WO2020098496A1 - 一种高熔接线强度聚乙烯/聚碳酸酯合金及其制备方法 - Google Patents

一种高熔接线强度聚乙烯/聚碳酸酯合金及其制备方法 Download PDF

Info

Publication number
WO2020098496A1
WO2020098496A1 PCT/CN2019/114376 CN2019114376W WO2020098496A1 WO 2020098496 A1 WO2020098496 A1 WO 2020098496A1 CN 2019114376 W CN2019114376 W CN 2019114376W WO 2020098496 A1 WO2020098496 A1 WO 2020098496A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
polycarbonate
copolymer
strength
polyethylene
Prior art date
Application number
PCT/CN2019/114376
Other languages
English (en)
French (fr)
Inventor
杨燕
李明昆
黄险波
叶南飚
佟伟
董相茂
艾军伟
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Priority to JP2021525823A priority Critical patent/JP2022507323A/ja
Priority to EP19885923.3A priority patent/EP3868829A4/en
Priority to KR1020217016373A priority patent/KR20210083324A/ko
Priority to US17/293,487 priority patent/US20210403706A1/en
Publication of WO2020098496A1 publication Critical patent/WO2020098496A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/08Polymer mixtures characterised by other features containing additives to improve the compatibility between two polymers

Definitions

  • the invention relates to the technical field of polymer materials, in particular to a high-melting wire strength polyethylene / polycarbonate alloy and a preparation method thereof.
  • PC Polycarbonate
  • Blending polyolefin and polycarbonate can improve the fluidity of polycarbonate, so that the processing performance can be improved, and materials with good processing performance can be obtained.
  • this alloy due to its poor compatibility and low weld line strength, this alloy becomes a weak point and can easily lead to component failure.
  • the purpose of the present invention is to overcome the above technical shortcomings and provide a high-melting wire strength polyethylene / polycarbonate alloy with excellent heat aging resistance.
  • Another object of the present invention is to provide a method for preparing the above-mentioned polyethylene / polycarbonate alloy.
  • a high-melting wire strength polyethylene / polycarbonate alloy including the following components:
  • Polyethylene 5-40 copies
  • the polyethylene is selected from polyethylenes with a branching rate of 5 to 300 branches per 1000 carbon atoms, and the branched chains have 1 to 10 carbon atoms; preferably, the branching rate is selected from the branching rate Every 1000 carbon atoms contains 20 to 100 branched polyethylenes, which have 1 to 10 carbon atoms.
  • the ethylene copolymer compatibilizer is selected from acrylic acid ethylene copolymer, ethylene-vinyl acetate copolymer, styrene-butadiene-styrene copolymer, styrene-ethylene-butadiene-styrene copolymer, At least one of styrene-ethylene-propylene-styrene copolymer; the ethylene copolymer of acrylic acid is selected from ethylene-methacrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer At least one of them.
  • the ethylene copolymer compatibilizer is selected from acrylic acid ethylene copolymers.
  • the ethylene copolymer compatibilizer is selected from ethylene copolymer compatibilizers containing reactive groups, wherein the ethylene copolymer is selected from ethylene copolymers of acrylic acid, ethylene-vinyl acetate copolymers, and styrene- At least one of butadiene-styrene copolymer, styrene-ethylene-butadiene-styrene copolymer, styrene-ethylene-propylene-styrene copolymer, the reactive group is maleic anhydride group At least one of epoxy groups, the graft ratio of reactive groups is 0.1-15%; the ethylene copolymer of acrylic acid is selected from ethylene-methacrylic acid copolymer, ethylene-ethyl acrylate copolymer , At least one of ethylene-butyl acrylate copolymer.
  • the ethylene copolymer is selected from acrylic acid ethylene copolymers.
  • the polycarbonate is selected from aromatic polycarbonate, aliphatic polycarbonate, and aromatic-aliphatic polycarbonate; preferably, the polycarbonate has a weight average molecular weight of 18,000-28,000.
  • the weld line strength of the present invention is further improved.
  • the weld line strength of the present invention is further improved.
  • a phase structure in which polyethylene is the dispersed phase and polycarbonate is the continuous phase is formed.
  • the strength of the weld line is determined by the particle size and orientation of the dispersed phase at the weld line and the surface tension between the polycarbonate and polyethylene.
  • the particle size can be seen from the formula: if the melt index of the dispersed phase is large, the E DK is small, and it is easier to reduce the particle size of the dispersed phase; The choice of index needs to balance the particle size and orientation. It is necessary to reduce the particle size to the greatest extent while maintaining a small orientation to obtain high weld line strength.
  • the general ethylene copolymer compatibilizer is a B-D graft copolymer, in which the B segment ethylene molecular segment is similar in structure to polyethylene. Due to the similar compatibility, its compatibility with polyethylene is excellent; In addition, there is a chemical reaction between the D segment and the end groups of the polycarbonate, which is combined with the polycarbonate through a chemical bond, which correspondingly improves the compatibility with the polycarbonate. That is to say, the compatibility agent acts as a bridge substance to connect the polyethylene and Polycarbonate, thereby improving the compatibility of the two and reducing the surface tension. Therefore, after adding the ethylene copolymer compatibilizer to the alloy of polyethylene and polycarbonate, the particle size of the dispersed phase is indirectly reduced. However, due to the improved compatibility, it also brought about an increase in the interaction force between the molecular chains, thereby reducing the melt index of the alloy system.
  • the melt index of the ethylene copolymer compatibilizer affects the degree and speed of diffusion.
  • the melt index is too low, in the molten state, the ethylene copolymer compatibilizer diffuses slowly, thereby failing to increase the compatibility.
  • the melt index reaches a certain level, the ethylene copolymer compatibilizer tends to diffuse to the interface of the dispersed phase and the continuous phase, connecting the alloy dispersed phase and the continuous phase, thereby improving the interface binding force, and reducing the particle size of the dispersed phase through the transmission of stress To improve the strength of the weld line of the alloy.
  • melt index of the ethylene copolymer compatibilizer is too high, it will reduce the degree of interpenetration between the dispersed phase and the continuous phase of the ethylene copolymer compatibilizer, and instead reduce the strength of the weld line.
  • the number and type of active groups of the ethylene copolymer compatibilizer affect the reactivity with polycarbonate.
  • the reactive groups increase the degree of reaction with polycarbonate. Due to the steric hindrance and the intermolecular force, the increase The weld line strength reduces the alloy's melt index.
  • the present invention is to increase the melt index of polyethylene in the range of 40g / 10min-150g / 10min, test conditions 230 °C, 2.16kg melt index range, to minimize the particle size while maintaining a small orientation
  • the ethylene copolymer compatibilizer is selected to indirectly reduce the particle size of the dispersed phase; in this way, in the polyethylene / polycarbonate alloy of the present invention, the particle size of the dispersed phase is small and the orientation is also small, the end result is that the polycarbonate Ester alloy weld line strength.
