-3b.
  • positive first data (positive weighting coefficient) is set in the circuit MP, at least one of the transistor M3, the transistor M3-2b, and the transistor M3-3b is turned on, and the transistor M4 and the transistor M4-. 2b and the transistor M4-3b may be turned off.
  • the amount of current flowing from the wiring OL to the circuit MC changes depending on the combination of the on-state and the off-state of the transistor M3, the transistor M3-2b, and the transistor M3-3b.
  • the amount of current flowing between the source and drain of the transistor M1 is set to I ut
  • the amount of current flowing to the transistor M1-2b is 2I ut
  • the amount of current flowing to the transistor M1-3b is 4I ut
  • a high-level potential is applied to the wiring WX1L
  • a low-level potential is applied to the wiring X2L
  • a low-level potential is further applied to the wiring X1L2b, the wiring X2L2b, the wiring X1L3b, and the wiring X2L3b, so that the transistor M3 is turned on.
  • the transistor M3-2b, the transistor M3-3b, the transistor M4, the transistor M4-2b, and the transistor M4-3b can be turned off by turning on the transistor.
  • the amount of current flowing from the wiring OL to the circuit MC is I ut .
  • the amount of current flowing between the source and the drain of the transistor M1 is set to I ut , a high-level potential is applied to the wiring WX1L and the wiring X1L2b, and a low-level potential is applied to the wiring X2L and the wiring X2L2b. Further, a low-level potential is applied to the wiring X1L3b and the wiring X2L3b.
  • the transistor M3 and the transistor M3-2b can be turned on, and the transistor M3-3b, the transistor M4, the transistor M4-2b, and the transistor M4-3b can be turned off, and the current flows from the wiring OL to the circuit MC.
  • the current amount is 3 I ut .
  • the amount of current flowing between the source and the drain of the transistor M1 is set to I ut , a high-level potential is applied to the wiring X1L2b and the wiring X1L3b, and a low-level potential is applied to the wiring X2L2b and the wiring X2L3b. Further, a low-level potential is applied to the wiring WX1L and the wiring X2L.
  • the transistor M3-2b and the transistor M3-3b can be turned on and the transistor M3, the transistor M4, the transistor M4-2b, and the transistor M4-3b can be turned off, and the current flowing from the wiring OL to the circuit MC can be changed.
  • the amount is 6 I ut .
  • a high-level potential is applied to the wiring WX1L
  • a low-level potential is applied to the wiring X2L
  • a low-level potential is further applied to the wiring X1L2b, the wiring X2L2b, the wiring X1L3b, and the wiring X2L3b, so that the transistor M3 is turned on.
  • the transistor M3-2b, the transistor M3-3b, the transistor M4, the transistor M4-2b, and the transistor M4-3b can be turned off by turning on the transistor.
  • the amount of current flowing from the wiring OL to the circuit MC is 2I ut .
  • the source of the transistor M1 - sets the amount of current flowing between the drain 2I ut, and a high level voltage is applied to the wiring WX1L, and the wiring X1L2b, a low-level potential is applied to the wiring X2L, and wiring X2L2b Further, a low-level potential is applied to the wiring X1L3b and the wiring X2L3b.
  • the transistor M3 and the transistor M3-2b can be turned on, and the transistor M3-3b, the transistor M4, the transistor M4-2b, and the transistor M4-3b can be turned off, and the current flows from the wiring OL to the circuit MC.
  • current amount is 6I ut.
  • the source of the transistor M1 - sets the amount of current flowing between the drain 2I ut, and a high level voltage is applied to the wiring X1L2b, and the wiring X1L3b, a low-level potential is applied to the wiring X2L2b, and wiring X2L3b Further, a low-level potential is applied to the wiring WX1L and the wiring X2L.
  • the transistor M3-2b and the transistor M3-3b can be turned on, and the transistor M3, the transistor M4, the transistor M4-2b, and the transistor M4-3b can be turned off, and the current flows from the wiring OL to the circuit MC.
  • the amount of current is 12 I ut .
  • the current set between the source and the drain of the transistor M1 is multiplied by an integer in accordance with the potentials of the wiring X1, the wiring X1L2b, and the wiring X1L3b, and the current obtained by multiplying the current by the wiring OL is multiplied.
  • the current set between the source and the drain of the transistor M1 is multiplied by a real number by changing the ratio of the W length and the L length of each of the transistor M1, the transistor M1-2b, and the transistor M1-3b. Therefore, the wiring can flow from the wiring OL to the circuit MC.
  • the amount of current flowing from the wiring OL to the circuit MC is dealt with, but the amount of current flowing from the wiring OLB to the circuit MC can be considered in the same manner.
  • positive first data (positive weighting coefficient) is set in the circuit MP, at least one of the transistor M4, the transistor M4-2b, and the transistor M4-3b is turned on, and the transistor M3 and the transistor M3-2b are turned on. , And the transistor M3-3b may be turned off.
  • the amount of current flowing from the wiring OLB to the circuit MC changes depending on the combination of the on-state and the off-state of the transistor M4, the transistor M4-2b, and the transistor M4-3b.
  • the current flowing from the wiring OLB to the circuit MCr can be similarly considered.
  • negative first data negative weighting coefficient
  • the circuit MP at least one of the transistor M3, the transistor M3-2b, and the transistor M3-3b is turned on, and the transistor M4 and the transistor M4-. 2b and the transistor M4-3b may be turned off.
  • the amount of current flowing from the wiring OLB to the circuit MCr changes depending on the combination of on and off states of the transistor M3, the transistor M3-2b, and the transistor M3-3b.
  • the current flowing from the wiring OL to the circuit MCr can be similarly considered.
  • negative first data (negative weighting coefficient) is set in the circuit MP, at least one of the transistor M4, the transistor M4-2b, and the transistor M4-3b is turned on, and the transistor M3 and the transistor M3-. 2b and the transistor M3-3b may be turned off.
  • the amount of current flowing from the wiring OL to the circuit MCr changes depending on the combination of the on state and the off state of the transistor M4, the transistor M4-2b, and the transistor M4-3b.
  • the set amount of current is an integer multiple (real multiple) according to the potentials of the wiring WX1L, the wiring X2L, the wiring X1L2b, the wiring X2L2b, the wiring X1L3b, and the wiring X2L3b. Then, a current can flow from the wiring OL to the circuit MC or the circuit MCr, or a current can flow from the wiring OLB to the circuit MC or the circuit MCr.
  • the second data (for example, here is a neuron signal value) is determined according to the potential combinations of the wiring WX1L, the wiring X2L, the wiring X1L2b, the wiring X2L2b, the wiring X1L3b, and the wiring X2L3b.
  • the second data (the value of the neuron signal) can be treated as multi-valued (15 values in the configuration of the circuit MP of FIG. 26). That is, the circuit MP in FIG. 26 can be a circuit that can calculate the product of multi-valued first data (weighting coefficient) and multi-valued second data (neuron signal).
  • the first data (weighting coefficient) set in the circuit MP is set to “+1” (the current amount set between the source and drain of the transistor M1 is I ut , the current amount set between the source and drain of the transistor M1r is Note that the potential of the node n1 of the holding unit HC is V ut, and the potential of the node n1r of the holding unit HCr is VSS.
  • the first data (weighting coefficient) set in the circuit MP is set to "-1" (the current amount set between the source and drain of the transistor M1 is 0, and the current set between the source and drain of the transistor M1r is It is assumed that the amount is I ut . Note that the potential of the node n1 of the holding unit HC is VSS and the potential of the node n1r of the holding unit HCr is V ut ) and the second data (the value of the neuron signal).
  • the high level potential is described as high and the low level potential is described as low.
  • the potential of the node n1 may be VSS, for example.
  • the amount of current flowing between the source and drain of each of the transistors M1-2b and M1-3b can be zero. Therefore, regardless of whether the transistor M3, the transistor M3-2b, the transistor M3-3b, the transistor M4, the transistor M4-2b, or the transistor M4-3b is on or off, a current from the wiring OL or the wiring OLB to the circuit MC is supplied. Does not flow.
  • the wiring WX1L, the wiring X2L, the wiring X1L2b, the wiring X2L2b, the wiring X1L3b, and the wiring X2L3b are set to the low level potential or the high level potential, respectively.
  • the circuit MP included in the semiconductor device of one embodiment of the present invention is not limited to the circuit MP in FIG.
  • the circuit configuration of the circuit MP of the semiconductor device of one embodiment of the present invention can be changed depending on the situation.
  • the circuit MP shown in FIG. 27 has a circuit configuration in which the circuit MP of FIG. 26 is changed.
  • the circuit MP of FIG. 27 has a configuration in which a holding unit HC-2b, a holding unit HC-3b, a holding unit HC-2br, and a holding unit HC-3br are added to the circuit MP of FIG. Has become. Since the configurations of the holding unit HC-2b, the holding unit HC-3b, the holding unit HC-2br, and the holding unit HC-3br are the same as the configurations of the holding unit HC and the holding unit HCr, the holding unit HC and the holding unit HC The description of the description of Part HCr is referred to.
  • the transistors M1-2b, the transistor M3-2b, the transistor M4-2b, and the holding unit HC-2b are electrically connected to the surroundings of the transistors M1, M3, M4, and the holding unit HC. It has a similar electrical connection configuration.
  • the electrical connection configuration around the transistors M1-3b, the transistor M3-3b, the transistor M4-3b, and the holding unit HC-3b is the same as that around the transistor M1, the transistor M3, the transistor M4, and the holding unit HC. It has an electrical connection configuration.
  • the transistors M1-2br, the transistor M3-2br, the transistor M4-2br, and the electrical connection configuration around the holding unit HC-2br are the transistors M1r, the transistor M3r, the transistor M4r, and the holding unit HCr. It has the same electrical connection structure as the surrounding area.
  • the electrical connection configuration around the transistors M1-3br, the transistor M3-3br, the transistor M4-3br, and the holding unit HC-3br is the same as that around the transistor M1r, the transistor M3r, the transistor M4r, and the holding unit HCr. It has an electrical connection configuration.
  • the holding portion HC-2b is electrically connected to the wiring WL2b
  • the holding portion HC-3b is electrically connected to the wiring WL3b
  • the holding portion HC-2br is electrically connected to the wiring WL2b
  • the holding portion HC-3br is electrically connected to the wiring WL3b.
  • the ratios of the W length and the L length of the transistor M1, the transistor M1-2b, and the transistor M1-3b are W/L and 2 ⁇ W, respectively. /L, 4 ⁇ W/L, the holding portion HC holds a potential that sets the amount of current flowing between the source and drain of the transistor M1 to I ut , and a potential substantially the same as the holding portion HC ⁇ By being held in 2b and the holding unit HC-3b, it is possible to operate similarly to the circuit MP in FIG.
  • the wiring WL, the wiring WL2b, and the wiring WL3b may be respectively integrated into one wiring ( (Not shown).
  • the amount of current flowing between the source and the drain of the transistor M1 is set to I , 2I as the amount of current flowing between the source and drain of the transistor M1-2b and 4I as the amount of current flowing between the source and drain of the transistor M1-3b, thereby operating in the same manner as the circuit MP of FIG. can do.
  • the circuit MP shown in FIG. 28 may be used as a circuit configuration different from the circuit MP of FIG. 27, which is different from the circuit MP of FIG. 26, for example.
  • the circuit MP of FIG. 28 has a configuration in which a transistor M2-2b, a transistor M2-3b, a transistor M2-2br, and a transistor M2-3br are added to the circuit MP of FIG.
  • the ratio of the W length to the L length of each of the transistor M1, the transistor M1-2b, and the transistor M1-3b is W/L, 2 ⁇ W/L, and 4 ⁇ W/ as in FIG. 26, for example.
  • L the amount of current is determined by the magnitude when set, and does not depend on the W length and the L length.
  • the ratios of the W length and the L length of the transistor M1, the transistor M1-2b, and the transistor M1-3b may all be the same.
  • the gate potential of each transistor differs depending on the amount of current.
  • it is desirable that the ratio of W length and L length is W/L, 2 ⁇ W/L, and 4 ⁇ W/L.
  • the transistor M2-2b, the transistor M2-3b, the transistor M2-2br, and the transistor M2-3br are in the ON state like the transistor M2 and the transistor M2r unless otherwise specified.
  • the case of finally operating in the linear region is included. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage in the range of operating in the linear region.
  • the first terminal of the transistor M2-2b is the first terminal of the transistor M2-3b, the first terminal of the transistor M2, the gate of the transistor M1, the gate of the transistor M1-2b, and the transistor M1-3b. Is electrically connected to the first gate of the capacitor C1.
  • the second terminal of the transistor M2-2b is electrically connected to the second terminal of the transistor M1-2b, the first terminal of the transistor M3-2b, and the first terminal of the transistor M3-2b.
  • the second terminal of the transistor M2-3b is electrically connected to the second terminal of the transistor M1-3b, the first terminal of the transistor M3-3b, and the first terminal of the transistor M3-3b.
  • the gate of the transistor M2-2b and the gate of the transistor M2-3b are electrically connected to the wiring WL.
  • the first terminal of the transistor M2-2br is the first terminal of the transistor M2-3br, the first terminal of the transistor M2r, the gate of the transistor M1r, and the gate of the transistor M1-2br.
  • And is electrically connected to the gate of the transistor M1-3br and the first terminal of the capacitor C1.
  • the second terminal of the transistor M2-2br is electrically connected to the second terminal of the transistor M1-2br, the first terminal of the transistor M3-2br, and the first terminal of the transistor M3-2br.
  • the second terminal of the transistor M2-3br is electrically connected to the second terminal of the transistor M1-3br, the first terminal of the transistor M3-3br, and the first terminal of the transistor M3-3br.
  • the gate of the transistor M2-2br and the gate of the transistor M2-3br are electrically connected to the wiring WL.
  • the wiring X1L2b and the wiring X1L3b shown in FIG. 26 are described as the wiring WX1L2b and the wiring WX1L3b in FIG. 28, respectively.
  • the wiring WL, the wiring WX1L, the wiring WX1L2b, and the wiring WX1L3b are set.
  • a high-level potential is input to and to turn on each of the transistor M2, the transistor M2-2b, the transistor M2-3b, the transistor M3, the transistor M3-2b, and the transistor M3-3b.
  • a low-level potential is input to the wiring X2L, the wiring X2L2b, and the wiring X2L3b to turn off the transistor M4, the transistor M4-2b, the transistor M4-3b, the transistor M4r, the transistor M4-2br, and the transistor M4-3br. To do.
  • the circuit MC from the wiring OL, the transistor M1, the transistor M1-2b, and by flowing a sum of the current to be set to each of the transistors M1-3b, for example, by flowing 7I ut, nodes holder HC n1 has a predetermined potential.
  • a predetermined potential is held in the node n1 of the holding portion HC.
  • circuit MP of FIG. 28 By configuring the circuit MP of FIG. 28, the same operation as the circuit MP of FIG. 26 can be performed. Further, by configuring the circuit MP of FIG. 28, it is possible to reduce the influence of the variation in structure that occurs when the transistor M1, the transistor M1-2b, and the transistor M1-3b are formed in the circuit MC. In addition, similarly, similarly, in the circuit MCr, it is possible to reduce the influence of the variation in structure that occurs when the transistor M1r, the transistor M1-2br, and the transistor M1-3br are formed.
  • the holding unit HC and the holding unit HCr may be configured differently.
  • the circuit MP shown in FIG. 29 has a configuration in which the holding unit HC and the holding unit HCr included in the circuit MP of FIG. 26 are replaced with a circuit HCS and a circuit HCSr, respectively.
  • the ratios of the W length and the L length of the transistor M1, the transistor M1-2b, and the transistor M1-3b are W/L, 2 ⁇ W/L, and 4 ⁇ W/L, as in FIG. ..
  • the circuit HCS is electrically connected to, for example, the wiring OL and the wiring OLB.
  • the circuit HCS has a function of receiving information (a potential, a current, or the like) input from one or both of the wiring OL and the wiring OLB and holding a potential according to the information.
  • the circuit HCS is electrically connected to the gates of the transistor M1, the transistor M1-2b, and the transistor M1-3b.
  • the circuit HCS has a function of applying the held potential to the gates of the transistor M1, the transistor M1-2b, and the transistor M1-3b. Therefore, in each of the transistor M1, the transistor M1-2b, and the transistor M1-3b, the source-drain current corresponding to the potential given from the circuit HCS and the ratio of the W length and the L length flows.
  • the circuit HCSr has a function similar to that of the circuit HCS, and each of the transistor M1r, the transistor M1-2br, and the transistor M1-3br has a potential supplied from the circuit HCSr and a W length and an L length. And a source-drain current according to the ratio.
  • FIG. 30A A concrete example of the circuit HCS and the circuit HCSr included in the circuit MP shown in FIG. 29 is shown in FIG. 30A.
  • the circuit HCS and the circuit HCSr illustrated in FIG. 30A are configured to include SRAM (Static Random Access Memory) as an example. Note that FIG. 30A shows the entire circuit MP in order to show the electrical connection configuration of the circuit elements included in the circuit HCS and the circuit HCSr.
  • SRAM Static Random Access Memory
  • the SRAM holds one of a high-level potential and a low-level potential, so that the first data (weighting coefficient) set in the circuit MP is, for example, It is limited to binary (such as a combination of “ ⁇ 1” and “+1”) and ternary (such as a combination of “ ⁇ 1”, “0” and “+1”).
  • the circuit HCS may hold the high level potential and the circuit HCSr may hold the low level potential.
  • the circuit HCS may hold the low level potential and the circuit HCSr may hold the high level potential.
  • the circuit HCS may hold the low level potential and the circuit HCSr may hold the low level potential.
  • the circuit HCS has a transistor M7, a transistor M7s, and an inverter loop circuit IVR.
  • the inverter loop circuit IVR has an inverter circuit IV1 and an inverter circuit IV2.
  • the transistor M7 and the transistor M7s include the case where the transistor M7 and the transistor M7s finally operate in a linear region when they are in an on state. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage in the range of operating in the linear region.
  • each of the inverter circuit IV1 and the inverter circuit IV2 has a function of outputting an inverted signal of the input signal from the output terminal when the input signal is input to the input terminal. Therefore, for example, an inverter circuit can be used as each of the inverter circuit IV1 and the inverter circuit IV2.
  • FIG. 30B shows a configuration example of the inverter circuit IV1 and the inverter circuit IV2.
  • the inverter circuit IV1 and the inverter circuit IV2 can be configured as a CMOS (Complementary MOS) circuit.
  • CMOS Complementary MOS
  • one embodiment of the present invention is not limited to this, and for example, a unipolar circuit including only n-channel transistors or only p-channel transistors may be used instead of a CMOS circuit.
  • the inverter circuit IV1 and the inverter circuit IV2 may be, for example, a NAND circuit, a NOR circuit, an XOR circuit, or a circuit combining these.
  • the NAND circuit can function as an inverter circuit by inputting a high-level potential as a fixed potential to one of the two input terminals of the NAND circuit.
  • the NOR circuit can function as an inverter circuit by inputting a low-level potential as a fixed potential to one of the two input terminals of the NOR circuit.
  • the XOR circuit can function as an inverter circuit by inputting a high level potential as a fixed potential to one of the two input terminals of the XOR circuit.
  • inverter circuit As described above, the inverter circuit described in this specification and the like can be replaced with a logic circuit such as a NAND circuit, a NOR circuit, an XOR circuit, or a circuit in which these are combined. Therefore, in this specification and the like, the term “inverter circuit” can be referred to as a “logic circuit”.
  • a first terminal of the transistor M7 is electrically connected to the wiring OL, and a second terminal of the transistor M7 is an input terminal of the inverter circuit IV1, an output terminal of the inverter circuit IV2, a gate of the transistor M1, and a transistor M1-. 2b and a gate of the transistor M1-3b are electrically connected to each other, and a gate of the transistor M7 is electrically connected to the wiring WL.
  • a first terminal of the transistor M7s is electrically connected to the wiring OLB, a second terminal of the transistor M7s is electrically connected to an output terminal of the inverter circuit IV1 and an input terminal of the inverter circuit IV2, and the transistor M7s is electrically connected. Is electrically connected to the wiring WL.
  • the wiring VEH is electrically connected to the high power supply potential input terminals of the inverter circuit IV1 and the inverter circuit IV2, and the wiring VE is electrically connected to the low power supply potential input terminals of the inverter circuit IV1 and the inverter circuit IV2. Has been done.
  • the wiring VEH functions as a wiring that gives a constant voltage, for example.
  • the constant voltage can be, for example, VDD which is a high level potential or a potential VDDL which is higher than the low level potential VSS and lower than VDD.
  • the constant voltage is appropriately set according to the configuration of the circuit MP.
  • the wiring VAL may be supplied with a pulse signal instead of a constant voltage. Note that in the description of this structural example, the wiring VEH functions as a wiring which supplies the potential VDD.
  • the circuit HCS has substantially the same circuit configuration as the circuit HCSr. Therefore, in order to distinguish the circuit element included in the circuit HCSr from the circuit element included in the circuit HCS, “r” is added to the symbol.
  • the first terminal of the transistor M7r is electrically connected to the wiring OLB, and the first terminal of the transistor M7sr is electrically connected to the wiring OL.
  • a high-level potential is applied to the wiring WL to turn on the transistors M7, M7s, M7r, and M7sr.
  • one of the high-level potential and the low-level potential is input to the wiring OL and the other of the high-level potential and the low-level potential is input to the wiring OLB.
  • the high-level potential is preferably approximately the same as the potential given by the wiring VEH.
  • the high-level potential is described as the potential VDDL and the low-level potential is described as the potential VSS.
  • the circuit HCS can hold one of VDDL and VSS in the inverter loop circuit IVR, and the circuit HCS can hold the other of VDDL and VSS in the inverter loop circuit IVRr.
  • one of the wiring X1L (wiring WX1L in FIG. 26) or the wiring X2L has a high-level potential and the other has a low-level potential as in the circuit MP in FIG.
  • the circuit By inputting a potential, inputting a high-level potential to one of the wiring X1L2b or the wiring X2L2b and a low-level potential to the other, inputting a high-level potential to one of the wiring X1L3b or the wiring X2L3b and a low-level potential to the other, the circuit
  • the amount of current flowing from the MC or the circuit MCr to the wiring OL or the wiring OLB is set to binary or ternary first data (weighting coefficient) and multivalued (15 values in the configuration example of FIG. 30) second data. It can be treated as a product of (value of neuron signal) and.
  • the circuit MP of FIG. 30A can be transformed into the circuit MP shown in FIG. 31, for example.
  • the circuit MP of FIG. 31 is configured by removing the circuit HCSr from the circuit MP of FIG. 30A.
  • the output terminal of the inverter circuit IV1 included in the inverter loop circuit IVR has the gate of the transistor M1r of the circuit MCr, the gate of the transistor M1-2br of the circuit MCr, and the transistor M1- of the circuit MCr. It is electrically connected to the gate of 3br.
  • the circuit MP can operate similarly to the circuit MP of FIG. 30A. Since the circuit MP of FIG. 31 has a configuration in which the circuit HCSr is removed from the circuit MP of FIG. 30A, the power consumption can be made lower than that of the circuit MP of FIG. 30A.
  • circuit MP of FIG. 30A can be transformed into the circuit MP shown in FIG. 32, for example.
  • the circuit MP of FIG. 32 has a configuration in which a wiring IL and a wiring ILB are added to the circuit MP of FIG. 30A, like the circuit MP of FIGS. 22A and 22B.
  • the circuit MP of FIG. 32 has a configuration in which the functions of the wiring OL and the wiring OLB of the circuit MP of FIG. 30A are separated.
  • the wiring OL of the circuit MP in FIG. 30A functions as a wiring for inputting a high-level potential or a low-level potential to the circuit HCS, and also supplies current to the wiring VE through the circuit MC. And also functions as a wiring for supplying a current to the wiring VEr via the circuit MCr.
  • the wiring OLB of the circuit MP in FIG. 30A functions as a wiring for inputting a high-level potential or a low-level potential to the circuit HCSr, and a wiring for supplying a current to the wiring VE through the circuit MC. And also functions as a wiring for supplying a current to the wiring VEr through the circuit MCr.
  • the wiring OL of the circuit MP in FIG. 32 functions as a wiring for supplying a current to the wiring VE through the circuit MC and also functions as a wiring for supplying a current to the wiring VEr through the circuit MCr.
  • the wiring OLB of the circuit MP in FIG. 32 functions as a wiring for supplying a current to the wiring VE through the circuit MC, and also functions as a wiring for supplying a current to the wiring VEr through the circuit MCr.
  • the wiring IL of the circuit MP in FIG. 32 functions as a wiring for inputting one of a high-level potential and a low-level potential to the circuit HCS
  • the wiring ILB of the circuit MP in FIG. 32 has a high-level potential in the circuit HCSr.
  • the wiring functions as a wiring for inputting the other of the potential and the low-level potential.
  • circuit MP of FIG. 32 By configuring the circuit MP of FIG. 32, it is possible to operate similarly to the circuit MP of FIG. 30A.
  • the circuit MP of FIG. 32 when the configuration of the circuit MP of FIG. 32 is applied to the arithmetic circuit 110 of FIG. 2 and the arithmetic circuit 120 of FIG. 3, the circuit MP of FIG. Alternatively, the transistor M7sr may be omitted. By configuring the circuit MP of FIG. 33, it is possible to operate similarly to the circuit MP of FIG. 30A.
  • FIG. 34 shows a specific example of the circuit HCS and the circuit HCSr included in the circuit MP shown in FIG. 29, which is different from FIG. 30A.
  • the circuit MP shown in FIG. 34 has a configuration including a storage circuit called a NOSRAM (Nonvolatile Oxide Semiconductor Random Access Memory). Note that FIG. 34 shows the entire circuit MP in order to show the electrical connection configuration of the circuit elements included in the circuit HCS and the circuit HCSr.
  • NOSRAM Nonvolatile Oxide Semiconductor Random Access Memory
  • the circuit HCS has a transistor M8 and a capacitor C2.
  • the transistor M8 includes the case where it finally operates in the linear region when it is in the ON state. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage in the range of operating in the linear region.
  • a first terminal of the transistor M8 is electrically connected to the wiring IL, and a second terminal of the transistor M8 has a first terminal of the capacitor C2, a gate of the transistor M1, a gate of the transistor M1-2b, and a transistor M1-.
  • the gate of the transistor M8 is electrically connected to the gate of the transistor 3b, and the gate of the transistor M8 is electrically connected to the wiring WL.
  • the second terminal of the capacitor C2 is electrically connected to the wiring VE.
  • the electrical connection point between the second terminal of the transistor M8 and the first terminal of the capacitor C2 is a node n2.
  • the circuit HCS has a circuit configuration similar to that of the circuit HCSr. Therefore, in order to distinguish the circuit element or the like included in the circuit HCSr from the circuit element or the like included in the circuit HCS, a symbol “r” is added.
  • the first terminal of the transistor M8r is electrically connected to the wiring ILB.
  • the circuit HCS and the circuit HCSr each have a NOSRAM
  • each of the circuit HCS and the circuit HCSr can hold one of a high-level potential and a low-level potential. Therefore, the first data (weighting coefficient) set in the circuit MP is, for example, binary (“ ⁇ 1”, “+1”, etc.), ternary (“ ⁇ 1”, “0”, “+1”, etc.). ) And so on. For example, when the first data (weighting coefficient) set in the circuit MP is “+1”, the circuit HCS may hold the high level potential and the circuit HCSr may hold the low level potential.
  • the circuit HCS may hold the low level potential and the circuit HCSr may hold the high level potential.
  • the circuit HCS may hold the low level potential and the circuit HCSr may hold the low level potential.
  • the circuit HCS and the circuit HCSr may hold a digital value or an analog value of three or more values instead of a binary value (digital value) of a high level potential or a low level potential.
  • a high-level potential is applied to the wiring WL to turn on the transistors M8 and M8r. After that, one of the high-level potential and the low-level potential is input to the wiring IL and the other of the high-level potential and the low-level potential is input to the wiring ILB.
  • the high-level potential is described as the potential VDDL and the low-level potential is described as the potential VSS.
  • the circuit HCS can hold one of VDDL and VSS at the node n2, and the circuit HCS can hold the other of VDDL and VSS at the node n2r.
  • one of the wiring X1L (wiring WX1L in FIG. 26) or the wiring X2L has a high-level potential and the other has a low-level potential as in the circuit MP in FIG.
  • the circuit By inputting a potential, inputting a high-level potential to one of the wiring X1L2b or the wiring X2L2b and a low-level potential to the other, inputting a high-level potential to one of the wiring X1L3b or the wiring X2L3b and a low-level potential to the other, the circuit
  • the amount of current flowing from the MC or the circuit MCr to the wiring OL or the wiring OLB can be treated as 3-bit data.
  • the circuit MP can operate similarly to the circuit MP of FIG. 30A.
  • the circuit MP shown in each of FIGS. 29 to 34 has a configuration having one circuit HCS and one circuit HCSr, but the circuit MP may have a configuration having a plurality of circuits HCS and circuits HCSr.
  • the circuit MP shown in FIG. 35 includes a circuit HCS-2b having the same function as the circuit HCS, a circuit HCS-3b, a circuit HCS-2br having the same function as the circuit HCSr, and a circuit HCS-3br. .. Specifically, the circuit HCS-2b, the circuit HCS-3b, the circuit HCS-2br, and the circuit HCS-3br receive information (a potential, a current, or the like) input from one or both of the wiring OL and the wiring OLB. It has a function of receiving and holding a potential corresponding to the information.
  • the circuit HCS-2b has a function of applying the potential held in the gate of the transistor M1-2b
  • the circuit HCS-3b has a function of applying the potential held in the gate of the transistor M1-3b
  • the circuit HCS-2br has a function of applying the potential held in the gate of the transistor M1-2br
  • the circuit HCS-3br has a function of applying the potential held in the gate of the transistor M1-3br.
  • the configurations of the circuit HCS, the circuit HCS-2b, the circuit HCS-3b, the circuit HCSr, the circuit HCS-2br, and the circuit HCS-3br may include, for example, all of them having SRAM or NOSRAM. It may be configured. Further, one or more circuits selected from the circuit HCS, the circuit HCS-2b, the circuit HCS-3b, the circuit HCSr, the circuit HCS-2br, and the circuit HCS-3br are configured to have SRAM, and the remaining circuits have NOSRAM. It may be configured.
  • each of the circuit HCS, the circuit HCS-2b, the circuit HCS-3b, the circuit HCSr, the circuit HCS-2br, and the circuit HCS-3br included in the circuit MP of FIG. 35 is electrically connected to the wiring OL and the wiring OLB.
  • the structure of the circuit MP of one embodiment of the present invention is not limited to this.
  • the wirings IL and ILB are provided, and the circuits HCS, HCS-2b, and HCS-3b are electrically connected to the wiring IL and the wiring ILB. You may connect to each other.
  • the circuit MP of FIG. 35 similarly to the circuit MP of FIGS.
  • the wiring IL and the wiring ILB are provided, and the circuit HCS, the circuits HCS-2b, and HCS-3b are electrically connected to the wiring IL.
  • the circuit HCSr, the circuit HCS-2br, and the circuit HCS-3br may be electrically connected to the wiring ILB.
  • the circuit MP shown in FIG. 36 has a circuit HCS, a circuit HCS-2b, a circuit HCS-3b, a circuit HCSr, a circuit HCS-2br, and a circuit HCS-3br as a plurality of holding units, and the circuit MP of FIG. It is an example of a different circuit configuration.
  • the ratio of the W length and the L length of the transistor M1 included in the circuit MP of FIG. 36 is W/L
  • the ratio of the W length and the L length of the transistor M1-2b is preferably 2 ⁇ W/L
  • the ratio of the W length and the L length of the transistors M1-3b is preferably 4 ⁇ W/L.
  • the size of the transistor M1r is preferably equal to that of the transistor M1
  • the size of the transistor M1-2br is preferably equal to that of the transistor M1-2b
  • the size of the transistor M1-3br is equal to that of the transistor M1-3b. preferable.
  • the circuit HCS is electrically connected to the wiring OL and the gate of the transistor M1.
  • the circuit HCS-2b is electrically connected to the wiring OL and the gate of the transistor M1-2b, and the circuit HCS-3b. Is electrically connected to the wiring OL and the gate of the transistor M1-3b.
  • a first terminal of each of the transistor M1, the transistor M1-2b, and the transistor M1-3b is electrically connected to the wiring VE, and a first terminal of the transistor M3 is a first terminal of the transistor M4, the transistor M1, and the transistor M1. -2b, and the second terminals of the transistors M1-3b, respectively.
  • the second terminal of the transistor M3 is electrically connected to the wiring OL, and the gate of the transistor M3 is electrically connected to the wiring X1L.
  • the second terminal of the transistor M4 is electrically connected to the wiring OLB, and the gate of the transistor M4 is electrically connected to the wiring X2L.
  • the circuit MCr has a circuit configuration substantially similar to that of the circuit MC. Therefore, in order to distinguish the circuit element or the like included in the circuit MCr from the circuit element or the like included in the circuit MC, the symbol is attached with “r”.
  • the second terminal of the transistor M3 is electrically connected to the wiring OLB, and the second terminal of the transistor M4 is electrically connected to the wiring OL.
  • the transistors M1r, M1-2br, and M1-3br are turned off. can do.
  • the circuit HCS, the circuit HCS-2b, and the circuit HCS-3b included in the circuit MC By holding the high-level potential or the low-level potential in each of the circuit HCS, the circuit HCS-2b, and the circuit HCS-3b included in the circuit MC, the circuit HCS, the circuit HCS-2b, and the circuit HCS-3b.
  • the amount of current flowing in each of the transistor M1, the transistor M1-2b, and the transistor M1-3b is determined according to the potential held in each of the transistors.
  • the transistor M3 is turned on and the transistor M4 is turned off, so that the current can flow from the wiring OL to the wiring VE through the circuit MC.
  • the transistor M3 is turned on and the transistor M4 is turned off, so that the current can flow from the wiring OL to the wiring VE through the circuit MC.
  • the transistor M1, the transistor M1-2b, and the transistor M1-3b are turned off. Can be in a state.
  • a low-level potential for example, VSS in the circuit HCS, the circuit HCS-2b, and the circuit HCS-3b included in the circuit MC
  • the transistor M1, the transistor M1-2b, and the transistor M1-3b are turned off. Can be in a state.
  • the high-level potential or the low-level potential in each of the circuit HCSr, the circuit HCS-2br, and the circuit HCS-3br included in the circuit MC the circuit HCSr, the circuit HCS-2br, and the circuit HCS-3br.
  • the amount of current flowing in each of the transistor M1r, the transistor M1-2br, and the transistor M1-3br is determined depending on the potential held in each of the transistors M1r, M1br, and M1r.
  • the transistor M3r is turned on and the transistor M4r is turned off, so that the current can flow from the wiring OLB to the wiring VER through the circuit MCr.
  • the current can be flowed from the wiring OL to the wiring VEr through the circuit MCr.
  • the circuit HCSr, the circuit HCS-2br, and the circuit HCS-3br hold low-level potentials. It is assumed that each of the circuit HCS, the circuit HCS-2b, and the circuit HCS-3b holds a combination of potentials according to the positive first data (weighting coefficient). Further, for example, in the case of holding the negative first data (weighting coefficient) in the circuit MP of FIG. 36, the circuit HCS, the circuit HCS-2b, and the circuit HCS-3b hold the low-level potential, and the circuit HCSr and the circuit HCS are held. -2br and the circuit HCS-3br hold a combination of potentials corresponding to the negative first data (weighting coefficient).
  • FIG. 37 A specific example of the circuit HCS, the circuit HCS-2b, the circuit HCS-3b, the circuit HCSr, the circuit HCS-2br, and the circuit HCS-3br included in the circuit MP shown in FIG. 36 is shown in FIG.
  • the circuit HCS, the circuit HCS-2b, the circuit HCS-3b, the circuit HCSr, the circuit HCS-2br, and the circuit HCS-3br shown in FIG. 37 are configured to have SRAM. Note that, in FIG. 37, the high power supply potential input terminal and the low power supply potential input terminal of the inverter circuit IV1 and the inverter circuit IV2 are not shown.
  • the circuit MP of FIG. 36 can be transformed into the circuit MP shown in FIG. 39 as an example.
  • the circuit MP of FIG. 39 like the circuit MP shown in FIGS. 26 to 35, is a circuit capable of handling multivalued second data (for example, here, a value of a neuron signal (calculated value)). Is.
  • the circuit MP of FIG. 39 has a configuration in which a transistor M3-2x, a transistor M4-2x, a transistor M1x, a transistor M1x-2b, and a transistor M1x-3b are added to the circuit MC included in the circuit MP of FIG. There is.
  • circuit HCS the circuit HCS-2b, the circuit HCS-3b, the circuit HCSr, the circuit HCS-2br, and the circuit HCS-3br included in the circuit MP of FIG. 39 have an SRAM as shown in FIG. Has become.
  • the transistor M1x, the transistor M1x-2b, and the transistor M1x-3b are, like the transistor M1, unless otherwise specified, the case where the transistor M1x, the transistor M1x-3b, and the transistor M1x-3b finally operate in the saturation region.
  • the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage within the operating range in the saturation region.
  • one embodiment of the present invention is not limited to this.
  • the transistors M1x, M1x-2b, and M1x-3b may operate in the linear region.
  • the transistors M1x, M1x-2b, and M1x-3b are linear regions depending on the size of the first data (weighting factor).
  • the operation may be mixed with the operation in the saturation region.
  • the transistor M3-2x and the transistor M4-2x are similar to the transistor M3 and the transistor M4 in the case where they are in the ON state and finally operate in the linear region, unless otherwise specified. Shall be included. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage in the range of operating in the linear region. However, one embodiment of the present invention is not limited to this.
  • the transistors M3-2x and the transistor M4-2x may operate in the saturation region when in the on state, or may operate in the linear region and may operate in the saturation region in a mixed manner.
  • the ratio of the W length and the L length of the transistor M1x included in the circuit MP of FIG. 39 is preferably 2 ⁇ W/L. Further, the ratio of the W length and the L length of the transistor M1x-2b is preferably 4 ⁇ W/L. The ratio of the W length and the L length of the transistor M1x-4b is preferably 8 ⁇ W/L. In the case of arranging more transistors, similarly, the ratio of W length and L length may be increased by a power of two.
  • First terminals of the transistors M1x, M1x-2b, and M1x-3b are electrically connected to the wiring VE.
  • the gate of the transistor M1x is electrically connected to the circuit HCS
  • the gate of the transistor M1x-2b is electrically connected to the circuit HCS-2b
  • the gate of the transistor M1x-3b is electrically connected to the circuit HCS-3b. It is connected.
  • the first terminal of the transistor M3-2x is electrically connected to the first terminal of the transistor M4-2x and the second terminals of the transistor M1x, the transistor M1x-2b, and the transistor M1x-3b.
  • the second terminal of the transistor M3-2x is electrically connected to the wiring OL, and the gate of the transistor M3-2x is electrically connected to the wiring X1L2x.
  • the second terminal of the transistor M4-2x is electrically connected to the wiring OLB, and the gate of the transistor M4-2x is electrically connected to the wiring X2L2x.
  • the circuit HCS has substantially the same circuit configuration as the circuit HCSr. Therefore, in order to distinguish the circuit element or the like included in the circuit HCSr from the circuit element or the like included in the circuit HCS, a symbol “r” is added.
  • the second terminal of the transistor M3-2xr is electrically connected to the wiring OLB, and the second terminal of the transistor M4-2xr is electrically connected to the wiring OL.
  • the wiring X1L2x is a wiring for switching the transistor M3-2x and the transistor M3-2xr between the on state and the off state, and the wiring X2L2x switches the transistors M4-2x and M4-2xr between the on state and the off state. It is the wiring to do.
  • the transistor M1 When the circuit HCS holds a high level potential, for example, VDDL, the transistor M1 is assumed to flow I ut as a current amount between the source and the drain. At this time, when the high-level potential, for example VDDL, is held in the circuit HCS-2b, the ratio of the W length and the L length of the transistor M1-2b is twice the ratio of the W length and the L length of the transistor M1. , 2 I ut flows as a current amount between the source and drain of the transistor M1-2b. When the circuit HCS-3b holds a high level potential, for example VDDL, the ratio of the W length and the L length of the transistor M1-3b is four times the ratio of the W length and the L length of the transistor M1. the source of the transistor M1-3b - flows 4I ut as the current amount between the drain.
  • VDDL high level potential
  • the current flowing through the wiring VE changes from 0 to 7I ut in steps of I ut .
  • the current amount is referred to as I X1 .
  • the ratio of the W length and the L length of the transistor M1x is twice the ratio of the W length and the L length of the transistor M1. 2 Iut flows as a current amount between the drains. Further, when a high level potential, for example VDDL, is held in the circuit HCS-2b, the ratio of the W length and the L length of the transistor M1x-2b is four times the ratio of the W length and the L length of the transistor M1. transistors M1x-2b source - flow 4I ut as the current amount between the drain.
  • the ratio of the W length and the L length of the transistor M1x-3b is 8 times the ratio of the W length and the L length of the transistor M1.
  • transistors M1x-3b source - 8I ut flows as the current amount between the drain.
  • the circuit is started from the electrical connection point of the first terminal of the transistor M3-2x and the first terminal of the transistor M4-2x according to the potentials held in the circuit HCS, the circuit HCS-2b, and the circuit HCS-3b, respectively.
  • the current flowing through the wiring VE through the MC changes from 0 to 14I ut in steps of 2I ut .
  • the transistor M4 in the circuit MC is turned on and the transistor M3 and the transistor M3x-2, The transistor M4x-2 is turned off.
  • the wiring OLB, the wiring VE via the circuit MC, I X1 flows as the current amount.
  • the transistor M3-2x is turned on, the transistor M3, the transistor M4, The transistor M4x-2 is turned off.
  • I X2 2I X1 as the amount of current flows from the wiring OL to the wiring VE through the circuit MC.
  • the transistor M4-2x is turned on in the circuit MC and the transistor M3, the transistor M4, The transistor M3x-2 is turned off.
  • I X2 2I X1 as the amount of current flows from the wiring OLB to the wiring VE through the circuit MC.
  • the current corresponding to the potential held in each of the circuit HCS, the circuit HCS-2b, and the circuit HCS-3b is supplied from the wiring OL or the wiring OLB. , 0 times, 1 times, 2 times, 3 times, and outputs the current in accordance with the potentials which flow to the wiring VE through the circuit MC and are input to the wiring X1L, the wiring X2L, the wiring X1L2x, and the wiring X2L2x. be able to.
  • the positive first data (weighting coefficient) is set in the circuit MP of FIG. 39
  • the negative first data (weighting coefficient) is set in the circuit MP of FIG.
  • the circuit MP causes a current to flow from the wiring OL or the wiring OLB to the wiring VEr via the circuit MCr, and zero times the current in accordance with the potential input to the wiring X1L, the wiring X2L, the wiring X1L2x, and the wiring X2L2x. It is possible to output by multiplying by 1 time, 2 times, 3 times.
  • the circuit HCS, the circuit HCS-2b, the circuit HCS-3b, the circuit HCSr, the circuit HCS-2br, and the circuit HCS-3br are respectively set.
  • a low level potential such as VSS may be applied.
  • the amount of current flowing between the source and drain of each of the transistors M1x-3br can be set to zero.
  • the first data (for example, a weighting coefficient here) held by the circuit MP is set as “positive multi-valued”, “0”, “negative multi-valued”, and
  • the circuit MP capable of calculating the product of two data has been described.
  • the first data (weighting coefficient) is “positive”.
  • the circuit MP shown in FIG. 40 is a circuit obtained by removing the transistors M4 and M4r from the circuit MP of FIG. 16A. Since the transistors M4 and M4r are omitted, the wiring X2L for inputting a potential to the gates of the transistors M4 and M4r is also omitted in FIG. A wiring corresponding to the wiring X1L is described as a wiring WXL in FIG. Note that here, an example in the case of being applied to FIG. 16A is shown; however, one embodiment of the present invention is not limited to this. Similarly in other drawings, the transistor M4 and the transistor M4r can be omitted.
  • the first data (weighting coefficient) set in the circuit MP of FIG. 40 is the same as the first data (weighting coefficient) set in the circuit MP of FIG. 15A. Therefore, for the first data (weighting factor) set in the circuit MP in FIG. 40, the description of the circuit MP in FIG. 15A is referred to.
  • the first data (weighting coefficient) can be, for example, "-2", “-1", "0", "+1", "+2".
  • the second data (the value of the signal of the neuron) input to the circuit MP in FIG. 40 is set to “+1” when the high-level potential is applied to the wiring WXL, and the low-level potential is applied to the wiring WXL. If it is, set it to “0”.
  • the second data is input to the circuit MP.
  • the current I OL output from the node outa of the wiring OL changes or the current I OLB output from the node outb of the wiring OLB changes due to the input of the data (the value of the signal of the neuron) , As shown in the table below. In the table below, the high level potential is described as high and the low level potential is described as low.
  • the first data is positive multi-valued or negative multi-valued
  • the second data neuroon signal value
  • the first data (weighting coefficient) may be binary instead of five, or may be multivalued other than five.
  • the binary value may be, for example, a binary value of "+1" or "0” or a binary value of "+1" or "-1”.
  • the first data (weighting coefficient) may be, for example, an analog value or a multi-bit (multi-value) digital value.
  • the currents set in the circuit MC of the circuit MP, the holding unit HC of the circuit MCr, and the holding unit HCr are multivalued, but the set current may be an analog value.
  • the first data (weighting coefficient) is a “positive analog value”
  • a current having an analog value is set at the node n1 of the holding unit HC, and a potential corresponding to the current is held at the node n1.
  • the low-level potential is held at the node n1r of the holding unit HCr.
  • the first data is “negative analog value”
  • the low-level potential is held at the node n1 of the holding unit HC, and the analog-value current is set at the node n1r of the holding unit HC.
  • the potential corresponding to the current is held in the node n1r.
  • the magnitudes of the currents I OL and I OLB are according to the analog potential.
  • constant current source circuit ISC1 constant current source circuit ISC2, constant current source circuit ISC3 included in the current source circuit ISC of the circuit ILD is configured to include the n-channel transistor of FIG. 8C
  • a configuration example of the circuit MP in which all included transistors are n-channel transistors will be described.
  • the circuit MP shown in FIG. 41A is a circuit obtained by modifying the configuration of the circuit MP of FIG. 21A, and the circuit MP of FIG. 41A is a diagram regarding the configuration of the holding unit HC and the connection destination of the back gate of the transistor M1. 21A is different from the circuit MP. Therefore, description of the portions having the same connection configuration as the circuit MP of FIG. 21A and the circuit MP of FIG. 41A will be omitted.
  • the holding unit HC has a transistor M9 and a capacitor C3.
  • the transistor M9 includes a case where it finally operates in a linear region when it is in an on state unless otherwise specified. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage in the range of operating in the linear region.
  • the gate of the transistor M1 is electrically connected to the first terminal of the transistor M9 and the first terminal of the capacitor C3.
  • the second terminal of the transistor M9 is electrically connected to the wiring VE.
  • the back gate of the transistor M1 is electrically connected to the second terminal of the transistor M1, the second terminal of the capacitor C3, the first terminal of the transistor M3, and the first terminal of the transistor M4.
  • the transistor M1 By electrically connecting the back gate of the transistor M1 and the second terminal of the transistor M1 and applying a high-level potential to the first terminal of the transistor M1, the transistor M1 increases the threshold voltage of the transistor M1. You may be able to. Note that the semiconductor device of one embodiment of the present invention is not limited to this; for example, in the circuit MP in FIG. 41A, the back gate of the transistor M1 is electrically connected to a wiring or the like which gives a low-level potential. May be Further, for example, in the circuit MP of FIG. 41A, the transistor M1 may not have a back gate.
  • an electrical connection point between the gate of the transistor M1, the first terminal of the transistor M9, and the first terminal of the capacitor C3 is set as a node n3.
  • the circuit MCr has substantially the same circuit configuration as the circuit MC. Therefore, in order to distinguish the circuit element or the like included in the circuit MCr from the circuit element or the like included in the circuit MC, the symbol is attached with “r”.
  • the potential given by the wiring VE and the wiring VEr is preferably, for example, a high level potential.
  • the constant current source circuit ISC1 constant current source circuit ISC2, constant current source circuit ISC3 shown in FIG. 8C
  • the potential given by the wiring VE and the wiring VEr is set to a high level potential.
  • a current can flow from the circuit MC or the circuit MCr to the circuit ILD through the wiring OL and the wiring OLB.
  • the potential given by the wiring VE and the wiring VEr is described as VDD.
  • the wiring WX1L and the wiring WL have a high level.
  • a potential is applied to turn on the transistors M3 and M9.
  • the potential of the node n3 of the holding unit HC becomes VDD.
  • the potential of the second terminal of the capacitor C3 (the potential of the second terminal of the transistor M1) is determined by the current.
  • a low-level potential is applied to the wiring WX1L and the wiring WL to turn off the transistors M3 and M9, so that the capacitor C3 holds the voltage between the gate of the transistor M1 and the second terminal of the transistor M1. can do.
  • the current can be set between the source and the drain of the transistor M1.
  • a predetermined potential is applied to each of the wiring WX1L and the wiring X2L so that one of the transistor M3 and the transistor M4 is turned on and the other of the transistor M3 and the transistor M4 is turned off.
  • a current set in the wiring OL or the wiring OLB can be caused to flow therethrough.
  • 41B shows a modification example of the configuration of the circuit MP of FIG. 41A. 41B, the second terminal of the transistor M9 is electrically connected to the wiring VA instead of the wiring VE, and the second terminal of the transistor M9r is electrically connected to the wiring VA instead of the wiring VEr. The connection is different from the circuit MP of FIG. 41A.
  • the wiring VA functions as a wiring that supplies a constant voltage, for example.
  • the constant voltage be higher than the ground potential, the low-level potential, or VSS and lower than the high-level potential given by the wiring VE or VDD.
  • the constant voltage wiring VA is given as V M
  • the potential V M is the ground potential
  • the high level potential wiring VE give, and it is a potential lower than VDD.
  • the source of the transistor M1 - drain voltage becomes VDD-V S.
  • V M to the gate of the transistor M1 is inputted, the gate of the transistor M1 - source voltage becomes V M -V S.
  • the threshold voltage of the transistor M1 is set to V th , it is sufficient to satisfy the relationship of VDD ⁇ V S >V M ⁇ V S ⁇ V th .
  • the transistor M1 when the transistor M1 is normally on, the gate - even when the source voltage V M -V S is a negative value, the gate - to-source voltage VDD-V S is a positive value, the transistor M1 can operate as a saturation region.
  • the normally-on characteristic means a state in which a channel exists even if a voltage is not applied to the gate of a transistor and a current flows through the transistor.
  • the wiring VA and the wiring VAr may be integrated as one wiring.
  • the wiring VA and the wiring VAr may be integrated as a wiring VA and provided along the column direction. Note that the wiring VA may be provided along the row direction instead of the column direction (not shown).
  • the circuit MP shown in FIG. 42 is a circuit obtained by modifying the circuit MP of FIG. 41A so as to handle multivalued second data (for example, here, the value of a neuron signal (calculated value)).
  • the circuit MC included in the circuit MP in FIG. 42 includes a transistor M1-2b, a transistor M3-2b, a transistor M4-2b, a transistor M10, and a holding unit HC-2b in addition to the circuit elements included in the circuit MP in FIG. 41A. Have.
  • the transistor M1-2b similarly to the transistor M1, unless otherwise specified, the transistor M1-2b includes the case where the transistor M1-2b finally operates in the saturation region in the ON state. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage within the operating range in the saturation region. However, one embodiment of the present invention is not limited to this. In order to reduce the amplitude value of the supplied voltage, the transistors M1-2b may operate in the linear region. When the first data (weighting coefficient) is an analog value, for example, the transistor M1-2b operates in the linear region and the saturation region depending on the size of the first data (weighting factor). It may be mixed with the case of operating in.
  • the first data weighting coefficient
  • the transistor M1-2b operates in the linear region and the saturation region depending on the size of the first data (weighting factor). It may be mixed with the case of operating in.
  • the transistor M3-2b, the transistor M4-2b, and the transistor M10 include the case where they finally operate in the linear region when they are in the ON state. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage in the range of operating in the linear region.
  • the holding unit HC-2b has the same configuration as the holding unit HC. Therefore, when describing a circuit element or the like included in the holding unit HC-2b, reference may be made to the reference numeral of the circuit element included in the holding unit HC.
  • the first terminal of the transistor M1-2b is electrically connected to the wiring VE.
  • the second terminal of the transistor M1-2b is electrically connected to the back gate of the transistor M1-2b, the first terminal of the transistor M3-2b, and the first terminal of the transistor M4-2b.
  • the gate of the transistor M1-2b is electrically connected to the first terminal of the transistor M9 of the holding unit HC-2b and the first terminal of the capacitor C1 of the holding unit HC-2b.
  • the capacitor C3 of the holding unit HC-2b is electrically connected to the first terminal of the transistor M10 and the second terminal of the transistor M1.
  • the second terminal of the transistor M3-2b is electrically connected to the wiring OL.
  • the gate of the transistor M3-2b is electrically connected to the wiring X1L2b.
  • the second terminal of the transistor M4-2b is electrically connected to the wiring OLB.
  • the gate of the transistor M4-2b is electrically connected to the wiring X2L2b.
  • the second terminal of the transistor M10 is electrically connected to the second terminal of the transistor M1, the first terminal of the transistor M3, the first terminal of the transistor M4, and the second terminal of the capacitor C3 of the holding unit HC. ..
  • the second terminal of the transistor M9 of the holding unit HC-2b is electrically connected to the first terminal of the transistor M9 of the holding unit HC.
  • the gate of the transistor M9 of the holding unit HC-2b and the gate of the transistor M10 are electrically connected to the wiring WL.
  • the circuit MCr of the circuit MP in FIG. 42 has a circuit configuration similar to that of the circuit MC. Therefore, in order to distinguish the circuit element or the like included in the circuit MCr from the circuit element or the like included in the circuit MC, the symbol is attached with “r”.
  • the second terminal of the transistor M3-2br is electrically connected to the wiring OLB, and the second terminal of the transistor M4-2br is electrically connected to the wiring OL.
  • the sizes of the transistor M3, the transistor M3-2b, the transistor M3r, the transistor M3-2br, the transistor M4, the transistor M4-2b, the transistor M4r, and the transistor M4-2br, for example, the channel length and the channel width are It is preferable that they are equal to each other. With such a circuit configuration, there is a possibility that the layout can be efficiently performed.
  • the sizes of the respective transistors M9r included in the holding unit HCr and the holding unit HC-2br are included in the holding unit HC and the holding unit HC-2b. It is preferably equal to the respective transistor M9 provided.
  • the size of the transistor M10r is preferably equal to that of the transistor M10.
  • the ratio of the W length and the L length of the transistor M1 is W/L
  • the ratio of the W length and the L length of the transistor M1-2b is preferably 2 W/L.
  • the size of the transistor M1r is preferably equal to that of the transistor M1 and the size of the transistor M1-2br is preferably equal to that of the transistor M1-2b.
  • the wiring X1L2b is a wiring for switching the transistor M3-2b and the transistor M3-2br between the on state and the off state, and the wiring X2L2b switches the transistor M4-2b and the transistor M4-2br between the on state and the off state. Is a wiring for performing.
  • a high-level potential is applied to the wiring WX1L and the wiring WL to turn on the transistors M3, M10, the transistor M9 in the holding portion HC, and the transistor M9 in the holding portion HC-2b.
  • the potential of the node n3 of the holding unit HC becomes VDD
  • the potential of the node n3 of the holding unit HC-2b becomes VDD.
  • the current source circuit ISC of FIG. 8A by generating a current of 3 Iut as the amount of current, both the source-drain of the transistor M1 and the source-drain of the transistor M1-2b are connected from the wiring VE. Different currents flow through.
  • the ratio of the W length and the L length of the transistor M1-2b is twice the ratio of the W length and the L length of the transistor M1
  • the amount of current flowing between the source and the drain of the transistor M1 is I. ut
  • the amount of current flowing between the source and drain of the transistor M1-2b is 2I ut .
  • the current flowing between the source and drain of each of the transistor M1 and the transistor M1-2b flows into the current source circuit ISC through the source and drain of the transistor M3 and the wiring OL.
  • the potential of the second terminal of the capacitor C3 of the holding portion HC (the potential of the second terminal of the transistor M1) is determined by the current flowing between the source and drain of the transistor M1, and the capacitance of the capacitance C3 of the holding portion HC-2b.
  • the potential of the second terminal (the potential of the second terminal of the transistor M1-2b) is determined by the current flowing between the source and drain of the transistor M1-2b.
  • a low-level potential is applied to the wiring WX1L and the wiring WL to turn off the transistors M3 and M10, the transistor M9 of the holding portion HC, and the transistor M9 of the holding portion HC-2b, whereby the capacitance C3 of the holding portion HC.
  • the voltage between the gate of the transistor M1 and the second terminal of the transistor M1 can be held by the capacitance C3 of the holding unit HC-2b, and the gate of the transistor M1-2b and the second terminal of the transistor M1-2b can be held.
  • the second data (the value of the signal of the neuron)
  • a predetermined potential is applied to each of the wiring WX1L, the wiring X2L, the wiring X1L2b, and the wiring X2L2b, so that the first data set in the circuit MP ( The product of the weighting factor) and the second data (the value of the neuron signal) can be calculated.
  • the details of the calculation of the product of the multi-valued first data (weighting coefficient) and the multi-valued second data (the value of the neuron signal) have been described in the configuration example 5.
  • the configuration of the circuit MP of FIG. 42 can be changed to the circuit MP of FIG. 43.
  • the connection destination of the second terminal of the transistor M9 of the holding unit HC-2b is changed from the first terminal of the transistor M9 of the holding unit HC to the wiring VE in the circuit MP of FIG.
  • the circuit MP of FIG. 43 can operate similarly to the circuit MP of FIG.
  • the wiring VE is separated into the wiring VE and the wiring VA, and the wiring VEr is connected to the wiring VEr and the wiring VAr. May be separated into
  • the circuit MP shown in FIG. 44 has a structure in which the wiring VE in the circuit MP of FIG. 42 is separated into the wiring VE and the wiring VA, and the circuit MP shown in FIG. 45 has the wiring VE in the circuit MP of FIG. , The wiring VE and the wiring VA are separated.
  • the circuit MP in FIG. 44 and the circuit MP in FIG. 45 can operate in the same manner as the circuits MP in FIGS. 42 and 43. Note that, as shown in FIGS. 42, 43, 44, 45, etc., the capacitor C3 is connected to the source terminal of the transistor M1 and the like, the source terminal is not connected to the power supply line, and the drain terminal is When a positive current is supplied from the circuit ILD to the wiring OL or the wiring OLB through the switching circuit TW[j] when connected to a power supply line or the like, the constant voltage given by the wiring VCN is the wiring VE.
  • the voltage supplied to the wiring VA or the wiring VA for example, a high-level potential (eg VDD) is preferably used.
  • the potential difference across the capacitor C3 be close to zero. That is, it is desirable that the transistor M1 be turned off. In other words, it is desirable that the circuit MC supply a potential to the wiring VCN so that no current is output.
  • the wiring VCN2 have a low-level potential such as VSS or a ground potential. Accordingly, the potentials of the wiring OL and the wiring OLB can be changed by the current output from the circuit MP.
  • FIG. 46 shows an example of the circuit BS and the circuit MP applicable to the arithmetic circuit 170 of FIG.
  • the circuit MP of FIG. 40 can be applied.
  • the circuit BMC corresponds to the circuit MC of the circuit MP in FIG. 40
  • the circuit BMCr corresponds to the circuit MCr of the circuit MP in FIG.
  • the transistor M11 corresponds to the transistor M1 of the circuit MP of FIG. 40
  • the transistor M12 corresponds to the transistor M12 of the circuit MP of FIG. 40
  • the transistor M13 corresponds to the transistor M13 of the circuit MP of FIG. 40
  • the capacitance C4. 40 corresponds to the capacitance C1 of the circuit MP of FIG. 40
  • the node n4 corresponds to the node n1 of the circuit MP of FIG.
  • the wiring WXBS corresponds to the wiring WXL of the circuit MP in FIG. 40
  • the wiring WLBS corresponds to the wiring WL of the circuit MP in FIG. 40
  • the wiring VF corresponds to the wiring VE of the circuit MP in FIG. Therefore, for the configuration of the circuit BS shown in FIG. 46, the description of the circuit MP in FIG. 40 is referred to.
  • the circuit MP for example, as shown in FIG. 46, the circuit MP of FIG. 15A can be applied. Therefore, for the configuration of the circuit MP illustrated in FIG. 46, the description of the circuit MP in FIG. 15A is referred to.
  • the circuit BMC has a circuit configuration similar to that of the circuit BMCr.
  • the circuit MCr has substantially the same circuit configuration as the circuit MC. Therefore, in order to distinguish a circuit element or the like included in the circuit BSr from a circuit element or the like included in the circuit BS, a symbol “r” is attached to the circuit BSr and a circuit element or the like included in the circuit MCr is included in the circuit MC. In order to distinguish it from a circuit element or the like, “r” is added to the code.
  • a "positive bias" is set in the circuit BS, a high-level potential is applied to the wiring WXBS and the wiring WLBS similarly to the operation of the circuit MP in FIG. 40 so that the transistor M12, the transistor M13, the transistor M12r, and the transistor M13r are turned on. Just turn it on.
  • the current source circuit ISC of FIG. 8A a current corresponding to the bias is selected, and the wiring OL and the current source circuit ISC are brought into conduction. Accordingly, the current flows from the current source circuit ISC to the wiring VF through the wiring OL and the circuit BMC, and the potential of the node n4 becomes a potential corresponding to the current.
  • the wiring OLB and the wiring VCN are brought into a conductive state, so that the potential VSS from the wiring VCN is supplied to the node n4r on the circuit BMCr side, so that the potential of the node n4r becomes VSS.
  • a low-level potential is applied to the wiring WXBS and the wiring WLBS to turn off the transistors M12, M13, M12r, and M13r, whereby the potentials of the nodes n4 and n4r can be held. This allows a "positive bias" to be set in the circuit BS.
  • a high-level potential is applied to the wiring WXBS and the wiring WLBS to turn on the transistors M12, M13, M12r, and M13r.
  • a current corresponding to the bias is selected, and the wiring OLB and the current source circuit ISC are brought into conduction.
  • the current flows from the current source circuit ISC to the wiring VFr through the wiring OLB and the circuit BMCr, and the potential of the node n4r becomes a potential corresponding to the current.
  • the potential between the wiring OL and the wiring VCN is made conductive by supplying the potential VSS from the wiring VCN to the node n4 on the circuit BMC side, so that the potential of the node n4 becomes VSS.
  • a low-level potential is applied to the wiring WXBS and the wiring WLBS to turn off the transistors M12, M13, M12r, and M13r, whereby the potentials of the nodes n4 and n4r can be held.
  • a "negative bias" can be set in the circuit BS.
  • a high-level potential is applied to the wiring WXBS and the wiring WLBS to turn on the transistors M12, M13, M12r, and M13r, and the wiring OL and the wiring OLB.
  • a low-level potential is applied to the wiring WXBS and the wiring WLBS to turn off the transistor M12, the transistor M13, the transistor M12r, and the transistor M13r to hold the potentials VSS of the node n4 and the node n4r, respectively.
  • a potential other than VSS may be applied to each of the node n4 and the node n4r when setting the bias in the circuit BS.
  • the first data (for example, here, a weighting coefficient) is held in the circuit MP
  • the second data (for example, the value of the neuron signal here) is held in the circuit MP.
  • a current according to the weighting coefficient is set in the circuit MP
  • a potential according to the second data (the value of the neuron signal) is applied to the circuit MP from each of the wiring WX1L and the wiring X2L.
  • the circuit BS by setting the wiring WXBS to a high level potential, the product of the first data (weighting coefficient) and the second data (the value of the neuron signal) calculated in the circuit MP is set in the circuit BS. Given bias can be given.
  • the circuit MP holds the first data (weighting coefficient), and once the circuit MP calculates the product of the first data (weighting coefficient) and the second data (the value of the neuron signal).
  • a bias may be set in the circuit BS according to the calculation result, and the calculation may be performed again. That is, you may perform the operation which changes a bias suitably according to a calculation result.
  • the wiring VF, the wiring VFr, the wiring VE, and the wiring VEr are illustrated in the structural example of FIG. 46; however, one embodiment of the present invention is not limited to this.
  • the wiring VF and the wiring VE may be integrated into one wiring, and the wiring VFr and the wiring VEr may be integrated into one wiring.
  • the wiring VF and the wiring VFr may be integrated into one wiring, and the wiring VE and the wiring VEr may be integrated into one wiring.
  • the configuration of FIG. 46 the configuration of FIG. 46, the wiring VF and the wiring VFr may be integrated into one wiring, and the wiring VE and the wiring VEr may be integrated into one wiring.
  • the wiring VF, the wiring VFr, the wiring VE, and the wiring VEr may be integrated as one wiring.
  • two or more wirings selected from the wiring VF, the wiring VFr, the wiring VE, and the wiring VEr may be combined into one wiring.
  • the circuit MP shown in FIG. 47A shows, for example, a configuration example of the circuit MP of FIG. 10 applicable to the arithmetic circuit 140 of FIG. 7.
  • the circuit MP in FIG. 47A corresponds to the circuit MP in FIG. 40 in which the transistor M3 and the transistor M3r are combined into one transistor and the wiring VE and the wiring VEr are combined into one wiring.
  • the transistor M3 and the transistor M3r of the circuit MP illustrated in FIG. 40 are combined as a transistor MZ in the circuit MP of FIG. 47A, and the wiring VE and the wiring VVer of the circuit MP illustrated in FIG. In the circuit MP of 47A, they are grouped as the wiring VE.
  • the circuit MCr of the circuit MP of FIG. 47A has a circuit configuration substantially similar to that of the circuit MC. Therefore, in order to distinguish the circuit element of the circuit MCr from the circuit element of the circuit MC, “r” is added to the symbol.
  • the transistor MZ includes a case where it is finally operated in a linear region when it is in an on state unless otherwise specified. That is, the gate voltage, the source voltage, and the drain voltage of each of the above-described transistors include the case where they are appropriately biased to the voltage in the range of operating in the linear region.
  • the circuit MC has a holding unit HC and a transistor M20, and the circuit MCr has a holding unit HCr and a transistor M20r.
  • the first terminal of the transistor M20 is electrically connected to the first terminal of the transistor MZ, and the gate of the transistor M20 is electrically connected to the second terminal of the transistor M1 and the first terminal of the capacitor C1.
  • the second terminal of the transistor M20 is electrically connected to the wiring OL.
  • the second terminal of the capacitor C1 is electrically connected to the wiring VL.
  • the first terminal of the transistor M1 is electrically connected to the wiring OL.
  • the first terminal of the transistor M20r is electrically connected to the first terminal of the transistor MZ, and the gate of the transistor M20r is electrically connected to the second terminal of the transistor M1r and the first terminal of the capacitor C1r.
  • the second terminal of the transistor M20r is electrically connected to the wiring OLB.
  • the second terminal of the capacitor C1r is electrically connected to the wiring VL.
  • the first terminal of the transistor M1 is electrically connected to the wiring OLB.
  • the wiring VL functions as a wiring that gives a constant voltage, for example.
  • the constant voltage can be, for example, VSS which is a low level potential, a ground potential (GND), or the like.
  • the holding unit HC and the holding unit HCr included in the circuit MP of FIG. 47A have the same current as the holding unit HC and the holding unit HCr included in the circuit MP of FIG. You can set the amount. Specifically, for example, in the holding portion HC, a predetermined potential is applied to the wiring XL to turn on the transistor MZ, a predetermined potential is applied to the wiring WL to turn on the transistor M1, and the capacitance C1 is applied from the wiring OL. A current amount corresponding to the weighting factor is passed to the first terminal of the transistor M20 and the second terminal of the transistor M20.
  • the gate-source voltage of the transistor M20 is determined according to the current amount (the amount of current flowing between the source and drain).
  • the potential of the source of the transistor M20 is a potential given by the wiring VL
  • the potential of the gate of the transistor M20 is determined.
  • the potential of the gate of the transistor M20 can be held by turning off the transistor M1. Note that similarly for the holding portion HCr, by supplying a current amount corresponding to the weight amount from the wiring OLB to the first terminal of the capacitor C1r and the second terminal of the transistor M20r, a potential corresponding to the current amount is applied to the transistor. It can be held at the gate of M20r.
  • the weighting coefficient set in the circuit MP of FIG. 48 is set so that the current I ut is set in the transistor M20 of the holding unit HC and the current does not flow in the transistor M20r of the holding unit HCr. to the "+1", is set such that no current flows through the transistor M20 of the holding unit HC, and "-1" when the current I ut is set to the transistor M20r the holding portion HCr, holding unit HC, holding It is set to "0" when it is set so that current does not flow in the respective transistors M20 and M20r of the portion HCr.
  • the electric potentials of the gates of the transistor M20 and the transistor M20r are set by setting the currents corresponding to the weighting factors in the holding unit HC and the holding unit HCr, respectively.
  • a current flowing between the wiring OL and/or the wiring OLB and the circuit MP is determined by applying a potential corresponding to the value of a signal of a neuron to the wiring XL.
  • a high-level potential is applied to the wiring XL as “+1” second data
  • a constant voltage applied by the wiring VL is applied to the first terminal of the transistor M20 and the first terminal of the transistor M20r.
  • the constant voltage applied by the wiring VL is applied to the first terminal of the transistor M20 and the first terminal of the transistor M20r. Absent. That is, no current flows through the transistor M20 and the transistor M20r.
  • I ut when I ut is set as the amount of current in the transistor M20, the potential from the wiring VL is applied to the source of the transistor M20, so that the amount of current flowing between the first terminal and the second terminal of the transistor M20 is increased. I ut flows as.
  • the transistor M20 is set so that current does not flow, even if a potential from the wiring VL is applied to the source of the transistor M20, current does not flow between the first terminal and the second terminal of the transistor M20. Not flowing.
  • I ut is set as the amount of current in the transistor M20r
  • the potential of the wiring VL is applied to the source of the transistor M20r, so that the amount of current between the first terminal and the second terminal of the transistor M20r is increased.
  • I ut flows as.
  • the transistor M20r is set so that no current flows, even if a potential from the wiring VL is applied to the source of the transistor M20r, no current flows between the first terminal and the second terminal of the transistor M20r. Not flowing.
  • the weighting factors have three values of “+1”, “ ⁇ 1”, and “0”, and the neuron signal (calculated value) has two values of “+1” and “0”.
  • the product of can be calculated.
  • the first data is changed by changing the amount of current set in the transistor M20 and the transistor M20r. It is possible to calculate the product of “positive multi-valued”, “0”, “negative multi-valued” and two values of the second data (value of the signal of the neuron) “+1”, “0”.
  • the circuit MP shown in FIG. 47A may be changed to the circuit MP shown in FIG. 47B, for example.
  • the circuit MP illustrated in FIG. 47B is different from the circuit MP in FIG. 47A in that the second terminal of the capacitor C1 and the second terminal of the capacitor C1r are electrically connected to the wiring CVL instead of the wiring VL. ..
  • the wiring CVL functions as a wiring that gives a constant voltage, for example.
  • the constant voltage can be, for example, a high level potential, a low level potential, a ground potential or the like.
  • multivalued first data for example, one of a weighting coefficient or a neuron signal
  • multivalued second data for example, a weighting coefficient or a neuron
  • each of the wiring VE and the wiring VEr electrically connected to the circuit MP supplies VSS as a constant voltage to the circuit MP.
  • Each of the circuits ACTF[1] to ACTF[n] included in the circuit AFP is, for example, a circuit ACTF having a configuration of an integrating circuit (or a current/charge (IQ) conversion circuit).
  • the load LEa and the load LEb may be capacitors.
  • FIG. 48A is a timing chart showing an example of the operating method. Specifically, in each of FIG. 48A, the potential of the node n1 of the holding portion HC, the potential of the node n1r of the holding portion HCr, and the wiring WX1L of the holding portion HCr from the time T11 to the time T15 and in the vicinity thereof. It indicates the potential, and the current amount of the current I OL flowing through the wire OL, and the current amount of the current I OLB flowing through the wiring OLB, a change in the amount of charge stored in the capacitor of the integrating circuit of the circuit ACTF. In particular, in FIG.
  • the current corresponding to the multivalued first data (for example, here, the weighting coefficient) is set at the time before the time T11. Note that the description of Embodiment 2 is referred to for the method of setting the current.
  • the weighting coefficient of “+1” is set in the circuit MP in advance. Specifically, at a time before time T11, the current amount I 1 is set to flow in the transistor M1, V 1 is held in the node n1 of the holding unit HC, and the node n1r of the holding unit HCr is held. Is assumed to hold VSS. Note that the potential V 1 is higher than VSS.
  • the switches SWH and SWHB are turned on in advance, the switches SWI, the switch SWIB, the switch SWO, the switch SWOB, the switch SWL, and the switch SWLB are turned off, and the wiring OL and the wiring OLB are connected to the wiring VCN2. Therefore, the potentials of the wiring OL and the wiring OLB are set to a high level potential.
  • the wiring OL and the wiring OLB are electrically connected to the circuit AFP, so that the switch SWO and the switch SWOB are turned on in FIG. 8A, and the switch SWI, the switch SWIB, the switch SWL, and the switch SWLB, The switch SWH and the switch SWHB are turned off.
  • the second data (for example, the value of the neuron signal here) is input to the circuit MP.
  • the input time from time T12 to time T13 is t ut .
  • the length of this input time corresponds to the magnitude of the value of the neuron signal. That is, the calculation result can be changed by changing the length of the input time.
  • a high level potential is input to the wiring WX1L and a low level potential is input to the wiring X2L as the second data (the value of the signal of the neuron) to the circuit MP. Therefore, a high-level potential is input to the gates of the transistor M3 and the transistor M3r, and a low-level potential is input to the gates of the transistor M4 and the transistor M4r, so that the transistor M3 and the transistor M3r are turned on and the transistor M3 and the transistor M3r are turned on. Each of M4 and the transistor M4r is turned off.
  • the circuit MC and the wiring OL and the circuit MCr and the wiring OLB are brought into conduction, and the circuit MC and the wiring OLB and the circuit MCr and the wiring OL are not connected to each other. It becomes conductive.
  • the transistor M1 because they are set the amount of current to flow current to I 1, the circuit ACTF, switching circuit TW, wire OL, through the circuit MC, the current amount I 1 to the wiring VE An electric current flows. Further, since the transistor M1r is in an off state (because it is set to flow 0 as a current amount), a current is supplied from the circuit ACTF to the wiring VER through the switching circuit TW, the wiring OLB, and the circuit MCr. Does not flow.
  • the capacitance of the integrating circuit included in the circuit ACTF (which is in conduction with the wiring OL) ( Electric charges continue to be accumulated in the load LEa) from time T12 to time T13.
  • an electric charge of t ut ⁇ I 1 is accumulated in the capacitor. Note that in the timing chart of FIG. 48A, the amount of charge accumulated in the capacitor between time T12 and time T13 is described as Q 1 .
  • the circuit ACTF can output the neuron signal z j (k) corresponding to the charge amount Q 1 flowing in the wiring OL and the charge amount 0 flowing in the wiring OLB.
  • Timing chart shown in FIG. 48B in the timing chart of FIG. 48A, which shows an operation example in the case of changing the input time of the neurons of the signal to the circuit MP from t ut to 2t ut.
  • the operation before time T12 in the timing chart of FIG. 48B is the same as the operation example before time T12 in the timing chart of FIG. 48A. Therefore, for the operation before time T12 in the timing chart of FIG. 48B, the description of the operation before time T12 in the timing chart of FIG. 48A is referred to.
  • the signal of the neuron is input to the circuit MP from time T12 to time T14 in the operation example of FIG. 48B. As described above, the input time from time T12 to time T14 is 2t ut .
  • a high level potential is input to the wiring WX1L and a low level potential is input to the wiring X2L as the second data (the value of the signal of the neuron) to the circuit MP. R. Therefore, a current of the current amount I 1 flows from the circuit ACTF to the wiring VE through the switching circuit TW, the wiring OL, and the circuit MC. Further, no current flows from the circuit ACTF to the wiring VEr through the switching circuit TW, the wiring OLB, and the circuit MCr.
  • the capacitance of the integrating circuit (load LEa) that is in the conduction state with the wiring OL indicates the time The electric charge continues to be accumulated from T12 to time T14.
  • Q 2 the amount of charge accumulated in the capacitor between time T12 and time T14.
  • charge is not accumulated in the capacitance (load LEb) of the integrating circuit included in the circuit ACTF which is in a conductive state with the wiring OLB.
  • the circuit ACTF can output a neuron signal z j (k) corresponding to the amount of charge Q 2 flowing in the wiring OL and the amount of charge 0 flowing in the wiring OLB.
  • the operation before time T12 in the timing chart of FIG. 48C is the same as the operation example before time T12 in the timing chart of FIG. 48A. Therefore, for the operation before time T12 in the timing chart of FIG. 48C, the description of the operation before time T12 in the timing chart of FIG. 48A is referred to.
  • the neuron signal is input to the circuit MP.
  • the input time from time T12 to time T13 is tut .
  • a high level potential is input to the wiring WX1L and a low level potential is input to the wiring X2L as the second data (the value of the signal of the neuron) to the circuit MP. R. Therefore, a current amount I 2 flows from the circuit ACTF to the wiring VEr through the switching circuit TW, the wiring OLB, and the circuit MCr. Further, no current flows from the circuit ACTF to the wiring VE through the switching circuit TW, the wiring OL, and the circuit MC.
  • the capacitance of the integrating circuit (load LEb) that is in conduction with the wiring OLB is The electric charge continues to be accumulated from T12 to time T13.
  • the circuit ACTF can output the signal z j (k) of the neuron according to the charge amount 0 flowing in the wiring OL and the charge amount Q 2 flowing in the wiring OLB.
  • the second data (the value of the signal of the neuron) can be determined according to the input period of the second data to the circuit MP, and depending on the length of the input period.
  • the calculation result output from the circuit ACTF is determined. Therefore, by defining the second data (the value of the signal of the neuron) according to the length of the input period and the potential applied to the wiring WX1L and the wiring X2L, the circuit MP sets the second data (three values or more) ( The value of the signal of the neuron) can be handled, and the product-sum operation of the multivalued first data (weight coefficient) and the second data of three or more values (the value of the neuron signal) and/or the activation function Can perform operations.
  • the second data (the value of the neuron signal) input to the circuit MP can be defined as follows, as an example. High level potential to the wiring WX1L, wires enter the low-level potential to X2L, and an input period and second data (value of the neurons of the signal) "+1" when a t ut, high-level potential to the wiring WX1L, enter the low level potential to the wiring X2L, and an input period and second data (value of the neurons of the signal) "+2" when formed into a 2t ut, high-level potential to the wiring WX1L, a low-level potential to the wiring X2L
  • the second data (the value of the signal of the neuron) when the input is performed and the input period is 3 tut is "+3".
  • the low-level potential to the wiring WX1L enter the high level potential to the wiring X2L, and an input period and second data (value of the neurons of the signal) "-1" when the t ut, high wiring WX1L level potential to enter the low-level potential to the wiring X2L, and second data when the input period was 2t ut (values of neurons of the signal) and "-2", the high level potential to the wiring WX1L, the wiring X2L
  • the second data (the value of the neuron signal) when the low-level potential is input and the input period is 3 tut is "-3". Further, the second data (the value of the signal of the neuron) when the low-level potential is input to the wiring WX1L and the low-level potential is input to the wiring X2L is set to “0”.
  • the first data (weighting coefficient) “+1” and the second data ( "+1” can be calculated as the product of the value of the neuron signal) "+1".
  • “+2” can be calculated as the product of the first data (weighting coefficient) “+1” and the second data (neuron signal value) “+2”.
  • “ ⁇ 2” can be calculated as the product of the first data (weighting coefficient) “ ⁇ 2” and the second data (value of the neuron signal) “+1”. it can.
  • the first data (weighting coefficient) is set to any one of “ ⁇ 2”, “ ⁇ 1”, “0”, “+1”, and “+2”
  • the second data (the value of the neuron signal) is set to “ ⁇ 2”.
  • the table below shows the amount of charge Q OL that has flowed in the wiring OL and the amount of charge Q OLB that flows in the wiring OLB when any one of ““ ⁇ 1” “0” “+1” “+2” is set.
  • the high level potential is described as high and the low level potential is described as low.
  • positive multi-value, negative multi-value, and 0 are defined as the second data (the value of the neuron signal). Is a positive real number, and the input period is a ⁇ t ut ), the second data (the value of the neuron signal) can be treated as an analog value.
  • the first data (weighting coefficient) set in the circuit MP is set to “+1”, and in the operation example shown in FIG. 48C, the first data set in the circuit MP is set.
  • the data (weighting coefficient) is “ ⁇ 2”, the calculation may be performed using the first data (weighting coefficient) other than “+1” and “ ⁇ 2”.
  • the first data (weighting coefficient) set in the circuit MP can set an analog value or the like. Therefore, the integration circuit included in the circuit ACTF. The amount of electric charge accumulated in the capacitor can also be calculated according to the first data (weighting coefficient) such as an analog value.
  • the case where only one circuit MP is electrically connected to the wiring OL and the wiring OLB is considered.
  • a plurality of circuits MP may be electrically connected to the wiring OL and the wiring OLB. Accordingly, the total amount of charges input to each of the plurality of circuits MP from each of the wiring OL and the wiring OLB can be accumulated in the capacitance of the integration circuit included in the circuit ACTF, and the circuit ACTF can be connected to the wiring OL and the wiring OLB.
  • FIGS. 48A to 48C the change in the potential of the wiring WX1L is started from time T12. That is, in each of FIGS. 48A to 48C, even when the potential of the wiring WX1L is at a high level potential in different periods, the time at which the low level potential changes to the high level potential is the same (time T12).
  • one embodiment of the present invention is not limited to this. For example, even if the potential of the wiring WX1L in each of FIGS.
  • 48A to 48C is different in the period in which the potential of the wiring WX1L is the high-level potential, the operation is performed so that the times at which the potential changes from the high-level potential to the low-level potential are the same. Good.
  • the central time of the period in which the potential of the high level potential is the same may be used. Good.
  • each of the circuits ACTF[1] to ACTF[n] included in the circuit AFP has a configuration (or current charge (IQ ) Considering the case of having a conversion circuit). Also in the circuit configuration in this case, the amount of current flowing in each of the transistor M8 and the transistor M8r is set according to the first data (weighting coefficient), and the wiring XL is set in the wiring XL according to the second data (the value of the signal of the neuron).
  • the first data that is one of "positive multi-value”, “negative multi-value", and "0" and the "positive multi-value” are set. It is possible to calculate the product of the second data which is the value "or "0". Further, the first data and/or the second data may be calculated as analog values.
  • each of the wiring VE and the wiring VEr electrically connected to the circuit MP supplies VSS as a constant voltage to the circuit MP.
  • Each of the circuits ACTF[1] to ACTF[n] included in the circuit AFP is, for example, a circuit ACTF having a configuration of an integrating circuit (or a current/charge (IQ) conversion circuit).
  • the load LEa and the load LEb may be capacitors.
  • FIG. 49A is a timing chart showing an example of the operating method. Specifically, in each of FIG. 49A, the potential of the node n1 of the holding portion HC, the potential of the node n1r of the holding portion HCr, and the wiring WX1L in the period from time T21 to time T25 and in the vicinity thereof. It indicates the potential, and the current amount of the current I OL flowing through the wire OL, and the current amount of the current I OLB flowing through the wiring OLB, a change in the amount of charge stored in the capacitor of the integrating circuit of the circuit ACTF.
  • FIG. 49A the potential of the node n1 of the holding portion HC, the potential of the node n1r of the holding portion HCr, and the wiring WX1L in the period from time T21 to time T25 and in the vicinity thereof. It indicates the potential, and the current amount of the current I OL flowing through the wire OL, and the current amount of the current I OLB flowing through the wiring OLB, a
  • the current corresponding to the multivalued first data (for example, here, the weighting coefficient) is set at the time before the time T21. Note that the description of Embodiment 2 is referred to for the method of setting the current.
  • the circuit MP is previously set with “+1” first data (here, for example, a weighting coefficient). Specifically, at a time before time T21, the current amount I 1 is set to flow through the transistor M1, V 1 is held at the node n1 of the holding unit HC, and the node n1r of the holding unit HCr is held. Is assumed to hold VSS. Note that the potential V 1 is higher than VSS.
  • the switch SWH and the switch SWHB are turned on in advance, and the switch SWI, the switch SWIB, the switch SWO, the switch SWOB, the switch SWL, and the switch SWLB are turned off, and the wiring OL and the wiring OLB are connected to the wiring VCN2. Then, the potentials of the wiring OL and the wiring OLB are set to a high level potential.
  • the wiring SW and the wiring OLB are electrically connected to the circuit AFP, so that the switch SWO and the switch SWOB are turned on in FIG. 8A, and the switch SWI, the switch SWIB, the switch SWL, and the switch SWLB, The switch SWH and the switch SWHB are turned off.
  • the second data (for example, the value of the signal of the neuron here) is input to the circuit MP.
  • the second data (the value of the neuron signal) is input to the circuit MP from time T22 to time T23, from time T23 to time T24, and from time T24.
  • the process is divided into a period up to time T25. Specifically, the input time from time T22 to time T23 is t ut , the input time from time T23 to time T24 is 2 t ut, and the input time from time T24 to time T25 is 4 t. ut .
  • the respective periods are referred to as a first sub period, a second sub period, and a third sub period.
  • the wiring WX1L has a high-level potential and the wiring X2L has a low-level potential as input of the second data (the value of the neuron signal) to the circuit MP. Is entered. Therefore, a high-level potential is input to the gates of the transistor M3 and the transistor M3r, and a low-level potential is input to the gates of the transistor M4 and the transistor M4r, so that the transistor M3 and the transistor M3r are turned on and the transistor M3 and the transistor M3r are turned on. Each of M4 and the transistor M4r is turned off.
  • the circuit MC and the wiring OL and the circuit MCr and the wiring OLB are brought into conduction, and the circuit MC and the wiring OLB and the circuit MCr and the wiring OL are not connected to each other. It becomes conductive.
  • the transistor M1 is set so as to flow I 1 as the amount of current, so that the circuit ACTF passes through the switching circuit TW, the wiring OL, and the circuit MC in the first sub period and the third sub period.
  • a current amount I 1 flows through the wiring VE.
  • the low-level potential is input to the wiring WX1L and the wiring X2L and the low-level potential is input to the gates of the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r.
  • Each of the transistor M3r, the transistor M4, and the transistor M4r is turned off, and no current flows from the circuit ACTF to the wiring VE through the switching circuit TW, the wiring OL, and the circuit MC.
  • the transistor M1r is in an off state (because it is set so as to flow 0 as the amount of current). No current flows through the wiring VEr through the switching circuit TW, the wiring OLB, and the circuit MCr.
  • the capacitance (load LEa) of the integrating circuit included in the circuit ACTF which is in a conductive state with the wiring OL includes the time The electric charge continues to be accumulated after T22.
  • the electric charge of t ut ⁇ I 1 is accumulated in the capacitor in the first sub period
  • the electric charge of 4 t ut ⁇ I 1 is accumulated in the third sub period. Note that in the timing chart of FIG. 49A, the charge amount accumulated in the capacitor in the first sub period is Q 1 and the charge amount accumulated in the capacitor in the third sub period is Q 4 .
  • the amount of charge accumulated in the capacitor after time T25 is described as Q 1 +Q 4 .
  • charge is not accumulated in the capacitance (load LEb) of the integrating circuit included in the circuit ACTF which is in a conductive state with the wiring OLB.
  • the timing chart shown in FIG. 49B shows an operation example when the input of the neuron signal to the circuit MP is changed from the first period and the third period to the second period in the timing chart of FIG. 49A.
  • the operation before time T22 in the timing chart of FIG. 49B is the same as the operation example before time T22 of the timing chart in FIG. 49A. Therefore, for the operation before time T22 in the timing chart of FIG. 49B, the description of the operation before time T22 in the timing chart of FIG. 49A is referred to.
  • a neuron signal is input to the circuit MP. Specifically, as described above, the input of the neuron signal to the circuit MP is performed in the second sub period.
  • a high-level potential is input to the wiring WX1L and a low-level potential is input to the wiring X2L as a neuron signal (calculated value) input to the circuit MP. Therefore, in the second sub period, the current amount I 1 flows from the circuit ACTF to the wiring VE through the switching circuit TW, the wiring OL, and the circuit MC.
  • the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r are turned off, and the circuit ACTF is turned off. Therefore, no current flows through the wiring VE through the switching circuit TW, the wiring OL, and the circuit MC.
  • the transistor M1r is in an off state (because it is set so as to flow 0 as the amount of current). No current flows through the wiring VEr through the switching circuit TW, the wiring OLB, and the circuit MCr.
  • the second data (the signal of the neuron) is input after time T22
  • the charge continues to be accumulated after time T22 in the capacitance (load LEa) of the integrating circuit which is in the conductive state with the wiring OL. ..
  • a charge of 2t ut ⁇ I 1 is accumulated in the capacitor.
  • Q 2 the amount of charge accumulated in the capacitor after time T22 is described as Q 2 .
  • charge is not accumulated in the capacitance (load LEb) of the integrating circuit included in the circuit ACTF which is in a conductive state with the wiring OLB.
  • the weighting factor set in the circuit MP is changed from “+1” to “ ⁇ 2”, and the input of the second data (neuron signal) is changed to the first sub period and the first sub period.
  • the three sub-periods are changed to the first sub-period and the second sub-period.
  • the operation before time T22 of the timing chart of FIG. 49C is the same as the operation example before time T22 of the timing chart of FIG. 49A. Therefore, for the operation before time T22 in the timing chart of FIG. 49C, the description of the operation before time T22 in the timing chart of FIG. 49A is referred to.
  • the signal of the neuron is input to the circuit MP.
  • the neuron signal is input to the circuit MP in the first sub period and the second sub period.
  • a high-level potential is input to the wiring WX1L and a low-level potential is input to the wiring X2L as input of the second data (the signal value of the neuron) to the circuit MP.
  • the transistor M3, the transistor M3r, the transistor M4, and the transistor M4r are turned off, and the circuit ACTF causes the switching circuit TW to change. No current flows in the wiring VEr through the wiring OLB and the circuit MCr.
  • the transistor M1 In the first sub period, the second sub period, and the third sub period, the transistor M1 is in an off state (because it is set to flow 0 as the amount of current). No current flows through the wiring VE through the switching circuit TW, the wiring OL, and the circuit MC.
  • the second data (the value of the signal of the neuron) has a plurality of sub-periods in the period in which the second data (the value of the signal of the neuron) can be input to the circuit MP. Can be provided in accordance with one or more selected periods from the plurality of sub-periods, and the operation result output from the circuit ACTF is determined according to the selected periods.
  • the circuit MP allows the second data (three values or more) of the second data ( The value of the signal of the neuron) can be handled, and the product-sum operation of the multivalued first data (weight coefficient) and the second data of three or more values (the value of the neuron signal) and/or the activation function Can perform operations.
  • the second data (the value of the neuron signal) input to the circuit MP can be defined as follows, for example.
  • the second data (the value of the signal of the neuron) when the high level potential is input to the wiring WX1L and the low level potential is input to the wiring X2L only in the first sub period is set to “+1”, and the wiring WX1L is set only in the second sub period.
  • the second data (the value of the signal of the neuron) when the high level potential is input to the line X2L and the low level potential is input to the line X2L is set to “+2”, and the high level potential is applied to the line WX1L and the low level potential is applied to the line X2L only in the third sub period.
  • the second data (value of the signal of the neuron) when the level potential is input is set to “+4”.
  • the second data (the value of the signal of the neuron) when the low-level potential is input to the wiring WX1L and the high-level potential is input to the wiring X2L only in the first sub period is set to "-1", and the wiring is set only in the second sub period.
  • the second data (the value of the signal of the neuron) is set to "-2"
  • the low-level potential and the wiring X2L are set to the wiring WX1L only in the third sub period.
  • the second data (value of the signal of the neuron) when the high level potential is input to is set to "-4".
  • the second data (the value of the neuron signal) when the low-level potential is input to the wiring WX1L and the low-level potential is input to the wiring X2L is “0”.
  • the second data (the value of the neuron signal) to “+3”
  • the high level potential is input to the wiring WX1L
  • the low level potential is input to the wiring X2L only in the first sub period and the second sub period.
  • a high level potential may be input to the wiring WX1L and a low level potential may be input to the wiring X2L during the first sub period and the third sub period. ..
  • the second data (the value of the signal of the neuron)
  • the high level potential is input to the wiring X2L only in the second sub period and the third sub period.
  • the second data (the value of the signal of the neuron) is to be "-7”
  • the wiring WX1L has a low level potential
  • the wiring X2L has a low level potential in the first sub period, the second sub period, and the third sub period. It suffices to input a high level potential to.
  • the first data (weighting factor) “+1” and the second data ( "+5" can be calculated as a product of the value of the neuron signal) "+5".
  • “+2” can be calculated as the product of the first data (weighting coefficient) “+1” and the second data (neuron signal value) “+2”.
  • “ ⁇ 6” can be calculated as the product of the first data (weighting coefficient) “ ⁇ 2” and the second data (value of the neuron signal) “+3”. it can.
  • the first sub period, the second sub period, and the third sub period are provided as the periods in which the second data (the value of the neuron signal) can be input, but four or more sub periods may be provided. ..
  • the period in which the second data (the value of the signal of the neuron) can be input is divided into the first sub period to the T th sub period (T is an integer of 4 or more), and the s th sub period (s is 4). It is sufficient to define the length of 2 or more ( it is an integer less than or equal to T) as 2 (s-1) *t ut .
  • the period in which the second data (the value of the signal of the neuron) can be input is divided into the first sub period to the T th sub period (T is an integer of 4 or more), and the s th sub period (s). Is an integer of 4 or more and T or less.) may be defined as s ⁇ t ut .
  • the second data (the value of the signal of the neuron) when the high level potential is input to the wiring WX1L and the low level potential is input to the wiring X2L only in the first sub period is set to “+0.1”
  • the second data (the value of the signal of the neuron) when the high-level potential is input to the wiring WX1L and the low-level potential is input to the wiring X2L only during the period is set to "+0.2”
  • the wiring WX1L is set only during the third sub-period.
  • the second data (the value of the signal of the neuron) is defined as a real number, for example, the second data (the value of the signal of the neuron) when the high-level potential and the low-level potential are input to the wiring X2L is set to “+0.4”. May be.
  • the first data (weighting coefficient) set in the circuit MP is set to “+1”, and in the operation example shown in FIG. 49C, the first data set in the circuit MP is set.
  • the data (weighting coefficient) is “+2”, the calculation may be performed using the first data (weighting coefficient) other than “+1” and “+2”.
  • the first data (weighting coefficient) set in the circuit MP can be set to a negative value, a multivalue, an analog value, or the like.
  • the amount of charge accumulated in the capacitance of the integrating circuit included in can also be calculated according to the first data (weighting coefficient) that is a negative value, a multivalue, an analog value, or the like.
  • a plurality of sub-periods are provided as a period in which the second data (the value of the signal of the neuron) can be input, and one or more are selected from the plurality of sub-periods.
  • the length of each sub-period is determined in advance from the stage of circuit design. With such a circuit configuration, the arithmetic circuit may be laid out more simply and/or efficiently than the circuit configuration required for the operation examples of FIGS. 48A to 48C.
  • operation circuit 150 of FIG. 11 is taken as an example in this operation example, but the same operation as this operation example can be performed by changing to another operation circuit depending on the situation.
  • the change in the current flowing through the wiring OL and the wiring OLB is one that is electrically connected to the wiring OL and the wiring OLB. It shall be performed only by the circuit MP.
  • each of the wiring VE and the wiring VEr electrically connected to the circuit MP supplies VSS as a constant voltage to the circuit MP.
  • each of the circuits ACTF[1] to ACTF[n] included in the circuit AFP is, for example, a circuit ACTF having a configuration of an integrating circuit (or a current/charge (IQ) conversion circuit).
  • the load LEa and the load LEb may be capacitors.
  • FIG. 50 shows a circuit configuration similar to the circuit MP shown in FIG. However, it is preferable that the sizes of the transistor M1, the transistor M1r, the transistor M1-2b, the transistor M1-2br, the transistor M1-3b, and the transistor M1-3br, for example, W length and L length are equal. Further, the example of the present operation method is different from the operation example of the circuit MP of FIG. 26 described in the second embodiment.
  • the input time of the high-level potential to one of the wiring WX1L and the wiring X2L is t ut.
  • the operation time of the high-level potential to one of the wiring X1L2b and the wiring X2L2b is 2t ut
  • the input time of the high-level potential to one of the wiring X1L3b and the wiring X2L3b is 4t ut. ..
  • the time during which the M4-2br is turned on is 2t ut
  • the time during which the transistors M3-3b and M3-3br are turned on, or the transistor M4-3b and the transistor M4-3br is turned on is 4t ut.
  • a pulse voltage is applied to the wiring WX1L, the wiring X2L, the wiring X1L2b, the wiring X2L2b, the wiring X1L3b, and the wiring X2L3b.
  • the schematic diagram and the input time are illustrated.
  • the first data (for example, a weighting coefficient is used here) is set in the circuit MP, and the time during which the transistor M3 or the transistor M4 is turned on is set. By determining, the amount of charge flowing from the wiring OL or the wiring OLB to the wiring VE through the transistor M1 is determined. Further, by setting the first data (weighting coefficient) in the circuit MP and determining the time for which the transistor M3r or the transistor M4r is in the on state, the current flows from the wiring OL or the wiring OLB to the wiring VER through the transistor M1r. The amount of charge is determined.
  • a weighting coefficient is used here
  • the amount of charge flowing from the wiring OL or the wiring OLB to the wiring VE through the transistor M1-2b and the amount of charge flowing from the wiring OL or the wiring OLB to the wiring VEr through the transistor M1-2br It is determined by determining the time for which each of the transistor M3-2b, the transistor M3-2br, the transistor M4-2b, and the transistor M4-2br is in the on state.
  • the amount of charge flowing from the wiring OL or the wiring OLB to the wiring VE through the transistor M1-3b and the amount of charge flowing from the wiring OL or the wiring OLB to the wiring VEr through the transistor M1-3br It is determined by setting the time for which each of the M3-3b, the transistor M3-3br, the transistor M4-3b, and the transistor M4-3br is in the ON state.
  • the second data (the value of the neuron signal) can be defined in the circuit MP as shown in the following table.
  • the sizes of the transistor M1, the transistor M1-2b, and the transistor M1-3b are equal, and the gates of the transistor M1, the transistor M1-2b, and the transistor M1-3b are electrically connected to the node n1 of the holding unit HC. Since the first terminals of the transistors M1, M1-2b, and M1-3b are electrically connected to the wiring VE, the sources of the transistors M1, M1-2b, and M1-3b are connected. -Currents that are almost equal to each other flow between the drains. Let I ut be the amount of the current.
  • the transistor M3 When “+7” is input to the circuit MP as the second data (the value of the signal of the neuron), the transistor M3 is turned on for the time t ut and the transistor M4 is turned off.
  • the transistor M3-2b is on for a time 2t ut and the transistor M4-2b is off, the amount of charge flowing from the wiring OL to the wiring VE through the transistor M1-2b is 2t ut.
  • first data (weighting coefficient) of "-1" is set in the circuit MP in advance.
  • the transistor M1r is set so that the amount of current I 1 flows, and the transistor M1, the transistor M1-2b, and the transistor M1-3b are off.
  • the sizes of the transistor M1r, the transistor M1-2br, and the transistor M1-3br are equal, and the gates of the transistor M1r, the transistor M1-2br, and the transistor M1-3br are electrically connected to the node n1r of the holding unit HCr. Since the first terminals of the transistors M1r, M1-2br, and M1-3br are electrically connected to the wiring VEr, the sources of the transistors M1r, M1-2br, and M1-3br are connected. -Currents that are almost equal to each other flow between the drains. Like the current flowing between the source and drain of the transistor M1, the amount of the current is I ut .
  • the transistor M3r When “+7” is input to the circuit MP as the second data (the value of the signal of the neuron), the transistor M3r is turned on for the time t ut and the transistor M4r is turned off, so that the transistor M1r is connected from the wiring OLB.
  • the transistor M4-2br is turned on for a time 2t ut and the transistor M3-2br is turned off, so that the amount of charge flowing from the wiring OLB to the wiring VEr via the transistor M1-2br is 2t ut.
  • the first data (weighting coefficient) of “+1” is set in the circuit MP, and the transistor M3 and the transistor M3-included in the circuit MP are set in accordance with the positive second data (the value of the neuron signal).
  • the transistor M3-3b by selecting one or more transistors to be turned on, from the wiring OL, the amount of charge flowing through the wiring VE via the circuit MC, Q ut, 2Q ut, 3Q ut, 4Q ut It can be any one of 5Q ut , 6Q ut , and 7Q ut . Note that at this time, the amount of charge flowing from the wiring OLB to the wiring VEr through the circuit MCr becomes zero.
  • the first data (weighting coefficient) of "-1" is set in the circuit MP, and the transistor M3r and the transistor M3- included in the circuit MP are set in accordance with the positive second data (the value of the neuron signal).
  • the amount of charge flowing from the wiring OLB to the wiring VEr via the circuit MCr is changed to Q ut , 2Q ut , 3Q ut , 4Q ut. It can be any one of 5Q ut , 6Q ut , and 7Q ut . Note that at this time, the amount of charge flowing from the wiring OL to the wiring VE through the circuit MC is zero.
  • the first data (weighting coefficient) of “+1” is set in the circuit MP, and the transistor M4 and the transistor M4-2b included in the circuit MP are included in accordance with the negative second data (the value of the neuron signal).
  • One of the transistors to be turned on is selected from the transistors M4-3b to reduce the amount of charge flowing from the wiring OLB to the wiring VE through the circuit MC to Q ut , 2Q ut , 3Q ut , 4Q ut , It can be any one of 5Q ut , 6Q ut , and 7Q ut . Note that at this time, the amount of charge flowing from the wiring OL to the wiring VEr through the circuit MCr becomes zero.
  • the first data (weighting coefficient) of “ ⁇ 1” is set in the circuit MP, and the transistor M4r and the transistor M4 ⁇ included in the circuit MP are included in accordance with the negative second data (the value of the neuron signal).
  • 2br, transistors M4-3br by selecting one or more transistors to be turned on, from the wiring OL, the amount of charge flowing through the wiring VEr through the circuit MCr, Q ut, 2Q ut, 3Q ut, 4Q ut It can be any one of 5Q ut , 6Q ut , and 7Q ut . Note that at this time, the amount of charge flowing from the wiring OLB to the wiring VE through the circuit MC is zero.
  • the first data (weighting coefficient) set in the circuit MP is changed from “+1" to "A" which is a positive integer.
  • the transistor M1-2b respective sources of the transistors M1-3b - the amount of current flowing between the drain also becomes I A. Therefore, one or more transistors to be turned on are selected from the transistors M3, M3-2b, and M3-3b included in the circuit MP according to the second data (the value of the neuron signal).
  • the wiring OL the amount of charge flowing through the wiring VE via the circuit MC is, AQ ut, 2AQ ut, 3QA ut, 4AQ ut, 5AQ ut, 6AQ ut, made with any one of 7AQ ut.
  • the wiring VEr through the circuit MCr, AQ ut, 2AQ ut, 3QA ut, 4AQ ut, 5AQ ut, 6AQ ut, either 7AQ ut one The amount of electric charge of will flow.
  • the transistor M1 and the transistor M1r are off. Therefore, no current flows from the wiring OL or the wiring OLB to the wiring VE through the circuit MC, and no current flows from the wiring OL or the wiring OLB to the wiring VEr through the circuit MCr. In other words, the amount of charges flowing in each of the wiring OL and the wiring OLB can be zero.
  • the switches SWO and SWOB in FIG. 8A are used. Included in the circuit ACTF by turning on the switch SWI, the switch SWIB, the switch SWL, the switch SWLB, the switch SWH, and the switch SWHB to turn off the wirings OL and OLB and the circuit AFP.
  • the amount of charge flowing through the wiring OL and the wiring OLB can be accumulated in the capacitance of the integrating circuit.
  • circuit ACTF can output a signal z j (k) of the neurons corresponding to the charge amount Q OLB flowing to the charge amount Q OL flowing in the wiring OL line OLB.
  • the charge flowing in the wiring OL the charge amount Q OLB flowing to the amount Q OL wiring OLB described in the table below.
  • the product of the first data (weighting coefficient) and the second data (neuron signal value) can be calculated.
  • the amount of charge Q OL in which a current flows from the wiring OL to the circuit MC or the circuit MCr and the amount of charge Q OLB in which a current flows from the wiring OLB to the circuit MC or the circuit MCr are determined. If the product of the first data (weighting coefficient) and the second data (value of the signal of the neuron) is a positive value, a current flows from the wiring OL to the circuit MC or the circuit MCr, and the first data (weighting).
  • the result of the product of the coefficient) and the second data (the value of the signal of the neuron) is a negative value
  • a current flows from the wiring OLB to the circuit MC or the circuit MCr. That is, the product of the first data (weighting coefficient) and the second data (value of the signal of the neuron) can be calculated from the charge amount Q OL and the charge amount Q OLB .
  • the first data is set to “ ⁇ 1” or “+1”
  • the second data value of the signal of the neuron
  • the first data If the product of the (weighting coefficient) and the second data (the value of the neurons of the signal) is a positive number in the above table, the charge amount Q OL current flows from the wiring OL circuit MC or circuit MCr, Q By replacing ut with “+1”, the product of the first data (weighting coefficient) and the second data (signal value of the neuron) can be obtained from the charge quantity QOL .
  • the first data (weighting coefficient) is set to “ ⁇ 1” or “+1”
  • the second data (value of the signal of the neuron) is set to any one of “ ⁇ 7” to “+7”
  • the product of 1 data (weighting coefficient) and the second data (value of the signal of the neuron) is a negative number, in the above table, in the charge amount Q OLB in which a current flows from the wiring OL to the circuit MC or the circuit MCr.
  • Q ut with “ ⁇ 1” the product of the first data (weighting coefficient) and the second data (value of the neuron signal) can be obtained from the charge quantity Q OLB .
  • the first data (weighting coefficient) set in the circuit MP is set to “+1” and “ ⁇ 1”, but the first data (weighting coefficient) such as “0” or an analog value is used. You may calculate it.
  • the circuit MP causes the product-sum operation and/or the activation function of the first data (weighting coefficient) such as binary value, multi-valued value, and analog value and the multi-valued second data (value of the signal of the neuron) Can be calculated.
  • the positive multi-value, the negative multi-value, and 0 are defined as the second data (the value of the neuron signal).
  • the second data (the value of the signal of the neuron) can be treated as an analog value (by setting a to a positive real number and setting the input period to a ⁇ t ut ).
  • the time during which the M4-2br is on is 2t ut
  • the time during which the transistors M3-3b and M3-3br are on or the transistors M4-3b and M4-3br are on is 4t ut
  • High-level potential is input to the wiring WX1L
  • low-level potential is input to the wiring X2L
  • second data value of neuron signal
  • the semiconductor device of one embodiment of the present invention is not limited to the structure of the circuit MP in FIG.
  • the transistors for setting the amount of current there are three transistors M1, transistor M1-2b, and transistor M1-3b in the circuit MC, and there are three transistors M1r and M1 in the circuit MCr. -2br and three transistors M1-3br have been described, but in each of the circuit MC and the circuit MCr, the number of transistors for setting the amount of current may be two, or four or more.
  • the semiconductor device of one embodiment of the present invention and the operation method of the semiconductor device are not limited to the above.
  • the sizes of the transistor M1, the transistor M1r, the transistor M1-2b, the transistor M1-2br, the transistor M1-3b, and the transistor M1-3br of the circuit MP of FIG. 50 are the same, but, for example, the transistor M1.
  • the ratio of the W length and the L length of the transistor M1r, the transistor M1-2b, and the transistor M1-2br is W/L
  • the ratio of the W length and the L length of the transistor M1-3b and the transistor M1-3br is 2W/L.
  • the ratio of the W length and the L length of the transistor M1-2b and the W length and the L length of the transistor M1-3b are set. Since the length ratio and the length ratio are twice the W length and L length ratio of the transistor M1, 2I 1 flows as a current amount between the source and drain of each of the transistors M1-2b and M1-3b. ..
  • the ratio of the W length and the L length of the transistor M1-2br and the W length and the L length of the transistor M1-3br are set. Since the length ratio and the length ratio are respectively twice the W length and L length ratio of the transistor M1r, 2I 1 flows as a current amount between the source and drain of each of the transistors M1-2br and M1-3br. ..
  • the transistor M3, the transistor M3r is turned on, or the transistor M4, the time that transistor M4r is turned on and t ut, transistor M3-2b, the transistor M3-2br is turned on, or transistor M4-2b, the transistor M4
  • the time during which the ⁇ 2br is turned on is 2t ut
  • the time during which the transistors M3-3b and M3-3br are on or the transistors M4-3b and M4-3br are on is 2t ut .
  • the input time of the high-level potential to one of the wiring WX1L and the wiring X2L is t ut
  • one of the wiring X1L2b and the wiring X2L2b is input.
  • the input time of the high-level potential is 2 t ut
  • the input time of the high-level potential to one of the wiring X1L3b and the wiring X2L3b is 2 t ut .
  • a schematic diagram of the pulse voltage and an input time which are different from those in FIG. 50, are shown near the reference numerals of the wiring WX1L, the wiring X2L, the wiring X1L2b, the wiring X2L2b, the wiring X1L3b, and the wiring X2L3b.
  • the current I ut flows as a current amount between the source and the drain of the transistor M1r
  • one of the transistor M3-3br and the transistor M4-3br is turned on for a time of 2 t ut
  • the transistor M3-3br or When the other of the transistors M4-3br is turned off, the amount of charge flowing from the wiring OL or the wiring OLB to the wiring VE through the transistor M1-3br becomes 2t ut ⁇ 2I ut 4Q ut .
  • the circuit MP can operate similarly to the operation example of the circuit MP illustrated in FIG.
  • the semiconductor device of one embodiment of the present invention is not limited to the structure of the circuit MP in FIGS.
  • the transistors for setting the amount of current there are three transistors M1, transistor M1-2b, and transistor M1-3b in the circuit MC, and there are three transistors M1r and M1 in the circuit MCr.
  • -2br and three transistors M1-3br have been described, but the number of transistors for setting the amount of current may be two or four or more in each of the circuit MC and the circuit MCr. Further, the number of holding portions and the number of wirings may be increased or decreased depending on the transistor.
  • the operation method of the semiconductor device of one embodiment of the present invention is not limited to the above operation method.
  • the input period of a signal input to each of the wiring WX1L, the wiring X2L, the wiring X1L2b, the wiring X2L2b, the wiring X1L3b, and the wiring X2L3b may be divided into a plurality of sub-periods.
  • a neuron signal z j (k) corresponding to each amount of electric charge flowing in the.
  • operation circuit 150 of FIG. 11 is taken as an example in this operation example, but the same operation as this operation example can be performed by changing to another operation circuit depending on the situation.
  • each of the wiring VE and the wiring VEr electrically connected to the circuit MP supplies VSS as a constant voltage to the circuit MP.
  • each of the circuits ACTF[1] to ACTF[n] included in the circuit AFP is, for example, a circuit ACTF having a configuration of an integrating circuit (or a current/charge (IQ) conversion circuit).
  • the load LEa and the load LEb may be capacitors.
  • the transistor M1-3b, the transistor M1-3br, the transistor M3-3b, the transistor M3-3br, the transistor M4-3b, the transistor M4-3br, the holding unit HC-3b, and the holding unit HC-3b It has a configuration excluding the part HC-3br. Therefore, the wiring WX1L3b, the wiring X2L2b, and the wiring WL3b are also omitted from FIG. Further, it is preferable that the sizes of the transistor M1, the transistor M1r, the transistor M1-2b, and the transistor M1-2br, for example, the W length and the L length are equal to each other. Further, the example of the present operation method is different from the operation example of the circuit MP of FIG. 26 described in the second embodiment.
  • the input time of the high-level potential to one of the wiring WX1L and the wiring X2L is t ut
  • the high level to one of the wiring X1L2b and the wiring X2L2b is set. It is assumed that the input time of the potential is 2 t ut . That is, the transistor M3, the transistor M3r is turned on, or the transistor M4, when a time that transistor M4r is turned on and the t ut, transistor M3-2b, the transistor M3-2br is turned on, or transistor M4-2b, transistor It is operated so that the time during which the M4-2br is turned on is 2t ut .
  • the schematic diagram of the pulse voltage and the input time are provided near the reference numerals of the wiring WX1L, the wiring X2L, the wiring X1L2b, and the wiring X2L2b. Illustrated.
  • the first data (for example, a weighting coefficient is used here) is set in the circuit MP, and the time during which the transistor M3 or the transistor M4 is turned on is set. By determining, the amount of charge flowing from the wiring OL or the wiring OLB to the wiring VE through the transistor M1 is determined. Further, by setting the first data (weighting coefficient) in the circuit MP and determining the time for which the transistor M3r or the transistor M4r is in the on state, the current flows from the wiring OL or the wiring OLB to the wiring VER through the transistor M1r. The amount of charge is determined.
  • a weighting coefficient is used here
  • the amount of charge flowing from the wiring OL or the wiring OLB to the wiring VE through the transistor M1-2b and the amount of charge flowing from the wiring OL or the wiring OLB to the wiring VEr through the transistor M1-2br are also transistors. It is determined by determining the time during which each of the M3-2b, the transistor M3-2br, the transistor M4-2b, and the transistor M4-2br is in the ON state.
  • each holding section HC-2b As a digital value (binary), it is assumed that VSS, or V 1 is held.
  • the holding of the potential VSS in each of the holding portion HC and the holding portion HC-2b is performed by connecting the wiring VCN in FIG. 8 to the node n1 of the holding portion HC and/or the node n1 of the holding portion HC-2b in FIG. It is done by putting into a state.
  • a current is set between the source and drain of each of the transistor M1 and/or the transistor M1-2b as a current amount I 1. Shall be performed by.
  • the holding portions HC and HC-2b are affected by variations in transistor characteristics due to manufacturing steps of the transistors M1 and M1-2b.
  • the voltages held may be different from each other.
  • Each of the holding unit HCr and the holding unit HC-2br holds VSS or V 1 as a digital value (binary), as described above.
  • the first data (weighting coefficient) set in the circuit MP is defined.
  • the current amount I 1 is set to flow in the transistor M1, and the holding unit HC-2b, the holding unit HCr, and the holding unit HC ⁇ are set.
  • VSS is held in 2br. Since the first terminal of the transistor M1 is electrically connected to the wiring OL through the transistor M3 and electrically connected to the wiring OLB through the transistor M4, one of the wiring WX1L and the wiring X2L is at a high level.
  • the wiring WX1L or if the high level potential to one of the wiring X2L is input, via the transistor M1 from the wiring OL or wiring OLB, the amount of charge flowing through the wiring VE is t ut ⁇ I 1, and the wiring X1L2b
  • t ut ⁇ I 1 Qut. Note that the transistor M1r, the transistor M1-2b, and the transistor M1-2br are turned off, so that the amount of current flowing between the source and drain of each of the transistor M1, the transistor M1-2b, and the transistor M1-2br becomes zero.
  • VSS is held in the holding unit HC, the holding unit HCr, the holding unit HC-2b, and the holding unit HC-2br. Therefore, the amount of current flowing between the source and drain of each of the transistor M1, the transistor M1r, the transistor M1-2b, and the transistor M1-2br becomes zero.
  • the holding portion HC, the holding portion HCr, the holding portion HC-2b, and the holding portion HC-2br hold digital values (binary values), and the input period of the high-level potential to one of the wiring WX1L and the wiring X2L is t.
  • ut and the input period of the high-level potential to one of the wiring WX1L2b and the wiring X2L2b is set to 2t ut , so that multi-value (“-3”, “-2”, “ ⁇ 1”, “0” in this operation example) is obtained. It is possible to represent the first data (weighting coefficient) of “,” “+1”, “+2”, and “+3” (7 values).
  • the second data here, for example, a neuron signal
  • the second data when the second data is “+1”, the wiring WX1L
  • the high-level potential is input to the wiring X1L2b
  • the low-level potential is input to the wiring X2L and the wiring X2L2b.
  • the second data is “ ⁇ 1”
  • the low-level potential is input to the wiring WX1L and the wiring X1L2b.
  • the high level potential is input to the wiring X2L and the wiring X2L2b, and when the second data is “0”, the low level potential is input to the wiring WX1L, the wiring X1L2b, the wiring X2L, and the wiring X2L2b.
  • the second data is “0”
  • the low level potential is input to the wiring WX1L, the wiring X1L2b, the wiring X2L, and the wiring X2L2b.
  • circuit ACTF can output a signal z j (k) of the neurons corresponding to the charge amount Q OLB flowing to the charge amount Q OL flowing in the wiring OL line OLB.
  • the first data (weighting coefficient) is set to any one of "+3", “+2”, “+1”, “0”, “-1", “-2” and “-3", and the second data ( When the value of the signal of the neuron) is defined as described above, the amount of charge Q OL flowing in the wiring OL and the amount of charge Q OLB flowing in the wiring OLB are shown in the table below.
  • the product of the first data (weighting coefficient) and the second data (neuron signal value) can be calculated.
  • the amount of charge Q OL in which a current flows from the wiring OL to the circuit MC or the circuit MCr and the amount of charge Q OLB in which a current flows from the wiring OLB to the circuit MC or the circuit MCr are determined. If the product of the first data (weighting coefficient) and the second data (value of the signal of the neuron) is a positive value, a current flows from the wiring OL to the circuit MC or the circuit MCr, and the first data (weighting).
  • the result of the product of the coefficient) and the second data (the value of the signal of the neuron) is a negative value
  • a current flows from the wiring OLB to the circuit MC or the circuit MCr. That is, the product of the first data (weighting coefficient) and the second data (value of the signal of the neuron) can be calculated from the charge amount Q OL and the charge amount Q OLB .
  • the first data (weighting coefficient) is “ ⁇ 3” to “+3”
  • the second data (the value of the neuron signal) is one of “ ⁇ 1”, “0”, and “+1”
  • the charge amount Q in which a current flows from the wiring OL to the circuit MC or the circuit MCr is replaced by replacing Q ut with “+1” in the OL .
  • the first data (weighting coefficient) is set to “ ⁇ 1” or “+1”
  • the second data (value of the signal of the neuron) is set to any one of “ ⁇ 7” to “+7”
  • the product of 1 data (weighting coefficient) and the second data (value of the signal of the neuron) is a negative number, in the above table, in the charge amount Q OLB in which a current flows from the wiring OL to the circuit MC or the circuit MCr.
  • Q ut is replaced with “ ⁇ 1”
  • the product of the first data (weighting coefficient) and the second data (value of the neuron signal) can be obtained from the charge quantity Q OLB .
  • the first data (weighting coefficient) set in the circuit MP is set to “+3”, “+2”, “+1”, “0”, “ ⁇ 1”, “ ⁇ 2”, “ ⁇ ”.
  • the first data (weighting coefficient) may be used as an analog value or the like by adjusting the time for inputting the high-level potential to the wiring WX1L, the wiring X2L, the wiring X1L2b, and the wiring X2L2b.
  • the circuit MP can perform the product-sum operation of the first data (weighting coefficient) such as an analog value and the multivalued second data (the value of the signal of the neuron) and/or the activation function. it can.
  • the semiconductor device of one embodiment of the present invention is not limited to the structure of the circuit MP in FIG.
  • the circuit MP of FIG. 52 two transistors M1 and M1-2b are provided in the circuit MC as transistors for setting the amount of current, and two transistors M1r and M1-2br are provided in the circuit MCr.
  • the number of transistors for setting the amount of current may be three or more.
  • the number of holding portions and the number of wirings may be increased or decreased depending on the transistor.
  • the method for operating the semiconductor device of one embodiment of the present invention is not limited to the above.
  • the input period of a signal input to each of the wiring WX1L, the wiring X2L, the wiring X1L2b, and the wiring X2L2b may be divided into a plurality of sub-periods.
  • a neuron signal z j (k) corresponding to each amount of electric charge flowing in the.
  • operation circuit 150 of FIG. 11 is taken as an example in this operation example, but the same operation as this operation example can be performed by changing to another operation circuit depending on the situation.
  • each of the wiring VE and the wiring VEr electrically connected to the circuit MP supplies VSS as a constant voltage to the circuit MP.
  • each of the circuits ACTF[1] to ACTF[n] included in the circuit AFP is, for example, a circuit ACTF having a configuration of an integrating circuit (or a current/charge (IQ) conversion circuit).
  • the load LEa and the load LEb may be capacitors.
  • FIG. 53 is a circuit diagram of the circuit MP shown in FIG. 29.
  • the example of this operation method is different from the operation example of the circuit MP of FIG. 29 described in the second embodiment.
  • the wiring WX1L or the wiring WX1L is input according to the second data (the value of the signal of the neuron).
  • the input time of the high level potential to one of X2L is set. That is, the time for which the transistor M3 and the transistor M3r are on or the transistor M4 and the transistor M4r are on is set.
  • the first data for example, a weighting coefficient here
  • the amount of charge flowing from the OL or the wiring OLB to the wiring VE through the transistor M1 is determined.
  • the first data (weighting coefficient) in the circuit MP and determining the time for which the transistor M3r or the transistor M4r is in the on state the current flows from the wiring OL or the wiring OLB to the wiring VER through the transistor M1r. The amount of charge is determined.
  • the second data (the value of the signal of the neuron) is “+1”
  • the input period of the high level potential to the wiring X1L is t ut
  • the high level potential is applied to the wiring X1L
  • the low level potential is applied to the wiring X2L.
  • other second data values of neuron signals
  • the circuit HCS and the circuit HCSr as described in the configuration example 5 of the second embodiment, the configuration having the SRAM or the configuration having the NOSRAM can be adopted.
  • the circuit HCS and the circuit HCSr hold binary (digital value) potentials. Therefore, as an example, when the first data (weighting coefficient) set in the circuit MP is “+1”, the circuit HCS has a high level potential (here, for example, VDDL) and the circuit HCSr has a low level potential ( Here, for example, VSS) is held, and when the first data (weighting coefficient) set in the circuit MP is “ ⁇ 1”, the circuit HCS has a low level potential and the circuit HCSr has a high level potential. When the level potential is held, and when the first data (weighting coefficient) set in the circuit MP is set to “0”, the circuit HCS holds the low level potential and the circuit HCSr holds the low level potential. And
  • the amount of current flowing through the transistor M1 is I 1 .
  • the amount of current flowing through the transistor M1 is set to zero.
  • the amount of current flowing in the transistor M1r is set to I 1
  • the amount of current flowing in the transistor M1r is set to 0. ..
  • the first data (weighting coefficient) of “+1” is set in the circuit MP in advance.
  • the transistor M3 When “+3” is input to the circuit MP as the second data (the value of the signal of the neuron), the transistor M3 is turned on for the time 3t ut and the transistor M4 is turned off.
  • the amount of charge flowing from the wiring OLB to the wiring VEr via the circuit MCr becomes 0 because the transistor M1r is in the off state.
  • the transistor M3 When “+3” is input to the circuit MP as the second data (the value of the signal of the neuron), the transistor M3 is turned on for the time 3t ut and the transistor M4 is turned off.
  • the amount of charge flowing from the wiring OL to the wiring VE through the circuit MCr becomes 0 because the transistor M1 is off.
  • circuit ACTF can output a signal z j (k) of the neurons corresponding to the charge amount Q OLB flowing to the charge amount Q OL flowing in the wiring OL line OLB.
  • the charge flowing in the wiring OL the charge amount Q OLB flowing to the amount Q OL wiring OLB described in the table below.
  • the second data (the value of the neuron signal) is an integer other than "-3", “-2", “-1”, “0”, “+1", “+2", “+3”, or a real number.
  • the input time of the high-level potential to one of the wiring X1L and the wiring X2L may be set in accordance with an integer or a real number. For example, when a is a positive real number and the input period is a ⁇ t ut , the second data (the value of the neuron signal) can be treated as an analog value.
  • the second data (the value of the signal of the neuron) can be given to the circuit MP as multivalued, as in the case of the operation method examples 1 to 3.
  • FIG. 54A shows a specific example showing the details of the circuit MP of FIG. 53 as a configuration in which the circuits HCS and HCSr have SRAMs. Note that the description of the circuit MP in FIG. 30 is referred to for the reference numerals, the first data (weight data) holding method, and the like described in FIG. 54A.
  • the potential held in the circuit HCS is one of a low level potential and the high level potential
  • the potential held in the circuit HCSr is one of the low level potential and the high level potential.
  • the circuit MP of FIG. 54A can be changed to the circuit MP of FIG. 54B.
  • the circuit MP in FIG. 54B has a circuit HCS in the circuit MC, and is configured to give an inverted signal of a signal given to the gate of the transistor M1 to the transistor M1r by an inverter loop circuit IVR included in the circuit HCS. There is.
  • the first data (weight) set in the circuit MP is set.
  • Coefficient can be set to “+1”, and a low level potential is applied to the gate of the transistor M1 (a high level potential is applied to the gate of the transistor M1r).
  • One data (weighting coefficient) can be "-1".
  • 55A shows a configuration example in which the circuit HCS and the circuit HCSr have an inverter loop circuit IVR and is different from the circuit MP in FIG. 54A.
  • 55A includes a circuit HCS including an inverter loop circuit IVR, transistors M3 and M4 in the circuit MC, a circuit HCSr including an inverter loop circuit IVRr in the circuit MCr, a transistor M3r, and a transistor M4r.
  • the inverter loop circuit IVR has an inverter circuit IV1 and an inverter circuit IV2
  • the inverter loop circuit IVRr has an inverter circuit IV1r and an inverter circuit IV2r.
  • the output terminal of the inverter circuit IV1 is electrically connected to the input terminal of the inverter circuit IV2, the first terminal of the transistor M3, and the first terminal of the transistor M4, and the output terminal of the inverter circuit IV2 is connected to the inverter circuit IV1. Is electrically connected to the input terminal of.
  • the second terminal of the transistor M3 is electrically connected to the wiring OL, and the gate of the transistor M3 is electrically connected to the wiring WX1L.
  • the second terminal of the transistor M4 is electrically connected to the wiring OLB, and the gate of the transistor M4 is electrically connected to the wiring X2L.
  • the output terminal of the inverter circuit IV1r is electrically connected to the input terminal of the inverter circuit IV2r, the first terminal of the transistor M3r, and the first terminal of the transistor M4r, and the output terminal of the inverter circuit IV2r is connected to the inverter circuit IV1r. Is electrically connected to the input terminal of.
  • the second terminal of the transistor M3r is electrically connected to the wiring OLB, and the gate of the transistor M3r is electrically connected to the wiring WX1L.
  • the second terminal of the transistor M4r is electrically connected to the wiring OL, and the gate of the transistor M4r is electrically connected to the wiring X2L.
  • the circuit HCS has a function of holding one of a high level potential and a low level potential at the output terminal of the inverter circuit IV1 by the inverter loop circuit IVR, and the circuit HCSr outputs the output of the inverter circuit IV1 by the inverter loop circuit IVRr.
  • the terminal has a function of holding one of a high-level potential and a low-level potential. Therefore, similarly to FIGS.
  • the input of the second data (the value of the signal of the neuron) to the circuit MP of FIG. 55A sets the input time of the high-level potential to one of the wiring WX1L and the wiring X2L. do it.
  • the circuit MP of FIG. 55A is different from the circuits MP of FIG. 53, FIG. 54A, and FIG. 54B by using a transistor included in the inverter loop circuit IVR of the circuit HCS to supply current to the circuit MC from the wiring OL or the wiring OLB. And a transistor included in the inverter loop circuit IVRr of the circuit HCSr is used to flow a current from the wiring OL or the wiring OLB to the circuit MCr.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Neurology (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Logic Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