  • the branching of polyethylene affects the thickness of the polyethylene / polycarbonate alloy interface layer, as well as the particle size and orientation of the dispersed phase.
  • the branching rate is increased within the range of 1000 carbon atoms with 20-100 branches, the fluidity is good, and the dispersed phase is easier to break into smaller particle sizes.
  • the increased branching rate brings a higher The polyethylene / polycarbonate alloy interface force and interface thickness reduce the orientation. Therefore, the ultimate result of increasing the branching rate of polyethylene within this range is to increase the weld line strength of the polyethylene / polycarbonate alloy.
  • branching rate is in the range of 100-300 branches with 1000 carbon atoms
  • polyethylene with an excessively high branching rate has a high steric hindrance
  • the effect of reducing the particle size is not obvious, and the branching is too Most of them will increase the orientation of the dispersed phase, and the weld line strength will gradually decrease in the range of branching rate in the range of 1000 carbon atoms with 100-300 branches.
  • Acrylic ethylene copolymer has higher melt strength, and its polar groups are similarly compatible with polycarbonate, so it can significantly improve the weld line strength of polycarbonate alloy.
  • the high-melt wire strength polyethylene / polycarbonate alloy of the present invention has a weld wire strength greater than or equal to 65%, and the weld wire strength test is in accordance with ASTM D638; preferably, the high-melt wire strength polyethylene / polycarbonate alloy weld wire The strength is greater than or equal to 70%, and the weld line strength test is in accordance with ASTM D638.
  • a method for preparing high-melting-strength polyethylene / polycarbonate alloy includes the following steps: polycarbonate, polyethylene, ethylene copolymer compatibilizer, processing aid and / or additives are proportioned in a high-speed mixer It is evenly mixed in the middle; then added to the twin screw extruder, melt-mixed at a temperature of 220 °C-240 °C, and then granulated, cooled, and dried to obtain a polycarbonate alloy with high fusion strength.
  • the melt index of the polyolefin is greater than 40g / 10min-150g / 10min, and the test conditions are 230 ° C and 2.16kg.
  • the melt index of the polyolefin is greater than 60g / 10min-150g / 10min, the test condition is 230 ° C, 2.16kg.
  • the melt index of the ethylene copolymer compatibilizer is 0.2g / 10min-50g / 10min, the test condition is 190 ° C, 2.16kg; preferably, the melt index of the ethylene copolymer compatibilizer is greater than or equal to 0.4 g / 10min-35g / 10min, test condition 190 °C, 2.16kg.
  • the present invention by adding an ethylene copolymer compatibilizer to the polyethylene / polycarbonate alloy, the weld line strength and TS retention rate of the alloy are improved; further, the present invention finds that the weld line strength of the ethylene copolymer of acrylic acid to the alloy, The TS retention rate has improved greatly.
  • the branching rate and branch length of polyethylene have a greater influence on the alloy weld line strength and TS retention rate; the present invention also optimizes the melting index of polyethylene and ethylene copolymer compatibilizers The alloy weld line strength and TS retention rate are further improved; the present invention also found that the weight average molecular weight of the polycarbonate also affects the alloy weld line strength and TS retention rate, that is, the polycarbonate's weight average molecular weight is 18,000-28,000 hours , Alloy weld line strength and TS retention rate are better.
  • the high-melting wire strength polyethylene / polycarbonate alloy of the present invention has the advantages of high-melting wire strength, excellent heat aging resistance, and the like.
  • the raw materials of the examples and comparative examples are commercially available, specifically:
  • the branching rate is the number of branches containing 1000 carbon atoms
  • the branching rate in the table is the base number of 1000 carbon atoms.
  • EMA ethylene-methacrylic acid copolymer
  • EEA ethylene-ethyl acrylate copolymer
  • EMA–g-GMA ethylene-methacrylic acid grafted epoxy group, (GMA is epoxy group);
  • EVA ethylene-vinyl acetate copolymer
  • SEBS styrene-ethylene-butadiene-styrene copolymer
  • Compatibilizer B PP-G-MAH (polypropylene grafted with maleic anhydride);
  • Polycarbonate A aromatic polycarbonate with a weight average molecular weight of 28,000;
  • Polycarbonate B aliphatic polycarbonate with a weight average molecular weight of 18,000;
  • Polycarbonate C aromatic polycarbonate with a weight average molecular weight of 8,000;
  • Polycarbonate D aromatic polycarbonate with a weight average molecular weight of 30,000;
  • the preparation method of the polyethylene / polycarbonate alloy in the examples and comparative examples the polycarbonate, polyethylene, compatibilizer, processing aids and / or additives are mixed in proportion in a high-speed mixer, and then added to In a twin-screw extruder, melt-mixing is carried out at a temperature of 220 ° C-240 ° C, and then granulated, cooled, and dried to obtain a high-melting wire-strength polycarbonate alloy.
  • melt-mixing is carried out at a temperature of 220 ° C-240 ° C, and then granulated, cooled, and dried to obtain a high-melting wire-strength polycarbonate alloy.
  • Alloy melt index (MFR) According to the determination of ASTM D1238, the polycarbonate alloy test conditions are 260 ° C and 2.16kg;
  • TS X is the tensile strength of the weld line
  • TS 0 is the tensile strength of the non-fusion line, and is tested according to ASTM D638.
  • TS retention rate according to ISO 527-2 / 1A, a test rod with a thickness of 4 mm and a width of 10 mm prepared by molding, a test speed of 5 mm / min, and a test before and after aging at 23 ° C in air Strength (TS) (the average value of the test results of at least 5 samples of the same composition and shape) to obtain the tensile strength T initial before aging.
  • Hot air aging uses a thermal aging box, adjusting the temperature to 150 ° C. After reaching the aging time of 1000h, the sample is taken out of the aging box, and after cooling to room temperature, it is heat sealed with an aluminum foil bag to prevent any moisture from being absorbed before evaluating the mechanical properties.
  • T aging and T initial are the tensile strength after aging and before aging, respectively.
  • Branching degree (DB) (D + T) / (D + T + L)
  • D represents the number of dendritic units
  • T represents the number of terminal units
  • L represents the number of linear units
  • Table 1 Compositions and proportions (parts by weight) of polyethylene / polycarbonate alloys of Examples 1-10 and performance test results
  • Table 2 Composition and ratio (parts by weight) of polyethylene / polycarbonate alloys of Examples 11-20 and test results of various properties
  • Example 3 and Examples 12-14 it can be seen from Example 3 and Examples 12-14 that the ethylene copolymer compatibilizer containing reactive groups can improve the weld line strength and TS compared to the ethylene copolymer compatibilizer without reactive groups. Retention rate, and as the content of reactive groups rises, the weld line strength and TS retention rate of the product increase.
  • Example 8 Comparative Example 3 that when the melt index of polyethylene is less than 40 g / 10 min (test conditions 230 ° C., 2.16 kg), the weld line strength of the product greatly decreases and the melt index is low.
  • Example 1/15/16/17 the ethylene copolymer of acrylic acid has better performance as a compatibilizer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

本发明公开了一种高熔接线强度聚乙烯/聚碳酸酯合金,按重量份计,包括以下组分:聚乙烯5-40份;聚碳酸酯40-85份;乙烯共聚物相容剂1-15份。高熔接线强度聚乙烯/聚碳酸酯合金具有高熔接线强度,良好的熔融指数,耐热老化性能好等优点。

Description

一种高熔接线强度聚乙烯/聚碳酸酯合金及其制备方法 技术领域
本发明涉及高分子材料技术领域,特别是涉及一种高熔接线强度聚乙烯/聚碳酸酯合金及其制备方法。
背景技术
聚碳酸酯(PC)是性能优异的工程塑料,具有优良的力学性能和优异的尺寸稳定性,热稳定性、耐候性、耐蠕变性和耐热性好。但是,由于PC分子链中具有刚性基团,其熔体黏度高。
将聚烯烃与聚碳酸酯共混,可以提高聚碳酸酯的流动性,从而使加工性能得以提高,能够得到加工性能好的材料。但该合金由于相容性差,熔接线强度低,成为薄弱点易导致部件断裂失效。
发明内容
本发明的目的在于,克服以上技术缺陷,提供一种高熔接线强度聚乙烯/聚碳酸酯合金,并且具有优秀的耐热老化性能。
本发明的另一目的在于,提供上述聚乙烯/聚碳酸酯合金的制备方法。
本发明是通过以下技术方案实现的:
一种高熔接线强度聚乙烯/聚碳酸酯合金,按重量份计,包括以下组分:
聚乙烯                              5-40份;
聚碳酸酯                            40-85份;
乙烯共聚物相容剂                    1-15份。
所述的聚乙烯选自支化率为每1000个碳原子中含有5‐300个支链的聚乙烯,所述的支链具有1‐10个碳原子;优选的,选自支化率为每1000个碳原子含有20‐100个支链的聚乙烯,所述的支链具有1‐10个碳原子。
所述的乙烯共聚物相容剂选自丙烯酸的乙烯共聚物、乙烯-醋酸乙烯共聚物、苯乙烯-丁二烯-苯乙烯共聚物、苯乙烯-乙烯-丁二烯-苯乙烯共聚物、苯乙烯-乙烯-丙烯-苯乙烯共聚物中的至少一种;所述的丙烯酸的乙烯共聚物选自乙烯-甲基丙烯酸共聚物、乙烯-丙烯酸乙酯共聚物、乙烯-丙烯酸丁酯共聚物中的至少一种。优选的,所述的乙烯共聚物相容剂选自丙烯酸的乙烯共聚物。
优选的,所述的乙烯共聚物相容剂选自含有反应活性基团的乙烯共聚物相容剂,其中,乙烯共聚物选自丙烯酸的乙烯共聚物、乙烯-醋酸乙烯共聚物、苯乙烯-丁二烯-苯乙烯共聚物、 苯乙烯-乙烯-丁二烯-苯乙烯共聚物、苯乙烯-乙烯-丙烯-苯乙烯共聚物中的至少一种,反应活性基团为马来酸酐基团、环氧基团中的至少一种,反应活性基团的接枝率为0.1-15%;所述的丙烯酸的乙烯共聚物选自乙烯-甲基丙烯酸共聚物、乙烯-丙烯酸乙酯共聚物、乙烯-丙烯酸丁酯共聚物中的至少一种。优选的,所述的乙烯共聚物选自丙烯酸的乙烯共聚物。
所述的聚碳酸酯选自芳香族聚碳酸酯、脂肪族聚碳酸酯、芳香族-脂肪族聚碳酸酯;优选的,所述的聚碳酸酯的重均分子量为1.8万-2.8万。
按重量份计,还包括0-10重量份的加工助剂和/或添加剂。
进一步的,本发明通过对聚乙烯和乙烯共聚物相容剂熔融指数的选取,使得本发明的熔接线强度得到进一步提升。
进一步的,本发明通过对聚乙烯、乙烯共聚物相容剂的选取,使得本发明的熔接线强度得到进一步提升。
聚碳酸酯和聚乙烯在熔融混合成合金后,形成聚乙烯为分散相、聚碳酸酯为连续相的相态结构。熔接线强度高低由熔接线处分散相的粒径、取向及聚碳酸酯和聚乙烯间的表面张力共同决定。分散相的粒径越小、取向越小、表面张力越小则熔接线强度越高。粒径从公式可知:分散相熔融指数大,则E DK小,更容易降低分散相的粒径;但由高分子的扩散理论,分散相熔融指数大会带来取向的增大,所以分散相熔融指数的选择需要平衡粒径和取向,要在最大程度上降低粒径的同时保持较小取向,才能得到高熔接线强度。
Figure PCTCN2019114376-appb-000001
Figure PCTCN2019114376-appb-000002
分散相体积份数;P r:碰撞几率;γ:界面结合力;
σ 12:剪切应力;
此外,一般的乙烯共聚物相容剂为B‐D型接枝共聚物,其中B链段乙烯分子链段与聚乙烯结构相似,由于相似相容,其与聚乙烯的相容性极好;另外,D链段与聚碳酸酯的端基存在化学反应,通过化学键与聚碳酸酯结合,相应提高了与聚碳酸酯的相容性,也就是说相容剂作为桥接物质连接了聚乙烯和聚碳酸酯,从而提高了两者的相容性,降低了表面张力。因此,在聚乙烯和聚碳酸酯的合金中加入了乙烯共聚物相容剂后,从而间接的降低了分散相的粒径。但是,由于相容性的提高,也带来了分子链间相互作用力增加,从而降低了合金体系的熔融指数。