少ない消費電力で積和演算が可能な半導体装置を提供する。 第1、第2回路と、を有する半導体装置であって、第1回路は、第1保持部と、第1トランジスタと、を有し、第2回路は、第2保持部と、第2トランジスタと、を有する。第1、第2回路のそれぞれは、第1、第2入力配線と、第1、第2配線と、に電気的に接続されている。第1保持部は、第1トランジスタに流れる第1電流を保持する機能を有し、第2保持部は、第2トランジスタに流れる第2電流を保持する機能を有する。また、第1、第2電流は、第1データに応じて定まる。第1、第2入力配線に、第2データに応じた電位が入力されることによって、第1回路は、第1配線又は第2配線の一方に電流を出力し、第2回路は、第1配線又は第2配線の他方に電流を出力する。第1、第2回路が第1配線又は第2配線に出力する電流の量は、第1データと第2データと、に応じて決まる。

Description

半導体装置、及び電子機器
 本発明の一態様は、半導体装置、及び電子機器に関する。
 なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、又は、製造方法に関するものである。又は、本発明の一態様は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、蓄電装置、撮像装置、記憶装置、信号処理装置、プロセッサ、電子機器、システム、それらの駆動方法、それらの製造方法、又はそれらの検査方法を一例として挙げることができる。
 現在、人間の脳の仕組みを模した集積回路の開発が盛んに進められている。当該集積回路は、脳の仕組みが電子回路として組み込まれており、人間の脳の「ニューロン」と「シナプス」に相当する回路を有する。そのため、そのような集積回路を、「ニューロモーフィック」や「ブレインモーフィック」や「ブレインインスパイア」と呼ぶこともある。当該集積回路は、非ノイマン型アーキテクチャを有し、処理速度の増加に伴って消費電力が大きくなるノイマン型アーキテクチャと比較して、極めて少ない消費電力で並列処理を行えると期待されている。
「ニューロン」と「シナプス」とを有する神経回路網を模した情報処理のモデルは、人工ニューラルネットワーク(ANN)と呼ばれる。例えば、非特許文献1、及び非特許文献2には、SRAM(Static Random Access Memory)を用いて、人工ニューラルネットワークを構成した演算装置について開示されている。
M.Kang et al.,"IEEE Journal Of Solid−State Circuits",2018,Volume 53,No.2,p.642−655. J.Zhang et al.,"IEEE Journal Of Solid−State Circuits",2017,Volume 52,No.4,p.915−924.
 人工ニューラルネットワークでは、2つのニューロン同士を結合するシナプスの結合強度(重み係数という場合がある。)と、2つのニューロン間で伝達する信号と、を乗じる計算が行われる。特に、階層型の人工ニューラルネットワークでは、第1層の複数の第1ニューロンと第2層の第2ニューロンの一との間のそれぞれのシナプスの結合強度と、第1層の複数の第1ニューロンから第2層の第2ニューロンの一に入力されるそれぞれの信号と、を乗じて足し合わせる必要があり、人工ニューラルネットワークの規模に応じて、例えば、当該結合強度の数、当該信号を示すパラメータの数が決まる。つまり、人工ニューラルネットワークは、階層の数、ニューロン数などが多くなる程、「ニューロン」及び「シナプス」のそれぞれに相当する回路の数が多くなり、演算量も膨大になることがある。
 チップを構成する回路の数が増えると消費電力が高くなり、装置の駆動時に発生する発熱量も大きくなる。特に、発熱量が高くなるほど、チップに含まれている回路素子の特性に影響が出るため、チップを構成する回路は温度による影響を受けにくい回路素子を有することが好ましい。また、チップに含まれているトランジスタや電流源などの特性がばらつくと、演算結果もばらついてしまう。
 本発明の一態様は、階層型の人工ニューラルネットワークが構築された半導体装置などを提供することを課題の一とする。又は、本発明の一態様は、消費電力が低い半導体装置などを提供することを課題の一とする。又は、本発明の一態様は、環境の温度の影響を受けにくい半導体装置などを提供することを課題の一とする。又は、本発明の一態様は、トランジスタの特性ばらつきの影響を受けにくい半導体装置などを提供することを課題の一とする。又は、本発明の一態様は、電流源の特性ばらつきの影響を受けにくい半導体装置などを提供することを課題の一とする。又は、本発明の一態様は、新規な半導体装置などを提供することを課題の一とする。
 なお本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した課題、及び他の課題のうち、少なくとも一つの課題を解決するものである。なお、本発明の一態様は、上記列挙した課題、及び他の課題の全てを解決する必要はない。
(1)
 本発明の一態様は、第1回路と、第2回路と、を有する半導体装置であって、第1回路は、第1保持部と、第1駆動トランジスタと、を有し、第2回路は、第2保持部と、第2駆動トランジスタと、を有し、第1回路は、第1入力配線、第2入力配線、第1配線、及び、第2配線に電気的に接続され、第2回路は、第1入力配線、第2入力配線、第1配線、及び、第2配線に電気的に接続され、第1保持部は、第1配線から第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、第2保持部は、第2配線から第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、第1駆動トランジスタは、第1駆動トランジスタのソース−ドレイン間において、保持された第1電位に応じた第1電流を流す機能を有し、第2駆動トランジスタは、第2駆動トランジスタのソース−ドレイン間において、保持された第2電位に応じた第2電流を流す機能を有し、第1回路は、第1入力配線に第1レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第1電流を第1配線に出力する機能と、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第1レベル電位が入力されたときに、第1電流を第2配線に出力する機能と、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第1電流を第1配線、及び第2配線に出力しない機能と、を有し、第2回路は、第1入力配線に第1レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第2電流を第2配線に出力する機能と、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第1レベル電位が入力されたときに、第2電流を第1配線に出力する機能と、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第2電流を第1配線、及び第2配線に出力しない機能と、を有し、第1電流、第2電流のそれぞれは、第1データに応じた電流量を有し、第1入力配線、第2入力配線、第3入力配線、第4入力配線のそれぞれに入力される第1レベル電位、第2レベル電位は、第2データに応じて決められる、半導体装置である。
(2)
 又は、本発明の一態様は、第1回路と、第2回路と、を有する半導体装置であって、第1回路は、第1保持部と、第1駆動トランジスタと、を有し、第2回路は、第2保持部と、第2駆動トランジスタと、を有し、第1回路は、第1入力配線、第2入力配線、第1配線、及び、第2配線に電気的に接続され、第2回路は、第1入力配線、第2入力配線、第1配線、及び、第2配線に電気的に接続され、第1保持部は、第1配線から第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、第2保持部は、第2配線から第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、第1駆動トランジスタは、第1駆動トランジスタのソース−ドレイン間において、保持された第1電位に応じた第1電流を流す機能を有し、第2駆動トランジスタは、第2駆動トランジスタのソース−ドレイン間において、保持された第2電位に応じた第2電流を流す機能を有し、第1回路は、第1期間に、第1入力配線に第1レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第1電流を第1配線に出力する機能と、第1期間に、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第1レベル電位が入力されたときに、第1電流を第2配線に出力する機能と、第1期間に、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第1電流を第1配線、及び第2配線に出力しない機能と、を有し、第2回路は、第1期間に、第1入力配線に第1レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第2電流を第2配線に出力する機能と、第1期間に、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第1レベル電位が入力されたときに、第2電流を第1配線に出力する機能と、第1期間に、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第2電流を第1配線、及び第2配線に出力しない機能と、を有し、第1電流、第2電流のそれぞれは、第1データに応じた電流量を有し、第1入力配線、第2入力配線のそれぞれに入力される第1レベル電位、第2レベル電位、及び第1期間の長さは、第2データに応じて決められる、半導体装置である。
(3)
 又は、本発明の一態様は、上記(2)の構成において、第1期間は、第2期間と、第3期間と、を有し、第1入力配線は、第2期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第2入力配線は、第2期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を出力する機能を有し、第1入力配線は、第3期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第2入力配線は、第3期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を出力する機能を有し、第3期間の長さは、第2期間の長さの2倍である、半導体装置である。
(4)
 又は、本発明の一態様は、上記(1)乃至(3)のいずれか一の構成において、第1回路は、第1トランジスタと、第2トランジスタと、第3トランジスタと、第1容量と、を有し、第2回路は、第4トランジスタと、第5トランジスタと、第6トランジスタと、第2容量と、を有し、第1保持部は、第1トランジスタと、第1容量と、を有し、第2保持部は、第4トランジスタと、第2容量と、を有し、第1トランジスタの第1端子は、第1容量の第1端子と、第1駆動トランジスタのゲートに電気的に接続され、第1トランジスタの第2端子は、第1配線に電気的に接続され、第1駆動トランジスタの第1端子は、第2トランジスタの第1端子と、第3トランジスタの第1端子と、に電気的に接続され、第2トランジスタの第2端子は、第1配線に電気的に接続され、第2トランジスタのゲートは、第1入力配線に電気的に接続され、第3トランジスタの第2端子は、第2配線に電気的に接続され、第3トランジスタのゲートは、第2入力配線に電気的に接続され、第4トランジスタの第1端子は、第2容量の第1端子と、第2駆動トランジスタのゲートに電気的に接続され、第4トランジスタの第2端子は、第2配線に電気的に接続され、第2駆動トランジスタの第1端子は、第5トランジスタの第1端子と、第6トランジスタの第1端子と、に電気的に接続され、第5トランジスタの第2端子は、第2配線に電気的に接続され、第5トランジスタのゲートは、第1入力配線に電気的に接続され、第6トランジスタの第2端子は、第1配線に電気的に接続され、第6トランジスタのゲートは、第2入力配線に電気的に接続されている、半導体装置である。
(5)
 又は、本発明の一態様は、上記(4)の構成において、第1回路は、第7トランジスタを有し、第2回路は、第8トランジスタを有し、第7トランジスタの第1端子は、第1駆動トランジスタの第1端子と、第2トランジスタの第1端子と、第3トランジスタの第1端子と、に電気的に接続され、第7トランジスタの第2端子は、第1トランジスタの第1端子、又は第2端子の一方に電気的に接続され、第8トランジスタの第1端子は、第2駆動トランジスタの第1端子と、第5トランジスタの第1端子と、第6トランジスタの第1端子と、に電気的に接続され、第8トランジスタの第2端子は、第4トランジスタの第1端子、又は第2端子の一方に電気的に接続され、第1トランジスタのゲートは、第4トランジスタのゲートと、第7トランジスタのゲートと、第8トランジスタのゲートと、に電気的に接続されている、半導体装置である。
(6)
 又は、本発明の一態様は、上記(1)乃至(3)のいずれか一の構成において、第1回路は、第1トランジスタ、第2トランジスタ、第3トランジスタと、第1容量と、を有し、第2回路は、第4トランジスタ、第5トランジスタ、第6トランジスタと、第2容量と、を有し、第1保持部は、第1トランジスタと、第1容量と、を有し、第2保持部は、第4トランジスタと、第2容量と、を有し、第1トランジスタの第1端子は、第1容量の第1端子と、第1駆動トランジスタのゲートに電気的に接続され、第1駆動トランジスタの第1端子は、第1トランジスタの第2端子と、第2トランジスタの第1端子と、第3トランジスタの第1端子と、に電気的に接続され、第2トランジスタの第2端子は、第1配線に電気的に接続され、第2トランジスタのゲートは、第1入力配線に電気的に接続され、第3トランジスタの第2端子は、第2配線に電気的に接続され、第3トランジスタのゲートは、第2入力配線に電気的に接続され、第4トランジスタの第1端子は、第2容量の第1端子と、第2駆動トランジスタのゲートに電気的に接続され、第2駆動トランジスタの第1端子は、第4トランジスタの第2端子と、第5トランジスタの第1端子と、第6トランジスタの第1端子と、に電気的に接続され、第5トランジスタの第2端子は、第2配線に電気的に接続され、第5トランジスタのゲートは、第1入力配線に電気的に接続され、第6トランジスタの第2端子は、第1配線に電気的に接続され、第6トランジスタのゲートは、第2入力配線に電気的に接続されている、半導体装置である。
(7)
 又は、本発明の一態様は、上記(1)乃至(3)のいずれか一の構成において、第1回路は、第3保持部と、第3駆動トランジスタと、を有し、第2回路は、第4保持部と、第4駆動トランジスタと、を有し、第1回路は、第3配線に電気的に接続され、第2回路は、第3配線に電気的に接続され、第3保持部は、第1配線から第3駆動トランジスタのソース−ドレイン間に流れる第3電流に応じた第3電位を保持する機能を有し、第4保持部は、第2配線から第4駆動トランジスタのソース−ドレイン間に流れる第4電流に応じた第4電位を保持する機能を有し、第3駆動トランジスタは、第3駆動トランジスタのソース−ドレイン間において、保持された第3電位に応じた第3電流を流す機能を有し、第4駆動トランジスタは、第4駆動トランジスタのソース−ドレイン間において、保持された第4電位に応じた第4電流を流す機能を有し、第3配線に入力される信号に応じて、第1配線又は第2配線の一方に流れる第1電流を第3電流に切り替え、かつ第1配線又は第2配線の他方に流れる第2電流を第4電流に切り替える機能を有する、半導体装置である。
(8)
 又は、本発明の一態様は、上記(1)乃至(7)のいずれか一の構成において、第3回路と、第4回路と、第5回路と、を有し、第3回路は、第1配線を介して、第1回路に、第1データに応じた第1電流を供給する機能と、第2配線を介して、第2回路に、第1データに応じた第2電流を供給する機能と、第4回路は、第2データに応じて、第1入力配線に、第1レベル電位又は第2レベル電位を入力する機能と、第2データに応じて、第2入力配線に、第1レベル電位又は第2レベル電位を入力する機能と、を有し、第5回路は、第1配線と、第2配線と、のそれぞれから流れる電流を比較して、第5回路の出力端子から、第1データと第2データの積に応じた電位を出力する機能を有する半導体装置である。
(9)
 又は、本発明の一態様は、第1回路と、第2回路と、を有する半導体装置であって、第1回路は、第1保持部と、第1駆動トランジスタと、第3駆動トランジスタと、を有し、第2回路は、第2保持部と、第2駆動トランジスタと、第4駆動トランジスタと、を有し、第1回路は、第1入力配線、第2入力配線、第3入力配線、第4入力配線、第1配線、及び、第2配線に電気的に接続され、第2回路は、第1入力配線、第2入力配線、第3入力配線、第4入力配線、第1配線、及び、第2配線に電気的に接続され、第1保持部は、第1配線から第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、第2保持部は、第2配線から第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、第1駆動トランジスタは、第1駆動トランジスタのソース−ドレイン間において、保持された第1電位に応じた第1電流を流す機能を有し、第2駆動トランジスタは、第2駆動トランジスタのソース−ドレイン間において、保持された第2電位に応じた第2電流を流す機能を有し、第3駆動トランジスタは、第3駆動トランジスタのソース−ドレイン間において、保持された第1電位に応じた第3電流を流す機能を有し、第4駆動トランジスタは、第4駆動トランジスタのソース−ドレイン間において、保持された第2電位に応じた第4電流を流す機能を有し、第1回路は、第1入力配線に第1レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第1電流を第1配線に出力する機能と、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第1レベル電位が入力されたときに、第1電流を第2配線に出力する機能と、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第1電流を第1配線、及び第2配線に出力しない機能と、第3入力配線に第1レベル電位が入力され、かつ第4入力配線に第2レベル電位が入力されたときに、第3電流を第1配線に出力する機能と、第3入力配線に第2レベル電位が入力され、かつ第4入力配線に第1レベル電位が入力されたときに、第3電流を第2配線に出力する機能と、第3入力配線に第2レベル電位が入力され、かつ第4入力配線に第2レベル電位が入力されたときに、第3電流を第1配線、及び第2配線に出力しない機能と、を有し、第2回路は、第1入力配線に第1レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第2電流を第2配線に出力する機能と、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第1レベル電位が入力されたときに、第2電流を第1配線に出力する機能と、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第2電流を第1配線、及び第2配線に出力しない機能と、第3入力配線に第1レベル電位が入力され、かつ第4入力配線に第2レベル電位が入力されたときに、第4電流を第2配線に出力する機能と、第3入力配線に第2レベル電位が入力され、かつ第4入力配線に第1レベル電位が入力されたときに、第4電流を第1配線に出力する機能と、第3入力配線に第2レベル電位が入力され、かつ第4入力配線に第2レベル電位が入力されたときに、第4電流を第1配線、及び第2配線に出力しない機能と、を有し、第1電流、第2電流、第3電流、第4電流のそれぞれは、第1データに応じた電流量を有し、第1入力配線、第2入力配線、第3入力配線、第4入力配線のそれぞれに入力される第1レベル電位、第2レベル電位は、第2データに応じて決められる、半導体装置である。
(10)
 又は、本発明の一態様は、第1回路と、第2回路と、を有する半導体装置であって、第1回路は、第1保持部と、第1駆動トランジスタと、第3駆動トランジスタと、を有し、第2回路は、第2保持部と、第2駆動トランジスタと、第4駆動トランジスタと、を有し、第1回路は、第1入力配線、第2入力配線、第3入力配線、第4入力配線、第1配線、及び、第2配線に電気的に接続され、第2回路は、第1入力配線、第2入力配線、第3入力配線、第4入力配線、第1配線、及び、第2配線に電気的に接続され、第1保持部は、第1配線から第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、第2保持部は、第2配線から第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、第1駆動トランジスタは、第1駆動トランジスタのソース−ドレイン間において、保持された第1電位に応じた第1電流を流す機能を有し、第2駆動トランジスタは、第2駆動トランジスタのソース−ドレイン間において、保持された第2電位に応じた第2電流を流す機能を有し、第3駆動トランジスタは、第3駆動トランジスタのソース−ドレイン間において、保持された第1電位に応じた第3電流を流す機能を有し、第4駆動トランジスタは、第4駆動トランジスタのソース−ドレイン間において、保持された第2電位に応じた第4電流を流す機能を有し、第1回路は、第1期間に、第1入力配線に第1レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第1電流を第1配線に出力する機能と、第1期間に、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第1レベル電位が入力されたときに、第1電流を第2配線に出力する機能と、第1期間に、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第1電流を第1配線、及び第2配線に出力しない機能と、第1期間に、第3入力配線に第1レベル電位が入力され、かつ第4入力配線に第2レベル電位が入力されたときに、第3電流を第1配線に出力する機能と、第1期間に、第3入力配線に第2レベル電位が入力され、かつ第4入力配線に第1レベル電位が入力されたときに、第3電流を第2配線に出力する機能と、第1期間に、第3入力配線に第2レベル電位が入力され、かつ第4入力配線に第2レベル電位が入力されたときに、第3電流を第1配線、及び第2配線に出力しない機能と、を有し、第2回路は、第1期間に、第1入力配線に第1レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第2電流を第2配線に出力する機能と、第1期間に、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第1レベル電位が入力されたときに、第2電流を第1配線に出力する機能と、第1期間に、第1入力配線に第2レベル電位が入力され、かつ第2入力配線に第2レベル電位が入力されたときに、第2電流を第1配線、及び第2配線に出力しない機能と、第1期間に、第3入力配線に第1レベル電位が入力され、かつ第4入力配線に第2レベル電位が入力されたときに、第4電流を第2配線に出力する機能と、第1期間に、第3入力配線に第2レベル電位が入力され、かつ第4入力配線に第1レベル電位が入力されたときに、第4電流を第1配線に出力する機能と、第1期間に、第3入力配線に第2レベル電位が入力され、かつ第4入力配線に第2レベル電位が入力されたときに、第4電流を第1配線、及び第2配線に出力しない機能と、を有し、第1電流、第2電流、第3電流、第4電流のそれぞれは、第1データに応じた電流量を有し、第1入力配線、第2入力配線、第3入力配線、第4入力配線のそれぞれに入力される第1レベル電位、第2レベル電位、及び第1期間の長さは、第2データに応じて決められる、半導体装置である。
(11)
 又は、本発明の一態様は、上記(10)の構成において、第1期間は、第2期間と、第3期間と、を有し、第1入力配線は、第2期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第2入力配線は、第2期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第3入力配線は、第2期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第4入力配線は、第2期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第1入力配線は、第3期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第2入力配線は、第3期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第3入力配線は、第3期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第4入力配線は、第3期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第3期間の長さは、第2期間の長さの2倍である、半導体装置である。
(12)
 又は、本発明の一態様は、上記(9)乃至(11)のいずれか一の構成において、第3回路と、第4回路と、第5回路と、を有し、第3回路は、第1配線を介して、第1回路に、第1データに応じた第1電流を供給する機能と、第2配線を介して、第2回路に、第1データに応じた第2電流を供給する機能と、第4回路は、第1入力配線に、第2データに応じて、第1レベル電位又は第2レベル電位を入力する機能と、第2入力配線に、第2データに応じて、第1レベル電位又は第2レベル電位を入力する機能と、第3入力配線に、第2データに応じて、第1レベル電位又は第2レベル電位を入力する機能と、第4入力配線に、第2データに応じて、第1レベル電位又は第2レベル電位を入力する機能と、を有し、第5回路は、第1配線と、第2配線と、のそれぞれから流れる電流を比較して、第5回路の出力端子から、第1データと第2データの積に応じた電位を出力する機能を有する半導体装置である。
(13)
 又は、本発明の一態様は、第1回路と、第2回路と、を有する半導体装置であって、第1回路は、第1保持部と、第1駆動トランジスタと、を有し、第2回路は、第2保持部と、第2駆動トランジスタと、を有し、第1回路は、第1入力配線、及び第1配線に電気的に接続され、第2回路は、第1入力配線、及び第2配線に電気的に接続され、第1保持部は、第1配線から第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、第2保持部は、第2配線から第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、第1駆動トランジスタは、第1駆動トランジスタのソース−ドレイン間において、保持された第1電位に応じた第1電流を流す機能を有し、第2駆動トランジスタは、第2駆動トランジスタのソース−ドレイン間において、保持された第2電位に応じた第2電流を流す機能を有し、第1回路は、第1入力配線に第1レベル電位が入力されたときに、第1電流を第1配線に出力する機能と、第1入力配線に第2レベル電位が入力されたときに、第1電流を第1配線に出力しない機能と、を有し、第2回路は、第1入力配線に第1レベル電位が入力されたときに、第2電流を第2配線に出力する機能と、第1入力配線に第2レベル電位が入力されたときに、第2電流を第2配線に出力しない機能と、を有し、第1電流、第2電流のそれぞれは、第1データに応じた電流量を有し、第1入力配線、第2入力配線のそれぞれに入力される第1レベル電位、第2レベル電位は、第2データに応じて決められる、半導体装置である。
(14)
 又は、本発明の一態様は、第1回路と、第2回路と、を有する半導体装置であって、第1回路は、第1保持部と、第1駆動トランジスタと、を有し、第2回路は、第2保持部と、第2駆動トランジスタと、を有し、第1回路は、第1入力配線、及び第1配線に電気的に接続され、第2回路は、第1入力配線、及び第2配線に電気的に接続され、第1保持部は、第1配線から第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、第2保持部は、第2配線から第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、第1駆動トランジスタは、第1駆動トランジスタのソース−ドレイン間において、保持された第1電位に応じた第1電流を流す機能を有し、第2駆動トランジスタは、第2駆動トランジスタのソース−ドレイン間において、保持された第2電位に応じた第2電流を流す機能を有し、第1回路は、第1期間に、第1入力配線に第1レベル電位が入力されたときに、第1電流を第1配線に出力する機能と、第1期間に、第1入力配線に第2レベル電位が入力されたときに、第1電流を第1配線に出力しない機能と、を有し、第2回路は、第1期間に、第1入力配線に第1レベル電位が入力されたときに、第2電流を第2配線に出力する機能と、第1期間に、第1入力配線に第2レベル電位が入力されたときに、第2電流を第2配線に出力しない機能と、を有し、第1電流、第2電流のそれぞれは、第1データに応じた電流量を有し、第1入力配線、第2入力配線のそれぞれに入力される第1レベル電位、第2レベル電位は、第2データに応じて決められる、半導体装置である。
(15)
 又は、本発明の一態様は、上記(14)の構成において、第1期間は、第2期間と、第3期間と、を有し、第1入力配線は、第2期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第1入力配線は、第3期間において、第1回路及び第2回路の両方に第1レベル電位又は第2レベル電位を与える機能を有し、第3期間の長さは、第2期間の長さの2倍である、半導体装置である。
(16)
 又は、本発明の一態様は、上記(13)乃至(15)のいずれか一の構成において、第1回路は、第1トランジスタと、第2トランジスタと、第1容量と、を有し、第2回路は、第4トランジスタと、第5トランジスタと、第2容量と、を有し、第1保持部は、第1トランジスタと、第1容量と、を有し、第2保持部は、第4トランジスタと、第2容量と、を有し、第1トランジスタの第1端子は、第1容量の第1端子と、第1駆動トランジスタのゲートに電気的に接続され、第1トランジスタの第2端子は、第1配線に電気的に接続され、第1駆動トランジスタの第1端子は、第2トランジスタの第1端子に電気的に接続され、第2トランジスタの第2端子は、第1配線に電気的に接続され、第2トランジスタのゲートは、第1入力配線に電気的に接続され、第4トランジスタの第1端子は、第2容量の第1端子と、第2駆動トランジスタのゲートに電気的に接続され、第4トランジスタの第2端子は、第2配線に電気的に接続され、第2駆動トランジスタの第1端子は、第5トランジスタの第1端子に電気的に接続され、第5トランジスタの第2端子は、第2配線に電気的に接続され、第5トランジスタのゲートは、第1入力配線に電気的に接続されている、半導体装置である。
(17)
 又は、本発明の一態様は、上記(1)乃至(16)のいずれか一の半導体装置と、筐体と、を有し、半導体装置によってニューラルネットワークの演算を行う電子機器である。
 なお、本明細書等において、半導体装置とは、半導体特性を利用した装置であり、半導体素子(トランジスタ、ダイオード、フォトダイオード等)を含む回路、同回路を有する装置等をいう。また、半導体特性を利用することで機能しうる装置全般をいう。例えば、集積回路、集積回路を備えたチップや、パッケージにチップを収納した電子部品は半導体装置の一例である。また、記憶装置、表示装置、発光装置、照明装置及び電子機器等は、それ自体が半導体装置であり、半導体装置を有している場合がある。
 また、本明細書等において、XとYとが接続されていると記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図又は文章に示された接続関係に限定されず、図又は文章に示された接続関係以外のものも、図又は文章に開示されているものとする。X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層など)であるとする。
 XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示デバイス、発光デバイス、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。
 XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(デジタルアナログ変換回路、アナログデジタル変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅又は電流量などを大きくできる回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。
 なお、XとYとが電気的に接続されている、と明示的に記載する場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とを含むものとする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続されている、とのみ明示的に記載されている場合と同じであるとする。
 また、例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。又は、「トランジスタのソース(又は第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。又は、「Xは、トランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
 また、本明細書等において、「抵抗素子」とは、抵抗値を有する回路素子、配線などとする。そのため、本明細書等において、「抵抗素子」は、抵抗値を有する配線、ソース−ドレイン間に電流が流れるトランジスタ、ダイオード、コイルなどを含むものとする。そのため、「抵抗素子」という用語は、「抵抗」「負荷」「抵抗値を有する領域」などの用語に言い換えることができ、逆に「抵抗」「負荷」「抵抗値を有する領域」という用語は、「抵抗素子」などの用語に言い換えることができる。抵抗値としては、例えば、好ましくは1mΩ以上10Ω以下、より好ましくは5mΩ以上5Ω以下、更に好ましくは10mΩ以上1Ω以下とすることができる。また、例えば、1Ω以上1×10Ω以下としてもよい。
 また、本明細書等において、「容量素子」とは、静電容量の値を有する回路素子、静電容量の値を有する配線の領域、寄生容量、トランジスタのゲート容量などとする。そのため、本明細書等において、「容量素子」は、1対の電極と、当該電極の間に含まれている誘電体と、を含む回路素子だけでなく、配線と配線との間に現れる寄生容量、トランジスタのソース又はドレインの一方とゲートとの間に現れるゲート容量などを含むものとする。また、「容量素子」「寄生容量」「ゲート容量」などという用語は、「容量」などの用語に言い換えることができ、逆に、「容量」という用語は、「容量素子」「寄生容量」「ゲート容量」などの用語に言い換えることができる。また、「容量」の「1対の電極」という用語は、「1対の導電体」「1対の導電領域」「1対の領域」などに言い換えることができる。なお、静電容量の値としては、例えば、0.05fF以上10pF以下とすることができる。また、例えば、1pF以上10μF以下としてもよい。
 また、本明細書等において、トランジスタは、ゲート、ソース、及びドレインと呼ばれる3つの端子を有する。ゲートは、トランジスタの導通状態を制御する制御端子である。ソース又はドレインとして機能する2つの端子は、トランジスタの入出力端子である。2つの入出力端子は、トランジスタの導電型(nチャネル型、pチャネル型)及びトランジスタの3つの端子に与えられる電位の高低によって、一方がソースとなり他方がドレインとなる。このため、本明細書等においては、ソースやドレインの用語は、言い換えることができるものとする。また、本明細書等では、トランジスタの接続関係を説明する際、「ソース又はドレインの一方」(又は第1電極、又は第1端子)、「ソース又はドレインの他方」(又は第2電極、又は第2端子)という表記を用いる。なお、トランジスタの構造によっては、上述した3つの端子に加えて、バックゲートを有する場合がある。この場合、本明細書等において、トランジスタのゲート又はバックゲートの一方を第1ゲートと呼称し、トランジスタのゲート又はバックゲートの他方を第2ゲートと呼称することがある。更に、同じトランジスタにおいて、「ゲート」と「バックゲート」の用語は互いに入れ換えることができる場合がある。また、トランジスタが、3以上のゲートを有する場合は、本明細書等においては、それぞれのゲートを第1ゲート、第2ゲート、第3ゲートなどと呼称することがある。
 また、本明細書等において、ノードは、回路構成やデバイス構造等に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、配線等をノードと言い換えることが可能である。
 また、本明細書等において、「電圧」と「電位」は、適宜言い換えることができる。「電圧」は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、「電圧」を「電位」に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
 また「電流」とは、電荷の移動現象(電気伝導)のことであり、例えば、「正の荷電体の電気伝導が起きている」という記載は、「その逆向きに負の荷電体の電気伝導が起きている」と換言することができる。そのため、本明細書等において、「電流」とは、特に断らない限り、キャリアの移動に伴う電荷の移動現象(電気伝導)をいうものとする。ここでいうキャリアとは、電子、正孔、アニオン、カチオン、錯イオン等が挙げられ、電流の流れる系(例えば、半導体、金属、電解液、真空中など)によってキャリアが異なる。また、配線等における「電流の向き」は、正のキャリアが移動する方向とし、正の電流量で記載する。換言すると、負のキャリアが移動する方向は、電流の向きと逆の方向となり、負の電流量で表現される。そのため、本明細書等において、電流の正負(又は電流の向き)について断りがない場合、「素子Aから素子Bに電流が流れる」等の記載は「素子Bから素子Aに電流が流れる」等に言い換えることができるものとする。また、「素子Aに電流が入力される」等の記載は「素子Aから電流が出力される」等に言い換えることができるものとする。
 また、本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲において「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において省略することもありうる。
 また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている場合がある。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書等で説明した語句に限定されず、状況に応じて適切に言い換えることができる。例えば、「導電体の上面に位置する絶縁体」の表現では、示している図面の向きを180度回転することによって、「導電体の下面に位置する絶縁体」と言い換えることができる。
 また、「上」や「下」の用語は、構成要素の位置関係が直上又は直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
 また、本明細書等において、「膜」、「層」などの語句は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。又は、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。又は、場合によっては、又は、状況に応じて、「膜」、「層」などの語句を使わずに、別の用語に入れ替えることが可能である。例えば、「導電層」又は「導電膜」という用語を、「導電体」という用語に変更することが可能な場合がある。又は、例えば、「絶縁層」、「絶縁膜」という用語を、「絶縁体」という用語に変更することが可能な場合がある。
 また、本明細書等において「電極」、「配線」、「端子」などの用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。また、例えば、「端子」は「配線」や「電極」の一部として用いられることがあり、その逆もまた同様である。更に、「端子」の用語は、複数の「電極」、「配線」、「端子」などが一体となって形成されている場合なども含む。そのため、例えば、「電極」は「配線」又は「端子」の一部とすることができ、また、例えば、「端子」は「配線」又は「電極」の一部とすることができる。また、「電極」「配線」「端子」などの用語は、場合によって、「領域」などの用語に置き換える場合がある。
 また、本明細書等において、「配線」、「信号線」、「電源線」などの用語は、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「配線」という用語を、「信号線」という用語に変更することが可能な場合がある。また、例えば、「配線」という用語を、「電源線」などの用語に変更することが可能な場合がある。また、その逆も同様で、「信号線」、「電源線」などの用語を、「配線」という用語に変更することが可能な場合がある。「電源線」などの用語は、「信号線」などの用語に変更することが可能な場合がある。また、その逆も同様で「信号線」などの用語は、「電源線」などの用語に変更することが可能な場合がある。また、配線に印加されている「電位」という用語を、場合によっては、又は、状況に応じて、「信号」などという用語に変更することが可能な場合がある。また、その逆も同様で、「信号」などの用語は、「電位」という用語に変更することが可能な場合がある。
 本明細書等において、半導体の不純物とは、例えば、半導体層を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることにより、例えば、半導体にDOS(Density of States)が形成されることや、キャリア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。具体的には、半導体がシリコン層である場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
 本明細書等において、スイッチとは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。又は、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。一例としては、電気的なスイッチ、機械的なスイッチなどを用いることができる。つまり、スイッチは、電流を制御できるものであればよく、特定のものに限定されない。
 電気的なスイッチの一例としては、トランジスタ(例えば、バイポーラトランジスタ、MOSトランジスタなど)、ダイオード(例えば、PNダイオード、PINダイオード、ショットキーダイオード、MIM(Metal Insulator Metal)ダイオード、MIS(Metal Insulator Semiconductor)ダイオード、ダイオード接続のトランジスタなど)、又はこれらを組み合わせた論理回路などがある。なお、スイッチとしてトランジスタを用いる場合、トランジスタの「導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に短絡されているとみなせる状態をいう。また、トランジスタの「非導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に遮断されているとみなせる状態をいう。なおトランジスタを単なるスイッチとして動作させる場合には、トランジスタの極性(導電型)は特に限定されない。
 機械的なスイッチの一例としては、MEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いたスイッチがある。そのスイッチは、機械的に動かすことが可能な電極を有し、その電極が動くことによって、導通と非導通とを制御して動作する。
 本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」又は「概略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」又は「概略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
 本発明の一態様によって、階層型の人工ニューラルネットワークが構築された半導体装置などを提供することができる。又は、本発明の一態様によって、消費電力が低い半導体装置などを提供することができる。又は、本発明の一態様によって、環境の温度の影響を受けにくい半導体装置などを提供することができる。又は、本発明の一態様によって、トランジスタの特性ばらつきの影響を受けにくい半導体装置などを提供することができる。又は、本発明の一態様によって、電流源の特性ばらつきの影響を受けにくい半導体装置などを提供することができる。又は、本発明の一態様によって、新規な半導体装置などを提供することができる。
 なお本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、及び他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一態様は、場合によっては、上記列挙した効果を有さない場合もある。
図1A、図1Bは階層型のニューラルネットワークを説明する図である。
図2は半導体装置の構成例を示す回路図である。
図3は半導体装置の構成例を示す回路図である。
図4は半導体装置の構成例を示す回路図である。
図5A、図5B、図5C、図5D、図5E、図5Fは半導体装置が有する回路の構成例を示す回路図である。
図6A、図6B、図6C、図6D、図6E、図6Fは半導体装置が有する回路の構成例を示す回路図である。
図7は半導体装置の構成例を示す回路図である。
図8A、図8B、図8Cは半導体装置が有する回路の構成例を示す回路図である。
図9A、図9B、図9C、図9D、図9E、図9Fは半導体装置が有する回路の構成例を示す回路図である。
図10は半導体装置が有する回路の構成例を示す回路図である。
図11は半導体装置の構成例を示す回路図である。
図12は半導体装置の構成例を示す回路図である。
図13は半導体装置の構成例を示す回路図である。
図14は半導体装置の構成例を示す回路図である。
図15A、図15B、図15Cは半導体装置が有する回路の構成例を示す回路図である。
図16A、図16Bは半導体装置が有する回路の構成例を示す回路図である。
図17A、図17B、図17Cは半導体装置が有する回路の構成例を示す回路図である。
図18A、図18B、図18Cは半導体装置の動作例を説明するタイミングチャートである。
図19A、図19B、図19Cは半導体装置の動作例を説明するタイミングチャートである。
図20A、図20B、図20Cは半導体装置の動作例を説明するタイミングチャートである。
図21A、図21Bは半導体装置が有する回路の構成例を示す回路図である。
図22A、図22Bは半導体装置が有する回路の構成例を示す回路図である。
図23A、図23Bは半導体装置が有する回路の構成例を示す回路図である。
図24は半導体装置が有する回路の構成例を示す回路図である。
図25は半導体装置が有する回路の構成例を示す回路図である。
図26は半導体装置が有する回路の構成例を示す回路図である。
図27は半導体装置が有する回路の構成例を示す回路図である。
図28は半導体装置が有する回路の構成例を示す回路図である。
図29は半導体装置が有する回路の構成例を示す回路図である。
図30A、図30Bは半導体装置が有する回路の構成例を示す回路図である。
図31は半導体装置が有する回路の構成例を示す回路図である。
図32は半導体装置が有する回路の構成例を示す回路図である。
図33は半導体装置が有する回路の構成例を示す回路図である。
図34は半導体装置が有する回路の構成例を示す回路図である。
図35は半導体装置が有する回路の構成例を示す回路図である。
図36は半導体装置が有する回路の構成例を示す回路図である。
図37は半導体装置が有する回路の構成例を示す回路図である。
図38は半導体装置が有する回路の構成例を示す回路図である。
図39は半導体装置が有する回路の構成例を示す回路図である。
図40は半導体装置が有する回路の構成例を示す回路図である。
図41A、図41B、図41Cは半導体装置が有する回路の構成例を示す回路図である。
図42は半導体装置が有する回路の構成例を示す回路図である。
図43は半導体装置が有する回路の構成例を示す回路図である。
図44は半導体装置が有する回路の構成例を示す回路図である。
図45は半導体装置が有する回路の構成例を示す回路図である。
図46は半導体装置が有する回路の構成例を示す回路図である。
図47A、図47Bは半導体装置が有する回路の構成例を示す回路図である。
図48A、図48B、図48Cは半導体装置の動作例を説明するタイミングチャートである。
図49A、図49B、図49Cは半導体装置の動作例を説明するタイミングチャートである。
図50は半導体装置が有する回路の構成例を示す回路図である。
図51は半導体装置が有する回路の構成例を示す回路図である。
図52は半導体装置が有する回路の構成例を示す回路図である。
図53は半導体装置が有する回路の構成例を示す回路図である。
図54A、図54Bは半導体装置が有する回路の構成例を示す回路図である。
図55A、図55B、図55Cは半導体装置が有する回路の構成例を示す回路図である。
図56A、図56Bは半導体装置が有する回路の構成例を示す回路図である。
図57は半導体装置が有する回路の構成例を示す回路図である。
図58は半導体装置が有する回路の構成例を示す回路図である。
図59は半導体装置が有する回路の構成例を示す回路図である。
図60は半導体装置が有する回路の構成例を示す回路図である。
図61は半導体装置の構成を説明する断面模式図である。
図62は半導体装置の構成を説明する断面模式図である。
図63A、図63B、図63Cは半導体装置の構成を説明する断面模式図である。
図64A、図64Bはトランジスタの構成例を説明する断面模式図である。
図65は半導体装置の構成例を説明する断面模式図である。
図66A、図66Bはトランジスタの構成例を説明する断面模式図である。
図67は半導体装置の構成例を説明する断面模式図である。
図68Aは容量の構成例を示す上面図、図68B、図68Cは容量の構成例を示す断面斜視図である。
図69Aは容量の構成例を示す上面図、図69Bは容量の構成例を示す断面図、図69Cは容量の構成例を示す断面斜視図である。
図70Aは半導体ウェハの一例を示す斜視図、図70Bはチップの一例を示す斜視図、図70C、図70Dは電子部品の一例を示す斜視図である。
図71は電子機器の一例を示す斜視図である。
図72A、図72B、図72Cは電子機器の一例を示す斜視図である。
 人工ニューラルネットワーク(以後、ニューラルネットワークと呼称する。)において、シナプスの結合強度は、ニューラルネットワークに既存の情報を与えることによって、変化することができる。このように、ニューラルネットワークに既存の情報を与えて、結合強度を決める処理を「学習」と呼ぶ場合がある。
 また、「学習」を行った(結合強度を定めた)ニューラルネットワークに対して、何らかの情報を与えることにより、その結合強度に基づいて新たな情報を出力することができる。このように、ニューラルネットワークにおいて、与えられた情報と結合強度に基づいて新たな情報を出力する処理を「推論」又は「認知」と呼ぶ場合がある。
 ニューラルネットワークのモデルとしては、例えば、ホップフィールド型、階層型などが挙げられる。特に、多層構造としたニューラルネットワークを「ディープニューラルネットワーク」(DNN)と呼称し、ディープニューラルネットワークによる機械学習を「ディープラーニング」と呼称する場合がある。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductor又は単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅作用、整流作用、及びスイッチング作用の少なくとも1つを有するトランジスタのチャネル形成領域を構成し得る場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)、略してOSと呼ぶことができる。また、OSトランジスタと記載する場合においては、金属酸化物又は酸化物半導体を有するトランジスタと換言することができる。
 また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
 また、本明細書等において、各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、互いに構成例を適宜組み合わせることが可能である。
 なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)と、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)との少なくとも一つの内容に対して、適用、組み合わせ、又は置き換えなどを行うことができる。
 なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
 なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)と、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)との少なくとも一つの図に対して、組み合わせることにより、さらに多くの図を構成させることができる。
 本明細書に記載の実施の形態について図面を参照しながら説明している。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなく、その形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態の発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、斜視図などにおいて、図面の明確性を期すために、一部の構成要素の記載を省略している場合がある。
 本明細書等において、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“_1”、“[n]”、“[m,n]”等の識別用の符号を付記して記載する場合がある。
 また、本明細書の図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
 また、本明細書等について、In:Ga:Zn=4:2:3またはその近傍とは、原子数の総和に対して、Inが4の場合、Gaが1以上3以下(1≦Ga≦3)であり、Znが2以上4.1以下(2≦Zn≦4.1)とする。また、In:Ga:Zn=5:1:6またはその近傍とは、原子数の総和に対して、Inが5の場合、Gaが0.1より大きく2以下(0.1<Ga≦2)であり、Znが5以上7以下(5≦Zn≦7)とする。また、In:Ga:Zn=1:1:1またはその近傍とは、原子数の総和に対して、Inが1の場合、Gaが0.1より大きく2以下(0.1<Ga≦2)であり、Znが0.1より大きく2以下(0.1<Zn≦2)とする。また、In:Ga:Zn=5:1:3またはその近傍とは、原子数の総和に対して、Inが5の場合、Gaが0.5以上1.5以下(0.5≦Ga≦1.5)であり、Znが2以上4.1以下(2≦Zn≦4.1)とする。また、In:Ga:Zn=10:1:3またはその近傍とは、原子数の総和に対して、Inが10の場合、Gaが0.5以上1.5以下(0.5≦Ga≦1.5)であり、Znが2以上4.1以下(2≦Zn≦4.1)とする。また、In:Zn=2:1またはその近傍とは、原子数の総和に対して、Inが1の場合、Znは0.25より大きく0.75以下(0.25<Zn≦0.75)とする。また、In:Zn=5:1またはその近傍とは、原子数の総和に対して、Inが1の場合、Znは0.12より大きく0.25以下(0.12<Zn≦0.25)とする。また、In:Zn=10:1またはその近傍とは、原子数の総和に対して、Inが1の場合、Znは0.07より大きく0.12以下(0.07<Zn≦0.12)とする。
(実施の形態1)
 本実施の形態では、本発明の一態様の半導体装置である、ニューラルネットワークの演算を行う演算回路について説明する。
<階層型のニューラルネットワーク>
 初めに、階層型のニューラルネットワークについて説明する。階層型のニューラルネットワークは、一例としては、一の入力層と、一又は複数の中間層(隠れ層)と、一の出力層と、を有し、合計3以上の層によって構成されている。図1Aに示す階層型のニューラルネットワーク100はその一例を示しており、ニューラルネットワーク100は、第1層乃至第R層(ここでのRは4以上の整数とすることができる。)を有している。特に、第1層は入力層に相当し、第R層は出力層に相当し、それら以外の層は中間層に相当する。なお、図1Aには、中間層として第(k−1)層、第k層(ここでのkは3以上R−1以下の整数とする。)を図示しており、それ以外の中間層については図示を省略している。
 ニューラルネットワーク100の各層は、一又は複数のニューロンを有する。図1Aにおいて、第1層はニューロンN (1)乃至ニューロンN (1)(ここでのpは1以上の整数である。)を有し、第(k−1)層はニューロンNk−1)乃至ニューロンN (k−1)(ここでのmは1以上の整数である。)を有し、第k層はニューロンN (k)乃至ニューロンN (k)(ここでのnは1以上の整数である。)を有し、第R層はニューロンN (R)乃至ニューロンN (R)(ここでのqは1以上の整数である。)を有する。
 なお、図1Aには、ニューロンN (1)、ニューロンN (1)、ニューロンN (k−1)、ニューロンN (k−1)、ニューロンN (k)、ニューロンN (k)、ニューロンN (R)、ニューロンN (R)に加えて、第(k−1)層のニューロンN (k−1)(ここでのiは1以上m以下の整数である。)、第k層のニューロンN (k)(ここでのjは1以上n以下の整数である。)も図示しており、それ以外のニューロンについては図示を省略している。
 次に、前層のニューロンから次層のニューロンへの信号の伝達、及びそれぞれのニューロンにおいて入出力される信号について説明する。なお、本説明では、第k層のニューロンN (k)に着目している。
 図1Bは、第k層のニューロンN (k)と、ニューロンN (k)に入力される信号と、ニューロンN (k)から出力される信号と、を示している。
 具体的には、第(k−1)層のニューロンN (k−1)乃至ニューロンN (k−1)のそれぞれの出力信号であるz (k−1)乃至z (k−1)が、ニューロンN (k)に向けて出力されている。そして、ニューロンN (k)は、z (k−1)乃至z (k−1)に応じてz (k)を生成して、z (k)を出力信号として第(k+1)層(図示しない。)の各ニューロンに向けて出力する。
 前層のニューロンから次層のニューロンに入力される信号は、それらのニューロン同士を接続するシナプスの結合強度(以後、重み係数と呼称する。)によって、信号の伝達の度合いが定まる。ニューラルネットワーク100では、前層のニューロンから出力された信号は、対応する重み係数を乗じられて、次層のニューロンに入力される。iを1以上m以下の整数として、第(k−1)層のニューロンN (k−1)と第k層のニューロンN (k)との間のシナプスの重み係数をw (k−1) (k)としたとき、第k層のニューロンN (k)に入力される信号は、式(1.1)で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 つまり、第(k−1)層のニューロンN (k−1)乃至ニューロンN (k−1)のそれぞれから第k層のニューロンN (k)に信号が伝達するとき、当該信号であるz (k−1)乃至z (k−1)には、それぞれの信号に対応する重み係数w (k−1) (k)乃至w (k−1) (k)が乗じられる。そして、第k層のニューロンN (k)には、w (k−1) (k)・z (k−1)乃至w (k−1) (k)・z (k−1)が入力される。このとき、第k層のニューロンN (k)に入力される信号の総和u (k)は、式(1.2)となる。
Figure JPOXMLDOC01-appb-M000002
 また、重み係数w (k−1) (k)乃至w (k−1) (k)と、ニューロンの信号z (k−1)乃至z (k−1)と、の積和の結果には、偏りとしてバイアスを与えてもよい。バイアスをbとしたとき、式(1.2)は、次の式に書き直すことができる。
Figure JPOXMLDOC01-appb-M000003
 ニューロンN (k)は、u (k)に応じて、出力信号z (k)を生成する。ここで、ニューロンN (k)からの出力信号z (k)を次の式で定義する。
Figure JPOXMLDOC01-appb-M000004
 関数f(u (k))は、階層型のニューラルネットワークにおける活性化関数であり、ステップ関数、線形ランプ関数、シグモイド関数などを用いることができる。なお、活性化関数は、全てのニューロンにおいて同一でもよいし、又は異なっていてもよい。加えて、ニューロンの活性化関数は、層毎において、同一でもよいし、異なっていてもよい。
 ところで、各層のニューロンが出力する信号、重み係数w、または、バイアスbは、アナログ値としてもよいし、デジタル値としてもよい。デジタル値としては、例えば、2値としてもよいし、3値としてもよい。さらに大きなビット数の値でもよい。一例として、アナログ値の場合、活性化関数として、例えば、線型ランプ関数、シグモイド関数などを用いればよい。デジタル値の2値の場合、例えば、出力を−1若しくは1、又は、0若しくは1、とするステップ関数を用いればよい。また、各層のニューロンが出力する信号は3値以上としてもよく、例えば、3値を出力する活性化関数としては、例えば3値以上、例えば出力は−1、0、若しくは1とするステップ関数、又は、0、1、若しくは2とするステップ関数などを用いればよい。また、例えば、5値を出力する活性化関数として、−2、−1、0、1、若しくは2とするステップ関数などを用いてもよい。各層のニューロンが出力する信号、重み係数w、または、バイアスbについて、少なくとも一つについて、デジタル値を用いることにより、回路規模を小さくすること、消費電力を低減すること、または、演算スピードを速くすること、などができる。また、各層のニューロンが出力する信号、重み係数w、または、バイアスbについて、少なくとも一つについて、アナログ値を用いることにより、演算の精度を向上させることができる。
 ニューラルネットワーク100は、第1層(入力層)に入力信号が入力されることによって、第1層(入力層)から最後の層(出力層)までの各層において順次に、前層から入力された信号を基に、式(1.1)、式(1.2)(又は式(1.3))、式(1.4)を用いて出力信号を生成して、当該出力信号を次層に出力する動作を行う。最後の層(出力層)から出力された信号が、ニューラルネットワーク100によって計算された結果に相当する。
<演算回路の構成例>
 ここでは、上述のニューラルネットワーク100において、式(1.2)(又は式(1.3))、及び式(1.4)の演算を行うことができる演算回路の例について説明する。なお、当該演算回路において、一例として、ニューラルネットワーク100のシナプス回路の重み係数を、2値(“−1”、“+1”の組み合わせ、又は“0”、“+1”の組み合わせ等。)、3値(“−1”、“0”、“1”の組み合わせ等。)、又は4値以上の多値(5値の場合、“−2”、“−1”、“0”、“1”、“2”の組み合わせ等)とし、ニューロンの活性化関数が2値(“−1”、“+1”の組み合わせ、又は“0”、“+1”の組み合わせ等。)、3値(“−1”、“0”、“1”の組み合わせ等。)、4値以上の多値(4値の場合、“0”、“1”、“2”、“3”の組み合わせ等)を出力する関数とする。また、本明細書等において、重み係数と、前層のニューロンから次層のニューロンに入力される信号の値(演算値と呼称する場合がある)とについて、そのいずれか一方を第1データと呼称し、他方を第2データと呼称する場合がある。なお、ニューラルネットワーク100のシナプス回路の重み係数や、演算値は、デジタル値に限定されず、少なくとも一方について、アナログ値を用いることも可能である。
 図2に示す演算回路110は、一例として、アレイ部ALPと、回路ILDと、回路WLDと、回路XLDと、回路AFPと、を有する半導体装置である。演算回路110は、図1A、及び図1Bにおける第k層のニューロンN (k)乃至ニューロンN (k)に入力される信号z (k−1)乃至z (k−1)を処理して、ニューロンN (k)乃至ニューロンN (k)のそれぞれから出力される信号z (k)乃至z (k)を生成する回路である。
 なお、演算回路110の全体、または、その一部について、ニューラルネットワークやAI以外の用途で使用してよい。例えば、グラフィック向けの計算や、科学計算などにおいて、積和演算処理や行列演算処理を行う場合に、演算回路110の全体、または、その一部を用いて、処理を行ってもよい。つまり、AI向けの計算だけでなく、一般的な計算のために、演算回路110の全体、または、その一部を用いてもよい。
 回路ILDは、一例として、配線IL[1]乃至配線IL[n]と、配線ILB[1]乃至配線ILB[n]と、に電気的に接続される。回路WLDは、一例として、配線WLS[1]乃至配線WLS[m]に電気的に接続される。回路XLDは、一例として、配線XLS[1]乃至配線XLS[m]に電気的に接続されている。回路AFPは、一例として、配線OL[1]乃至配線OL[n]と、配線OLB[1]乃至配線OLB[n]と、に電気的に接続されている。
<<アレイ部ALP>>
 アレイ部ALPは、一例として、m×n個の回路MPを有している。回路MPは、一例として、アレイ部ALP内において、m行n列のマトリクス状に配置されている。なお、図2では、i行j列(ここでのiは1以上m以下の整数であって、jは1以上n以下の整数である。)に位置する回路MPを、回路MP[i,j]と表記している。但し、図2では、回路MP[1,1]、回路MP[m,1]、回路MP[i,j]、回路MP[1,n]、回路MP[m,n]のみ図示しており、それ以外の回路MPについては図示を省略している。
 回路MP[i,j]は、一例として、配線IL[j]と、配線ILB[j]と、配線WLS[i]と、配線XLS[i]と、配線OL[j]と、配線OLB[j]と、に電気的に接続されている。
 回路MP[i,j]は、一例として、ニューロンN (k−1)とニューロンN (k)との間の重み係数(第1データ又は第2データの一方と呼称する場合がある。ここでは第1データと呼称する)を保持する機能を有する。具体的には、回路MP[i,j]は、配線IL[j]及び配線ILB[j]から入力される、第1データ(重み係数)に応じた情報(例えば、電位、抵抗値、電流値など)の保持を行う。また、回路MP[i,j]は、ニューロンN (k−1)から出力される信号z (k−1)(第1データ又は第2データの他方と呼称する場合がある。ここでは第2データと呼称する)と第1データとの積を出力する機能を有する。具体的な例としては、回路MP[i,j]は、配線XLS[i]から第2データz (k−1)が入力されることで、第1データと第2データとの積に応じた情報(例えば、電流、電圧など)、又は第1データと第2データとの積に関連した情報(例えば、電流、電圧など)を配線OL[j]及び配線OLB[j]に出力する。なお、配線IL[j]及び配線ILB[j]が配置されている場合の例を示したが、本発明の一態様は、これに限定されない。配線IL[j]及び配線ILB[j]のいずれか一方のみが配置されていてもよい。
<<回路ILD>>
 回路ILDは、一例として、配線IL[1]乃至配線IL[n]と、配線ILB[1]乃至配線ILB[n]と、を介して、回路MP[1,1]乃至回路MP[m,n]のそれぞれに対して、重み係数である第1データw (k−1) (k)乃至w (k−1) (k)に対応する情報(例えば、電位、抵抗値、電流値など)を入力する機能を有する。具体的な例としては、回路ILDは、回路MP[i,j]に対して、重み係数である第1データw (k−1) (k)に対応する情報(例えば、電位、抵抗値、または、電流値など)を、配線IL[j]、配線ILB[j]によって供給する。
<<回路XLD>>
 回路XLDは、一例として、配線XLS[1]乃至配線XLS[n]を介して、回路MP[1,1]乃至回路MP[m,n]のそれぞれに対して、ニューロンN (k−1)乃至ニューロンN (k)から出力された演算値に相当する第2データz (k−1)乃至z (k−1)を供給する機能を有する。具体的には、回路XLDは、回路MP[i,1]乃至回路MP[i,n]に対して、ニューロンN (k−1)から出力された第2データz (k−1)に対応する情報(例えば、電位、電流値など)を、配線XLS[i]によって供給する。なお、配線XLS[i]が配置されている場合の例を示したが、本発明の一態様は、これに限定されない。例えば、図2の演算回路110において、配線XLS[i]を複数本の配線としてもよい。具体例として、図3には、演算回路110の回路MP[i,j]に電気的に接続されている配線XLS[i]を、配線X1L、配線X2Lの2本に置き換えた構成の演算回路120を示している。なお、配線XLS[i]が配置されている場合の例を示したが、本発明の一態様は、これに限定されない。配線XLS[i]の他に、例えば、配線XLS[i]に入力される信号の反転信号を送信する配線を別途配置されていてもよい。
<<回路WLD>>
 回路WLDは、一例として、回路ILDから入力される第1データに応じた情報(例えば、電位、抵抗値、電流値など)の書き込む先となる回路MPを選択する機能を有する。例えば、アレイ部ALPのi行目に位置する回路MP[i,1]乃至回路MP[i,n]に情報(例えば、電位、抵抗値、電流値など)の書き込みを行う場合、回路WLDは、例えば、回路MP[i,1]乃至回路MP[i,n]に含まれる書き込み用スイッチング素子をオン状態又はオフ状態にするための信号を配線WLS[i]に供給し、i行目以外の回路MPに含まれる書き込み用スイッチング素子をオフ状態にする電位を配線WLSに供給すればよい。なお、配線WLS[i]が配置されている場合の例を示したが、本発明の一態様は、これに限定されない。配線WLS[i]の他に、例えば、配線WLS[i]に入力される信号の反転信号を送信する配線を別途配置されていてもよい。
 なお、図2の演算回路110には、配線WLS[i]が配置されている構成例を示したが、本発明の一態様は、これに限定されない。例えば、配線WLS[i]を複数の配線として置き換えてもよい。また、例えば、図3の演算回路120の配線X1L[i]を、回路MP[i,1]乃至回路MP[i,n]に情報を書き込むための選択信号線として兼用してもよい。具体的には、図4に示す演算回路130のように、演算回路120の配線X1L[i]を配線WX1L[i]として、配線WX1Lは、回路WLDと、回路XLDと、に電気的に接続されていてもよい。なお、配線WX1L[i]に、回路MP[i,1]乃至回路MP[i,n]に含まれる書き込み用スイッチング素子をオン状態又はオフ状態にするための信号を回路WLDから供給する場合、回路XLDは、回路XLDと配線WX1Lとの間を非導通状態にする機能を有するのが好ましい。また、配線WX1L[i]を介して、ニューロンN (k−1)乃至ニューロンN (k)から出力された演算値に相当する第2データz (k−1)乃至z (k−1)の信号を回路WLDから回路MP[i,1]乃至回路MP[i,n]に供給する場合、回路WLDは、回路WLDと配線WX1Lとの間を非導通状態にする機能を有するのが好ましい。
<<回路AFP>>
 回路AFPは、一例としては、回路ACTF[1]乃至回路ACTF[n]を有する。回路ACTF[j]は、一例としては、配線OL[j]と、配線OLB[j]と、のそれぞれに電気的に接続されている。回路ACTF[j]は、一例としては、配線OL[j]と配線OLB[j]から入力されるそれぞれの情報(例えば、電位、電流値など)に応じた信号を生成する。一例としては、配線OL[j]と配線OLB[j]から入力されるそれぞれの情報(例えば、電位、電流値など)を比較し、その比較結果に応じた信号を生成する。当該信号は、ニューロンN (k)から出力される信号z (k)に相当する。つまり、回路ACTF[1]乃至回路ACTF[n]は、一例としては、上述したニューラルネットワークの活性化関数の演算を行う回路として機能する。ただし、本発明の一態様は、これに限定されない。例えば、回路ACTF[1]乃至回路ACTF[n]は、アナログ信号をデジタル信号に変換する機能を有していてもよい。または例えば、回路ACTF[1]乃至回路ACTF[n]は、アナログ信号を増幅して出力する機能、つまり、出力インピーダンスを変換する機能を有していてもよい。または、例えば、回路ACTF[1]乃至回路ACTF[n]は、電流や電荷を電圧に変換する機能を有していてもよい。または例えば、回路ACTF[1]乃至回路ACTF[n]は、配線OL[j]や配線OLB[j]の電位を初期化する機能を有していてもよい。
 なお、図2乃至図4のそれぞれに示す演算回路110、演算回路120、演算回路130では、回路ACTFが配置されている場合の例を示したが、本発明の一態様は、これに限定されない。例えば、回路AFPには、回路ACTFが配置されていなくてもよい。
 次に、回路ACTF[1]乃至回路ACTF[n]について説明する。回路ACTF[1]乃至回路ACTF[n]は、一例として、図5Aに示す回路構成とすることができる。図5Aは、一例として、配線OL[j]、配線OLB[j]から入力された電流に応じて、信号z (k)を生成する回路である。具体的には、図5Aには、2値によって表される出力信号z (k)を出力する活性化関数の演算回路の一例を示している。
 図5Aにおいて、回路ACTF[j]は、抵抗RE、抵抗REB、比較器CMPを有する。抵抗RE、抵抗REBは、電流を電圧に変換する機能を有する。したがって、電流を電圧に変換する機能を有する素子または回路であれば、抵抗に限定されない。配線OL[j]は、抵抗REの第1端子と、比較器CMPの第1入力端子と、電気的に接続され、配線OLB[j]は、抵抗REBの第1端子と、比較器CMPの第2入力端子と、電気的に接続されている。また、抵抗REの第2端子は、配線VALに電気的に接続され、抵抗REBの第2端子は、配線VALに電気的に接続されている。なお、抵抗REの第2端子と抵抗REBの第2端子とは、同一の配線に接続されていてもよい。または、電位が同じである別の配線に接続されていてもよい。
 抵抗RE、抵抗REBのそれぞれの抵抗値は、互いに等しいことが好ましい。例えば、抵抗RE、抵抗REBのそれぞれの抵抗値の差は、10%以内、より好ましくは、5%以内に収まっていることが望ましい。ただし、本発明の一態様は、これに限定されない。場合によっては、又は、状況に応じて、抵抗RE、抵抗REBのそれぞれの抵抗値は互いに異なる値としてもよい。
 配線VALは、一例としては、定電圧を与える配線として機能する。当該定電圧としては、例えば、高レベル電位であるVDD、低レベル電位であるVSS、接地電位(GND)などとすることができる。また、当該定電圧は、回路MPの構成に応じて、適宜設定するのが好ましい。また、例えば、配線VALには、定電圧ではなく、パルス信号が供給されていてもよい。
 抵抗REの第1端子と第2端子との間の電圧は、配線OL[j]から流れてくる電流に応じて定まる。このため、比較器CMPの第1入力端子には、抵抗REの抵抗値と当該電流に応じた電圧が入力される。同様に、抵抗REBの第1端子と第2端子との間の電圧は、配線OLB[j]から流れてくる電流に応じて定まる。このため、比較器CMPの第2入力端子には、抵抗REBの抵抗値と当該電流に応じた電圧が入力される。
 比較器CMPは、一例としては、第1入力端子、第2入力端子のそれぞれに入力された電圧を比較して、その比較結果に応じて、比較器CMPの出力端子から信号を出力する機能を有する。例えば、比較器CMPは、第1入力端子に入力された電圧よりも第2入力端子に入力された電圧が高い場合に、高レベル電位を比較器CMPの出力端子から出力し、第2入力端子に入力された電圧よりも第1入力端子に入力された電圧が高い場合に、低レベル電位を比較器CMPの出力端子から出力することができる。つまり、比較器CMPの出力端子から出力される電位は、高レベル電位と低レベル電位の2通りであるため、回路ACTF[j]が出力する出力信号z (k)は2値とすることができる。例えば、比較器CMPの出力端子から出力される高レベル電位、低レベル電位のそれぞれは、出力信号z (k)として“+1”、“−1”に対応することができる。また、場合によっては、比較器CMPの出力端子から出力される高レベル電位、低レベル電位のそれぞれは、出力信号z (k)として“+1”、“0”と対応してもよい。
 また、図5Aの回路ACTF[j]では、抵抗RE、抵抗REBを用いたが、電流を電圧に変換する機能を有する素子または回路であれば、抵抗に限定されない。そのため、図5Aの回路ACTF[j]の抵抗RE、抵抗REBは、別の回路素子に置き換えることができる。例えば、図5Bに示す回路ACTF[j]は、図5Aの回路ACTF[j]に含まれる抵抗RE、抵抗REBを、容量CE、容量CEBに置き換えた回路であり、図5Aの回路ACTF[j]とほぼ同様の動作を行うことができる。なお、容量CE、容量CEBのそれぞれの静電容量の値は、互いに等しいことが好ましい。例えば、容量CE、容量CEBのそれぞれの静電容量値の差は、10%以内、より好ましくは、5%以内に収まっていることが望ましい。ただし、本発明の一態様は、これに限定されない。なお、容量CE、容量CEBに蓄積された電荷を初期化する回路が設けられていてもよい。例えば、容量CEと並列に、スイッチが設けられていてもよい。つまり、スイッチの第2端子が、配線VALに接続され、スイッチの第1端子が、容量CEの第1端子、配線OL[j]、および、比較器CMPの第1入力端子と接続されていてもよい。または、スイッチの第2端子が、配線VALとは異なる配線に接続され、スイッチの第1端子が、容量CEの第1端子、配線OL[j]、および、比較器CMPの第1入力端子と接続されていてもよい。また、図5Cに示す回路ACTF[j]は、図5Aの回路ACTF[j]に含まれる抵抗RE、抵抗REBを、ダイオード素子DE、ダイオード素子DEBに置き換えた回路であり、図5Aの回路ACTF[j]とほぼ同様の動作を行うことができる。ダイオード素子DE、ダイオード素子DEBの向き(アノードとカソードの接続箇所)は、配線VALの電位の大きさにより、適宜変更することが望ましい。
 また、図5A乃至図5Cの回路ACTF[j]に含まれる比較器CMPは、一例として、オペアンプOPに置き換えることができる。図5Dに示す回路ACTF[j]は、図5Aの回路ACTF[j]の比較器CMPをオペアンプOPに置き換えた回路図を示している。
 また、図5Bの回路ACTF[j]にスイッチS01a、スイッチS01bを設けてもよい。これにより、回路ACTF[j]は、容量CE、容量CEBのそれぞれに配線OL[j]、配線OLB[j]から入力された電流に応じた電位を保持することができる。その具体的な回路の一例としては、図5Eに示すとおり、スイッチS01aの第1端子に配線OL[j]が電気的に接続され、スイッチS01aの第2端子に容量CEの第1端子と比較器CMPの第1入力端子とが電気的に接続され、スイッチS01bの第1端子に配線OLB[j]が電気的に接続され、スイッチS01bの第2端子に容量CEBの第1端子と比較器CMPの第2入力端子とが電気的に接続された構成とすればよい。図5Eの回路ACTF[j]において、比較器CMPの第1入力端子、第2入力端子のそれぞれに配線OL[j]、配線OLB[j]の電位を入力するとき、スイッチS01a、スイッチS01bのそれぞれをオン状態にすることによって行うことができる。また、その後、スイッチS01a、スイッチS01bのそれぞれをオフ状態にすることによって、比較器CMPの第1、第2入力端子のそれぞれに入力された電位を容量CE、容量CEBに保持することができる。なお、スイッチS01a、スイッチS01bとしては、例えば、アナログスイッチ、トランジスタなどの電気的なスイッチを適用することができる。また、スイッチS01a、スイッチS01bとしては、例えば、機械的なスイッチを適用してもよい。なお、スイッチS01a、スイッチS01bにトランジスタを適用する場合、当該トランジスタは、OSトランジスタ、またはチャネル形成領域にシリコンを有するトランジスタ(以後、Siトランジスタと呼称する。)とすることができる。または、スイッチS01a、スイッチS01bのそれぞれをオン状態にしておく期間を制御することにより、容量CE、容量CEBの電圧値を制御することができる。例えば、容量CE、容量CEBに流れる電流値が大きい場合には、スイッチS01a、スイッチS01bのそれぞれをオン状態にしておく期間を短くしておくことにより、容量CE、容量CEBの電圧値が大きくなりすぎることを防ぐことができる。
 また、図5A乃至図5C、図5Eの回路ACTF[j]に含まれる比較器CMPは、例えば、チョッパ型の比較器とすることができる。図5Fに示す比較器CMPは、チョッパ型の比較器を示しており、比較器CMPはスイッチS02a、スイッチS02b、スイッチS03と、容量CCと、インバータ回路INV3と、を有する。なお、スイッチS02a、スイッチS02b、スイッチS03は、前述したスイッチS01a、スイッチS01bと同様に、機械的なスイッチ、OSトランジスタ、Siトランジスタなどのトランジスタとすることができる。
 スイッチS02aの第1端子は、端子VinTに電気的に接続され、スイッチS02bの第1端子は、端子VrefTに電気的に接続され、スイッチS02aの第2端子は、スイッチS02bの第2端子と、容量CCの第1端子と、に電気的に接続されている。容量CCの第2端子は、インバータ回路INV3の入力端子と、スイッチS03の第1端子と、に電気的に接続されている。端子VoutTは、インバータ回路INV3の出力端子と、スイッチS03の第2端子と、に電気的に接続されている。
 端子VinTは、比較器CMPに入力電位を入力するための端子として機能し、端子VrefTは、比較器CMPに参照電位を入力するための端子として機能し、端子VoutTは、比較器CMPから出力電位を出力するための端子として機能する。なお、端子VinTは、図5A乃至図5C、図5Eの比較器CMPの第1端子又は第2端子の一方に対応し、端子VrefTは、図5A乃至図5C、図5Eの比較器CMPの第1端子又は第2端子の他方に対応することができる。
 図5A乃至図5Eの回路ACTF[j]は、2値によって表される出力信号z (k)を出力する活性化関数の演算回路であるが、回路ACTF[j]は出力信号z (k)を3値以上、又はアナログ値として出力する構成としてもよい。
 図6A乃至図6Fは、配線OL[j]、配線OLB[j]から入力された電流に応じて、信号z (k)を生成する回路であり、3値によって表される出力信号z (k)を出力する活性化関数の演算回路の一例を示している。
 図6Aに示す回路ACTF[j]は、抵抗RE、抵抗REB、比較器CMPa、比較器CMPbを有する。配線OL[j]は、抵抗REの第1端子と、比較器CMPaの第1入力端子と、電気的に接続され、配線OLB[j]は、抵抗REBの第1端子と、比較器CMPbの第1入力端子と、電気的に接続されている。また、比較器CMPaの第2入力端子と、比較器CMPbの第2入力端子と、は、配線VrefLに電気的に接続されている。更に、抵抗REの第2端子は、配線VALに電気的に接続され、抵抗REBの第2端子は、配線VALに電気的に接続されている。
 配線VrefLは、定電圧Vrefを与える電圧線として機能し、Vrefは、例えば、GND以上、VDD以下であることが好ましい。また、状況に応じて、Vrefは、GND未満の電位、又はVDDより高い電位としてもよい。Vrefは、比較器CMPa、比較器CMPbにおける参照電位(比較用の電位)として扱われる。
 抵抗REの第1端子と第2端子との間の電圧は、配線OL[j]から流れてくる電流に応じて定まる。このため、比較器CMPaの第1入力端子には、抵抗REの抵抗値と当該電流に応じた電圧が入力される。同様に、抵抗REBの第1端子と第2端子との間の電圧は、配線OLB[j]から流れてくる電流に応じて定まる。このため、比較器CMPbの第1入力端子には、抵抗REBの抵抗値と当該電流に応じた電圧が入力される。
 比較器CMPaは、第1入力端子、第2入力端子のそれぞれに入力された電圧を比較して、その比較結果に応じて、比較器CMPaの出力端子から信号を出力する。例えば、比較器CMPaは、第1入力端子に入力された電圧よりも第2入力端子に入力された電圧(Vref)が高い場合に、高レベル電位を比較器CMPaの出力端子から出力し、第2入力端子に入力された電圧(Vref)よりも第1入力端子に入力された電圧が高い場合に、低レベル電位を比較器CMPaの出力端子から出力することができる。
 比較器CMPbは、比較器CMPaと同様に、第1入力端子、第2入力端子のそれぞれに入力された電圧を比較して、その比較結果に応じて、比較器CMPbの出力端子から信号を出力する。例えば、比較器CMPbは、第1入力端子に入力された電圧よりも第2入力端子に入力された電圧(Vref)が高い場合に、高レベル電位を比較器CMPbの出力端子から出力し、第2入力端子に入力された電圧(Vref)よりも第1入力端子に入力された電圧が高い場合に、低レベル電位を比較器CMPbの出力端子から出力することができる。
 このとき、比較器CMPa、比較器CMPbのそれぞれの出力端子から出力された電位に応じて、3値の出力信号z (k)を表すことができる。例えば、比較器CMPaの出力端子から高レベル電位が出力され、比較器CMPbの出力端子から低レベル電位が出力された場合、出力信号z (k)は“+1”とし、比較器CMPaの出力端子から低レベル電位が出力され、比較器CMPbの出力端子から高レベル電位が出力された場合、出力信号z (k)は“−1”とし、比較器CMPaの出力端子から低レベル電位が出力され、比較器CMPbの出力端子から低レベル電位が出力された場合、出力信号z (k)は“+0”とすることができる。
 また、回路ACTF[j]は、図6Aに示した回路構成に限定されず、状況に応じて、変更することができる。例えば、図6Aの回路ACTF[j]において、比較器CMPa、比較器CMPbの2つの出力結果を、1つの信号としてまとめたい場合、回路ACTF[j]に変換回路TRFを設ければよい。図6Bの回路ACTF[j]は、図6Aの回路ACTF[j]に変換回路TRFを設けた構成例であり、比較器CMPa、比較器CMPbのそれぞれの出力端子は、変換回路TRFの入力端子に電気的に接続されている。変換回路TRFの具体的な例としては、デジタルアナログ変換回路(この場合、信号z (k)はアナログ値となる。)などとすることができる。
 また、例えば、図6Aにおいて、比較器CMPa、比較器CMPbのそれぞれの第2入力端子に電気的に接続されている配線VrefLを、配線Vref1L、配線Vref2Lの別々の配線に置き換えてもよい。図6Cの回路ACTF[j]は、図6Aの回路ACTF[j]に含まれている比較器CMPaの第2端子が配線VrefLでなく配線Vref1Lと電気的に接続され、比較器CMPbの第2端子が配線VrefLでなく配線Vref2Lと電気的に接続された構成となっている。配線Vref1L、配線Vref2Lに入力される電位を互いに異なる値にすることによって、比較器CMPa、比較器CMPbにおける参照電位を別々に設定することができる。
 また、例えば、図6A乃至図6Cの回路ACTF[j]とは別の構成として、増幅回路、または、インピーダンス変換回路などを用いてもよい。例えば、図6Dに示す回路ACTF[j]を図2の演算回路110の回路AFPに適用することができる。図6Dの回路ACTF[j]は、抵抗RE、抵抗REB、オペアンプOPa、オペアンプOPbを有しており、増幅回路として機能する。
 配線OL[j]は、抵抗REの第1端子と、オペアンプOPaの非反転入力端子と、電気的に接続され、配線OLB[j]は、抵抗REBの第1端子と、オペアンプOPbの非反転入力端子と、電気的に接続されている。また、オペアンプOPaの反転入力端子は、オペアンプOPaの出力端子に電気的に接続され、オペアンプOPbの反転入力端子は、オペアンプOPbの出力端子に電気的に接続されている。更に、抵抗REの第2端子は、配線VALに電気的に接続され、抵抗REBの第2端子は、配線VALに電気的に接続されている。
 つまり、図6Dの回路ACTF[j]に含まれているオペアンプOPa、オペアンプOPbはボルテージフォロワの接続構成となっている。これによって、オペアンプOPaの出力端子から出力される電位は、オペアンプOPaの非反転入力端子に入力された電位とほぼ等しくなり、オペアンプOPbの出力端子から出力される電位は、オペアンプOPbの非反転入力端子に入力された電位とほぼ等しくなる。この場合、出力信号z (k)は、2つのアナログ値として回路ACTF[j]から出力される。なお、オペアンプOPaの出力端子と、オペアンプOPbの出力端子とを、比較器CMPの入力端子にそれぞれ接続してもよい。そして、比較器CMPからの出力を出力信号z (k)としてもよい。
 また、例えば、図6A乃至図6Dの回路ACTF[j]とは別の構成として、積分回路、または、電流電圧変換回路などを用いてもよい。さらに、オペアンプを用いて、積分回路、または、電流電圧変換回路を構成してもよい。一例として、図6Eに示す回路ACTF[j]を図2の演算回路110の回路AFPに適用することができる。図6Eの回路ACTF[j]は、オペアンプOPa、オペアンプOPb、負荷LEa、負荷LEbを有する。
 配線OL[j]は、オペアンプOPaの第1入力端子(例えば、反転入力端子)と、負荷LEaの第1端子と、に電気的に接続され、配線OLB[j]は、オペアンプOPbの第1入力端子(例えば、反転入力端子)と、負荷LEbの第1端子と、電気的に接続されている。また、オペアンプOPaの第2入力端子(例えば、非反転入力端子)は、配線Vref1Lに電気的に接続され、オペアンプOPbの第2入力端子(例えば、非反転入力端子)は、配線Vref2Lに電気的に接続されている。負荷LEaの第2端子は、オペアンプOPaの出力端子に電気的に接続され、負荷LEaの第2端子は、オペアンプOPbの出力端子に電気的に接続されている。
 なお、ここでの配線Vref1L、配線Vref2Lは、互いに等しい電圧、又は異なる電圧を供給する配線として機能する。したがって、配線Vref1L、配線Vref2Lは、1本の配線にまとめることができる場合がある。
 図6Eの回路ACTF[j]において、負荷LEa、負荷LEbとしては、例えば、抵抗、容量とすることができる。特に、負荷LEa、負荷LEbとして容量を用いることによって、オペアンプOPaと負荷LEa、オペアンプOPbと負荷LEb、はそれぞれ積分回路として機能する。つまり、配線OL[j]または配線OLB[j]に流れる電流量に応じて、それぞれの容量(負荷LEa、負荷LEb)に電荷が蓄えられる。つまり、配線OL[j]、配線OLB[j]から流れる電流は、積分回路によって、積分された電流量が電圧に変換されて、信号z (k)として出力される。なお、オペアンプOPaの出力端子と、オペアンプOPbの出力端子とを、比較器CMPの入力端子にそれぞれ接続してもよい。そして、比較器CMPからの出力を出力信号z (k)としてもよい。なお、負荷LEa、負荷LEbの容量に蓄積された電荷を初期化する回路が設けられていてもよい。例えば、負荷LEa(容量)と並列に、スイッチが設けられていてもよい。つまり、スイッチの第2端子が、オペアンプOPaの出力端子に接続され、スイッチの第1端子が、配線OL[j]、および、オペアンプOPaの第1入力端子(例えば、反転入力端子)と接続されていてもよい。
 また、図6Eの回路ACTF[j]において、配線OL[j]、配線OLB[j]から流れる電流を電圧に変換して出力したい場合、負荷LEa、負荷LEbとしては、容量以外としては抵抗を用いることができる。
 また、例えば、図6A乃至図6Eの回路ACTF[j]とは別の構成として、図6Fに示す回路ACTF[j]を図2の演算回路110の回路AFPに適用することができる。図4Fの回路ACTF[j]は、抵抗RE、抵抗REB、アナログデジタル変換回路ADCa、アナログデジタル変換回路ADCbを有する。
 配線OL[j]は、アナログデジタル変換回路ADCaの入力端子と、抵抗REの第1端子と、に電気的に接続され、配線OLB[j]は、アナログデジタル変換回路ADCbの入力端子と、抵抗REBの第1端子と、に電気的に接続されている。抵抗REの第2端子は、配線VALに電気的に接続され、抵抗REBの第2端子は、配線VALに電気的に接続されている。
 図6Fの回路ACTF[j]において、配線OL[j]、OLB[j]から流れる電流に応じて、抵抗RE、REBのそれぞれの第1端子の電位が定められる。そして、回路ACTF[j]は、アナログ値である当該電位をアナログデジタル変換回路ADCa、アナログデジタル変換回路ADCbによって、2値、又は3値以上(例えば、256値など)のデジタル値に変換して、信号z (k)として出力する機能を有する。
 なお、図6A乃至図6D、図6Fに示した抵抗RE、抵抗REBは、図5B、図5Cと同様に、容量CE、容量CEB、又はダイオード素子DE、ダイオード素子DEBに置き換えることができる。特に、図6A乃至図6D、図6Fに示した抵抗RE、抵抗REBを容量CE、容量CEBに置き換えた場合、さらに図5Eと同様にスイッチS01a、スイッチS01bを設けることで、配線OL[j]、配線OLB[j]から入力された電位を保持することができる。
 なお、図2乃至図4のそれぞれに示す演算回路110、演算回路120、演算回路130では、配線IL、配線ILB、配線OL、配線OLBを配置した場合の例を示したが、本発明の一態様は、これに限定されない。例えば、演算回路110、演算回路120、演算回路130のそれぞれは、配線ILと配線OLとは一本の配線としてまとめ、かつ配線ILBと配線OLBとは一本の配線としてまとめた構成としてもよい。図7はその具体的な構成を示している。図7に示す演算回路140は、切り替え回路TW[1]乃至切り替え回路TW[n]を有する。
 切り替え回路TW[1]乃至切り替え回路TW[n]のそれぞれは、端子TSaと、端子TSaBと、端子TSbと、端子TSbBと、端子TScと、端子TScBと、を有する。
 端子TSaは配線OL[j]に電気的に接続され、端子TSbBは回路ILDに電気的に接続され、端子TScは回路ACTF[i]に電気的に接続されている。端子TSaBは配線OLB[j]に電気的に接続され、端子TSbBは回路ILDに電気的に接続され、端子TScBは回路ACTF[j]に電気的に接続されている。
 切り替え回路TW[j]は、端子TSaと、端子TSb又は端子TScの一方との間を導通状態にし、端子TSaと、端子TSb又は端子TScの他方との間を非導通状態にする機能を有する。また、切り替え回路TW[j]は、端子TSaBと、端子TSbB又は端子TScBの一方との間を導通状態にし、端子TSaBと、端子TSbB又は端子TScBの他方との間を非導通状態にする機能を有する。
 つまり、回路MP[1,j]乃至回路MP[m,j]のいずれか一に重み係数である第1データw (k−1) (k)乃至w (k−1) (k)に対応する情報(例えば、電位、抵抗値、電流値など)を入力したい場合、切り替え回路TW[j]において、端子TSaと端子TSbとの間を導通状態にし、かつ端子TSaBと端子TSbBとの間を導通状態にすることで、回路ILDから配線OL[j]、配線OLB[j]に第1データw (k−1) (k)乃至w (k−1) (k)に対応する情報(例えば、電位、抵抗値、電流値など)を供給することができる。
 また、回路ACTF[j]が回路MP[1,j]乃至回路MP[m,j]によって計算された、重み係数とニューロンの信号との積和(式(1.2))の結果を取得したい場合、切り替え回路TW[j]において、端子TSaと端子TScとの間を導通状態にし、かつ端子TSaBと端子TScBとの間を導通状態にすることで、配線OL[j]、配線OLB[j]から回路ACTF[j]に積和の結果に応じた情報(例えば、電位、電流値など)を供給することができる。また、回路ACTF[j]において、入力された積和の結果から活性化関数の値が計算されて、ニューロンの出力信号として信号z (k)を得ることができる。
 次に、演算回路140に含まれる切り替え回路TW[j]と、回路ILDと、について説明する。図8Aには、演算回路140に適用することができる、切り替え回路TW[j]と、回路ILDと、の構成例を示している。なお、図8Aでは、切り替え回路TW[j]と、回路ILDと、の電気的な接続の構成を示すため、配線OL[j]と、配線OLB[j]と、回路AFPと、も図示している。
 切り替え回路TW[j]は、一例として、スイッチSWIと、スイッチSWIBと、スイッチSWOと、スイッチSWOBと、スイッチSWLと、スイッチSWLBと、スイッチSWHと、スイッチSWHBと、を有する。
 回路ILDは、一例として、電流源回路ISCを有する。ただし、本発明の一態様は、これに限定されない。例えば、電流源回路ISCを有さず、その代わりに、電圧源回路を配置してもよい。電流源回路ISCは、配線OL[j]、及び/又は配線OLB[j]に対して、回路MPに入力する重み係数(第1データ)に応じた電流を流す機能を有する。なお、電流源回路ISCは、配線OL[j]のための回路と、配線OLB[j]のための回路として、それぞれ別々の回路として、少なくとも1個ずつ配置されていてもよい。または、図8Aに示すように、配線OL[j]、および、配線OLB[j]という一組の配線について、少なくとも1個の電流源回路ISCを有していてもよい。
 また、電流源回路ISCは、一つ又は複数の定電流源を有しており、図8Aでは、一例として、複数の定電流源として、定電流源回路ISC1と、定電流源回路ISC2と、定電流源回路ISC3と、を有する。また、電流源回路ISCは、一例として、複数の定電流源を選択するために、複数のスイッチを有しており、図8Aでは、複数のスイッチとして、スイッチSWC1と、スイッチSWC2と、スイッチSWC3と、を有する。なお、電流源回路ISCが1つの定電流源のみを有する場合、定電流源回路ISCはスイッチを有さなくてもよい。または、定電流源回路ISC1と、定電流源回路ISC2と、定電流源回路ISC3とが、それぞれ、電流を出力するか否かを制御する機能を有する場合には、スイッチSWC1と、スイッチSWC2と、スイッチSWC3は、設けなくてもよい。
 ところで、配線OL[j]、配線OLB[j]のそれぞれに流す電流は、図8Aに示すとおり、同じ電流源回路ISCで生成されることが好ましい。配線OL[j]、配線OLB[j]のそれぞれに流す電流を異なる電流源回路で生成する場合、トランジスタの作製工程時などを起因とする当該トランジスタの特性のバラつきが生じることがあるため、異なる電流源回路同士では性能に差が現れることがある。一方、同一の電流源回路を用いる場合には、配線OL[j]と、配線OLB[j]とに、同じ大きさの電流を供給することが可能となり、演算精度を向上させることができる。
 なお、図8Aで説明するスイッチSWI、スイッチSWIB、スイッチSWO、スイッチSWOB、スイッチSWL、スイッチSWLB、スイッチSWH、スイッチSWHB、スイッチSWC1、スイッチSWC2、スイッチSWC3としては、例えば、スイッチS01a、及びスイッチS01bと同様に、アナログスイッチ、トランジスタなどの電気的なスイッチ、機械的なスイッチなどを適用することができる。
 切り替え回路TW[j]の一例において、端子TSaは、スイッチSWIの第1端子と、スイッチSWOの第1端子と、スイッチSWLの第1端子と、スイッチSWHの第1端子と、に電気的に接続されている。端子TSaBは、スイッチSWIBの第1端子と、スイッチSWOBの第1端子と、スイッチSWLBの第1端子と、スイッチSWHBの第1端子と、に電気的に接続されている。スイッチSWIの第2端子は、端子TSb1に電気的に接続されている。スイッチSWIBの第2端子は、端子TSbB1に電気的に接続されている。スイッチSWOの第2端子は、端子TScに電気的に接続されている。スイッチSWOBの第2端子は、端子TScBに電気的に接続されている。スイッチSWLの第2端子は、端子TSb2に電気的に接続されている。スイッチSWLBの第2端子は、端子TSbB2に電気的に接続されている。スイッチSWHの第2端子は、端子TSb3に電気的に接続されている。スイッチSWHBの第2端子は、端子TSbB3に電気的に接続されている。
 図8Aに図示している端子TSb1、端子TSb2、端子TSb3は、図7に図示している端子TSbに相当する。また、図8Aに図示している端子TSbB1、端子TSbB2、端子TSbB3は、図7に図示している端子TSbBに相当する。
 回路ILDに含まれている電流源回路ISCにおいて、端子TSb1は、スイッチSWC1の第1端子と、スイッチSWC2の第1端子と、スイッチSWC3の第1端子と、に電気的に接続されている。また、端子TSbB1は、スイッチSWC1の第1端子と、スイッチSWC2の第1端子と、スイッチSWC3の第1端子と、に電気的に接続されている。スイッチSWC1の第2端子は、定電流源回路ISC1の出力端子に電気的に接続され、スイッチSWC2の第2端子は、定電流源回路ISC2の出力端子に電気的に接続され、スイッチSWC3の第2端子は、定電流源回路ISC3の出力端子に電気的に接続されている。定電流源回路ISC1の入力端子と、定電流源回路ISC2の入力端子と、定電流源回路ISC3の入力端子と、のそれぞれは、配線VSOに電気的に接続されている。
 なお、図8Aでは、定電流源回路ISC1、定電流源回路ISC2、定電流源回路ISC3のそれぞれは、出力端子がそれぞれのスイッチの端子に電気的に接続され、入力端子が配線VSOに電気的に接続されている構成となっているが、本発明の一態様はこれに限定されない。例えば、定電流源回路ISC1、定電流源回路ISC2、定電流源回路ISC3のそれぞれは、入力端子がそれぞれのスイッチの端子に電気的に接続され、出力端子を配線VSOに電気的に接続されている構成としてもよい。なお、回路MPから電流を出力する前に、配線OL[j]、配線OLB[j]の電位を初期化するために、配線VCN2を配置してもよい。配線VCN2は、スイッチSWHを介して、配線OL[j]と接続されている。また、配線VCN2は、スイッチSWHBを介して、配線OLB[j]と接続されている。配線VCN2は、配線VCNとは異なる電位を供給することができる。例えば、配線VCNに、VSS、または、接地電位が供給されている場合には、配線VCN2には、VDDなどが供給される。これにより、回路MPから出力される電流によって、配線OL[j]、および、配線OLB[j]の電位を変化させることができる。
 定電流源回路ISC1、定電流源回路ISC2、定電流源回路ISC3の具体的な構成例を図8B、及び図8Cに示す。図8Bに示す定電流源回路ISC1(定電流源回路ISC2、定電流源回路ISC3)は、pチャネル型トランジスタを有し、当該トランジスタの第1端子は、配線VSOに電気的に接続され、当該トランジスタの第2端子は、スイッチSWC1(スイッチSWC2、スイッチSWC3)の第2端子に電気的に接続され、当該トランジスタのゲートは、配線VBに電気的に接続されている。また、図8Cに示す定電流源回路ISC1(定電流源回路ISC2、定電流源回路ISC3)は、nチャネル型トランジスタを有し、当該トランジスタの第1端子は、配線VSOに電気的に接続され、当該トランジスタの第2端子は、スイッチSWC1(スイッチSWC2、スイッチSWC3)の第2端子に電気的に接続され、当該トランジスタのゲートは、配線VBに電気的に接続されている。図8B、及び図8Cのそれぞれの定電流源回路ISC1(定電流源回路ISC2、定電流源回路ISC3)において、配線VBは、それぞれのトランジスタのゲートにバイアス電圧を入力するための配線として機能する。なお、配線VBに、パルス信号を供給してもよい。これにより、それぞれの定電流源回路から電流を出力するか否かを制御することができる。その場合、スイッチSWC1と、スイッチSWC2と、スイッチSWC3は、設けなくてもよい。または、配線VBに、アナログ電圧を供給してもよい。これにより、定電流源回路から、アナログ電流を供給することができる。
 配線VSOは、定電流源回路ISC1、定電流源回路ISC2、定電流源回路ISC3のそれぞれに対して、定電圧を供給する配線として機能する。例えば、回路ILDから、切り替え回路TW[j]を介して配線OL又は配線OLBに電流を供給する場合、当該定電圧としては、接地電位よりも高い電位(例えば、VDDなど。)とするのが好ましく、更に、図8Bに示す定電流源回路ISC1(定電流源回路ISC2、定電流源回路ISC3)を用いるのが好ましい。また、例えば、回路ILDから、切り替え回路TW[j]を介して配線OL又は配線OLBに電流を供給する場合、当該定電圧としては、接地電位よりも高く当該高レベル電位よりも低い電位、接地電位などとするのが好ましく、更に、図8Cに示す定電流源回路ISC1(定電流源回路ISC2、定電流源回路ISC3)を用いるのが好ましい。なお、本明細書において、回路ILDから、切り替え回路TW[j]を介して配線OL又は配線OLBに流れる電流を正の電流と記載する場合がある。そのため、配線OL又は配線OLBから、切り替え回路TW[j]を介して回路ILDに流れる電流を負の電流と記載する場合がある。
 ところで、定電流源回路ISC1が流す電流をIutとしたとき、一例としては、定電流源回路ISC2が流す電流は2Iutとするのが好ましく、定電流源回路ISC3が流す電流は4Iutとするのが好ましい。つまり、電流源回路ISCが、P個(Pは1以上の整数である。)の定電流源を有する場合、p番目(pは1以上P以下の整数である。)の定電流源が流す電流は、2(p−1)×Iutとするのが好ましい。このようにして、電流源回路ISCから流れる電流の大きさを変更することができる。
 例えば、電流源回路ISCの定電流源の個数を3個(P=3)とする。配線OL[j]にIutの電流を流したい場合は、スイッチSWIをオン状態、スイッチSWIBをオフ状態にした上で、スイッチSWC1をオン状態にし、スイッチSWC2、スイッチSWC3をオフ状態にすればよい。また、配線OL[j]に5Iutの電流を流したい場合は、スイッチSWC1、スイッチSWC3をオン状態にし、スイッチSWC2をオフ状態にすればよい。つまり、電流源回路ISCから出力される電流は、8値(“0”、“Iut”、“2Iut”、“3Iut”、“4Iut”、“5Iut”、“6Iut”、“7Iut”)のいずれか一とすることができる。なお、8値よりも大きな値の電流を出力したい場合には、定電流源の個数を4個以上にすればよい。また、同様に、スイッチSWIをオフ状態、スイッチSWIBをオン状態にすることによって、配線OLB[j]に8値のいずれか一の電流を流すことができる。なお、電流源回路ISCから電流の出力をしない場合、電流源回路ISCのスイッチSWC1乃至スイッチSWC3をオフ状態にせず、切り替え回路TWのスイッチSWI、スイッチSWIBをオフ状態にしてもよい。このように複数の定電流源を配置することにより、DA変換を容易に実現することができる。なお、電流源回路を1個のみ配置して、アナログ的に出力される電流値を変更するように動作させてもよい。
 また、回路ILDにおいて、端子TSb2は、配線VCNに電気的に接続され、端子TSbB2は、配線VCNに電気的に接続されている。
 配線VCNは、配線OL[j]及び/又は配線OLB[j]に対して、定電圧を供給する配線として機能する。例えば、回路ILDから、切り替え回路TW[j]を介して配線OL又は配線OLBに電流(正の電流)を供給する場合、配線VCNが与える定電圧としては、低レベル電位(例えばVSSなど。)とするのが好ましい。また、例えば、配線OL又は配線OLBから、切り替え回路TW[j]を介して回路ILDに電流(負の電流)を供給する場合、配線VCNが与える定電位としては、高レベル電位とするのが好ましい。なお、後述する図42乃至図45などに示すように、容量C3がトランジスタM1などのソース端子に接続され、そのソース端子が電源線などに接続されていない場合には、回路ILDから、切り替え回路TW[j]を介して配線OL又は配線OLBに正の電流を供給する場合、配線VCNが与える定電圧としては、高レベル電位(例えばVDDなど。)とするのが好ましい。つまり、配線VCNから定電圧を供給するときに、容量C3の両端の電位差がゼロに近くなるようにすることが望ましい。言い換えると、回路MCより、電流が出力されなくなるような電位を配線VCNに供給することが望ましい。
 また、回路ILDにおいて、端子TSb3は、配線VCN2に電気的に接続され、端子TSbB3は、配線VCN2に電気的に接続されている。
 配線VCN2は、配線OL[j]及び/又は配線OLB[j]に対して、定電圧を供給する配線として機能する。例えば、回路ILDから、切り替え回路TW[j]を介して配線OL又は配線OLBに電流(正の電流)を供給する場合、配線VCNが与える定電圧としては、高レベル電位(例えばVDDなど。)とするのが好ましい。また、例えば、配線OL又は配線OLBから、切り替え回路TW[j]を介して回路ILDに電流(負の電流)を供給する場合、配線VCNが与える定電位としては、低レベル電位とするのが好ましい。
 切り替え回路TW[j]は、スイッチSWI、スイッチSWIB、スイッチSWO、スイッチSWOB、スイッチSWL、スイッチSWLB、スイッチSWH、スイッチSWHBのそれぞれをオン状態又はオフ状態に切り替えることによって、配線OL[j]及び配線OLB[j]と導通状態となる回路を変更することができる。
 ここで、回路MPに入力される重み係数について説明する。
 回路MPに正の重み係数を入力したいとき、配線OL[j]に当該重み係数に応じた電流を入力し、配線OLB[j]に配線VCNが与える定電位を入力すればよい。一例としては、電流源回路ISCと配線OL[j]との間を導通状態にし、電流源回路ISCと配線OLB[j]との間を非導通状態にし、回路AFPと配線OL[j]との間を非導通状態にし、回路AFPと配線OLB[j]との間を非導通状態にし、配線VCNと配線OL[j]との間を非導通状態にし、配線VCNと配線OLB[j]との間を導通状態にし、配線VCN2と配線OL[j]との間を非導通状態にし、配線VCN2と配線OLB[j]との間を非導通状態にすればよい。すなわち、切り替え回路TW[j]において、スイッチSWI、SWLBをオン状態とし、スイッチSWIB、スイッチSWO、スイッチSWOB、スイッチSWL、スイッチSWH、スイッチSWHBのそれぞれをオフ状態とすればよい。これにより、電流源回路ISCと配線OL[j]との間が導通状態となるので、電流源回路ISCから、配線OL[j]を介して、回路MPに電流を流すことができる。ところで、電流源回路ISCの定電流源の個数をP個としたとき、当該電流は、2−1値のいずれか一となる(ゼロ電流を含まない)。回路MPに入力される正の重み係数は当該電流に応じて決まるため、当該重み係数は2−1値のいずれか一とすることができる。また、配線VCNと配線OLB[j]との間が導通状態となるので、配線OLB[j]には、配線VCNからの定電圧が入力される。
 また、回路MPに負の重み係数を入力したいとき、配線OLB[j]に当該重み係数に応じた電流を入力し、配線OL[j]に配線VCNが与える定電位を入力すればよい。一例としては、電流源回路ISCと配線OL[j]との間を非導通状態にし、電流源回路ISCと配線OLB[j]との間を導通状態にし、回路AFPと配線OL[j]との間を非導通状態にし、回路AFPと配線OLB[j]との間を非導通状態にし、配線VCNと配線OL[j]との間を導通状態にし、配線VCNと配線OLB[j]との間を非導通状態にし、配線VCN2と配線OL[j]との間を非導通状態にし、配線VCN2と配線OLB[j]との間を非導通状態にすればよい。すなわち、切り替え回路TW[j]において、スイッチSWIB、スイッチSWLをオン状態とし、スイッチSWI、スイッチSWO、スイッチSWOB、スイッチSWLB、スイッチSWH、スイッチSWHBのそれぞれをオフ状態とすればよい。これにより、電流源回路ISCと配線OLB[j]との間が導通状態となるので、電流源回路ISCから、配線OLB[j]を介して、回路MPに電流を流すことができる。ところで、電流源回路ISCの定電流源の個数をP個としたとき、当該電流は、2−1値のいずれか一となる(ゼロ電流を含まない)。回路MPに入力される負の重み係数は当該電流に応じて決まるため、当該重み係数は2−1値のいずれか一とすることができる。また、配線VCNと配線OL[j]との間が導通状態となるので、配線OL[j]には、配線VCNからの定電圧が入力される。
 また、回路MPに0の重み係数を入力したいとき、配線OL[j]、配線OLB[j]のそれぞれに配線VCNが与える定電位を入力すればよい。一例としては、電流源回路ISCと配線OL[j]との間を非導通状態にし、電流源回路ISCと配線OLB[j]との間を非導通状態にし、回路AFPと配線OL[j]との間を非導通状態にし、回路AFPと配線OLB[j]との間を非導通状態にし、配線VCNと配線OL[j]との間を導通状態にし、配線VCNと配線OLB[j]との間を導通状態にし、配線VCN2と配線OL[j]との間を非導通状態にし、配線VCN2と配線OLB[j]との間を非導通状態にすればよい。すなわち、切り替え回路TW[j]において、スイッチSWL、スイッチSWLBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWO、スイッチSWOBのそれぞれをオフ状態とすればよい。これにより、配線VCNと配線OL[j]との間が導通状態となり、配線VCNと配線OLB[j]との間が導通状態となるので、配線OL[j]、OLB[j]には、配線VCNからの定電圧が入力される。
 つまり、電流源回路ISCの定電流源の個数をP個とすることによって、回路MPに入力できる重み係数の数(正の重み係数、負の重み係数、0の重み係数の合計)は、2P+1−1個となる。
 次に、回路MPから回路AFPに情報(例えば、電位、電流など)を供給する場合について説明する。
 回路MPから回路AFPに情報(例えば、電位、電流など)を供給する前には、配線OL[j]、配線OLB[j]を所定の電位にしておくことが好ましい。例えば、回路AFPから、配線OL又は配線OLBを介して回路MPに正の電流が流れる場合、所定の電位としては、高レベル電位とするのがよい。また、例えば、回路MPから、配線OL又は配線OLBを介して回路AFPに正の電流が流れる場合、所定の電位としては、低レベル電位とするのがよい。そのため、回路MPから回路AFPに情報(例えば、電位、電流など)を供給する前では、一例としては、電流源回路ISCと配線OL[j]との間を非導通状態にし、電流源回路ISCと配線OLB[j]との間を非導通状態にし、回路AFPと配線OL[j]との間を非導通状態にし、回路AFPと配線OLB[j]との間を非導通状態にし、配線VCNと配線OL[j]との間を非導通状態にし、配線VCNと配線OLB[j]との間を非導通状態にし、配線VCN2と配線OL[j]との間を導通状態にし、配線VCN2と配線OLB[j]との間を導通状態にすればよい。すなわち、切り替え回路TW[j]において、スイッチSWH、スイッチSWHBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWO、スイッチSWOB、スイッチSWL、スイッチSWLBのそれぞれをオフ状態とすればよい。これにより、配線OL[j]と配線VCN2との間が導通状態となり、配線OLB[j]と配線VCN2との間が導通状態となるので、配線OL、配線OLBには、配線VCN2からの定電圧が入力される。
 回路MP[i,j]から回路AFPに情報(例えば、電位、電流など)を供給する時には、一例としては、電流源回路ISCと配線OL[j]との間を非導通状態にし、電流源回路ISCと配線OLB[j]との間を非導通状態にし、回路AFPと配線OL[j]との間を導通状態にし、回路AFPと配線OLB[j]との間を導通状態にし、配線VCNと配線OL[j]との間を非導通状態にし、配線VCNと配線OLB[j]との間を非導通状態にし、配線VCN2と配線OL[j]との間を非導通状態にし、配線VCN2と配線OLB[j]との間を非導通状態にすればよい。すなわち、切り替え回路TW[j]において、スイッチSWO、スイッチSWOBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、スイッチSWHBのそれぞれをオフ状態とすればよい。これにより、回路AFPと回路MP[i,j]との間が導通状態となるので、回路MP[i,j]から回路AFPに情報(例えば、電位、電流など)を供給することができる。
<<回路MP>>
 次に、演算回路110、演算回路120、演算回路130、演算回路140に含まれる回路MP[i,j]の構成例について説明する。
 図9Aは、演算回路140に適用できる回路MP[i,j]の構成例を示しており、回路MP[i,j]は、一例としては、回路MCと、回路MCrと、を有する。回路MC及び回路MCrは、回路MPにおいて、重み係数と、ニューロンの入力信号(演算値)と、の積を計算する回路である。回路MCは、回路MCrと同様の構成、又は回路MCrと異なる構成とすることができる。そのため、回路MCrは、回路MCと区別をするため、符号に「r」を付している。また、回路MCrに含まれている、後述する回路素子の符号にも「r」を付している。
 回路MCは、一例としては、保持部HCを有し、回路MCrは、保持部HCrを有する。保持部HC、及び保持部HCrは、それぞれ情報(例えば、電位、抵抗値、電流値など)を保持する機能を有する。なお、回路MP[i,j]に設定される第1データw (k−1) (k)は、保持部HC、及び保持部HCrのそれぞれに保持される情報(例えば、電位、抵抗値、電流値など)に応じて定められる。そのため、保持部HC及び保持部HCrのそれぞれは、第1データw (k−1) (k)に応じた各情報(例えば、電位、抵抗値、電流値など)を供給する配線OL[j]及び配線OLB[j]に電気的に接続されている。
 図9Aにおいて、回路MP[i,j]は、配線VE[j]と、配線VEr[j]と、に電気的に接続されている。配線VE[j]、配線VEr[j]は、定電圧を供給する配線として機能する。また、配線VE[j]は、回路MCを介して配線OLからの電流を排出する配線としても機能する。また、配線VEr[j]は、回路MCrを介して配線OLBからの電流を排出する配線としても機能する。
 図9Aに示した配線WL[i]は、図7における配線WL[i]に相当する。配線WL[i]は、保持部HC及び保持部HCrのそれぞれに電気的に接続されている。回路MP[i,j]に含まれる保持部HC、及び保持部HCrに第1データw (k−1) (k)に応じた情報(例えば、電位、抵抗値、電流値など)を書き込むとき、配線WL[i]に所定の電位を供給することによって、配線OL[j]と保持部HCとの間を導通状態にし、かつ配線OLB[j]と保持部HCrとの間を導通状態にする。そして、配線OL[j]、OLB[j]のそれぞれに第1データw (k−1) (k)に応じた電位などを供給することによって、保持部HC、及び保持部HCrのそれぞれに当該電位などを入力することができる。その後、配線WL[i]に所定の電位を供給して、配線OL[j]と保持部HCとの間を非導通状態にし、かつ配線OLB[j]と保持部HCrとの間を非導通状態にする。そして、保持部HC、及び保持部HCrのそれぞれに第1データw (k−1) (k)に応じた各電流などが保持される。
 例えば、第1データw (k−1) (k)が“−1”、“0”、“1”の3値のいずれかをとる場合を考える。第1データw (k−1) (k)が“1”である場合、一例として、配線OL[j]から回路MCを介して配線VE[j]に“1”に応じた電流が流れるように、保持部HCには所定の電位が保持され、かつ配線OLB[j]から回路MCrを介して配線VEr[j]に電流が流れないように、保持部HCrには電位Vが保持される。また、第1データw (k−1) (k)が“−1”である場合、一例として、配線OL[j]から回路MCを介して配線VE[j]に電流が流れないように、保持部HCには電位Vが保持され、かつ配線OLB[j]から回路MCrを介して配線VEr[j]に“−1”に応じた電流が流れるように、保持部HCrには所定の電位が保持される。そして、第1データw (k−1) (k)が“0”である場合、一例として、配線OL[j]から回路MCを介して配線VE[j]に電流が流れないように、保持部HCに電位Vが保持され、かつ配線OLB[j]から回路MCを介して配線VEr[j]に電流が流れないように、保持部HCrに電位Vが保持される。なお、電位Vは、図8の説明において、配線VCNが与える電位とすることができる。
 なお、別の例として、第1データw (k−1) (k)がアナログ値、具体的には、“負のアナログ値”、“0”、または、“正のアナログ値”をとる場合を考える。第1データw (k−1) (k)が“正のアナログ値”である場合、一例として、配線OL[j]から回路MCを介して配線VE[j]に“正のアナログ値”に応じたアナログ電流が流れるように、保持部HCには所定の電位が保持され、かつ配線OLB[j]から回路MCrを介して配線VEr[j]に電流が流れないように、保持部HCrには電位Vが保持される。また、第1データw (k−1) (k)が“負のアナログ値”である場合、一例として、配線OL[j]から回路MCを介して配線VE[j]に電流が流れないように、保持部HCには電位Vが保持され、かつ配線OLB[j]から回路MCrを介して配線VEr[j]に“負のアナログ値”に応じたアナログ電流が流れるように、保持部HCrには所定の電位が保持される。そして、第1データw (k−1) (k)が“0”である場合、一例として、配線OL[j]から回路MCを介して配線VE[j]に電流が流れないように、保持部HCに電位Vが保持され、かつ配線OLB[j]から回路MCを介して配線VEr[j]に電流が流れないように、保持部HCrに電位Vが保持される。なお、電位Vは、先の例と同様に、図8の説明において、配線VCNが与える電位とすることができる。
 また、一例として、回路MCは、保持部HCに保持された情報(例えば、電位、抵抗値、または、電流値など)に応じた電流などを、配線OL[j]又は配線OLB[j]の一方に出力する機能を有し、回路MCrは、保持部HCrに保持された情報(例えば、電位、抵抗値、または、電流値など)に応じた電流などを、配線OL[j]又は配線OLB[j]の他方に出力する機能を有する。例えば、保持部HCに第1電位が保持されている場合、回路MCは配線OL[j]又は配線OLB[j]から配線VEに第1電流値を持つ電流を流すものとし、保持部HCに第2電位が保持されている場合、回路MCは配線OL[j]又は配線OLB[j]から配線VEに第2電流値を持つ電流を流すものする。同様に、保持部HCrに第1電位が保持されている場合、回路MCrは配線OL[j]又は配線OLB[j]から配線VErに第1電流値を持つ電流を流すものとし、保持部HCrに第2電位が保持されている場合、回路MCrは配線OL[j]又は配線OLB[j]から配線VEに第2電流値を持つ電流を流すものとする。なお、第1電流値、第2電流値のそれぞれの大きさは、第1データw (k−1) (k)の値によって定められる。一例としては、第1電流値は第2電流値よりも大きい場合もあり、又は小さい場合もある。更に、一例としては、第1電流値又は第2電流値の一方はゼロ電流、つまり電流値が0の場合もある。または、第1電流値を持つ電流と第2電流値を持つ電流とで、電流が流れる向きが異なる場合もある。
 特に、例えば、第1データw (k−1) (k)が“−1”、“0”、“1”の3値のいずれかをとる場合、第1電流値又は第2電流値の一方がゼロとなるように、回路MC、MCrを構成するのが好ましい。なお、第1データw (k−1) (k)がアナログ値、例えば、“負のアナログ値”、“0”、または、“正のアナログ値”をとる場合には、第1電流値又は第2電流値についても、一例としては、アナログ値をとることができる。
 ところで、配線OL[j]又は配線OLB[j]から、回路MCを介して配線VEに流す電流と、配線OL[j]又は配線OLB[j]から、回路MCrを介して配線VErに流す電流と、を等しくする場合、トランジスタの作製工程などを起因として当該トランジスタの特性がバラつくことがあるため、回路MCに保持する電位と、回路MCrに保持する電位と、は等しくならないことがある。本発明の一態様の半導体装置は、トランジスタの特性にバラつきがあっても、配線OL[j]又は配線OLB[j]から、回路MCを介して配線VEに流す電流の量を、配線OL[j]又は配線OLB[j]から、回路MCrを介して配線VErに流す電流の量に、ほぼ等しくすることができる。
 なお、本明細書などにおいて、保持部HC、及び保持部HCrに保持された情報(例えば、電位、抵抗値、または、電流値など)に応じた電流または電圧などは、正の電流または電圧などとしてもよいし、負の電流または電圧などとしてもよいし、ゼロ電流またはゼロ電圧などとしてもよいし、正と負と0とが混在していてもよい。つまり、例えば、上述の「保持部HCに保持された情報(例えば、電位、抵抗値、または、電流値など)に応じた電流または電圧などを、配線OL[j]又は配線OLB[j]の一方に出力する機能を有し、回路MCrは、保持部HCrに保持された情報(例えば、電位、抵抗値、または、電流値など)に応じた電流または電圧などを、配線OL[j]又は配線OLB[j]の他方に出力する機能を有する」という記載は、「保持部HCに保持された情報(例えば、電位、抵抗値、または、電流値など)に応じた電流、電圧などを、配線OL[j]又は配線OLB[j]の一方から排出する機能を有し、回路MCrは、保持部HCrに保持された情報(例えば、電位、抵抗値、または、電流値など)に応じた電流、電圧などを、配線OL[j]又は配線OLB[j]の他方から排出する機能を有する」という記載に換言することができる。
 図9Aに示した配線X1L[i]、及び配線X2L[i]は、図7における配線XLS[i]に相当する。なお、回路MP[i,j]に入力される第2データz (k−1)は、一例としては、配線X1L[i]、及び配線X2L[i]のそれぞれの電位または電流などによって定められる。そのため、回路MC、MCrには、例えば、配線X1L[i]及び配線X2L[i]を介して、第2データz (k−1)に応じた各電位が入力される。
 回路MCは、配線OL[j]と、配線OLB[j]と、に電気的に接続され、回路MCrは、配線OL[j]と、配線OLB[j]と、に電気的に接続されている。回路MC及び回路MCrは、一例としては、配線X1L[i]及び配線X2L[i]に入力された電位または電流などに応じて、配線OL[j]及び配線OLB[j]に、第1データw (k−1) (k)と第2データz (k−1)との積に応じた電流または電位などを出力する。具体的な例としては、回路MC、MCrからの電流の出力先は、配線X1L[i]及び配線X2L[i]の電位によって定められる。例えば、回路MC、及び回路MCrは、回路MCから出力される電流が配線OL[j]又は配線OLB[j]の一方に流れ、回路MCrから出力される電流が配線OL[j]又は配線OLB[j]の他方に流れるような回路構成となっている。つまり、回路MC、MCrから出力されたそれぞれの電流は、同一の配線でなく、互いに異なる配線に流れる。なお、一例としては、回路MC、及び回路MCrから、配線OL[j]又は配線OLB[j]のいずれにも電流が流れない場合もある。
 例えば、第2データz (k−1)が“−1”、“0”、“1”の3値のいずれかをとる場合を考える。例えば、第2データz (k−1)が“1”である場合、回路MPは、回路MCと配線OL[j]との間を導通状態とし、回路MCrと配線OLB[j]との間を導通状態とする。例えば、第2データz (k−1)が“−1”である場合、回路MPは、回路MCと配線OLB[j]との間を導通状態とし、回路MCrと配線OL[j]との間を導通状態とする。例えば、第2データz (k−1)が“0”である場合、回路MC、及び回路MCrのそれぞれが出力した電流を、配線OL[j]、及び配線OLB[j]のいずれにも流さないようにするため、回路MPは、回路MCと配線OL[j]との間、及び、回路MCと配線OLB[j]との間を非導通状態にし、回路MCrと配線OL[j]との間、及び、回路MCと配線OLB[j]との間を非導通状態にする。
 以上の動作をまとめた場合の例を示す。第1データw (k−1) (k)が“1”の場合には、回路MCを介して配線OL[j]または配線OLB[j]から配線VE[j]に電流が流れる場合があり、回路MCrを介して配線OL[j]または配線OLB[j]から配線VEr[j]に電流が流れない。第1データw (k−1) (k)が“−1”の場合には、回路MCを介して配線OL[j]または配線OLB[j]から配線VE[j]に電流が流れず、回路MCrを介して配線OL[j]または配線OLB[j]から配線VEr[j]に電流が流れる場合がある。そして、第2データz (k−1)が“1”の場合には、回路MCと配線OL[j]との間、および、回路MCrと配線OLB[j]との間が導通状態になる。第2データz (k−1)が“−1”の場合には、回路MCと配線OLB[j]との間、および、回路MCrと配線OL[j]との間が導通状態になる。以上のことより、第1データw (k−1) (k)と第2データz (k−1)の積が正の値の場合には、回路MCrを介して配線OL[j]から配線VE[j]に電流が流れる、又は、回路MCrを介して配線OL[j]から配線VEr[j]に電流が流れる、の一方となる。第1データw (k−1) (k)と第2データz (k−1)の積が負の値の場合には、回路MCrを介して配線OL[j]から配線VEr[j]に電流が流れる、又は、回路MCを介して配線OLB[j]から配線VE[j]に電流が流れる、の一方となる。第1データw (k−1) (k)と第2データz (k−1)の積がゼロの値の場合には、配線OL[j]または配線OLB[j]から配線VE[j]に電流が流れず、配線OL[j]または配線OLB[j]から配線VEr[j]に電流が流れない。
 上述した例を具体的な例として記すと、第1データw (k−1) (k)が“1”であって、第2データz (k−1)が“1”である場合、例えば、回路MCから配線OL[j]に第1電流値を持つ電流I1[i、j]が流れ、回路MCrから配線OLB[j]に第2電流値を持つ電流I2[i、j]が流れる。このとき、第2電流値の大きさは、一例としては、ゼロである。第1データw (k−1) (k)が“−1”であって、第2データz (k−1)が“1”である場合、例えば、回路MCから配線OL[j]に第2電流値を持つ電流I1[i、j]が流れ、回路MCrから配線OLB[j]に第1電流値を持つ電流I2[i、j]が流れる。このとき、第2電流値の大きさは、一例としては、ゼロである。第1データw (k−1) (k)が“0”であって、第2データz (k−1)が“1”である場合、回路MCから配線OL[j]に第2電流値を持つ電流I1[i、j]が流れ、回路MCrから配線OLB[j]に第2電流値を持つ電流I2[i、j]が流れる。このとき、第2電流値の大きさは、一例としては、ゼロである。
 また、第1データw (k−1) (k)が“1”であって、第2データz (k−1)が“−1”である場合、回路MCから配線OLB[j]に第1電流値を持つ電流I1[i、j]が流れ、回路MCrから配線OL[j]に第2電流値を持つ電流I2[i、j]が流れる。このとき、第2電流値の大きさは、一例としては、ゼロである。第1データw (k−1) (k)が“−1”であって、第2データz (k−1)が“−1”である場合、回路MCから配線OLB[j]に第2電流値を持つ電流I1[i、j]が流れ、回路MCrから配線OL[j]に第1電流値を持つ電流I2[i、j]が流れる。このとき、第2電流値の大きさは、一例としては、ゼロである。第1データw (k−1) (k)が“0”であって、第2データz (k−1)が“−1”である場合、回路MCから配線OLB[j]に第2電流値を持つ電流I1[i、j]が流れ、回路MCrから配線OL[j]に第2電流値を持つ電流I2[i、j]が流れる。このとき、第2電流値の大きさは、一例としては、ゼロである。
 また、第2データz (k−1)が“0”である場合、一例としては、回路MCと配線OL[j]との間、及び、回路MCと配線OLB[j]との間が非導通状態となる。同様に、回路MCrと配線OL[j]との間、及び、回路MCrと配線OLB[j]との間が非導通状態となる。そのため、第1データw (k−1) (k)がどんな値であっても、回路MC及び回路MCrから配線OL[j]及び配線OLB[j]に電流は出力されない。
 このように、一例としては、第1データw (k−1) (k)と第2データz (k−1)との積の値が正の値を取る場合には、回路MCまたは回路MCrのいずれかから、配線OL[j]に電流が流れる。このとき、第1データw (k−1) (k)が正の値の場合には、回路MCから配線OL[j]に電流が流れ、第1データw (k−1) (k)が負の値の場合には、回路MCrから配線OL[j]に電流が流れる。一方、第1データw (k−1) (k)と第2データz (k−1)との積の値が、負の値を取る場合には、回路MCまたは回路MCrのいずれかから、配線OLB[j]に電流が流れる。このとき、第1データw (k−1) (k)が正の値の場合には、回路MCから配線OLB[j]に電流が流れ、第1データw (k−1) (k)が負の値の場合には、回路MCrから配線OLB[j]に電流が流れる。そのため、配線OL[j]に接続された複数の回路MCまたは回路MCrから出力された電流の総和が、配線OL[j]に流れることになる。つまり、配線OL[j]では、正の値の和をとった値となる電流が流れることになる。一方、配線OLB[j]に接続された複数の回路MCまたは回路MCrから出力された電流の総和が、配線OLB[j]に流れることになる。つまり、配線OLB[j]では、負の値の和をとった値となる電流が流れることになる。以上のような動作の結果、配線OL[j]に流れる総電流値、つまり、正の値の総和と、配線OLB[j]に流れる総電流値、つまり、負の値の総和とを利用することにより、積和演算処理を行うことができる。例えば、配線OL[j]に流れる総電流値の方が、配線OLB[j]に流れる総電流値よりも大きい場合には、積和演算の結果としては、正の値をとると判断することができる。配線OL[j]に流れる総電流値の方が、配線OLB[j]に流れる総電流値よりも小さい場合には、積和演算の結果としては、負の値をとると判断することができる。配線OL[j]に流れる総電流値と、配線OLB[j]に流れる総電流値とが概ね同じ値である場合には、積和演算の結果としては、ゼロの値をとると判断することができる。
 なお、第2データz (k−1)が“−1”、“0”、“1”のうちの、いずれか2値、例えば、“−1”、“1”の2値の場合、または、“0”、“1”の2値の場合も、同様に動作させることができる。同様に、第1データw (k−1) (k)が“−1”、“0”、“1”、でのうちの、いずれか2値、例えば、“−1”、“1”の2値の場合、または、“0”、“1”の2値の場合も、同様に動作させることができる。
 なお、第1データw (k−1) (k)は、アナログ値、または、多ビット(多値)のデジタル値を取ってもよい。具体的な例としては、“−1”の代わりに“負のアナログ値”、および、“1”の代わりに“正のアナログ値”をとっても良い。この場合、回路MCまたは回路MCrから流れる電流の大きさも、一例としては、第1データw (k−1) (k)の値の絶対値に応じたアナログ値となる。
 次に、図9Aの回路MP[i,j]を変形した例について、説明する。なお、回路MP[i,j]の変形例については、図9Aの回路MP[i,j]と異なる部分を主に説明し、図9Aの回路MP[i,j]と共通する部分については説明を省略することがある。
 図9Bに示す回路MP[i,j]は、配線W1Lを配線WX1Lに置き換えた構成となっている。すなわち、図9Bの回路MP[i,j]において、配線WX1Lと配線WLは、配線OL[j]と保持部HCとの間を導通状態、又は非導通状態の切り替えと、配線OLB[j]と保持部HCrとの間を導通状態、又は非導通状態の切り替えを行うために、所定の電位を供給する配線として機能する。また、図9Bの回路MP[i,j]において、配線X1Lと配線X2Lは、回路MP[i,j]に入力される第2データz (k−1)に応じた電流、電圧などを与える配線として機能する。
 図9Bの回路MP[i,j]は、図13に示す演算回路130のように、配線WX1Lを有する演算回路、及び図7に示す演算回路140のように、配線IL、配線ILBを有さない演算回路に適用することができる。具体的には、図9Bの回路MP[i,j]は、図11に示す演算回路150の回路MP[i,j]に適用することができる。
 次に、図9Bとは異なる、図9Aの回路MP[i,j]を変形した例について、説明する。図9Cに示す回路MP[i,j]は、図9Aの回路MP[i,j]の変形例である。図9Cの回路MP[i,j]は、図9Aの回路MP[i,j]と同様に、回路MCと、回路MCrと、を有する。但し、図9Cの回路MP[i,j]は、回路MCrに保持部HCrが含まれていない点で、図9Aの回路MP[i,j]と異なる。
 また、回路MCrは保持部HCrを有していないため、図9Cの回路MP[i,j]を適用した演算回路は、保持部HCrに保持する電位を供給するための配線ILB[j]を有さなくてもよい。加えて、回路MCrは配線WL[i]に電気的に接続されていなくてもよい。
 図9Cの回路MP[i,j]において、回路MCに含まれる保持部HCは、回路MCrに電気的に接続されている。つまり、図9Cの回路MP[i,j]は、回路MCrと回路MCとが互いに保持部HCを共有するような構成となっている。一例としては、保持部HCで保持された信号に対して、反転した信号を、保持部HCから回路MCrに供給することができる。これにより、回路MCと回路MCrとで、異なる動作をすることが可能となる。または、回路MCと回路MCrとで、内部の回路構成が異なるようにして、その結果、保持部HCで保持された同一の信号に対して、回路MCと回路MCrとで、出力する電流の大きさが異なるようにすることも可能である。ここで、保持部HCに第1データw (k−1) (k)に応じた電位を保持し、第2データz (k−1)に応じた電位を配線X1L[i]及び配線X2L[i]に供給することによって、回路MP[i,j]は、配線OL[j]及び配線OLB[j]に、第1データw (k−1) (k)と第2データz (k−1)との積に応じた電流を出力することができる。
 なお、図9Cの回路MPを適用した演算回路110は、図12に示す演算回路160の回路構成に変更することができる。演算回路160は、図2の演算回路110から配線ILB[1]乃至配線ILB[m]を除いた構成となっている。
 図9Dに示す回路MP[i,j]は、図9Aの回路MP[i,j]の変形例であり、具体的には、図12の演算回路160に適用できる回路MP[i,j]の構成例である。図9Dの回路MP[i,j]は、図9Aの回路MP[i,j]と同様に、回路MCと、回路MCrと、を有する。但し、図9Dの回路MP[i,j]と図9Aの回路MP[i,j]は、電気的に接続されている配線の構成が異なっている。
 図9Dに示した配線W1L[i]、及び配線W2L[i]は、図12における配線WLS[i]に相当する。配線W1L[i]は保持部HCに電気的に接続され、配線W2L[i]は保持部HCrに電気的に接続されている。
 また、配線IL[j]は、保持部HCと、保持部HCrと、に電気的に接続されている。
 図9Dの回路MP[i,j]において、保持部HCと保持部HCrのそれぞれに異なる情報(例えば、電圧、抵抗値、電流など)を保持するとき、保持部HCと保持部HCrへの情報の保持動作は、同時ではなく、順に行うのが好ましい。例えば、回路MP[i,j]の第1データw (k−1) (k)は、保持部HCに第1の情報、保持部HCrに第2の情報を保持することによって表現できる場合を考える。初めに、配線W1L[i]及び配線W2L[i]のそれぞれに所定の電位を与えて、保持部HCと配線IL[j]との間を導通状態にし、かつ保持部HCrと配線IL[j]との間を非導通状態にする。次に、配線IL[j]に第1情報に応じた電流、電圧などを供給することで、保持部HCに第1の情報を与えることができる。その後に、配線W1L[i]及び配線W2L[i]のそれぞれに所定の電位を与えて、保持部HCと配線IL[j]との間を非導通状態にし、かつ保持部HCrと配線IL[j]との間を導通状態にする。そして、配線IL[j]に第2の情報に応じた電流、電圧などを供給することで、保持部HCrに第2の情報を与えることができる。これにより、回路MP[i,j]は、第1データとしてw (k−1) (k)を設定することができる。
 なお、保持部HCと保持部HCrのそれぞれにほぼ等しい情報(例えば、電圧、抵抗値、電流など)を保持する場合(回路MP[i,j]の第1データw (k−1) (k)が、保持部HCと保持部HCrのそれぞれにほぼ等しい情報を保持することによって設定される場合)、保持部HCと配線IL[j]との間を導通状態とし、かつ保持部HCrと配線IL[j]との間を導通状態となるように、配線W1L[i]及び配線W2L[i]のそれぞれに所定の電位を与えて、その後に、配線IL[j]から保持部HC、及び保持部HCrに対して当該情報に応じた電流、電圧などを供給すればよい。
 図9Dの回路MP[i,j]は、保持部HC、及び保持部HCrに第1データw (k−1) (k)に応じた電位を保持し、第2データz (k−1)に応じた電位を配線X1L[i]及び配線X2L[i]に供給することによって、図9Aの回路MP[i,j]と同様に、配線OL[j]及び配線OLB[j]に、第1データw (k−1) (k)と第2データz (k−1)との積に応じた電流を出力することができる。
 図9Eに示す回路MP[i,j]は、図9Dの回路MP[i,j]の変形例である。図9Eの回路MP[i,j]は、図9Dの回路MP[i,j]と同様に、回路MCと、回路MCrと、を有する。但し、図9Eの回路MP[i,j]と図9Dの回路MP[i,j]は、電気的に接続されている配線の構成が異なっている。
 具体的には、図9Eの回路MPは、図9Dの回路MPに配線ILB[j]を加え、かつ図9Dの回路MPに電気的に接続されている配線W1L[i]、配線W2L[i]を配線WL[i]に置き換えた構成となっている。
 図9Eの回路MPにおいて、配線IL[j]は保持部HCに電気的に接続され、配線ILB[j]は保持部HCrに電気的に接続されている。つまり、図9Dの回路MPにおいて、配線IL[j]は、保持部HCと保持部HCrのそれぞれに情報(例えば、電圧、抵抗値、電流など)に応じた電流、電圧などを供給する配線として機能するが、図9Eの回路MPにおいて、配線IL[j]は、保持部HCに情報に応じた電流、電圧などを供給する配線として機能し、配線ILB[j]は、保持部HCに情報に応じた電流、電圧などを供給する配線として機能する。
 また、図9Eの回路MPにおいて、保持部HC、及び保持部HCrにそれぞれ配線IL[j]、及び配線ILB[j]が電気的に接続されているため、保持部HC、及び保持部HCrのそれぞれに同時に情報(例えば、電圧、抵抗値、電流など)に応じた電流、電圧などを供給することができる。そのため、保持部HCと配線IL[j]との間を導通状態、又は非導通状態の切り替えと、保持部HCrと配線ILB[j]との間を導通状態、又は非導通状態の切り替えと、を同時に行うことができる。図9Dの回路MPでは、保持部HCと配線IL[j]との間を導通状態、又は非導通状態の切り替えを制御する配線として配線W1Lを図示し、保持部HCrと配線ILB[j]との間を導通状態、又は非導通状態の切り替えを制御する配線として配線W2Lを図示しているが、図9Eの回路MPでは、配線W1Lと配線W2Lとをまとめた配線として、配線WL[i]を図示している。
 なお、図9Eの回路MPは、例えば、図2の演算回路110、図3の演算回路120に適用することができる。
 図9Fに示す回路MP[i,j]は、図9Aの回路MP[i,j]の変形例である。図9Fの回路MP[i,j]は、図9Aの回路MP[i,j]と同様に、回路MCと、回路MCrと、を有する。但し、図9Fの回路MP[i,j]は、回路MCが配線OLB[j]に電気的に接続されていない点と、回路MCrが配線OL[j]に電気的に接続されていない点と、で図9Aの回路MP[i,j]と異なっている。
 図9Fに示した配線WL[i]は、保持部HCと、保持部HCrと、に電気的に接続されている。また、図9Fに示した配線XL[i]は、回路MCと、同路MCrと、に電気的に接続されている。
 図9Fの回路MP[i,j]は、後述した通り、回路MCが配線OLB[j]に電気的に接続されていなく、回路MCrが配線OL[j]に電気的に接続されていない。つまり、図9Fの回路MP[i,j]は、図9A乃至図9Eの回路MP[i,j]と異なり、回路MCから出力された電流は配線OLB[j]に流れず、回路MCrから出力された電流は配線OL[j]に流れない構成となっている。
 そのため、図9Fの回路MP[i,j]は、第2データz (k−1)が“0”、又は“1”の2値である場合に、演算回路に適用するのが好ましい。例えば、第2データz (k−1)が“1”である場合、回路MPは、回路MCと配線OL[j]との間を導通状態にし、回路MCrと配線OLB[j]との間を導通状態にする。また、例えば、第2データz (k−1)が“0”である場合、回路MC、及び回路MCrのそれぞれが出力した電流を、配線OL[j]、及び配線OLB[j]のいずれにも流さなくするため、回路MPは、回路MCと配線OL[j]との間、及び、回路MCと配線OLB[j]との間を非導通状態にし、回路MCrと配線OL[j]との間、及び、回路MCrと配線OLB[j]との間を非導通状態にする。
 図9Fの回路MP[i,j]は、演算回路110に適用することによって、一例としては、第1データw (k−1) (k)が“−1”、“0”、“1”の3値のいずれかをとり、第2データz (k−1)が“0”、“1”の2値をとる場合における、演算を行うことができる。なお、第1データw (k−1) (k)が“−1”、“0”、“1”、のうちの、いずれか2値、例えば、“−1”、“1”の2値の場合、または、“0”、“1”の2値の場合も、動作させることができる。なお、第1データw (k−1) (k)は、アナログ値、または、多ビット(多値)のデジタル値を取ってもよい。具体的な例としては、“−1”の代わりに“負のアナログ値”、および、“1”の代わりに“正のアナログ値”をとっても良い。この場合、回路MCまたは回路MCrから流れる電流の大きさも、一例としては、第1データw (k−1) (k)の値の絶対値に応じたアナログ値となる。
 図10に示す回路MP[i,j]は、図9Aと同様に、配線OL[j]及び配線OLB[j]に、第1データw (k−1) (k)と第2データz (k−1)との積に応じた電流を出力することが可能な回路である。なお、図10の回路MP[i,j]は、例えば、図2の演算回路110に適用することができる。
 図10の回路MP[i,j]は、回路MCと、回路MCrと、に加えて、トランジスタMZを有する。
 トランジスタMZの第1端子は、回路MCの第1端子と、回路MCrの第1端子と、に電気的に接続されている。トランジスタMZの第2端子は、配線VLに電気的に接続されている。トランジスタMZのゲートは、配線XL[i]に電気的に接続されている。
 配線VLは、一例としては、定電圧を与える配線として機能する。当該定電圧は、回路MP[i,j]や演算回路110などの構成によって決めることが好ましい。当該定電圧としては、例えば、高レベル電位であるVDD、低レベル電位であるVSS、接地電位などとすることができる。
 また、図10に示した配線WL[i]は、図2の演算回路110における配線WLS[i]に相当する。配線WL[i]は、保持部HCと、保持部HCrと、に電気的に接続されている。
 また、配線OL[j]は、回路MCの第2端子に電気的に接続されている。また、配線OLB[j]は、回路MCrの第2端子に電気的に接続されている。
 また、配線IL[j]は、保持部HCに電気的に接続され、配線ILB[j]は、保持部HCrに電気的に接続されている。
 図10の回路MP[i,j]において、保持部HCと保持部HCrのそれぞれに第1データに応じた電位を保持する場合の動作については、図9Aの回路MP[i,j]における第1データに応じた電位を保持する動作の説明を参酌する。
 図10の回路MP[i,j]において、回路MCは、回路MCの第1端子に配線VLが与える定電圧が供給されているときに、保持部HCに保持された電位に応じた電流を、回路MCの第1端子と第2端子との間に流す機能を有する。また、回路MCrは、回路MCの第1端子に配線VLが与える定電圧が供給されているときに、保持部HCrに保持された電位に応じた電流を、回路MCrの第1端子と第2端子との間に流す機能を有する。つまり、回路MP[i,j]の保持部HC、保持部HCrのそれぞれに第1データw (k−1) (k)に応じた電位を保持することによって、回路MCの第1端子と第2端子との間に流れる電流量と、回路MCrの第1端子と第2端子との間に流れる電流量を定めることができる。なお、回路MC(回路MCr)の第1端子に配線VLが与える定電圧が供給されていない場合、回路MC(回路MCr)は、例えば、回路MC(回路MCr)の第1端子と第2端子との間に電流を流さないものとしてもよい。
 例えば、保持部HC、保持部HCrのそれぞれに“1”の第1データw (k−1) (k)に応じた電位が保持されているとき、回路MCに配線VLが与える定電圧が与えられることによって、回路MCは、回路MCの第1端子と第2端子との間に所定の電流を流す。そのため、回路MCと配線OLとの間に電流が流れる。なお、このとき、回路MCrは回路MCrの第1端子と第2端子との間に電流を流さないものとする。そのため、回路MCrと配線OLBとの間には電流は流れない。また、例えば、保持部HC、保持部HCrのそれぞれに“−1”の第1データw (k−1) (k)に応じた電位が保持されているとき、回路MCに配線VLが与える定電圧が与えられることによって、回路MCrは、回路MCrの第1端子と第2端子との間に所定の電流を流す。そのため、回路MCrと配線OLBとの間に電流が流れる。なお、このとき、回路MCは回路MCの第1端子と第2端子との間に電流を流さないものとする。そのため、回路MCと配線OLとの間には電流は流れない。また、例えば、保持部HC、保持部HCrのそれぞれに“0”の第1データw (k−1) (k)に応じた電位が保持されているとき、回路MC及び回路MCrに配線VLの定電圧が与えられるかどうかに関わらず、回路MCは回路MCの第1端子と第2端子との間に電流を流さず、回路MCrは回路MCrの第1端子と第2端子との間に電流を流さない。つまり、回路MCと配線OLとの間には電流は流れず、回路MCrと配線OLBとの間には電流は流れない。
 なお、図10の回路MP[i,j]において、保持部HC、保持部HCrに保持される、第1データw (k−1) (k)に応じた電位の具体例については、図9Aの回路MP[i,j]の記載を参酌する。また、図10の回路MP[i,j]において、保持部HC、保持部HCrは、図9Aの回路MP[i,j]と同様に、電位でなく、電流、抵抗値などの情報を保持する機能を有し、回路MC、回路MCrは当該情報に応じた電流を流す機能を有してもよい。
 図10に示した配線XL[i]は、図2の演算回路110における配線XLS[i]に相当する。なお、回路MP[i,j]に入力される第2データz (k−1)は、一例としては、配線XL[i]の電位、電流などによって定められる。そのため、トランジスタMZのゲートには、例えば、配線XL[i]を介して、第2データz (k−1)に応じた電位が入力される。
 例えば、第2データz (k−1)が“0”、“1”の2値のいずれかをとる場合を考える。例えば、第2データz (k−1)が“1”である場合、配線XL[i]には高レベル電位が与えられるものとする。このとき、トランジスタMZがオン状態となるので、回路MPは、配線VLと回路MCの第1端子との間を導通状態にし、配線VLと回路MCrの第1端子との間を導通状態にする。つまり、第2データz (k−1)が“1”であるとき、回路MCと、回路MCrと、に配線VLからの定電圧が与えられる。また、例えば、第2データz (k−1)が“0”である場合、配線XL[i]には低レベル電位が与えられるものとする。このとき、回路MPは、回路MCと配線OLB[j]との間を非導通状態とし、回路MCrと配線OL[j]との間を非導通状態とする。つまり、第2データz (k−1)が“0”であるとき、回路MCと、回路MCrと、には、配線VLからの定電圧が与えられない。
 ここで、例えば、第1データw (k−1) (k)が“1”であって、第2データz (k−1)が“1”である場合、回路MCと配線OLとの間には電流は流れ、回路MCrと配線OLBとの間には電流は流れない結果となる。また、例えば、第1データw (k−1) (k)が“−1”であって、第2データz (k−1)が“1”である場合、回路MCと配線OLとの間には電流は流れず、回路MCrと配線OLBとの間には電流は流れる結果となる。また、例えば、第1データw (k−1) (k)が“0”であって、第2データz (k−1)が“1”である場合、回路MCと配線OLとの間、及び回路MCrと配線OLBとの間には電流は流れない結果となる。また、例えば、第2データz (k−1)が“0”である場合、第1データw (k−1) (k)が“−1”、“0”、“1”のいずれかであっても、回路MCと配線OLとの間、及び回路MCrと配線OLBとの間には電流は流れない結果となる。
 つまり、図10の回路MP[i,j]は、図9Fの回路MP[i,j]と同様に、一例として、第1データw (k−1) (k)が“−1”、“0”、“1”の3値のいずれかをとり、第2データz (k−1)が“0”、“1”の2値をとる場合における、演算を行うことができる。また、図9Fの回路MP[i,j]と同様に、図10の回路MP[i,j]は、第1データw (k−1) (k)が“−1”、“0”、“1”のうちの、いずれか2値、例えば、“−1”、“1”の2値の場合、または、“0”、“1”の2値の場合も、動作させることができる。なお、第1データw (k−1) (k)は、アナログ値、または、多ビット(多値)のデジタル値を取ってもよい。具体的な例としては、“−1”の代わりに“負のアナログ値”、および、“1”の代わりに“正のアナログ値”をとってもよい。この場合、回路MCまたは回路MCrから流れる電流の大きさも、一例としては、第1データw (k−1) (k)の値の絶対値に応じたアナログ値となる。
<演算回路の動作例>
 次に、図7の演算回路140の動作例について説明する。なお、本動作例の説明では、一例として、図13に示す演算回路140を用いる。
 図13の演算回路140は、図7の演算回路140のj列目に位置する回路に着目して図示されたものである。つまり、図13の演算回路140は、図1Aに示したニューラルネットワーク100における、ニューロンN (k)に入力される、ニューロンN (k−1)乃至ニューロンN (k−1)からの信号z (k−1)乃至z (k−1)と、重み係数w (k−1) (k)乃至w (k−1) (k)と、の積和演算と、当該積和演算の結果を用いた活性化関数の演算と、行う回路に相当する。更に、図13の演算回路110のアレイ部ALPに含まれている回路MPは、図9Bの回路MPを適用しているものとする。
 初めに、演算回路140において、回路MP[1,j]乃至回路MP[m,j]に第1データw (k−1) (k)乃至w (k−1) (k)が設定される。第1データw (k−1) (k)の設定の方法としては、回路WLDによって、配線WLS[1]乃至配線WLS[m]に順に所定の電位を入力して、回路MP[1,j]乃至回路MP[m,j]を順に選択していき、選択された回路MPに含まれている回路MC、及び回路MCrのそれぞれの保持部HC、及び保持部HCrに対して、回路ILDから、切り替え回路TW[j]、配線OL[j]、OLB[j]を介して、第1データに応じた電位、電流などを供給する。そして、電位、電流などの供給後に、回路WLDによって回路MP[1,j]乃至回路MP[m,j]のそれぞれを非選択にすることにより、回路MP[1,j]乃至回路MP[m,j]のそれぞれが有する回路MC、及び回路MCrのそれぞれの保持部HC、及び保持部HCrに第1データw (k−1) (k)乃至w (k−1) (k)に応じた電位、電流などを保持することができる。一例としては、第1データw (k−1) (k)乃至w (k−1) (k)のそれぞれについて、正の値を取る場合には、保持部HCには、その正の値に応じた値を入力し、保持部HCrには、ゼロに相当する値を入力する。一方、第1データw (k−1) (k)乃至w (k−1) (k)のそれぞれについて、負の値を取る場合には、保持部HCには、ゼロに相当する値を入力し、保持部HCrには、負の値の絶対値に応じた値を入力する。
 次に、回路XLDによって、配線X1L[1]乃至配線X1L[m]、配線X2L[1]乃至配線X2L[m]のそれぞれに、第2データz (k−1)乃至z (k−1)を供給する。具体的な一例としては、配線X1L[i]及び配線X2L[i]に第2データz (k−1)が供給される。なお、配線X1L[i]、及び配線X2L[i]は、図7に示す演算回路140の配線XLS[i]に相当する。
 回路MP[1,j]乃至回路MP[m,j]のそれぞれに入力される第2データz (k−1)乃至z (k−1)に応じて、回路MP[1,j]乃至回路MP[m,j]に含まれる回路MC、及び回路MCrと配線OL[j]、及び配線OLB[j]との導通状態が決まる。具体的な例としては、回路MP[i,j]は、第2データz (k−1)に応じて、「回路MCと配線OL[j]との間が導通となり、回路MCrと配線OLB[j]との間が導通となる」状態と、「回路MCと配線OLB[j]との間が導通となり、回路MCrと配線OL[j]との間が導通となる」状態と、「回路MC、及び回路MCrはそれぞれ配線OL[j]、及び配線OLB[j]と非導通となる」状態と、のいずれか一をとる。一例としては、第2データz (k−1)について、正の値を取る場合には、配線X1L[1]には、回路MCと配線OL[j]との間が導通状態となり、かつ、回路MCrと配線OLB[j]との間が導通状態とすることができる値を入力する。そして、配線X2L[1]には、回路MCと配線OLB[j]との間が非導通状態となり、かつ、回路MCrと配線OL[j]との間が非導通状態となることができる値を入力する。そして、第2データz (k−1)について、負の値を取る場合には、配線X1L[1]には、回路MCと配線OLB[j]との間が導通状態となり、かつ、回路MCrと配線OL[j]との間が導通状態とすることができる値を入力する。そして、配線X2L[1]には、回路MCと配線OL[j]との間が非導通状態となり、かつ、回路MCrと配線OLB[j]との間が非導通状態となることができる値を入力する。そして、第2データz (k−1)について、ゼロの値を取る場合には、配線X1L[1]には、回路MCと配線OLB[j]との間が非導通状態となり、かつ、回路MCrと配線OL[j]との間が非導通状態となることができる値を入力する。そして、配線X2L[1]には、回路MCと配線OL[j]との間が非導通状態となり、かつ、回路MCrと配線OLB[j]との間が非導通状態となることができる値を入力する。
 回路MP[i,j]に入力される第2データz (k−1)に応じて、回路MP[i,j]に含まれる回路MC、及び回路MCrと配線OL[j]、及び配線OLB[j]との間の導通状態、又は非導通状態が決まることによって、回路MC、及び回路MCrと配線OL[j]、及び配線OLB[j]との間で電流の入出力が行われる。更に、当該電流の量は、回路MP[i,j]に設定された第1データw (k−1) (k)及び/又は第2データz (k−1)に応じて決まる。
 例えば、回路MP[i,j]において、配線OL[j]から、回路MC又は回路MCrに流れる電流をI[i,j]とし、配線OLB[j]から、回路MC又は回路MCrに流れる電流をI[i,j]とする。そして、回路ACTF[j]から配線OL[j]に流れる電流をIout[j]とし、配線OLB[j]から回路ACTF[j]に流れる電流をIBout[j]とすると、Iout[j]及びIBout[j]は、次の式で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 回路MP[i,j]において、一例として、第1データw (k−1) (k)が“+1”であるとき、回路MCはI(+1)を排出し、回路MCrはI(−1)を排出するものとし、第1データw (k−1) (k)が“−1”であるとき、回路MCはI(−1)を排出し、回路MCrはI(+1)を排出するものとし、第1データw (k−1) (k)が“0”であるとき、回路MCはI(−1)を排出し、回路MCrはI(−1)を排出するものとする。
 更に、回路MP[i,j]は、第2データz (k−1)が“+1”であるときに、「回路MCと配線OL[j]との間が導通となり、回路MCrと配線OLB[j]との間が導通となり、回路MCと配線OLB[j]との間が非導通となり、回路MCrと配線OL[j]との間が非導通となる」状態をとり、第2データz (k−1)が“−1”であるときに、「回路MCと配線OLB[j]との間が導通となり、回路MCrと配線OL[j]との間が導通となり、回路MCと配線OL[j]との間が非導通となり、回路MCrと配線OLB[j]との間が非導通となる」状態をとり、第2データz (k−1)が“0”であるときに、「回路MCと配線OL[j]との間、および、回路MCと配線OLB[j]との間は、非導通となり、回路MCrと配線OL[j]との間、および、回路MCrとOLB[j]との間は、非導通となる」状態をとるものとする。
 このとき、回路MP[i,j]において、配線OL[j]から、回路MC又は回路MCrに流れる電流I[i,j]と、配線OLB[j]から、回路MC又は回路MCrに流れる電流I[i,j]と、は、下表に示すとおりとなる。なお、場合によっては、I(−1)の電流量が0となるように、回路MP[i,j]を構成してもよい。なお、電流I[i,j]は、回路MC又は回路MCrから配線OL[j]に流れる電流であってもよい。同様に、電流I[i,j]は、回路MC又は回路MCrから配線OLB[j]に流れる電流であってもよい。
Figure JPOXMLDOC01-appb-T000006
 そして、配線OL[j]、及び配線OLB[j]のそれぞれから流れてくるIout[j]及びIBout[j]のそれぞれが、回路ACTF[j]に入力されることによって、回路ACTF[j]は、一例としては、Iout[j]及びIBout[j]の比較などを行う。回路ACTF[j]は、一例としては、当該比較の結果に応じて、ニューロンN (k)が第(k+1)層のニューロンに送信する信号z (k)を出力する。
 図13の演算回路140によって、一例としては、ニューロンN (k)に入力される、ニューロンN (k−1)乃至ニューロンN (k−1)からの信号z (k−1)乃至z (k−1)と、重み係数w (k−1) (k)乃至w (k−1) (k)と、の積和演算と、当該積和演算の結果を用いた活性化関数の演算と、を行うことができる。更に、図13の演算回路のアレイ部ALPにおいて、回路MPをn列設けることで、図7の演算回路140と同等の回路を構成できる。つまり、図7の演算回路140によって、ニューロンN (k)乃至ニューロンN (k)のそれぞれにおける、積和演算と、当該積和演算の結果を用いた活性化関数の演算と、を同時に行うことができる。
<<演算回路に含まれる回路などの変更例>>
 上述した演算回路110、演算回路120、演算回路130、演算回路140、演算回路150、演算回路160のそれぞれは、式(1.2)の演算ではなく式(1.3)の演算を行う回路に変更することができる。式(1.3)は、式(1.2)の積和の結果にバイアスを与えた演算に相当する。そのため、演算回路110、演算回路120、演算回路130、演算回路140、演算回路150、演算回路160のそれぞれにおいて、配線OL、及び配線OLBにバイアスの値を与える回路を設けてもよい。
 図14に示す演算回路170は、図11の演算回路150のアレイ部ALPに回路BS[1]乃至回路BS[n]を加えた回路構成となっている。
 回路BS[j]は、配線OL[j]と、配線OLB[j]と、配線WLBSと、配線WXBSと、に電気的に接続されている。
 配線WLBSは、図2の演算回路110などの配線WLS[1]乃至配線WLS[m]、図7の演算回路140などの配線WL[1]乃至配線WL[m]と同様に、回路BS[1]乃至回路BS[n]に含まれる書き込み用スイッチング素子をオン状態又はオフ状態にするための信号を供給するための配線として機能する。そのため、配線WLBSは、回路WLDに電気的に接続されることによって、回路WLDから配線WLBSに対して、当該信号を供給することができる。
 配線WXBSは、図2の演算回路110などの配線XLS[1]乃至配線XLS[m]と同様に、ニューロンN (k−1)から出力された第2データz (k−1)に対応する情報(例えば、電位、電流値など)を、回路BS[1]乃至回路BS[n]に供給する配線として機能する。そのため、配線WXBSは、回路XLDに電気的に接続されることによって、回路XLDから配線WXBSに対して、当該情報を供給することができる。
 また、配線WXBSは、図7の演算回路140などの配線WX1L[1]乃至配線WX1L[n]と同様に、回路BS[1]乃至回路BS[n]に情報を書き込むための選択信号線として兼用してもよい。図14の演算回路170では、配線WXBSは、回路WLDに電気的に接続されている例を示している。このような構成の場合、回路WLDは、配線WLBS、配線WXBSのそれぞれに、回路BS[1]乃至回路BS[n]に含まれる書き込み用スイッチング素子をオン状態又はオフ状態にするための信号を供給することができる。
 演算回路170のアレイ部ALPのj列において、回路MP[1,j]乃至回路MP[m,j]から配線OL[j]又は配線OLB[j]に流れる電流量は、それぞれ式(1.5)、式(1.6)で表すことができる。また、配線OL[j]、配線OLB[j]のそれぞれは、回路BS[j]に電気的に接続されているため、回路BS[j]から配線OL[j]に流れる電流をIBIAS[j]、回路BS[j]から配線OLB[j]に流れる電流をIBIASB[j]としたとき、式(1.5)、式(1.6)のそれぞれは下の式に書き直すことができる。
Figure JPOXMLDOC01-appb-M000007
 これにより、式(1.3)の演算として、バイアスが含まれるIout[j]及びIBout[j]を生成することができる。また、バイアスが含まれるIout[j]及びIBout[j]は、回路ACTF[j]に入力されることによって、バイアスがかかった、ニューロンN (k)からの出力信号z (k)を生成することができる。
 図14の演算回路170では、回路BS[1]乃至回路BS[n]は、アレイ部ALPに対して1行分設けた構成としたが、本発明の一態様は、これに限定されない。例えば、回路BS[1]乃至回路BS[n]は、アレイ部ALPに対して2行以上設けてもよい。
 上述した、アレイ部ALP、回路ILD、回路WLD、回路XLD、回路AFP、回路MP、切り替え回路TWなどのそれぞれに含まれているトランジスタの一部、または、全部は、一例としては、OSトランジスタであることが好ましい。例えば、オフ電流を低くすることが望ましいようなトランジスタの場合、具体例としては、容量素子などに蓄積された電荷を保持する機能を有するトランジスタは、OSトランジスタであることが好ましい。特に、当該トランジスタとしてOSトランジスタを適用する場合、OSトランジスタは、特に実施の形態4に記載するトランジスタの構造であることがより好ましい。OSトランジスタのチャネル形成領域に含まれる金属酸化物としては、例えば、インジウム、元素M(元素Mはアルミニウム、ガリウム、イットリウム、またはスズ)、亜鉛から一又は複数選ばれる材料とすることができる。特に、インジウム、ガリウム、亜鉛からなる金属酸化物は、バンドギャップが高く、真性(I型ともいう。)、又は実質的に真性である半導体であって、当該金属酸化物のキャリア濃度は、1×1018cm−3以下であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。また、当該金属酸化物がチャネル形成領域に含まれるOSトランジスタのオフ電流は、チャネル幅1μmあたり10aA(1×10−17A)以下、好ましくはチャネル幅1μmあたり1aA(1×10−18A)以下、さらには好ましくはチャネル幅1μmあたり10zA(1×10−20A)以下、さらに好ましくはチャネル幅1μmあたり1zA(1×10−21A)以下、さらに好ましくはチャネル幅1μmあたり100yA(1×10−22A)以下とすることができる。また当該OSトランジスタは、金属酸化物のキャリア濃度が低いため、OSトランジスタの温度が変化した場合でも、オフ電流は低いままとなる。例えば、OSトランジスタの温度が150℃であっても、オフ電流を、チャネル幅1μmあたり100zAとすることもできる。
 ただし、本発明の一態様は、上記に限定されず、アレイ部ALP、回路ILD、回路WLD、回路XLD、回路AFP、回路MP、切り替え回路TWなどに含まれるトランジスタは、OSトランジスタでなくてもよい。OSトランジスタ以外では、一例としては、チャネル形成領域にシリコンを含むトランジスタ(以後、Siトランジスタと呼称する。)としてもよい。また、シリコンとしては、例えば、単結晶シリコン、水素化アモルファスシリコン、微結晶シリコン、または多結晶シリコン等を用いることができる。また、OSトランジスタ、Siトランジスタ以外のトランジスタとしては、例えば、Geなどの半導体を活性層としたトランジスタ、ZnSe、CdS、GaAs、InP、GaN、SiGeなどの化合物半導体を活性層としたトランジスタ、カーボンナノチューブを活性層としたトランジスタ、有機半導体を活性層としたトランジスタ等を用いることができる。
 なお、OSトランジスタの半導体層の金属酸化物において、インジウムを含む金属酸化物(例えば、In酸化物)、あるいは亜鉛を含む金属酸化物(例えば、Zn酸化物)では、n型半導体は作製できているが、p型半導体は移動度及び信頼性の点で作製が難しい場合もある。そのため、演算回路110、演算回路120、演算回路130、演算回路140、演算回路150、演算回路160、演算回路170は、アレイ部ALP、回路ILD、回路WLD、回路XLD、回路AFP、回路MPなどに含まれるnチャネル型トランジスタとしてOSトランジスタを適用し、pチャネル型トランジスタとしてSiトランジスタを適用した構成としてもよい。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態2)
 本実施の形態では、実施の形態1で説明した回路MPの具体的な構成例について説明する。
 なお、実施の形態1では、回路MPの符号に、アレイ部ALP内の位置を示す[1,1]、[i,j]、[m,n]等を付記したが、本実施の形態では、特に断らない限り、回路MPの符号に対して[1,1]、[i,j]、[m,n]等の記載を省略する。
<構成例1>
 初めに、図9Bの回路MPに適用できる回路構成の例について説明する。図15Aに示す回路MPは、図9Bの回路MPの構成の一例であり、図15Aの回路MPに含まれている回路MCは、一例としては、トランジスタM1乃至トランジスタM4と、容量C1と、を有する。なお、例えば、トランジスタM2と、容量C1とによって、保持部HCが構成されている。
 図9Bの回路MPにおいて、回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路MCrの有する回路素子などには、回路MCの有する回路素子などと区別をするため、符号に「r」を付している。
 図15Aに図示しているトランジスタM1乃至トランジスタM4は、一例としては、チャネルの上下にゲートを有するマルチゲート構造のnチャネル型トランジスタとしており、トランジスタM1乃至トランジスタM4のそれぞれは第1ゲートと第2ゲートとを有する。特に、一例としては、トランジスタM3、及びトランジスタM4のそれぞれのサイズは等しいことが好ましい。但し、本明細書等において、便宜上、一例として、第1ゲートをゲート(フロントゲートと記載する場合がある。)、第2ゲートをバックゲートとして区別するように記載しているが、第1ゲートと第2ゲートは互いに入れ替えることができる。そのため、本明細書等において、「ゲート」という語句は「バックゲート」という語句と入れ替えて記載することができる。同様に、「バックゲート」という語句は「ゲート」という語句と入れ替えて記載することができる。具体例としては、「ゲートは第1配線に電気的に接続され、バックゲートは第2配線に電気的に接続されている」という接続構成は、「バックゲートは第1配線に電気的に接続され、ゲートは第2配線に電気的に接続されている」という接続構成として置き換えることができる。例えば、図15Bに示すとおり、トランジスタM1のバックゲートを容量C1の第1端子と、トランジスタM2の第1端子と、に電気的に接続される構成としてもよい。
 また、本発明の一態様の半導体装置は、トランジスタのバックゲートの接続構成に依らない。図15Aに図示されているトランジスタM1乃至トランジスタM4には、バックゲートが図示され、当該バックゲートの接続構成については図示されていないが、当該バックゲートの電気的な接続先は、設計の段階で決めることができる。例えば、バックゲートを有するトランジスタにおいて、そのトランジスタのオン電流を高めるために、ゲートとバックゲートとを電気的に接続してもよい。つまり、例えば、トランジスタM2のゲートとバックゲートとを電気的に接続してもよい。また、例えば、バックゲートを有するトランジスタにおいて、そのトランジスタのしきい値電圧を変動させるため、または、そのトランジスタのオフ電流を小さくするために、外部回路などと電気的に接続されている配線を設けて、当該外部回路などによってトランジスタのバックゲートに電位を与えてもよい。なお、これについては、図15Aだけでなく、明細書の他の箇所に記載されているトランジスタ、又は他の図面に図示されているトランジスタについても同様である。
 また、本発明の一態様の半導体装置は、当該半導体装置に含まれるトランジスタの構造に依らない。例えば、図15Aに図示しているトランジスタM1乃至トランジスタM4は、図15Cに示すとおり、バックゲートを有さないような構成、つまり、シングルゲート構造のトランジスタとしてもよい。また、一部のトランジスタはバックゲートを有している構成であり、別の一部のトランジスタは、バックゲートを有さない構成であってもよい。なお、これについては、図15Aに示す回路図だけでなく、明細書の他の箇所に記載されているトランジスタ、又は他の図面に図示されているトランジスタについても同様である。
 また、本明細書等において、トランジスタとして、様々な構造のトランジスタを用いることができる。よって、用いるトランジスタの種類に限定はない。トランジスタの一例としては、単結晶シリコンを有するトランジスタ、または、非晶質シリコン、多結晶シリコン、微結晶(マイクロクリスタル、ナノクリスタル、セミアモルファスとも言う)シリコンなどに代表される非単結晶半導体膜を有するトランジスタなどを用いることができる。または、それらの半導体を薄膜化した薄膜トランジスタ(TFT)などを用いることができる。TFTを用いる場合、様々なメリットがある。例えば、単結晶シリコンの場合よりも低い温度で製造できるため、製造コストの削減、又は製造装置の大型化を図ることができる。製造装置を大きくできるため、大型基板上に製造できる。そのため、同時に多くの個数の表示装置を製造できるため、低コストで製造できる。または、製造温度が低いため、耐熱性の弱い基板を用いることができる。そのため、透光性を有する基板上にトランジスタを製造できる。または、透光性を有する基板上のトランジスタを用いて表示素子での光の透過を制御することができる。または、トランジスタの膜厚が薄いため、トランジスタを形成する膜の一部は、光を透過させることができる。そのため、開口率が向上させることができる。
 なお、トランジスタの一例としては、化合物半導体(例えば、SiGe、GaAsなど)、又は酸化物半導体(例えば、Zn−O、In−Ga−Zn−O、In−Zn−O、In−Sn−O(ITO)、Sn−O、Ti−O、Al−Zn−Sn−O(AZTO)、In−Sn−Zn−Oなど)などを有するトランジスタを用いることができる。または、これらの化合物半導体、又は、これらの酸化物半導体を薄膜化した薄膜トランジスタなどを用いることができる。これらにより、製造温度を低くできるので、例えば、室温でトランジスタを製造することが可能となる。その結果、耐熱性の低い基板、例えばプラスチック基板又はフィルム基板などに直接トランジスタを形成することができる。なお、これらの化合物半導体又は酸化物半導体を、トランジスタのチャネル部分に用いるだけでなく、それ以外の用途で用いることもできる。例えば、これらの化合物半導体又は酸化物半導体を配線、抵抗素子、画素電極、又は透光性を有する電極などとして用いることができる。それらをトランジスタと同時に成膜又は形成することが可能なため、コストを低減できる。
 なお、トランジスタの一例としては、インクジェット法又は印刷法を用いて形成したトランジスタなどを用いることができる。これらにより、室温で製造、低真空度で製造、又は大型基板上に製造することができる。よって、マスク(レチクル)を用いなくても製造することが可能となるため、トランジスタのレイアウトを容易に変更することができる。または、レジストを用いらずに製造することが可能なので、材料費が安くなり、工程数を削減できる。または、必要な部分にのみ膜を付けることが可能なので、全面に成膜した後でエッチングする、という製法よりも、材料が無駄にならず、低コストにできる。
 なお、トランジスタの一例としては、有機半導体やカーボンナノチューブを有するトランジスタ等を用いることができる。これらにより、曲げることが可能な基板上にトランジスタを形成することができる。有機半導体やカーボンナノチューブを有するトランジスタを用いた装置は、衝撃に強くすることができる。
 なお、トランジスタとしては、他にも様々な構造のトランジスタを用いることができる。例えば、トランジスタとして、MOS型トランジスタ、接合型トランジスタ、バイポーラトランジスタなどを用いることができる。トランジスタとしてMOS型トランジスタを用いることにより、トランジスタのサイズを小さくすることができる。よって、多数のトランジスタを搭載することができる。トランジスタとしてバイポーラトランジスタを用いることにより、大きな電流を流すことができる。よって、高速に回路を動作させることができる。なお、MOS型トランジスタとバイポーラトランジスタとを1つの基板に混在させて形成してもよい。これにより、低消費電力、小型化、高速動作などを実現することができる。
 なお、トランジスタの一例としては、活性層の上下にゲート電極が配置されている構造のトランジスタを適用することができる。活性層の上下にゲート電極が配置される構造にすることにより、複数のトランジスタが並列に接続されたような回路構成となる。よって、チャネル形成領域が増えるため、電流値の増加を図ることができる。または、活性層の上下にゲート電極が配置されている構造にすることにより、空乏層ができやすくなるため、S値の改善を図ることができる。
 なお、トランジスタの一例としては、活性層の上にゲート電極が配置されている構造、活性層の下にゲート電極が配置されている構造、正スタガ構造、逆スタガ構造、チャネル領域を複数の領域に分けた構造、活性層を並列に接続した構造、又は活性層が直列に接続する構造などのトランジスタを用いることができる。または、トランジスタとして、プレーナ型、FIN型(フィン型)、TRI−GATE型(トライゲート型)、トップゲート型、ボトムゲート型、ダブルゲート型(チャネルの上下にゲートが配置されている)、など、様々な構成をとることができる。
 なお、トランジスタの一例としては、活性層(もしくはその一部)にソース電極やドレイン電極が重なっている構造のトランジスタを用いることができる。活性層(もしくはその一部)にソース電極やドレイン電極が重なる構造にすることによって、活性層の一部に電荷が溜まることにより動作が不安定になることを防ぐことができる。
 なお、トランジスタの一例としては、LDD領域を設けた構造を適用できる。LDD領域を設けることにより、オフ電流の低減、又はトランジスタの耐圧向上(信頼性の向上)を図ることができる。または、LDD領域を設けることにより、飽和領域で動作する時に、ドレインとソースとの間の電圧が変化しても、ドレイン電流があまり変化せず、傾きがフラットな電圧・電流特性を得ることができる。
 例えば、本明細書等において、様々な基板を用いて、トランジスタを形成することができる。基板の種類は、特定のものに限定されることはない。その基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、サファイアガラス基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド、エポキシ樹脂、無機蒸着フィルム、又は紙類などがある。特に、半導体基板、単結晶基板、又はSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、又は形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、又は回路の高集積化を図ることができる。
 また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタを形成してもよい。または、基板とトランジスタの間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、トランジスタは耐熱性の劣る基板や可撓性の基板にも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構造の構成や、基板上にポリイミド等の有機樹脂膜が形成された構成等を用いることができる。
 つまり、ある基板を用いてトランジスタを形成し、その後、別の基板にトランジスタを転置し、別の基板上にトランジスタを配置してもよい。トランジスタが転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などがある。これらの基板を用いることにより、特性のよいトランジスタの形成、消費電力の小さいトランジスタの形成、壊れにくい装置の製造、耐熱性の付与、軽量化、又は薄型化を図ることができる。
 なお、所定の機能を実現させるために必要な回路の全てを、同一の基板(例えば、ガラス基板、プラスチック基板、単結晶基板、又はSOI基板など)に形成することが可能である。こうして、部品点数の削減によるコストの低減、又は回路部品との接続点数の低減による信頼性の向上を図ることができる。
 なお、所定の機能を実現させるために必要な回路の全てを同じ基板に形成しないことが可能である。つまり、所定の機能を実現させるために必要な回路の一部は、ある基板に形成され、所定の機能を実現させるために必要な回路の別の一部は、別の基板に形成されていることが可能である。例えば、所定の機能を実現させるために必要な回路の一部は、ガラス基板に形成され、所定の機能を実現させるために必要な回路の別の一部は、単結晶基板(又はSOI基板)に形成されることが可能である。そして、所定の機能を実現させるために必要な回路の別の一部が形成される単結晶基板(ICチップともいう)を、COG(Chip On Glass)によって、ガラス基板に接続して、ガラス基板にそのICチップを配置することが可能である。または、ICチップを、TAB(Tape Automated Bonding)、COF(Chip On Film)、SMT(Surface Mount Technology)、又はプリント基板などを用いてガラス基板と接続することが可能である。このように、回路の一部が画素部と同じ基板に形成されていることにより、部品点数の削減によるコストの低減、又は回路部品との接続点数の低減による信頼性の向上を図ることができる。特に、駆動電圧が大きい部分の回路、又は駆動周波数が高い部分の回路などは、消費電力が大きくなってしまう場合が多い。そこで、このような回路を、画素部とは別の基板(例えば単結晶基板)に形成して、ICチップを構成する。このICチップを用いることによって、消費電力の増加を防ぐことができる。
 図15Aの回路MPにおいて、トランジスタM1の第1端子は、配線VEに電気的に接続されている。トランジスタM1の第2端子は、トランジスタM3の第1端子と、トランジスタM4の第1端子と、に電気的に接続されている。トランジスタM1のゲートは、容量C1の第1端子と、トランジスタM2の第1端子と、に電気的に接続されている。容量C1の第2端子は、配線VEに電気的に接続されている。トランジスタM2の第2端子は、配線OLに電気的に接続されている。トランジスタM2のゲートは配線WLに電気的に接続されている。トランジスタM3の第2端子は配線OLに電気的に接続され、トランジスタM3のゲートは、配線WX1Lに電気的に接続されている。トランジスタM4の第2端子は配線OLBに電気的に接続され、トランジスタM4のゲートは、配線X2Lに電気的に接続されている。
 回路MCrにおいて、回路MCと異なる接続構成について説明する。トランジスタM3rの第2端子は、配線OLでなく、配線OLBに電気的に接続され、トランジスタM4rの第2端子は、配線OLBでなく、配線OLに電気的に接続されている。トランジスタM1rの第1端子と、容量C1rの第1端子と、は、配線VErに電気的に接続されている。
 なお、図16Aに示すように、トランジスタM1の第1端子は、配線VEではなく、別の配線VLmに電気的に接続されていてもよい。また、同様に、トランジスタM1rの第1端子は、配線VErではなく、別の配線VEmrに電気的に接続されていてもよい。なお、図15Aだけでなく、他の図面の回路図においても、トランジスタM1の第1端子が、配線VEではなく、別の配線VEmに電気的に接続されるような構成、及び/又は、トランジスタM1rの第1端子が、配線VErではなく、別の配線VEmrに電気的に接続されるような構成にしてもよい。
 なお、図15Aに示す保持部HCにおいて、トランジスタM1のゲートと、容量C1の第1端子と、トランジスタM2の第1端子と、の電気的接続点をノードn1としている。
 保持部HCは、実施の形態1で説明したとおり、一例としては、第1データに応じた電位を保持する機能を有する。図15Aの回路MCに含まれている保持部HCへの当該電位の保持は、トランジスタM2、及びトランジスタM3をオン状態としたときに、配線OLから電位を入力して、容量C1に書き込み、その後にトランジスタM2をオフ状態にすることで行われる。これによって、ノードn1の電位を、第1データに応じた電位として保持することができる。このとき、配線OLから電流を入力し、その電流の大きさに応じた大きさの電位を容量C1に保持することができる。そのため、トランジスタM1の電流特性のばらつきの影響を低減することができる。
 また、トランジスタM1は、ノードn1の電位を長時間保持するため、オフ電流が少ないトランジスタを適用するのが好ましい。オフ電流が少ないトランジスタとしては、例えば、OSトランジスタを用いることができる。また、トランジスタM1として、バックゲートを有するトランジスタを適用し、バックゲートに低レベル電位を印加して、閾値電圧をプラス側にシフトさせて、オフ電流を小さくする構成としてもよい。
 後述する動作例において、回路MPに入出する電流について簡易的に説明するため、図15Aに示す配線OLの両端をそれぞれノードina、ノードoutaとし、配線OLBの両端をそれぞれノードinb、ノードoutbとする。
 配線VEは、一例としては、定電圧を供給する配線として機能する。当該定電圧としては、トランジスタM3、トランジスタM3r、トランジスタM4、または、トランジスタM4rがnチャネル型トランジスタである場合、及び/又は図8において配線VSOが与える電位が高レベル電位である場合には、例えば、低レベル電位であるVSS、接地電位、または、それら以外の低レベル電位などとすることができる。また、配線VEm、配線VEr、配線VLmrのそれぞれは、配線VEと同様に、定電圧を供給する電圧線として機能し、当該定電圧としては、低レベル電位であるVSS、VSS以外の低レベル電位、接地電位などとすることができる。また、当該定電圧としては、高レベル電位であるVDDとしてもよい。この場合、演算回路110、演算回路120、演算回路130、演算回路140、演算回路150、演算回路160の回路ACTF[1]乃至回路ACTF[n]として、図5A乃至図5E、図6A乃至図6D、図6Fのいずれかを適用している場合、回路ACTF[1]乃至回路ACTF[n]に電気的に接続されている配線VALが与える定電圧は、配線VE、配線VErが与える電位VDDよりも高い電位とするのが好ましい。
 また、配線VE、配線VEm、配線VEr、及び配線VEmr、のそれぞれが供給する定電圧は、互いに異なってもよいし、一部又は全てが同一であってもよい。また、それぞれの配線が供給する電圧が同一である場合には、それらの配線を選択して、同一の配線としてもよい。例えば、配線VE、配線VEm、配線VEr、及び配線VEmrのそれぞれの与える定電圧がほぼ等しい場合、図16Bの回路MPのとおり、配線VEm、配線VEr、及び配線VEmrは配線VEと同一の配線とすることができる。または、例えば、配線VL、及び配線VLrのそれぞれの与える定電圧がほぼ等しい場合、配線VLと配線VLrとを一本の同一の配線とすることができる。または、例えば、配線VLs、配線VLsrのそれぞれの与える定電圧がほぼ等しい場合、配線VLsと配線VLsrとを一本の同一の配線とすることができる。同様に、図16Aにおいても、例えば、配線VLと配線VLrとを一本の同一の配線として、配線VLmと配線VLmrとを一本の同一の配線としてもよい。または例えば、配線VLと配線VLmrとを一本の同一の配線として、配線VLmと配線VLrとを一本の同一の配線としてもよい。
 また、図15Aの回路MPの構成は、状況に応じて、変更することができる。例えば、図17Aに示すとおり、図15Aの回路MPのトランジスタM1、トランジスタM1r、トランジスタM3、トランジスタM3r、トランジスタM4、トランジスタM4rのそれぞれをpチャネル型トランジスタであるトランジスタM1p、トランジスタM1pr、トランジスタM3p、トランジスタM3pr、トランジスタM4p、トランジスタM4prに置き換えてもよい。トランジスタM3p、トランジスタM3pr、トランジスタM4p、トランジスタM4prとしては、一例としては、SOI(Silicon On Insulator)構造のpチャネル型トランジスタを適用することができる。また、この場合、配線VE、及び配線VErが与える定電圧は、高レベル電位であるVDDとするのが好ましい。また、この場合に加え、演算回路110、演算回路120、演算回路130、演算回路140、演算回路150、及び演算回路160の回路ACTF[1]乃至回路ACTF[n]として、図5A乃至図5E、図6A乃至図6D、図6Fのいずれかを適用している場合、回路ACTF[1]乃至回路ACTF[n]に電気的に接続されている配線VALが与える定電圧は、接地電位、又はVSSとするのが好ましい。このように、配線の電位を変更した場合には、電流が流れる向きも変更されることとなる。
 また、同様に、トランジスタM2についてもpチャネル型のトランジスタに置き換えてもよい。
 また、例えば、図17Bに示す通り、図15Aの回路MPのトランジスタM4、M4rのそれぞれをpチャネル型トランジスタであるトランジスタM4p、M4prに置き換えてもよい。また、トランジスタM3、トランジスタM3r、トランジスタM4p、トランジスタM4prのそれぞれのゲートに接続する配線を、配線WXLとして1本にまとめることによって、回路MPは、0以外の第1データ(例えば、重み係数など)を保持することができる。
 また、例えば、図17Cに示す通り、図15Aの回路MPのトランジスタM3、トランジスタM3r、トランジスタM4、トランジスタM4rのそれぞれをアナログスイッチAS3、アナログスイッチAS4、アナログスイッチAS3r、アナログスイッチAS4rに置き換えてもよい。なお、図17Cには、アナログスイッチAS3、アナログスイッチAS4、アナログスイッチAS3r、及びアナログスイッチAS4rを動作させるため、配線WX1LB、及び配線X2LBも図示している。配線WX1LBは、アナログスイッチAS3、及びアナログスイッチAS3rに電気的に接続され、配線X2LBは、アナログスイッチAS4、及びアナログスイッチAS4rに電気的に接続されている。配線WX1LBには、配線WX1Lに入力される信号の反転信号が入力され、配線X2LBには、配線X2Lに入力される信号の反転信号が入力される。また、配線WX1L、及び配線X2Lを1本の配線としてまとめ、かつ配線WX1LB、及び配線X2LBを1本の配線としてまとめてもよい(図示しない)。なお、一例としては、アナログスイッチAS3、アナログスイッチAS4、アナログスイッチAS3r、及びアナログスイッチAS4rは、nチャネル型トランジスタとpチャネル型トランジスタとを用いたCMOS構成としてもよい。
 また、図15A乃至図15C、図16A乃至図16Cに示したトランジスタM3、トランジスタM3r、トランジスタM4、及びトランジスタM4rのサイズ、例えば、チャネル長及びチャネル幅はそれぞれ等しいことが好ましい。このような回路構成とすることにより、効率的にレイアウトできる可能性がある。また、トランジスタM3、トランジスタM3r、トランジスタM4、及びトランジスタM4rに流れる電流を揃えることができる可能性がある。また、同様に、図15A乃至図15C、図16A乃至図16Cに示したトランジスタM1、及びトランジスタM1rのサイズはそれぞれ等しいことが好ましい。また、同様に、図15A乃至図15C、図16A乃至図16Cに示したトランジスタM2、トランジスタM2rのサイズはそれぞれ等しいことが好ましい。また、同様に、図16Cに示したトランジスタM1p、及びトランジスタM1prのサイズはそれぞれ等しいことが好ましい。また、同様に、図16Cに示したトランジスタM3p、トランジスタM3pr、トランジスタM4p、及びトランジスタM4prのサイズはそれぞれ等しいことが好ましい。
<<動作例>>
 次に、図15Aに示した回路MPの動作例について説明する。図18乃至図20は、回路MPの動作例を示したタイミングチャートであり、それぞれ、配線WL、配線WX1L、配線X2L、ノードn1、ノードn1rの電位の変動を示している。なお、図18乃至図20に記載しているhighは高レベル電位を示し、lowは低レベル電位を示している。また、本動作例において、配線OLからノードoutaに(または、ノードoutaから配線OLに)出力される電流量をIOLとしている。また、配線OLBからノードoutbに(または、ノードoutbから配線OLBに)出力される電流量をIOLBとしている。図18乃至図20に示すタイミングチャートでは、IOL、IOLBの変化量も図示している。
 なお、本動作例では、配線VE、配線VEm、配線VEr、及び配線VEmrが与える定電圧はVSS(低レベル電位)とする。この場合、図8において、配線VSOには高レベル電位が与えられ、配線VSOから切り替え回路TW、配線OLを介して、配線VE又は配線VErに電流が流れることになる。同様に、配線VSOから切り替え回路TW、配線OLBを介して、配線VE又は配線VErに電流が流れることになる。
 また、本動作例では、図8において、配線VCNが与える電位をVSSとする。配線VCNとトランジスタM1の第2端子との間を導通状態にすることによって、トランジスタM1の第2端子にはVSSが与えられる。詳しくは後述するが、このとき、トランジスタM1のゲートの電位もVSSになるため、トランジスタM1はオフ状態となる。同様に、配線VCNとトランジスタM1rの第2端子との間を導通状態にすることによって、トランジスタM1rの第2端子とゲートの電位はVSSとなるため、トランジスタM1rはオフ状態となる。
 図15Aに示した回路MPにおいて、トランジスタM2、及びトランジスタM3がオン状態のとき、トランジスタM1はダイオード接続の構成となる。そのため、配線OLから回路MCに電流が流れるとき、トランジスタM1の第2端子とトランジスタM1のゲートと、のそれぞれの電位はほぼ等しくなる。当該電位は、配線OLから回路MCに流れる電流量とトランジスタM1の第1端子の電位(ここではVSS)などによって定められる。ここで、トランジスタM1のゲートの電位を容量C1に保持し、その後にトランジスタM2をオフ状態にすることによって、トランジスタM1は、トランジスタM1のゲートの電位に応じた電流を流す電流源として機能する。そのため、トランジスタM1の電流特性のばらつきの影響を低減することができる。
 例えば、トランジスタM2、及びトランジスタM3がオン状態で、配線OLから回路MCを介して配線VEにIの電流量が流れたとき、トランジスタM1のゲート(ノードn1)の電位はVとなるものとする。ここで、トランジスタM2をオフ状態にすることによって、Vは保持部HCによって保持される。これにより、トランジスタM1は、トランジスタM1の第1端子の電位VSSと、トランジスタM1のゲートの電位Vに応じた電流であるIをトランジスタM1のソース−ドレイン間に流すことができる。本明細書等では、このような動作を「トランジスタM1は、トランジスタM1のソース−ドレイン間に流れる電流量をIに設定された」、「トランジスタM1は、トランジスタM1のソース−ドレイン間に流れる電流量をIにプログラミングされた」などと呼称する。
 本動作例では、配線OLから回路MCに流れる電流量を0、I、Iの3種類とする。このため、トランジスタM1に設定される電流量は0、I、Iの3種類となる。例えば、保持部HCに保持されている、トランジスタM1のゲートの電位がVSSであるとき、トランジスタM1の第1端子、第2端子のそれぞれの電位もVSSであるため、トランジスタM1のしきい値電圧が0より高ければ、トランジスタM1はオフ状態となる。このため、トランジスタM1のソース−ドレイン間に電流は流れないので、トランジスタM1のソース−ドレイン間に流れる電流量は0に設定されている、ということができる。また、例えば、保持部HCに保持されている、トランジスタM1のゲートの電位がVであるとき、トランジスタM1のしきい値電圧がV−VSSよりも低ければ、トランジスタM1はオン状態となる。このとき、トランジスタM1に流れる電流量をIとする。このため、トランジスタM1のゲートの電位がVであるとき、トランジスタM1のソース−ドレイン間に流れる電流量はIに設定されている、ということができる。また、例えば、保持部HCに保持されている、トランジスタM1のゲートの電位がVであるとき、トランジスタM1のしきい値電圧がV−VSSよりも低ければ、トランジスタM1はオン状態となる。このとき、トランジスタM1に流れる電流量をIとする。このため、トランジスタM1のゲートの電位がVであるとき、トランジスタM1のソース−ドレイン間に流れる電流量はIに設定されている、ということができる。
 なお、Iの電流量は、0よりも大きく、Iよりも小さいものとする。また、電位Vは、VSSよりも高く、Vよりも低いものとする。また、トランジスタM1のしきい値電圧は、0よりも高く、V−VSSよりも低いものとする。また、Iは、例えば、図8の説明における、定電流源回路ISC1が生成するIutに置き換えることができ、また、Iは、例えば、図8の説明における、定電流源回路ISC2が生成する2Iutに置き換えることができる。
 また、動作例を説明する前に、回路MPが保持する第1データ(例えば、ここでは重み係数とする。)を次の通りに定義する。保持部HCのノードn1にVSS、保持部HCrのノードn1rにVSSが保持されているとき、回路MPは第1データ(重み係数)として“0”を保持しているものとする。保持部HCのノードn1にV、保持部HCrのノードn1rにVSSが保持されているとき、回路MPは第1データ(重み係数)として“+1”を保持しているものとする。保持部HCのノードn1にV、保持部HCrのノードn1rにVSSが保持されているとき、回路MPは第1データ(重み係数)として“+2”を保持しているものとする。保持部HCのノードn1にVSS、保持部HCrのノードn1rにVが保持されているとき、回路MPは第1データ(重み係数)として“−1”を保持しているものとする。保持部HCのノードn1にVSS、保持部HCrのノードn1rにVが保持されているとき、回路MPは第1データ(重み係数)として“−2”を保持しているものとする。
 また、回路MPに入力される第2データ(例えば、ここではニューロンの信号の値(演算値)とする。)を一例として次の通りに定義する。配線WX1Lに高レベル電位、配線X2Lに低レベル電位が印加されているとき、回路MPには、第2データ(ニューロンの信号の値)として“+1”が入力されている。配線WX1Lに低レベル電位、配線X2Lに高レベル電位が印加されているとき、回路MPには、第2データ(ニューロンの信号の値)として“−1”が入力されている。配線WX1Lに低レベル電位、配線X2Lに低レベル電位が印加されているとき、回路MPには、第2データ(ニューロンの信号の値)として“0”が入力されるものとする。なお、一例としては、高レベル電位としては、VDD、または、VDDよりも10%以上、もしくは、20%以上高い電位をとるものとする。
 また、本明細書などにおいて、トランジスタM1、及びトランジスタM1rは、特に断りの無い場合は、オン状態の場合は最終的に飽和領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、飽和領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。ただし、本発明の一態様は、これに限定されない。供給される電圧の振幅値を小さくするために、トランジスタM1、及びトランジスタM1rは、線形領域で動作してもよい。なお、第1データ(重み係数)をアナログ値とする場合には、第1データ(重み係数)の大きさに応じて、例えば、トランジスタM1、及びトランジスタM1rは、線形領域で動作する場合と、飽和領域で動作する場合とが混在していてもよい。
 また、本明細書などにおいて、トランジスタM2、トランジスタM2r、トランジスタM3、トランジスタM3r、トランジスタM4、及びトランジスタM4rは、特に断りの無い場合は、オン状態の場合は最終的に線形領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。ただし、本発明の一態様は、これに限定されない。例えば、トランジスタM2、トランジスタM2r、トランジスタM3、トランジスタM3r、トランジスタM4、及びトランジスタM4rは、オン状態のときは飽和領域で動作してもよく、また、線形領域で動作する場合と飽和領域で動作する場合とが混在してもよい。
 以下では、第1データ(例えば、以下では重み係数とする。)、及び第2データ(例えば、以下では、ニューロンの信号の値(演算値)など)のそれぞれが取り得る値の組み合わせ毎に、回路MPの動作例を説明する。
〔条件1〕
 初めに、一例として、第1データ(重み係数)が“0”であって、回路MPに入力される第2データ(ニューロンの信号の値(演算値))が“+1”である場合を考える。図18Aは、その場合における回路MPのタイミングチャートである。
 時刻T1から時刻T2までの間では、保持部HC、及び保持部HCrには、初期の電位が保持されている。図18Aでは、例えば、ノードn1、ノードn1rには、初期の電位として、電位VSSよりも高い電位が保持されているものとする。
 また、配線WL、配線WX1L、配線X2Lには、低レベル電位が印加されている。これによって、トランジスタM2、トランジスタM2r、トランジスタM3、トランジスタM3r、トランジスタM4、及びトランジスタM4rのそれぞれのゲートには、低レベル電位が入力されるため、トランジスタM2、トランジスタM2r、トランジスタM3、トランジスタM3r、トランジスタM4、及びトランジスタM4rのそれぞれはオフ状態となる。
 時刻T2から時刻T3までの間において、配線WLと、配線WX1Lには、高レベル電位が印加される。これにより、トランジスタM2、トランジスタM2r、トランジスタM3、トランジスタM3rのそれぞれのゲートには、高レベル電位が入力されるため、トランジスタM2、トランジスタM2r、トランジスタM3、及びトランジスタM3rのそれぞれはオン状態となる。
 また、図18Aには図示していないが、配線OL、及び配線OLBのそれぞれには、初期化電位としてViniが印加される。トランジスタM2、トランジスタM2r、トランジスタM3、及びトランジスタM3rのそれぞれはオン状態となっているため、保持部HCのノードn1、及び保持部HCrのノードn1rのそれぞれの電位はViniとなる。つまり、時刻T2から時刻T3までの間では、保持部HCのノードn1、及び保持部HCrのノードn1rのそれぞれの電位の初期化が行われる。
 なお、初期化電位のViniとしては、例えば、接地電位とするのが好ましい。また、初期化電位のViniとしては、VSS、接地電位よりも高い電位、又は接地電位よりも低い電位としてもよい。また、配線OL、及び配線OLBのそれぞれに与える初期化電位Viniは互いに異なる電位としてもよい。なお、配線OL、及び配線OLBのそれぞれに初期化電位Viniを入力しなくてもよい。なお、必ずしも、時刻T2から時刻T3までの期間を設けなくてもよい。または、必ずしも、時刻T2から時刻T3までの間において、初期化を行わなくてもよい。
 時刻T3から時刻T4までの間において、配線OLから回路MCに電位VSSが入力され、配線OLBから回路MCrに電位VSSが入力される。これは、図8において、スイッチSWL、及びスイッチSWLBをオン状態にし、スイッチSWI、スイッチSWIB、スイッチSWO、スイッチSWOB、スイッチSWH、及びスイッチSWHBをオフ状態にすることによって行われる。これによって、保持部HCのノードn1の電位はVSSとなり、保持部HCrのノードn1rの電位はVSSとなる。これにより、回路MCにおいて、トランジスタM1は電流量として0を流すように設定されるため、配線OLから回路MCを介して配線VEに電流は流れない。また、回路MCrにおいて、トランジスタM1rは電流量として0を流すように設定されるため、配線OLBから回路MCrを介して配線VErに電流は流れない。換言すると、時刻T3から時刻T4までの間において、トランジスタM1、トランジスタM1rはオフ状態となるため、配線OLと配線VEとの間は非導通状態となり、配線OLBと配線VErとの間は非導通状態となる。
 時刻T4から時刻T5までの間において、配線WLと、配線WX1Lには、低レベル電位が印加される。これにより、トランジスタM2、トランジスタM2r、トランジスタM3、トランジスタM3rのそれぞれのゲートには、低レベル電位が入力されるため、トランジスタM2、トランジスタM2r、トランジスタM3、トランジスタM3rのそれぞれはオフ状態となる。トランジスタM2、トランジスタM2rがオフ状態になることにより、保持部HCのノードn1の電位VSSが保持され、保持部HCrのノードn1rの電位VSSが保持される。また、トランジスタM3がオフ状態になることによって、配線OLから回路MCを介して配線VEに電流は流れなくなる。また、同様に、トランジスタM3rがオフ状態になることによって、配線OLBから回路MCrを介して配線VErに電流は流れなくなる。なお、時刻T4から時刻T5までの間において、図8Aに示すスイッチSWH、及びスイッチSWHBをオンにして、配線OL、および、配線OLBの電位を初期化してもよい。配線OL、および、配線OLBの電位を初期化することにより、時刻T5以降において、回路MPから出力される電流によって、配線OL、及び配線OLBの電位を変化させることができる。
 時刻T1から時刻T5までの動作によって、回路MPの第1データ(重み係数)として“0”が設定される。また、回路MPに第1データ(重み係数)が設定された後は、図8において、スイッチSWI、スイッチSWIB、スイッチSWO、スイッチSWOB、スイッチSWL、及びスイッチSWLBをオフ状態としてもよい。なお、回路MPに重み係数が設定された後に、スイッチSWH、及びスイッチSWHBをオン状態にして、配線OL、及び配線OLBの電位を初期化してもよい。配線OL、及び配線OLBの電位を初期化した後は、スイッチSWH、及びスイッチSWHBをオフ状態としてもよい。
 時刻T5以降において、回路MPへのニューロンの信号(演算値)“+1”の入力として、配線WX1Lに高レベル電位、配線X2Lに低レベル電位が入力される。このとき、トランジスタM3、及びトランジスタM3rのそれぞれのゲートに高レベル電位が入力され、トランジスタM4、及びトランジスタM4rのそれぞれのゲートに低レベル電位が入力される。このため、トランジスタM3、及びトランジスタM3rのそれぞれはオン状態となり、トランジスタM4、及びトランジスタM4rのそれぞれはオフ状態になる。つまり、この動作によって、回路MCと配線OLとの間、及び、回路MCrと配線OLBとの間が導通状態となり、回路MCと配線OLBとの間、及び、回路MCrと配線OLとの間が非導通状態となる。
 このとき、図8において、スイッチSWO、SWOBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、及びスイッチSWHBをオフ状態として、配線OL、及び配線OLBのそれぞれと回路AFPとの間を導通状態にする。なお、トランジスタM1はオフ状態となっているため(電流量として0を流すように設定されているため)、回路MCにおいて、配線OL、及び配線OLBから配線VEまでの間に電流は流れない。同様に、トランジスタM1rはオフ状態となっているため(電流量として0を流すように設定されているため)、回路MCrにおいて、配線OL、及び配線OLBから配線VErまでの間に電流は流れない。以上より、配線OLのノードoutaから出力される電流IOL、及び配線OLBのノードoutbから出力される電流IOLBは、時刻T5の前後で変化しない。そのため、回路AFPと配線OLとの間には電流IOLは流れず、かつ回路AFPと配線OLBとの間には電流IOLBは流れない。
 ところで、本条件は、第1データ(重み係数)を“0”とし、回路MPに入力される第2データ(ニューロンの信号の値(演算値))を“+1”としているため、式(1.1)を用いると、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“0”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“0”となる結果は、回路MPの動作では、時刻T5以降において電流IOL及び電流IOLBのそれぞれが変化しない場合に対応する。なお、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“0”となる結果は、図8において、回路AFPから信号z (k)として出力される。
 なお、第1データ(例えば、重み係数など)は、一旦入力すると、その値を更新せずに、第2データ(ニューロンの信号の値、又は演算値など)の方のみを変更することによって、複数の積和演算処理を行ってもよい。この場合、第1データ(重み係数)の更新が不要となるため、消費電力を低減することができる。なお、第1データ(重み係数)の更新を少なくするためには、第1データ(重み係数)を長期間保持する必要がある。このとき、例えば、OSトランジスタを用いると、オフ電流が低いことを利用して、第1データ(重み係数)を長期間保持することが可能となる。
〔条件2〕
 次に、一例として、第1データ(重み係数)が“+1”であって、回路MPに入力される第2データ(ニューロンの信号の値(演算値))が“+1”である場合を考える。図18Bは、その場合における回路MPのタイミングチャートである。
 時刻T1から時刻T3までの間の動作については、条件1の時刻T1から時刻T3までの間の動作と同様であるため、条件1の時刻T1から時刻T3までの間の動作の説明を参酌する。
 時刻T3から時刻T4までの間において、配線OLから回路MCに電流量としてIが入力され、配線OLBから回路MCrに電位VSSが入力される。これは、図8において、スイッチSWI、及びスイッチSWLBをオン状態にし、スイッチSWIB、スイッチSWO、スイッチSWOB、スイッチSWLB、スイッチSWH、及びスイッチSWHBをオフ状態にすることによって行われる。これによって、保持部HCのノードn1の電位はVとなり、保持部HCrのノードn1rの電位はVSSとなる。これにより、回路MCにおいて、トランジスタM1は電流量としてIを流すように設定されるため、配線OLから回路MCを介して配線VEに電流量としてIが流れる。また、回路MCrにおいて、トランジスタM1rは電流量として0を流すように設定されるため、配線OLBから回路MCrを介して配線VErに電流は流れない。
 時刻T4から時刻T5までの間において、配線WLと、配線WX1Lには、低レベル電位が印加される。これにより、トランジスタM2、トランジスタM2r、トランジスタM3、及びトランジスタM3rのそれぞれのゲートには、低レベル電位が入力されるため、トランジスタM2、トランジスタM2r、トランジスタM3、及びトランジスタM3rのそれぞれはオフ状態となる。トランジスタM2、及びトランジスタM2rがオフ状態になることにより、保持部HCのノードn1の電位Vが保持され、保持部HCrのノードn1rの電位VSSが保持される。また、トランジスタM3がオフ状態になることによって、配線OLから回路MCを介して配線VEに電流は流れなくなる。また、同様に、トランジスタM3rがオフ状態になることによって、配線OLBから回路MCrを介して配線VErに電流は流れなくなる。なお、時刻T4から時刻T5までの間において、図8Aに示すスイッチSWH、及びスイッチSWHBをオンにして、配線OL、及び配線OLBの電位を初期化してもよい。配線OL、及び配線OLBの電位を初期化することにより、時刻T5以降において、回路MPから出力される電流によって、配線OL、及び配線OLBの電位を変化させることができる。
 時刻T1から時刻T5までの動作によって、回路MPの第1データ(重み係数)として“+1”が設定される。また、回路MPに第1データ(重み係数)が設定された後は、図8において、スイッチSWI、スイッチSWIB、スイッチSWO、スイッチSWOB、スイッチSWL、スイッチSWLBをオフ状態としてもよい。なお、回路MPに第1データ(重み係数)が設定された後に、スイッチSWH、及びスイッチSWHBをオン状態にして、配線OL、及び配線OLBの電位を初期化してもよい。配線OL、及び配線OLBの電位を初期化した後は、スイッチSWH、及びスイッチSWHBをオフ状態としてもよい。
 時刻T5以降において、回路MPへの第2データ(ニューロンの信号の値(演算値))“+1”の入力として、配線WX1Lに高レベル電位、配線X2Lに低レベル電位が入力される。このとき、トランジスタM3、及びトランジスタM3rのそれぞれのゲートに高レベル電位が入力され、トランジスタM4、及びトランジスタM4rのそれぞれのゲートに低レベル電位が入力される。このため、トランジスタM3、及びトランジスタM3rのそれぞれはオン状態となり、トランジスタM4、及びトランジスタM4rのそれぞれはオフ状態になる。つまり、この動作によって、回路MCと配線OLとの間、及び、回路MCrと配線OLBとの間が導通状態となり、回路MCと配線OLBとの間、及び、回路MCrと配線OLとの間が非導通状態となる。
 このとき、図8において、スイッチSWO、及びスイッチSWOBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、及びスイッチSWHBをオフ状態として、配線OL、及び配線OLBのそれぞれと回路AFPとの間を導通状態にする。回路MCにおいて、トランジスタM3がオン状態になっており、かつトランジスタM1rがオン状態になっているため(電流量としてIを流すように設定されているため)、配線OLから配線VEまでの間に電流が流れる。また、回路MCにおいて、トランジスタM4がオフ状態になっているため、配線OLBから配線VEまでの間に電流は流れない。一方、回路MCrにおいて、トランジスタM3rがオン状態になっているが、トランジスタM1がオフ状態になっているため(電流量として0を流すように設定されているため)、配線OLBから配線VErまでの間に電流は流れない。また、回路MCrにおいて、トランジスタM4rがオフ状態になっているため、配線OLから配線VErまでの間に電流は流れない。以上より、配線OLのノードoutaから出力される電流IOLは、時刻T5の経過後にI増加し、配線OLBのノードoutbから出力される電流IOLBは、時刻T5の前後で変化しない。そのため、回路AFPと配線OLとの間には電流量Iの電流IOLが流れ、かつ回路AFPと配線OLBとの間には電流IOLBは流れない。
 ところで、本条件は、第1データ(重み係数)を“+1”とし、回路MPに入力される第2データ(ニューロンの信号の値)を“+1”としているため、式(1.1)を用いると、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“+1”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“+1”となる結果は、回路MPの動作では、時刻T5以降において電流IOLがI増加し、電流IOLBが変化しない場合に対応する。なお、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“+1”となる結果は、図8において、回路AFPから信号z (k)として出力される。
 なお、本条件の時刻T3から時刻T4までの間において、例えば、配線OLから回路MCに流れる電流をIでなくIに設定することで、保持部HCにVを保持することができる。これにより、回路MPの第1データ(重み係数)として“+2”が設定される。第1データ(重み係数)を“+2”とし、回路MPに入力されるニューロンの信号を“+1”とすることにより、式(1.1)から、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“+2”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“+2”となる結果は、回路MPの動作では、時刻T5以降において電流IOLがI増加し、電流IOLBが変化しない場合に対応する。このように、回路MCrにおいて保持部HCrにVSSを保持し、かつ回路MCにおいて電流量I以外を設定することで、回路MPの第1データ(重み係数)として“+1”以外の正の値を設定することができる。
〔条件3〕
 次に、一例として、第1データ(重み係数)wが“−1”であって、回路MPに入力される第2データ(ニューロンの信号の値(演算値))が“+1”である場合を考える。図18Cは、その場合における回路MPのタイミングチャートである。
 時刻T1から時刻T3までの間の動作については、条件1の時刻T1から時刻T3までの間の動作と同様であるため、条件1の時刻T1から時刻T3までの間の動作の説明を参酌する。
 時刻T3から時刻T4までの間において、配線OLから回路MCに電位VSSが入力され、配線OLBから回路MCrに電流量としてIが入力される。これは、図8において、スイッチSWIB、及びスイッチSWLをオン状態にし、スイッチSWI、スイッチSWO、スイッチSWOB、スイッチSWLB、スイッチSWH、及びスイッチSWHBをオフ状態にすることによって行われる。これによって、保持部HCのノードn1の電位はVSSとなり、保持部HCrのノードn1rの電位はVとなる。これにより、回路MCrにおいて、トランジスタM1は電流量として0を流すように設定されるため、配線OLから回路MCを介して配線VEに電流は流れない。また、回路MCrにおいて、トランジスタM1rは電流量としてIを流すように設定されるため、配線OLBから回路MCrを介して配線VErに電流量としてIが流れる。
 時刻T4から時刻T5までの間において、配線WLと、配線WX1Lには、低レベル電位が印加される。これにより、トランジスタM2、トランジスタM2r、トランジスタM3、及びトランジスタM3rのそれぞれのゲートには、低レベル電位が入力されるため、トランジスタM2、トランジスタM2r、トランジスタM3、及びトランジスタM3rのそれぞれはオフ状態となる。トランジスタM2、及びトランジスタM2rがオフ状態になることにより、保持部HCのノードn1の電位VSSが保持され、保持部HCrのノードn1rの電位Vが保持される。また、トランジスタM3がオフ状態になることによって、配線OLから回路MCを介して配線VEに電流は流れなくなる。また、同様に、トランジスタM3rがオフ状態になることによって、配線OLBから回路MCrを介して配線VErに電流は流れなくなる。なお、時刻T4から時刻T5までの間において、図8Aに示すスイッチSWH、及びスイッチSWHBをオンにして、配線OL、および、配線OLBの電位を初期化してもよい。配線OL、および、配線OLBの電位を初期化することにより、時刻T5以降において、回路MPから出力される電流によって、配線OL、および、配線OLBの電位を変化させることができる。
 時刻T1から時刻T5までの動作によって、回路MPの第1データ(重み係数)として“−1”が設定される。また、回路MPに第1データ(重み係数)が設定された後は、図8において、スイッチSWI、スイッチSWIB、スイッチSWO、スイッチSWOB、スイッチSWL、及びスイッチSWLBをオフ状態としてもよい。なお、回路MPに第1データ(重み係数)が設定された後に、スイッチSWH、及びスイッチSWHBをオン状態にして、配線OL、及び配線OLBの電位を初期化してもよい。配線OL、及び配線OLBの電位を初期化した後は、スイッチSWH、及びスイッチSWHBをオフ状態としてもよい。
 時刻T5以降において、回路MPへの第2データ(ニューロンの信号の値(演算値))“+1”の入力として、配線WX1Lに高レベル電位、配線X2Lに低レベル電位が入力される。このとき、トランジスタM3、及びトランジスタM3rのそれぞれのゲートに高レベル電位が入力され、トランジスタM4、及びトランジスタM4rのそれぞれのゲートに低レベル電位が入力される。このため、トランジスタM3、及びトランジスタM3rのそれぞれはオン状態となり、トランジスタM4、及びトランジスタM4rのそれぞれはオフ状態になる。つまり、この動作によって、回路MCと配線OLとの間、及び、回路MCrと配線OLBとの間が導通状態となり、回路MCと配線OLBとの間、及び、回路MCrと配線OLとの間が非導通状態となる。
 このとき、図8において、スイッチSWO、及びスイッチSWOBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、及びスイッチSWHBをオフ状態として、配線OL、及び配線OLBのそれぞれと回路AFPとの間を導通状態にする。回路MCにおいて、トランジスタM3がオン状態になっているが、トランジスタM1がオフ状態になっているため(電流量として0を流すように設定されているため)、配線OLから配線VEまでの間に電流が流れない。また、回路MCにおいて、トランジスタM4がオフ状態になっているため、配線OLBから配線VEまでの間に電流は流れない。一方、回路MCrにおいて、トランジスタM3rがオン状態になっており、かつトランジスタM1rがオン状態になっているため(電流量としてIを流すように設定されているため)、配線OLBから配線VErまでの間に電流が流れる。また、回路MCrにおいて、トランジスタM4rがオフ状態になっているため、配線OLから配線VErまでの間に電流は流れない。以上より、配線OLのノードoutaから出力される電流IOLは、時刻T5の前後で変化せず、配線OLBのノードoutbから出力される電流IOLBは、時刻T5の経過後にI増加する。そのため、回路AFPと配線OLとの間には電流IOLは流れず、かつ回路AFPと配線OLBとの間には電流量Iの電流IOLBが流れる。
 ところで、本条件は、第1データ(重み係数)を“−1”とし、回路MPに入力される第2データ(ニューロンの信号の値(演算値))を“+1”としているため、式(1.1)を用いると、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“−1”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“−1”となる結果は、回路MPの動作では、時刻T5以降において電流IOLが変化せず、電流IOLBはI増加する場合に対応する。なお、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“−1”となる結果は、図8において、回路AFPから信号z (k)として出力される。
 なお、本条件の時刻T3から時刻T4までの間において、例えば、配線OLBから回路MCrに流れる電流をIでなくIに設定することで、保持部HCrにVを保持することができる。これにより、回路MPの第1データ(重み係数)として“−2”が設定される。第1データ(重み係数)を“−2”とし、回路MPに入力される第2データ(ニューロンの信号の値)を“+1”とすることにより、式(1.1)から、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“−2”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“−2”となる結果は、回路MPの動作では、時刻T5以降において電流IOLが変化せず、電流IOLBがI増加する場合に対応する。このように、回路MCにおいて保持部HCにVSSを保持し、かつ回路MCrにおいて電流量としてI以外を設定することで、回路MPの重み係数として“+1”以外の正の値を設定することができる。
〔条件4〕
 本条件では、一例として、第1データ(重み係数)を“0”とし、回路MPに入力される第2データ(ニューロンの信号の値(演算値))を“−1”とする場合の回路MPの動作を考える。図19Aは、その場合における回路MPのタイミングチャートである。
 時刻T1から時刻T5までの間の動作については、条件1の時刻T1から時刻T5までの間の動作と同様であるため、条件1の時刻T1から時刻T5までの間の動作の説明を参酌する。
 時刻T5以降において、回路MPへの第2データ(ニューロンの信号の値(演算値))“−1”の入力として、配線WX1Lに低レベル電位、配線X2Lに高レベル電位が入力される。このとき、トランジスタM3、及びトランジスタM3rのそれぞれのゲートに低レベル電位が入力され、トランジスタM4、及びトランジスタM4rのそれぞれのゲートに高レベル電位が入力される。このため、トランジスタM3、及びトランジスタM3rのそれぞれはオフ状態となり、トランジスタM4、及びトランジスタM4rのそれぞれはオン状態になる。つまり、この動作によって、回路MCと配線OLとの間、及び、回路MCrと配線OLBとの間が非導通状態となり、回路MCと配線OLBとの間、及び、回路MCrと配線OLとの間が導通状態となる。
 このとき、図8において、スイッチSWO、及びスイッチSWOBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWL、及びスイッチSWLBをオフ状態として、配線OL、及び配線OLBのそれぞれと回路AFPとの間を導通状態にする。なお、トランジスタM1はオフ状態となっているため(電流量として0を流すように設定されているため)、回路MCにおいて、配線OL、及び配線OLBから配線VEまでの間に電流は流れない。つまり、配線OLのノードoutaから出力される電流IOL、及び配線OLBのノードoutbから出力される電流IOLBは、時刻T5の前後で変化しない。同様に、トランジスタM1rはオフ状態となっているため(電流量として0を流すように設定されているため)、回路MCrにおいて、配線OL、及び配線OLBから配線VErまでの間に電流は流れない。つまり、配線OLのノードoutaから出力される電流IOL、及び配線OLBのノードoutbから出力される電流IOLBも、時刻T5の前後で変化しない。そのため、回路AFPと配線OLとの間には電流IOLは流れず、かつ回路AFPと配線OLBとの間には電流IOLBは流れない。
 ところで、本条件は、第1データ(重み係数)を“0”とし、回路MPに入力される第2データ(ニューロンの信号の値(演算値))を“−1”としているため、式(1.1)を用いると、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“0”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“0”となる結果は、回路MPの動作では、時刻T6以降において電流IOL及び電流IOLBのそれぞれが変化しない場合に対応し、これは条件1の回路動作の結果と一致する。なお、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“0”となる結果は、条件1と同様に、図8において、回路AFPから信号z (k)として出力される。
〔条件5〕
 本条件では、一例として、第1データ(重み係数)を“+1”とし、回路MPに入力される第2データ(ニューロンの信号の値(演算値))を“−1”とする場合の回路MPの動作を考える。図19Bは、その場合における回路MPのタイミングチャートである。
 時刻T1から時刻T5までの間の動作については、条件2の時刻T1から時刻T5までの間の動作と同様であるため、条件2の時刻T1から時刻T5までの間の動作の説明を参酌する。
 時刻T5以降において、回路MPへの第2データ(ニューロンの信号の値(演算値))“−1”の入力として、配線WX1Lに低レベル電位、配線X2Lに高レベル電位が入力される。このとき、トランジスタM3、及びトランジスタM3rのそれぞれのゲートに低レベル電位が入力され、トランジスタM4、及びトランジスタM4rのそれぞれのゲートに高レベル電位が入力される。このため、トランジスタM3、及びトランジスタM3rのそれぞれはオフ状態となり、トランジスタM4、及びトランジスタM4rのそれぞれはオン状態になる。つまり、この動作によって、回路MCと配線OLとの間、及び、回路MCrと配線OLBとの間が非導通状態となり、回路MCと配線OLBとの間、及び、回路MCrと配線OLとの間が導通状態となる。
 このとき、図8において、スイッチSWO、及びスイッチSWOBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、及びスイッチSWHBをオフ状態として、配線OL、及び配線OLBのそれぞれと回路AFPとの間を導通状態にする。回路MCにおいて、トランジスタM3がオフ状態になっているため、配線OLから配線VEまでの間に電流は流れない。また、回路MCにおいて、トランジスタM4がオン状態になっており、かつトランジスタM1rがオン状態になっているため(電流量としてIを流すように設定されているため)、配線OLBから配線VEまでの間に電流が流れる。一方、回路MCrにおいて、トランジスタM3rがオフ状態になっているため、配線OLBから配線VErまでの間に電流は流れない。また、回路MCrにおいて、トランジスタM4rがオン状態になっているが、かつトランジスタM1がオフ状態になっているため(電流量として0を流すように設定されているため)、配線OLから配線VErまでの間に電流が流れない。以上より、配線OLのノードoutaから出力される電流IOLは、時刻T5の前後で変化せず、配線OLBのノードoutbから出力される電流IOLBは、時刻T5の経過後にI増加する。そのため、回路AFPと配線OLとの間には電流IOLは流れず、かつ回路AFPと配線OLBとの間には電流量Iの電流IOLBが流れる。
 ところで、本条件は、第1データ(重み係数)を“+1”とし、回路MPに入力される第2データ(ニューロンの信号の値(演算値))を“−1”としているため、式(1.1)を用いると、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“−1”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“−1”となる結果は、回路MPの動作では、時刻T5以降において電流IOLが変化せず、電流IOLBはI増加する場合に対応し、これは条件3の回路動作の結果と一致する。なお、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“−1”となる結果は、条件3と同様に、図8において、回路AFPから信号z (k)として出力される。
 なお、条件2でも記載した通り、本条件の時刻T3から時刻T4までの間において、例えば、配線OLから回路MCに流れる電流をIでなくIに設定して、保持部HCにVを保持してもよい。これにより、回路MPの第1データ(重み係数)として“+2”が設定される。第1データ(重み係数)を“+2”とし、回路MPに入力されるニューロンの信号を“−1”とすることにより、式(1.1)から、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“−2”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“−2”となる結果は、回路MPの動作では、時刻T5以降において電流IOLが変化せず、電流IOLBがI増加する場合に対応する。このように、回路MCrにおいて保持部HCrにVSSを保持し、かつ回路MCにおいて電流量I以外を設定することで、回路MPの重み係数として“+1”以外の正の値を設定することができる。
〔条件6〕
 本条件では、一例として、第1データ(重み係数)を“−1”とし、回路MPに入力される第2データ(ニューロンの信号の値(演算値))を“−1”とする場合の回路MPの動作を考える。図19Cは、その場合における回路MPのタイミングチャートである。
 時刻T1から時刻T5までの間の動作については、条件3の時刻T1から時刻T5までの間の動作と同様であるため、条件3の時刻T1から時刻T5までの間の動作の説明を参酌する。
 時刻T5以降において、回路MPへの第2データ(ニューロンの信号の値(演算値))“−1”の入力として、配線WX1Lに低レベル電位、配線X2Lに高レベル電位が入力される。このとき、トランジスタM3、及びトランジスタM3rのそれぞれのゲートに低レベル電位が入力され、トランジスタM4、及びトランジスタM4rのそれぞれのゲートに高レベル電位が入力される。このため、トランジスタM3、及びトランジスタM3rのそれぞれはオフ状態となり、トランジスタM4、及びトランジスタM4rのそれぞれはオン状態になる。つまり、この動作によって、回路MCと配線OLとの間、及び、回路MCrと配線OLBとの間が非導通状態となり、回路MCと配線OLBとの間、及び、回路MCrと配線OLとの間が導通状態となる。
 このとき、図8において、スイッチSWO、及びスイッチSWOBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、及びスイッチSWHBをオフ状態として、配線OL、及び配線OLBのそれぞれと回路AFPとの間を導通状態にする。回路MCにおいて、トランジスタM3がオフ状態になっているため、配線OLから配線VEまでの間に電流は流れない。また、回路MCにおいて、トランジスタM4がオン状態になっているが、トランジスタM1がオフ状態になっているため(電流量として0を流すように設定されているため)、配線OLBから配線VEまでの間に電流は流れない。一方、回路MCrにおいて、トランジスタM3rがオフ状態になっているため、配線OLBから配線VErまでの間に電流は流れない。また、回路MCrにおいて、トランジスタM4rがオン状態になっており、かつトランジスタM1がオン状態になっているため(電流量としてIを流すように設定されているため)、配線OLから配線VErまでの間に電流が流れる。以上より、配線OLのノードoutaから出力される電流IOLは、時刻T5の経過後にI増加し、配線OLBのノードoutbから出力される電流IOLBは、時刻T5の前後で変化しない。そのため、回路AFPと配線OLとの間には電流量Iの電流IOLが流れ、かつ回路AFPと配線OLBとの間には電流IOLBは流れない。
 ところで、本条件は、第1データ(重み係数)を“−1”とし、回路MPに入力される第2データ(ニューロンの信号の値(演算値))を“−1”としているため、式(1.1)を用いると、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“+1”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“+1”となる結果は、回路MPの動作では、時刻T6以降において電流IOLが変化し、電流IOLBが変化しない場合に対応し、これは条件2の回路動作の結果と一致する。なお、第1データ(重み係数)と第1データ(ニューロンの信号の値)の積が“+1”となる結果は、条件2と同様に、図8において、回路AFPから信号z (k)として出力される。
 なお、条件3でも記載した通り、本条件の時刻T3から時刻T4までの間において、例えば、配線OLBから回路MCrに流れる電流をIでなくIに設定して、保持部HCにVを保持してもよい。これにより、回路MPの第1データ(重み係数)として“−2”が設定される。第1データ(重み係数)を“−2”とし、回路MPに入力される第2データ(ニューロンの信号の値)を“−1”とすることにより、式(1.1)から、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“+2”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“+2”となる結果は、回路MPの動作では、時刻T5以降において電流IOLが変化せず、電流IOLBがI増加する場合に対応する。このように、回路MCにおいて保持部HCにVSSを保持し、かつ回路MCrにおいて電流量I以外を設定することで、回路MPの重み係数として“+1”以外の正の値を設定することができる。
〔条件7〕
 本条件では、一例として、第1データ(重み係数)が“0”であって、回路MPに入力される第2データ(ニューロンの信号の値(演算値))が“0”である場合を条件7として、回路MPの動作を考える。図20Aは、その場合における回路MPのタイミングチャートである。
 時刻T1から時刻T5までの間の動作については、条件1の時刻T1から時刻T5までの間の動作と同様であるため、条件1の時刻T1から時刻T5までの間の動作の説明を参酌する。
 時刻T5以降において、回路MPへの第2データ(ニューロンの信号の値(演算値))“0”の入力として、配線WX1Lに低レベル電位、配線X2Lに低レベル電位が入力される。このとき、トランジスタM3、トランジスタM3r、トランジスタM4、及びトランジスタM4rのそれぞれのゲートに低レベル電位が入力される。このため、トランジスタM3、トランジスタM3r、トランジスタM4、及びトランジスタM4rのそれぞれはオフ状態となる。つまり、この動作によって、回路MCと配線OLとの間、回路MCrと配線OLBとの間、回路MCと配線OLBとの間、及び、回路MCrと配線OLとの間が非導通状態となる。
 このため、回路MCにおいて、トランジスタM1に流れる、設定された電流の量に関わらず、配線OLから配線VE又は配線VErの一方までの間に電流は流れない。同様に、回路MCrにおいて、トランジスタM1rに流れる、設定された電流の量に関わらず、配線OLBから配線VE又は配線VErの他方までの間にも電流は流れない。つまり、配線OLのノードoutaから出力される電流IOL、及び、配線OLBのノードoutbから出力される電流IOLBのそれぞれは、時刻T5の前後で変化しない。
 また、このとき、図8において、スイッチSWO、及びスイッチSWOBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、及びスイッチSWHBをオフ状態にすることで、配線OL、及び配線OLBのそれぞれと回路AFPとの間を導通状態としても、上述の通り、回路AFPと配線OLとの間には電流IOLは流れず、かつ回路AFPと配線OLBとの間には電流IOLBは流れない。
 ところで、本条件は、第1データ(重み係数)を“0”とし、回路MPに入力される第2データ(ニューロンの信号の値(演算値))を“0”としているため、式(1.1)を用いると、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“0”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“0”となる結果は、回路MPの動作では、時刻T5以降において電流IOL及び電流IOLBのそれぞれが変化しない場合に対応し、これは条件1、条件4の回路動作の結果と一致する。なお、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“0”となる結果は、条件1、条件4と同様に、図8において、回路AFPから信号z (k)として出力される。
〔条件8〕
 本条件では、一例として、第1データ(重み係数)が“+1”であって、回路MPに入力される第2データ(ニューロンの信号の値(演算値))が“0”である場合を条件8として、回路MPの動作を考える。図20Bは、その場合における回路MPのタイミングチャートである。
 時刻T1から時刻T5までの間の動作については、条件2の時刻T1から時刻T5までの間の動作と同様であるため、条件2の時刻T1から時刻T5までの間の動作の説明を参酌する。
 時刻T5以降において、回路MPへの第2データ(ニューロンの信号の値(演算値))“0”の入力として、配線WX1Lに低レベル電位、配線X2Lに低レベル電位が入力される。このとき、トランジスタM3、トランジスタM3r、トランジスタM4、及びトランジスタM4rのそれぞれのゲートに低レベル電位が入力される。このため、トランジスタM3、トランジスタM3r、トランジスタM4、及びトランジスタM4rのそれぞれはオフ状態となる。つまり、条件7と同様に、この動作によって、トランジスタM1、及びトランジスタM1rのそれぞれに流れる、設定された電流の量に関わらず、回路MCと配線OLとの間、回路MCrと配線OLBとの間、回路MCと配線OLBとの間、及び、回路MCrと配線OLとの間が非導通状態となる。このため、配線OLから配線VE又は配線VErの一方までの間に電流は流れず、かつ配線OLBから配線VE又は配線VErの他方までの間にも電流は流れないため、配線OLのノードoutaから出力される電流IOL、及び、配線OLBのノードoutbから出力される電流IOLBのそれぞれは、時刻T5の前後で変化しない。
 また、このとき、図8において、スイッチSWO、及びスイッチSWOBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWL、及びスイッチSWLBをオフ状態にすることで、配線OL、及び配線OLBのそれぞれと回路AFPとの間を導通状態としても、上述の通り、回路AFPと配線OLとの間には電流IOLは流れず、かつ回路AFPと配線OLBとの間には電流IOLBは流れない。
 ところで、本条件は、第1データ(重み係数)を“+1”とし、回路MPに入力される第2データ(ニューロンの信号の値(演算値))を“0”としているため、式(1.1)を用いると、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“0”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“0”となる結果は、回路MPの動作では、時刻T5以降において電流IOL及び電流IOLBのそれぞれが変化しない場合に対応し、これは条件1、条件4、条件7の回路動作の結果と一致する。なお、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“0”となる結果は、条件1、条件4、条件7と同様に、図8において、回路AFPから信号z (k)として出力される。
〔条件9〕
 本条件では、一例として第1データ(重み係数)が“−1”であって、回路MPに入力される第2データ(ニューロンの信号の値(演算値))が“0”である場合を条件9として、回路MPの動作を考える。図20Cは、その場合における回路MPのタイミングチャートである。
 時刻T1から時刻T5までの間の動作については、条件3の時刻T1から時刻T5までの間の動作と同様であるため、条件3の時刻T1から時刻T5までの間の動作の説明を参酌する。
 時刻T5以降において、回路MPへの第2データ(ニューロンの信号の値(演算値))“0”の入力として、配線WX1Lに低レベル電位、配線X2Lに低レベル電位が入力される。このとき、トランジスタM3、トランジスタM3r、トランジスタM4、及びトランジスタM4rのそれぞれのゲートに低レベル電位が入力される。このため、トランジスタM3、M3r、トランジスタM4、及びトランジスタM4rのそれぞれはオフ状態となる。つまり、条件7と同様に、この動作によって、トランジスタM1、及びトランジスタM1rのそれぞれに流れる、設定された電流の量に関わらず、回路MCと配線OLとの間、回路MCrと配線OLBとの間、回路MCと配線OLBとの間、及び、回路MCrと配線OLとの間が非導通状態になる。このため、配線OLから配線VE又は配線VErの一方までの間に電流は流れず、かつ配線OLBから配線VE又は配線VErの他方までの間にも電流は流れないため、配線OLのノードoutaから出力される電流IOL、及び、配線OLBのノードoutbから出力される電流IOLBのそれぞれは、時刻T5の前後で変化しない。
 また、このとき、図8において、スイッチSWO、及びスイッチSWOBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、及びスイッチSWHBをオフ状態にすることで、配線OL、及び配線OLBのそれぞれと回路AFPとの間を導通状態としても、上述の通り、回路AFPと配線OLとの間には電流IOLは流れず、かつ回路AFPと配線OLBとの間には電流IOLBは流れない。
 ところで、本条件は、第1データ(重み係数)を“−1”とし、回路MPに入力される第2データ(ニューロンの信号の値(演算値))を“0”としているため、式(1.1)を用いると、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積は、“0”となる。第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“0”となる結果は、回路MPの動作では、時刻T6以降において電流IOL及び電流IOLBのそれぞれが変化しない場合に対応し、これは条件1、条件4、条件7、条件8の回路動作の結果と一致する。なお、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積が“0”となる結果は、条件1、条件4、条件7、条件8と同様に、図8において、回路AFPから信号z (k)として出力される。
 上述した条件1乃至条件9の動作例の結果を下表にまとめる。なお、下表では、高レベル電位をhighと記載し、低レベル電位をlowと記載している。
Figure JPOXMLDOC01-appb-T000008
 ここでは、配線OL、及び配線OLBに、回路MC、回路MCrが1個ずつ接続されている場合を一例として示した。これについて、図2、図3、図4、図7、図11、図12、図6などに示すように、配線OL、及び配線OLBに、回路MC、回路MCrが複数個ずつ接続されている場合には、各回路MC、回路MCrから出力される電流が、キルヒホッフの電流則にもとづき、足し合わせられることになる。その結果、和の演算が行われることとなる。つまり、回路MC、回路MCrにおいて、積の演算が行われ、複数の回路MC、回路MCrからの電流の足し合わせにより、和の演算が行われる。以上の結果、積和演算処理が行われることとなる。