乙烯共聚物相容剂的熔融指数影响扩散程度和速度。当熔融指数过低,在熔融状态下,乙烯共聚物相容剂扩散慢,从而无法起到增加相容性的作用。当熔融指数达到一定程度后,乙烯共聚物相容剂易于扩散到分散相和连续相的界面,连接合金分散相和连续相,从而提高界面结合力,通过应力的传递,降低分散相的粒径,提高合金的熔接线强度。但是,乙烯共聚物相容剂的熔融指数太高,反而会减少乙烯共聚物相容剂在分散相、连续相两相之间的相互贯穿的程度,反而降低熔接线强度。
乙烯共聚物相容剂的活性基团数量及种类影响了与聚碳酸酯的反应活性,反应活性基团增加与聚碳酸酯的反应程度,由于空间位阻和分子间作用力提高,所以提高了熔接线强度、降低了合金的熔融指数。
综上所述,本发明是通过在40g/10min-150g/10min,测试条件230℃,2.16kg的熔融指数范围内提高聚乙烯的熔融指数,在最大程度上降低粒径的同时保持较小取向,并且,选择乙烯共聚物相容剂来间接降低分散相的粒径;这样,本发明的聚乙烯/聚碳酸酯合金中,分散相粒径小、取向也小,最终结果是提高了聚碳酸酯合金的熔接线强度。
聚乙烯的支链影响了聚乙烯/聚碳酸酯合金界面层厚度,同时影响了分散相的粒径和取向。当支化率在1000个碳原子具有20‐100个支链的范围内提高时,流动性好,更易于分散相破碎为更小的粒径,此外,支化率提高带来了更高的聚乙烯/聚碳酸酯合金界面作用力及界面厚度、降低了取向,因此,在该范围内提高聚乙烯的支化率的最终结果是提高了聚乙烯/聚碳酸酯合金的熔接线强度。但是,当支化率在1000个碳原子具有100‐300个支链的范围,过高的支化率的聚乙烯,其空间位阻高,对粒径的降低作用不明显,且支链过多会加大分散相的取向,熔接线强度在支化率在1000个碳原子具有100‐300个支链的范围内会逐渐下降。
丙烯酸的乙烯共聚物具较高的熔体强度,且其极性基团与聚碳酸酯相似相容,因此能明显改善聚碳酸酯合金的熔接线强度。
本发明的高熔接线强度聚乙烯/聚碳酸酯合金的熔接线强度大于等于65%,熔接线强度测试按照ASTM D638标准测试;优选的,高熔接线强度聚乙烯/聚碳酸酯合金的熔接线强度大于等于70%,熔接线强度测试按照ASTM D638标准测试。
一种高熔接线强度聚乙烯/聚碳酸酯合金的制备方法,包括以下步骤:将聚碳酸酯、聚乙烯、乙烯共聚物相容剂、加工助剂和/或添加剂按比例在高速混料机中混合均匀;后加入到双螺杆挤出机中,在220℃-240℃的温度下进行熔融混合,然后造粒、冷却、干燥得到高熔接线强度聚碳酸酯合金。
为了得到熔接线强度大于等于70%的高熔接线强度聚碳酸酯合金,所述的聚烯烃的熔 融指数大于40g/10min-150g/10min,测试条件230℃,2.16kg。优选的,所述的聚烯烃的熔融指数大于60g/10min-150g/10min,测试条件230℃,2.16kg。
进一步的,所述的乙烯共聚物相容剂的熔融指数0.2g/10min-50g/10min,测试条件190℃,2.16kg;优选的,所述的乙烯共聚物相容剂的熔融指数大于等于0.4g/10min-35g/10min,测试条件190℃,2.16kg。
本发明具有如下有益效果:
本发明通过在聚乙烯/聚碳酸酯合金中加入乙烯共聚物相容剂,提高了合金的熔接线强度、TS保持率;进一步的,本发明发现丙烯酸的乙烯共聚物对合金的熔接线强度、TS保持率提升较大。更进一步的,聚乙烯的支化率以及支链长度对合金熔接线强度、TS保持率有较大的影响;本发明还对聚乙烯、乙烯共聚物相容剂的熔融指数进行优化,得到的合金熔接线强度、TS保持率进一步提升;本发明还发现,聚碳酸酯的重均分子量也影响合金的熔接线强度、TS保持率,即聚碳酸酯的重均分子量为1.8万-2.8万时,合金的熔接线强度、TS保持率较好。综上,本发明的高熔接线强度聚乙烯/聚碳酸酯合金具有高熔接线强度、优秀的耐热老化性能等优点。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
实施例、对比例原料来源于市售,具体的是:
聚乙烯:支化率为1000个碳原子中含有支链的数目,表格中的支化率为1000个碳原子的基数。
EMA:乙烯-甲基丙烯酸共聚物;
EEA:乙烯-丙烯酸乙酯共聚物;