 ところで、回路MPの動作において、第1データ(重み係数)を“+1”、“−1”の2値のみとし、第2データ(ニューロンの信号の値)を“+1”、“−1”の2値のみとした計算を行うことで、回路MPは排他的論理和の否定の回路(一致回路)と同様の動作を行うことができる。
 また、回路MPの動作において、第1データ(重み係数)を“+1”、“0”の2値のみとし、第2データ(ニューロンの信号の値)を“+1”、“0”の2値のみとした計算を行うことで、回路MPは論理積の回路と同様の動作を行うことができる。
 ところで、本動作例では、回路MPの回路MC、MCrが有する保持部HC、HCrに保持されている電位を、VSS、V、Vなどのように多値としたが、保持部HC、HCrには2値、又はアナログ値を示す電位を保持してもよい。例えば、第1データ(重み係数)として“正のアナログ値”の場合には、保持部HCのノードn1に高レベルのアナログ電位、保持部HCrのノードn1rに低レベル電位が保持されている。第1データ(重み係数)として“負のアナログ値”の場合には、例えば、保持部HCのノードn1に低レベル電位、保持部HCrのノードn1rに高レベルのアナログ電位が保持されている。そして、電流IOL及び電流IOLBの電流の大きさは、アナログ電位に応じた大きさとなる。また、保持部HC、HCrにはアナログ値を示す電位を保持することについては、図15Aの回路MPの動作例に限定されず、本明細書等に示す他の回路MPに対しても行ってもよい。
 なお、本構成例は、本明細書で示す他の構成例などと適宜組み合わせることができる。
<構成例2>
 次に、図15A乃至図15C、図16A、図16Bのそれぞれの回路構成とは異なる、図9Bに図示した回路MPに適用できる回路構成の例について説明する。
 図21Aに示す回路MPは、図9Bの回路MPの構成例を示しており、図15Aの回路MPとの違いは、トランジスタM2の第2端子が、配線OLでなくトランジスタM1の第2端子と、トランジスタM3の第1端子と、トランジスタM4の第1端子と、に電気的に接続されている点と、トランジスタM2rの第2端子が、配線OLBでなくトランジスタM1rの第2端子と、トランジスタM3rの第1端子と、トランジスタM4rの第1端子と、に電気的に接続されている点、とである。
 図21Aの回路MPは、図15Aの回路MPと同様に動作することができる。
 また、図21Aとは異なる、図9Bに図示した回路MPに適用できる回路構成の別の例について説明する。図21Bに示す回路MPは、図9Bの回路MPの構成例を示しており、図15Aの回路MPとの違いは、回路MCにトランジスタM1cが含まれ、かつトランジスタM4の第1端子が、トランジスタM1の第2端子とトランジスタM3の第2端子でなく、トランジスタM1cに電気的に接続されている点と、回路MCrにトランジスタM1crが含まれ、かつトランジスタM4rの第1端子が、トランジスタM1rの第2端子とトランジスタM3rの第2端子でなく、トランジスタM1crに電気的に接続されている点である。
 なお、本明細書などにおいて、トランジスタM1c、及びトランジスタM1crは、特に断りの無い場合は、オン状態の場合は最終的に飽和領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。ただし、本発明の一態様は、これに限定されない。供給される電圧の振幅値を小さくするために、トランジスタM1c、及びトランジスタM1crは、線形領域で動作してもよい。なお、第1データ(例えば、ここでは重み係数とする。)をアナログ値とする場合には、第1データ(重み係数)の大きさに応じて、例えば、トランジスタM1c、及びトランジスタM1crは、線形領域で動作する場合と、飽和領域で動作する場合とが混在していてもよい。
 図21Bの回路MPにおいて、トランジスタM1cの第1端子は、配線VEに電気的に接続されている。また、トランジスタM1cのゲートは、トランジスタM1のゲートと、トランジスタM2の第1端子と、容量C1の第1端子と、に電気的に接続されている。加えて、トランジスタM1cの第2端子は、トランジスタM4の第1端子に電気的に接続されている。
 なお、図21Bの回路MPにおいて、回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路MCrの有する回路素子などには、回路MCの有する回路素子などと区別をするため、符号に「r」を付している。
 また、図21Bの回路MPと、図15Aの回路MPと同様の接続構成となっている箇所については説明を省略する。
 図21Bの回路MPにおいて、トランジスタM3、及びトランジスタM4に流れる電流は、それぞれトランジスタM1、及びトランジスタM1cのゲートの電位によって決められる。なお、一例としては、トランジスタM1、及びトランジスタM1cのサイズ、例えば、チャネル長及びチャネル幅は互いに等しいことが好ましい。このような回路構成とすることにより、効率的にレイアウトできる可能性がある。また、トランジスタM3、及びトランジスタM4に流れる電流を揃えることができる可能性がある。
 図21Bの回路MPは、図15Aの回路MPと同様に動作することができる。
 なお、本構成例は、本明細書で示す他の構成例などと適宜組み合わせることができる。
<構成例3>
 次に、図9Eに図示した回路MPに適用できる回路構成の例について説明する。
 図22Aに示す回路MPは、図9Eの回路MPの構成例を示しており、図15Aの回路MPとの違いは、回路MCにトランジスタM5が含まれ、かつ回路MCrにトランジスタM5rが含まれている点と、回路MPは配線ILと配線ILBとに電気的に接続されている点である。
 なお、本明細書などにおいて、トランジスタM5、及びトランジスタM5rは、特に断りの無い場合は、オン状態の場合は最終的に線形領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。
 図22Aの回路MPにおいて、トランジスタM5の第1端子は、トランジスタM2の第2端子と、配線ILと、に電気的に接続されている。トランジスタM5の第2端子は、トランジスタM1の第2端子と、トランジスタM3の第1端子と、トランジスタM4の第1端子と、に電気的に接続されている。トランジスタM5のゲートは、配線WLに電気的に接続されている。
 なお、図22Aの回路MPにおいて、回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路MCrの有する回路素子などには、回路MCの有する回路素子などと区別をするため、符号に「r」を付している。
 また、図22Aの回路MPと、図15Aの回路MPと同様の接続構成となっている箇所については説明を省略する。
 図22Aの回路MPにおいて、構成例1、構成例2と同様に、トランジスタM1、トランジスタM2、トランジスタM3、及びトランジスタM4のサイズ、例えば、チャネル長及びチャネル幅は、それぞれトランジスタM1r、トランジスタM2r、トランジスタM3r、及びトランジスタM4rのサイズと等しいことが好ましい。このような回路構成とすることにより、効率的にレイアウトできる可能性がある。加えて、トランジスタM5のサイズは、トランジスタM5rのサイズと等しいことが好ましい。
 回路MC、MCrに電流を設定するとき、配線WLに高レベル電位を与えて、トランジスタM2、トランジスタM2r、トランジスタM5、及びトランジスタM5rをオン状態にすることによって行われる。また、回路MC、及び回路MCrに電流を設定した後は、保持部HC、及び保持部HCrに設定された電位を保持するため、配線WLに低レベル電位を与えて、トランジスタM2、トランジスタM2r、トランジスタM5、及びトランジスタM5rをオフ状態にすればよい。
 構成例1、構成例2で説明した回路MPでは、第2データ(例えば、ここではニューロンの信号の値)を送信する配線と、回路MPに第1データ(例えば、ここでは重み係数とする。)に応じた情報(例えば、電圧、電流など)を供給、又は保持するための配線と、をまとめて配線WX1Lとしたが、図22の回路MPを構成することによって、第2データ(ニューロンの信号の値)を送信する配線を配線X1Lとして、回路MPに第1データ(重み係数)に応じた情報(例えば、電圧、電流など)を供給、又は保持するための配線を配線WLとすることができる。つまり、図22の回路MPは、構成例1、構成例2の回路MPの配線WX1Lを、機能毎に分けた構成ということができる。
 また、図22Aの回路MPと異なる、回路構成を図22Bに示す。
 図22Bに示す回路MPは、図22Aの回路MPのトランジスタM5、及びトランジスタM5rのそれぞれの第1端子の電気的な接続を変更した構成となっている。具体的には、図22Bの回路MPにおいて、トランジスタM5の第1端子は、トランジスタM2の第1端子と、トランジスタM1のゲートと、容量C1の第1端子と、に電気的に接続されている。
 図22Bに示す回路MPを構成することによって、図22Bの回路MPは、図22Aの回路MPとほぼ同様に動作する。
 なお、図22A、及び図22Bのそれぞれに示した回路MPは、配線ILを配線OLにまとめ、かつ配線ILBを配線OLBにまとめた構成としてもよい。例えば、図22Aに示す回路MPにおいて、配線ILを配線OLにまとめ、かつ配線ILBを配線OLBにまとめることによって、図23Aに示す回路MPの構成にすることができる。また、例えば、図22Bに示す回路MPにおいて、配線ILを配線OLにまとめ、かつ配線ILBを配線OLBにまとめることによって、図23Bに示す回路MPの構成にすることができる。なお、図23A、及び図23Bのそれぞれの回路MPは、図9Aに図示した回路MPに適用できる回路構成であり、図23A、及び図23Bのそれぞれの回路MPの動作は、図15Aの回路MPの動作の説明を参酌する。
 なお、本構成例は、本明細書で示す他の構成例などと適宜組み合わせることができる。
<構成例4>
 図24に示す回路MPは、図15Aの回路MPと異なり、保持部HC、及び保持部HCrだけでなく、保持部HCs、及び保持部HCsrも有する回路の一例である。
 図24の回路MPに含まれている回路MCは、図21Aの回路MPが有する回路素子に加え、トランジスタM1s、トランジスタM2s、トランジスタM6、トランジスタM6s、及び容量C1sを有する。また、図20の回路MPに含まれている回路MCrは、回路MCと同様の回路素子を有するため、回路MCのトランジスタM1s、トランジスタM2s、トランジスタM6、トランジスタM6s、及び容量C1sのそれぞれに対応する、トランジスタM1sr、トランジスタM2sr、トランジスタM6r、トランジスタM6sr、及び容量C1srを有する。なお、トランジスタM2sと、容量C1sと、は、保持部HCsに含まれ、トランジスタM2srと、容量C1srと、は、保持部HCsに含まれている。
 なお、本明細書などにおいて、トランジスタM2s、トランジスタM6、トランジスタM6s、トランジスタM6r、トランジスタM6srは、特に断りの無い場合は、オン状態の場合は最終的に線形領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。
 次に、図24の回路MPの構成について説明する。なお、図24の回路MPにおいて、図21Aの回路MPと同様の構成となっている箇所については省略する。
 図24の回路MPにおいて、トランジスタM1の第2端子は、トランジスタM2の第2端子と、トランジスタM6の第1端子と、に電気的に接続されている。トランジスタM6の第2端子は、トランジスタM3の第1端子と、トランジスタM4の第2端子と、に電気的に接続されている。トランジスタM6のゲートは、配線S1Lに電気的に接続されている。トランジスタM1sの第1端子は、配線VEに電気的に接続されている。トランジスタM1sの第2端子は、トランジスタM6sの第1端子に電気的に接続されている。トランジスタM1sのゲートは、容量C1sの第1端子と、トランジスタM2sの第1端子と、に電気的に接続されている。容量C1sの第2端子は、配線VEに電気的に接続されている。トランジスタM2の第2端子は、トランジスタM1sの第2端子と、トランジスタM6sの第1端子に電気的に接続されている。トランジスタM6sの第2端子は、トランジスタM3の第1端子と、トランジスタM4の第2端子と、に電気的に接続されている。トランジスタM6sのゲートは、配線S2Lに電気的に接続されている。
 図24の回路MPにおいて、回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路MCrの有する回路素子などには、回路MCの有する回路素子などと区別をするため、符号に「r」を付している。
 配線S1Lは、トランジスタM6、及びトランジスタM6rをオン状態又はオフ状態にするための電位を供給する電圧線として機能し、配線S2Lは、トランジスタM6s、及びトランジスタM6srをオン状態又はオフ状態にするための電位を供給する電圧線として機能する。
 図24の回路MPにおいて、トランジスタM6、トランジスタM6s、トランジスタM6r、及びトランジスタM6srのサイズ、例えば、チャネル長及びチャネル幅は、互いに等しいことが好ましい。このような回路構成とすることにより、効率的にレイアウトできる可能性がある。
 例えば、図11に示した演算回路150に、図24の回路MPに示した構成を適用することによって、演算回路150の回路MPは、第1データ(例えば、ここでは重み係数とする。)を2個保持することができる。具体的には、図24の回路MPは、1個目の第1データ(重み係数)に応じた電位を、回路MCの保持部HCと、回路MCrの保持部HCrと、に保持し、2個目の第1データ(重み係数)に応じた電位を、回路MCの保持部HCsと、回路MCの保持部HCsrと、に保持することができる。また、図24の回路MPは、配線S1L、及び配線S2Lから与える電位によって、演算に用いる第1データ(重み係数)の切り替えを行うことができる。例えば、演算回路150の回路MP[1,j]乃至回路MP[m,j]に含まれるそれぞれの保持部HC、及び保持部HCrに第1データ(重み係数)w (k−1) (k)乃至w (k−1) (k)に相当する電位を保持し、演算回路110の回路MP[1,j]乃至回路MP[m,j]に含まれるそれぞれの保持部HCs、及び保持部HCsrに第1データ(重み係数)w (k−1) (k)乃至w (k−1) (k)(ここでのhは、1以上でjでない整数とする。)に相当する電位を保持して、配線XLS[1]乃至配線XLS[m](図24の回路MPにおける配線WX1L、及び配線X2L)に信号z (k−1)乃至z (k−1)に応じた電位を入力する。このとき、配線S1Lに高レベル電位を印加して、トランジスタM6、及びトランジスタM6rをオン状態とし、配線S2Lに低レベル電位を印加して、トランジスタM6s、及びトランジスタM6srをオフ状態とすることで、演算回路150の回路MP[1,j]乃至回路MP[m,j]は、重み係数w (k−1) (k)乃至w (k−1) (k)と信号z (k−1)乃至z (k−1)との積和と活性化関数の演算を行うことができる。また、配線S1Lに低レベル電位を印加して、トランジスタM6、及びトランジスタM6rをオフ状態とし、配線S2Lに高レベル電位を印加して、トランジスタM6s、及びトランジスタM6srをオン状態とすることで、演算回路150の回路MP[1,j]乃至回路MP[m,j]は、重み係数w (k−1) (k)乃至w (k−1) (k)と信号z (k−1)乃至z (k−1)との積和と活性化関数の演算を行うことができる。
 上述の通り、演算回路150に図24の回路MPを適用することによって、重み係数を2個保持することができ、かつ当該重み係数を切り替えて、積和と活性化関数の演算を行うことができる。図24の回路MPを構成した演算回路150は、例えば、第k層のニューロンの個数がnより大きい場合、第k層と異なる中間層における演算を行う場合、などに有効である。また、図24の回路MPでは、回路MC、及び回路MCrが有する保持部はそれぞれ2個としたが、回路MC、及び回路MCrのそれぞれは、状況に応じて、3個以上の保持部を有してもよい。
 また、本発明の一態様の半導体装置に含まれている回路MPは、図24の回路MPに限定されない。本発明の一態様の半導体装置の回路MPは、図24の回路MPを状況に応じて回路構成を変更することができる。
 例えば、図25に示す回路MPは、図24の回路MPを変更した回路構成となっている。具体的には、図25の回路MPは、図24の回路MPに対して、トランジスタM3s、トランジスタM4s、トランジスタM3sr、及びトランジスタM4srが加えられ、かつ電気的な接続の変更がされている。トランジスタM3sの第1端子は、トランジスタM6sの第2端子と、トランジスタM4sの第1端子と、に電気的に接続され、トランジスタM3sの第2端子は、配線OLに電気的に接続され、トランジスタM3sのゲートは、配線WX1Lに電気的に接続されている。トランジスタM4sの第2端子は、配線OLBに電気的に接続され、トランジスタM4sのゲートは、配線X2Lに電気的に接続されている。
 なお、図25の回路MPにおいて、回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路MCrの有する回路素子などには、回路MCの有する回路素子などと区別をするため、符号に「r」を付している。また、回路MCrにおいて、トランジスタM3srの第2端子は、配線OLに電気的に接続され、トランジスタM4srの第2端子は、配線OLBに電気的に接続されている。
 図25の回路MPにおいて、トランジスタM3、トランジスタM3s、トランジスタM3r、トランジスタM3sr、トランジスタM4、トランジスタM4s、トランジスタM4r、及びトランジスタM4srのサイズ、例えば、チャネル長及びチャネル幅は、互いに等しいことが好ましい。このような回路構成とすることにより、効率的にレイアウトできる可能性がある。
 図25の回路MPは、図24の回路MPと同様の動作を行うことで、第1データ(重み係数)を2個保持することができ、かつ当該第1データ(重み係数)を切り替えて、積和と活性化関数の演算を行うことができる。また、図25の回路MPでは、回路MC、及び回路MCrが有する保持部はそれぞれ2個としたが、回路MC、及び回路MCrのそれぞれは、状況に応じて、3個以上の保持部を有してもよい。
 なお、本構成例は、本明細書で示す他の構成例などと適宜組み合わせることができる。
<構成例5>
 図26に示す回路MPは、図21Aの回路MPと異なり、回路MCにおいて、チャネル幅(以下、W長と呼称する。)とチャネル長(以下、L長と呼称する。)の比がそれぞれ異なるトランジスタM1、トランジスタM1−2b、トランジスタM1−3bを一例として有している。なお、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bだけでなく、更に多くのトランジスタを有していてもよいし、トランジスタM1−3bやトランジスタM1−2bを有していなくてもよい。
 図26の回路MPに含まれている回路MCは、更に、図21Aの回路MPが有する回路素子に加え、トランジスタM3−2b、トランジスタM4−2b、トランジスタM3−3b、及びトランジスタM4−3bを有する。
 本明細書などにおいて、トランジスタM1−2b、及びトランジスタM1−3bは、トランジスタM1と同様に、特に断りの無い場合は、オン状態の場合は最終的に飽和領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、飽和領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。ただし、本発明の一態様は、これに限定されない。供給される電圧の振幅値を小さくするために、トランジスタM1−2b、及びトランジスタM1−3bは、線形領域で動作してもよい。なお、第1データ(例えば、ここでは重み係数とする。)をアナログ値とする場合には、第1データ(重み係数)の大きさに応じて、例えば、トランジスタM1−2b、及びトランジスタM1−3bは、線形領域で動作する場合と、飽和領域で動作する場合とが混在していてもよい。
 また、本明細書などにおいて、トランジスタM3−2b、トランジスタM4−2b、トランジスタM3−3b、及びトランジスタM4−3bは、特に断りの無い場合は、オン状態の場合は最終的に線形領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。
 次に、図26の回路MPの構成について説明する。なお、図26の回路MPにおいて、図21Aの回路MPと同様の構成となっている箇所については省略する。
 図26の回路MPの回路MCにおいて、トランジスタM1−2bの第1端子は、配線VEに電気的に接続されている。トランジスタM1−2bの第2端子は、トランジスタM3−2bの第1端子と、トランジスタM4−2bの第1端子と、に電気的に接続されている。トランジスタM1−2bのゲートは、トランジスタM2の第1端子と、容量C1の第1端子と、に電気的に接続されている。トランジスタM3−2bの第2端子は、配線OLに電気的に接続されている。トランジスタM3−2bのゲートは、配線X1L2bに電気的に接続されている。トランジスタM4−2bの第2端子は、配線OLBに電気的に接続されている。トランジスタM4−2bのゲートは、配線X2L2bに電気的に接続されている。トランジスタM1−3bの第1端子は、配線VEに電気的に接続されている。トランジスタM1−3bの第2端子は、トランジスタM3−3bの第1端子と、トランジスタM4−3bの第1端子と、に電気的に接続されている。トランジスタM1−3bのゲートは、トランジスタM2の第1端子と、容量C1の第1端子と、に電気的に接続されている。トランジスタM3−3bの第2端子は、配線OLに電気的に接続されている。トランジスタM3−3bのゲートは、配線X1L3bに電気的に接続されている。トランジスタM4−3bの第2端子は、配線OLBに電気的に接続されている。トランジスタM4−3bのゲートは、配線X2L3bに電気的に接続されている。
 なお、図26の回路MPにおいて、回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路MCrの有する回路素子などには、回路MCの有する回路素子などと区別をするため、符号に「r」を付している。また、トランジスタM3−2brの第2端子は、配線OLBに電気的に接続され、トランジスタM4−2brの第2端子は、配線OLに電気的に接続され、トランジスタM3−3brの第2端子は、配線OLBに電気的に接続され、トランジスタM4−3brの第2端子は、配線OLに電気的に接続されている。
 図26の回路MPにおいて、トランジスタM3、トランジスタM3−2b、トランジスタM3−3b、トランジスタM3r、トランジスタM3−2br、トランジスタM3−3br、トランジスタM4、トランジスタM4−2b、トランジスタM4−3b、トランジスタM4r、トランジスタM4−2br、及びトランジスタM4−3brのサイズ、例えば、チャネル長及びチャネル幅は、互いに等しいことが好ましい。このような回路構成とすることにより、効率的にレイアウトできる可能性がある。
 配線X1L2bは、トランジスタM3−2b、及びトランジスタM3−2brをオン状態とオフ状態の切り替えを行うための配線であり、配線X2L2bは、トランジスタM4−2b、及びトランジスタM4−2brをオン状態とオフ状態の切り替えを行うための配線であり、配線X1L3bは、トランジスタM3−3b、及びトランジスタM3−3brをオン状態とオフ状態の切り替えを行うための配線であり、配線X2L3bは、トランジスタM4−3b、及びトランジスタM4−3brをオン状態とオフ状態の切り替えを行うための配線である。
 トランジスタM1のW長とL長の比をW/Lとしたとき、トランジスタM1−2bのW長とL長の比は、2×W/Lとするのが好ましく、かつトランジスタM1−3bのW長とL長の比は、4×W/Lとするのが好ましい。トランジスタのソース−ドレイン間に流れる電流はチャネル幅/チャネル長に比例するため、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのチャネル幅/チャネル長以外の構造、構成条件などが同じ場合、トランジスタM1−2b、及びトランジスタM1−3bに流れる電流は、それぞれトランジスタM1に流れる電流の概ね2倍、概ね4倍となる。つまり、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bに流れる電流量の比は、概ね1:2:4となる。なお、図26の回路MPに含まれる回路MCが、さらに多くのトランジスタM1、例えばQ個(Qは4以上の整数とする)のトランジスタを有する場合を考える。1番目のトランジスタをトランジスタM1、2番目のトランジスタをトランジスタM1−2b、3番目のトランジスタをトランジスタM1−3bとし、q番目(qは4以上Q以下の整数)のトランジスタのW長とL長の比を、トランジスタM1のW長とL長の比の2(q−1)倍とすると、1番目のトランジスタ、2番目のトランジスタ、3番目のトランジスタ、q番目のトランジスタのそれぞれに流れる電流量の比は、1:2:4:2(q−1)となる。つまり、図26の回路MPに含まれる回路MCは、Q個のトランジスタを、それぞれに流れる電流の量を2のべき乗の比となるように有してもよい。
 例えば、トランジスタM1のソース−ドレイン間に流れる電流量をIutとしたとき、上述のトランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれのチャネル幅/チャネル長より、トランジスタM1−2b、及びトランジスタM1−3bに流れる電流量は、それぞれ2Iut、4Iutとなる。
 また、トランジスタM1rのW長とL長の比は、トランジスタM1のW長とL長の比と等しいことが好ましく、トランジスタM1−2brのW長とL長の比は、トランジスタM1−2bのW長とL長の比と等しいことが好ましく、トランジスタM1−3brのW長とL長の比は、トランジスタM1−3bのW長とL長の比と等しいことが好ましい。
 ここで、配線OLから回路MCに流れる電流量を考える。この場合、回路MPには正の第1データ(正の重み係数)が設定され、かつトランジスタM3、トランジスタM3−2b、及びトランジスタM3−3bの少なくとも一をオン状態とし、トランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bをオフ状態とすればよい。このとき、トランジスタM3、トランジスタM3−2b、及びトランジスタM3−3bのそれぞれのオン状態、オフ状態の組み合わせによって、配線OLから回路MCに流れる電流量が変化する。
 例えば、トランジスタM1のソース−ドレイン間に流れる電流量をIutに設定したとき、トランジスタM1−2bに流れる電流量は2Iutとなり、トランジスタM1−3bに流れる電流量は4Iutとなる。ここで、配線WX1Lに高レベル電位を印加し、配線X2Lに低レベル電位を印加し、更に、配線X1L2b、配線X2L2b、配線X1L3b、及び配線X2L3bに低レベル電位を印加することによって、トランジスタM3をオン状態にし、トランジスタM3−2b、トランジスタM3−3b、トランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bをオフ状態にすることができる。このとき、配線OLから回路MCに流れる電流量はIutとなる。また、例えば、トランジスタM1のソース−ドレイン間に流れる電流量をIutに設定し、かつ配線WX1L、及び配線X1L2bに高レベル電位を印加し、配線X2L、及び配線X2L2bに低レベル電位を印加し、更に、配線X1L3b、及び配線X2L3bに低レベル電位を印加する。このとき、トランジスタM3、及びトランジスタM3−2bをオン状態にし、トランジスタM3−3b、トランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bをオフ状態にすることができ、配線OLから回路MCに流れる電流量は3Iutとなる。また、例えば、トランジスタM1のソース−ドレイン間に流れる電流量をIutに設定し、かつ配線X1L2b、及び配線X1L3bに高レベル電位を印加し、配線X2L2b、及び配線X2L3bに低レベル電位を印加し、更に、配線WX1L、及び配線X2Lに低レベル電位を印加する。このとき、トランジスタM3−2b、トランジスタM3−3bをオン状態にし、トランジスタM3、トランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bをオフ状態にすることができ、配線OLから回路MCに流れる電流量は6Iutとなる。
 更に、例えば、トランジスタM1のソース−ドレイン間に流れる電流量を2Iutに設定したとき、トランジスタM1−2bに流れる電流量は4Iutとなり、トランジスタM1−3bに流れる電流量は8Iutとなる。ここで、配線WX1Lに高レベル電位を印加し、配線X2Lに低レベル電位を印加し、更に、配線X1L2b、配線X2L2b、配線X1L3b、及び配線X2L3bに低レベル電位を印加することによって、トランジスタM3をオン状態にし、トランジスタM3−2b、トランジスタM3−3b、トランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bをオフ状態にすることができる。このとき、配線OLから回路MCに流れる電流量は2Iutとなる。また、例えば、トランジスタM1のソース−ドレイン間に流れる電流量を2Iutに設定し、かつ配線WX1L、及び配線X1L2bに高レベル電位を印加し、配線X2L、及び配線X2L2bに低レベル電位を印加し、更に、配線X1L3b、及び配線X2L3bに低レベル電位を印加する。このとき、トランジスタM3、及びトランジスタM3−2bをオン状態にし、トランジスタM3−3b、トランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bをオフ状態にすることができ、配線OLから回路MCに流れる電流量は6Iutとなる。また、例えば、トランジスタM1のソース−ドレイン間に流れる電流量を2Iutに設定し、かつ配線X1L2b、及び配線X1L3bに高レベル電位を印加し、配線X2L2b、及び配線X2L3bに低レベル電位を印加し、更に、配線WX1L、及び配線X2Lに低レベル電位を印加する。このとき、トランジスタM3−2b、及びトランジスタM3−3bをオン状態にし、トランジスタM3、トランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bをオフ状態にすることができ、配線OLから回路MCに流れる電流量は12Iutとなる。
 つまり、図26の回路MPは、トランジスタM1のソース−ドレイン間に設定した電流を、配線X1、配線X1L2b、及び配線X1L3bのそれぞれの電位に応じて整数倍して、整数倍した電流を配線OLから回路MCに流す機能を有する。なお、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれのW長とL長の比を変更することによって、トランジスタM1のソース−ドレイン間に設定した電流を整数倍でなく実数倍にして、配線OLから回路MCに流すことができる。
 上述の例では、配線OLから回路MCに流れる電流量について扱ったが、配線OLBから回路MCに流れる電流量についても同様に考えることができる。この場合、回路MPには正の第1データ(正の重み係数)が設定され、かつトランジスタM4、トランジスタM4−2b、トランジスタM4−3bの少なくとも一をオン状態とし、トランジスタM3、トランジスタM3−2b、及びトランジスタM3−3bをオフ状態とすればよい。このとき、トランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bのそれぞれのオン状態、オフ状態の組み合わせによって、配線OLBから回路MCに流れる電流量が変化する。また、配線OLBから回路MCrに流れる電流についても同様に考えることができる。この場合、回路MPには負の第1データ(負の重み係数)が設定され、かつトランジスタM3、トランジスタM3−2b、及びトランジスタM3−3bの少なくとも一をオン状態とし、トランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bをオフ状態とすればよい。このとき、トランジスタM3、トランジスタM3−2b、及びトランジスタM3−3bのそれぞれのオン状態、オフ状態の組み合わせによって、配線OLBから回路MCrに流れる電流量が変化する。更に、配線OLから回路MCrに流れる電流についても同様に考えることができる。この場合、回路MPには負の第1データ(負の重み係数)が設定され、かつトランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bの少なくとも一をオン状態とし、トランジスタM3、トランジスタM3−2b、及びトランジスタM3−3bをオフ状態とすればよい。このとき、トランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bのそれぞれのオン状態、オフ状態の組み合わせによって、配線OLから回路MCrに流れる電流量が変化する。
 上述の通り、図26の回路MPは、設定した電流の量を、配線WX1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、及び配線X2L3bのそれぞれの電位に応じて、整数倍(実数倍)にして、配線OLから回路MC又は回路MCrに電流を流し、又は配線OLBから回路MC又は回路MCrに電流を流すことができる。ここで、配線WX1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、及び配線X2L3bのそれぞれの電位の組み合わせに応じて第2データ(例えば、ここではニューロンの信号の値とする。)を定めることによって、第2データ(ニューロンの信号の値)を多値(図26の回路MPの構成では15値)として、扱うことができる。つまり、図26の回路MPは、多値の第1データ(重み係数)と、多値の第2データ(ニューロン信号)と、の積を計算することができる回路とすることができる。
 回路MPに設定される第1データ(重み係数)を“+1”として(トランジスタM1のソース−ドレイン間に設定される電流量をIut、トランジスタM1rのソース−ドレイン間に設定される電流量を0とする。なお、保持部HCのノードn1の電位をVutとし、保持部HCrのノードn1rの電位をVSSとしている。)、第2データ(ニューロンの信号の値)に応じた、配線WX1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、及び配線X2L3bの電位を回路MPに入力したときの、配線OLから回路MC又は回路MCrに流れる電流IOLと、配線OLBから回路MC又は回路MCrに流れる電流IOLBと、の電流量の変化を下表に示す。なお、下表では、高レベル電位をhighと記載し、低レベル電位をlowと記載している。
Figure JPOXMLDOC01-appb-T000009
 また、回路MPに設定される第1データ(重み係数)を“−1”として(トランジスタM1のソース−ドレイン間に設定される電流量を0、トランジスタM1rのソース−ドレイン間に設定される電流量をIutとする。なお、保持部HCのノードn1の電位をVSSとし、保持部HCrのノードn1rの電位をVutとしている。)、第2データ(ニューロンの信号の値)に応じた、配線WX1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、及び配線X2L3bの電位を回路MPに入力したときの、配線OLから回路MC又は回路MCrに流れる電流IOLと、配線OLBから回路MC又は回路MCrに流れる電流IOLBと、の電流量の変化を下表に示す。なお、下表では、高レベル電位をhighと記載し、低レベル電位をlowと記載している。
Figure JPOXMLDOC01-appb-T000010
 ところで、トランジスタM1のソース−ドレイン間に流れる電流量を0としたとき、ノードn1の電位としては、例えば、VSSとすればよい。これにより、トランジスタM1に加え、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれのソース−ドレイン間に流れる電流量も0にすることができる。このため、トランジスタM3、トランジスタM3−2b、トランジスタM3−3b、トランジスタM4、トランジスタM4−2b、及びトランジスタM4−3bのオン状態又はオフ状態に関わらず、配線OL又は配線OLBから回路MCへの電流は流れない。
 このように、図26の回路MPは、配線WX1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、及び配線X2L3bのそれぞれに、低レベル電位又は高レベル電位にすることによって、第2データ(ニューロンの信号の値)を15値として表現することができ、多値の第1データ(重み係数)と、多値の第2データ(ニューロンの信号の値)と、の積を計算することができる。
 また、本発明の一態様の半導体装置に含まれている回路MPは、図26の回路MPに限定されない。本発明の一態様の半導体装置の回路MPは、図26の回路MPを状況に応じて回路構成を変更することができる。
 例えば、図27に示す回路MPは、図26の回路MPを変更した回路構成となっている。具体的には、図27の回路MPは、図26の回路MPに対して、保持部HC−2b、保持部HC−3b、保持部HC−2br、及び保持部HC−3brが加えられた構成となっている。保持部HC−2b、保持部HC−3b、保持部HC−2br、及び保持部HC−3brの構成は、保持部HC、及び保持部HCrと同様の構成であるため、保持部HC、及び保持部HCrの説明の記載を参酌する。
 回路MCにおいて、トランジスタM1−2b、トランジスタM3−2b、及びトランジスタM4−2b、及び保持部HC−2bの周辺の電気的な接続構成は、トランジスタM1、M3、M4、及び保持部HCの周辺と同様の電気的な接続構成となっている。また、トランジスタM1−3b、トランジスタM3−3b、トランジスタM4−3b、及び保持部HC−3bの周辺の電気的な接続構成は、トランジスタM1、トランジスタM3、トランジスタM4、及び保持部HCの周辺と同様の電気的な接続構成となっている。また、回路MCrにおいて、トランジスタM1−2br、トランジスタM3−2br、トランジスタM4−2br、及び保持部HC−2brの周辺の電気的な接続構成は、トランジスタM1r、トランジスタM3r、トランジスタM4r、及び保持部HCrの周辺と同様の電気的な接続構成となっている。また、トランジスタM1−3br、トランジスタM3−3br、トランジスタM4−3br、及び保持部HC−3brの周辺の電気的な接続構成は、トランジスタM1r、トランジスタM3r、トランジスタM4r、及び保持部HCrの周辺と同様の電気的な接続構成となっている。
 更に、保持部HC−2bは、配線WL2bに電気的に接続され、保持部HC−3bは、配線WL3bに電気的に接続され、保持部HC−2brは、配線WL2bに電気的に接続され、保持部HC−3brは、配線WL3bに電気的に接続されている。
 図27の回路MPにおいて、例えば、図26の回路MPと同様に、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれのW長とL長の比を、W/L、2×W/L、4×W/Lとし、トランジスタM1のソース−ドレイン間に流れる電流量をIutに設定するような電位を保持部HCに保持し、かつ当該電位とほぼ同じ電位を保持部HC−2b、及び保持部HC−3bに保持することによって、図26の回路MPと同様に動作することができる。
 また、保持部HC、保持部HC−2b、及び保持部HC−3bにはほぼ同じ電位を書き込めばよいので、配線WL、配線WL2b、及び配線WL3bはそれぞれ一本の配線にまとめてもよい(図示しない)。
 また、例えば、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれのW長とL長の比をそれぞれ等しくし、かつトランジスタM1のソース−ドレイン間に流れる電流量をIに設定した場合、トランジスタM1−2bのソース−ドレイン間に流れる電流量として2Iに設定し、トランジスタM1−3bのソース−ドレイン間に流れる電流量を4Iに設定することによって、図26の回路MPと同様に動作することができる。
 また、図27の回路MPと異なる、図26の回路MPを変更した回路構成として、例えば、図28に示す回路MPとしてもよい。図28の回路MPは、図26の回路MPに対して、トランジスタM2−2b、トランジスタM2−3b、トランジスタM2−2br、及びトランジスタM2−3brが加えられた構成となっている。なお、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれのW長とL長の比は、一例として、図26と同様に、W/L、2×W/L、4×W/Lとする。ただし、電流量は、設定されたときの大きさによって決定され、W長やL長には、依存しない。そのため、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれのW長とL長の比は、全て同じとしてもよい。ただしその場合には、電流量に応じて、各トランジスタのゲートの電位が異なることとなる。各トランジスタのゲートの電位を概ね同じにしたい場合には、W長とL長の比は、W/L、2×W/L、4×W/Lとすることが望ましい。
 また、本明細書などにおいて、トランジスタM2−2b、トランジスタM2−3b、トランジスタM2−2br、及びトランジスタM2−3brとしては、特に断りの無い場合は、トランジスタM2、及びトランジスタM2rと同様に、オン状態の場合は最終的に線形領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。
 回路MCにおいて、トランジスタM2−2bの第1端子は、トランジスタM2−3bの第1端子と、トランジスタM2の第1端子と、トランジスタM1のゲートと、トランジスタM1−2bのゲートと、トランジスタM1−3bのゲートと、容量C1の第1端子と、に電気的に接続されている。トランジスタM2−2bの第2端子は、トランジスタM1−2bの第2端子と、トランジスタM3−2bの第1端子と、トランジスタM3−2bの第1端子と、に電気的に接続されている。トランジスタM2−3bの第2端子は、トランジスタM1−3bの第2端子と、トランジスタM3−3bの第1端子と、トランジスタM3−3bの第1端子と、に電気的に接続されている。トランジスタM2−2bのゲートと、トランジスタM2−3bのゲートと、は、配線WLに電気的に接続されている。
 また、同様に、回路MCrにおいて、トランジスタM2−2brの第1端子は、トランジスタM2−3brの第1端子と、トランジスタM2rの第1端子と、トランジスタM1rのゲートと、トランジスタM1−2brのゲートと、トランジスタM1−3brのゲートと、容量C1の第1端子と、に電気的に接続されている。トランジスタM2−2brの第2端子は、トランジスタM1−2brの第2端子と、トランジスタM3−2brの第1端子と、トランジスタM3−2brの第1端子と、に電気的に接続されている。トランジスタM2−3brの第2端子は、トランジスタM1−3brの第2端子と、トランジスタM3−3brの第1端子と、トランジスタM3−3brの第1端子と、に電気的に接続されている。トランジスタM2−2brのゲートと、トランジスタM2−3brのゲートと、は、配線WLに電気的に接続されている。
 また、図26に示す配線X1L2b、及び配線X1L3bは、図28では、それぞれ配線WX1L2b、及び配線WX1L3bと記載している。
 トランジスタM1、トランジスタM1−2b、トランジスタM1−3b、トランジスタM1r、トランジスタM1−2br、及びトランジスタM1−3brのそれぞれに流れる電流を設定するとき、配線WLと、配線WX1Lと、配線WX1L2bと、配線WX1L3bと、に高レベル電位を入力して、トランジスタM2、トランジスタM2−2b、トランジスタM2−3b、トランジスタM3、トランジスタM3−2b、及びトランジスタM3−3bのそれぞれをオン状態にする。また、配線X2L、配線X2L2b、及び配線X2L3bに低レベル電位を入力して、トランジスタM4、トランジスタM4−2b、トランジスタM4−3b、トランジスタM4r、トランジスタM4−2br、及びトランジスタM4−3brをオフ状態にする。
 このとき、配線OLから回路MCに、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれに設定する電流の総和を流すことによって、例えば、7Iutを流すことによって、保持部HCのノードn1は所定の電位になる。ここで、配線WLに低レベル電位を入力して、トランジスタM2をオフ状態にすることで、保持部HCのノードn1に所定の電位を保持する。これによって、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれのソース−ドレイン間には、Iut、2Iut、4Iutの電流が流れるように設定される。
 また、同様に、配線OLBから回路MCrに、トランジスタM1r、トランジスタM1−2br、及びトランジスタM1−3brのそれぞれに設定する電流の総和を流すことによって、例えば、7Iutを流すことによって、保持部HCrのノードn1rは所定の電位になる。そして、配線WLに低レベル電位を入力して、保持部HCrのノードn1に所定の電位を保持することで、トランジスタM1r、トランジスタM1−2br、及びトランジスタM1−3brのそれぞれのソース−ドレイン間には、Iut、2Iut、4Iutの電流が流れるように設定される。
 図28の回路MPを構成することにより、図26の回路MPと同様の動作を行うことができる。更に、図28の回路MPを構成することにより、回路MCにおいて、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bの形成時に発生する構造のばらつきによる影響を少なくすることができる。また、同様に、回路MCrにおいて、トランジスタM1r、トランジスタM1−2br、及びトランジスタM1−3brの形成時に発生する構造のばらつきによる影響を少なくすることができる。
 また、図26の回路MPの変更例として、保持部HC、及び保持部HCrのそれぞれを別の構成としてもよい。図29に示す回路MPは、図26の回路MPに含まれている保持部HC、及び保持部HCrのそれぞれを、回路HCS、及び回路HCSrに置き換えた構成となっている。なお、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれのW長とL長の比は、図26と同様に、W/L、2×W/L、4×W/Lとする。
 回路HCSは、例えば、配線OLと、配線OLBと、に電気的に接続されている。回路HCSは、配線OL、又は配線OLBの一方、又は両方から入力される情報(電位、電流など)を受け取って、当該情報に応じた電位を保持する機能を有する。また、回路HCSは、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれのゲートに電気的に接続されている。回路HCSは、保持した当該電位をトランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれのゲートに印加する機能を有する。したがって、トランジスタM1、トランジスタM1−2b、及びトランジスタM1−3bのそれぞれには、回路HCSから与えられた電位と、W長とL長の比と、に応じたソース−ドレイン電流が流れる。なお、回路HCSrは、回路HCSと同様の機能を有しており、トランジスタM1r、トランジスタM1−2br、及びトランジスタM1−3brのそれぞれには、回路HCSrから与えられた電位と、W長とL長の比と、に応じたソース−ドレイン電流が流れる。
 図29に示す回路MPに含まれている回路HCS、及び回路HCSrの具体例を図30Aに図示している。図30Aに示す回路HCS、及び回路HCSrは、一例としては、SRAM(Static Random Access Memory)を有する構成となっている。なお、図30Aには、回路HCS、及び回路HCSrの有する回路素子の電気的な接続構成を示すため、回路MPの全体を示している。
 なお、回路HCS、及び回路HCSrがSRAMを有する構成である場合、SRAMは、高レベル電位、低レベル電位の一方を保持するため、回路MPに設定される第1データ(重み係数)は、例えば、2値(“−1”、“+1”の組み合わせなど)、3値(“−1”、“0”、“+1”の組み合わせなど)などに限定される。例えば、回路MPに設定される第1データ(重み係数)を“+1”とするとき、回路HCSには高レベル電位を保持し、回路HCSrには低レベル電位を保持すればよい。また、例えば、回路MPに設定される第1データ(重み係数)を“−1”とするとき、回路HCSには低レベル電位を保持し、回路HCSrには高レベル電位を保持すればよい。また、例えば、回路MPに設定される第1データ(重み係数)を“0”とするとき、回路HCSには低レベル電位を保持し、回路HCSrには低レベル電位を保持すればよい。
 回路HCSは、トランジスタM7、トランジスタM7s、インバータループ回路IVRを有している。インバータループ回路IVRは、インバータ回路IV1と、インバータ回路IV2と、を有する。
 本明細書などにおいて、トランジスタM7、及びトランジスタM7sは、特に断りの無い場合は、オン状態の場合は最終的に線形領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。
 インバータ回路IV1と、インバータ回路IV2と、のそれぞれは、入力端子に入力信号が入力されたとき、当該入力信号の反転信号を出力端子から出力する機能を有する。そのため、インバータ回路IV1と、インバータ回路IV2と、のそれぞれとしては、例えば、インバータ回路を用いることができる。なお、インバータ回路IV1、及びインバータ回路IV2と、の構成例を図30Bに示す。図30Bに示すとおり、インバータ回路IV1、及びインバータ回路IV2は、CMOS(Complementary MOS)回路として構成することができる。ただし、本発明の一態様はこれに限定されず、例えば、CMOS回路ではなく、nチャネル型トランジスタのみ、または、pチャネル型トランジスタのみの単極性回路で構成してもよい。
 また、インバータ回路IV1、及びインバータ回路IV2としては、例えば、NAND回路、NOR回路、XOR回路、これらを組み合わせた回路等とすることができる。具体的には、インバータ回路をNAND回路に置き換える場合、NAND回路の2入力端子の一方に固定電位として高レベル電位を入力することで、NAND回路をインバータ回路として機能することができる。また、インバータ回路をNOR回路に置き換える場合、NOR回路の2入力端子の一方に固定電位として低レベル電位を入力することで、NOR回路をインバータ回路として機能することができる。また、インバータ回路をXOR回路に置き換える場合、XOR回路の2入力端子の一方に固定電位として高レベル電位を入力することで、XOR回路をインバータ回路として機能することができる。
 上述の通り、本明細書等に記載されているインバータ回路は、NAND回路、NOR回路、XOR回路、又はこれらを組み合わせた回路などの論理回路に置き換えることができる。そのため、本明細書などにおいて、「インバータ回路」という用語は、「論理回路」と呼称することができる。
 トランジスタM7の第1端子は、配線OLに電気的に接続され、トランジスタM7の第2端子は、インバータ回路IV1の入力端子と、インバータ回路IV2の出力端子と、トランジスタM1のゲートと、トランジスタM1−2bのゲートと、トランジスタM1−3bのゲートと、に電気的に接続され、トランジスタM7のゲートは、配線WLに電気的に接続されている。トランジスタM7sの第1端子は、配線OLBに電気的に接続され、トランジスタM7sの第2端子は、インバータ回路IV1の出力端子と、インバータ回路IV2の入力端子と、に電気的に接続され、トランジスタM7sのゲートは、配線WLに電気的に接続されている。インバータ回路IV1、及びインバータ回路IV2の高電源電位入力端子には、配線VEHが電気的に接続され、インバータ回路IV1、及びインバータ回路IV2の低電源電位入力端子には、配線VEが電気的に接続されている。
 配線VEHは、一例としては、定電圧を与える配線として機能する。当該定電圧としては、例えば、高レベル電位であるVDD、又は低レベル電位VSSより高くVDDよりも低い電位VDDLなどとすることができる。また、当該定電圧は、回路MPの構成に応じて、適宜設定するのが好ましい。また、例えば、配線VALには、定電圧ではなく、パルス信号が供給されていてもよい。なお、本構成例の説明では、配線VEHは、電位VDDを与える配線として機能するものとする。
 なお、図30の回路MPにおいて、回路HCSは、回路HCSrとほぼ同様の回路構成となっている。そのため、回路HCSrの有する回路素子には、回路HCSの有する回路素子と区別をするため、符号に「r」を付している。また、トランジスタM7rの第1端子は、配線OLBに電気的に接続され、トランジスタM7srの第1端子は、配線OLに電気的に接続されている。
 回路HCS、及び回路HCSrに情報(例えば、電位、電流など)を書き込むとき、配線WLに高レベル電位を印加して、トランジスタM7、トランジスタM7s、トランジスタM7r、トランジスタM7srをオン状態にする。その後、配線OLに高レベル電位又は低レベル電位の一方を入力し、配線OLBに高レベル電位又は低レベル電位の他方を入力する。特に、高レベル電位は、配線VEHが与える電位とほぼ同じであることが好ましい。ここでは、例えば、高レベル電位を電位VDDLとし、低レベル電位を電位VSSとして説明する。
 回路HCSにVDDL又はVSSの一方が書き込まれ、回路HCSrにVDDL又はVSSの他方が書き込まれた後は、配線WLに低レベル電位を印加して、トランジスタM7、トランジスタM7s、トランジスタM7r、及びトランジスタM7srをオフ状態にする。これによって、回路HCSは、VDDL又はVSSの一方をインバータループ回路IVRに保持し、回路HCSは、VDDL又はVSSの他方をインバータループ回路IVRrに保持することができる。
 回路HCS、及び回路HCSrのそれぞれに所定の電位を保持した後は、図26の回路MPと同様に、配線X1L(図26では配線WX1L)又は配線X2Lの一方に高レベル電位、他方に低レベル電位を入力し、配線X1L2b又は配線X2L2bの一方に高レベル電位、他方に低レベル電位を入力し、配線X1L3b又は配線X2L3bの一方に高レベル電位、他方に低レベル電位を入力することによって、回路MC、又は回路MCrから配線OL、又は配線OLBに流れる電流量を、2値又は3値の第1データ(重み係数)と、多値(図30の構成例では、15値)の第2データ(ニューロン信号の値)と、の積として扱うことができる。
 また、図30Aの回路MPは、例えば、図31に示す回路MPに変形することができる。図31の回路MPは、図30Aの回路MPから、回路HCSrを除いた構成となっている。具体的な構成としては、インバータループ回路IVRに含まれているインバータ回路IV1の出力端子は、回路MCrのトランジスタM1rのゲートと、回路MCrのトランジスタM1−2brのゲートと、回路MCrのトランジスタM1−3brのゲートと、に電気的に接続されている。
 図31の回路MPの回路を構成することによって、図30Aの回路MPと同様に動作することができる。なお、図31の回路MPは、図30Aの回路MPから回路HCSrを除いた構成となっているので、図30Aの回路MPよりも消費電力を低くすることができる。
 また、図30Aの回路MPは、例えば、図32に示す回路MPに変形することができる。図32の回路MPは、図22A、及び図22Bの回路MPと同様に、図30Aの回路MPに、配線ILと、配線ILBと、を加えた構成となっている。
 図32の回路MPは、図30Aの回路MPの配線OL、及び配線OLBが有する機能を分離した構成となっている。
 具体的には、図30Aの回路MPの配線OLは、回路HCSに高レベル電位、又は低レベル電位を入力するための配線として機能し、また、回路MCを介して配線VEに電流を供給するための配線として機能し、また、回路MCrを介して配線VErに電流を供給するための配線として機能する。また、図30Aの回路MPの配線OLBは、回路HCSrに高レベル電位、又は低レベル電位を入力するための配線として機能し、また、回路MCを介して配線VEに電流を供給するための配線として機能し、また、回路MCrを介して配線VErに電流を供給するための配線として機能する。
 一方、図32の回路MPの配線OLは、回路MCを介して配線VEに電流を供給するための配線として機能し、また、回路MCrを介して配線VErに電流を供給するための配線として機能する。また、図32の回路MPの配線OLBは、回路MCを介して配線VEに電流を供給するための配線として機能し、また、回路MCrを介して配線VErに電流を供給するための配線として機能する。また、図32の回路MPの配線ILは、回路HCSに高レベル電位、又は低レベル電位の一方を入力するための配線として機能し、図32の回路MPの配線ILBは、回路HCSrに高レベル電位、又は低レベル電位の他方を入力するための配線として機能する。
 図32の回路MPを構成することによって、図30Aの回路MPと同様に動作することができる。
 また、図32の回路MPの構成を、図2の演算回路110、図3の演算回路120に適用する場合、図32の回路MPは、例えば、図33に示す回路MPのとおり、トランジスタM7s、及びトランジスタM7srは除いた構成としてもよい。図33の回路MPを構成することによって、図30Aの回路MPと同様に動作することができる。
 また、図30Aとは異なる、図29に示す回路MPに含まれている回路HCS、及び回路HCSrの具体例を図34に示す。図34に示す回路MPは、NOSRAM(Nonvolatile Oxide Semiconductor Random Access Memory)と呼ばれる記憶回路を有する構成となっている。なお、図34には、回路HCS、及び回路HCSrの有する回路素子の電気的な接続構成を示すため、回路MPの全体を示している。
 回路HCSは、トランジスタM8、容量C2と、を有する。
 本明細書などにおいて、トランジスタM8は、特に断りの無い場合は、オン状態の場合は最終的に線形領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。
 トランジスタM8の第1端子は、配線ILに電気的に接続され、トランジスタM8の第2端子は、容量C2の第1端子と、トランジスタM1のゲートと、トランジスタM1−2bのゲートと、トランジスタM1−3bのゲートと、に電気的に接続され、トランジスタM8のゲートは、配線WLに電気的に接続されている。容量C2の第2端子は配線VEに電気的に接続されている。
 なお、図34に示す回路HCSにおいて、トランジスタM8の第2端子と、容量C2の第1端子と、の電気的接続点をノードn2としている。
 また、図34の回路MPにおいて、回路HCSは、回路HCSrとほぼ同様の回路構成となっている。そのため、回路HCSrの有する回路素子などには、回路HCSの有する回路素子などと区別をするため、符号に「r」を付している。また、トランジスタM8rの第1端子は、配線ILBに電気的に接続されている。
 なお、回路HCS、及び回路HCSrがNOSRAMを有する構成である場合、回路HCS、及び回路HCSrのそれぞれには、高レベル電位、又は低レベル電位の一方を保持することができる。このため、回路MPに設定される第1データ(重み係数)は、例えば、2値(“−1”、“+1”など)、3値(“−1”、“0”、“+1”など)などに限定される。例えば、回路MPに設定される第1データ(重み係数)を“+1”とするとき、回路HCSには高レベル電位を保持し、回路HCSrには低レベル電位を保持すればよい。また、例えば、回路MPに設定される第1データ(重み係数)を“−1”とするとき、回路HCSには低レベル電位を保持し、回路HCSrには高レベル電位を保持すればよい。また、例えば、回路MPに設定される第1データ(重み係数)を“0”とするとき、回路HCSには低レベル電位を保持し、回路HCSrには低レベル電位を保持すればよい。なお、回路HCS、回路HCSrには、高レベル電位、又は低レベル電位の2値(デジタル値)でなく、3値以上のデジタル値、又はアナログ値を保持してもよい。
 回路HCS、及び回路HCSrに情報(ここでは電位とする。)を書き込むとき、配線WLに高レベル電位を印加して、トランジスタM8、及びトランジスタM8rをオン状態にする。その後、配線ILに高レベル電位又は低レベル電位の一方を入力し、配線ILBに高レベル電位又は低レベル電位の他方を入力する。ここでは、例えば、高レベル電位を電位VDDLとし、低レベル電位を電位VSSとして説明する。
 回路HCSの容量C2の第1端子にVDDL又はVSSの一方が書き込まれ、回路HCSrの容量C2rの第1端子にVDDL又はVSSの他方が書き込まれた後は、配線WLに低レベル電位を印加して、トランジスタM8、及びトランジスタM8rをオフ状態にする。これによって、回路HCSは、VDDL又はVSSの一方をノードn2に保持し、回路HCSは、VDDL又はVSSの他方をノードn2rに保持することができる。
 回路HCS、及び回路HCSrのそれぞれに所定の電位を保持した後は、図26の回路MPと同様に、配線X1L(図26では配線WX1L)又は配線X2Lの一方に高レベル電位、他方に低レベル電位を入力し、配線X1L2b又は配線X2L2bの一方に高レベル電位、他方に低レベル電位を入力し、配線X1L3b又は配線X2L3bの一方に高レベル電位、他方に低レベル電位を入力することによって、回路MC、又は回路MCrから配線OL、又は配線OLBに流れる電流量を、3ビットのデータとして扱うことができる。
 図34の回路MPの回路を構成することによって、図30Aの回路MPと同様に動作することができる。
 図29乃至図34のそれぞれに示す回路MPは、回路HCS、及び回路HCSrをそれぞれ1つずつ有する構成であるが、回路MPは、回路HCS、及び回路HCSrを複数有する構成であってもよい。
 図35に示す回路MPは、回路HCSと同様の機能を有する回路HCS−2bと、回路HCS−3bと、回路HCSrと同様の機能を有する回路HCS−2brと、回路HCS−3brと、を有する。具体的には、回路HCS−2b、回路HCS−3b、回路HCS−2br、及び回路HCS−3brは、配線OL、又は配線OLBの一方、又は両方から入力される情報(電位、電流など)を受け取って、当該情報に応じた電位を保持する機能を有する。特に、回路HCS−2bは、トランジスタM1−2bのゲートに保持した電位を印加する機能を有し、回路HCS−3bは、トランジスタM1−3bのゲートに保持した電位を印加する機能を有し、回路HCS−2brは、トランジスタM1−2brのゲートに保持した電位を印加する機能を有し、回路HCS−3brは、トランジスタM1−3brのゲートに保持した電位を印加する機能を有する。
 また、回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、及び回路HCS−3brの構成としては、例えば、その全てがSRAMを有する構成としてもよいし、NOSRAMを有する構成としてもよい。また、回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、及び回路HCS−3brから選ばれた一以上の回路はSRAMを有する構成とし、残りの回路はNOSRAMを有する構成としてもよい。
 なお、図35の回路MPに含まれる、回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、及び回路HCS−3brのそれぞれは、配線OL及び配線OLBに電気的に接続されているが、本発明の一態様に係る回路MPの構成は、これに限定されない。例えば、図35の回路MPは、図32の回路MPと同様に、配線IL、ILBを設けて、回路HCS、回路HCS−2b、及びHCS−3bを、配線ILと、配線ILBと、に電気的に接続してもよい。また、例えば、図35の回路MPは、図33、図34の回路MPと同様に、配線IL、及び配線ILBを設けて、回路HCS、回路HCS−2b、及びHCS−3bを配線ILに電気的に接続し、回路HCSr、回路HCS−2br、及び回路HCS−3brを配線ILBに電気的に接続してもよい。
 なお、本構成例は、本明細書で示す他の構成例などと適宜組み合わせることができる。
<構成例6>
 図36に示す回路MPは、複数の保持部として、回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brを有し、かつ図35の回路MPと異なる、回路構成の一例である。
 図36の回路MPに含まれるトランジスタM1のW長とL長の比をW/Lとしたとき、トランジスタM1−2bのW長とL長の比は2×W/Lとするのが好ましく、トランジスタM1−3bのW長とL長の比は4×W/Lとするのが好ましい。更に、トランジスタM1rのサイズは、トランジスタM1と等しいことが好ましく、トランジスタM1−2brのサイズは、トランジスタM1−2bと等しいことが好ましく、トランジスタM1−3brのサイズは、トランジスタM1−3bと等しいことが好ましい。
 回路HCSは、配線OLと、トランジスタM1のゲートと、に電気的に接続され、回路HCS−2bは、配線OLと、トランジスタM1−2bのゲートと、に電気的に接続され、回路HCS−3bは、配線OLと、トランジスタM1−3bのゲートと、に電気的に接続されている。
 トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれの第1端子は、配線VEに電気的に接続され、トランジスタM3の第1端子は、トランジスタM4の第1端子と、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれの第2端子と、に電気的に接続されている。トランジスタM3の第2端子は、配線OLに電気的に接続され、トランジスタM3のゲートは、配線X1Lに電気的に接続されている。トランジスタM4の第2端子は、配線OLBに電気的に接続され、トランジスタM4のゲートは、配線X2Lに電気的に接続されている。
 図36の回路MPにおいて、回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路MCrの有する回路素子などには、回路MCの有する回路素子などと区別をするため、符号に「r」を付している。また、トランジスタM3の第2端子は、配線OLBに電気的に接続され、トランジスタM4の第2端子は、配線OLに電気的に接続されている。
 回路MCrに含まれている回路HCSr、回路HCS−2br、回路HCS−3brに低レベル電位、例えばVSSを保持することによって、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのそれぞれをオフ状態にすることができる。このとき、回路MCに含まれている回路HCS、回路HCS−2b、回路HCS−3bのそれぞれに高レベル電位又は低レベル電位を保持することで、回路HCS、回路HCS−2b、回路HCS−3bのそれぞれに保持された電位に応じて、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれに流れる電流の量が決まる。その後、トランジスタM3をオン状態にし、トランジスタM4をオフ状態にすることによって、配線OLから、回路MCを介して、配線VEに当該電流を流すことができる。また、トランジスタM3をオフ状態にし、トランジスタM4をオン状態にすることによって、配線OLBから、回路MCを介して、配線VEに当該電流を流すことができる。
 また、回路MCに含まれている回路HCS、回路HCS−2b、回路HCS−3bに低レベル電位、例えばVSSを保持することによって、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれをオフ状態にすることができる。このとき、回路MCに含まれている回路HCSr、回路HCS−2br、回路HCS−3brのそれぞれに高レベル電位又は低レベル電位を保持することで、回路HCSr、回路HCS−2br、回路HCS−3brのそれぞれに保持された電位に応じて、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのそれぞれに流れる電流の量が決まる。その後、トランジスタM3rをオン状態にし、トランジスタM4rをオフ状態にすることによって、配線OLBから、回路MCrを介して、配線VErに当該電流を流すことができる。また、トランジスタM3rをオフ状態にし、トランジスタM4rをオン状態にすることによって、配線OLから、回路MCrを介して、配線VErに当該電流を流すことができる。
 図36の回路MPに、例えば、正の第1データ(例えば、ここでは重み係数とする。)を保持する場合、回路HCSr、回路HCS−2br、回路HCS−3brに低レベル電位を保持し、回路HCS、回路HCS−2b、回路HCS−3bのそれぞれに正の第1データ(重み係数)に応じた電位の組み合わせを保持するものとする。また、図36の回路MPに、例えば、負の第1データ(重み係数)を保持する場合、回路HCS、回路HCS−2b、回路HCS−3bに低レベル電位を保持し、回路HCSr、回路HCS−2br、回路HCS−3brのそれぞれに負の第1データ(重み係数)に応じた電位の組み合わせを保持するものとする。
 図36に示す回路MPに含まれている回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brの具体例を図37に図示している。図37に示す回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brは、SRAMを有する構成となっている。なお、図37では、インバータ回路IV1、インバータ回路IV2のそれぞれの高電源電位入力端子、低電源電位入力端子の記載を省略している。また、図37に示す回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brの構成については、図30Aの回路MPに含まれている回路HCS、回路HCSrの説明の記載を参酌する。
 また、図37とは異なる具体例として、図36に示す回路MPに含まれている回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brは、図38に示すとおり、NOSRAMを有する構成としてもよい。なお、図38に示す回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brの構成については、図34の回路MPに含まれている回路HCS、回路HCSrの説明の記載を参酌する。
 また、図36の回路MPは、一例として、図39に示す回路MPに変形することができる。図39の回路MPは、図26乃至図35に示す回路MPのように、多値の第2データ(例えば、ここではニューロンの信号の値(演算値)とする。)を扱うことができる回路である。図39の回路MPは、図36の回路MPに含まれている回路MCに、トランジスタM3−2x、トランジスタM4−2x、トランジスタM1x、トランジスタM1x−2b、トランジスタM1x−3bを加えた構成となっている。なお、図39の回路MPに含まれている回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brは、図37に示すとおり、SRAMを有する構成となっている。
 また、本明細書などにおいて、トランジスタM1x、トランジスタM1x−2b、トランジスタM1x−3bは、トランジスタM1と同様に、特に断りの無い場合は、オン状態の場合は最終的に飽和領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、飽和領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。ただし、本発明の一態様は、これに限定されない。供給される電圧の振幅値を小さくするために、トランジスタM1x、トランジスタM1x−2b、トランジスタM1x−3bは、線形領域で動作してもよい。なお、第1データ(重み係数)をアナログ値とする場合には、第1データ(重み係数)の大きさに応じて、例えば、トランジスタM1x、トランジスタM1x−2b、トランジスタM1x−3bは、線形領域で動作する場合と、飽和領域で動作する場合とが混在していてもよい。
 また、本明細書などにおいて、トランジスタM3−2x、トランジスタM4−2xは、トランジスタM3、トランジスタM4と同様に、特に断りの無い場合は、オン状態の場合は最終的に線形領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。ただし、本発明の一態様は、これに限定されない。例えば、トランジスタM3−2x、トランジスタM4−2xは、オン状態のときは飽和領域で動作してもよく、また、線形領域で動作する場合と飽和領域で動作する場合とが混在してもよい。
 図39の回路MPに含まれるトランジスタM1xのW長とL長の比は、2×W/Lとするのが好ましい。また、トランジスタM1x−2bのW長とL長の比は、4×W/Lとするのが好ましい。また、トランジスタM1x−4bのW長とL長の比は、8×W/Lとするのが好ましい。トランジスタをさらに多く配置する場合も、同様に、2のべき乗でW長とL長の比を大きくしていけばよい。
 トランジスタM1x、トランジスタM1x−2b、トランジスタM1x−3bのそれぞれの第1端子は、配線VEに電気的に接続されている。トランジスタM1xのゲートは、回路HCSに電気的に接続され、トランジスタM1x−2bのゲートは、回路HCS−2bに電気的に接続され、トランジスタM1x−3bのゲートは、回路HCS−3bに電気的に接続されている。トランジスタM3−2xの第1端子は、トランジスタM4−2xの第1端子と、トランジスタM1x、トランジスタM1x−2b、トランジスタM1x−3bのそれぞれの第2端子と、に電気的に接続されている。トランジスタM3−2xの第2端子は、配線OLに電気的に接続され、トランジスタM3−2xのゲートは、配線X1L2xに電気的に接続されている。トランジスタM4−2xの第2端子は、配線OLBに電気的に接続され、トランジスタM4−2xのゲートは、配線X2L2xに電気的に接続されている。
 なお、図39の回路MPにおいて、回路HCSは、回路HCSrとほぼ同様の回路構成となっている。そのため、回路HCSrの有する回路素子などには、回路HCSの有する回路素子などと区別をするため、符号に「r」を付している。また、トランジスタM3−2xrの第2端子は、配線OLBに電気的に接続され、トランジスタM4−2xrの第2端子は、配線OLに電気的に接続されている。
 配線X1L2xは、トランジスタM3−2x、トランジスタM3−2xrをオン状態とオフ状態の切り替えを行うための配線であり、配線X2L2xは、トランジスタM4−2x、M4−2xrをオン状態とオフ状態の切り替えを行うための配線である。
 回路HCSに高レベル電位、例えばVDDLが保持されているとき、トランジスタM1はソース−ドレイン間に電流量としてIutが流れるものとする。このとき、回路HCS−2bに高レベル電位、例えばVDDLが保持されているとき、トランジスタM1−2bのW長とL長の比はトランジスタM1のW長とL長の比の2倍であるため、トランジスタM1−2bのソース−ドレイン間に電流量として2Iutが流れる。また、回路HCS−3bに高レベル電位、例えばVDDLが保持されているとき、トランジスタM1−3bのW長とL長の比はトランジスタM1のW長とL長の比の4倍であるため、トランジスタM1−3bのソース−ドレイン間に電流量として4Iutが流れる。
 つまり、回路HCS、回路HCS−2b、回路HCS−3bのそれぞれに保持されている電位に応じて、トランジスタM3の第1端子とトランジスタM4の第1端子の電気的接続点から回路MCを介して配線VEに流れる電流は、Iut刻みで0から7Iutまで変化する。ここでは、当該電流量をIX1と呼称する。
 また、回路HCSに高レベル電位、例えばVDDLが保持されているとき、トランジスタM1xのW長とL長の比はトランジスタM1のW長とL長の比の2倍であるため、トランジスタM1xのソース−ドレイン間に電流量として2Iutが流れる。また、回路HCS−2bに高レベル電位、例えばVDDLが保持されているとき、トランジスタM1x−2bのW長とL長の比はトランジスタM1のW長とL長の比の4倍であるため、トランジスタM1x−2bのソース−ドレイン間に電流量として4Iutが流れる。また、回路HCS−3bに高レベル電位、例えばVDDLが保持されているとき、トランジスタM1x−3bのW長とL長の比はトランジスタM1のW長とL長の比の8倍であるため、トランジスタM1x−3bのソース−ドレイン間に電流量として8Iutが流れる。
 つまり、回路HCS、回路HCS−2b、回路HCS−3bのそれぞれに保持されている電位に応じて、トランジスタM3−2xの第1端子とトランジスタM4−2xの第1端子の電気的接続点から回路MCを介して配線VEに流れる電流は、2Iut刻みで0から14Iutまで変化する。ここでは、当該電流量をIX2と呼称する。つまり、IX2=2IX1が成り立つ。
 ここで、図39の回路MPに正の第1データ(重み係数)が設定されているときにおいて、配線X1L、配線X2L、配線X1L2x、配線X2L2xのそれぞれに、高レベル電位又は低レベル電位が与えられる場合を考える。
 配線X1L、配線X2L、配線X1L2x、配線X2L2xのそれぞれに低レベル電位を与えたとき、回路MCにおいて、トランジスタM3、トランジスタM3x−2、トランジスタM4、トランジスタM4x−2はオフ状態になる。このとき、配線OLから、回路MCを介して配線VEに、電流は流れない。
 配線X1Lに高レベル電位を与え、配線X2L、配線X1L2x、配線X2L2xのそれぞれに低レベル電位を与えたとき、回路MCにおいて、トランジスタM3はオン状態になり、トランジスタM3x−2、トランジスタM4、トランジスタM4x−2はオフ状態になる。このとき、配線OLから、回路MCを介して配線VEに、電流量としてIX1が流れる。
 また、配線X2Lに高レベル電位を与え、配線X1L、配線X1L2x、配線X2L2xのそれぞれに低レベル電位を与えたとき、回路MCにおいて、トランジスタM4はオン状態になり、トランジスタM3、トランジスタM3x−2、トランジスタM4x−2はオフ状態になる。このとき、配線OLBから、回路MCを介して配線VEに、電流量としてIX1が流れる。
 また、配線X1L2xに高レベル電位を与え、配線X1L、配線X2L、配線X2L2xのそれぞれに低レベル電位を与えたとき、回路MCにおいて、トランジスタM3−2xはオン状態になり、トランジスタM3、トランジスタM4、トランジスタM4x−2はオフ状態になる。このとき、配線OLから、回路MCを介して配線VEに、電流量としてIX2=2IX1が流れる。
 また、配線X2L2Lに高レベル電位を与え、配線X1L、配線X1L2x、配線X1L2xのそれぞれに低レベル電位を与えたとき、回路MCにおいて、トランジスタM4−2xはオン状態になり、トランジスタM3、トランジスタM4、トランジスタM3x−2はオフ状態になる。このとき、配線OLBから、回路MCを介して配線VEに、電流量としてIX2=2IX1が流れる。
 更に、配線X1L、配線X1L2xに高レベル電位を与え、配線X2L、配線X2L2xのそれぞれに低レベル電位を与えたとき、回路MCにおいて、トランジスタM3、トランジスタM3−2xはオン状態になり、トランジスタM4、トランジスタM4x−2はオフ状態になる。このとき、配線OLから、回路MCを介して配線VEに、電流量としてIX1+IX2=3IX1が流れる。
 同様に、配線X2L、配線X2L2xに高レベル電位を与え、配線X1L、配線X1L2xのそれぞれに低レベル電位を与えたとき、回路MCにおいて、トランジスタM4、トランジスタM4x−2はオン状態になり、トランジスタM3、トランジスタM3−2xはオフ状態になる。このとき、配線OLBから、回路MCを介して配線VEに、電流量としてIX1+IX2=3IX1が流れる。
 上述の通り、図39の回路MPに含まれている回路MCは、回路HCS、回路HCS−2b、回路HCS−3bのそれぞれに保持されている電位に応じた電流を、配線OL又は配線OLBから、回路MCを介して配線VEに流し、かつ配線X1L、配線X2L、配線X1L2x、配線X2L2xに入力される電位に応じて、当該電流を0倍、1倍、2倍、3倍にして出力することができる。
 上述では、図39の回路MPに正の第1データ(重み係数)を設定した例について説明したが、図39の回路MPに負の第1データ(重み係数)を設定した場合でも同様に、回路MPは、配線OL又は配線OLBから、回路MCrを介して配線VErに電流を流し、かつ配線X1L、配線X2L、配線X1L2x、配線X2L2xに入力される電位に応じて、当該電流を0倍、1倍、2倍、3倍にして出力することができる。
 また、図39の回路MPに0の第1データ(重み係数)を設定する場合、回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brのそれぞれに低レベル電位、例えばVSSを与えればよい。これにより、トランジスタM1、トランジスタM1−2b、トランジスタM1−3b、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3br、トランジスタM1x、トランジスタM1x−2b、トランジスタM1x−3b、トランジスタM1xr、トランジスタM1x−2br、トランジスタM1x−3brのそれぞれのソース−ドレイン間に流れる電流量を0に設定することができる。このため、配線X1L、配線X2L、配線X1L2x、配線X2L2xが与える電位に関わらず、配線OLから回路MC又は回路MCrに電流は流れず、配線OLBから回路MC又は回路MCrに電流は流れない。
 これは、回路HCS、回路HCS−2b、回路HCS−3bのそれぞれに保持されている電位を、第1データ(重み係数)に応じた電位とし、配線X1L、配線X2L、配線X1L2x、配線X2L2xに入力される電位を、第2データ(ニューロンの信号の値)に応じた電位とすることで、配線OL又は配線OLBから、回路MCを介して配線VEに流れる電流の量は、第1データ(重み係数)と第2データ(ニューロンの信号の値)の積として扱うことができる。
 なお、本構成例は、本明細書で示す他の構成例などと適宜組み合わせることができる。
<構成例7>
 構成例1乃至構成例6では、回路MPが保持する第1データ(例えば、ここでは重み係数とする。)を、“正の多値”、“0”、“負の多値”として、第2データ(例えば、ここではニューロンの信号の値とする。)との積を計算することができる回路MPについて説明したが、本構成例では、一例として、第1データ(重み係数)が“正の多値”、“0”、“負の多値”と、第2データ(ニューロンの信号の値)が“+1”、“0”の2値と、の積を計算することができる回路MPについて説明する。
 図40に示す回路MPは、図16Aの回路MPからトランジスタM4、トランジスタM4rを除いた回路である。また、トランジスタM4、トランジスタM4rを除いたため、図40では、トランジスタM4、トランジスタM4rのそれぞれのゲートに電位を入力するための配線X2Lも除いている。また、配線X1Lに相当する配線は、図40では配線WXLと記載している。なお、ここでは、図16Aに適用した場合の例を示すが、本発明の一態様は、これに限定されない。他の図面においても、同様に、トランジスタM4、トランジスタM4rを除くことが可能である。
 図40の回路MPに設定される第1データ(重み係数)は、図15Aの回路MPに設定される第1データ(重み係数)と同様とする。そのため、図40の回路MPに設定される第1データ(重み係数)は、図15Aの回路MPの説明の記載を参酌する。当該第1データ(重み係数)としては、例えば、“−2”、“−1”、“0”、“+1”、“+2”とすることができる。
 また、図40の回路MPに入力される第2データ(ニューロンの信号の値)は、配線WXLに高レベル電位が印加されている場合に“+1”とし、配線WXLに低レベル電位が印加されている場合に“0”とする。
 なお、図40の回路MPの動作については、構成例1の動作例の説明を参酌する。
 図40の回路MPにおいて、上述のとおり、第1データ(重み係数)と入力される第2データ(ニューロンの信号の値)を定義したとき、それぞれの重み係数の場合において、回路MPに第2データ(ニューロンの信号の値)が入力されたことによって、配線OLのノードoutaから出力される電流IOLの変化の有無、及び配線OLBのノードoutbから出力される電流IOLBの変化の有無は、以下の表のとおりとなる。なお、下表では、高レベル電位をhighと記載し、低レベル電位をlowと記載している。
Figure JPOXMLDOC01-appb-T000011
 上表のとおり、図40の回路MPは、第1データ(重み係数)が正の多値又は負の多値と、第2データ(ニューロンの信号の値)が“+1”、“0”の2値と、の積を計算することができる。なお、第1データ(重み係数)は、5値ではなく、2値でもよいし、5値以外の多値であってもよい。2値としては、例えば、“+1”、“0”の2値、または、“+1”、“−1”の2値、でもよい。また、第1データ(重み係数)は、例えば、アナログ値でもよいし、多ビット(多値)のデジタル値でもよい。
 なお、本動作例では、回路MPの回路MC、回路MCrの保持部HC、保持部HCrにおいて、それぞれで設定する電流は多値としたが、設定する電流はアナログ値としてもよい。例えば、第1データ(重み係数)として“正のアナログ値”の場合には、保持部HCのノードn1においてアナログ値の電流が設定されて、ノードn1に当該電流に応じた電位が保持され、保持部HCrのノードn1rに低レベル電位が保持される。第1データ(重み係数)として“負のアナログ値”の場合には、例えば、保持部HCのノードn1に低レベル電位が保持され、保持部HCのノードn1rにおいてアナログ値の電流が設定されて、ノードn1rに当該電流に応じた電位が保持される。そして、電流IOL及び電流IOLBの電流の大きさは、アナログ電位に応じた大きさとなる。
 なお、本構成例は、本明細書で示す他の構成例などと適宜組み合わせることができる。
<構成例8>
 次に、回路ILDに含まれているトランジスタと、回路MPに含まれているトランジスタと、が同じ極性である場合の回路MPの構成例について説明する。
 ここでは、回路ILDの電流源回路ISCに含まれている定電流源回路ISC1(定電流源回路ISC2、定電流源回路ISC3)を、図8Cのnチャネル型トランジスタを有する構成とした場合において、含まれているトランジスタを全てnチャネル型トランジスタとした回路MPの構成例について説明する。
 図41Aに示す回路MPは、図21Aの回路MPの構成を変更した回路であって、図41Aの回路MPは、保持部HCの構成と、トランジスタM1のバックゲートの接続先と、に関して、図21Aの回路MPと異なっている。そのため、図21Aの回路MPと、図41Aの回路MPと同様の接続構成となっている箇所については説明を省略する。
 図41Aの回路MPにおいて、保持部HCは、トランジスタM9と、容量C3と、を有する。
 また、本明細書などにおいて、トランジスタM9は、特に断りの無い場合は、オン状態の場合は最終的に線形領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。
 トランジスタM1のゲートは、トランジスタM9の第1端子と、容量C3の第1端子と、に電気的に接続されている。トランジスタM9の第2端子は、配線VEに電気的に接続されている。トランジスタM1のバックゲートは、トランジスタM1の第2端子と、容量C3の第2端子と、トランジスタM3の第1端子と、トランジスタM4の第1端子と、に電気的に接続されている。
 トランジスタM1のバックゲートと、トランジスタM1の第2端子と、を電気的に接続し、トランジスタM1の第1端子に高レベル電位を与えることによって、トランジスタM1は、トランジスタM1のしきい値電圧を高くすることができる場合がある。なお、本発明の一態様の半導体装置は、これに限定されず、例えば、図41Aの回路MPは、トランジスタM1のバックゲートが、低レベル電位を与える配線などに電気的に接続されている構成としてもよい。また、例えば、図41Aの回路MPは、トランジスタM1がバックゲートを有さない構成としてもよい。
 なお、図41Aに示す保持部HCにおいて、トランジスタM1のゲートと、トランジスタM9の第1端子と、容量C3の第1端子と、の電気的接続点をノードn3としている。
 図41Aの回路MPにおいて、回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路MCrの有する回路素子などには、回路MCの有する回路素子などと区別をするため、符号に「r」を付している。
 図41Aの回路MPにおいて、配線VE、配線VErが与える電位としては、例えば、高レベル電位であることが好ましい。図8Cに示す定電流源回路ISC1(定電流源回路ISC2、定電流源回路ISC3)において、配線VSOが低レベル電位となっているため、配線VE、配線VErが与える電位を高レベル電位とすることによって、回路MC又は回路MCrから配線OL、配線OLBを介して回路ILDに電流を流すことができる。ここでは、配線VE、配線VErが与える電位をVDDとして説明する。
 図41Aの回路MCにおいて、トランジスタM1のソース−ドレイン間に流れる電流を設定するとき(第1データ(例えば、ここでは重み係数とする。)を設定するとき)、配線WX1L、配線WLに高レベル電位を与えて、トランジスタM3、トランジスタM9をオン状態にする。これにより、保持部HCのノードn3の電位はVDDとなる。その後、図8Aの電流源回路ISCにおいて、電流を生成することで、配線VEから、トランジスタM1のソース−ドレイン間と、回路MCのトランジスタM3のソース−ドレイン間と、配線OLと、を介して、電流源回路ISCに当該電流が流れる。このとき、容量C3の第2端子の電位(トランジスタM1の第2端子の電位)は、当該電流によって定められる。ここで、配線WX1L、配線WLに低レベル電位を与えて、トランジスタM3、M9をオフ状態にすることによって、容量C3によって、トランジスタM1のゲートとトランジスタM1の第2端子との間の電圧を保持することができる。これにより、トランジスタM1のソース−ドレイン間に当該電流を設定することができる。その後に、配線WX1L、配線X2Lのそれぞれに所定の電位を与えて、トランジスタM3又はトランジスタM4の一方をオン状態、トランジスタM3又はトランジスタM4の他方をオフ状態にすることによって、配線VEから、回路MCを介して配線OL又は配線OLBに設定された電流を流すことができる。
 また、図41Aの回路MPの構成の変更例を、図41Bに示す。図41Bの回路MPは、トランジスタM9の第2端子が配線VEでなく、配線VAに電気的に接続されている点と、トランジスタM9rの第2端子が配線VErでなく、配線VAに電気的に接続されている点と、で図41Aの回路MPと異なる。
 配線VAは、一例としては、定電圧を与える配線として機能する。特に、当該定電圧としては、接地電位、低レベル電位、VSSよりも高く、配線VEが与える高レベル電位、VDDよりも低い電位であることが好ましい。ここで、配線VAが与える定電圧をVとして、電位Vは、接地電位、低レベル電位、VSSよりも高く、配線VEが与える高レベル電位、VDDよりも低い電位であるとする。
 図41Aの回路MPにおいて、トランジスタM1の第2端子の電位をVとしたとき、トランジスタM1のソース−ドレイン間電圧は、VDD−Vとなる。また、トランジスタM1のゲートにVが入力されている場合、トランジスタM1のゲート−ソース間電圧は、V−Vとなる。トランジスタM1を飽和領域として動作させるためには、トランジスタM1のしきい値電圧をVthとおくと、VDD−V>V−V−Vthの関係を満たせばよい。ところで、トランジスタM1がノーマリーオン特性である場合、ゲート−ソース間電圧V−Vが負の値となっても、ゲート−ソース間電圧VDD−Vが正の値となるため、トランジスタM1は飽和領域として動作することができる。
 なお、ノーマリーオン特性とは、トランジスタのゲートに電圧を印加しなくてもチャネルが存在し、当該トランジスタに電流が流れてしまう状態のことをいう。
 また、図41Bの回路MPにおいて、配線VAと配線VArとは、一本の配線としてまとめてもよい。例えば、図41Cに示す回路MPのとおり、配線VAと配線VArとを配線VAとして一本にまとめて、列方向に沿って設けてもよい。なお、配線VAは、列方向ではなく、行方向に沿って設けてもよい(図示しない。)。
 次に、図41A乃至図41Cとは異なる、定電流源回路ISC1(定電流源回路ISC2、定電流源回路ISC3)と回路MPと、をnチャネル型トランジスタの単極性回路とした場合の、回路MPの構成例について説明する。
 図42に示す回路MPは、図41Aの回路MPを、多値の第2データ(例えば、ここではニューロンの信号の値(演算値)とする。)を扱えるように変形した回路である。
 図42の回路MPに含まれている回路MCは、図41Aの回路MPが有する回路素子に加え、トランジスタM1−2b、トランジスタM3−2b、トランジスタM4−2b、トランジスタM10、保持部HC−2bを有する。
 本明細書などにおいて、トランジスタM1−2bは、トランジスタM1と同様に、特に断りの無い場合は、オン状態の場合は最終的に飽和領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、飽和領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。ただし、本発明の一態様は、これに限定されない。供給される電圧の振幅値を小さくするために、トランジスタM1−2bは、線形領域で動作してもよい。なお、第1データ(重み係数)をアナログ値とする場合には、第1データ(重み係数)の大きさに応じて、例えば、トランジスタM1−2bは、線形領域で動作する場合と、飽和領域で動作する場合とが混在していてもよい。
 また、本明細書などにおいて、トランジスタM3−2b、トランジスタM4−2b、トランジスタM10は、特に断りの無い場合は、オン状態の場合は最終的に線形領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。
 次に、図42の回路MPの構成について説明する。なお、図42の回路MPにおいて、図41Aの回路MPと同様の構成となっている箇所については省略する。
 保持部HC−2bは、保持部HCと同様の構成となっている。そのため、保持部HC−2bに含まれる回路素子などを説明するときは、保持部HCに含まれる回路素子の符号を用いて説明する場合がある。
 図42の回路MPの回路MCにおいて、トランジスタM1−2bの第1端子は、配線VEに電気的に接続されている。トランジスタM1−2bの第2端子は、トランジスタM1−2bのバックゲートと、トランジスタM3−2bの第1端子と、トランジスタM4−2bの第1端子と、に電気的に接続されている。トランジスタM1−2bのゲートは、保持部HC−2bのトランジスタM9の第1端子と、保持部HC−2bの容量C1の第1端子と、に電気的に接続されている。保持部HC−2bの容量C3は、トランジスタM10の第1端子と、トランジスタM1の第2端子と、に電気的に接続されている。トランジスタM3−2bの第2端子は、配線OLに電気的に接続されている。トランジスタM3−2bのゲートは、配線X1L2bに電気的に接続されている。トランジスタM4−2bの第2端子は、配線OLBに電気的に接続されている。トランジスタM4−2bのゲートは、配線X2L2bに電気的に接続されている。トランジスタM10の第2端子は、トランジスタM1の第2端子と、トランジスタM3の第1端子と、トランジスタM4の第1端子と、保持部HCの容量C3の第2端子に電気的に接続されている。保持部HC−2bのトランジスタM9の第2端子は、保持部HCのトランジスタM9の第1端子に電気的に接続されている。保持部HC−2bのトランジスタM9のゲートと、トランジスタM10のゲートと、は、配線WLに電気的に接続されている。
 なお、図42の回路MPの回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路MCrの有する回路素子などには、回路MCの有する回路素子などと区別をするため、符号に「r」を付している。また、トランジスタM3−2brの第2端子は、配線OLBに電気的に接続され、トランジスタM4−2brの第2端子は、配線OLに電気的に接続されている。
 図42の回路MPにおいて、トランジスタM3、トランジスタM3−2b、トランジスタM3r、トランジスタM3−2br、トランジスタM4、トランジスタM4−2b、トランジスタM4r、トランジスタM4−2brのサイズ、例えば、チャネル長及びチャネル幅は、互いに等しいことが好ましい。このような回路構成とすることにより、効率的にレイアウトできる可能性がある。
 また、図42の回路MPにおいて、保持部HCr、保持部HC−2brに含まれているそれぞれのトランジスタM9rのサイズ、例えば、チャネル長及びチャネル幅は、保持部HC、保持部HC−2bに含まれているそれぞれのトランジスタM9と等しいことが好ましい。また、トランジスタM10rのサイズは、トランジスタM10と等しいことが好ましい。
 また、トランジスタM1のW長とL長の比をW/Lとしたとき、トランジスタM1−2bのW長とL長の比は、2W/Lとするのが好ましい。また、トランジスタM1rのサイズは、トランジスタM1と等しいことが好ましく、トランジスタM1−2brのサイズは、トランジスタM1−2bと等しいことが好ましい。
 配線X1L2bは、トランジスタM3−2b、トランジスタM3−2brをオン状態とオフ状態の切り替えを行うための配線であり、配線X2L2bは、トランジスタM4−2b、トランジスタM4−2brをオン状態とオフ状態の切り替えを行うための配線である。
 次に、図42の回路MPにおける、電流の設定の方法(第1データ(重み係数)の設定方法)について説明する。
 初めに、配線WX1L、配線WLに高レベル電位を与えて、トランジスタM3、トランジスタM10、保持部HCのトランジスタM9、保持部HC−2bのトランジスタM9をオン状態にする。これにより、保持部HCのノードn3の電位はVDDとなり、保持部HC−2bのノードn3の電位はVDDとなる。その後、図8Aの電流源回路ISCにおいて、電流量として3Iutの電流を生成することで、配線VEから、トランジスタM1のソース−ドレイン間と、トランジスタM1−2bのソース−ドレイン間と、の両方に異なる電流が流れる。具体的には、トランジスタM1−2bのW長とL長の比は、トランジスタM1のW長とL長の比の2倍であるため、トランジスタM1のソース−ドレイン間に流れる電流の量はIutとなり、トランジスタM1−2bのソース−ドレイン間に流れる電流の量は2Iutとなる。トランジスタM1とトランジスタM1−2bとのそれぞれのソース−ドレイン間に流れる電流は、トランジスタM3のソース−ドレイン間と、配線OLと、を介して、電流源回路ISCに流れる。このとき、保持部HCの容量C3の第2端子の電位(トランジスタM1の第2端子の電位)は、トランジスタM1のソース−ドレイン間に流れる電流によって定められ、保持部HC−2bの容量C3の第2端子の電位(トランジスタM1−2bの第2端子の電位)は、トランジスタM1−2bのソース−ドレイン間に流れる電流によって定められる。ここで、配線WX1L、配線WLに低レベル電位を与えて、トランジスタM3、M10、保持部HCのトランジスタM9、保持部HC−2bのトランジスタM9をオフ状態にすることによって、保持部HCの容量C3によって、トランジスタM1のゲートとトランジスタM1の第2端子との間の電圧を保持することができ、保持部HC−2bの容量C3によって、トランジスタM1−2bのゲートとトランジスタM1−2bの第2端子との間の電圧を保持することができる。これにより、トランジスタM1のソース−ドレイン間に流れる電流の量をIutに設定することができ、トランジスタM1−2bのソース−ドレイン間に流れる電流の量を2Iutに設定することができる。
 その後に、第2データ(ニューロンの信号の値)に応じて、配線WX1L、配線X2L、配線X1L2b、配線X2L2bのそれぞれに所定の電位を与えることで、回路MPにおいて、設定された第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を計算することができる。なお、多値の第1データ(重み係数)と、多値の第2データ(ニューロンの信号の値)との積の計算についての詳細は、構成例5で説明している。
 なお、図42の回路MPは、図43の回路MPに構成を変更することができる。図43の回路MPは、図42の回路MPにおいて、保持部HC−2bのトランジスタM9の第2端子の接続先を、保持部HCのトランジスタM9の第1端子から、配線VEに変更し、保持部HC−2brのトランジスタM9rの第2端子の接続先を、保持部HCrのトランジスタM9rの第1端子から、配線VErに変更した構成に相当する。図43の回路MPは、図42の回路MPと同様に動作することができる。
 また、図42の回路MPと、図43の回路MPと、は、図41Bの回路MPのように、配線VEを、配線VEと配線VAとに分離し、配線VErを、配線VErと配線VArとに分離してもよい。図44に示す回路MPは、図42の回路MPにおいて、配線VEを、配線VEと配線VAとに分離した構成であり、図45に示す回路MPは、図43の回路MPにおいて、配線VEを、配線VEと配線VAとに分離した構成である。
 図44の回路MP、図45の回路MPは、図42、図43のそれぞれの回路MPと同様に動作することができる。なお、図42、図43、図44、図45などに示すように、容量C3がトランジスタM1などのソース端子に接続され、そのソース端子が電源線などに接続されておらず、そのドレイン端子が電源線などに接続されている場合には、回路ILDから、切り替え回路TW[j]を介して配線OL又は配線OLBに正の電流を供給する場合、配線VCNが与える定電圧としては、配線VEや配線VAに供給されている電圧、例えば、高レベル電位(例えばVDDなど。)とするのが好ましい。つまり、配線VCNから定電圧を供給するときに、容量C3の両端の電位差がゼロに近くなるようにすることが望ましい。つまり、トランジスタM1がオフ状態になるようにすることが望ましい。言い換えると、回路MCより、電流が出力されなくなるような電位を配線VCNに供給することが望ましい。一方、配線VCN2には、VSSや接地電位などの低レベルの電位とすることが望ましい。これにより、回路MPから出力される電流によって、配線OL、および、配線OLBの電位を変化させることができる。
 なお、本構成例は、本明細書で示す他の構成例などと適宜組み合わせることができる。
<構成例9>
 図46には、図14の演算回路170に適用できる回路BSと回路MPの一例を示している。
 回路BSとしては、例えば、図46に示すとおり、図40の回路MPを適用することができる。回路BMCは、図40の回路MPの回路MCに相当し、回路BMCrは、図40の回路MPの回路MCrに相当する。トランジスタM11は、図40の回路MPのトランジスタM1に相当し、トランジスタM12は、図40の回路MPのトランジスタM12に相当し、トランジスタM13は、図40の回路MPのトランジスタM13に相当し、容量C4は、図40の回路MPの容量C1に相当し、ノードn4は、図40の回路MPのノードn1に相当する。また、配線WXBSは、図40の回路MPの配線WXLに相当し、配線WLBSは、図40の回路MPの配線WLに相当し、配線VFは、図40の回路MPの配線VEに相当する。そのため、図46に示す回路BSの構成については、図40の回路MPの説明の記載を参酌する。
 回路MPとしては、例えば、図46に示すとおり、図15Aの回路MPを適用することができる。そのため、図46に示す回路MPの構成については、図15Aの回路MPの説明の記載を参酌する。
 図46の回路BSにおいて、回路BMCは、回路BMCrとほぼ同様の回路構成となっている。また、回路MPにおいて、回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路BSrの有する回路素子などには、回路BSの有する回路素子などと区別をするため、符号に「r」を付し、また、回路MCrの有する回路素子などには、回路MCの有する回路素子などと区別をするため、符号に「r」を付している。
 回路BSに“正のバイアス”を設定するときは、図40の回路MPの動作と同様に、配線WXBS、配線WLBSに高レベル電位を与えて、トランジスタM12、トランジスタM13、トランジスタM12r、トランジスタM13rをオン状態にすればよい。その後に、図8Aの電流源回路ISCにおいて、当該バイアスに応じた電流を選択し、配線OLと電流源回路ISCとの間を導通状態する。これにより、電流源回路ISCから、配線OL及び回路BMCを介して配線VFに当該電流を流れ、ノードn4の電位は、当該電流に応じた電位となる。また、このとき、配線OLBと配線VCNとの間を導通状態にすることで、回路BMCr側にノードn4rには配線VCNからの電位VSSが与えられるため、ノードn4rの電位はVSSとなる。その後、配線WXBS、配線WLBSに低レベル電位を与えて、トランジスタM12、トランジスタM13、トランジスタM12r、トランジスタM13rをオフ状態にすることで、ノードn4、ノードn4rの電位を保持することができる。これによって、回路BSに“正のバイアス”を設定することができる。
 また、回路BSに“負のバイアス”を設定するときは、配線WXBS、配線WLBSに高レベル電位を与えて、トランジスタM12、トランジスタM13、トランジスタM12r、トランジスタM13rをオン状態にする。その後に、図8Aの電流源回路ISCにおいて、当該バイアスに応じた電流を選択し、配線OLBと電流源回路ISCとの間を導通状態する。これにより、電流源回路ISCから、配線OLB及び回路BMCrを介して配線VFrに当該電流を流れ、ノードn4rの電位は、当該電流に応じた電位となる。また、このとき、配線OLと配線VCNとの間を導通状態にすることで、回路BMC側にノードn4には配線VCNからの電位VSSが与えられるため、ノードn4の電位はVSSとなる。その後、配線WXBS、配線WLBSに低レベル電位を与えて、トランジスタM12、トランジスタM13、トランジスタM12r、トランジスタM13rをオフ状態にすることで、ノードn4、ノードn4rの電位を保持することができる。これによって、回路BSに“負のバイアス”を設定することができる。
 また、回路BSに“0のバイアス”を設定するときは、配線WXBS、配線WLBSに高レベル電位を与えて、トランジスタM12、トランジスタM13、トランジスタM12r、トランジスタM13rをオン状態にし、配線OL及び配線OLBと配線VCNとの間を導通状態にして、ノードn4、n4rの電位をVSSにする。その後、配線WXBS、配線WLBSに低レベル電位を与えて、トランジスタM12、トランジスタM13、トランジスタM12r、トランジスタM13rをオフ状態にして、ノードn4、ノードn4rのそれぞれの電位VSSを保持することで、回路BSに“0のバイアス”を設定することができる。
 また、場合によっては、回路BSにバイアスを設定するとき、ノードn4、ノードn4rのそれぞれにVSS以外の電位を与えてもよい。
 回路BSにバイアスを設定した後は、回路MPに第1データ(例えば、ここでは重み係数とする。)を保持し、回路MPに第2データ(例えば、ここではニューロンの信号の値とする。)を与えればよい。具体的には、回路MPに当該重み係数に応じた電流を設定し、回路MPに配線WX1L、配線X2Lのそれぞれから第2データ(ニューロンの信号の値)に応じた電位を与える。更に、回路BSにおいて、配線WXBSを高レベル電位にすることによって、回路MPで計算された第1データ(重み係数)と第2データ(ニューロンの信号の値)との積に、回路BSに設定されたバイアスを与えることができる。
 また、先に回路MPに第1データ(重み係数)を保持して、一度、回路MPで第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を計算し、その後にその計算結果に応じて回路BSにバイアスを設定して、再度演算を行ってもよい。つまり、演算結果に応じて適宜バイアスを変更する動作を行ってもよい。
 なお、図46の構成例では、配線VF、配線VFr、配線VE、配線VErを図示したが、本発明の一態様は、これに限定されない。例えば、図46の構成において、配線VFと配線VEを一本の配線としてまとめ、配線VFrと配線VErを一本の配線としてまとめてもよい。また、例えば、図16Bの回路MPのとおり、図46の構成において、配線VFと配線VFrを一本の配線としてまとめ、配線VEと配線VErを一本の配線としてまとめてもよい。また、例えば、図46の構成において、配線VF、配線VFr、配線VE、配線VErを一本の配線としてまとめてもよい。例えば、図46の構成において、配線VF、配線VFr、配線VE、配線VErから選ばれた2本以上の配線を一本の配線としてまとめてもよい。
 なお、本構成例は、本明細書で示す他の構成例などと適宜組み合わせることができる。
<構成例10>
 次に、図10に図示した回路MPに適用できる回路構成の例について説明する。
 図47Aに示す回路MPは、例えば、図7の演算回路140に適用できる図10の回路MPの構成例を示している。なお、図47Aの回路MPは、図40に示す回路MPにおいて、トランジスタM3とトランジスタM3rとを1つのトランジスタとしてまとめ、配線VEと配線VErとを1本の配線としてまとめた回路に相当する。具体的には、図40に示している回路MPのトランジスタM3及びトランジスタM3rは、図47Aの回路MPではトランジスタMZとしてまとめられ、図40に示している回路MPの配線VE及び配線VErは、図47Aの回路MPでは配線VEとしてまとめられている。
 なお、図47Aの回路MPの回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路MCrの有する回路素子には、回路MCの有する回路素子と区別をするため、符号に「r」を付している。
 なお、本明細書などにおいて、トランジスタMZは、特に断りの無い場合は、オン状態の場合は最終的に線形領域で動作する場合を含むものとする。すなわち、上述したそれぞれのトランジスタのゲート電圧、ソース電圧、及びドレイン電圧は、線形領域で動作する範囲での電圧に適切にバイアスされている場合を含むものとする。
 また、回路MCは、保持部HCと、トランジスタM20と、を有し、回路MCrは、保持部HCrと、トランジスタM20rと、を有する。
 トランジスタM20の第1端子は、トランジスタMZの第1端子に電気的に接続され、トランジスタM20のゲートは、トランジスタM1の第2端子と、容量C1の第1端子と、に電気的に接続され、トランジスタM20の第2端子は、配線OLに電気的に接続されている。容量C1の第2端子は、配線VLに電気的に接続されている。トランジスタM1の第1端子は、配線OLに電気的に接続されている。
 また、トランジスタM20rの第1端子は、トランジスタMZの第1端子に電気的に接続され、トランジスタM20rのゲートは、トランジスタM1rの第2端子と、容量C1rの第1端子と、に電気的に接続され、トランジスタM20rの第2端子は、配線OLBに電気的に接続されている。容量C1rの第2端子は、配線VLに電気的に接続されている。トランジスタM1の第1端子は、配線OLBに電気的に接続されている。
 配線VLは、一例としては、定電圧を与える配線として機能する。当該定電圧としては、例えば、低レベル電位であるVSS、接地電位(GND)などとすることができる。
 図47Aの回路MPに含まれている保持部HC、保持部HCrは、図15Aなどに示している回路MPに含まれている保持部HC、保持部HCrと同様に、重み係数に相当する電流量を設定することができる。具体的には、例えば、保持部HCにおいて、配線XLに所定の電位を与えてトランジスタMZをオン状態にし、配線WLに所定の電位を与えてトランジスタM1をオン状態にして、配線OLから容量C1の第1端子、及びトランジスタM20の第2端子に、重み係数に相当する電流量を流す。このとき、トランジスタM20は、ダイオード接続となっているため、トランジスタM20のゲート−ソース間電圧は、当該電流量(ソース−ドレイン間に流れる電流の量)に応じて定められる。このとき、トランジスタM20のソースの電位は配線VLが与える電位とすると、トランジスタM20のゲートの電位が定められる。ここで、トランジスタM1をオフ状態にすることによって、トランジスタM20のゲートの電位を保持することができる。なお、保持部HCrについても同様に、配線OLBから容量C1rの第1端子、及びトランジスタM20rの第2端子に、重み係数に相当する電流量を流すことによって、当該電流量に応じた電位をトランジスタM20rのゲートに保持することができる。
 ここで、例えば、図48の回路MPに設定される重み係数は、保持部HCのトランジスタM20にIutの電流が設定され、保持部HCrのトランジスタM20rに電流が流れないように設定されたときに“+1”とし、保持部HCのトランジスタM20に電流が流れないように設定され、保持部HCrのトランジスタM20rにIutの電流が設定されたときに“−1”とし、保持部HC、保持部HCrのそれぞれのトランジスタM20、トランジスタM20rに電流が流れないように設定されたときに“0”とする。
 保持部HC、及び保持部HCrのそれぞれに重み係数に応じた電流が設定されることによって、トランジスタM20及びトランジスタM20rのそれぞれのゲートの電位が定まる。ここで、配線XLに、例えば、ニューロンの信号の値に応じた電位を与えることによって、配線OL、及び/又は配線OLBと回路MPとの間に流れる電流が定まる。例えば、配線XLに“+1”の第2データとして高レベル電位が与えられたとき、配線VLが与える定電圧がトランジスタM20の第1端子と、トランジスタM20rの第1端子と、に与えられる。また、例えば、配線XLに“0”の第2データとして低レベル電位が与えられたとき、配線VLが与える定電圧はトランジスタM20の第1端子と、トランジスタM20rの第1端子と、に与えられない。つまり、トランジスタM20、及びトランジスタM20rには電流が流れない。
 ここで、トランジスタM20に電流量としてIutが設定されているとき、トランジスタM20のソースに配線VLからの電位が与えられることで、トランジスタM20の第1端子と第2端子との間に電流量としてIutが流れる。また、トランジスタM20に電流が流れないように設定されているとき、トランジスタM20のソースに配線VLからの電位が与えられても、トランジスタM20の第1端子と第2端子との間には電流が流れない。同様に、トランジスタM20rに電流量としてIutが設定されているとき、トランジスタM20rのソースに配線VLからの電位が与えられることで、トランジスタM20rの第1端子と第2端子との間に電流量としてIutが流れる。また、トランジスタM20rに電流が流れないように設定されているとき、トランジスタM20rのソースに配線VLからの電位が与えられても、トランジスタM20rの第1端子と第2端子との間には電流が流れない。
 つまり、上記をまとめると、重み係数とニューロンの信号の値との積が“+1”であるとき、回路MCと配線OLとの間にIutの電流量が流れ、回路MCrと配線OLBとの間に電流が流れない。また、重み係数とニューロンの信号の値との積が“−1”であるとき、回路MCrと配線OLBとの間にIutの電流量が流れ、回路MCと配線OLとの間に電流が流れない。また、重み係数とニューロンの信号の値との積が“0”であるとき、回路MCと配線OLとの間に電流が流れず、回路MCrと配線OLBとの間に電流が流れない。
 以上より、図47Aの回路MPは、重み係数が“+1”、“−1”、“0”の3値と、ニューロンの信号(演算値)が“+1”、“0”の2値と、の積を計算することができる。また、図47Aの回路MPは、構成例7で説明した回路MPと同様に、一例として、トランジスタM20、及びトランジスタM20rに設定する電流量を変更することによって、第1データ(重み係数)が“正の多値”、“0”、“負の多値”と、第2データ(ニューロンの信号の値)が“+1”、“0”の2値と、の積を計算することができる。
 また、図47Aに示した回路MPは、例えば、図47Bに示した回路MPに変更してもよい。図47Bに示す回路MPは、容量C1の第2端子と、容量C1rの第2端子と、が配線VLでなく、配線CVLに電気的に接続されている点で、図47Aの回路MPと異なる。
 配線CVLは、一例として、定電圧を与える配線として機能する。当該定電圧としては、例えば、高レベル電位、低レベル電位、接地電位などとすることができる。
 なお、本構成例は、本明細書で示す他の構成例などと適宜組み合わせることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
 本実施の形態では、多値の第1データ(例えば、重み係数又はニューロンの信号の一方など)と多値の第2データ(例えば、重み係数又はニューロンの信号の他方など)との積和演算を行うことができる半導体装置、又は当該半導体装置の動作方法について説明する。
<動作方法例1>
 初めに、上記実施の形態で説明した半導体装置などを用いて、多値の第1データ(例えば、重み係数又はニューロンの信号の一方など)と多値の第2データ(例えば、重み係数又はニューロンの信号の他方など)との積和演算を行う動作方法の一例について説明する。
 一例として、図21Aの回路MPを適用した図11の演算回路150の動作方法を考える。また、説明の煩雑さを避けるため、配線OL、配線OLBに流れる電流の変化については、配線OL、配線OLBに電気的に接続されている1個の回路MPのみによって行われるものとする。また、回路MPに電気的に接続されている配線VE、配線VErのそれぞれは、回路MPに対して、定電圧としてVSSを与えるものとする。また、回路AFPに含まれている回路ACTF[1]乃至ACTF[n]のそれぞれは、一例として、積分回路(または、電流電荷(IQ)変換回路)の構成を有する回路ACTFとする。例えば、図6Eの回路ACTF[j]において、負荷LEa、負荷LEbを容量などとした構成としてもよい。
 図48Aは、当該動作方法の例を示したタイミングチャートである。具体的には、図48Aのそれぞれは、時刻T11から時刻T15までの間、及びその近傍の時刻における、保持部HCのノードn1の電位と、保持部HCrのノードn1rの電位と、配線WX1Lの電位と、配線OLに流れる電流IOLの電流量と、配線OLBに流れる電流IOLBの電流量と、回路ACTFの積分回路の容量に蓄積される電荷量の変化を示している。特に、図48Aにおいて、配線OLから負荷LEaに含まれている容量に流れる電流によって蓄積される電荷量をQOLと記載し、配線OLBから負荷LEbに含まれている容量に流れる電流によって蓄積される電荷量をQOLBと記載する。
 また、図48Aに示すタイミングチャートは、それぞれ時刻T11より前の時刻において、多値の第1データ(例えば、ここでは重み係数とする。)に応じた電流が設定されたものとする。なお、当該電流の設定の方法については、実施の形態2の説明の記載を参酌する。
 図48Aのタイミングチャートの動作例では、あらかじめ、回路MPに“+1”の重み係数が設定されているものとする。具体的には、時刻T11より前の時刻において、トランジスタM1に電流量Iが流れるように設定され、また、保持部HCのノードn1にはVが保持され、保持部HCrのノードn1rにはVSSが保持されているものとする。なお、電位Vは、VSSよりも高い電位とする。また、あらかじめ、スイッチSWH、SWHBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWO、スイッチSWOB、スイッチSWL、スイッチSWLBをオフ状態として、配線OL及び配線OLBと配線VCN2との間を導通状態にして、配線OL、配線OLBの電位を高レベル電位としている。
 時刻T11以降では、配線OL及び配線OLBと回路AFPとの間を導通状態にするため、図8Aにおいて、スイッチSWO、スイッチSWOBはオン状態になり、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、スイッチSWHBはオフ状態になるものとする。
 時刻T12から時刻T13までの間において、回路MPへの第2データ(例えば、ここではニューロンの信号の値とする。)の入力が行われる。なお、時刻T12から時刻T13までの間の入力時間を、tutとする。この入力時間の長さが、ニューロンの信号の値の大きさに対応する。つまり、この入力時間の長さを変えることにより、演算結果を変えることができるようになる。
 図48Aの動作例では、回路MPへの第2データ(ニューロンの信号の値)の入力として、配線WX1Lに高レベル電位、配線X2Lに低レベル電位が入力される。そのため、トランジスタM3、トランジスタM3rのそれぞれのゲートに高レベル電位が入力され、トランジスタM4、トランジスタM4rのそれぞれのゲートに低レベル電位が入力されて、トランジスタM3、トランジスタM3rのそれぞれはオン状態となり、トランジスタM4、トランジスタM4rのそれぞれはオフ状態になる。この動作によって、回路MCと配線OLとの間、及び、回路MCrと配線OLBとの間が導通状態になり、回路MCと配線OLBとの間、及び、回路MCrと配線OLとの間が非導通状態になる。
 このとき、トランジスタM1は、電流量をIとする電流を流すように設定されているため、回路ACTFから、切り替え回路TW、配線OL、回路MCを介して、配線VEに電流量Iの電流が流れる。また、トランジスタM1rは、オフ状態となっているため(電流量として0を流すように設定されているため)、回路ACTFから、切り替え回路TW、配線OLB、回路MCrを介して、配線VErに電流は流れない。
 ここで、回路ACTFの積分回路に着目する。時刻T12から時刻T13までの間に第2データ(ニューロンの信号の値)の入力が行われているため、配線OLと導通状態になっている、回路ACTFに含まれている積分回路の容量(負荷LEa)には、時刻T12から時刻T13までの間に電荷が蓄積され続ける。理想的には、時刻T13の時点において、当該容量には、tut×Iの電荷が蓄積される。なお、図48Aのタイミングチャートでは、時刻T12から時刻T13までの間に、当該容量に蓄積された電荷量をQと記載している。一方、配線OLBと導通状態となっている、回路ACTFに含まれている積分回路の容量(負荷LEb)には、電荷の蓄積は起こらない。この結果、回路ACTFは、配線OLに流れた電荷量Qと配線OLBに流れた電荷量0に応じたニューロンの信号z (k)を出力することができる。
 次に、図48Aのタイミングチャートにおいて、回路MPへのニューロンの信号の入力時間をtutから2tutに変化した場合を考える。図48Bに示すタイミングチャートは、図48Aのタイミングチャートにおいて、回路MPへのニューロンの信号の入力時間をtutから2tutに変化させた場合の動作例を示している。
 図48Bのタイミングチャートの時刻T12より前の動作については、図48Aのタイミングチャートの時刻T12より前の動作例と同様である。そのため、図48Bのタイミングチャートの時刻T12より前の動作については、図48Aのタイミングチャートの時刻T12より前の動作の説明を参酌する。
 図48Bの動作例の時刻T12から時刻T14までの間において、回路MPへのニューロンの信号の入力が行われる。上述したとおり、時刻T12から時刻T14までの間の入力時間を、2tutとしている。
 図48Bの動作例では、図48Aの動作例と同様に、回路MPへの第2データ(ニューロンの信号の値)の入力として、配線WX1Lに高レベル電位、配線X2Lに低レベル電位が入力される。このため、回路ACTFから、切り替え回路TW、配線OL、回路MCを介して、配線VEに電流量Iの電流が流れる。また、回路ACTFから、切り替え回路TW、配線OLB、回路MCrを介して、配線VErに電流は流れない。
 時刻T12から時刻T14までの間に第2データ(ニューロンの信号の値)の入力が行われているため、配線OLと導通状態となっている、積分回路の容量(負荷LEa)には、時刻T12から時刻T14までの間に電荷が蓄積され続ける。理想的には、時刻T14の時点において、当該容量には、2tut×I(=2Q)の電荷が蓄積される。なお、図48Bのタイミングチャートでは、時刻T12から時刻T14までの間に、当該容量に蓄積された電荷量をQと記載している。一方、配線OLBと導通状態となっている、回路ACTFに含まれている積分回路の容量(負荷LEb)には、電荷の蓄積は起こらない。この結果、回路ACTFは、配線OLに流れた電荷量Qと配線OLBに流れた電荷量0とに応じたニューロンの信号z (k)を出力することができる。
 次に、図48Aのタイミングチャートにおいて、回路MPに設定されている重み係数を“+1”から“−2”に変更した場合を考える。具体的には、図48Cに示すタイミングチャートは、あらかじめ、時刻T11より前の時刻において、トランジスタM1、M1rに電流I(=2I)が流れるように設定され、また、保持部HCrのノードn1rにはVが保持され、保持部HCのノードn1にはVSSが保持されているものとする。なお、電位Vは、V及びVSSよりも高い電位とする。
 図48Cのタイミングチャートの時刻T12より前の動作については、図48Aのタイミングチャートの時刻T12より前の動作例と同様である。そのため、図48Cのタイミングチャートの時刻T12より前の動作については、図48Aのタイミングチャートの時刻T12より前の動作の説明を参酌する。
 図48Cの動作例の時刻T12から時刻T13までの間において、回路MPへのニューロンの信号の入力が行われる。上述したとおり、時刻T12から時刻T13までの間の入力時間を、tutとしている。
 図48Cの動作例では、図48Aの動作例と同様に、回路MPへの第2データ(ニューロンの信号の値)の入力として、配線WX1Lに高レベル電位、配線X2Lに低レベル電位が入力される。このため、回路ACTFから、切り替え回路TW、配線OLB、回路MCrを介して、配線VErに電流量Iの電流が流れる。また、回路ACTFから、切り替え回路TW、配線OL、回路MCを介して、配線VEに電流は流れない。
 時刻T12から時刻T13までの間に第2データ(ニューロンの信号の値)の入力が行われているため、配線OLBと導通状態となっている、積分回路の容量(負荷LEb)には、時刻T12から時刻T13までの間に電荷が蓄積され続ける。理想的には、時刻T13の時点において、当該容量には、tut×I(=2tut×I=2Q)の電荷が蓄積される。なお、図48Cのタイミングチャートでは、時刻T12から時刻T13までの間に、当該容量に蓄積された電荷量をQと記載している。一方、配線OLと導通状態となっている、回路ACTFに含まれている積分回路の容量(負荷LEa)には、電荷の蓄積は起こらない。この結果、回路ACTFは、配線OLに流れた電荷量0と配線OLBに流れた電荷量Qとに応じたニューロンの信号z (k)を出力することができる。
 図48A乃至図48Cに示した動作例の通り、第2データ(ニューロンの信号の値)は、回路MPへの第2データの入力期間に応じて定めることができ、入力期間の長さに応じて、回路ACTFから出力される演算結果が決まる。そのため、第2データ(ニューロンの信号の値)を、入力期間の長さ、及び配線WX1L、配線X2Lに印加する電位に応じて定義することによって、回路MPは、3値以上の第2データ(ニューロンの信号の値)を扱うことができ、多値の第1データ(重み係数)と3値以上の第2データ(ニューロンの信号の値)との積和演算、及び/又は活性化関数の演算を行うことができる。
 本動作例において、回路MPに入力される第2データ(ニューロンの信号の値)は、一例として、次の通りに定義することができる。配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力し、かつ入力期間をtutとしたときの第2データ(ニューロンの信号の値)を“+1”とし、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力し、かつ入力期間を2tutとしたときの第2データ(ニューロンの信号の値)を“+2”とし、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力し、かつ入力期間を3tutとしたときの第2データ(ニューロンの信号の値)を“+3”とする。また、配線WX1Lに低レベル電位、配線X2Lに高レベル電位を入力し、かつ入力期間をtutとしたときの第2データ(ニューロンの信号の値)を“−1”とし、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力し、かつ入力期間を2tutとしたときの第2データ(ニューロンの信号の値)を“−2”とし、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力し、かつ入力期間を3tutとしたときの第2データ(ニューロンの信号の値)を“−3”とする。また、配線WX1Lに低レベル電位、配線X2Lに低レベル電位を入力したときの第2データ(ニューロンの信号の値)を“0”とする。
 回路MPに入力される第2データ(ニューロンの信号の値)を上述の通り、定義することによって、図48Aに示した動作例では、第1データ(重み係数)“+1”と第2データ(ニューロンの信号の値)“+1”との積として、“+1”を算出することができる。また、図48Bに示した動作例では、第1データ(重み係数)“+1”と第2データ(ニューロンの信号の値)“+2”との積として、“+2”を算出することができる。また、図48Cに示した動作例では、第1データ(重み係数)“−2”と第2データ(ニューロンの信号の値)“+1”との積として、“−2”を算出することができる。本動作例において、第1データ(重み係数)を“−2”“−1”“0”“+1”“+2”のいずれか一として、第2データ(ニューロンの信号の値)を“−2”“−1”“0”“+1”“+2”のいずれか一としたときにおける、配線OLに流れた電荷量QOLと配線OLBに流れる電荷量QOLBを下の表に記す。なお、下表において、高レベル電位をhigh、低レベル電位をlowと記載している。
Figure JPOXMLDOC01-appb-T000012
 また、本発明の一態様は、上述の定義に限定されない。上述では、第2データ(ニューロンの信号の値)として、正の多値、負の多値、0を定義したが、入力期間を離散的な値でなく連続的な値をとることによって(aを正の実数として、入力期間をa×tutとすることによって)、第2データ(ニューロンの信号の値)をアナログ値として扱うことができる。
 また、図48A、図48Bに示した動作例では、回路MPに設定された第1データ(重み係数)を“+1”とし、図48Cに示した動作例では、回路MPに設定された第1データ(重み係数)を“−2”としたが、“+1”“−2”以外の第1データ(重み係数)を用いて計算を行ってもよい。実施の形態1、及び実施の形態2で説明したとおり、回路MPに設定される第1データ(重み係数)は、アナログ値などを設定することができるため、回路ACTFに含まれている積分回路の容量に蓄積される電荷量も、アナログ値などとする第1データ(重み係数)に応じて算出することができる。
 また、図48A乃至図48Cに示した動作例では、回路MPは、説明の煩雑さを避けるため、配線OL、配線OLBには1個の回路MPのみが電気的接続されている場合を考えたが、図11の演算回路150のとおり、配線OL、配線OLBには複数の回路MPを電気的に接続してもよい。これにより、配線OL、配線OLBのそれぞれから複数の回路MPに入力された電荷量の合計を、回路ACTFに含まれる積分回路の容量に蓄積することができ、回路ACTFは、配線OL、配線OLBに流れたそれぞれの電荷量に応じたニューロンの信号z (k)を出力することができる。なお、図48A乃至図48Cでは、時刻T12から配線WX1Lの電位の変化が開始されている。つまり、図48A乃至図48Cのそれぞれでは、配線WX1Lの電位が高レベル電位となる期間が異なっている場合においても、低レベル電位から高レベル電位へ変化する時刻が同じ(時刻T12)となっているが、本発明の一態様は、これに限定されない。例えば、図48A乃至図48Cのそれぞれの配線WX1Lの電位が高レベル電位となる期間が異なっている場合においても、高レベル電位から低レベル電位へ変化する時刻が、同じになるように動作させてもよい。または、図48A乃至図48Cのそれぞれの配線WX1Lの電位が高レベル電位となる期間が異なっている場合においても、高レベル電位となる期間の中心の時刻が、同じになるように動作させてもよい。
 なお、本動作例では、図11の演算回路150を例としたが、状況に応じて、別の演算回路に変更することでも、本動作例と同様の動作を行うことができる。例えば、図47Aの回路MPを図7の演算回路140に適用して、回路AFPに含まれている回路ACTF[1]乃至ACTF[n]のそれぞれが積分回路の構成(または、電流電荷(IQ)変換回路)を有している場合を考える。この場合の回路構成においても、第1データ(重み係数)に応じてトランジスタM8、及びトランジスタM8rのそれぞれに流れる電流量を設定し、第2データ(ニューロンの信号の値)に応じて配線XLに高レベル電位を与える期間を設定することにより、本動作例と同様に、“正の多値”、“負の多値”、“0”のいずれかである第1データと、“正の多値”又は“0”である第2データと、の積を計算することができる。また、第1データ及び/又は第2データをアナログ値として計算を行ってもよい。
 なお、本動作方法例は、本明細書で示す他の動作方法例などと適宜組み合わせることができる。
<動作方法例2>
 次に、図48A乃至図48Cに示した動作例とは異なる、別の動作方法の例について説明する。
 一例として、図48A乃至図48Cと同様に、図21Aの回路MPを適用した図11の演算回路150の動作方法を考える。また、説明の煩雑さを避けるため、配線OL、配線OLBに流れる電流の変化については、配線OL、配線OLBに電気的に接続されている1個の回路MPのみによって行われるものとする。また、回路MPに電気的に接続されている配線VE、配線VErのそれぞれは、回路MPに対して、定電圧としてVSSを与えるものとする。また、回路AFPに含まれている回路ACTF[1]乃至ACTF[n]のそれぞれは、一例として、積分回路(または、電流電荷(IQ)変換回路)の構成を有する回路ACTFとする。例えば、図6Eの回路ACTF[j]において、負荷LEa、負荷LEbを容量などとした構成としてもよい。
 図49Aは、当該動作方法の例を示したタイミングチャートである。具体的には、図49Aのそれぞれは、時刻T21から時刻T25までの間、及びその近傍の時刻における、保持部HCのノードn1の電位と、保持部HCrのノードn1rの電位と、配線WX1Lの電位と、配線OLに流れる電流IOLの電流量と、配線OLBに流れる電流IOLBの電流量と、回路ACTFの積分回路の容量に蓄積される電荷量の変化を示している。特に、図49Aにおいて、配線OLから負荷LEaに含まれている容量に流れる電流によって蓄積される電荷量をQOLと記載し、配線OLBから負荷LEbに含まれている容量に流れる電流によって蓄積される電荷量をQOLBと記載する。
 また、図49Aに示すタイミングチャートは、それぞれ時刻T21より前の時刻において、多値の第1データ(例えば、ここでは重み係数とする。)に応じた電流が設定されたものとする。なお、当該電流の設定の方法については、実施の形態2の説明の記載を参酌する。
 図49Aのタイミングチャートの動作例では、あらかじめ、回路MPに“+1”の第1データ(ここでは、例えば、重み係数とする。)が設定されているものとする。具体的には、時刻T21より前の時刻において、トランジスタM1に電流量Iが流れるように設定され、また、保持部HCのノードn1にはVが保持され、保持部HCrのノードn1rにはVSSが保持されているものとする。なお、電位Vは、VSSよりも高い電位とする。また、あらかじめ、スイッチSWH、スイッチSWHBをオン状態とし、スイッチSWI、スイッチSWIB、スイッチSWO、スイッチSWOB、スイッチSWL、スイッチSWLBをオフ状態として、配線OL及び配線OLBと配線VCN2との間を導通状態にして、配線OL、配線OLBの電位を高レベル電位としている。
 時刻T21以降では、配線OL及び配線OLBと回路AFPとの間を導通状態にするため、図8Aにおいて、スイッチSWO、スイッチSWOBはオン状態になり、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、スイッチSWHBはオフ状態になるものとする。
 時刻T22以降において、回路MPへの第2データ(例えば、ここではニューロンの信号の値とする。)の入力が行われる。なお、図48Aの動作例では、回路MPへの第2データ(ニューロンの信号の値)の入力は、時刻T22から時刻T23までの間と、時刻T23から時刻T24までの間と、時刻T24から時刻T25までの間と、に分けて行われる。具体的には、時刻T22から時刻T23までの間の入力時間をtutとし、時刻T23から時刻T24までの間の入力時間を2tutとし、時刻T24から時刻T25までの間の入力時間を4tutとしている。なお、本明細書などでは、それぞれの期間を第1サブ期間、第2サブ期間、第3サブ期間、と呼称する。
 図49Aの動作例では、第1サブ期間と、第3サブ期間において、回路MPへの第2データ(ニューロンの信号の値)の入力として、配線WX1Lに高レベル電位、配線X2Lに低レベル電位が入力される。そのため、トランジスタM3、トランジスタM3rのそれぞれのゲートに高レベル電位が入力され、トランジスタM4、トランジスタM4rのそれぞれのゲートに低レベル電位が入力されて、トランジスタM3、トランジスタM3rのそれぞれはオン状態となり、トランジスタM4、トランジスタM4rのそれぞれはオフ状態になる。この動作によって、回路MCと配線OLとの間、及び、回路MCrと配線OLBとの間が導通状態になり、回路MCと配線OLBとの間、及び、回路MCrと配線OLとの間が非導通状態になる。
 このとき、トランジスタM1は、電流量としてIを流すように設定されているため、第1サブ期間と、第3サブ期間において、回路ACTFから、切り替え回路TW、配線OL、回路MCを介して、配線VEに電流量Iの電流が流れる。なお、第2サブ期間では、配線WX1L、配線X2Lに低レベル電位が入力されて、トランジスタM3、トランジスタM3r、トランジスタM4、トランジスタM4rのそれぞれのゲートに低レベル電位が入力されるため、トランジスタM3、トランジスタM3r、トランジスタM4、トランジスタM4rのそれぞれはオフ状態となり、回路ACTFから、切り替え回路TW、配線OL、回路MCを介して、配線VEに電流は流れない。
 また、第1サブ期間と、第2サブ期間と、第3サブ期間において、トランジスタM1rは、オフ状態となっているため(電流量として0を流すように設定されているため)、回路ACTFから、切り替え回路TW、配線OLB、回路MCrを介して、配線VErに電流は流れない。
 ここで、回路ACTFの積分回路に着目する。時刻T22以降に第2データ(ニューロンの信号)の入力が行われているため、配線OLと導通状態となっている、回路ACTFに含まれている積分回路の容量(負荷LEa)には、時刻T22以降に電荷が蓄積され続ける。理想的には、第1サブ期間において、当該容量には、tut×Iの電荷が蓄積され、第3サブ期間において、4tut×Iの電荷が蓄積される。なお、図49Aのタイミングチャートでは、第1サブ期間において、当該容量に蓄積された電荷量をQとし、第3サブ期間において、当該容量に蓄積された電荷量をQとしている。そのため、時刻T25以降の当該容量に蓄積された電荷量をQ+Qと記載している。一方、配線OLBと導通状態となっている、回路ACTFに含まれている積分回路の容量(負荷LEb)には、電荷の蓄積は起こらない。この結果、回路ACTFは、配線OLに流れた電荷量Q+Q(=5Q)と配線OLBに流れた電荷量0とに応じたニューロンの信号z (k)を出力することができる。
 次に、図49Aのタイミングチャートにおいて、回路MPへのニューロンの信号の入力を、第1期間及び第3期間から、第2期間に変更した場合を考える。図49Bに示すタイミングチャートは、図49Aのタイミングチャートにおいて、回路MPへのニューロンの信号の入力を、第1期間及び第3期間から、第2期間に変化した場合の動作例を示している。
 図49Bのタイミングチャートの時刻T22より前の動作については、図49Aのタイミングチャートの時刻T22より前の動作例と同様である。そのため、図49Bのタイミングチャートの時刻T22より前の動作については、図49Aのタイミングチャートの時刻T22より前の動作の説明を参酌する。
 図49Bの動作例の時刻T22以降において、回路MPへのニューロンの信号の入力が行われる。具体的には、上述したとおり、回路MPへのニューロンの信号の入力は、第2サブ期間に行われる。
 図49Bの動作例では、第2サブ期間において、回路MPへのニューロンの信号(演算値)の入力として、配線WX1Lに高レベル電位、配線X2Lに低レベル電位が入力される。このため、第2サブ期間では、回路ACTFから、切り替え回路TW、配線OL、回路MCを介して、配線VEに電流量Iの電流が流れる。なお、第1サブ期間と、第3サブ期間では、配線WX1L、配線X2Lに低レベル電位が入力されているため、トランジスタM3、トランジスタM3r、トランジスタM4、トランジスタM4rのそれぞれはオフ状態となり、回路ACTFから、切り替え回路TW、配線OL、回路MCを介して、配線VEに電流は流れない。
 また、第1サブ期間と、第2サブ期間と、第3サブ期間において、トランジスタM1rは、オフ状態となっているため(電流量として0を流すように設定されているため)、回路ACTFから、切り替え回路TW、配線OLB、回路MCrを介して、配線VErに電流は流れない。
 時刻T22以降に第2データ(ニューロンの信号)の入力が行われているため、配線OLと導通状態となっている積分回路の容量(負荷LEa)には、時刻T22以降に電荷が蓄積され続ける。理想的には、時刻T25の時点において、当該容量には、2tut×Iの電荷が蓄積される。なお、図49Bのタイミングチャートでは、時刻T22以降に当該容量に蓄積された電荷量をQと記載している。一方、配線OLBと導通状態となっている、回路ACTFに含まれている積分回路の容量(負荷LEb)には、電荷の蓄積は起こらない。この結果、回路ACTFは、配線OLに流れた電荷量Q(=2Q)と配線OLBに流れた電荷量0とに応じたニューロンの信号z (k)を出力することができる。
 次に、図49Aのタイミングチャートにおいて、回路MPに設定されている重み係数を“+1”から“−2”に変更し、かつ第2データ(ニューロンの信号)の入力を第1サブ期間及び第3サブ期間から、第1サブ期間及び第2サブ期間に変更した場合を考える。
 図49Cに示すタイミングチャートは、あらかじめ、時刻T21より前の時刻において、トランジスタM1に電流I(=2I)が流れるように設定され、また、保持部HCのノードn1にはVが保持され、保持部HCrのノードn1rにはVSSが保持されているものとする。なお、電位Vは、V及びVSSよりも高い電位とする。
 図49Cのタイミングチャートの時刻T22より前の動作については、図49Aのタイミングチャートの時刻T22より前の動作例と同様である。そのため、図49Cのタイミングチャートの時刻T22より前の動作については、図49Aのタイミングチャートの時刻T22より前の動作の説明を参酌する。
 図49Cの動作例の時刻T22以降において、回路MPへのニューロンの信号の入力が行われる。上述したとおり、回路MPへのニューロンの信号の入力は、第1サブ期間及び第2サブ期間に行われる。
 図49Cの動作例では、第1サブ期間及び第2サブ期間において、回路MPへの第2データ(ニューロンの信号の値)の入力として、配線WX1Lに高レベル電位、配線X2Lに低レベル電位が入力される。このため、第1サブ期間及び第2サブ期間では、回路ACTFから、切り替え回路TW、配線OLB、回路MCrを介して、配線VErに電流量Iの電流が流れる。なお、第4サブ期間では、配線WX1L、配線X2Lに低レベル電位が入力されているため、トランジスタM3、トランジスタM3r、トランジスタM4、トランジスタM4rのそれぞれはオフ状態となり、回路ACTFから、切り替え回路TW、配線OLB、回路MCrを介して、配線VErに電流は流れない。
 また、第1サブ期間と、第2サブ期間と、第3サブ期間において、トランジスタM1は、オフ状態となっているため(電流量として0を流すように設定されているため)、回路ACTFから、切り替え回路TW、配線OL、回路MCを介して、配線VEに電流は流れない。
 時刻T22以降に第2データ(ニューロンの信号)の入力が行われているため、配線OLBと導通状態となっている積分回路の容量(負荷LEb)には、時刻T22以降に電荷が蓄積され続ける。理想的には、時刻T25の時点において、当該容量には、6tut×I(=tut×2I+2tut×2I)の電荷が蓄積される。なお、図49Cのタイミングチャートでは、時刻T25以降に当該容量に蓄積された電荷量を2(Q+Q)と記載している。一方、配線OLBと導通状態となっている、回路ACTFに含まれている積分回路の容量(負荷LEa)には、電荷の蓄積は起こらない。この結果、回路ACTFは、配線OLに流れた電荷量0と配線OLBに流れた電荷量2(Q+Q)(=6Q)と、に応じた電荷量Qに応じたニューロンの信号z (k)を出力することができる。
 図49A乃至図49Cに示した動作例の通り、第2データ(ニューロンの信号の値)は、回路MPへの第2データ(ニューロンの信号の値)の入力が可能な期間において複数のサブ期間を設けて、複数のサブ期間から一以上の選択された期間に応じて定めることができ、選択された期間に応じて、回路ACTFから出力される演算結果が決まる。そのため、第2データ(ニューロンの信号の値)を、選択されたサブ期間、及び配線WX1L、配線X2Lに印加する電位に応じて定義することによって、回路MPは、3値以上の第2データ(ニューロンの信号の値)を扱うことができ、多値の第1データ(重み係数)と3値以上の第2データ(ニューロンの信号の値)との積和演算、及び/又は活性化関数の演算を行うことができる。
 本動作例において、回路MPに入力される第2データ(ニューロンの信号の値)は、一例として、次の通りに定義することができる。第1サブ期間にのみ、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力したときの第2データ(ニューロンの信号の値)を“+1”とし、第2サブ期間にのみ、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力したときの第2データ(ニューロンの信号の値)を“+2”とし、第3サブ期間にのみ、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力したときの第2データ(ニューロンの信号の値)を“+4”とする。第1サブ期間にのみ、配線WX1Lに低レベル電位、配線X2Lに高レベル電位を入力したときの第2データ(ニューロンの信号の値)を“−1”とし、第2サブ期間にのみ、配線WX1Lに低レベル電位、配線X2Lに高レベル電位を入力したときの第2データ(ニューロンの信号の値)を“−2”とし、第3サブ期間にのみ、配線WX1Lに低レベル電位、配線X2Lに高レベル電位を入力したときの第2データ(ニューロンの信号の値)を“−4”とする。また、第1サブ期間、第2サブ期間、第3サブ期間において、配線WX1Lに低レベル電位、配線X2Lに低レベル電位を入力したときの第2データ(ニューロンの信号の値)を“0”とする。
 なお、第2データ(ニューロンの信号の値)を“+3”としたい場合、第1サブ期間及び第2サブ期間にのみ、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力すればよく、また、第2データ(ニューロンの信号の値)を“+5”としたい場合、第1サブ期間及び第3サブ期間に、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力すればよい。また、なお、第2データ(ニューロンの信号の値)を“−6”としたい場合、第2サブ期間及び第3サブ期間にのみ、配線WX1Lに低レベル電位、配線X2Lに高レベル電位を入力すればよく、また、第2データ(ニューロンの信号の値)を“−7”としたい場合、第1サブ期間、第2サブ期間及び第3サブ期間に、配線WX1Lに低レベル電位、配線X2Lに高レベル電位を入力すればよい。
 回路MPに入力される第2データ(ニューロンの信号の値)を上述の通り、定義することによって、図49Aに示した動作例では、第1データ(重み係数)“+1”と第2データ(ニューロンの信号の値)“+5”との積として、“+5”を算出することができる。また、図49Bに示した動作例では、第1データ(重み係数)“+1”と第2データ(ニューロンの信号の値)“+2”との積として、“+2”を算出することができる。また、図49Cに示した動作例では、第1データ(重み係数)“−2”と第2データ(ニューロンの信号の値)“+3”との積として、“−6”を算出することができる。
 また、本発明の一態様は、上述の定義に限定されない。上述では、第2データ(ニューロンの信号の値)の入力可能な期間として、第1サブ期間、第2サブ期間、第3サブ期間を設けたが、4つ以上のサブ期間を設けてもよい。例えば、第2データ(ニューロンの信号の値)の入力可能な期間を第1サブ期間乃至第Tサブ期間(Tは4以上の整数である。)に分けて、第sサブ期間(sは4以上T以下の整数である。)の長さを2(s−1)×tutと定めればよい。また、例えば、第2データ(ニューロンの信号の値)の入力可能な期間を第1サブ期間乃至第Tサブ期間(Tは4以上の整数である。)に分けて、第sサブ期間(sは4以上T以下の整数である。)の長さをs×tutと定めてもよい。また、例えば、第1サブ期間にのみ、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力したときの第2データ(ニューロンの信号の値)を“+0.1”とし、第2サブ期間にのみ、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力したときの第2データ(ニューロンの信号の値)を“+0.2”とし、第3サブ期間にのみ、配線WX1Lに高レベル電位、配線X2Lに低レベル電位を入力したときの第2データ(ニューロンの信号の値)を“+0.4”とするなど、第2データ(ニューロンの信号の値)を実数として定義してもよい。
 また、図49A、図49Bに示した動作例では、回路MPに設定された第1データ(重み係数)を“+1”とし、図49Cに示した動作例では、回路MPに設定された第1データ(重み係数)を“+2”としたが、“+1”、“+2”以外の第1データ(重み係数)を用いて計算を行ってもよい。実施の形態1、及び実施の形態2で説明したとおり、回路MPに設定される第1データ(重み係数)は、負の値、多値、アナログ値などを設定することができるため、回路ACTFに含まれている積分回路の容量に蓄積される電荷量も、負の値、多値、アナログ値などとする第1データ(重み係数)に応じて算出することができる。
 また、図49A乃至図49Cに示した動作例では、回路MPは、説明の煩雑さを避けるため、配線OL、配線OLBには1個の回路MPのみが電気的接続されている場合を考えたが、図11の演算回路150のとおり、配線OL、配線OLBには複数の回路MPを電気的に接続してもよい。これにより、配線OL、配線OLBのそれぞれから複数の回路MPに入力された電荷量の合計を、回路ACTFに含まれる積分回路の容量に蓄積することができ、回路ACTFは、配線OL、配線OLBに流れたそれぞれの電荷量に応じたニューロンの信号z (k)を出力することができる。
 また、図49A乃至図49Cの動作例のとおり、第2データ(ニューロンの信号の値)の入力可能な期間として、複数のサブ期間を設けて、複数のサブ期間から1つ以上を選択して、選択された期間に信号を入力する構成としては、例えば、それぞれのサブ期間の長さを、回路設計の段階からあらかじめ決めることが好ましい。このような回路構成にすることにより、図48A乃至図48Cの動作例に求められる回路構成よりも、演算回路を簡易的及び/又は効率的にレイアウトできる場合がある。
 なお、本動作例では、図11の演算回路150を例としたが、状況に応じて、別の演算回路に変更することでも、本動作例と同様の動作を行うことができる。
 なお、本動作方法例は、本明細書で示す他の動作方法例などと適宜組み合わせることができる。
<動作方法例3>
 ここでは、図50の回路MPを適用した図11の演算回路150の動作方法について、説明する。
 動作方法例1及び動作方法例2と同様に、説明の煩雑さを避けるため、配線OL、配線OLBに流れる電流の変化については、配線OL、配線OLBに電気的に接続されている1個の回路MPのみによって行われるものとする。また、回路MPに電気的に接続されている配線VE、配線VErのそれぞれは、回路MPに対して、定電圧としてVSSを与えるものとする。また、回路AFPに含まれている回路ACTF[1]乃至ACTF[n]のそれぞれは、一例としては、積分回路(または、電流電荷(IQ)変換回路)の構成を有する回路ACTFとする。例えば、図6Eの回路ACTF[j]において、負荷LEa、負荷LEbを容量などとした構成としてもよい。
 図50は、図26に示した回路MPと同様の回路構成を示している。但し、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3brのそれぞれのサイズ、例えば、W長とL長は等しいことが好ましい。また、本動作方法の例は、実施の形態2で説明した図26の回路MPの動作例と異なる。
 具体的には、回路MPに第2データ(例えば、ここではニューロンの信号の値とする。)を入力する際において、配線WX1L、又は配線X2Lの一方への高レベル電位の入力時間をtutとしたとき、配線X1L2b、又は配線X2L2bの一方への高レベル電位の入力時間は2tutとし、配線X1L3b、又は配線X2L3bの一方への高レベル電位の入力時間は4tutとして動作させるものとする。つまり、トランジスタM3、トランジスタM3rがオン状態、又はトランジスタM4、トランジスタM4rがオン状態となる時間がtutとしたとき、トランジスタM3−2b、トランジスタM3−2brがオン状態、又はトランジスタM4−2b、トランジスタM4−2brがオン状態となる時間を2tutとなり、トランジスタM3−3b、トランジスタM3−3brがオン状態、又はトランジスタM4−3b、トランジスタM4−3brがオン状態となる時間を4tutとなるように動作させる。そのため、図50の回路MPには、図26の回路MPと動作が異なることを示すため、配線WX1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bの符号の付近に、パルス電圧の模式図と入力時間を図示している。
 動作方法例1、動作方法例2で説明したとおり、回路MPに第1データ(例えば、ここでは重み係数とする。)を設定して、かつトランジスタM3、又はトランジスタM4がオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1を介して配線VEに流れる電荷量が決まる。また、回路MPに第1データ(重み係数)を設定して、トランジスタM3r、又はトランジスタM4rがオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1rを介して配線VErに流れる電荷量が決まる。
 同様に、配線OL又は配線OLBから、トランジスタM1−2bを介して配線VEに流れる電荷量と、配線OL又は配線OLBから、トランジスタM1−2brを介して配線VErに流れる電荷量と、についても、トランジスタM3−2b、トランジスタM3−2br、トランジスタM4−2b、トランジスタM4−2brのそれぞれにおいて、オン状態となる時間を定めることによって決まる。また、配線OL又は配線OLBから、トランジスタM1−3bを介して配線VEに流れる電荷量と、配線OL又は配線OLBから、トランジスタM1−3brを介して配線VErに流れる電荷量と、についても、トランジスタM3−3b、トランジスタM3−3br、トランジスタM4−3b、トランジスタM4−3brのそれぞれにおいて、オン状態となる時間を定めることによって決まる。
 そのため、回路MPに第2データ(ニューロンの信号の値)を次の表の通りに定義することができる。
Figure JPOXMLDOC01-appb-T000013
 ここで、例えば、回路MPには、あらかじめ、“+1”の第1データ(重み係数)が設定されているものとする。具体的には、トランジスタM1には電流量Iが流れるように設定されているものとし、かつトランジスタM1r、トランジスタM1−2br、トランジスタM1−3brはオフ状態になっているものとする。
 回路MCにおいて、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれのサイズが等しく、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれのゲートが保持部HCのノードn1に電気的に接続され、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれの第1端子が配線VEに電気的に接続されているため、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれのソース−ドレイン間には互いにほぼ等しい電流が流れる。当該電流の量をIutとする。
 回路MPに第2データ(ニューロンの信号の値)として“+7”が入力されている場合、トランジスタM3が時間tutだけオン状態、トランジスタM4がオフ状態となることで、配線OLから、トランジスタM1を介して配線VEに流れる電荷量は、tut×Iutとなる。なお、ここで、tut×Iut=Qutとする。また、同様に、トランジスタM3−2bが時間2tutだけオン状態、トランジスタM4−2bがオフ状態となることで、配線OLから、トランジスタM1−2bを介して配線VEに流れる電荷量は、2tut×Iut=2Qutとなり、トランジスタM3−3bが時間4tutだけオン状態、トランジスタM4−3bがオフ状態となることで、配線OLから、トランジスタM1−3bを介して配線VEに流れる電荷量は、4tut×Iut=4Qutとなる。そのため、配線OLから、回路MCを介して配線VEに流れる電荷量は、Qut+2Qut+4Qut=7Qutとなる。一方、配線OLBから、回路MCrを介して配線VErに流れる電荷量は、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brがオフ状態であるため、0となる。
 なお、回路MPに第2データ(ニューロンの信号の値)として“−7”が入力されている場合、配線OLBと回路MCとの間、配線OLと回路MCrとの間がそれぞれ導通状態となり、配線OLと回路MCrとの間、配線OLと回路MCとの間が非導通状態となるため、配線OLBから、回路MCを介して配線VEに流れる電荷量がQut+2Qut+4Qut=7Qutとなり、配線OLから、回路MCrを介して配線VErに流れる電荷量が、0となる。
 また、例えば、回路MPには、あらかじめ、“−1”の第1データ(重み係数)が設定されているものとする。具体的には、トランジスタM1rには電流量Iが流れるように設定されているものとし、かつトランジスタM1、トランジスタM1−2b、トランジスタM1−3bはオフ状態になっているものとする。
 回路MCrにおいて、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのそれぞれのサイズが等しく、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのそれぞれのゲートが保持部HCrのノードn1rに電気的に接続され、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのそれぞれの第1端子が配線VErに電気的に接続されているため、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのそれぞれのソース−ドレイン間には互いにほぼ等しい電流が流れる。トランジスタM1のソース−ドレイン間に流れる電流と同様に、当該電流の量をIutとする。
 回路MPに第2データ(ニューロンの信号の値)として“+7”が入力されている場合、トランジスタM3rが時間tutだけオン状態、トランジスタM4rがオフ状態となることで、配線OLBから、トランジスタM1rを介して配線VErに流れる電荷量は、tut×Iut=Qutとなる。また、同様に、トランジスタM4−2brが時間2tutだけオン状態、トランジスタM3−2brがオフ状態となることで、配線OLBから、トランジスタM1−2brを介して配線VErに流れる電荷量は、2tut×Iut=2Qutとなり、トランジスタM4−3brが時間4tutだけオン状態、トランジスタM3−3brがオフ状態となることで、配線OLBから、トランジスタM1−3brを介して配線VErに流れる電荷量は、4tut×Iut=4Qutとなる。そのため、配線OLBから、回路MCrを介して配線VErに流れる電荷量は、Qut+2Qut+4Qut=7Qutとなる。一方、配線OLから、回路MCを介して配線VEに流れる電荷量は、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brがオフ状態であるため、0となる。
 なお、回路MPに第2データ(ニューロンの信号の値)として“−7”が入力されている場合、配線OLBと回路MCとの間、配線OLと回路MCrとの間がそれぞれ導通状態となり、配線OLと回路MCrとの間、配線OLと回路MCとの間が非導通状態となるため、配線OLから、回路MCrを介して配線VErに流れる電荷量がQut+2Qut+4Qut=7Qutとなり、配線OLBから、回路MCを介して配線VEに流れる電荷量が、0となる。
 このため、回路MPに“+1”の第1データ(重み係数)を設定し、正の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM3、トランジスタM3−2b、トランジスタM3−3bから、オン状態にするトランジスタを一つ以上選択することによって、配線OLから、回路MCを介して配線VEに流れる電荷量を、Qut、2Qut、3Qut、4Qut、5Qut、6Qut、7Qutのいずれか一とすることができる。なお、このとき、配線OLBから、回路MCrを介して、配線VErに流れる電荷量は0となる。また、回路MPに“−1”の第1データ(重み係数)を設定し、正の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM3r、トランジスタM3−2br、トランジスタM3−3brから、オン状態にするトランジスタを一つ以上選択することによって、配線OLBから、回路MCrを介して配線VErに流れる電荷量を、Qut、2Qut、3Qut、4Qut、5Qut、6Qut、7Qutのいずれか一とすることができる。なお、このとき、配線OLから、回路MCを介して、配線VEに流れる電荷量は0となる。
 また、回路MPに“+1”の第1データ(重み係数)を設定し、負の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM4、トランジスタM4−2b、トランジスタM4−3bから、オン状態にするトランジスタを一つ以上選択することによって、配線OLBから、回路MCを介して配線VEに流れる電荷量を、Qut、2Qut、3Qut、4Qut、5Qut、6Qut、7Qutのいずれか一とすることができる。なお、このとき、配線OLから、回路MCrを介して、配線VErに流れる電荷量は0となる。また、回路MPに“−1”の第1データ(重み係数)を設定し、負の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM4r、トランジスタM4−2br、トランジスタM4−3brから、オン状態にするトランジスタを一つ以上選択することによって、配線OLから、回路MCrを介して配線VErに流れる電荷量を、Qut、2Qut、3Qut、4Qut、5Qut、6Qut、7Qutのいずれか一とすることができる。なお、このとき、配線OLBから、回路MCを介して、配線VEに流れる電荷量は0となる。
 また、例えば、回路MPに設定されている第1データ(重み係数)を“+1”から正の整数である“A”に変更したとする。具体的には、トランジスタM1には電流量I(=AI)が流れるように設定されているものとし、かつトランジスタM1r、トランジスタM1−2br、トランジスタM1−3brはオフ状態になっているものとする。このとき、トランジスタM1−2b、トランジスタM1−3bのそれぞれのソース−ドレイン間に流れる電流量もIとなる。このため、第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM3、トランジスタM3−2b、トランジスタM3−3bから、オン状態にするトランジスタを一つ以上選択することによって、配線OLから、回路MCを介して配線VEに流れる電荷量は、AQut、2AQut、3QAut、4AQut、5AQut、6AQut、7AQutのいずれか一となる。また、“A”を負の整数としたとき、配線OLBから、回路MCrを介して配線VErに、AQut、2AQut、3QAut、4AQut、5AQut、6AQut、7AQutのいずれか一の電荷量が流れることになるとなる。
 なお、回路MPには、あらかじめ、“0”の第1データ(重み係数)が設定されている場合、トランジスタM1、トランジスタM1rのそれぞれはオフ状態になっているものとする。そのため、配線OL又は配線OLBから、回路MCを介して配線VEに電流は流れず、配線OL又は配線OLBから、回路MCrを介して配線VErに電流は流れない。換言すると、配線OL、配線OLBのそれぞれに流れる電荷量は0ということができる。
 ここで、回路ACTFの積分回路に着目する。配線OL又は配線OLBから、回路MCを介して配線VEに電流が流れるとき、又は、配線OL又は配線OLBから、回路MCrを介して配線VErに電流が流れるとき、図8Aにおいて、スイッチSWO、SWOBはオン状態にし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、スイッチSWHBはオフ状態にして、配線OL及びOLBと回路AFPとの間を導通状態にすることで、回路ACTFに含まれている積分回路の容量に配線OL、配線OLBに流れる電荷量を蓄積することができる。この結果、回路ACTFは、配線OLに流れた電荷量QOLと配線OLBに流れた電荷量QOLBに応じたニューロンの信号z (k)を出力することができる。
 上述の動作例より、第1データ(重み係数)を“+1”又は“−1”として、第2データ(ニューロンの信号の値)を上述の通りに定義した場合の、配線OLに流れた電荷量QOLと配線OLBに流れた電荷量QOLBを下の表に記載する。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 上記の通り、第1データ(重み係数)と、第2データ(ニューロンの信号の値)を定めることにより、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果に応じて、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOL、及び配線OLBから回路MC又は回路MCrに電流が流れる電荷量QOLBが決まる。また、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果が正の値の場合、配線OLから回路MC又は回路MCrに電流が流れ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果が負の値の場合、配線OLBから回路MC又は回路MCrに電流が流れる。つまり、電荷量QOL、及び電荷量QOLBから、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を算出することができる。例えば、第1データ(重み係数)を“−1”又は“+1”とし、第2データ(ニューロンの信号の値)を“−7”乃至“+7”のいずれか一し、かつ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積が正の数である場合、上述の表において、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOLにおいて、Qutを“+1”に置き換えることで、電荷量QOLから第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を求めることができる。また、例えば、第1データ(重み係数)を“−1”又は“+1”とし、第2データ(ニューロンの信号の値)を“−7”乃至“+7”のいずれか一し、かつ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積が負の数である場合、上述の表において、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOLBにおいて、Qutを“−1”に置き換えることで、電荷量QOLBから第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を求めることができる。
 なお、上述の動作例では、回路MPに設定された第1データ(重み係数)を“+1”“−1”としたが、“0”やアナログ値などの第1データ(重み係数)を用いて計算してもよい。これにより、回路MPは、2値や多値、アナログ値などの第1データ(重み係数)と多値の第2データ(ニューロンの信号の値)との積和演算、及び/又は活性化関数の演算を行うことができる。
 また、本発明の一態様は、上述の定義に限定されない。上述では、第2データ(ニューロンの信号の値)として、正の多値、負の多値、0を定義したが、例えば、入力期間を離散的な値でなく連続的な値をとることによって(aを正の実数として、入力期間をa×tutとすることによって)、第2データ(ニューロンの信号の値)をアナログ値として扱うことができる。
 また、例えば、トランジスタM3、トランジスタM3rがオン状態、又はトランジスタM4、トランジスタM4rがオン状態となる時間をtutとし、トランジスタM3−2b、トランジスタM3−2brがオン状態、又はトランジスタM4−2b、トランジスタM4−2brがオン状態となる時間を2tutとし、トランジスタM3−3b、トランジスタM3−3brがオン状態、又はトランジスタM4−3b、トランジスタM4−3brがオン状態となる時間を4tutとしたとき、配線WX1Lに高レベル電位、配線X2Lに低レベル電位が入力され、かつ配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bに低レベル電位が入力されたときの第2データ(ニューロンの信号の値)を“+1”ではなく“+0.1”などの実数として定義してもよい。
 また、本発明の一態様の半導体装置は、図50の回路MPの構成に限定されない。例えば、図50の回路MPでは、電流量を設定するトランジスタとして、回路MC内には、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bの3個とし、回路MCr内は、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brの3個としたが、回路MC、回路MCrのそれぞれにおいて、電流量を設定するトランジスタは2個でもよいし、4個以上としてもよい。
 また、本発明の一態様の半導体装置及び当該半導体装置の動作方法は、上述に限定されない。上述では、図50の回路MPのトランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3brのそれぞれのサイズを等しいものとして説明したが、例えば、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2brのW長とL長との比をW/Lとし、トランジスタM1−3b、トランジスタM1−3brのW長とL長との比を2W/Lとしてもよい。このとき、トランジスタM1のソース−ドレイン間に電流量としてIの電流が流れるように設定することによって、トランジスタM1−2bのW長とL長の比と、トランジスタM1−3bのW長とL長の比と、のそれぞれはトランジスタM1のW長とL長の比の2倍であるため、トランジスタM1−2b、トランジスタM1−3bのそれぞれのソース−ドレイン間には電流量として2Iが流れる。同様に、トランジスタM1rのソース−ドレイン間に電流量としてIの電流が流れるように設定することによって、トランジスタM1−2brのW長とL長の比と、トランジスタM1−3brのW長とL長の比と、のそれぞれはトランジスタM1rのW長とL長の比の2倍であるため、トランジスタM1−2br、トランジスタM1−3brのそれぞれのソース−ドレイン間には電流量として2Iが流れる。
 ここで、トランジスタM3、トランジスタM3rがオン状態、又はトランジスタM4、トランジスタM4rがオン状態となる時間をtutとし、トランジスタM3−2b、トランジスタM3−2brがオン状態、又はトランジスタM4−2b、トランジスタM4−2brがオン状態となる時間を2tutとし、トランジスタM3−3b、トランジスタM3−3brがオン状態、又はトランジスタM4−3b、トランジスタM4−3brがオン状態となる時間を2tutとする。つまり、回路MPに第2データ(ニューロンの信号の値)入力する際において、配線WX1L、又は配線X2Lの一方への高レベル電位の入力時間はtutとし、配線X1L2b、又は配線X2L2bの一方への高レベル電位の入力時間は2tutとし、配線X1L3b、又は配線X2L3bの一方への高レベル電位の入力時間は2tutとする。図51の回路MPには、配線WX1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bの符号の付近に、図50とは異なる、パルス電圧の模式図と入力時間を示している。
 トランジスタM1のソース−ドレイン間に電流量としてIutの電流が流れるように設定されたとき、トランジスタM3−3b又はトランジスタM4−3bの一方が時間2tutだけオン状態、トランジスタM3−3b又はトランジスタM4−3bの他方がオフ状態となることで、配線OL又は配線OLBから、トランジスタM1−3bを介して配線VEに流れる電荷量は、2tut×2Iut=4Qutとなる。なお、配線OLからトランジスタM1を介して配線VEに流れる電荷量と、配線OLからトランジスタM1−2bを介して配線VEに流れる電荷量と、については上述の動作例と条件が同じであるため、説明を省略する。
 また、トランジスタM1rのソース−ドレイン間に電流量としてIutの電流が流れるように設定されたとき、トランジスタM3−3br又はトランジスタM4−3brの一方が時間2tutだけオン状態、トランジスタM3−3br又はトランジスタM4−3brの他方がオフ状態となることで、配線OL又は配線OLBから、トランジスタM1−3brを介して配線VEに流れる電荷量は、2tut×2Iut=4Qutとなる。なお、配線OL又は配線OLBからトランジスタM1rを介して配線VErに流れる電荷量と、配線OL又は配線OLBからトランジスタM1−2brを介して配線VErに流れる電荷量と、については上述の動作例と条件が同じであるため、説明を省略する。
 上述の通り、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3brのそれぞれのサイズと、配線WX1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bのそれぞれへの高レベル電位の入力時間と、を適切に変更することによって、図50に示した回路MPの動作例と同様に、動作することができる。
 また、本発明の一態様の半導体装置は、図50、図51の回路MPの構成に限定されない。例えば、図50の回路MPでは、電流量を設定するトランジスタとして、回路MC内には、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bの3個とし、回路MCr内は、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brの3個としたが、回路MC、回路MCrのそれぞれにおいて、電流量を設定するトランジスタは2個、又は4個以上としてもよい。また、当該トランジスタに応じて、保持部の個数、配線の数も増減してもよい。
 また、本発明の一態様の半導体装置の動作方法は、上述の動作方法に限定されない。例えば、動作方法例2で説明した通り、配線WX1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bのそれぞれに入力される信号の入力期間を、複数のサブ期間に分けてもよい。
 また、本動作方法例では、回路MPは、説明の煩雑さを避けるため、配線OL、配線OLBには1個の回路MPのみが電気的接続されている場合を考えたが、図11の演算回路150のとおり、配線OL、配線OLBには複数の回路MPを電気的に接続してもよい。これにより、配線OL、配線OLBのそれぞれから複数の回路MPに入力された電荷量の合計を、回路ACTFに含まれる積分回路の容量に蓄積することができ、回路ACTFは、配線OL、配線OLBに流れたそれぞれの電荷量に応じたニューロンの信号z (k)を出力することができる。
 なお、本動作例では、図11の演算回路150を例としたが、状況に応じて、別の演算回路に変更することでも、本動作例と同様の動作を行うことができる。
 なお、本動作方法例は、本明細書で示す他の動作方法例などと適宜組み合わせることができる。
<動作方法例4>
 ここでは、図52の回路MPを適用した図11の演算回路150の動作方法について、説明する。
 動作方法例1乃至動作方法例3と同様に、説明の煩雑さを避けるため、配線OL、配線OLBに流れる電流の変化については、配線OL、配線OLBに電気的に接続されている1個の回路MPのみによって行われるものとする。また、回路MPに電気的に接続されている配線VE、配線VErのそれぞれは、回路MPに対して、定電圧としてVSSを与えるものとする。また、回路AFPに含まれている回路ACTF[1]乃至回路ACTF[n]のそれぞれは、一例としては、積分回路(または、電流電荷(IQ)変換回路)の構成を有する回路ACTFとする。例えば、図6Eの回路ACTF[j]において、負荷LEa、負荷LEbを容量などとした構成としてもよい。
 図52は、図27に示した回路MPにおいて、トランジスタM1−3b、トランジスタM1−3br、トランジスタM3−3b、トランジスタM3−3br、トランジスタM4−3b、トランジスタM4−3br、保持部HC−3b、保持部HC−3brを除いた構成となっている。また、そのため、配線WX1L3b、配線X2L2b、配線WL3bも図27から除いている。また、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2brのそれぞれのサイズ、例えば、W長とL長は等しいことが好ましい。また、本動作方法の例は、実施の形態2で説明した図26の回路MPの動作例と異なる。
 具体的には、回路AFPから回路MPに電流が流れる際において、配線WX1L、又は配線X2Lの一方への高レベル電位の入力時間はtutとして、配線X1L2b、又は配線X2L2bの一方への高レベル電位の入力時間は2tutとして動作させるものとする。つまり、トランジスタM3、トランジスタM3rがオン状態、又はトランジスタM4、トランジスタM4rがオン状態となる時間をtutとしたとき、トランジスタM3−2b、トランジスタM3−2brがオン状態、又はトランジスタM4−2b、トランジスタM4−2brがオン状態となる時間を2tutとなるように動作させる。そのため、図52の回路MPには、図27の回路MPと動作が異なることを示すため、配線WX1L、配線X2L、配線X1L2b、配線X2L2bの符号の付近に、パルス電圧の模式図と入力時間を図示している。
 動作方法例1、動作方法例2で説明したとおり、回路MPに第1データ(例えば、ここでは重み係数とする。)を設定して、かつトランジスタM3、又はトランジスタM4がオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1を介して配線VEに流れる電荷量が決まる。また、回路MPに第1データ(重み係数)を設定して、トランジスタM3r、又はトランジスタM4rがオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1rを介して配線VErに流れる電荷量が決まる。
 同様に、配線OL又は配線OLBから、トランジスタM1−2bを介して配線VEに流れる電荷量と、配線OL又は配線OLBから、トランジスタM1−2brを介して配線VErに流れる電荷量と、についてもトランジスタM3−2b、トランジスタM3−2br、トランジスタM4−2b、トランジスタM4−2brのそれぞれがオン状態となる時間を定めることによって決まる。
 ところで、図52の保持部HC、保持部HC−2bのそれぞれには、デジタル値(2値)として、VSS、又はVが保持されるものとする。保持部HC、保持部HC−2bのそれぞれへの電位VSSの保持は、図8における配線VCNと、図52の保持部HCのノードn1及び/又は保持部HC−2bのノードn1と、を導通状態にすることによって行われる。また、保持部HC、保持部HC−2bのそれぞれへの電位Vの保持は、トランジスタM1及び/又はトランジスタM1−2bのそれぞれのソース−ドレイン間に電流を電流量Iとして設定を行うことによって行われるものとする。なお、トランジスタM1、M1−2bのそれぞれに電流量Iとして設定したとき、トランジスタM1、M1−2bの作製工程などを起因とするトランジスタ特性のばらつきによって、保持部HC、HC−2bのそれぞれに保持されている電圧は互いに異なる場合がある。
 保持部HCr、保持部HC−2brのそれぞれには、上述と同様に、デジタル値(2値)として、VSS、又はVが保持されるものとする。
 ここで、回路MPに設定される第1データ(重み係数)について定義する。
 一例として、回路MPに第1データ(重み係数)として“+1”を設定する場合、トランジスタM1において電流量Iが流れるように設定し、保持部HC−2b、保持部HCr、保持部HC−2brにはVSSを保持するものとする。トランジスタM1の第1端子は、トランジスタM3を介して配線OLに電気的に接続され、トランジスタM4を介して配線OLBに電気的に接続されているため、配線WX1L、又は配線X2Lの一方に高レベル電位が入力されている場合、配線OL又は配線OLBからトランジスタM1を介して、配線VEに流れる電荷量はtut×I(=Qut)となる。ここで、tut×I=Qutとする。なお、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2brはオフ状態となるため、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2brのそれぞれのソース−ドレイン間に流れる電流量は0となる。
 また、回路MPに第1データ(重み係数)として“+2”を設定する場合、トランジスタM1−2bにおいて電流量Iが流れるように設定し、保持部HC、保持部HCr、保持部HC−2brにはVSSを保持するものとする。トランジスタM1−2bの第1端子は、トランジスタM3−2bを介して配線OLに電気的に接続され、トランジスタM4−2bを介して配線OLBに電気的に接続されているため、配線X1L2b、又は配線X2L2bの一方に高レベル電位が入力されている場合、配線OL又は配線OLBからトランジスタM1−2bを介して、配線VEに流れる電荷量は2tut×I=2Qutとなる。なお、トランジスタM1、トランジスタM1r、トランジスタM1−2brはオフ状態となるため、トランジスタM1、トランジスタM1r、トランジスタM1−2brのそれぞれのソース−ドレイン間に流れる電流量は0となる。
 また、回路MPに第1データ(重み係数)として“+3”を設定する場合、トランジスタM1、トランジスタM1−2bにおいて電流量Iが流れるように設定し、保持部HCr、保持部HC−2brにはVSSを保持するものとする。上述より、配線WX1L、又は配線X2Lの一方に高レベル電位が入力されている場合、配線OL又は配線OLBからトランジスタM1を介して、配線VEに流れる電荷量はtut×Iとなり、配線X1L2b、又は配線X2L2bの一方に高レベル電位が入力されている場合、配線OL又は配線OLBからトランジスタM1を介して、配線VEに流れる電荷量は2tut×Iとなる。このため、配線OL又は配線OLBから回路MCを介して配線VEに流れる電荷量は、tut×I+2tut×I=3Qutとなる。なお、トランジスタM1r、トランジスタM1−2brはオフ状態となるため、トランジスタM1r、トランジスタM1−2brのそれぞれのソース−ドレイン間に流れる電流量は0となる。
 また、第1データ(重み係数)を“−1”とする場合、トランジスタM1rにおいて電流量Iが流れるように設定し、保持部HC、保持部HC−2b、保持部HC−2brにはVSSを保持するものとする。トランジスタM1rの第1端子は、トランジスタM3rを介して配線OLBに電気的に接続され、トランジスタM4rを介して配線OLに電気的に接続されているため、配線WX1L、又は配線X2Lの一方に高レベル電位が入力されている場合、配線OL又は配線OLBからトランジスタM1rを介して、配線VErに流れる電荷量はtut×I(=Qut)となる。ここで、tut×I=Qutとする。なお、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2brはオフ状態となるため、トランジスタM1、トランジスタM1−2b、トランジスタM1−2brのそれぞれのソース−ドレイン間に流れる電流量は0となる。
 また、回路MPに第1データ(重み係数)として“−2”を設定する場合、トランジスタM1−2brにおいて電流量Iが流れるように設定し、保持部HC、保持部HCr、保持部HC−2bにはVSSを保持するものとする。トランジスタM1−2brの第1端子は、トランジスタM3−2brを介して配線OLBに電気的に接続され、トランジスタM4−2bを介して配線OLに電気的に接続されているため、配線X1L2b、又は配線X2L2bの一方に高レベル電位が入力されている場合、配線OL又は配線OLBからトランジスタM1−2brを介して、配線VErに流れる電荷量は2tut×I=2Qutとなる。なお、トランジスタM1、トランジスタM1r、トランジスタM1−2bはオフ状態となるため、トランジスタM1、トランジスタM1r、トランジスタM1−2bのそれぞれのソース−ドレイン間に流れる電流量は0となる。
 また、回路MPに第1データ(重み係数)として“−3”を設定する場合、トランジスタM1r、トランジスタM1−2brにおいて電流量Iが流れるように設定し、保持部HC、保持部HC−2bにはVSSを保持するものとする。上述より、配線WX1L、又は配線X2Lの一方に高レベル電位が入力されている場合、配線OL又は配線OLBからトランジスタM1rを介して、配線VErに流れる電荷量はtut×Iとなり、配線X1L2b、又は配線X2L2bの一方に高レベル電位が入力されている場合、配線OL又は配線OLBからトランジスタM1rを介して、配線VErに流れる電荷量は2tut×Iとなる。このため、配線OL又は配線OLBから回路MCrを介して配線VErに流れる電荷量は、tut×I+2tut×I=3Qutとなる。なお、トランジスタM1、トランジスタM1−2bはオフ状態となるため、トランジスタM1、トランジスタM1−2bのそれぞれのソース−ドレイン間に流れる電流量は0となる。
 また、第1データ(重み係数)を“0”とする場合、保持部HC、保持部HCr、保持部HC−2b、保持部HC−2brにはVSSを保持するものとする。そのため、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2brのそれぞれのソース−ドレイン間に流れる電流量は0となる。
 つまり、保持部HC、保持部HCr、保持部HC−2b、保持部HC−2brにデジタル値(2値)を保持して、配線WX1L、配線X2Lの一方への高レベル電位の入力期間をtutとし、配線WX1L2b、配線X2L2bの一方への高レベル電位の入力期間を2tutとすることで、多値(本動作例では“−3”、“−2”、“−1”、“0”、“+1”、“+2”、“+3”の7値)の第1データ(重み係数)を表すことができる。
 なお、本動作例では、回路MPに入力される第2データ(ここでは、例えば、ニューロンの信号とする。)の定義として、一例として、第2データが“+1”のときは、配線WX1L、配線X1L2bに高レベル電位が入力され、かつ配線X2L、配線X2L2bに低レベル電位が入力されるものとし、第2データが“−1”のときは、配線WX1L、配線X1L2bに低レベル電位が入力され、かつ配線X2L、配線X2L2bに高レベル電位が入力されるものとし、第2データが“0”のときは、配線WX1L、配線X1L2b、配線X2L、配線X2L2bのそれぞれに低レベル電位が入力されるものとする。
 ここで、回路ACTFの積分回路に着目する。配線OL又は配線OLBから、回路MCを介して配線VEに電流が流れるとき、又は、配線OL又は配線OLBから、回路MCrを介して配線VErに電流が流れるとき、図8Aにおいて、スイッチSWO、スイッチSWOBはオン状態にし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、スイッチSWHBはオフ状態にして、配線OL及び配線OLBと回路AFPとの間を導通状態にすることで、回路ACTFに含まれている積分回路の容量に配線OL、配線OLBに流れる電荷量を蓄積することができる。この結果、回路ACTFは、配線OLに流れた電荷量QOLと配線OLBに流れた電荷量QOLBに応じたニューロンの信号z (k)を出力することができる。
 上述の動作例より、第1データ(重み係数)を“+3”“+2”“+1”“0”“−1”“−2”“−3”のいずれか一に設定し、第2データ(ニューロンの信号の値)を上述の通りに定義した場合の、配線OLに流れた電荷量QOLと配線OLBに流れた電荷量QOLBを下の表に記載する。
Figure JPOXMLDOC01-appb-T000016
 上記の通り、第1データ(重み係数)と、第2データ(ニューロンの信号の値)を定めることにより、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果に応じて、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOL、及び配線OLBから回路MC又は回路MCrに電流が流れる電荷量QOLBが決まる。また、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果が正の値の場合、配線OLから回路MC又は回路MCrに電流が流れ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果が負の値の場合、配線OLBから回路MC又は回路MCrに電流が流れる。つまり、電荷量QOL、及び電荷量QOLBから、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を算出することができる。例えば、第1データ(重み係数)を“−3”乃至“+3”とし、第2データ(ニューロンの信号の値)を“−1”、“0”、“+1”のいずれか一とし、かつ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積が正の数である場合、上述の表において、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOLにおいて、Qutを“+1”に置き換えることで、電荷量QOLから第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を求めることができる。また、例えば、第1データ(重み係数)を“−1”又は“+1”とし、第2データ(ニューロンの信号の値)を“−7”乃至“+7”のいずれか一し、かつ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積が負の数である場合、上述の表において、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOLBにおいて、Qutを“−1”に置き換えることで、電荷量QOLBがら第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を求めることができる。
 なお、上述の動作例では、回路MPに設定された第1データ(重み係数)を“+3”、“+2”、“+1”、“0”、“−1”、“−2”、“−3”としたが、配線WX1L、配線X2L、配線X1L2b、配線X2L2bへの高レベル電位を入力する時間を調節して、第1データ(重み係数)をアナログ値などとして用いてもよい。これにより、回路MPは、アナログ値などの第1データ(重み係数)と多値の第2データ(ニューロンの信号の値)との積和演算、及び/又は活性化関数の演算を行うことができる。
 また、本発明の一態様の半導体装置は、図52の回路MPの構成に限定されない。例えば、図52の回路MPでは、電流量を設定するトランジスタとして、回路MC内には、トランジスタM1、トランジスタM1−2bの2個とし、回路MCr内は、トランジスタM1r、トランジスタM1−2brの2個としたが、回路MC、回路MCrのそれぞれにおいて、電流量を設定するトランジスタは3個以上としてもよい。また、当該トランジスタに応じて、保持部の個数、配線の数も増減してもよい。
 また、本発明の一態様の半導体装置の動作方法は、上述に限定されない。例えば、動作方法例2で説明した通り、配線WX1L、配線X2L、配線X1L2b、配線X2L2bのそれぞれに入力される信号の入力期間を、複数のサブ期間に分けてもよい。
 また、本動作方法例では、回路MPは、説明の煩雑さを避けるため、配線OL、配線OLBには1個の回路MPのみが電気的接続されている場合を考えたが、図11の演算回路150のとおり、配線OL、配線OLBには複数の回路MPを電気的に接続してもよい。これにより、配線OL、配線OLBのそれぞれから複数の回路MPに入力された電荷量の合計を、回路ACTFに含まれる積分回路の容量に蓄積することができ、回路ACTFは、配線OL、配線OLBに流れたそれぞれの電荷量に応じたニューロンの信号z (k)を出力することができる。
 なお、本動作例では、図11の演算回路150を例としたが、状況に応じて、別の演算回路に変更することでも、本動作例と同様の動作を行うことができる。
 なお、本動作方法例は、本明細書で示す他の動作方法例などと適宜組み合わせることができる。
<動作方法例5>
 ここでは、図53の回路MPを適用した図11の演算回路150の動作方法について、説明する。
 動作方法例1乃至動作方法例4と同様に、説明の煩雑さを避けるため、配線OL、配線OLBに流れる電流の変化については、配線OL、配線OLBに電気的に接続されている1個の回路MPのみによって行われるものとする。また、回路MPに電気的に接続されている配線VE、配線VErのそれぞれは、回路MPに対して、定電圧としてVSSを与えるものとする。また、回路AFPに含まれている回路ACTF[1]乃至回路ACTF[n]のそれぞれは、一例としては、積分回路(または、電流電荷(IQ)変換回路)の構成を有する回路ACTFとする。例えば、図6Eの回路ACTF[j]において、負荷LEa、負荷LEbを容量などとした構成としてもよい。
 図53は、図29に示した回路MPにおいて、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3br、トランジスタM3−2b、トランジスタM3−2br、トランジスタM3−3b、トランジスタM3−3br、トランジスタM4−2b、トランジスタM4−2br、トランジスタM4−3b、トランジスタM4−3br、保持部HC−2b、保持部HC−2br、保持部HC−3b、保持部HC−3brを除いた構成となっている。また、そのため、配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bも図29から除いている。また、本動作方法の例は、実施の形態2で説明した図29の回路MPの動作例と異なる。
 具体的には、回路MPに第2データ(例えば、ここではニューロンの信号の値とする。)を入力する際において、第2データ(ニューロンの信号の値)に応じて、配線WX1L、又は配線X2Lの一方への高レベル電位の入力時間を設定する。つまり、トランジスタM3、トランジスタM3rがオン状態、又はトランジスタM4、トランジスタM4rがオン状態となる時間を設定する。
 動作方法例1で説明したとおり、回路MPに第1データ(例えば、ここでは重み係数とする。)を設定して、かつトランジスタM3、又はトランジスタM4がオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1を介して配線VEに流れる電荷量が決まる。また、回路MPに第1データ(重み係数)を設定して、トランジスタM3r、又はトランジスタM4rがオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1rを介して配線VErに流れる電荷量が決まる。
 一例として、第2データ(ニューロンの信号の値)が“+1”のときは、配線X1Lへの高レベル電位の入力期間をtutとして、配線X1Lに高レベル電位、配線X2Lに低レベル電位を印加するものとしたとき、他の第2データ(ニューロンの信号の値)を次の表の通りに定義することができる。なお、下の表は、“−3”乃至“+3”の整数のみを図示している。
Figure JPOXMLDOC01-appb-T000017
 また、回路HCS、回路HCSrとしては、実施の形態2の構成例5で説明したとおり、SRAMを有する構成、又はNOSRAMを有する構成とすることができる。ここでは、回路HCS、回路HCSrには、2値(デジタル値)の電位を保持するものとする。そのため、一例として、回路MPに設定される第1データ(重み係数)を“+1”とするとき、回路HCSに高レベル電位(ここでは、例えばVDDLとする。)、回路HCSrに低レベル電位(ここでは、例えばVSSとする。)が保持されているものとし、回路MPに設定される第1データ(重み係数)を“−1”とするとき、回路HCSに低レベル電位、回路HCSrに高レベル電位が保持されているものとし、回路MPに設定される第1データ(重み係数)を“0”とするとき、回路HCSに低レベル電位、回路HCSrに低レベル電位が保持されているものとする。
 なお、回路HCSに電圧VDDLが保持されている場合、トランジスタM1に流れる電流の量をIとする。また、回路HCSに電圧VSSが保持されている場合、トランジスタM1に流れる電流の量を0とする。同様に、回路HCSrに電圧VDDLが保持されている場合、トランジスタM1rに流れる電流の量をIとし、回路HCSrに電圧VSSが保持されている場合、トランジスタM1rに流れる電流の量を0とする。
 次に、図53の回路MPの具体的な動作例について説明する。
 回路MPには、例えば、あらかじめ、“+1”の第1データ(重み係数)が設定されているものとする。
 回路MPに第2データ(ニューロンの信号の値)として“+3”が入力されている場合、トランジスタM3が時間3tutだけオン状態、トランジスタM4がオフ状態となることで、配線OLから、トランジスタM1を介して配線VEに流れる電荷量は、3tut×Iutとなる。なお、ここで、tut×Iut=Qutとする。一方、配線OLBから、回路MCrを介して配線VErに流れる電荷量は、トランジスタM1rがオフ状態であるため、0となる。
 また、回路MPに第2データ(ニューロンの信号の値)として“−3”が入力されている場合、配線OLBと回路MCとの間、配線OLと回路MCrとの間がそれぞれ導通状態となり、配線OLと回路MCrとの間、配線OLと回路MCとの間が非導通状態となるため、配線OLBから、回路MCを介して配線VEに流れる電荷量が3tut×Iut=3Qutとなり、配線OLから、回路MCrを介して配線VErに流れる電荷量が、0となる。
 また、回路MPには、例えば、あらかじめ、“−1”の第1データ(重み係数)が設定されている場合を考える。
 回路MPに第2データ(ニューロンの信号の値)として“+3”が入力されている場合、トランジスタM3が時間3tutだけオン状態、トランジスタM4がオフ状態となることで、配線OLBから、トランジスタM1rを介して配線VErに流れる電荷量は、3tut×Iut=3Qutとなる。一方、配線OLから、回路MCrを介して配線VEに流れる電荷量は、トランジスタM1がオフ状態であるため、0となる。
 また、回路MPに第2データ(ニューロンの信号の値)として“−3”が入力されている場合、配線OLBと回路MCとの間、配線OLと回路MCrとの間がそれぞれ導通状態となり、配線OLと回路MCrとの間、配線OLと回路MCとの間が非導通状態となるため、配線OLから、回路MCrを介して配線VErに流れる電荷量が3tut×Iut=3Qutとなり、配線OLBから、回路MCを介して配線VEに流れる電荷量が、0となる。
 ここで、回路ACTFの積分回路に着目する。配線OL又は配線OLBから、回路MCを介して配線VEに電流が流れるとき、又は、配線OL又は配線OLBから、回路MCrを介して配線VErに電流が流れるとき、図8Aにおいて、スイッチSWO、スイッチSWOBはオン状態にし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、スイッチSWHBはオフ状態にして、配線OL及び配線OLBと回路AFPとの間を導通状態にすることで、回路ACTFに含まれている積分回路の容量に配線OL、配線OLBに流れる電荷量を蓄積することができる。この結果、回路ACTFは、配線OLに流れた電荷量QOLと配線OLBに流れた電荷量QOLBに応じたニューロンの信号z (k)を出力することができる。
 上述の動作例より、第1データ(重み係数)を“+1”又は“−1”として、第2データ(ニューロンの信号の値)を上述の通りに定義した場合の、配線OLに流れた電荷量QOLと配線OLBに流れた電荷量QOLBを下の表に記載する。
Figure JPOXMLDOC01-appb-T000018
 なお、第2データ(ニューロンの信号の値)を“−3”、“−2”、“−1”、“0”、“+1”、“+2”、“+3”以外の整数、又は実数とするとき、整数又は実数に応じて、配線X1L、又は配線X2Lの一方への高レベル電位の入力時間を設定すればよい。例えば、aを正の実数として、入力期間をa×tutとすることによって、第2データ(ニューロンの信号の値)をアナログ値として扱うことができる。
 これにより、動作方法例1乃至動作方法例3と同様に、第2データ(ニューロンの信号の値)を多値として、回路MPに与えることができる。
 なお、上述した通り、図53の回路MPに含まれている回路HCS、回路HCSrは、SRAMを有する構成とすることができる。図54Aは、回路HCS、回路HCSrがSRAMを有する構成として、図53の回路MPの詳細を示した具体例を示している。なお、図54Aに記載している符号、第1データ(重みデータ)の保持方法などについては、図30の回路MPの説明の記載を参酌する。
 また、図54Aの回路MPにおいて、回路HCSに保持されている電位を低レベル電位、又は高レベル電位の一方とし、回路HCSrに保持されている電位を低レベル電位、又は高レベル電位の他方とする場合、つまり、回路HCS、回路HCSrにそれぞれ同じ電位を保持しなくてもよい場合、図54Aの回路MPは、図54Bの回路MPに構成を変更することができる。図54Bの回路MPは、回路MCに回路HCSを有しており、回路HCSに含まれているインバータループ回路IVRによって、トランジスタM1のゲートに与える信号の反転信号をトランジスタM1rに与える構成となっている。なお、この場合、一例として、トランジスタM1のゲートに高レベル電位が与えられているとき(トランジスタM1rのゲートに低レベル電位が与えられているとき)、回路MPに設定される第1データ(重み係数)を“+1”とすることができ、トランジスタM1のゲートに低レベル電位が与えられているとき(トランジスタM1rのゲートに高レベル電位が与えられているとき)、回路MPに設定される第1データ(重み係数)を“−1”とすることができる。
 また、回路HCS、回路HCSrにインバータループ回路IVRを有し、かつ図54Aの回路MPとは異なる構成例を、図55Aに示す。図55Aに示す回路MPは、回路MCにおいて、インバータループ回路IVRを含む回路HCSと、トランジスタM3、M4と、回路MCrにおいて、インバータループ回路IVRrを含む回路HCSrと、トランジスタM3r、トランジスタM4rと、を有する。インバータループ回路IVRは、インバータ回路IV1と、インバータ回路IV2と、を有し、インバータループ回路IVRrは、インバータ回路IV1rと、インバータ回路IV2rと、を有する。
 インバータ回路IV1の出力端子は、インバータ回路IV2の入力端子と、トランジスタM3の第1端子と、トランジスタM4の第1端子と、に電気的に接続され、インバータ回路IV2の出力端子は、インバータ回路IV1の入力端子に電気的に接続されている。トランジスタM3の第2端子は、配線OLに電気的に接続され、トランジスタM3のゲートは、配線WX1Lに電気的に接続されている。トランジスタM4の第2端子は、配線OLBに電気的に接続され、トランジスタM4のゲートは、配線X2Lに電気的に接続されている。インバータ回路IV1rの出力端子は、インバータ回路IV2rの入力端子と、トランジスタM3rの第1端子と、トランジスタM4rの第1端子と、に電気的に接続され、インバータ回路IV2rの出力端子は、インバータ回路IV1rの入力端子に電気的に接続されている。トランジスタM3rの第2端子は、配線OLBに電気的に接続され、トランジスタM3rのゲートは、配線WX1Lに電気的に接続されている。トランジスタM4rの第2端子は、配線OLに電気的に接続され、トランジスタM4rのゲートは、配線X2Lに電気的に接続されている。
 回路HCSは、インバータループ回路IVRによって、インバータ回路IV1の出力端子に高レベル電位、又は低レベル電位の一方を保持する機能を有し、回路HCSrは、インバータループ回路IVRrによって、インバータ回路IV1の出力端子に高レベル電位、又は低レベル電位の一方を保持する機能を有する。このため、図53、図54Aと同様に、一例として、回路MPに設定される第1データ(重み係数)を“+1”とするとき、インバータ回路IV1の出力端子に高レベル電位(ここでは、例えばVDDLとする。)、インバータ回路IV1rの出力端子に低レベル電位(ここでは、例えばVSSとする。)が保持されているものとし、回路MPに設定される第1データ(重み係数)を“−1”とするとき、インバータ回路IV1の出力端子に低レベル電位、インバータ回路IV1rの出力端子に高レベル電位が保持されているものとし、回路MPに設定される第1データ(重み係数)を“0”とするとき、インバータ回路IV1の出力端子に低レベル電位、インバータ回路IV1rの出力端子に低レベル電位が保持されているものとする。
 また、図55Aの回路MPへの第2データ(ニューロンの信号の値)の入力は、図53、図54Aと同様に、配線WX1L、又は配線X2Lの一方への高レベル電位の入力時間を設定すればよい。
 図55Aの回路MPは、図53、図54A、及び図54Bのそれぞれの回路MPと異なり、回路HCSのインバータループ回路IVRに含まれているトランジスタを用いて配線OL又は配線OLBから回路MCに電流を流し、回路HCSrのインバータループ回路IVRrに含まれているトランジスタを用いて、配線OL又は配線OLBから回路MCrに電流を流す構成となっている。
 また、図55Aの回路MPは、図55Bに示す回路MPに構成を変更することができる。図55Bの回路MPは、図55Aの回路MPに含まれている回路MCrを除いた構成となっている。つまり、回路HCSのインバータループ回路IVRに含まれているトランジスタを用いて配線OL又は配線OLBから回路MCに電流を流す構成となっている。なお、この場合、一例として、インバータ回路IV1の出力端子に高レベル電位が与えられているとき、回路MPに設定される第1データ(重み係数)を“+1”とすることができ、インバータ回路IV1の出力端子に低レベル電位が与えられているとき、回路MPに設定される第1データ(重み係数)を“0”とすることができる。
 また、図55Cの回路MPは、図55Bの回路MPから、配線X2Lを除き、かつトランジスタM4の第1端子がインバータ回路IV1の入力端子と、インバータ回路IV2の出力端子とに電気的に接続されている構成となっている。配線WX1Lの電位が高レベル電位となっているときに、配線OL又は配線OLBには、逆の信号が出力されることとなる。この場合、一例として、インバータ回路IV1の出力端子に高レベル電位が与えられているとき、回路MPに設定される第1データ(重み係数)を“+1”とすることができ、インバータ回路IV1の出力端子に低レベル電位が与えられているとき、回路MPに設定される第1データ(重み係数)を“−1”とすることができる。また、一例として、回路MPから回路AFPに情報(例えば、電流、電圧など)を供給する際において、配線WX1Lに高レベル電位が入力されているとき、回路MPに入力される第2データ(ニューロンの信号の値)を“+1”とし、配線WX1Lに低レベル電位が入力されているとき、回路MPに入力される第2データ(ニューロンの信号の値)を“0”とすることができる。
 なお、図55A乃至図55Cの回路MPは、例えば、図7に示す演算回路140の回路MPに適用することができる。
 また、上述した通り、図53の回路MPに含まれている回路HCS、回路HCSrは、NOSRAMを有する構成とすることができる。図56Aは、回路HCS、回路HCSrがNOSRAMを有する構成として、図53の回路MPの詳細を示した具体例を示している。なお、図56Aに記載している符号、第1データ(重みデータ)の保持方法などについては、図34の回路MPの説明の記載を参酌する。
 また、図56Aの回路MPにおいて、配線ILと配線OLとを一本の配線にまとめ、及び/又は、配線ILBと配線OLBとを一本の配線にまとめてもよい。図56Bの回路MPは、配線ILと配線OLとを、配線OLとして一本の配線にまとめ、配線ILBと配線OLBとを、配線OLとして一本の配線にまとめた構成となっている。
 また、本発明の一態様の半導体装置の動作方法は、上述に限定されない。例えば、動作方法例2で説明した通り、図53乃至図56の回路MPにおいて、配線X1L(図55ABでは配線WX1L)、配線X2Lのそれぞれに入力される信号の入力期間を、複数のサブ期間に分けてもよい。
 また、本動作方法例では、回路MPは、説明の煩雑さを避けるため、配線OL、配線OLBには1個の回路MPのみが電気的に接続されている場合を考えたが、図11の演算回路150のとおり、配線OL、配線OLBには複数の回路MPを電気的に接続してもよい。これにより、配線OL、配線OLBのそれぞれから複数の回路MPに入力された電荷量の合計を、回路ACTFに含まれる積分回路の容量に蓄積することができ、回路ACTFは、配線OL、配線OLBに流れたそれぞれの電荷量に応じたニューロンの信号z (k)を出力することができる。
 なお、本動作例では、図11の演算回路150を例としたが、状況に応じて、別の演算回路に変更することでも、本動作例と同様の動作を行うことができる。
 なお、本動作方法例は、本明細書で示す他の動作方法例などと適宜組み合わせることができる。
<動作方法例6>
 ここでは、図57の回路MPを適用した図11の演算回路150の動作方法について、説明する。
 動作方法例1乃至動作方法例5と同様に、説明の煩雑さを避けるため、配線OL、配線OLBに流れる電流の変化については、配線OL、配線OLBに電気的に接続されている1個の回路MPのみによって行われるものとする。また、回路MPに電気的に接続されている配線VE、配線VErのそれぞれは、回路MPに対して、定電圧としてVSSを与えるものとする。また、回路AFPに含まれている回路ACTF[1]乃至ACTF[n]のそれぞれは、一例としては、積分回路(または、電流電荷(IQ)変換回路)の構成を有する回路ACTFとする。例えば、図6Eの回路ACTF[j]において、負荷LEa、負荷LEbを容量などとした構成としてもよい。
 図57は、図36に示した回路MPと同様の回路構成を示している。なお、図57の回路MPは、回路HCS、回路HCS−2b、回路HCS−3bのそれぞれは、配線OLBに電気的に接続され、回路HCSr、回路HCS−2br、回路HCS−3brのそれぞれは、配線OLBに電気的に接続されている構成となっている。また、本動作方法の例は、実施の形態2で説明した図36の回路MPの動作例と異なる。
 具体的には、動作方法例5と同様に、回路MPに第2データ(例えば、ここではニューロンの信号の値とする。)に応じて、配線WX1L、又は配線X2Lの一方への高レベル電位の入力時間を設定する。つまり、トランジスタM3、トランジスタM3rがオン状態、又はトランジスタM4、トランジスタM4rがオン状態となる時間を設定する。
 動作方法例1で説明したとおり、回路MPに第1データ(例えば、ここでは重み係数とする。)を設定して、かつトランジスタM3、又はトランジスタM4がオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1を介して配線VEに流れる電荷量が決まる。また、回路MPに第1データ(重み係数)を設定して、トランジスタM3r、又はトランジスタM4rがオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1rを介して配線VErに流れる電荷量が決まる。
 また、配線OL又は配線OLBから、トランジスタM1−2bを介して配線VEに流れる電荷量と、配線OL又は配線OLBから、トランジスタM1−2brを介して配線VErに流れる電荷量と、についてもトランジスタM3、トランジスタM3r、トランジスタM4、トランジスタM4rのそれぞれがオン状態となる時間を定めることによって決まる。
 そのため、図57の回路MPにおける、第2データ(ニューロンの信号の値)については、図53の回路MPにおける第2データ(ニューロンの信号の値)の定義と同様とすることができる。
 また、図57に示す回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brとしては、実施の形態2の構成例6で説明したとおり、一例として、SRAMを有する構成、又はNOSRAMを有する構成とすることができる。ここでは、回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brには、2値(デジタル値)の電位を保持するものとする。
 また、トランジスタM1、トランジスタM1rのW長とL長との比をW/Lとしたとき、トランジスタM1、トランジスタM1rのW長とL長との比を2W/Lとし、トランジスタM1、トランジスタM1rのW長とL長との比を4W/Lとする。
 そのため、回路MPに設定される第1データ(ここでは、例えば、重み係数とする。)は、実施の形態2の構成例6の内容を参酌することができる。具体的には、例えば、回路MPに設定される第1データ(重み係数)は、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3brのそれぞれに流れる電流に応じて決まる。換言すると、回路MPに設定される第1データ(重み係数)は、回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brのそれぞれに保持される電位に応じて決まる。上記より、一例として、次の表のとおりに、回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brのそれぞれに電位を保持することによって、回路MPに設定される第1データ(重み係数)を設定することができる。
Figure JPOXMLDOC01-appb-T000019
 なお、回路HCSに電圧VDDLが保持されている場合、トランジスタM1に流れる電流の量をIとする。また、トランジスタM1−2bのW長とL長の比は、トランジスタM1のW長とL長の比の2倍であるため、回路HCS−2bに電圧VDDLが保持されている場合、トランジスタM1に流れる電流の量を2Iとなる。また、トランジスタM1−3bのW長とL長の比は、トランジスタM1のW長とL長の比の4倍であるため、回路HCS−3bに電圧VDDLが保持されている場合、トランジスタM1−3bに流れる電流の量を4Iとなる。また、同様に、回路HCSrに電圧VDDLが保持されている場合、トランジスタM1rに流れる電流の量をIとなり、回路HCS−2brに電圧VDDLが保持されている場合、トランジスタM1−2brに流れる電流の量を2Iとなり、回路HCS−3brに電圧VDDLが保持されている場合、トランジスタM1−3brに流れる電流の量を4Iとなる。なお、回路HCS、回路HCSr、回路HCS−2b、回路HCS−2br、回路HCS−3b、回路HCS−2brのそれぞれに電圧VSSが保持されている場合、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3brに流れる電流の量を0とする。
 次に、図57の回路MPの具体的な動作例について説明する。
 回路MPには、例えば、あらかじめ、“+7”の第1データ(重み係数)が設定されているものとする。このとき、トランジスタM1のソース−ドレイン間には電流Iutが流れ、トランジスタM1−2bのソース−ドレイン間には電流2Iutが流れ、トランジスタM1−3bのソース−ドレイン間には電流4Iutが流れる。
 回路MPに第2データ(ニューロンの信号の値)として“+3”が入力されている場合、トランジスタM3が時間3tutだけオン状態、トランジスタM4がオフ状態となることで、配線OLから、トランジスタM1を介して配線VEに流れる電荷量は、3tut×Iut+3tut×2Iut+3tut×4Iut=21tut×Iutとなる。なお、ここで、tut×Iut=Qutとする。つまり、配線OLから、回路MCを介して配線VEに流れる電荷量は、21tut×Iut=21Qutとなる。一方、配線OLBから、回路MCrを介して配線VErに流れる電荷量は、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brがオフ状態であるため、0となる。
 また、回路MPに第2データ(ニューロンの信号の値)として“−3”が入力されている場合、配線OLBと回路MCとの間、配線OLと回路MCrとの間がそれぞれ導通状態となり、配線OLと回路MCrとの間、配線OLと回路MCとの間が非導通状態となるため、配線OLBから、回路MCを介して配線VEに流れる電荷量が21tut×Iut=21Qutとなり、配線OLから、回路MCrを介して配線VErに流れる電荷量が、0となる。
 また、回路MPには、例えば、あらかじめ、“−7”の第1データ(重み係数)が設定されている場合を考える。このとき、トランジスタM1rのソース−ドレイン間には電流Iが流れ、トランジスタM1−2brのソース−ドレイン間には電流2Iが流れ、トランジスタM1−3brのソース−ドレイン間には電流4Iが流れる。
 回路MPに第2データ(ニューロンの信号の値)として“+3”が入力されている場合、トランジスタM3が時間3tutだけオン状態、トランジスタM4がオフ状態となることで、配線OLBから、トランジスタM1rを介して配線VErに流れる電荷量は、3tut×Iut+3tut×2Iut+3tut×4Iut=21tut×Iutとなる。つまり、配線OLBから、回路MCrを介して配線VErに流れる電荷量は、21tut×Iut=21Qutとなる。一方、配線OLから、回路MCを介して配線VEに流れる電荷量は、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brがオフ状態であるため、0となる。一方、配線OLから、回路MCを介して配線VEに流れる電荷量は、トランジスタM1、M1−2b、M1−3bがオフ状態であるため、0となる。
 また、回路MPに第2データ(ニューロンの信号の値)として“−3”が入力されている場合、配線OLBと回路MCとの間、配線OLと回路MCrとの間がそれぞれ導通状態となり、配線OLと回路MCrとの間、配線OLと回路MCとの間が非導通状態となるため、配線OLから、回路MCrを介して配線VErに流れる電荷量が21tut×Iut=21Qutとなり、配線OLBから、回路MCを介して配線VEに流れる電荷量が、0となる。
 また、回路MPに設定される第1データ(重み係数)を変更することによって、回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brのそれぞれに保持される電位の組み合わせが変化するため、これにより、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3brのそれぞれに流れる電流の量が変化する。したがって、配線OL又は配線OLBから、回路MCを介して配線VEに流れる電荷量と、配線OL又は配線OLBから、回路MCrを介して配線VErに流れる電荷量と、第1データ(重み係数)に応じて決めることができる。
 また、回路MPには、あらかじめ、“0”の第1データ(重み係数)が設定されている場合、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3brのそれぞれはオフ状態になっている。そのため、配線OL又は配線OLBから、回路MCを介して配線VEに電流は流れず、配線OL又は配線OLBから、回路MCrを介して配線VErに電流は流れない。換言すると、配線OL、配線OLBのそれぞれに流れる電荷量は0ということができる。
 また、回路MPに第2データ(ニューロンの信号の値)として“0”が入力されている場合、配線X1L、配線X2Lのそれぞれには低レベル電位が入力されているため、トランジスタM3、トランジスタM3r、トランジスタM4、トランジスタM4rはオフ状態となる。そのため、配線OL又は配線OLBから、回路MCを介して配線VEに電流は流れず、配線OL又は配線OLBから、回路MCrを介して配線VErに電流は流れない。換言すると、配線OL、配線OLBのそれぞれに流れる電荷量は0ということができる。
 配線OL又は配線OLBから、回路MCを介して配線VEに電流が流れるとき、又は、配線OL又は配線OLBから、回路MCrを介して配線VErに電流が流れるとき、図8Aにおいて、スイッチSWO、スイッチSWOBはオン状態にし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、スイッチSWHBはオフ状態にして、配線OL及びOLBと回路AFPとの間を導通状態にすることで、回路ACTFに含まれている積分回路の容量に配線OL、配線OLBに流れる電荷量を蓄積することができる。この結果、回路ACTFは、配線OL、配線OLBのそれぞれに流れた電荷量に応じたニューロンの信号z (k)を出力することができる。
 上記の通り、第1データ(重み係数)と、第2データ(ニューロンの信号の値)を定めることにより、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果に応じて、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOL、及び配線OLBから回路MC又は回路MCrに電流が流れる電荷量QOLBが決まる。また、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果が正の値の場合、配線OLから回路MC又は回路MCrに電流が流れ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果が負の値の場合、配線OLBから回路MC又は回路MCrに電流が流れる。つまり、電荷量QOL、及び電荷量QOLBから、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を算出することができる。例えば、第1データ(重み係数)を“+7”とし、第2データ(ニューロンの信号の値)を“+3”としたとき、QOL=21Qut、QOLB=0となる。この場合、配線OLから回路MC又は回路MCrに電流が流れるため、積の結果は正の値となる。このため、一例として、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOLにおいて、Qutを“+1”に置き換えることによって、電荷量QOLから第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果として、“+21”を求めることができる。また、例えば、第1データ(重み係数)を“−7”とし、第2データ(ニューロンの信号の値)を“+3”としたとき、QOL=0、QOLB=21Qutとなる。この場合、配線OLBから回路MC又は回路MCrに電流が流れるため、積の結果は負の値となる。このため、一例として、配線OLBから回路MC又は回路MCrに電流が流れる電荷量QOLBにおいて、Qutを“−1”に置き換えることによって、電荷量QOLBから第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果として、“−21”を求めることができる。
 また、第2データ(ニューロンの信号の値)を“−3”、“−2”、“−1”、“0”、“+1”、“+2”、“+3”以外の整数、又は実数とするとき、整数又は実数に応じて、配線X1L、又は配線X2Lの一方への高レベル電位の入力時間を設定すればよい。例えば、aを正の実数として、入力期間をa×tutとすることによって、第2データ(ニューロンの信号の値)をアナログ値として扱うことができる。
 これにより、動作方法例1乃至動作方法例3、動作方法例5と同様に、第2データ(ニューロンの信号の値)を多値として、回路MPに与えることができる。
 また、本発明の一態様の半導体装置は、図57の回路MPの構成に限定されない。例えば、図57の回路MPでは、電流量を設定するトランジスタとして、回路MC内には、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bの3個とし、回路MCr内は、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brの3個としたが、回路MC、回路MCrのそれぞれにおいて、電流量を設定するトランジスタは2個、又は4個以上としてもよい。また、当該トランジスタに応じて、保持部の個数、配線の数も増やしてもよい。
 また、本発明の一態様の半導体装置の動作方法は、上述に限定されない。例えば、動作方法例2で説明した通り、図57の回路MPにおいて、配線X1L、X2Lのそれぞれに入力される信号の入力期間を、複数のサブ期間に分けてもよい。
 また、本動作方法例では、回路MPは、説明の煩雑さを避けるため、配線OL、配線OLBには1個の回路MPのみが電気的接続されている場合を考えたが、図11の演算回路150のとおり、配線OL、配線OLBには複数の回路MPを電気的に接続してもよい。これにより、配線OL、配線OLBのそれぞれから複数の回路MPに入力された電荷量の合計を、回路ACTFに含まれる積分回路の容量に蓄積することができ、回路ACTFは、配線OL、配線OLBに流れたそれぞれの電荷量に応じたニューロンの信号z (k)を出力することができる。
 なお、本動作例では、図11の演算回路150を例としたが、状況に応じて、別の演算回路に変更することでも、本動作例と同様の動作を行うことができる。
 なお、本動作方法例は、本明細書で示す他の動作方法例などと適宜組み合わせることができる。
<動作方法例7>
 ここでは、図58の回路MPを適用した図11の演算回路150の動作方法について、説明する。
 動作方法例1乃至動作方法例6と同様に、説明の煩雑さを避けるため、配線OL、配線OLBに流れる電流の変化については、配線OL、配線OLBに電気的に接続されている1個の回路MPのみによって行われるものとする。また、回路MPに電気的に接続されている配線VE、配線VErのそれぞれは、回路MPに対して、定電圧としてVSSを与えるものとする。また、回路AFPに含まれている回路ACTF[1]乃至ACTF[n]のそれぞれは、一例としては、積分回路(又は、電流電荷(IQ)変換回路)の構成を有する回路ACTFとする。例えば、図6Eの回路ACTF[j]において、負荷LEa、負荷LEbを容量などとした構成としてもよい。
 図58は、図29に示した回路MPと同様の回路構成を示している。但し、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3brのそれぞれのサイズ、例えば、W長とL長は等しいことが好ましい。また、本動作方法の例は、実施の形態2で説明した図29の回路MPの動作例と異なる。
 具体的には、図50の回路MPと同様に、回路MPに第2データ(例えば、ここではニューロンの信号の値とする。)を入力する際において、配線WX1L、又は配線X2Lの一方への高レベル電位の入力時間をtutとしたとき、配線X1L2b、又は配線X2L2bの一方への高レベル電位の入力時間は2tutとし、配線X1L3b、又は配線X2L3bの一方への高レベル電位の入力時間は4tutとして動作させるものとする。つまり、トランジスタM3、トランジスタM3rがオン状態、又はトランジスタM4、トランジスタM4rがオン状態となる時間がtutとしたとき、トランジスタM3−2b、トランジスタM3−2brがオン状態、又はトランジスタM4−2b、トランジスタM4−2brがオン状態となる時間を2tutとなり、トランジスタM3−3b、トランジスタM3−3brがオン状態、又はトランジスタM4−3b、トランジスタM4−3brがオン状態となる時間を4tutとなるように動作させる。そのため、図58の回路MPには、図29の回路MPと動作が異なることを示すため、配線WX1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bの符号の付近に、パルス電圧の模式図と入力時間を図示している。
 動作方法例1、動作方法例2で説明したとおり、回路MPに第1データ(例えば、ここでは重み係数とする。)を設定して、かつトランジスタM3、又はトランジスタM4がオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1を介して配線VEに流れる電荷量が決まる。また、回路MPに第1データ(重み係数)を設定して、トランジスタM3r、又はトランジスタM4rがオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1rを介して配線VErに流れる電荷量が決まる。
 同様に、配線OL又は配線OLBから、トランジスタM1−2bを介して配線VEに流れる電荷量と、配線OL又は配線OLBから、トランジスタM1−2brを介して配線VErに流れる電荷量と、についても、トランジスタM3−2b、トランジスタM3−2br、トランジスタM4−2b、トランジスタM4−2brのそれぞれにおいて、オン状態となる時間を定めることによって決まる。また、配線OL又は配線OLBから、トランジスタM1−3bを介して配線VEに流れる電荷量と、配線OL又は配線OLBから、トランジスタM1−3brを介して配線VErに流れる電荷量と、についても、トランジスタM3−3b、トランジスタM3−3br、トランジスタM4−3b、トランジスタM4−3brのそれぞれにおいて、オン状態となる時間を定めることによって決まる。
 そのため、図58の回路MPにおける、第2データ(ニューロンの信号の値)については、一例としては、動作方法例3で説明した図50の回路MPにおける第2データ(ニューロンの信号の値)の定義と同様とすることができる。
 また、図58に示す回路HCS、回路HCSrとしては、実施の形態2の構成例5で説明したとおり、一例として、SRAMを有する構成、又はNOSRAMを有する構成とすることができる。ここでは、回路HCS、回路HCSrは、2値(デジタル値)の電位を保持するものとする。そのため、一例として、回路MPに設定される第1データ(重み係数)を“+1”とするとき、回路HCSに高レベル電位(ここでは、例えばVDDLとする。)、回路HCSrに低レベル電位(ここでは、例えばVSSとする。)が保持されているものとし、回路MPに設定される第1データ(重み係数)を“−1”とするとき、回路HCSに低レベル電位、回路HCSrに高レベル電位が保持されているものとし、回路MPに設定される第1データ(重み係数)を“0”とするとき、回路HCSに低レベル電位、回路HCSrに低レベル電位が保持されているものとする。
 なお、回路HCSに電圧VDDLが保持されている場合、トランジスタM1に流れる電流の量をIとする。また、回路HCSに電圧VSSが保持されている場合、トランジスタM1に流れる電流の量を0とする。同様に、回路HCSrに電圧VDDLが保持されている場合、トランジスタM1rに流れる電流の量をIutとし、回路HCSrに電圧VSSが保持されている場合、トランジスタM1rに流れる電流の量を0とする。
 また、回路MCにおいて、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれのサイズは互いに等しく、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれのゲートが回路HCSに電気的に接続され、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれの第1端子が配線VEに電気的に接続されているため、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれのソース−ドレイン間には互いにほぼ等しい電流が流れる。そのため、トランジスタM1−2b、トランジスタM1−3bのそれぞれのソース−ドレイン間に流れる電流量は、トランジスタM1と同じIutとなる。また、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのそれぞれは、トランジスタM1のサイズと等しく、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのゲートが回路HCSrに電気的に接続され、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのそれぞれの第1端子が配線VErに電気的に接続されているため、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのそれぞれのソース−ドレイン間には、トランジスタM1のソース−ドレイン間に流れる電流と等しくなる。そのため、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのそれぞれのソース−ドレイン間に流れる電流量は、トランジスタM1と同じIutとなる。
 次に、図58の回路MPの具体的な動作例について説明する。
 回路MPには、例えば、あらかじめ、“+1”の第1データ(重み係数)が設定されているものとする。
 回路MPに第2データ(ニューロンの信号の値)として“+7”が入力されている場合、トランジスタM3が時間tutだけオン状態、トランジスタM4がオフ状態となることで、配線OLから、トランジスタM1を介して配線VEに流れる電荷量は、tut×Iutとなる。なお、ここで、tut×Iut=Qutとする。また、同様に、トランジスタM3−2bが時間2tutだけオン状態、トランジスタM4−2bがオフ状態となることで、配線OLから、トランジスタM1−2bを介して配線VEに流れる電荷量は、2tut×Iut=2Qutとなり、トランジスタM3−3bが時間4tutだけオン状態、トランジスタM4−3bがオフ状態となることで、配線OLから、トランジスタM1−3bを介して配線VEに流れる電荷量は、4tut×Iut=4Qutとなる。そのため、配線OLから、回路MCを介して配線VEに流れる電荷量は、Qut+2Qut+4Qut=7Qutとなる。一方、配線OLBから、回路MCrを介して配線VErに流れる電荷量は、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brがオフ状態であるため、0となる。
 なお、回路MPに第2データ(ニューロンの信号の値)として“−7”が入力されている場合、配線OLBと回路MCとの間、配線OLと回路MCrとの間がそれぞれ導通状態となり、配線OLと回路MCrとの間、配線OLと回路MCとの間が非導通状態となるため、配線OLBから、回路MCを介して配線VEに流れる電荷量がQut+2Qut+4Qut=7Qutとなり、配線OLから、回路MCrを介して配線VErに流れる電荷量が、0となる。
 また、回路MPには、例えば、あらかじめ、“−1”の第1データ(重み係数)が設定されている場合を考える。
 回路MPに第2データ(ニューロンの信号の値)として“+7”が入力されている場合、トランジスタM3rが時間tutだけオン状態、トランジスタM4rがオフ状態となることで、配線OLBから、トランジスタM1rを介して配線VErに流れる電荷量は、tut×Iut=Qutとなる。また、同様に、トランジスタM4−2brが時間2tutだけオン状態、トランジスタM3−2brがオフ状態となることで、配線OLBから、トランジスタM1−2brを介して配線VErに流れる電荷量は、2tut×Iut=2Qutとなり、トランジスタM4−3brが時間4tutだけオン状態、トランジスタM3−3brがオフ状態となることで、配線OLBから、トランジスタM1−3brを介して配線VErに流れる電荷量は、4tut×Iut=4Qutとなる。そのため、配線OLBから、回路MCrを介して配線VErに流れる電荷量は、Qut+2Qut+4Qut=7Qutとなる。一方、配線OLから、回路MCを介して配線VEに流れる電荷量は、トランジスタM1r、M1−2br、M1−3brがオフ状態であるため、0となる。
 なお、回路MPに第2データ(ニューロンの信号の値)として“−7”が入力されている場合、配線OLBと回路MCとの間、配線OLと回路MCrとの間がそれぞれ導通状態となり、配線OLと回路MCrとの間、配線OLと回路MCとの間が非導通状態となるため、配線OLから、回路MCrを介して配線VErに流れる電荷量がQut+2Qut+4Qut=7Qutとなり、配線OLBから、回路MCを介して配線VEに流れる電荷量が、0となる。
 このため、回路MPに“+1”の第1データ(重み係数)を設定し、正の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM3、トランジスタM3−2b、トランジスタM3−3bから、オン状態にするトランジスタを一つ以上選択することによって、配線OLから、回路MCを介して配線VEに流れる電荷量を、Qut、2Qut、3Qut、4Qut、5Qut、6Qut、7Qutのいずれか一とすることができる。なお、このとき、配線OLBから、回路MCrを介して、配線VErに流れる電荷量は0となる。また、回路MPに“−1”の第1データ(重み係数)を設定し、正の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM3r、トランジスタM3−2br、トランジスタM3−3brから、オン状態にするトランジスタを一つ以上選択することによって、配線OLBから、回路MCrを介して配線VErに流れる電荷量を、Qut、2Qut、3Qut、4Qut、5Qut、6Qut、7Qutのいずれか一とすることができる。なお、このとき、配線OLから、回路MCを介して、配線VEに流れる電荷量は0となる。
 また、回路MPに“+1”の第1データ(重み係数)を設定し、負の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM4、トランジスタM4−2b、トランジスタM4−3bから、オン状態にするトランジスタを一つ以上選択することによって、配線OLBから、回路MCを介して配線VEに流れる電荷量を、Qut、2Qut、3Qut、4Qut、5Qut、6Qut、7Qutのいずれか一とすることができる。なお、このとき、配線OLから、回路MCrを介して、配線VErに流れる電荷量は0となる。また、回路MPに“−1”の第1データ(重み係数)を設定し、負の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM4r、トランジスタM4−2br、トランジスタM4−3brから、オン状態にするトランジスタを一つ以上選択することによって、配線OLから、回路MCrを介して配線VErに流れる電荷量を、Qut、2Qut、3Qut、4Qut、5Qut、6Qut、7Qutのいずれか一とすることができる。なお、このとき、配線OLBから、回路MCを介して、配線VEに流れる電荷量は0となる。
 なお、回路MPには、あらかじめ、“0”の第1データ(重み係数)が設定されている場合、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3brのそれぞれはオフ状態となる。そのため、配線OL又は配線OLBから、回路MCを介して配線VEに電流は流れず、配線OL又は配線OLBから、回路MCrを介して配線VErに電流は流れない。換言すると、配線OL、配線OLBのそれぞれに流れる電荷量は0ということができる。
 また、回路MPに“0”の第2データ(ニューロンの信号の値)が入力される場合、トランジスタM3、トランジスタM3−2b、トランジスタM3−3b、トランジスタM4、トランジスタM4−2b、トランジスタM4−3b、トランジスタM3r、トランジスタM3−2br、トランジスタM3−3br、トランジスタM4r、トランジスタM4−2br、トランジスタM4−3brのそれぞれはオフ状態となる。そのため、配線OL又は配線OLBから、回路MCを介して配線VEに電流は流れず、配線OL又は配線OLBから、回路MCrを介して配線VErに電流は流れない。換言すると、配線OL、配線OLBのそれぞれに流れる電荷量は0ということができる。
 ここで、回路ACTFの積分回路に着目する。配線OL又は配線OLBから、回路MCを介して配線VEに電流が流れるとき、又は、配線OL又は配線OLBから、回路MCrを介して配線VErに電流が流れるとき、図8Aにおいて、スイッチSWO、スイッチSWOBはオン状態にし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、スイッチSWHBはオフ状態にして、配線OL及び配線OLBと回路AFPとの間を導通状態にすることで、回路ACTFに含まれている積分回路の容量に配線OL、配線OLBに流れる電荷量を蓄積することができる。この結果、回路ACTFは、配線OLに流れた電荷量QOLと配線OLBに流れた電荷量QOLBに応じたニューロンの信号z (k)を出力することができる。
 上述の動作例より、第1データ(重み係数)を“+1”又は“−1”として、第2データ(ニューロンの信号の値)を上述の通りに定義した場合の、配線OLに流れた電荷量QOLと配線OLBに流れた電荷量QOLBを下の表に記載する。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 上記の通り、第1データ(重み係数)と、第2データ(ニューロンの信号の値)を定めることにより、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果に応じて、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOL、及び配線OLBから回路MC又は回路MCrに電流が流れる電荷量QOLBが決まる。また、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果が正の値の場合、配線OLから回路MC又は回路MCrに電流が流れ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果が負の値の場合、配線OLBから回路MC又は回路MCrに電流が流れる。つまり、電荷量QOL、及び電荷量QOLBから、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を算出することができる。例えば、第1データ(重み係数)を“−1”又は“+1”とし、第2データ(ニューロンの信号の値)を“−7”乃至“+7”のいずれか一し、かつ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積が正の数である場合、上述の表において、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOLにおいて、Qutを“+1”に置き換えることで、電荷量QOLから第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を求めることができる。また、例えば、第1データ(重み係数)を“−1”又は“+1”とし、第2データ(ニューロンの信号の値)を“−7”乃至“+7”のいずれか一し、かつ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積が負の数である場合、上述の表において、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOLBにおいて、Qutを“−1”に置き換えることで、電荷量QOLBから第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を求めることができる。
 また、本発明の一態様は、上述の定義に限定されない。上述では、第2データ(ニューロンの信号の値)として、正の多値、負の多値、0を定義したが、例えば、入力期間を離散的な値でなく連続的な値をとることによって(aを正の実数として、入力期間をa×tutとすることによって)、第2データ(ニューロンの信号の値)をアナログ値として扱うことができる。
 また、例えば、トランジスタM3、トランジスタM3rがオン状態、又はトランジスタM4、トランジスタM4rがオン状態となる時間をtutとし、トランジスタM3−2b、M3−2brがオン状態、又はトランジスタM4−2b、トランジスタM4−2brがオン状態となる時間を2tutとし、トランジスタM3−3b、トランジスタM3−3brがオン状態、又はトランジスタM4−3b、トランジスタM4−3brがオン状態となる時間を4tutとしたとき、配線WX1Lに高レベル電位、配線X2Lに低レベル電位が入力され、かつ配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bに低レベル電位が入力されたときの第2データ(ニューロンの信号の値)を“+1”ではなく“+0.1”などの実数として定義してもよい。
 また、本発明の一態様の半導体装置は、図58の回路MPの構成に限定されない。例えば、図58の回路MPでは、電流量を設定するトランジスタとして、回路MC内には、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bの3個とし、回路MCr内は、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brの3個としたが、回路MC、回路MCrのそれぞれにおいて、電流量を設定するトランジスタは2個でもよいし、4個以上としてもよい。