EMA–g-GMA:乙烯-甲基丙烯酸接枝环氧基团,(GMA为环氧基团);
EVA:乙烯-醋酸乙烯共聚物;
SEBS:苯乙烯-乙烯-丁二烯-苯乙烯共聚物;
相容剂B:PP-G-MAH(聚丙烯接枝马来酸酐);
聚碳酸酯A:芳香族聚碳酸酯,重均分子量为2.8万;
聚碳酸酯B:脂肪族聚碳酸酯,重均分子量为1.8万;
聚碳酸酯C:芳香族聚碳酸酯,重均分子量为8千;
聚碳酸酯D:芳香族聚碳酸酯,重均分子量为3万;
抗老化剂:抗氧剂:抗紫外线老化剂=1:1。
实施例和对比例中聚乙烯/聚碳酸酯合金的制备方法:将聚碳酸酯、聚乙烯、相容剂、加工助剂和/或添加剂按比例在高速混料机中混合均匀;后加入到双螺杆挤出机中,在220℃-240℃的温度下进行熔融混合,然后造粒、冷却、干燥得到高熔接线强度聚碳酸酯合金。各测试方法:
(1)合金熔融指数(MFR):根据测定ASTM D1238,聚碳酸酯合金测试条件为260℃,2.16kg;
(2)熔接线强度:采用熔接线系数F KL表征:
F KL=TS X/TS 0×100%
TS X为熔接线拉伸强度,TS 0为无熔接线拉伸强度,采用ASTM D638标准测试。
(3)TS保持率:根据ISO 527-2/1A,通过模制成型制备的厚度4mm、宽度10mm测试棒,测试速度5mm/min,测试23℃在空气中的老化前及老化后拉伸强度(TS)(至少5个相同组成和形状样品测试结果的平均值),得到老化前的拉伸强度T initial。热空气老化使用热老化箱,调节温度为150℃进行,在达到老化时间1000h后样品从老化箱取出,冷却至室温后用铝箔袋热密封,防止在评价力学性能之前吸收任何湿气,测试速度5mm/min,测试温度23℃的拉伸强度(TS)(至少5个相同组成和形状样品测试结果的平均值),得到老化后的拉伸强度T aging。与老化前的对应力学性能比较,计算出拉伸强度的保持率,并以百分比表示,记为老化后TS保持率R1,R1的计算如下:
R1=T aging/T initial×100%
式中T aging及T initial分别是老化后及老化前拉伸强度。
(4)聚乙烯支化率:C-NMR核磁共振波谱)法,按Galland方法测试支化度;支化度的计算公式就是(D+T)/(D+T+L)。
支化度(DB)=(D+T)/(D+T+L)
D代表树状单元数,T代表末端单元数,L代表线型单元数。
表1:实施例1-10的聚乙烯/聚碳酸酯合金成分和配比(重量份)及各性能测试结果
Figure PCTCN2019114376-appb-000003
Figure PCTCN2019114376-appb-000004
表2:实施例11-20的聚乙烯/聚碳酸酯合金成分和配比(重量份)及各性能测试结果
Figure PCTCN2019114376-appb-000005
Figure PCTCN2019114376-appb-000006
表3:实施例21-26和对比例的聚乙烯/聚碳酸酯合金成分和配比(重量份)及各性能测试结果
Figure PCTCN2019114376-appb-000007
Figure PCTCN2019114376-appb-000008
从实施例1-7和对比例4可以看出,随着乙烯共聚物相容剂熔融指数的上升,产品的熔融指数上升、熔接线强度呈倒U型,乙烯共聚物相容剂的熔融指数在0.4-35g/10min(测试条件190℃,2.16kg)时,产品的熔接线强度较大,当乙烯共聚物相容剂的熔融指数为60g/10min(测试条件190℃,2.16kg)时,产品的熔接线强度、TS保持率都大幅下降。
从实施例3/8-11可以看出,随着聚乙烯熔融指数的上升,产品的熔接线强度、熔融指数、TS保持率上升。
从实施例3和实施例12-14可以看出,含有反应活性基团的乙烯共聚物相容剂相比于不含有反应活性基团的乙烯共聚物相容剂,能够提升熔接线强度以及TS保持率,并且随着反应活性基团的含量上升,产品的熔接线强度、TS保持率上升。
从实施例10/23-26可以看出,支化率为每1000个碳原子含有20‐100个支链的聚乙烯的实施例熔接线强度、TS保持率较高。
从实施例8和对比例3可以看出,当聚乙烯的熔指小于40g/10min(测试条件230℃,2.16kg)时,产品的熔接线强度大幅下降,熔融指数较低。
从实施例1/15/16/17可以看出,丙烯酸的乙烯共聚物作为相容剂产品的各项性能较好。