 また、本発明の一態様の半導体装置及び当該半導体装置の動作方法は、上述に限定されない。上述では、図58の回路MPのトランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3brのそれぞれのサイズを等しいものとして説明したが、例えば、図51の回路MPのとおり、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2brのW長とL長との比をW/Lとし、トランジスタM1−3b、トランジスタM1−3brのW長とL長との比を2W/Lとしてもよい。回路HCSに電位VDDLが保持されている場合、トランジスタM1のソース−ドレイン間に電流量としてIの電流が流れるものとすると、トランジスタM1−2bのW長とL長の比と、トランジスタM1−3bのW長とL長の比と、のそれぞれはトランジスタM1のW長とL長の比の2倍であるため、トランジスタM1−2b、トランジスタM1−3bのそれぞれのソース−ドレイン間には電流量として2Iが流れる。同様に、回路HCSrに電位VDDLが保持されている場合、トランジスタM1rのソース−ドレイン間に電流量としてIの電流が流れるものとすると、トランジスタM1−2brのW長とL長の比と、トランジスタM1−3brのW長とL長の比と、のそれぞれはトランジスタM1rのW長とL長の比の2倍であるため、トランジスタM1−2br、トランジスタM1−3brのそれぞれのソース−ドレイン間には電流量として2Iが流れる。
 ここで、トランジスタM3、トランジスタM3rがオン状態、又はトランジスタM4、トランジスタM4rがオン状態となる時間をtutとし、トランジスタM3−2b、トランジスタM3−2brがオン状態、又はトランジスタM4−2b、トランジスタM4−2brがオン状態となる時間を2tutとし、トランジスタM3−3b、トランジスタM3−3brがオン状態、又はトランジスタM4−3b、トランジスタM4−3brがオン状態となる時間を2tutとする。つまり、回路MPに第2データ(ニューロンの信号の値)入力する際において、配線WX1L、又は配線X2Lの一方への高レベル電位の入力時間はtutとし、配線X1L2b、又は配線X2L2bの一方への高レベル電位の入力時間は2tutとし、配線X1L3b、又は配線X2L3bの一方への高レベル電位の入力時間は2tutとする。図59の回路MPには、配線WX1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bの符号の付近に、図58とは異なる、パルス電圧の模式図と入力時間を示している。
 回路HCSに電位VDDLが保持されて、トランジスタM1のソース−ドレイン間に電流量としてIutの電流が流れるとき、トランジスタM3−3b又はトランジスタM4−3bの一方が時間2tutだけオン状態、トランジスタM3−3b又はトランジスタM4−3bの他方がオフ状態となることで、配線OL又は配線OLBから、トランジスタM1−3bを介して配線VEに流れる電荷量は、2tut×2Iut=4Qutとなる。なお、配線OLからトランジスタM1を介して配線VEに流れる電荷量と、配線OLからトランジスタM1−2bを介して配線VEに流れる電荷量と、については上述の動作例と条件が同じであるため、説明を省略する。
 回路HCSrに電位VDDLが保持されて、トランジスタM1rのソース−ドレイン間に電流量としてIの電流が流れるとき、トランジスタM3−3br又はトランジスタM4−3brの一方が時間2tutだけオン状態、トランジスタM3−3br又はトランジスタM4−3brがオフ状態となることで、配線OL又は配線OLBから、トランジスタM1−3brを介して配線VErに流れる電荷量は、2tut×2Iut=4Qutとなる。なお、配線OLBからトランジスタM1rを介して配線VErに流れる電荷量と、配線OLBからトランジスタM1−2brを介して配線VErに流れる電荷量と、については上述の動作例と条件が同じであるため、説明を省略する。
 上述の通り、トランジスタM1、トランジスタM1r、トランジスタM1−2b、トランジスタM1−2br、トランジスタM1−3b、トランジスタM1−3brのそれぞれのサイズと、配線X1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bのそれぞれへの高レベル電位の入力時間と、を適切に変更することによって、図58に示した回路MPの動作例と同様に、動作することができる。
 また、本発明の一態様の半導体装置は、図58、図59の回路MPの構成に限定されない。例えば、図58の回路MPでは、回路HCSに保持されている電位に応じた電流を流すトランジスタを、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bの3個とし、回路HCSrに保持されている電位に応じた電流を流すトランジスタを、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brの3個としたが、回路MC、MCrのそれぞれにおいて、電流量を設定するトランジスタは2個、又は4個以上としてもよい。また、当該トランジスタに応じて、保持部の個数、配線の数も増減してもよい。
 また、本発明の一態様の半導体装置の動作方法は、上述に限定されない。例えば、動作方法例2で説明した通り、図57の回路MPにおいて、配線X1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bのそれぞれに入力される信号の入力期間を、複数のサブ期間に分けてもよい。
 また、本動作方法例では、回路MPは、説明の煩雑さを避けるため、配線OL、配線OLBには1個の回路MPのみが電気的接続されている場合を考えたが、図11の演算回路150のとおり、配線OL、配線OLBには複数の回路MPを電気的に接続してもよい。これにより、配線OL、配線OLBのそれぞれから複数の回路MPに入力された電荷量の合計を、回路ACTFに含まれる積分回路の容量に蓄積することができ、回路ACTFは、配線OL、配線OLBに流れたそれぞれの電荷量に応じたニューロンの信号z (k)を出力することができる。
 なお、本動作例では、図11の演算回路150を例としたが、状況に応じて、別の演算回路に変更することでも、本動作例と同様の動作を行うことができる。
 なお、本動作方法例は、本明細書で示す他の動作方法例などと適宜組み合わせることができる。
<動作方法例8>
 ここでは、図60の回路MPを適用した図11の演算回路150の動作方法について、説明する。
 動作方法例1乃至動作方法例7と同様に、説明の煩雑さを避けるため、配線OL、配線OLBに流れる電流の変化については、配線OL、配線OLBに電気的に接続されている1個の回路MPのみによって行われるものとする。また、回路MPに電気的に接続されている配線VE、配線VErのそれぞれは、回路MPに対して、定電圧としてVSSを与えるものとする。また、回路AFPに含まれている回路ACTF[1]乃至回路ACTF[n]のそれぞれは、一例としては、積分回路(または、電流電荷(IQ)変換回路)の構成を有する回路ACTFとする。例えば、図6Eの回路ACTF[j]において、負荷LEa、負荷LEbを容量などとした構成としてもよい。なお、例えば、1つの保持部(例として、回路HCS)に接続されたトランジスタは、3個(例として、トランジスタM1、トランジスタM1−2x、トランジスタM1−3xという3個)の場合を示したが、本発明の一態様は、これに限定されない。各保持部には、任意の数のトランジスタを配置してもよい。同様に、トランジスタM3、トランジスタM3−2x、トランジスタM3−3xについても、3個(トランジスタM3、トランジスタM3−2x、トランジスタM3−3xや、トランジスタM4、トランジスタM4−2x、トランジスタM4−3x)の場合を示したが、本発明の一態様は、これに限定されず、任意の数のトランジスタを配置してもよい。また、保持部は、3個(例として、回路HCS、回路HCS−2b、回路HCS−3b)の場合を示したが、本発明の一態様は、これに限定されない。任意の数の保持部を配置してもよい。
 図60の回路MPにおいて、回路MCは、トランジスタM1、トランジスタM1−2x、トランジスタM1−3x、トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2b、トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−2b、トランジスタM3、トランジスタM3−2x、トランジスタM3−3x、トランジスタM4、トランジスタM4−2x、トランジスタM4−3x、回路HCS、回路HCS−2b、回路HCS−3bを有する。
 なお、トランジスタM1、トランジスタM1−2x、トランジスタM1−3xのそれぞれのサイズ、例えば、W長とL長は、互いに等しいことが好ましい。また、トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2bのサイズは、互いに等しいことが好ましい。また、トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−3bのサイズは、互いに等しいことが好ましい。
 更に、トランジスタM1、トランジスタM1−2x、トランジスタM1−3xのそれぞれのW長とL長の比をW/Lとしたとき、トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2bのそれぞれのW長とL長の比を2W/Lとし、トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−3bのそれぞれのW長とL長の比を4W/Lとするのが好ましい。つまり、保持部(例として、回路HCS、回路HCS−2b、回路HCS−3bなど)と、ゲートに電気的に接続されているトランジスタ(例として、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bなど)のW長とL長の比W/Lは、保持部の数に応じて2のべき乗で大きくしていけばよい。
 回路HCS、回路HCS−2b、回路HCS−3bのそれぞれは、図29の回路MPに含まれている回路HCSと同様に、配線OL、又は配線OLBの一方、又は両方から入力される情報(電位、電流など)を受け取って、当該情報に応じた電位を保持する機能を有する。また、回路HCSは、電気的に接続されているトランジスタのゲートに保持した当該電位を印加する機能を有する。回路HCS、回路HCS−2b、回路HCS−3bとしては、例えば、SRAMを有する構成やNOSRAMを有する構成とすることができる。図60の回路MPに含まれている回路HCS、回路HCS−2b、回路HCS−3bのそれぞれは、デジタル値(2値)として、高レベル電位(ここでは、例えばVDDL)又は低レベル電位(ここでは、例えば、VSS)の一方を保持するものとする。
 なお、トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2bのそれぞれのゲートは、回路HCS−2bに電気的に接続されている。トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−2bのそれぞれのゲートは、回路HCS−3bに電気的に接続されている。
 トランジスタM1、トランジスタM1−2x、トランジスタM1−3xのそれぞれのゲートに、回路HCSに保持されているVDDLが入力されているとき、トランジスタM1、トランジスタM1−2x、トランジスタM1−3xのそれぞれのソース−ドレイン間に流れる電流量をIutとする。トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2bのそれぞれのW長とL長の比は、トランジスタM1のW長とL長の比の2倍であるため、トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2bのゲートに、回路HCS−2bに保持されているVDDが入力されているとき、トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2bのそれぞれのソース−ドレイン間に流れる電流量は2Iutとなる。また、トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−3bのそれぞれのW長とL長の比は、トランジスタM1のW長とL長の比の4倍であるため、トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−3bのゲートに、回路HCS−3bに保持されているVDDが入力されているとき、トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−3bのそれぞれのソース−ドレイン間に流れる電流量は4Iutとなる。
 トランジスタM1、トランジスタM1−2x、トランジスタM1−3x、トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2b、トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−2bのそれぞれの第1端子は、配線VEに電気的に接続されている。トランジスタM1、トランジスタM1−2x、トランジスタM1−3xのそれぞれのゲートは、回路HCSに電気的に接続されている。
 トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれの第2端子は、トランジスタM3の第1端子と、トランジスタM4の第1端子と、に電気的に接続されている。トランジスタM1−2x、トランジスタM1−2x−2b、トランジスタM1−2x−3bのそれぞれの第2端子は、トランジスタM3−2xの第1端子と、トランジスタM4−2xの第1端子と、に電気的に接続されている。トランジスタM1−3x、トランジスタM1−3x−2b、トランジスタM1−3x−3bのそれぞれの第2端子は、トランジスタM3−3xの第1端子と、トランジスタM4−3xの第1端子と、に電気的に接続されている。
 トランジスタM3のゲートは、配線X1Lに電気的に接続され、トランジスタM4のゲートは、配線X2Lに電気的に接続されている。トランジスタM3−2xのゲートは、配線X1L2xに電気的に接続され、トランジスタM4−2xのゲートは、配線X2L2xに電気的に接続されている。トランジスタM3−3xのゲートは、配線X1L3xに電気的に接続され、トランジスタM4−3xのゲートは、配線X2L3xに電気的に接続されている。
 トランジスタM3、トランジスタM3−2x、トランジスタM3−3xのそれぞれの第2端子は、配線OLに電気的に接続され、トランジスタM4、トランジスタM4−2x、トランジスタM4−3xのそれぞれの第2端子は、配線OLBに電気的に接続されている。
 なお、図60の回路MPにおいて、回路MCrは、回路MCとほぼ同様の回路構成となっている。そのため、回路MCrの有する回路素子などには、回路MCの有する回路素子などと区別をするため、符号に「r」を付している。また、トランジスタM3r、トランジスタM3−2xr、トランジスタM3−3xrのそれぞれの第2端子は、配線OLBに電気的に接続され、トランジスタM4、トランジスタM4−2x、トランジスタM4−3xのそれぞれの第2端子は、配線OLに電気的に接続されている。
 図60の回路MPに設定される第1データ(ここでは、例えば、重み係数とする。)について説明する。図60の回路MPに設定される第1データ(重み係数)は、回路HCS、HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brのそれぞれに保持されている電位の組み合わせによって、定義することができる。具体的には、動作方法例6で説明した図57の回路MPのとおり、回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brのそれぞれに所定の電位を保持して、第1データ(重み係数)を設定すればよい。上記より、図60の回路MPにおける、第1データ(重み係数)については、一例として、動作方法例6で説明した図57の回路MPにおける第1データ(重み係数)の定義と同様とすることができる。
 次に、回路MPに入力される第2データ(ここでは、例えば、ニューロンの信号の値とする。)について説明する。前提として、回路MPに第2データ(ニューロンの信号の値)を入力する際において、配線X1L、又は配線X2Lの一方への高レベル電位の入力時間をtutとしたとき、配線X1L2x、又は配線X2L2xの一方への高レベル電位の入力時間は2tutとし、配線X1L3x、又は配線X2L3xの一方への高レベル電位の入力時間は4tutとして動作させるものとする。つまり、トランジスタM3、トランジスタM3rがオン状態、又はトランジスタM4、トランジスタM4rがオン状態となる時間がtutとしたとき、トランジスタM3−2x、トランジスタM3−2xrがオン状態、又はトランジスタM4−2b、トランジスタM4−2brがオン状態となる時間を2tutとし、トランジスタM3−3x、トランジスタM3−3xrがオン状態、又はトランジスタM4−3x、トランジスタM4−3xrがオン状態となる時間を4tutとするように動作させる。
 動作方法例1、動作方法例2で説明したとおり、回路MPに第1データ(例えば、ここでは重み係数とする。)を設定して、かつトランジスタM3、又はトランジスタM4がオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1、M1−2b、トランジスタM1−3bを介して配線VEに流れる電荷量が決まる。また、回路MPに第1データ(重み係数)を設定して、トランジスタM3r、又はトランジスタM4rがオン状態となる時間を定めることによって、配線OL又は配線OLBから、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brを介して配線VErに流れる電荷量が決まる。
 同様に、配線OL又は配線OLBから、トランジスタM1−2x、M1−2x−2b、M1−2x−3bを介して配線VEに流れる電荷量と、配線OL又は配線OLBから、トランジスタM1−2xr、トランジスタM1−2x−2br、トランジスタM1−2x−3brを介して配線VErに流れる電荷量と、についても、トランジスタM3−2b、トランジスタM3−2br、トランジスタM4−2b、トランジスタM4−2brのそれぞれにおいて、オン状態となる時間を定めることによって決まる。また、配線OL又は配線OLBから、トランジスタM1−3x、トランジスタM1−3x−2b、トランジスタM1−3x−3bを介して配線VEに流れる電荷量と、配線OL又は配線OLBから、トランジスタM1−3xr、トランジスタM1−3x−2br、トランジスタM1−3x−3brを介して配線VErに流れる電荷量と、についても、トランジスタM3−3b、トランジスタM3−3br、トランジスタM4−3b、トランジスタM4−3brのそれぞれにおいて、オン状態となる時間を定めることによって決まる。
 そのため、図60の回路MPにおける、第2データ(ニューロンの信号の値)については、一例としては、動作方法例3で説明した図50の回路MPにおける第2データ(ニューロンの信号の値)の定義と同様とすることができる。
 上述の通り、第1データ(重み係数)と、第2データ(ニューロンの信号の値)を定めることにより、配線OLから回路MC又は回路MCrに電流が流れる電荷量、及び配線OLBから回路MC又は回路MCrに電流が流れる電荷量によって、第1データ(重み係数)と、第2データ(ニューロンの信号の値)との積を表現することができる。
 次に、図60の回路MPの具体的な動作例について説明する。
 回路MPには、例えば、あらかじめ、“+7”の第1データ(重み係数)が設定されているものとする。このとき、トランジスタM1、トランジスタM1−2x、トランジスタM1−3xのソース−ドレイン間には電流Iutが流れ、トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2bのソース−ドレイン間には電流2Iutが流れ、トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−3bのソース−ドレイン間には電流4Iutが流れる。一方、トランジスタM1r、トランジスタM1−2xr、トランジスタM1−3xr、トランジスタM1−2br、トランジスタM1−2x−2br、トランジスタM1−3x−2br、トランジスタM1−3br、トランジスタM1−2x−3br、トランジスタM1−3x−3brのそれぞれのソース−ドレイン間に流れる電流量は0となる。
 回路MPに第2データ(ニューロンの信号の値)として“+7”が入力されている場合、トランジスタM3が時間tutだけオン状態、トランジスタM4がオフ状態となることで、配線OLから、トランジスタM1、トランジスタM1−2b、トランジスタM1−3bのそれぞれを介して配線VEに流れる電荷量は、tut×Iut+tut×2Iut+tut×4Iut=7tut×Iutとなる。なお、ここで、tut×Iut=Qutとする。また、トランジスタM3−2xが時間2tutだけオン状態、トランジスタM4−2xがオフ状態となることで、配線OLから、トランジスタM1−2x、トランジスタM1−2x−2b、トランジスタM1−2x−3bのそれぞれを介して配線VEに流れる電荷量は、2tut×Iut+2tut×2Iut+2tut×4Iut=14tut×Iutとなる。また、トランジスタM3−3xが時間4tutだけオン状態、トランジスタM4−3xがオフ状態となることで、配線OLから、トランジスタM1−3x、トランジスタM1−3x−2b、トランジスタM1−3x−3bのそれぞれを介して配線VEに流れる電荷量は、4tut×Iut+4tut×2Iut+4tut×4Iut=28tut×Iutとなる。そのため、配線OLから、回路MCを介して配線VEに流れる電荷量は、7Qut+14Qut+28Qut=49Qutとなる。一方、配線OLBから、回路MCrを介して配線VErに流れる電荷量は、トランジスタM1r、トランジスタM1−2xr、トランジスタM1−3xr、トランジスタM1−2br、トランジスタM1−2x−2br、トランジスタM1−3x−2br、トランジスタM1−3br、トランジスタM1−2x−3br、トランジスタM1−3x−3brのそれぞれがオフ状態であるため、0となる。
 なお、回路MPに第2データ(ニューロンの信号の値)として“−7”が入力されている場合、配線OLBと回路MCとの間、配線OLと回路MCrとの間がそれぞれ導通状態となり、配線OLと回路MCrとの間、配線OLと回路MCとの間が非導通状態となるため、配線OLBから、回路MCを介して配線VEに流れる電荷量が7Qut+14Qut+28Qut=49Qutとなり、配線OLから、回路MCrを介して配線VErに流れる電荷量が、0となる。
 また、回路MPには、例えば、あらかじめ、“−7”の第1データ(重み係数)が設定されているものとする。このとき、トランジスタM1r、トランジスタM1−2xr、トランジスタM1−3xrのソース−ドレイン間には電流Iutが流れ、トランジスタM1−2br、トランジスタM1−2x−2br、トランジスタM1−3x−2brのソース−ドレイン間には電流2Iutが流れ、トランジスタM1−3br、トランジスタM1−2x−3br、トランジスタM1−3x−3brのソース−ドレイン間には電流4Iutが流れる。一方、トランジスタM1、トランジスタM1−2x、トランジスタM1−3x、トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2b、トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−3bのそれぞれのソース−ドレイン間に流れる電流量は0となる。
 回路MPに第2データ(ニューロンの信号の値)として“+7”が入力されている場合、トランジスタM3rが時間tutだけオン状態、トランジスタM4rがオフ状態となることで、配線OLBから、トランジスタM1r、トランジスタM1−2br、トランジスタM1−3brのそれぞれを介して配線VErに流れる電荷量は、tut×Iut+tut×2Iut+tut×4Iut=7tut×Iutとなる。なお、ここで、tut×Iut=Qutとする。また、トランジスタM3−2xrが時間2tutだけオン状態、トランジスタM4−2xrがオフ状態となることで、配線OLから、トランジスタM1−2xr、トランジスタM1−2x−2br、トランジスタM1−2x−3brのそれぞれを介して配線VErに流れる電荷量は、2tut×Iut+2tut×2Iut+2tut×4Iut=14tut×Iutとなる。また、トランジスタM3−3xrが時間4tutだけオン状態、トランジスタM4−3xrがオフ状態となることで、配線OLBから、トランジスタM1−3xr、トランジスタM1−3x−2br、トランジスタM1−3x−3brのそれぞれを介して配線VErに流れる電荷量は、4tut×Iut+4tut×2Iut+4tut×4Iut=28tut×Iutとなる。そのため、配線OLBから、回路MCrを介して配線VErに流れる電荷量は、7Qut+14Qut+28Qut=49Qutとなる。一方、配線OLから、回路MCを介して配線VEに流れる電荷量は、トランジスタM1、トランジスタM1−2x、トランジスタM1−3x、トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2b、トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−3bのそれぞれがオフ状態であるため、0となる。
 なお、回路MPに第2データ(ニューロンの信号の値)として“−7”が入力されている場合、配線OLBと回路MCとの間、配線OLと回路MCrとの間がそれぞれ導通状態となり、配線OLと回路MCrとの間、配線OLと回路MCとの間が非導通状態となるため、配線OLBから、回路MCを介して配線VEに流れる電荷量が7Qut+14Qut+28Qut=49Qutとなり、配線OLから、回路MCrを介して配線VErに流れる電荷量が、0となる。
 上記より、回路MPに正の第1データ(重み係数)として“+1”乃至“+7”の7値のいずれか一を設定し、正の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM3、トランジスタM3−2x、トランジスタM3−3xから、オン状態にするトランジスタを一つ以上選択することによって、配線OLから、回路MCを介して配線VEに流れる電荷量を、Qut刻みで“Qut”乃至“49Qut”のいずれか一とすることができる。なお、このとき、配線OLBから、回路MCrを介して、配線VErに流れる電荷量は0となる。また、回路MPに正の第1データ(重み係数)として“−7”乃至“−1”の7値のいずれか一を設定し、正の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM3r、トランジスタM3−2xr、トランジスタM3−3xrから、オン状態にするトランジスタを一つ以上選択することによって、配線OLBから、回路MCrを介して配線VErに流れる電荷量を、Qut刻みで“Qut”乃至“49Qut”のいずれか一とすることができる。なお、このとき、配線OLから、回路MCを介して、配線VEに流れる電荷量は0となる。
 また、回路MPに正の第1データ(重み係数)として“+1”乃至“+7”の7値のいずれか一を設定し、負の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM4、トランジスタM4−2x、トランジスタM4−3xから、オン状態にするトランジスタを一つ以上選択することによって、配線OLBから、回路MCを介して配線VEに流れる電荷量を、Qut刻みで“Qut”乃至“49Qut”のいずれか一とすることができる。なお、このとき、配線OLから、回路MCrを介して、配線VErに流れる電荷量は0となる。また、回路MPに正の第1データ(重み係数)として“−7”乃至“−1”の7値のいずれか一を設定し、負の第2データ(ニューロンの信号の値)に応じて、回路MPに含まれているトランジスタM4r、トランジスタM4−2xr、トランジスタM4−3xrから、オン状態にするトランジスタを一つ以上選択することによって、配線OLから、回路MCrを介して配線VErに流れる電荷量を、Qut刻みで“Qut”乃至“49Qut”のいずれか一とすることができる。なお、このとき、配線OLBから、回路MCを介して、配線VEに流れる電荷量は0となる。
 なお、回路MPには、あらかじめ、“0”の第1データ(重み係数)が設定されている場合、トランジスタM1、トランジスタM1−2x、トランジスタM1−3x、トランジスタM1−2b、トランジスタM1−2x−2b、トランジスタM1−3x−2b、トランジスタM1−3b、トランジスタM1−2x−3b、トランジスタM1−3x−3b、トランジスタM1r、トランジスタM1−2xr、トランジスタM1−3xr、トランジスタM1−2br、トランジスタM1−2x−2br、トランジスタM1−3x−2br、トランジスタM1−3br、トランジスタM1−2x−3br、トランジスタM1−3x−3brのそれぞれはオフ状態となる。そのため、配線OL又は配線OLBから、回路MCを介して配線VEに電流は流れず、配線OL又は配線OLBから、回路MCrを介して配線VErに電流は流れない。換言すると、配線OL、配線OLBのそれぞれに流れる電荷量は0ということができる。
 また、回路MPに“0”の第2データ(ニューロンの信号の値)が入力される場合、トランジスタM3、トランジスタM3−2x、トランジスタM3−3x、トランジスタM4、トランジスタM4−2x、トランジスタM4−3x、トランジスタM3r、トランジスタM3−2xr、トランジスタM3−3xr、トランジスタM4r、トランジスタM4−2xr、トランジスタM4−3xrのそれぞれはオフ状態となる。そのため、配線OL又は配線OLBから、回路MCを介して配線VEに電流は流れず、配線OL又は配線OLBから、回路MCrを介して配線VErに電流は流れない。換言すると、配線OL、配線OLBのそれぞれに流れる電荷量は0ということができる。
 ここで、回路ACTFの積分回路に着目する。配線OL又は配線OLBから、回路MCを介して配線VEに電流が流れるとき、又は、配線OL又は配線OLBから、回路MCrを介して配線VErに電流が流れるとき、図8Aにおいて、スイッチSWO、スイッチSWOBはオン状態にし、スイッチSWI、スイッチSWIB、スイッチSWL、スイッチSWLB、スイッチSWH、スイッチSWHBはオフ状態にして、配線OL及びOLBと回路AFPとの間を導通状態にすることで、回路ACTFに含まれている積分回路の容量に配線OL、配線OLBに流れる電荷量を蓄積することができる。この結果、回路ACTFは、配線OLに流れた電荷量QOLと配線OLBに流れた電荷量QOLBに応じたニューロンの信号z (k)を出力することができる。
 上述の動作例より、第1データ(重み係数)を“0”を除く“−7”乃至“+7”のいずれか一として、第2データ(ニューロンの信号の値)を“0”を除く“−7”乃至“+7”のいずれか一した場合の、配線OLに流れた電荷量QOLと配線OLBに流れた電荷量QOLBを下の表に記載する。なお、第1データ(重み係数)、第2データ(ニューロンの信号の値)の少なくとも一方が“0”のときは、QOL=0、QOLB=0となる。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 上記の通り、第1データ(重み係数)と、第2データ(ニューロンの信号の値)を定めることにより、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果に応じて、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOL、及び配線OLBから回路MC又は回路MCrに電流が流れる電荷量QOLBが決まる。また、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果が正の値の場合、配線OLから回路MC又は回路MCrに電流が流れ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積の結果が負の値の場合、配線OLBから回路MC又は回路MCrに電流が流れる。つまり、電荷量QOL、及び電荷量QOLBから、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を算出することができる。例えば、第1データ(重み係数)を“−7”乃至“+7”のいずれか一とし、第2データ(ニューロンの信号の値)を“−7”乃至“+7”のいずれか一し、かつ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積が正の数である場合、上述の表において、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOLにおいて、Qutを“+1”に置き換えることで、電荷量QOLから第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を求めることができる。また、例えば、第1データ(重み係数)を“−7”乃至“+7”のいずれか一とし、第2データ(ニューロンの信号の値)を“−7”乃至“+7”のいずれか一し、かつ、第1データ(重み係数)と第2データ(ニューロンの信号の値)との積が負の数である場合、上述の表において、配線OLから回路MC又は回路MCrに電流が流れる電荷量QOLBにおいて、Qutを“−1”に置き換えることで、電荷量QOLBから第1データ(重み係数)と第2データ(ニューロンの信号の値)との積を求めることができる。
 また、本発明の一態様は、上述の定義に限定されない。上述では、第2データ(ニューロンの信号の値)として、正の多値、負の多値、0を定義したが、例えば、入力期間を離散的な値でなく連続的な値をとることによって(aを正の実数として、入力期間をa×tutとすることによって)、第2データ(ニューロンの信号の値)をアナログ値として扱うことができる。
 また、本発明の一態様の半導体装置は、図60の回路MPの構成に限定されない。例えば、図60の回路MPでは、電位を保持する回路を、回路HCS、回路HCS−2b、回路HCS−3b、回路HCSr、回路HCS−2br、回路HCS−3brの6個とし、それぞれの回路にゲートを電気的に接続しているトランジスタ(トランジスタM1、トランジスタM1−2x、トランジスタM1−3x)の数を3個としたが、第1データ(重み係数)及び第2データ(ニューロンの信号の値)の取り得る値に応じて、電位を保持する回路及び当該トランジスタの数を増減してもよい。また、当該トランジスタに応じて、保持部の個数、配線の数も増減してもよい。
 また、本発明の一態様の半導体装置の動作方法は、上述に限定されない。例えば、動作方法例2で説明した通り、図60の回路MPにおいて、配線X1L、配線X2L、配線X1L2b、配線X2L2b、配線X1L3b、配線X2L3bのそれぞれに入力される信号の入力期間を、複数のサブ期間に分けてもよい。
 また、本動作方法例では、回路MPは、説明の煩雑さを避けるため、配線OL、配線OLBには1個の回路MPのみが電気的接続されている場合を考えたが、図11の演算回路150のとおり、配線OL、配線OLBには複数の回路MPを電気的に接続してもよい。これにより、配線OL、配線OLBのそれぞれから複数の回路MPに入力された電荷量の合計を、回路ACTFに含まれる積分回路の容量に蓄積することができ、回路ACTFは、配線OL、配線OLBに流れたそれぞれの電荷量に応じたニューロンの信号z (k)を出力することができる。
 なお、本動作例では、図11の演算回路150を例としたが、状況に応じて、別の演算回路に変更することでも、本動作例と同様の動作を行うことができる。
 なお、本動作方法例は、本明細書で示す他の動作方法例などと適宜組み合わせることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
 本実施の形態では、上記実施の形態で説明した半導体装置の構成例、及び当該半導体装置に適用可能なトランジスタの構成例について説明する。
<半導体装置の構成例>
 図61に示す半導体装置は、トランジスタ300と、トランジスタ500と、容量素子600と、を有している。図63Aはトランジスタ500のチャネル長方向の断面図であり、図63Bはトランジスタ500のチャネル幅方向の断面図であり、図63Cはトランジスタ300のチャネル幅方向の断面図である。
 トランジスタ500は、チャネル形成領域に金属酸化物を有するトランジスタ(OSトランジスタ)である。トランジスタ500は、オフ電流が小さいため、これを半導体装置、例えば、演算回路110、演算回路120、演算回路130、演算回路140、演算回路150、演算回路160、演算回路170などに含まれる回路MPのトランジスタM2などに用いることにより、長期にわたり書き込んだデータを保持することが可能である。つまり、リフレッシュ動作の頻度が少ない、あるいは、リフレッシュ動作を必要としないため、半導体装置の消費電力を低減することができる。
 本実施の形態で説明する半導体装置は、図61に示すようにトランジスタ300、トランジスタ500、容量素子600を有する。トランジスタ500はトランジスタ300の上方に設けられ、容量素子600はトランジスタ300、及びトランジスタ500の上方に設けられている。なお、容量素子600は、上記実施の形態で説明した演算回路110、演算回路120、演算回路130、演算回路140、演算回路150、演算回路160、演算回路170などに含まれている回路MPに含まれている容量C1、容量C2、容量C3などとすることができる。
 トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域又はドレイン領域として機能する低抵抗領域314a、及び低抵抗領域314bを有する。なお、トランジスタ300は、例えば、上記実施の形態で説明した演算回路110、演算回路120、演算回路130、演算回路140、演算回路150、演算回路160、演算回路170などに含まれる回路MPのトランジスタM2などに適用することができる。
 また、基板311としては、半導体基板(例えば単結晶基板又はシリコン基板)を用いるのが好ましい。
 トランジスタ300は、図63Cに示すように、半導体領域313の上面及びチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ300をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ300のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ300のオフ特性を向上させることができる。
 なお、トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、又はドレイン領域となる低抵抗領域314a、及び低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。又は、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。又はGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
 低抵抗領域314a、及び低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、又はホウ素などのp型の導電性を付与する元素を含む。
 ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。
 なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
 なお、図61に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみの単極性回路とする場合、図62に示すとおり、トランジスタ300の構成を、酸化物半導体を用いているトランジスタ500と同様の構成にすればよい。なお、トランジスタ500の詳細については後述する。
 トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326が順に積層して設けられている。
 絶縁体320、絶縁体322、絶縁体324、及び絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
 なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 また、絶縁体324には、基板311、又はトランジスタ300などから、トランジスタ500が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
 水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
 なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
 また、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326には容量素子600、又はトランジスタ500と接続する導電体328、及び導電体330等が埋め込まれている。なお、導電体328、及び導電体330は、プラグ又は配線としての機能を有する。また、プラグ又は配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。
 各プラグ、及び配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、又は金属酸化物材料などの導電性材料を、単層又は積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。又は、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
 絶縁体326、及び導電体330上に、配線層を設けてもよい。例えば、図61において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ300と接続するプラグ、又は配線としての機能を有する。なお導電体356は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
 絶縁体354、及び導電体356上に、配線層を設けてもよい。例えば、図61において、絶縁体360、絶縁体362、及び絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、及び絶縁体364には、導電体366が形成されている。導電体366は、プラグ又は配線としての機能を有する。なお導電体366は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体364、及び導電体366上に、配線層を設けてもよい。例えば、図61において、絶縁体370、絶縁体372、及び絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、及び絶縁体374には、導電体376が形成されている。導電体376は、プラグ又は配線としての機能を有する。なお導電体376は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体374、及び導電体376上に、配線層を設けてもよい。例えば、図61において、絶縁体380、絶縁体382、及び絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、及び絶縁体384には、導電体386が形成されている。導電体386は、プラグ又は配線としての機能を有する。なお導電体386は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、及び導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
 絶縁体384上には絶縁体510、絶縁体512、絶縁体514、及び絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、及び絶縁体516のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
 例えば、絶縁体510、及び絶縁体514には、例えば、基板311、又はトランジスタ300を設ける領域などから、トランジスタ500を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
 水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 また、水素に対するバリア性を有する膜として、例えば、絶縁体510、及び絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、及びトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中及び作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、例えば、絶縁体512、及び絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、及び絶縁体516として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
 また、絶縁体510、絶縁体512、絶縁体514、及び絶縁体516には、導電体518、及びトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量素子600、又はトランジスタ300と接続するプラグ、又は配線としての機能を有する。導電体518は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 特に、絶縁体510、及び絶縁体514と接する領域の導電体518は、酸素、水素、及び水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ500とは、酸素、水素、及び水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体516の上方には、トランジスタ500が設けられている。
 図63A、及び図63Bに示すように、トランジスタ500は、絶縁体514及び絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516及び導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542a及び導電体542bと、導電体542a及び導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面及び側面に配置された酸化物530cと、酸化物530cの形成面に配置された絶縁体550と、絶縁体550の形成面に配置された導電体560と、を有する。
 また、図63A、及び図63Bに示すように、酸化物530a、酸化物530b、導電体542a、及び導電体542bと、絶縁体580との間に絶縁体544が配置されることが好ましい。また、図63A、及び図63Bに示すように、導電体560は、絶縁体550の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図63A、及び図63Bに示すように、絶縁体580、導電体560、及び絶縁体550の上に絶縁体574が配置されることが好ましい。
 なお、以下において、酸化物530a、酸化物530b、及び酸化物530cをまとめて酸化物530という場合がある。
 なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、酸化物530b、及び酸化物530cの3層を積層する構成について示しているが、本発明の一態様はこれに限られるものではない。例えば、酸化物530bの単層、酸化物530bと酸化物530aの2層構造、酸化物530bと酸化物530cの2層構造、又は4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ500では、導電体560を2層の積層構造として示しているが、本発明の一態様はこれに限られるものではない。例えば、導電体560が、単層構造であってもよいし、3層以上の積層構造であってもよい。また、図61、図63Aに示すトランジスタ500は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
 ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542a及び導電体542bは、それぞれソース電極又はドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542a及び導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
 さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542a又は導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542a及び導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
 導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 導電体503は、酸化物530、及び導電体560と、重なるように配置する。これにより、導電体560、及び導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。本明細書等において、第1のゲート電極、及び第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
 また、導電体503は、導電体518と同様の構成であり、絶縁体514及び絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503a及び導電体503bを積層する構成について示しているが、本発明の一態様はこれに限られるものではない。例えば、導電体503は、単層、又は3層以上の積層構造として設ける構成にしてもよい。
 ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、又は酸素の拡散を抑制する機能とは、上記不純物、又は上記酸素のいずれか一又は、すべての拡散を抑制する機能とする。
 例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
 また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、又はアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。その場合、導電体505は、必ずしも設けなくともよい。なお、導電体503bを単層で図示したが、積層構造としてもよく、例えば、チタン、又は窒化チタンと上記導電性材料との積層としてもよい。
 絶縁体520、絶縁体522、及び絶縁体524は、第2のゲート絶縁膜としての機能を有する。
 ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。つまり、絶縁体524には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損を低減し、トランジスタ500の信頼性を向上させることができる。
 過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、又は3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、又は100℃以上400℃以下の範囲が好ましい。
 また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、酸化物530中の水、または水素を除去することができる。例えば、酸化物530において、VoHの結合が切断される反応が起きる、別言すると「VH→V+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してHOとして、酸化物530、または酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542a、及び導電体542bに拡散または捕獲(ゲッタリングともいう)される場合がある。
 また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、または酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O/(O+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。
 また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
 なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「V+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
 また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
 絶縁体522が、酸素や不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524や、酸化物530が有する酸素と反応することを抑制することができる。
 絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、又は(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層又は積層で用いることが好ましい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
 特に、不純物、及び酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出や、トランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
 又は、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。又はこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコン又は窒化シリコンを積層して用いてもよい。
 また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため、好適である。また、high−k材料の絶縁体と、酸化シリコン又は酸化窒化シリコンと、を組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体520を得ることができる。
 なお、図63A、及び図63Bのトランジスタ500では、3層の積層構造からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、及び絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、又は4層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
 トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物530として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムなどから選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、酸化物530として適用できるIn−M−Zn酸化物は、CAAC−OS(C−Axis Aligned Crystalline Oxide Semiconductor)、CAC−OS(Cloud−Aligned Composite Oxide Semiconductor)であることが好ましい。また、酸化物530として、In−Ga酸化物、In−Zn酸化物、In酸化物などを用いてもよい。
 また、トランジスタ500には、キャリア濃度の低い金属酸化物を用いることが好ましい。金属酸化物のキャリア濃度を低くする場合においては、金属酸化物中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、金属酸化物中の不純物としては、例えば、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
 特に、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、金属酸化物中に酸素欠損を形成する場合がある。また、酸化物530中の酸素欠損に水素が入った場合、酸素欠損と水素とが結合しVHを形成する場合がある。VHはドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。また、金属酸化物中の水素は、熱、電界などのストレスによって動きやすいため、金属酸化物に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された金属酸化物を得るには、金属酸化物中の水分、水素などの不純物を除去すること(脱水、脱水素化処理と記載する場合がある。)と、金属酸化物に酸素を供給して酸素欠損を補填すること(加酸素化処理と記載する場合がある。)が重要である。VHなどの不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 酸素欠損に水素が入った欠陥は、金属酸化物のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、金属酸化物においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、金属酸化物のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。
 よって、金属酸化物を酸化物530に用いる場合、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。水素などの不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 また、酸化物530に金属酸化物を用いる場合、当該金属酸化物は、バンドギャップが高く、真性(I型ともいう。)、又は実質的に真性である半導体であって、かつチャネル形成領域の金属酸化物のキャリア濃度は、1×1018cm−3未満であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。なお、チャネル形成領域の金属酸化物のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。
 また、酸化物530に金属酸化物を用いる場合、導電体542a及び導電体542bと酸化物530とが接することで、酸化物530中の酸素が導電体542a及び導電体542bへ拡散し、導電体542a及び導電体542bが酸化する場合がある。導電体542a及び導電体542bが酸化することで、導電体542a及び導電体542bの導電率が低下する蓋然性が高い。なお、酸化物530中の酸素が導電体542a及び導電体542bへ拡散することを、導電体542a及び導電体542bが酸化物530中の酸素を吸収する、と言い換えることができる。
 また、酸化物530中の酸素が導電体542a及び導電体542bへ拡散することで、導電体542aと酸化物530bとの間、および、導電体542bと酸化物530bとの間に異層が形成される場合がある。当該異層は、導電体542a及び導電体542bよりも酸素を多く含むため、当該異層は絶縁性を有すると推定される。このとき、導電体542a又は導電体542bと、当該異層と、酸化物530bとの3層構造は、金属−絶縁体−半導体からなる3層構造とみなすことができ、MIS(Metal−Insulator−Semiconductor)構造と呼ぶ、またはMIS構造を主としたダイオード接合構造と呼ぶ場合がある。
 なお、上記異層は、導電体542a及び導電体542bと酸化物530bとの間に形成されることに限られず、例えば、異層が、導電体542a及び導電体542bと酸化物530cとの間に形成される場合がある。
 酸化物530においてチャネル形成領域として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
 酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。また、酸化物530b上に酸化物530cを有することで、酸化物530cよりも上方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。
 なお、酸化物530は、各金属原子の原子数比が異なる複数の酸化物層の積層構造を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物530cは、酸化物530a又は酸化物530bに用いることができる金属酸化物を、用いることができる。
 具体的には、酸化物530aとして、InとGaとZnとの原子数比がIn:Ga:Zn=1:3:4、または1:1:0.5の金属酸化物を用いればよい。また、酸化物530bとして、InとGaとZnとの原子数比がIn:Ga:Zn=4:2:3、または1:1:1の金属酸化物を用いればよい。また、酸化物530cとして、InとGaとZnとの原子数比がIn:Ga:Zn=1:3:4、またGaとZnの原子数比がGa:Zn=2:1、またはGa:Zn=2:5の金属酸化物を用いればよい。また、酸化物530cを積層構造とする場合の具体例としては、InとGaとZnとの原子数比がIn:Ga:Zn=4:2:3と、In:Ga:Zn=1:3:4との積層構造、またGaとZnの原子数比がGa:Zn=2:1と、InとGaとZnとの原子数比がIn:Ga:Zn=4:2:3との積層構造、GaとZnの原子数比がGa:Zn=2:5と、InとGaとZnとの原子数比がIn:Ga:Zn=4:2:3との積層構造、酸化ガリウムと、InとGaとZnとの原子数比がIn:Ga:Zn=4:2:3との積層構造などが挙げられる。
 また、例えば、酸化物530aに用いる金属酸化物における元素Mに対するInの原子数比が、酸化物530bに用いる金属酸化物における元素Mに対するInの原子数比より小さい場合、酸化物530bとして、InとGaとZnとの原子数比がIn:Ga:Zn=5:1:6またはその近傍、In:Ga:Zn=5:1:3またはその近傍、In:Ga:Zn=10:1:3またはその近傍などの組成であるIn−Ga−Zn酸化物を用いることができる。
 また、上述した以外の組成としては、酸化物530bには、例えば、In:Zn=2:1の組成、In:Zn=5:1の組成、In:Zn=10:1の組成、これらのいずれか一の近傍の組成などを有する金属酸化物を用いることができる。
 これらの酸化物530a、酸化物530b、酸化物530cを上記の原子数比の関係を満たして組み合わせることが好ましい。例えば、酸化物530a、および酸化物530cを、In:Ga:Zn=1:3:4の組成およびその近傍の組成を有する金属酸化物、酸化物530bを、In:Ga:Zn=4:2:3から4.1の組成およびその近傍の組成を有する金属酸化物とするのが好ましい。なお、上記組成は、基体上に形成された酸化物中の原子数比、またはスパッタターゲットにおける原子数比を示す。また、酸化物530bの組成として、Inの比率を高めることで、トランジスタのオン電流、または電界効果移動度などを高めることができるため好適である。
 また、酸化物530a及び酸化物530cの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530a及び酸化物530cの電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
 ここで、酸化物530a、酸化物530b、及び酸化物530cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530a、酸化物530b、及び酸化物530cの接合部における伝導帯下端のエネルギー準位は、連続的に変化又は連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、酸化物530aと酸化物530b、酸化物530bと酸化物530cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn−Ga−Zn酸化物の場合、酸化物530a及び酸化物530cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
 このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530a、酸化物530cを上述の構成とすることで、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
 酸化物530b上には、ソース電極、及びドレイン電極として機能する導電体542a、及び導電体542bが設けられる。導電体542a、及び導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、又は上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、又は、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素又は酸素に対するバリア性があるため好ましい。
 また、図63A、及び図63Bでは、導電体542a、及び導電体542bを単層構造として示したが、2層以上の積層構造としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
 また、チタン膜又は窒化チタン膜と、そのチタン膜又は窒化チタン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にチタン膜又は窒化チタン膜を形成する三層構造、モリブデン膜又は窒化モリブデン膜と、そのモリブデン膜又は窒化モリブデン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にモリブデン膜又は窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫又は酸化亜鉛を含む透明導電材料を用いてもよい。
 また、図63Aに示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、及び領域543bが形成される場合がある。このとき、領域543aはソース領域又はドレイン領域の一方として機能し、領域543bはソース領域又はドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
 酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア濃度が増加し、領域543a(領域543b)は、低抵抗領域となる。
 絶縁体544は、導電体542a、及び導電体542bを覆うように設けられ、導電体542a、及び導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
 絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタン又は、マグネシウムなどから選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコン又は窒化シリコンなども用いることができる。
 特に、絶縁体544として、アルミニウム、又はハフニウムの一方又は双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、及びハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、及び導電体542bが耐酸化性を有する材料、又は、酸素を吸収しても著しく導電性が低下しない場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
 絶縁体544を有することで、絶縁体580に含まれる水、及び水素などの不純物が酸化物530c、絶縁体550を介して、酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体560が酸化するのを抑制することができる。
 絶縁体550は、第1のゲート絶縁膜として機能する。絶縁体550は、酸化物530cの内側(上面、及び側面)に接して配置することが好ましい。絶縁体550は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
 具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、及び酸化窒化シリコンは熱に対し安定であるため好ましい。
 加熱により酸素が放出される絶縁体を、絶縁体550として、酸化物530cの上面に接して設けることにより、絶縁体550から、酸化物530cを通じて、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体550中の水又は水素などの不純物濃度が低減されていることが好ましい。絶縁体550の膜厚は、1nm以上20nm以下とするのが好ましい。
 また、絶縁体550が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体550と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体550から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体550から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
 なお、絶縁体550は、第2のゲート絶縁膜と同様に、積層構造としてもよい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high−k材料と、熱的に安定している材料との積層構造とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構造とすることができる。
 第1のゲート電極として機能する導電体560は、図63A、及び図63Bでは2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
 導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体550に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、又は酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
 また、導電体560bは、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構造としてもよく、例えば、チタン、又は窒化チタンと上記導電性材料との積層構造としてもよい。
 絶縁体580は、絶縁体544を介して、導電体542a、及び導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコン、又は樹脂などを有することが好ましい。特に、酸化シリコン、及び酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
 絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を、酸化物530cと接して設けることで、絶縁体580中の酸素を、酸化物530cを通じて、酸化物530へと効率良く供給することができる。なお、絶縁体580中の水又は水素などの不純物濃度が低減されていることが好ましい。
 絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
 半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
 絶縁体574は、絶縁体580の上面、導電体560の上面、及び絶縁体550の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体550、及び絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
 例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、又はマグネシウムなどから選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。
 特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、及び窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
 また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水又は水素などの不純物濃度が低減されていることが好ましい。
 また、絶縁体581、絶縁体574、絶縁体580、及び絶縁体544に形成された開口に、導電体540a、及び導電体540bを配置する。導電体540a及び導電体540bは、導電体560を挟んで対向して設ける。導電体540a及び導電体540bは、後述する導電体546、及び導電体548と同様の構成である。
 絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素や水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、及びトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中及び作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
 また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、及び絶縁体586には、導電体546、及び導電体548等が埋め込まれている。
 導電体546、及び導電体548は、容量素子600、トランジスタ500、又はトランジスタ300と接続するプラグ、又は配線としての機能を有する。導電体546、及び導電体548は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
 なお、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体514または絶縁体522に達する開口を形成し、絶縁体514または絶縁体522に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522と同様の材料を用いればよい。
 続いて、トランジスタ500の上方には、容量素子600が設けられている。容量素子600は、導電体610と、導電体620、絶縁体630とを有する。
 また、導電体546、及び導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、又は配線としての機能を有する。導電体610は、容量素子600の電極としての機能を有する。なお、導電体612、及び導電体610は、同時に形成することができる。
 導電体612、及び導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、又は上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
 図61では、導電体612、及び導電体610は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、及び導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
 導電体620、及び絶縁体630上には、絶縁体650が設けられている。絶縁体650は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体650は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
 本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制するとともに、信頼性を向上させることができる。又は、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化又は高集積化を図ることができる。
 次に、図61、図62に図示している、OSトランジスタの別の構成例について説明する。図64A、及び図64Bは、図63A、及び図63Bに示すトランジスタ500の変形例であって、図64Aは、トランジスタ500のチャネル長方向の断面図であり、図64Bはトランジスタ500のチャネル幅方向の断面図である。なお、図64A、及び図64Bに示す構成は、トランジスタ300等、本発明の一態様の半導体装置が有する他のトランジスタにも適用することができる。
 図64A、及び図64Bに示す構成のトランジスタ500は、絶縁体402及び絶縁体404を有する点が、図63A、及び図63Bに示す構成のトランジスタ500と異なる。また、導電体540aの側面に接して絶縁体552が設けられ、導電体540bの側面に接して絶縁体552が設けられる点が、図63A、及び図63Bに示す構成のトランジスタ500と異なる。さらに、絶縁体520を有さない点が、図63A、及び図63Bに示す構成のトランジスタ500と異なる。
 図64A、及び図64Bに示す構成のトランジスタ500は、絶縁体512上に絶縁体402が設けられている。また、絶縁体574上、及び絶縁体402上に絶縁体404が設けられている。
 図64A、及び図64Bに示す構成のトランジスタ500では、絶縁体514、絶縁体516、絶縁体522、絶縁体524、絶縁体544、絶縁体580、及び絶縁体574が設けられており、絶縁体404がこれらを覆う構造になっている。つまり、絶縁体404は、絶縁体574の上面、絶縁体574の側面、絶縁体580の側面、絶縁体544の側面、絶縁体524の側面、絶縁体522の側面、絶縁体516の側面、絶縁体514の側面、絶縁体402の上面とそれぞれ接する。これにより、酸化物530等は、絶縁体404と絶縁体402によって外部から隔離される。
 絶縁体402及び絶縁体404は、水素(例えば、水素原子、水素分子などの少なくとも一)又は水分子の拡散を抑制する機能が高いことが好ましい。例えば、絶縁体402及び絶縁体404として、水素バリア性が高い材料である、窒化シリコン又は窒化酸化シリコンを用いることが好ましい。これにより、酸化物530に水素等が拡散することを抑制することができるので、トランジスタ500の特性が低下することを抑制することができる。よって、本発明の一態様の半導体装置の信頼性を高めることができる。
 絶縁体552は、絶縁体581、絶縁体404、絶縁体574、絶縁体580、及び絶縁体544に接して設けられる。絶縁体552は、水素又は水分子の拡散を抑制する機能を有することが好ましい。たとえば、絶縁体552として、水素バリア性が高い材料である、窒化シリコン、酸化アルミニウム、又は窒化酸化シリコン等の絶縁体を用いることが好ましい。特に、窒化シリコンは水素バリア性が高い材料であるので、絶縁体552として用いると好適である。絶縁体552として水素バリア性が高い材料を用いることにより、水又は水素等の不純物が、絶縁体580等から導電体540a及び導電体540bを通じて酸化物530に拡散することを抑制することができる。また、絶縁体580に含まれる酸素が導電体540a及び導電体540bに吸収されることを抑制することができる。以上により、本発明の一態様の半導体装置の信頼性を高めることができる。
 図65は、トランジスタ500及びトランジスタ300を図64A、及び図64Bに示す構成とした場合における、半導体装置の構成例を示す断面図である。導電体546の側面に、絶縁体552が設けられている。
 また、図64A、及び図64Bに示すトランジスタ500は、状況に応じて、トランジスタの構成を変更してもよい。例えば、図64A、及び図64Bのトランジスタ500は、変更例として、図66に示すトランジスタにすることができる。図66Aはトランジスタのチャネル長方向の断面図であり、図66Bはトランジスタのチャネル幅方向の断面図である。図66A、及び図66Bに示すトランジスタは、酸化物530cが酸化物530c1及び酸化物530c2の2層構造である点で、図64A、及び図64Bに示すトランジスタと異なる。
 酸化物530c1は、絶縁体524の上面、酸化物530aの側面、酸化物530bの上面及び側面、導電体542a及び導電体542bの側面、絶縁体544の側面、及び絶縁体580の側面と接する。酸化物530c2は、絶縁体550と接する。
 酸化物530c1として、例えばIn−Zn酸化物を用いることができる。また、酸化物530c2として、酸化物530cが1層構造である場合に酸化物530cに用いることができる材料と同様の材料を用いることができる。例えば、酸化物530c2として、n:Ga:Zn=1:3:4[原子数比]、Ga:Zn=2:1[原子数比]、またはGa:Zn=2:5[原子数比]の金属酸化物を用いることができる。
 酸化物530cを酸化物530c1及び酸化物530c2の2層構造とすることにより、酸化物530cを1層構造とする場合より、トランジスタのオン電流を高めることができる。そのため、トランジスタは、例えばパワーMOSトランジスタとして適用することができる。なお、図63A、及び図63Bに示す構成のトランジスタが有する酸化物530cも、酸化物530c1と酸化物530c2の2層構造とすることができる。
 図66A、及び図66Bに示す構成のトランジスタは、例えば、図61、図62に示すトランジスタ300に適用することができる。また、例えば、トランジスタ300は、前述のとおり、演算回路110、演算回路120、演算回路130、演算回路140、演算回路150、演算回路160、演算回路170などに含まれる回路MPのトランジスタM2などに適用することができる。なお、図66A、図66Bに示すトランジスタは、本発明の一態様の半導体装置が有する、トランジスタ300、500以外のトランジスタにも適用することができる。
 図67は、トランジスタ500を図63Aに示すトランジスタの構成とし、トランジスタ300を図66Aに示すトランジスタの構成とした場合における、半導体装置の構成例を示す断面図である。なお、図65と同様に、導電体546の側面に絶縁体552を設ける構成としている。図67に示すように、本発明の一態様の半導体装置は、トランジスタ300とトランジスタ500を両方ともOSトランジスタとしつつ、トランジスタ300とトランジスタ500のそれぞれを異なる構成にすることができる。
 次に、図61、図62の半導体装置に適用できる容量素子について説明する。
 図68では、図61に示す半導体装置に適用できる容量素子600の一例として容量素子600Aについて示している。図68Aは容量素子600Aの上面図であり、図68Bは容量素子600Aの一点鎖線L3−L4における断面を示した斜視図であり、図68Cは容量素子600Aの一点鎖線W3−L4における断面を示した斜視図である。
 導電体610は、容量素子600Aの1対の電極の一方として機能し、導電体620は、容量素子600Aの1対の電極の他方として機能する。また、絶縁体630は、1対の電極に挟まれる誘電体として機能する。
 絶縁体630としては、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウム、酸化ジルコニウムなどを用いればよく、積層または単層で設けることができる。
 また、例えば、絶縁体630には、酸化窒化シリコンなどの絶縁耐力が大きい材料と、高誘電率(high−k)材料との積層構造を用いてもよい。当該構成により、容量素子600Aは、高誘電率(high−k)の絶縁体を有することで、十分な容量を確保でき、絶縁耐力が大きい絶縁体を有することで、絶縁耐力が向上し、容量素子600Aの静電破壊を抑制することができる。
 なお、高誘電率(high−k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。
 または、絶縁体630は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba、Sr)TiO(BST)などのhigh−k材料を含む絶縁体を単層または積層で用いてもよい。例えば、絶縁体630を積層とする場合、酸化ジルコニウムと、酸化アルミニウムと、酸化ジルコニウムと、が順に形成された3層積層や、酸化ジルコニウムと、酸化アルミニウムと、酸化ジルコニウムと、酸化アルミニウムと、が順に形成された4層積層などを用いれば良い。また、絶縁体630としては、ハフニウムと、ジルコニウムとが含まれる化合物などを用いても良い。半導体装置の微細化、および高集積化が進むと、ゲート絶縁体、および容量素子に用いる誘電体の薄膜化により、トランジスタや容量素子のリーク電流などの問題が生じる場合がある。ゲート絶縁体、および容量素子に用いる誘電体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減、および容量素子の容量の確保が可能となる。
 容量素子600Aは、導電体610の下部において、導電体546と、導電体548とに電気的に接続されている。導電体546と、導電体548は、別の回路素子と接続するためのプラグ、又は配線として機能する。また図68A乃至図68Cでは、導電体546と、導電体548と、をまとめて導電体540と記載している。
 また、図68A乃至図68Cでは、図を明瞭に示すために、導電体546及び導電体548が埋め込まれている絶縁体586と、導電体620及び絶縁体630を覆っている絶縁体650と、を省略している。
 なお、図61、図62、図68A乃至図68Cに示す容量素子600はプレーナ型であるが、容量素子の形状はこれに限定されない。例えば、容量素子600は、図69A乃至図69Cに示すシリンダ型の容量素子600Bとしてもよい。
 図69Aは容量素子600Bの上面図であり、図69Bは容量素子600Bの一点鎖線L3−L4における断面図であり、図69Cは容量素子600Bの一点鎖線W3−L4における断面を示した斜視図である。
 図69Bにおいて、容量素子600Bは、導電体540が埋め込まれている絶縁体586上の絶縁体631と、開口部を有する絶縁体651と、1対の電極の一方として機能する導電体610と、1対の電極の他方として機能する導電体620と、を有する。
 また、図69Cでは、図を明瞭に示すために、絶縁体586と、絶縁体650と、絶縁体651と、を省略している。
 絶縁体631としては、例えば、絶縁体586と同様の材料を用いることができる。
 また、絶縁体631には、導電体540に電気的に接続されるように導電体611が埋め込まれている。導電体611は、例えば、導電体330、導電体518と同様の材料を用いることができる。
 絶縁体651としては、例えば、絶縁体586と同様の材料を用いることができる。
 また、絶縁体651は、前述の通り、開口部を有し、当該開口部は導電体611に重畳している。
 導電体610は、当該開口部の底部と、側面と、に形成されている。つまり、導電体610は、導電体611に重畳し、かつ導電体611に電気的に接続されている。
 なお、導電体610の形成方法としては、エッチング法などによって絶縁体651に開口部を形成し、次に、スパッタリング法、ALD法などによって導電体610を成膜する。その後、CMP(Chemichal Mechanical Polishing)法などによって、開口部に成膜された導電体610を残して、絶縁体651上に成膜された導電体610を除去すればよい。
 絶縁体630は、絶縁体651上と、導電体610の形成面上と、に位置する。なお、絶縁体630は、容量素子において、1対の電極に挟まれる誘電体として機能する。
 導電体620は、絶縁体651の開口部が埋まるように、絶縁体630上に形成されている。
 絶縁体650は、絶縁体630と、導電体620と、を覆うように形成されている。
 図69A乃至図69Cに示すシリンダ型の容量素子600Bは、プレーナ型の容量素子600Aよりも静電容量の値を高くすることができる。そのため、例えば、上記の実施の形態で説明した容量C1、C2などとして、容量素子600Bを適用することによって、長時間、容量の端子間の電圧を維持することができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物であるCAC−OS(Cloud−Aligned Composite Oxide Semiconductor)、及びCAAC−OS(c−axis Aligned Crystalline Oxide Semiconductor)の構成について説明する。なお、本明細書等において、CACは機能、又は材料の構成の一例を表し、CAACは結晶構造の一例を表す。
<金属酸化物の構成>
 CAC−OS又はCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OS又はCAC−metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(又はホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OS又はCAC−metal oxideに付与することができる。CAC−OS又はCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
 また、CAC−OS又はCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
 また、CAC−OS又はCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
 また、CAC−OS又はCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OS又はCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OS又はCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
 すなわち、CAC−OS又はCAC−metal oxideは、マトリックス複合材(matrix composite)、又は金属マトリックス複合材(metal matrix composite)と呼称することもできる。
<金属酸化物の構造>
 酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)及び非晶質酸化物半導体などがある。
 CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
 ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、及び七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 また、CAAC−OSは、インジウム、及び酸素を有する層(以下、In層)と、元素M、亜鉛、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
 CAAC−OSは結晶性の高い酸化物半導体である。一方、CAAC−OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 また、トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性という場合があり、また、真性又は実質的に真性という場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体において、窒素はできる限り低減されていることが好ましい、例えば、酸化物半導体中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態6)
 本実施の形態は、上記実施の形態に示す半導体装置などが形成された半導体ウェハ、及び当該半導体装置が組み込まれた電子部品の一例を示す。
<半導体ウェハ>
 初めに、半導体装置などが形成された半導体ウェハの例を、図70Aを用いて説明する。
 図70Aに示す半導体ウェハ4800は、ウェハ4801と、ウェハ4801の上面に設けられた複数の回路部4802と、を有する。なお、ウェハ4801の上面において、回路部4802の無い部分は、スペーシング4803であり、ダイシング用の領域である。
 半導体ウェハ4800は、ウェハ4801の表面に対して、前工程によって複数の回路部4802を形成することで作製することができる。また、その後に、ウェハ4801の複数の回路部4802が形成された反対側の面を研削して、ウェハ4801を薄膜化してもよい。この工程により、ウェハ4801の反りなどを低減し、部品としての小型化を図ることができる。
 次の工程としては、ダイシング工程が行われる。ダイシングは、一点鎖線で示したスクライブラインSCL1及びスクライブラインSCL2(ダイシングライン、又は切断ラインと呼ぶ場合がある)に沿って行われる。なお、スペーシング4803は、ダイシング工程を容易に行うために、複数のスクライブラインSCL1が平行になるように設け、複数のスクライブラインSCL2が平行になるように設け、スクライブラインSCL1とスクライブラインSCL2が垂直になるように設けるのが好ましい。
 ダイシング工程を行うことにより、図70Bに示すようなチップ4800aを、半導体ウェハ4800から切り出すことができる。チップ4800aは、ウェハ4801aと、回路部4802と、スペーシング4803aと、を有する。なお、スペーシング4803aは、極力小さくなるようにするのが好ましい。この場合、隣り合う回路部4802の間のスペーシング4803の幅が、スクライブラインSCL1の切りしろと、又はスクライブラインSCL2の切りしろとほぼ同等の長さであればよい。
 なお、本発明の一態様の素子基板の形状は、図70Aに図示した半導体ウェハ4800の形状に限定されない。例えば、矩形の形状の半導体ウェハあってもよい。素子基板の形状は、素子の作製工程、及び素子を作製するための装置に応じて、適宜変更することができる。
<電子部品>
 図70Cに電子部品4700および電子部品4700が実装された基板(実装基板4704)の斜視図を示す。図70Cに示す電子部品4700は、モールド4711内にチップ4800aを有している。なお、図70Cに示すチップ4800aには、回路部4802が積層された構成を示している。つまり、回路部4802として、上記の実施の形態で説明した半導体装置を適用することができる。図70Cは、電子部品4700の内部を示すために、一部を省略している。電子部品4700は、モールド4711の外側にランド4712を有する。ランド4712は電極パッド4713と電気的に接続され、電極パッド4713はチップ4800aとワイヤ4714によって電気的に接続されている。電子部品4700は、例えばプリント基板4702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板4702上で電気的に接続されることで実装基板4704が完成する。
 図70Dに電子部品4730の斜視図を示す。電子部品4730は、SiP(System in package)またはMCM(Multi Chip Module)の一例である。電子部品4730は、パッケージ基板4732(プリント基板)上にインターポーザ4731が設けられ、インターポーザ4731上に半導体装置4735、および複数の半導体装置4710が設けられている。
 電子部品4730では、半導体装置4710を有する。半導体装置4710としては、例えば、上記実施の形態で説明した半導体装置、広帯域メモリ(HBM:High Bandwidth Memory)などとすることができる。また、半導体装置4735は、CPU、GPU、FPGA、記憶装置などの集積回路(半導体装置)を用いることができる。
 パッケージ基板4732は、セラミック基板、プラスチック基板、またはガラスエポキシ基板などを用いることができる。インターポーザ4731は、シリコンインターポーザ、樹脂インターポーザなどを用いることができる。
 インターポーザ4731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ4731は、インターポーザ4731上に設けられた集積回路をパッケージ基板4732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ4731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板4732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることもできる。
 インターポーザ4731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行なうことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いたSiPやMCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 また、電子部品4730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ4731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品4730では、半導体装置4710と半導体装置4735の高さを揃えることが好ましい。
 電子部品4730を他の基板に実装するため、パッケージ基板4732の底部に電極4733を設けてもよい。図70Dでは、電極4733を半田ボールで形成する例を示している。パッケージ基板4732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極4733を導電性のピンで形成してもよい。パッケージ基板4732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品4730は、BGAおよびPGAに限らず様々な実装方法を用いて他の基板に実装することができる。例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、またはQFN(Quad Flat Non−leaded package)などの実装方法を用いることができる。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態7)
 本実施の形態では、上記実施の形態で説明した半導体装置を有する電子機器の一例について説明する。なお、図71には、当該半導体装置を有する電子部品4700(BMP)が各電子機器に含まれている様子を図示している。
[携帯電話]
 図71に示す情報端末5500は、情報端末の一種である携帯電話(スマートフォン)である。情報端末5500は、筐体5510と、表示部5511と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。
 情報端末5500は、上記実施の形態で説明した半導体装置を適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、会話を認識してその会話内容を表示部5511に表示するアプリケーション、表示部5511に備えるタッチパネルに対してユーザが入力した文字、図形などを認識して、表示部5511に表示するアプリケーション、指紋や声紋などの生体認証を行うアプリケーションなどが挙げられる。
[ウェアラブル端末]
 また、図71には、ウェアラブル端末の一例としてスマートウォッチ5900が図示されている。スマートウォッチ5900は、筐体5901、表示部5902、操作ボタン5903、操作子5904、バンド5905などを有する。
 ウェアラブル端末は、先述した情報端末5500と同様に、上記実施の形態で説明した半導体装置を適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、ウェアラブル端末を装着した人の健康状態を管理するアプリケーション、目的地を入力することで最適な道を選択して誘導するナビゲーションシステムなどが挙げられる。
[情報端末]
 また、図71には、デスクトップ型情報端末5300が図示されている。デスクトップ型情報端末5300は、情報端末の本体5301と、ディスプレイ5302と、キーボード5303と、を有する。
 デスクトップ型情報端末5300は、先述した情報端末5500と同様に、上記実施の形態で説明した半導体装置を適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、設計支援ソフトウェア、文章添削ソフトウェア、献立自動生成ソフトウェアなどが挙げられる。また、デスクトップ型情報端末5300を用いることで、新規の人工知能の開発を行うことができる。
 なお、上述では、電子機器としてスマートフォン、及びデスクトップ用情報端末を例として、それぞれ図71に図示したが、スマートフォン、及びデスクトップ用情報端末以外の情報端末を適用することができる。スマートフォン、及びデスクトップ用情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、ノート型情報端末、ワークステーションなどが挙げられる。
[電化製品]
 また、図71には、電化製品の一例として電気冷凍冷蔵庫5800が図示されている。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
 電気冷凍冷蔵庫5800に上記実施の形態で説明した半導体装置を適用することによって、人工知能を有する電気冷凍冷蔵庫5800を実現することができる。人工知能を利用することによって電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などを基に献立を自動生成する機能や、電気冷凍冷蔵庫5800に保存されている食材に合わせた温度に自動的に調節する機能などを有することができる。
 本一例では、電化製品として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電子オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
[ゲーム機]
 また、図71には、ゲーム機の一例である携帯ゲーム機5200が図示されている。携帯ゲーム機5200は、筐体5201、表示部5202、ボタン5203等を有する。
 更に、図71には、ゲーム機の一例である据え置き型ゲーム機7500が図示されている。据え置き型ゲーム機7500は、本体7520と、コントローラ7522を有する。なお、本体7520には、無線または有線によってコントローラ7522を接続することができる。また、図71に示していないが、コントローラ7522は、ゲームの画像を表示する表示部、ボタン以外の入力インターフェースとなるタッチパネルやスティック、回転式つまみ、スライド式つまみなどを備えることができる。また、コントローラ7522は、図71に示す形状に限定されず、ゲームのジャンルに応じて、コントローラ7522の形状を様々に変更してもよい。例えば、FPS(First Person Shooter)などのシューティングゲームでは、トリガーをボタンとし、銃を模した形状のコントローラを用いることができる。また、例えば、音楽ゲームなどでは、楽器、音楽機器などを模した形状のコントローラを用いることができる。更に、据え置き型ゲーム機は、コントローラを使わず、代わりにカメラ、深度センサ、マイクロフォンなどを備えて、ゲームプレイヤーのジェスチャー、及び/又は音声によって操作する形式としてもよい。
 また、上述したゲーム機の映像は、テレビジョン装置、パーソナルコンピュータ用ディスプレイ、ゲーム用ディスプレイ、ヘッドマウントディスプレイなどの表示装置によって、出力することができる。
 携帯ゲーム機5200に上記実施の形態で説明した半導体装置を適用することによって、低消費電力の携帯ゲーム機5200を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
 更に、携帯ゲーム機5200に上記実施の形態で説明した半導体装置を適用することによって、人工知能を有する携帯ゲーム機5200を実現することができる。
 本来、ゲームの進行、ゲーム上に登場する生物の言動、ゲーム上で発生する現象などの表現は、そのゲームが有するプログラムによって定められているが、携帯ゲーム機5200に人工知能を適用することにより、ゲームのプログラムに限定されない表現が可能になる。例えば、プレイヤーが問いかける内容、ゲームの進行状況、時刻、ゲーム上に登場する人物の言動が変化するといった表現が可能となる。
 また、携帯ゲーム機5200で複数のプレイヤーが必要なゲームを行う場合、人工知能によって擬人的にゲームプレイヤーを構成することができるため、対戦相手を人工知能によるゲームプレイヤーとすることによって、1人でもゲームを行うことができる。
 図71では、ゲーム機の一例として携帯ゲーム機を図示しているが、本発明の一態様の電子機器はこれに限定されない。本発明の一態様の電子機器としては、例えば、家庭用の据え置き型ゲーム機、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
[移動体]
 上記実施の形態で説明した半導体装置は、移動体である自動車、及び自動車の運転席周辺に適用することができる。
 図71には移動体の一例である自動車5700が図示されている。
 自動車5700の運転席周辺には、スピードメーターやタコメーター、走行距離、燃料計、ギア状態、エアコンの設定などを表示することができるインストゥルメントパネルが備えられている。また、運転席周辺には、それらの情報を示す表示装置が備えられていてもよい。
 特に当該表示装置には、自動車5700に設けられた撮像装置(図示しない。)からの映像を映し出すことによって、ピラーなどで遮られた視界、運転席の死角などを補うことができ、安全性を高めることができる。
 上記実施の形態で説明した半導体装置は人工知能の構成要素として適用できるため、例えば、当該半導体装置を自動車5700の自動運転システムに用いることができる。また、当該半導体装置を道路案内、危険予測などを行うシステムに用いることができる。当該表示装置には、道路案内、危険予測などの情報を表示する構成としてもよい。
 なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のコンピュータを適用して、人工知能を利用したシステムを付与することができる。
[カメラ]
 上記実施の形態で説明した半導体装置は、カメラに適用することができる。
 図71には、撮像装置の一例であるデジタルカメラ6240が図示されている。デジタルカメラ6240は、筐体6241、表示部6242、操作ボタン6243、シャッターボタン6244等を有し、また、デジタルカメラ6240には、着脱可能なレンズ6246が取り付けられている。なお、ここではデジタルカメラ6240を、レンズ6246を筐体6241から取り外して交換することが可能な構成としたが、レンズ6246と筐体6241とが一体となっていてもよい。また、デジタルカメラ6240は、ストロボ装置や、ビューファインダー等を別途装着することができる構成としてもよい。
 デジタルカメラ6240に上記実施の形態で説明した半導体装置を適用することによって、低消費電力のデジタルカメラ6240を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、及びモジュールへの影響を少なくすることができる。
 更に、デジタルカメラ6240に上記実施の形態で説明した半導体装置を適用することによって、人工知能を有するデジタルカメラ6240を実現することができる。人工知能を利用することによって、デジタルカメラ6240は、顔、物体など被写体を自動的に認識する機能、又は当該被写体に合わせたピント調節、環境に合わせて自動的にフラッシュを焚く機能、撮像した画像を調色する機能などを有することができる。
[ビデオカメラ]
 上記実施の形態で説明した半導体装置は、ビデオカメラに適用することができる。
 図71には、撮像装置の一例であるビデオカメラ6300が図示されている。ビデオカメラ6300は、第1筐体6301、第2筐体6302、表示部6303、操作キー6304、レンズ6305、接続部6306等を有する。操作キー6304及びレンズ6305は第1筐体6301に設けられており、表示部6303は第2筐体6302に設けられている。そして、第1筐体6301と第2筐体6302とは、接続部6306により接続されており、第1筐体6301と第2筐体6302の間の角度は、接続部6306により変更が可能である。表示部6303における映像を、接続部6306における第1筐体6301と第2筐体6302との間の角度に従って切り替える構成としてもよい。
 ビデオカメラ6300で撮影した映像を記録する際、データの記録形式に応じたエンコードを行う必要がある。人工知能を利用することによって、ビデオカメラ6300は、エンコードの際に、人工知能によるパターン認識を行うことができる。このパターン認識によって、連続する撮像画像データに含まれる人、動物、物体などの差分データを算出して、データの圧縮を行うことができる。
[PC用の拡張デバイス]
 上記実施の形態で説明した半導体装置は、PC(Personal Computer)などの計算機、情報端末用の拡張デバイスに適用することができる。
 図72Aは、当該拡張デバイスの一例として、持ち運びのできる、演算処理が可能なチップが搭載された、PCに外付けする拡張デバイス6100を示している。拡張デバイス6100は、例えば、USB(Universal Serial Bus)などでPCに接続することで、当該チップによる演算処理を行うことができる。なお、図72Aは、持ち運びが可能な形態の拡張デバイス6100を図示しているが、本発明の一態様に係る拡張デバイスは、これに限定されず、例えば、冷却用ファンなどを搭載した比較的大きい形態の拡張デバイスとしてもよい。
 拡張デバイス6100は、筐体6101、キャップ6102、USBコネクタ6103及び基板6104を有する。基板6104は、筐体6101に収納されている。基板6104には、上記実施の形態で説明した半導体装置などを駆動する回路が設けられている。例えば、基板6104には、チップ6105(例えば、上記実施の形態で説明した半導体装置、電子部品4700、メモリチップなど。)、コントローラチップ6106が取り付けられている。USBコネクタ6103は、外部装置と接続するためのインターフェースとして機能する。
 拡張デバイス6100をPCなどに用いることにより、当該PCの演算処理能力を高くすることができる。これにより、処理能力の足りないPCでも、例えば、人工知能、動画処理などの演算を行うことができる。
[放送システム]
 上記実施の形態で説明した半導体装置は、放送システムに適用することができる。
 図72Bは、放送システムにおけるデータ伝送を模式的に示している。具体的には、図72Bは、放送局5680から送信された電波(放送信号)が、各家庭のテレビジョン受信装置(TV)5600に届くまでの経路を示している。TV5600は、受信装置を備え(図示しない。)、アンテナ5650で受信された放送信号は、当該受信装置を介して、TV5600に送信される。
 図72Bでは、アンテナ5650は、UHF(Ultra High Frequency)アンテナを図示しているが、アンテナ5650としては、BS・110°CSアンテナ、CSアンテナなども適用できる。
 電波5675A、電波5675Bは地上波放送用の放送信号であり、電波塔5670は受信した電波5675Aを増幅して、電波5675Bの送信を行う。各家庭では、アンテナ5650で電波5675Bを受信することで、TV5600で地上波放送を視聴することができる。なお、放送システムは、図72Bに示す地上波放送に限定せず、人工衛星を用いた衛星放送、光回線によるデータ放送などとしてもよい。
 上述した放送システムは、上記実施の形態で説明した半導体装置を適用して、人工知能を利用した放送システムとしてもよい。放送局5680から各家庭のTV5600に放送データを送信するとき、エンコーダによって放送データの圧縮が行われ、アンテナ5650が当該放送データを受信したとき、TV5600に含まれる受信装置のデコーダによって当該放送データの復元が行われる。人工知能を利用することによって、例えば、エンコーダの圧縮方法の一である動き補償予測において、表示画像に含まれる表示パターンの認識を行うことができる。また、人工知能を利用したフレーム内予測などを行うこともできる。また、例えば、解像度の低い放送データを受信して、解像度の高いTV5600で当該放送データの表示を行うとき、デコーダによる放送データの復元において、アップコンバートなどの画像の補間処理を行うことができる。
 上述した人工知能を利用した放送システムは、放送データの量が増大する超高精細度テレビジョン(UHDTV:4K、8K)放送に対して好適である。
 また、TV5600側における人工知能の応用として、例えば、TV5600に人工知能を有する録画装置を設けてもよい。このような構成にすることによって、当該録画装置にユーザの好みを人工知能に学習させることで、ユーザの好みにあった番組を自動的に録画することができる。
[認証システム]
 上記実施の形態で説明した半導体装置は、認証システムに適用することができる。
 図72Cは、掌紋認証装置を示しており、筐体6431、表示部6432、掌紋読み取り部6433、配線6434を有している。
 図72Cには、掌紋認証装置が手6435の掌紋を取得する様子を示している。取得した掌紋は、人工知能を利用したパターン認識の処理が行われ、当該掌紋が本人のものであるかどうかの判別を行うことができる。これにより、セキュリティの高い認証を行うシステムを構築することができる。また、本発明の一態様に係る認証システムは、掌紋認証装置に限定されず、指紋、静脈、顔、虹彩、声紋、遺伝子、体格などの生体情報を取得して生体認証を行う装置であってもよい。
 なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
ILD:回路、WLD:回路、XLD:回路、AFP:回路、ACTF:回路、MP:回路、MC:回路、MCr:回路、BS:回路、M1:トランジスタ、M1−2b:トランジスタ、M1−2br:トランジスタ、M1−3b:トランジスタ、M1−3br:トランジスタ、M1c:トランジスタ、M1cr:トランジスタ、M1p:トランジスタ、M1pr:トランジスタ、M1r:トランジスタ、M1s:トランジスタ、M1sr:トランジスタ、M1x:トランジスタ、M1xr:トランジスタ、M1x−2b:トランジスタ、M1x−2br:トランジスタ、M1x−3b:トランジスタ、M1x−3br:トランジスタ、M1x−4b:トランジスタ、M1−2x:トランジスタ、M1−2xr:トランジスタ、M1−3x:トランジスタ、M1−3xr:トランジスタ、M1−2x−2b:トランジスタ、M1−2x−2br:トランジスタ、M1−3x−2b:トランジスタ、M1−3x−2br:トランジスタ、M1−2x−3b:トランジスタ、M1−2x−3br:トランジスタ、M1−3x−3b:トランジスタ、M1−3x−3br:トランジスタ、M2:トランジスタ、M2r:トランジスタ、M2s:トランジスタ、M2sr:トランジスタ、M2−2b:トランジスタ、M2−2br:トランジスタ、M2−3b:トランジスタ、M2−3br:トランジスタ、M3:トランジスタ、M3p:トランジスタ、M3pr:トランジスタ、M3r:トランジスタ、M3s:トランジスタ、M3sr:トランジスタ、M3x:トランジスタ、M3x−2:トランジスタ、M3−2b:トランジスタ、M3−2br:トランジスタ、M3−2x:トランジスタ、M3−2xr:トランジスタ、M3−3b:トランジスタ、M3−3br:トランジスタ、M3−3x:トランジスタ、M3−3xr:トランジスタ、M4:トランジスタ、M4p:トランジスタ、M4pr:トランジスタ、M4r:トランジスタ、M4s:トランジスタ、M4sr:トランジスタ、M4x−2:トランジスタ、M4−2b:トランジスタ、M4−2br:トランジスタ、M4−2x:トランジスタ、M4−2xr:トランジスタ、M4−3b:トランジスタ、M4−3br:トランジスタ、M4−3x:トランジスタ、M4−3xr:トランジスタ、M5:トランジスタ、M5r:トランジスタ、M6:トランジスタ、M6r:トランジスタ、M6s:トランジスタ、M6sr:トランジスタ、M7:トランジスタ、M7r:トランジスタ、M7s:トランジスタ、M7sr:トランジスタ、M8:トランジスタ、M8r:トランジスタ、M9:トランジスタ、M9r:トランジスタ、M10:トランジスタ、M10r:トランジスタ、M11:トランジスタ、M12:トランジスタ、M12r:トランジスタ、M13:トランジスタ、M13r:トランジスタ、M20:トランジスタ、M20r:トランジスタ、MZ:トランジスタ、CC:容量、CE:容量、CEB:容量、C1:容量、C1r:容量、C1s:容量、C1sr:容量、C2:容量、C2r:容量、C3:容量、C4:容量、n1:ノード、n1r:ノード、n2:ノード、n2r:ノード、n3:ノード、n3r:ノード、n4:ノード、n4r:ノード、ina:ノード、inb:ノード、outa:ノード、outb:ノード、S01a:スイッチ、S01b:スイッチ、S02a:スイッチ、S02b:スイッチ、S03:スイッチ、SWI:スイッチ、SWIB:スイッチ、SWO:スイッチ、SWOB:スイッチ、SWL:スイッチ、SWLB:スイッチ、SWH:スイッチ、SWHB:スイッチ、SWC1:スイッチ、SWC2:スイッチ、SWC3:スイッチ、AS3:アナログスイッチ、AS3r:アナログスイッチ、AS4:アナログスイッチ、AS4r:アナログスイッチ、TW[1]:切り替え回路、TW[j]:切り替え回路、TW[n]:切り替え回路、HC:保持部、HCr:保持部、HCs:保持部、HCsr:保持部、HC−2b:保持部、HC−2br:保持部、HC−3b:保持部、HC−3br:保持部、IV1:インバータ回路、IV1r:インバータ回路、IV2:インバータ回路、IV2r:インバータ回路、INV3:インバータ回路、IVR:インバータループ回路、IVRr:インバータループ回路、CMP1:コンパレータ、ISC:電流源回路、ISC1:定電流源回路、ISC2:定電流源回路、ISC3:定電流源回路、HCS:回路、HCS−2b:回路、HCS−3b:回路、HCSr:回路、HCS−2br:回路、HCS−3br:回路、TRF:変換回路、ADCa:アナログデジタル変換回路、ADCb:アナログデジタル変換回路、BS:回路、BSr:回路、BMC:回路、BMCr:回路、TSa:端子、TSaB:端子、TSb:端子、TSb1:端子、TSb2:端子、TSb3:端子、TSbB:端子、TSbB1:端子、TSbB2:端子、TSbB3:端子、TSc:端子、TScB:端子、VinT:端子、VoutT:端子、VrefT:端子、IL:配線、IL[1]:配線、IL[j]:配線、IL[n]:配線、ILB:配線、ILB[1]:配線、ILB[j]:配線、ILB[n]:配線、OL:配線、OL[1]:配線、OL[j]:配線、OL[n]:配線、OLB:配線、OLB[1]:配線、OLB[j]:配線、OLB[n]:配線、WLS[1]:配線、WLS[i]:配線、WLS[m]:配線、XL:配線、XLS[1]:配線、XLS[i]:配線、XLS[m]:配線、WLBS:配線、WXBS:配線、VAL:配線、VA:配線、VAr:配線、VB:配線、VSO:配線、VCN:配線、VCN2:配線、VE:配線、VEr:配線、VEm:配線、VEmr:配線、VF:配線、VFr:配線、VrefL:配線、VL:配線、VLr:配線、VLs:配線、VLsr:配線、VLm:配線、VLmr:配線、VEH:配線、S1L:配線、S2L:配線、Vref1L:配線、Vref2L:配線、WL:配線、W1L:配線、W2L:配線、WL2b:配線、WL3b:配線、WXL:配線、WX1L:配線、WX1L2b:配線、WX1L3b:配線、WX1LB:配線、X1:配線、X1L:配線、X1L2b:配線、X1L2x:配線、X1L3b:配線、X1L3x:配線、X2L:配線、X2L2b:配線、X2L2L:配線、X2L2x:配線、X2L3b:配線、X2L3x:配線、X2LB:配線、CVL:配線、SCL1:スクライブライン、SCL2:スクライブライン、100:ニューラルネットワーク、110:演算回路、120:演算回路、130:演算回路、140:演算回路、150:演算回路、160:演算回路、170:演算回路、300:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、350:絶縁体、352:絶縁体、354:絶縁体、356:導電体、360:絶縁体、362:絶縁体、364:絶縁体、366:導電体、370:絶縁体、372:絶縁体、374:絶縁体、376:導電体、380:絶縁体、382:絶縁体、384:絶縁体、386:導電体、402:絶縁体、404:絶縁体、500:トランジスタ、503:導電体、503a:導電体、503b:導電体、505:導電体、510:絶縁体、512:絶縁体、514:絶縁体、516:絶縁体、518:導電体、520:絶縁体、522:絶縁体、524:絶縁体、530:酸化物、530a:酸化物、530b:酸化物、530c:酸化物、530c1:酸化物、530c2:酸化物、540:導電体、540a:導電体、540b:導電体、542a:導電体、542b:導電体、543a:領域、543b:領域、544:絶縁体、546:導電体、548:導電体、550:絶縁体、552:絶縁体、560:導電体、560a:導電体、560b:導電体、574:絶縁体、580:絶縁体、581:絶縁体、582:絶縁体、586:絶縁体、600:容量素子、600A:容量素子、600B:容量素子、610:導電体、611:導電体、612:導電体、620:導電体、621:導電体、630:絶縁体、631:絶縁体、650:絶縁体、651:絶縁体、4700:電子部品、4702:プリント基板、4704:実装基板、4710:半導体装置、4730:電子部品、4731:インターポーザ、4732:パッケージ基板、4733:電極、4735:半導体装置、4800:半導体ウェハ、4800a:チップ、4801:ウェハ、4801a:ウェハ、4802:回路部、4803:スペーシング、4803a:スペーシング、5200:携帯ゲーム機、5201:筐体、5202:表示部、5203:ボタン、5300:デスクトップ型情報端末、5301:本体、5302:ディスプレイ、5303:キーボード、5500:情報端末、5510:筐体、5511:表示部、5600:TV、5650:アンテナ、5670:電波塔、5675A:電波、5675B:電波、5680:放送局、5700:自動車、5800:電気冷凍冷蔵庫、5801:筐体、5802:冷蔵室用扉、5803:冷凍室用扉、5901:筐体、5902:表示部、5903:操作ボタン、5904:操作子、5905:バンド、6100:拡張デバイス、6101:筐体、6102:キャップ、6103:USBコネクタ、6104:基板、6105:チップ、6106:コントローラチップ、6240:デジタルカメラ、6241:筐体、6242:表示部、6243:操作ボタン、6244:シャッターボタン、6246:レンズ、6300:ビデオカメラ、6301:第1筐体、6302:第2筐体、6303:表示部、6304:操作キー、6305:レンズ、6306:接続部、6431:筐体、6432:表示部、6433:掌紋読み取り部、6434:配線、6435:手、7520:本体、7522:コントローラ