Claims (10)

  1. 一种高熔接线强度聚乙烯/聚碳酸酯合金,其特征在于,按重量份计,包括以下组分:
    聚乙烯                              5-40份;
    聚碳酸酯                            40-85份;
    乙烯共聚物相容剂                    1-15份。
  2. 根据权利要求1所述的高熔接线强度聚乙烯/聚碳酸酯合金,其特征在于,所述的聚乙烯选自支化率为每1000个碳原子中含有5‐300个支链的聚乙烯,所述的支链具有1‐10个碳原子;优选的,选自支化率为每1000个碳原子含有20‐100个支链的聚乙烯,所述的支链具有1‐10个碳原子。
  3. 根据权利要求1所述的高熔接线强度聚碳酸酯合金,其特征在于,所述的乙烯共聚物相容剂选自丙烯酸的乙烯共聚物、乙烯-醋酸乙烯共聚物、苯乙烯-丁二烯-苯乙烯共聚物、苯乙烯-乙烯-丁二烯-苯乙烯共聚物、苯乙烯-乙烯-丙烯-苯乙烯共聚物中的至少一种;所述的丙烯酸的乙烯共聚物选自乙烯-甲基丙烯酸共聚物、乙烯-丙烯酸乙酯共聚物、乙烯-丙烯酸丁酯共聚物中的至少一种。
  4. 根据权利要求3所述的高熔接线强度聚碳酸酯合金,其特征在于,所述的乙烯共聚物相容剂选自丙烯酸的乙烯共聚物。
  5. 根据权利要求1所述的高熔接线强度聚碳酸酯合金,其特征在于,所述的乙烯共聚物相容剂选自含有反应活性基团的乙烯共聚物相容剂,其中,乙烯共聚物选自丙烯酸的乙烯共聚物、乙烯-醋酸乙烯共聚物、苯乙烯-丁二烯-苯乙烯共聚物、苯乙烯-乙烯-丁二烯-苯乙烯共聚物、苯乙烯-乙烯-丙烯-苯乙烯共聚物中的至少一种,反应活性基团为马来酸酐基团、环氧基团中的至少一种,反应活性基团的接枝率为0.1-15%;所述的丙烯酸的乙烯共聚物选自乙烯-甲基丙烯酸共聚物、乙烯-丙烯酸乙酯共聚物、乙烯-丙烯酸丁酯共聚物中的至少一种。
  6. 根据权利要求5所述的高熔接线强度聚碳酸酯合金,其特征在于,所述的乙烯共聚物选自丙烯酸的乙烯共聚物。
  7. 根据权利要求1所述的高熔接线强度聚乙烯/聚碳酸酯合金,其特征在于,所述的聚碳酸酯选自芳香族聚碳酸酯、脂肪族聚碳酸酯、芳香族-脂肪族聚碳酸酯;所述的聚碳酸酯的重均分子量为1.8万-2.8万;按重量份计,还包括0-10重量份的加工助剂和/或添加剂。
  8. 权利要求1-7任一项所述的高熔接线强度聚乙烯/聚碳酸酯合金,其特征在于,所述的高熔接线强度聚乙烯/聚碳酸酯合金的熔接线强度大于等于65%,熔接线强度测试按照ASTM D638标准测试;优选的,所述的高熔接线强度聚乙烯/聚碳酸酯合金的熔接线强度大于等于70%,熔接线强度测试按照ASTM D638标准测试。
  9. 权利要求7所述的高熔接线强度聚乙烯/聚碳酸酯合金的制备方法,其特征在于,包括以下步骤:将聚碳酸酯、聚乙烯、乙烯共聚物相容剂、加工助剂和/或添加剂按比例在高速混料机中混合均匀;后加入到双螺杆挤出机中,在220℃-240℃的温度下进行熔融混合,然后造粒、冷却、干燥得到高熔接线强度聚碳酸酯合金。
  10. 根据权利要求9所述的高熔接线强度聚碳酸酯合金的制备方法,其特征在于,所述的聚烯烃的熔融指数大于40g/10min-150g/10min,测试条件230℃,2.16kg;优选的,所述的聚烯烃的熔融指数大于60g/10min-150g/10min,测试条件230℃,2.16kg;所述的乙烯共聚物相容剂的熔融指数0.2g/10min-50g/10min,测试条件190℃,2.16kg;优选的,所述的乙烯共聚物相容剂的熔融指数大于等于0.4g/10min-35g/10min,测试条件190℃,2.16kg。
PCT/CN2019/114376 2018-11-13 2019-10-30 一种高熔接线强度聚乙烯/聚碳酸酯合金及其制备方法 WO2020098496A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021525823A JP2022507323A (ja) 2018-11-13 2019-10-30 高溶接線強度のポリエチレン/ポリカーボネートアロイ及びその製造方法
EP19885923.3A EP3868829A4 (en) 2018-11-13 2019-10-30 POLYETHYLENE-POLYCARBONATE ALLOY WITH HIGH WELD STRENGTH AND METHOD FOR MANUFACTURING IT
KR1020217016373A KR20210083324A (ko) 2018-11-13 2019-10-30 고용접선 강도 폴리에틸렌/폴리카보네이트 합금 및 그 제조 방법
US17/293,487 US20210403706A1 (en) 2018-11-13 2019-10-30 High weld line strength polyethylene/polycarbonate alloy and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811348967.3A CN109535682B (zh) 2018-11-13 2018-11-13 一种高熔接线强度聚乙烯/聚碳酸酯合金及其制备方法
CN201811348967.3 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020098496A1 true WO2020098496A1 (zh) 2020-05-22

Family

ID=65847229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114376 WO2020098496A1 (zh) 2018-11-13 2019-10-30 一种高熔接线强度聚乙烯/聚碳酸酯合金及其制备方法

Country Status (6)

Country Link
US (1) US20210403706A1 (zh)
EP (1) EP3868829A4 (zh)
JP (1) JP2022507323A (zh)
KR (1) KR20210083324A (zh)
CN (1) CN109535682B (zh)
WO (1) WO2020098496A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535682B (zh) * 2018-11-13 2021-04-06 金发科技股份有限公司 一种高熔接线强度聚乙烯/聚碳酸酯合金及其制备方法
CN111662486A (zh) * 2020-07-10 2020-09-15 上海叶心材料科技有限公司 一种用于生物基降解材料提高拉伸强度的方法
CN112143198A (zh) * 2020-09-18 2020-12-29 金发科技股份有限公司 一种聚碳酸酯合金组合物及其制备方法和应用
CN116178829B (zh) * 2022-12-28 2024-04-30 上海云开塑胶制品有限公司 一种收缩率稳定的单向聚乙烯收缩膜及其制备方法
CN116003892A (zh) * 2022-12-28 2023-04-25 武汉金发科技有限公司 一种高力学和高耐环境应力开裂性能的聚乙烯复合材料及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522980A (en) * 1982-12-27 1985-06-11 General Electric Company Impact modified copolyester carbonate compositions
US4563502A (en) * 1982-09-23 1986-01-07 General Electric Company Composition
CN104788926A (zh) * 2014-01-20 2015-07-22 Sk新技术株式会社 聚碳酸亚烷基酯树脂组合物
CN106467651A (zh) * 2016-10-13 2017-03-01 上海中镭新材料科技有限公司 一种用于薄壁制品的pc‑abs合金及其制备方法
CN106554610A (zh) * 2016-11-30 2017-04-05 四川锦泰佳环保建材有限公司 一种pc‑pe合金及其制备方法
CN106674961A (zh) * 2016-12-14 2017-05-17 上海锦湖日丽塑料有限公司 高喷漆良率滑石粉填充pc/pbt合金材料及其制备方法
CN107868425A (zh) * 2017-10-12 2018-04-03 杭州师范大学 一种高性能聚甲基乙撑碳酸酯材料及其制备方法
CN107903604A (zh) * 2017-12-12 2018-04-13 天津金发新材料有限公司 一种新型耐溶剂低密度的pc组合物
CN108047532A (zh) * 2017-12-12 2018-05-18 吴江市强塑阀门管件厂 一种传热管弹性密封圈的制备方法
CN109535682A (zh) * 2018-11-13 2019-03-29 金发科技股份有限公司 一种高熔接线强度聚乙烯/聚碳酸酯合金及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3201369A (en) * 1961-05-29 1965-08-17 Allied Chem Heat stable polycarbonates containing metal salts of oxyacids of phosphorus
DE3371532D1 (en) * 1982-09-23 1987-06-19 Gen Electric Polycarbonate resin mixtures
US4481331A (en) * 1983-03-22 1984-11-06 Gen Electric Polycarbonate resin mixture
JPS61252268A (ja) * 1985-05-02 1986-11-10 Toray Ind Inc ポリカ−ボネ−ト組成物
US5552480A (en) * 1992-02-28 1996-09-03 Idemitsu Petrochemical Co., Ltd. Thermoplastic resin composition
US6221928B1 (en) * 1996-11-15 2001-04-24 Sentinel Products Corp. Polymer articles including maleic anhydride
JP2001506680A (ja) * 1996-11-27 2001-05-22 ザ・ダウ・ケミカル・カンパニー ポリカーボネートブレンド組成物
JP2000017120A (ja) * 1998-07-01 2000-01-18 Mitsubishi Eng Plast Corp 熱可塑性樹脂組成物
FR2807440A1 (fr) * 2000-04-06 2001-10-12 Centre Nat Rech Scient Materiaux micro-composites polymere/polymere et procede pour leur preparation
JP4450557B2 (ja) * 2003-01-29 2010-04-14 三菱エンジニアリングプラスチックス株式会社 導電性熱可塑性樹脂組成物
CN104059346A (zh) * 2013-03-19 2014-09-24 苏州宇度医疗器械有限责任公司 白色阻燃聚碳酸酯复合材料的制备方法
CN104140661A (zh) * 2013-05-08 2014-11-12 广东美的暖通设备有限公司 聚碳酸酯/聚乙烯增容共混材料及其制备方法
JP6519271B2 (ja) * 2015-03-30 2019-05-29 日本ポリエチレン株式会社 オレフィン系熱可塑性エラストマー組成物
JP6424276B2 (ja) * 2015-08-21 2018-11-14 帝人株式会社 ポリカーボネート樹脂組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563502A (en) * 1982-09-23 1986-01-07 General Electric Company Composition
US4522980A (en) * 1982-12-27 1985-06-11 General Electric Company Impact modified copolyester carbonate compositions
CN104788926A (zh) * 2014-01-20 2015-07-22 Sk新技术株式会社 聚碳酸亚烷基酯树脂组合物
CN106467651A (zh) * 2016-10-13 2017-03-01 上海中镭新材料科技有限公司 一种用于薄壁制品的pc‑abs合金及其制备方法
CN106554610A (zh) * 2016-11-30 2017-04-05 四川锦泰佳环保建材有限公司 一种pc‑pe合金及其制备方法
CN106674961A (zh) * 2016-12-14 2017-05-17 上海锦湖日丽塑料有限公司 高喷漆良率滑石粉填充pc/pbt合金材料及其制备方法
CN107868425A (zh) * 2017-10-12 2018-04-03 杭州师范大学 一种高性能聚甲基乙撑碳酸酯材料及其制备方法
CN107903604A (zh) * 2017-12-12 2018-04-13 天津金发新材料有限公司 一种新型耐溶剂低密度的pc组合物
CN108047532A (zh) * 2017-12-12 2018-05-18 吴江市强塑阀门管件厂 一种传热管弹性密封圈的制备方法
CN109535682A (zh) * 2018-11-13 2019-03-29 金发科技股份有限公司 一种高熔接线强度聚乙烯/聚碳酸酯合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3868829A4 *