Claims (17)

  1.  第1回路と、第2回路と、を有する半導体装置であって、
     前記第1回路は、第1保持部と、第1駆動トランジスタと、を有し、
     前記第2回路は、第2保持部と、第2駆動トランジスタと、を有し、
     前記第1回路は、第1入力配線、第2入力配線、第1配線、及び、第2配線に電気的に接続され、
     前記第2回路は、前記第1入力配線、前記第2入力配線、前記第1配線、及び、前記第2配線に電気的に接続され、
     前記第1保持部は、前記第1配線から前記第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、
     前記第2保持部は、前記第2配線から前記第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、
     前記第1駆動トランジスタは、前記第1駆動トランジスタのソース−ドレイン間において、保持された前記第1電位に応じた前記第1電流を流す機能を有し、
     前記第2駆動トランジスタは、前記第2駆動トランジスタのソース−ドレイン間において、保持された前記第2電位に応じた前記第2電流を流す機能を有し、
     前記第1回路は、
     前記第1入力配線に第1レベル電位が入力され、かつ前記第2入力配線に第2レベル電位が入力されたときに、前記第1電流を前記第1配線に出力する機能と、
     前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第1レベル電位が入力されたときに、前記第1電流を前記第2配線に出力する機能と、
     前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第1電流を前記第1配線、及び前記第2配線に出力しない機能と、を有し、
     前記第2回路は、
     前記第1入力配線に前記第1レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第2電流を前記第2配線に出力する機能と、
     前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第1レベル電位が入力されたときに、前記第2電流を前記第1配線に出力する機能と、
     前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第2電流を前記第1配線、及び前記第2配線に出力しない機能と、を有し、
     前記第1電流、前記第2電流のそれぞれは、第1データに応じた電流量を有し、
     前記第1入力配線、前記第2入力配線のそれぞれに入力される前記第1レベル電位、第2レベル電位は、第2データに応じて決められる、
     半導体装置。
  2.  第1回路と、第2回路と、を有する半導体装置であって、
     前記第1回路は、第1保持部と、第1駆動トランジスタと、を有し、
     前記第2回路は、第2保持部と、第2駆動トランジスタと、を有し、
     前記第1回路は、第1入力配線、第2入力配線、第1配線、及び、第2配線に電気的に接続され、
     前記第2回路は、前記第1入力配線、前記第2入力配線、前記第1配線、及び、前記第2配線に電気的に接続され、
     前記第1保持部は、前記第1配線から前記第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、
     前記第2保持部は、前記第2配線から前記第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、
     前記第1駆動トランジスタは、前記第1駆動トランジスタのソース−ドレイン間において、保持された前記第1電位に応じた前記第1電流を流す機能を有し、
     前記第2駆動トランジスタは、前記第2駆動トランジスタのソース−ドレイン間において、保持された前記第2電位に応じた前記第2電流を流す機能を有し、
     前記第1回路は、
     第1期間に、前記第1入力配線に第1レベル電位が入力され、かつ前記第2入力配線に第2レベル電位が入力されたときに、前記第1電流を前記第1配線に出力する機能と、
     前記第1期間に、前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第1レベル電位が入力されたときに、前記第1電流を前記第2配線に出力する機能と、
     前記第1期間に、前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第1電流を前記第1配線、及び前記第2配線に出力しない機能と、を有し、
     前記第2回路は、
     前記第1期間に、前記第1入力配線に前記第1レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第2電流を前記第2配線に出力する機能と、
     前記第1期間に、前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第1レベル電位が入力されたときに、前記第2電流を前記第1配線に出力する機能と、
     前記第1期間に、前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第2電流を前記第1配線、及び前記第2配線に出力しない機能と、を有し、
     前記第1電流、前記第2電流のそれぞれは、第1データに応じた電流量を有し、
     前記第1入力配線、前記第2入力配線のそれぞれに入力される前記第1レベル電位、第2レベル電位、及び前記第1期間の長さは、第2データに応じて決められる、
     半導体装置。
  3.  請求項2において、
     前記第1期間は、第2期間と、第3期間と、を有し、
     前記第1入力配線は、前記第2期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第2入力配線は、前記第2期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を出力する機能を有し、
     前記第1入力配線は、前記第3期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第2入力配線は、前記第3期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を出力する機能を有し、
     前記第3期間の長さは、前記第2期間の長さの2倍である、
     半導体装置。
  4.  請求項1乃至請求項3のいずれか一において、
     前記第1回路は、第1トランジスタと、第2トランジスタと、第3トランジスタと、第1容量と、を有し、
     前記第2回路は、第4トランジスタと、第5トランジスタと、第6トランジスタと、第2容量と、を有し、
     前記第1保持部は、第1トランジスタと、第1容量と、を有し、
     前記第2保持部は、第4トランジスタと、第2容量と、を有し、
     前記第1トランジスタの第1端子は、前記第1容量の第1端子と、前記第1駆動トランジスタのゲートに電気的に接続され、
     前記第1トランジスタの第2端子は、前記第1配線に電気的に接続され、
     前記第1駆動トランジスタの第1端子は、前記第2トランジスタの第1端子と、前記第3トランジスタの第1端子と、に電気的に接続され、
     前記第2トランジスタの第2端子は、前記第1配線に電気的に接続され、
     前記第2トランジスタのゲートは、前記第1入力配線に電気的に接続され、
     前記第3トランジスタの第2端子は、前記第2配線に電気的に接続され、
     前記第3トランジスタのゲートは、前記第2入力配線に電気的に接続され、
     前記第4トランジスタの第1端子は、前記第2容量の第1端子と、前記第2駆動トランジスタのゲートに電気的に接続され、
     前記第4トランジスタの第2端子は、前記第2配線に電気的に接続され、
     前記第2駆動トランジスタの第1端子は、前記第5トランジスタの第1端子と、前記第6トランジスタの第1端子と、に電気的に接続され、
     前記第5トランジスタの第2端子は、前記第2配線に電気的に接続され、
     前記第5トランジスタのゲートは、前記第1入力配線に電気的に接続され、
     前記第6トランジスタの第2端子は、前記第1配線に電気的に接続され、
     前記第6トランジスタのゲートは、前記第2入力配線に電気的に接続されている、
     半導体装置。
  5.  請求項4において、
     前記第1回路は、第7トランジスタを有し、
     前記第2回路は、第8トランジスタを有し、
     前記第7トランジスタの第1端子は、前記第1駆動トランジスタの第1端子と、前記第2トランジスタの第1端子と、前記第3トランジスタの第1端子と、に電気的に接続され、
     前記第7トランジスタの第2端子は、前記第1トランジスタの第1端子、又は第2端子の一方に電気的に接続され、
     前記第8トランジスタの第1端子は、前記第2駆動トランジスタの第1端子と、前記第5トランジスタの第1端子と、前記第6トランジスタの第1端子と、に電気的に接続され、
     前記第8トランジスタの第2端子は、前記第4トランジスタの第1端子、又は第2端子の一方に電気的に接続され、
     前記第1トランジスタのゲートは、前記第4トランジスタのゲートと、前記第7トランジスタのゲートと、前記第8トランジスタのゲートと、に電気的に接続されている、
     半導体装置。
  6.  請求項1乃至請求項3のいずれか一において、
     前記第1回路は、第1トランジスタ、第2トランジスタ、第3トランジスタと、第1容量と、を有し、
     前記第2回路は、第4トランジスタ、第5トランジスタ、第6トランジスタと、第2容量と、を有し、
     前記第1保持部は、第1トランジスタと、第1容量と、を有し、
     前記第2保持部は、第4トランジスタと、第2容量と、を有し、
     前記第1トランジスタの第1端子は、前記第1容量の第1端子と、前記第1駆動トランジスタのゲートに電気的に接続され、
     前記第1駆動トランジスタの第1端子は、前記第1トランジスタの第2端子と、前記第2トランジスタの第1端子と、前記第3トランジスタの第1端子と、に電気的に接続され、
     前記第2トランジスタの第2端子は、前記第1配線に電気的に接続され、
     前記第2トランジスタのゲートは、前記第1入力配線に電気的に接続され、
     前記第3トランジスタの第2端子は、前記第2配線に電気的に接続され、
     前記第3トランジスタのゲートは、前記第2入力配線に電気的に接続され、
     前記第4トランジスタの第1端子は、前記第2容量の第1端子と、前記第2駆動トランジスタのゲートに電気的に接続され、
     前記第2駆動トランジスタの第1端子は、前記第4トランジスタの第2端子と、前記第5トランジスタの第1端子と、前記第6トランジスタの第1端子と、に電気的に接続され、
     前記第5トランジスタの第2端子は、前記第2配線に電気的に接続され、
     前記第5トランジスタのゲートは、前記第1入力配線に電気的に接続され、
     前記第6トランジスタの第2端子は、前記第1配線に電気的に接続され、
     前記第6トランジスタのゲートは、前記第2入力配線に電気的に接続されている、
     半導体装置。
  7.  請求項1乃至請求項3のいずれか一において、
     前記第1回路は、第3保持部と、第3駆動トランジスタと、を有し、
     前記第2回路は、第4保持部と、第4駆動トランジスタと、を有し、
     前記第1回路は、第3配線に電気的に接続され、
     前記第2回路は、前記第3配線に電気的に接続され、
     前記第3保持部は、前記第1配線から前記第3駆動トランジスタのソース−ドレイン間に流れる第3電流に応じた第3電位を保持する機能を有し、
     前記第4保持部は、前記第2配線から前記第4駆動トランジスタのソース−ドレイン間に流れる第4電流に応じた第4電位を保持する機能を有し、
     前記第3駆動トランジスタは、前記第3駆動トランジスタのソース−ドレイン間において、保持された前記第3電位に応じた前記第3電流を流す機能を有し、
     前記第4駆動トランジスタは、前記第4駆動トランジスタのソース−ドレイン間において、保持された前記第4電位に応じた前記第4電流を流す機能を有し、
     前記第3配線に入力される信号に応じて、前記第1配線又は前記第2配線の一方に流れる前記第1電流を前記第3電流に切り替え、かつ前記第1配線又は前記第2配線の他方に流れる前記第2電流を前記第4電流に切り替える機能を有する、
     半導体装置。
  8.  請求項1乃至請求項7のいずれか一において、
     第3回路と、第4回路と、第5回路と、を有し、
     前記第3回路は、
     前記第1配線を介して、前記第1回路に、前記第1データに応じた前記第1電流を供給する機能と、
     前記第2配線を介して、前記第2回路に、前記第1データに応じた前記第2電流を供給する機能と、
     前記第4回路は、
     前記第2データに応じて、前記第1入力配線に、前記第1レベル電位又は前記第2レベル電位を入力する機能と、
     前記第2データに応じて、前記第2入力配線に、前記第1レベル電位又は前記第2レベル電位を入力する機能と、
     を有し、
     前記第5回路は、前記第1配線と、前記第2配線と、のそれぞれから流れる電流を比較して、前記第5回路の出力端子から、前記第1データと前記第2データの積に応じた電位を出力する機能を有する半導体装置。
  9.  第1回路と、第2回路と、を有する半導体装置であって、
     前記第1回路は、第1保持部と、第1駆動トランジスタと、第3駆動トランジスタと、を有し、
     前記第2回路は、第2保持部と、第2駆動トランジスタと、第4駆動トランジスタと、を有し、
     前記第1回路は、第1入力配線、第2入力配線、第3入力配線、第4入力配線、第1配線、及び、第2配線に電気的に接続され、
     前記第2回路は、前記第1入力配線、前記第2入力配線、前記第3入力配線、前記第4入力配線、前記第1配線、及び、前記第2配線に電気的に接続され、
     前記第1保持部は、前記第1配線から前記第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、
     前記第2保持部は、前記第2配線から前記第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、
     前記第1駆動トランジスタは、前記第1駆動トランジスタのソース−ドレイン間において、保持された前記第1電位に応じた前記第1電流を流す機能を有し、
     前記第2駆動トランジスタは、前記第2駆動トランジスタのソース−ドレイン間において、保持された前記第2電位に応じた前記第2電流を流す機能を有し、
     前記第3駆動トランジスタは、前記第3駆動トランジスタのソース−ドレイン間において、保持された前記第1電位に応じた前記第3電流を流す機能を有し、
     前記第4駆動トランジスタは、前記第4駆動トランジスタのソース−ドレイン間において、保持された前記第2電位に応じた前記第4電流を流す機能を有し、
     前記第1回路は、
     前記第1入力配線に第1レベル電位が入力され、かつ前記第2入力配線に第2レベル電位が入力されたときに、前記第1電流を前記第1配線に出力する機能と、
     前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第1レベル電位が入力されたときに、前記第1電流を前記第2配線に出力する機能と、
     前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第1電流を前記第1配線、及び前記第2配線に出力しない機能と、
     前記第3入力配線に前記第1レベル電位が入力され、かつ前記第4入力配線に前記第2レベル電位が入力されたときに、前記第3電流を前記第1配線に出力する機能と、
     前記第3入力配線に前記第2レベル電位が入力され、かつ前記第4入力配線に前記第1レベル電位が入力されたときに、前記第3電流を前記第2配線に出力する機能と、
     前記第3入力配線に前記第2レベル電位が入力され、かつ前記第4入力配線に前記第2レベル電位が入力されたときに、前記第3電流を前記第1配線、及び前記第2配線に出力しない機能と、を有し、
     前記第2回路は、
     前記第1入力配線に前記第1レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第2電流を前記第2配線に出力する機能と、
     前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第1レベル電位が入力されたときに、前記第2電流を前記第1配線に出力する機能と、
     前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第2電流を前記第1配線、及び前記第2配線に出力しない機能と、
     前記第3入力配線に前記第1レベル電位が入力され、かつ前記第4入力配線に前記第2レベル電位が入力されたときに、前記第4電流を前記第2配線に出力する機能と、
     前記第3入力配線に前記第2レベル電位が入力され、かつ前記第4入力配線に前記第1レベル電位が入力されたときに、前記第4電流を前記第1配線に出力する機能と、
     前記第3入力配線に前記第2レベル電位が入力され、かつ前記第4入力配線に前記第2レベル電位が入力されたときに、前記第4電流を前記第1配線、及び前記第2配線に出力しない機能と、を有し、
     前記第1電流、前記第2電流、前記第3電流、前記第4電流のそれぞれは、第1データに応じた電流量を有し、
     前記第1入力配線、前記第2入力配線、前記第3入力配線、前記第4入力配線のそれぞれに入力される前記第1レベル電位、第2レベル電位は、第2データに応じて決められる、
     半導体装置。
  10.  第1回路と、第2回路と、を有する半導体装置であって、
     前記第1回路は、第1保持部と、第1駆動トランジスタと、第3駆動トランジスタと、を有し、
     前記第2回路は、第2保持部と、第2駆動トランジスタと、第4駆動トランジスタと、を有し、
     前記第1回路は、第1入力配線、第2入力配線、第3入力配線、第4入力配線、第1配線、及び、第2配線に電気的に接続され、
     前記第2回路は、前記第1入力配線、前記第2入力配線、前記第3入力配線、前記第4入力配線、前記第1配線、及び、前記第2配線に電気的に接続され、
     前記第1保持部は、前記第1配線から前記第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、
     前記第2保持部は、前記第2配線から前記第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、
     前記第1駆動トランジスタは、前記第1駆動トランジスタのソース−ドレイン間において、保持された前記第1電位に応じた前記第1電流を流す機能を有し、
     前記第2駆動トランジスタは、前記第2駆動トランジスタのソース−ドレイン間において、保持された前記第2電位に応じた前記第2電流を流す機能を有し、
     前記第3駆動トランジスタは、前記第3駆動トランジスタのソース−ドレイン間において、保持された前記第1電位に応じた前記第3電流を流す機能を有し、
     前記第4駆動トランジスタは、前記第4駆動トランジスタのソース−ドレイン間において、保持された前記第2電位に応じた前記第4電流を流す機能を有し、
     前記第1回路は、
     第1期間に、前記第1入力配線に第1レベル電位が入力され、かつ前記第2入力配線に第2レベル電位が入力されたときに、前記第1電流を前記第1配線に出力する機能と、
     前記第1期間に、前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第1レベル電位が入力されたときに、前記第1電流を前記第2配線に出力する機能と、
     前記第1期間に、前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第1電流を前記第1配線、及び前記第2配線に出力しない機能と、
     第1期間に、前記第3入力配線に前記第1レベル電位が入力され、かつ前記第4入力配線に前記第2レベル電位が入力されたときに、前記第3電流を前記第1配線に出力する機能と、
     前記第1期間に、前記第3入力配線に前記第2レベル電位が入力され、かつ前記第4入力配線に前記第1レベル電位が入力されたときに、前記第3電流を前記第2配線に出力する機能と、
     前記第1期間に、前記第3入力配線に前記第2レベル電位が入力され、かつ前記第4入力配線に前記第2レベル電位が入力されたときに、前記第3電流を前記第1配線、及び前記第2配線に出力しない機能と、を有し、
     前記第2回路は、
     前記第1期間に、前記第1入力配線に前記第1レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第2電流を前記第2配線に出力する機能と、
     前記第1期間に、前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第1レベル電位が入力されたときに、前記第2電流を前記第1配線に出力する機能と、
     前記第1期間に、前記第1入力配線に前記第2レベル電位が入力され、かつ前記第2入力配線に前記第2レベル電位が入力されたときに、前記第2電流を前記第1配線、及び前記第2配線に出力しない機能と、
     前記第1期間に、前記第3入力配線に前記第1レベル電位が入力され、かつ前記第4入力配線に前記第2レベル電位が入力されたときに、前記第4電流を前記第2配線に出力する機能と、
     前記第1期間に、前記第3入力配線に前記第2レベル電位が入力され、かつ前記第4入力配線に前記第1レベル電位が入力されたときに、前記第4電流を前記第1配線に出力する機能と、
     前記第1期間に、前記第3入力配線に前記第2レベル電位が入力され、かつ前記第4入力配線に前記第2レベル電位が入力されたときに、前記第4電流を前記第1配線、及び前記第2配線に出力しない機能と、を有し、
     前記第1電流、前記第2電流、前記第3電流、前記第4電流のそれぞれは、第1データに応じた電流量を有し、
     前記第1入力配線、前記第2入力配線、前記第3入力配線、前記第4入力配線のそれぞれに入力される前記第1レベル電位、第2レベル電位、及び前記第1期間の長さは、第2データに応じて決められる、
     半導体装置。
  11.  請求項10において、
     前記第1期間は、第2期間と、第3期間と、を有し、
     前記第1入力配線は、前記第2期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第2入力配線は、前記第2期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第3入力配線は、前記第2期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第4入力配線は、前記第2期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第1入力配線は、前記第3期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第2入力配線は、前記第3期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第3入力配線は、前記第3期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第4入力配線は、前記第3期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第3期間の長さは、前記第2期間の長さの2倍である、
     半導体装置。
  12.  請求項9乃至請求項11のいずれか一において、
     第3回路と、第4回路と、第5回路と、を有し、
     前記第3回路は、
     前記第1配線を介して、前記第1回路に、前記第1データに応じた前記第1電流を供給する機能と、
     前記第2配線を介して、前記第2回路に、前記第1データに応じた前記第2電流を供給する機能と、
     前記第4回路は、
     前記第1入力配線に、前記第2データに応じて、前記第1レベル電位又は前記第2レベル電位を入力する機能と、
     前記第2入力配線に、前記第2データに応じて、前記第1レベル電位又は前記第2レベル電位を入力する機能と、
     前記第3入力配線に、前記第2データに応じて、前記第1レベル電位又は前記第2レベル電位を入力する機能と、
     前記第4入力配線に、前記第2データに応じて、前記第1レベル電位又は前記第2レベル電位を入力する機能と、
     を有し、
     前記第5回路は、前記第1配線と、前記第2配線と、のそれぞれから流れる電流を比較して、前記第5回路の出力端子から、前記第1データと前記第2データの積に応じた電位を出力する機能を有する半導体装置。
  13.  第1回路と、第2回路と、を有する半導体装置であって、
     前記第1回路は、第1保持部と、第1駆動トランジスタと、を有し、
     前記第2回路は、第2保持部と、第2駆動トランジスタと、を有し、
     前記第1回路は、第1入力配線、及び第1配線に電気的に接続され、
     前記第2回路は、前記第1入力配線、及び第2配線に電気的に接続され、
     前記第1保持部は、前記第1配線から前記第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、
     前記第2保持部は、前記第2配線から前記第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、
     前記第1駆動トランジスタは、前記第1駆動トランジスタのソース−ドレイン間において、保持された前記第1電位に応じた前記第1電流を流す機能を有し、
     前記第2駆動トランジスタは、前記第2駆動トランジスタのソース−ドレイン間において、保持された前記第2電位に応じた前記第2電流を流す機能を有し、
     前記第1回路は、
     前記第1入力配線に第1レベル電位が入力されたときに、前記第1電流を前記第1配線に出力する機能と、
     前記第1入力配線に第2レベル電位が入力されたときに、前記第1電流を前記第1配線に出力しない機能と、を有し、
     前記第2回路は、
     前記第1入力配線に前記第1レベル電位が入力されたときに、前記第2電流を前記第2配線に出力する機能と、
     前記第1入力配線に前記第2レベル電位が入力されたときに、前記第2電流を前記第2配線に出力しない機能と、を有し、
     前記第1電流、前記第2電流のそれぞれは、第1データに応じた電流量を有し、
     前記第1入力配線、前記第2入力配線のそれぞれに入力される前記第1レベル電位、第2レベル電位は、第2データに応じて決められる、
     半導体装置。
  14.  第1回路と、第2回路と、を有する半導体装置であって、
     前記第1回路は、第1保持部と、第1駆動トランジスタと、を有し、
     前記第2回路は、第2保持部と、第2駆動トランジスタと、を有し、
     前記第1回路は、第1入力配線、及び第1配線に電気的に接続され、
     前記第2回路は、前記第1入力配線、及び第2配線に電気的に接続され、
     前記第1保持部は、前記第1配線から前記第1駆動トランジスタのソース−ドレイン間に流れる第1電流に応じた第1電位を保持する機能を有し、
     前記第2保持部は、前記第2配線から前記第2駆動トランジスタのソース−ドレイン間に流れる第2電流に応じた第2電位を保持する機能を有し、
     前記第1駆動トランジスタは、前記第1駆動トランジスタのソース−ドレイン間において、保持された前記第1電位に応じた前記第1電流を流す機能を有し、
     前記第2駆動トランジスタは、前記第2駆動トランジスタのソース−ドレイン間において、保持された前記第2電位に応じた前記第2電流を流す機能を有し、
     前記第1回路は、
     第1期間に、前記第1入力配線に第1レベル電位が入力されたときに、前記第1電流を前記第1配線に出力する機能と、
     前記第1期間に、前記第1入力配線に第2レベル電位が入力されたときに、前記第1電流を前記第1配線に出力しない機能と、を有し、
     前記第2回路は、
     前記第1期間に、前記第1入力配線に前記第1レベル電位が入力されたときに、前記第2電流を前記第2配線に出力する機能と、
     前記第1期間に、前記第1入力配線に前記第2レベル電位が入力されたときに、前記第2電流を前記第2配線に出力しない機能と、を有し、
     前記第1電流、前記第2電流のそれぞれは、第1データに応じた電流量を有し、
     前記第1入力配線、前記第2入力配線のそれぞれに入力される前記第1レベル電位、第2レベル電位は、第2データに応じて決められる、
     半導体装置。
  15.  請求項14において、
     前記第1期間は、第2期間と、第3期間と、を有し、
     前記第1入力配線は、前記第2期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第1入力配線は、前記第3期間において、前記第1回路及び前記第2回路の両方に前記第1レベル電位又は前記第2レベル電位を与える機能を有し、
     前記第3期間の長さは、前記第2期間の長さの2倍である、
     半導体装置。
  16.  請求項13乃至請求項15のいずれか一において、
     前記第1回路は、第1トランジスタと、第2トランジスタと、第1容量と、を有し、
     前記第2回路は、第4トランジスタと、第5トランジスタと、第2容量と、を有し、
     前記第1保持部は、第1トランジスタと、第1容量と、を有し、
     前記第2保持部は、第4トランジスタと、第2容量と、を有し、
     前記第1トランジスタの第1端子は、前記第1容量の第1端子と、前記第1駆動トランジスタのゲートに電気的に接続され、
     前記第1トランジスタの第2端子は、前記第1配線に電気的に接続され、
     前記第1駆動トランジスタの第1端子は、前記第2トランジスタの第1端子に電気的に接続され、
     前記第2トランジスタの第2端子は、前記第1配線に電気的に接続され、
     前記第2トランジスタのゲートは、前記第1入力配線に電気的に接続され、
     前記第4トランジスタの第1端子は、前記第2容量の第1端子と、前記第2駆動トランジスタのゲートに電気的に接続され、
     前記第4トランジスタの第2端子は、前記第2配線に電気的に接続され、
     前記第2駆動トランジスタの第1端子は、前記第5トランジスタの第1端子に電気的に接続され、
     前記第5トランジスタの第2端子は、前記第2配線に電気的に接続され、
     前記第5トランジスタのゲートは、前記第1入力配線に電気的に接続されている、
     半導体装置。
  17.  請求項1乃至請求項16のいずれか一の半導体装置と、筐体と、を有し、
     前記半導体装置によってニューラルネットワークの演算を行う電子機器。
PCT/IB2020/050821 2019-02-15 2020-02-03 半導体装置、及び電子機器 WO2020165685A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US17/427,697 US11776586B2 (en) 2019-02-15 2020-02-03 Semiconductor device and electronic device
DE112020000823.1T DE112020000823T5 (de) 2019-02-15 2020-02-03 Halbleitervorrichtung und elektronisches Gerät
CN202080011459.5A CN113383342A (zh) 2019-02-15 2020-02-03 半导体装置及电子设备
JP2020571923A JP7443263B2 (ja) 2019-02-15 2020-02-03 半導体装置
KR1020217026023A KR20210125004A (ko) 2019-02-15 2020-02-03 반도체 장치 및 전자 기기
US18/375,573 US20240046967A1 (en) 2019-02-15 2023-10-02 Semiconductor device and electronic device
JP2024024504A JP2024061728A (ja) 2019-02-15 2024-02-21 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019025723 2019-02-15
JP2019-025723 2019-02-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/427,697 A-371-Of-International US11776586B2 (en) 2019-02-15 2020-02-03 Semiconductor device and electronic device
US18/375,573 Continuation US20240046967A1 (en) 2019-02-15 2023-10-02 Semiconductor device and electronic device

Publications (1)

Publication Number Publication Date
WO2020165685A1 true WO2020165685A1 (ja) 2020-08-20

Family

ID=72044717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/050821 WO2020165685A1 (ja) 2019-02-15 2020-02-03 半導体装置、及び電子機器

Country Status (7)

Country Link
US (2) US11776586B2 (ja)
JP (2) JP7443263B2 (ja)
KR (1) KR20210125004A (ja)
CN (1) CN113383342A (ja)
DE (1) DE112020000823T5 (ja)
TW (1) TW202032407A (ja)
WO (1) WO2020165685A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116864510A (zh) * 2019-03-19 2023-10-10 群创光电股份有限公司 具有晶体管元件的工作模块
US20220228265A1 (en) * 2021-01-15 2022-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for dynamically adjusting thin-film deposition parameters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467259A (ja) * 1990-07-09 1992-03-03 Hitachi Ltd 情報処理装置
JP2006030946A (ja) * 2004-06-14 2006-02-02 Sharp Corp 表示装置
JP2019003464A (ja) * 2017-06-16 2019-01-10 株式会社半導体エネルギー研究所 半導体装置、演算回路及び電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11568223B2 (en) 2017-04-14 2023-01-31 Semiconductor Energy Laboratory Co., Ltd. Neural network circuit
WO2018211349A1 (ja) 2017-05-19 2018-11-22 株式会社半導体エネルギー研究所 半導体装置
JP7337782B2 (ja) * 2018-04-26 2023-09-04 株式会社半導体エネルギー研究所 半導体装置
WO2019239245A1 (ja) 2018-06-15 2019-12-19 株式会社半導体エネルギー研究所 半導体装置
JP7364586B2 (ja) 2018-10-19 2023-10-18 株式会社半導体エネルギー研究所 半導体装置、及び電子機器
JP7441175B2 (ja) 2018-11-08 2024-02-29 株式会社半導体エネルギー研究所 半導体装置、及び電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467259A (ja) * 1990-07-09 1992-03-03 Hitachi Ltd 情報処理装置
JP2006030946A (ja) * 2004-06-14 2006-02-02 Sharp Corp 表示装置
JP2019003464A (ja) * 2017-06-16 2019-01-10 株式会社半導体エネルギー研究所 半導体装置、演算回路及び電子機器

Also Published As

Publication number Publication date
US20240046967A1 (en) 2024-02-08
TW202032407A (zh) 2020-09-01
US20220165311A1 (en) 2022-05-26
US11776586B2 (en) 2023-10-03
JP2024061728A (ja) 2024-05-08
CN113383342A (zh) 2021-09-10
DE112020000823T5 (de) 2021-11-04
JP7443263B2 (ja) 2024-03-05
JPWO2020165685A1 (ja) 2020-08-20
KR20210125004A (ko) 2021-10-15

Similar Documents

Publication Publication Date Title
JP7364586B2 (ja) 半導体装置、及び電子機器
JP7441175B2 (ja) 半導体装置、及び電子機器
US10924090B2 (en) Semiconductor device comprising holding units
US11870436B2 (en) Semiconductor device and electronic device
JP2024061728A (ja) 半導体装置
JP7480133B2 (ja) 半導体装置、及び電子機器
WO2022013676A1 (ja) 半導体装置、及び電子機器
WO2021229373A1 (ja) 半導体装置、及び電子機器
JPWO2019239246A1 (ja) 半導体装置、及び電子機器
WO2022013680A1 (ja) 半導体装置、及び電子機器
WO2022029532A1 (ja) 半導体装置、及び電子機器
WO2021165799A1 (ja) 半導体装置、及び電子機器
JP2021043712A (ja) 半導体装置、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571923

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217026023

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20756226

Country of ref document: EP

Kind code of ref document: A1