Also Published As

Publication number Publication date
EP3868829A4 (en) 2021-12-01
US20210403706A1 (en) 2021-12-30
JP2022507323A (ja) 2022-01-18
KR20210083324A (ko) 2021-07-06
CN109535682A (zh) 2019-03-29
CN109535682B (zh) 2021-04-06
EP3868829A1 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
WO2020098496A1 (zh) 一种高熔接线强度聚乙烯/聚碳酸酯合金及其制备方法
WO2020098498A1 (zh) 一种高熔接线强度聚丙烯/聚碳酸酯合金及其制备方法
US9527971B2 (en) Functionalized polymer compositions and films formed from the same
CN107690448A (zh) 包含ldpe和聚丙烯的掺混物的电缆绝缘材料
FR2828493A1 (fr) Composition a base de polypropylene et d'un copolymere ethylene/acrylate d'alkyle
CN106867090A (zh) 耐高温柔软热塑性低烟无卤阻燃聚烯烃电缆料
US10329461B2 (en) Adhesive compositions comprising low molecular weight functionalized olefin-based polymers
CN107987367A (zh) 低介电常数硅烷交联聚乙烯绝缘料及其制备方法
WO2015013472A1 (en) Adhesive compositions containing functionalized ethylene/alpha-olefin interpolymers and rosin-based tackifiers
AU2009252345A1 (en) Polymer composition
CN111171435B (zh) 乙丙橡胶可溶性包装膜及其制备方法
JP2001509190A (ja) 異形ポリマー組成物
CN109438954B (zh) 一种聚碳酸酯合金及其制备方法
Abad et al. Use of a sodium ionomer as a compatibilizer in polypropylene/high‐barrier ethylene–vinyl alcohol copolymer blends: The processability of the blends and their physical properties
CN108912672A (zh) 一种光纤电缆用尼龙紧包护套材料及其制备方法和应用
WO2023223654A1 (ja) アスファルト組成物及びアスファルト舗装材組成物
CN109790300A (zh) 半结晶聚烯烃基添加剂母料组合物
CN112680140B (zh) 一种高速联动线用书本装订胶及其制备方法和应用
JP3290445B2 (ja) 耐水性の良好な接着性組成物
CN106397943A (zh) 一种低烟无卤阻燃电缆料及其制备方法
JPS5968385A (ja) 熱溶融型接着剤
JP3328427B2 (ja) 4−メチル−1−ペンテン系重合体組成物
TW201534647A (zh) 高分子組成物
JP5891988B2 (ja) ハロゲンフリー難燃絶縁電線
JPH05179217A (ja) 接着剤組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525823

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019885923

Country of ref document: EP

Effective date: 20210521

Ref document number: 20217016373

Country of ref document: KR

Kind code of ref document: A