WO2020098187A1 - 干蚀刻设备的上电极及其制造方法 - Google Patents

干蚀刻设备的上电极及其制造方法 Download PDF

Info

Publication number
WO2020098187A1
WO2020098187A1 PCT/CN2019/077706 CN2019077706W WO2020098187A1 WO 2020098187 A1 WO2020098187 A1 WO 2020098187A1 CN 2019077706 W CN2019077706 W CN 2019077706W WO 2020098187 A1 WO2020098187 A1 WO 2020098187A1
Authority
WO
WIPO (PCT)
Prior art keywords
dry etching
etching apparatus
upper electrode
area
areas
Prior art date
Application number
PCT/CN2019/077706
Other languages
English (en)
French (fr)
Inventor
温彦跃
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020098187A1 publication Critical patent/WO2020098187A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means

Definitions

  • the present disclosure relates to the technical field of dry etching, in particular to an upper electrode of a dry etching device and a manufacturing method thereof.
  • the uniformity of the residual film after the etching of the gate insulating layer needs to be less than 5% to meet the electrical and color shift requirements.
  • the residual film thickness of the gate insulating layer has a consistent relationship with the color shift profile. More specifically, the thickness of the four corners of the gate insulating layer is thin, and the degree of color shift is low. The thickness of the residual film in the middle of the gate insulating layer is thick, and the degree of color shift is high. That is to say, the uneven thickness of the gate insulating layer will cause the problem of uneven color.
  • the uniformity of the required reaction gas distribution in the reaction chamber cavity directly determines the uniformity of the etching rate.
  • the reaction gas enters the cavity of the reaction chamber through the gas inlet hole on the upper electrode, and a plasma is formed under the action of the power between the upper and lower electrodes, and then the film layer is etched.
  • the higher the local plasma density the faster the etching rate.
  • Local plasma The lower the density, the slower the etching rate.
  • the plasma density is directly related to the distribution of the reaction gas in the chamber cavity.
  • the intake holes of the upper electrode used in the existing dry etching equipment are evenly distributed, and the exhaust holes are placed at the four corners of the reaction chamber cavity (that is, the four corners of the lower electrode).
  • the purpose of the present disclosure is to provide an upper electrode of a dry etching device and a manufacturing method thereof, which can solve the problems in the prior art.
  • the upper electrode of a dry etching apparatus includes an electric plate body, the conductive plate body is divided into a plurality of areas, and each area of the conductive plate body is provided with a plurality of air inlet holes, wherein The distribution density of the gas inlet holes of at least two regions of the plurality of regions is different, and the distribution density of the plurality of regions corresponds to the internal position of the reaction chamber cavity of the dry etching device according to the plurality of regions The etching rate depends.
  • At least one area of the plurality of areas corresponds to one of the four corners, the edge, and the center of the dry etching device.
  • At least one area of the plurality of areas corresponds to the central position of the four quadrants of the dry etching device.
  • At least one area of the plurality of areas corresponds to other positions where the dry etching apparatus does not include the four corners, edges, central portions, and central positions of the four quadrants of the dry etching apparatus.
  • the distribution density of the air intake holes corresponding to one of the four corners, edges, and center of the dry etching device is lower than the air intake holes corresponding to other locations of the dry etching device Distribution density.
  • the distribution density of the air inlet holes corresponding to the areas of the other positions of the dry etching device is lower than the distribution density of the air inlet holes corresponding to the center positions of the four quadrants of the dry etching device.
  • the upper electrode of a dry etching device includes a conductive plate body, the conductive plate body is divided into a plurality of regions, and each region of the conductive plate body is provided with a plurality of air inlet holes, wherein At least two regions of the plurality of regions have different distribution densities of the air inlet holes.
  • the dry etching apparatus further includes a reaction chamber cavity and a lower electrode, the upper electrode and the lower electrode are disposed in the reaction chamber cavity, and at least one of the plurality of regions It corresponds to one of the four corners, the edge, and the center of the dry etching device.
  • At least one area of the plurality of areas corresponds to the central position of the four quadrants of the dry etching device.
  • At least one area of the plurality of areas corresponds to other positions where the dry etching apparatus does not include the four corners, edges, central portions, and central positions of the four quadrants of the dry etching apparatus.
  • the distribution density of the air intake holes corresponding to one of the four corners, edges, and center of the dry etching device is lower than the air intake holes corresponding to other locations of the dry etching device Distribution density.
  • the distribution density of the air inlet holes corresponding to the areas of the other positions of the dry etching device is lower than the distribution density of the air inlet holes corresponding to the center positions of the four quadrants of the dry etching device.
  • a method for manufacturing an upper electrode of a dry etching device includes: providing a conductive plate body, the conductive plate body being divided into a plurality of regions; and opening in each region of the conductive plate body A plurality of air inlet holes, wherein the distribution density of the air inlet holes in at least two regions of the plurality of regions is different.
  • the method for manufacturing the upper electrode of the dry etching apparatus further includes: forming a plurality of air inlet holes between adjacent air inlet holes in at least one of the plurality of regions.
  • the method for manufacturing the upper electrode of the dry etching apparatus further includes: blocking a part of the air inlet hole in at least one of the plurality of regions.
  • the method for manufacturing the upper electrode of the dry etching apparatus further includes: blocking the air inlet holes in at least one of the plurality of regions at intervals.
  • the upper electrode of the dry etching equipment and the manufacturing method thereof according to the present disclosure can design the distribution density of the air intake holes of each area according to different etching rates corresponding to the areas of the upper electrode corresponding to the inside of the dry etching equipment Therefore, the uniformity of the reaction gas in the process can be improved and a more uniform plasma distribution can be obtained.
  • the present disclosure can be modified on the basis of the existing upper electrode, thereby saving the manufacturing cost of the upper electrode.
  • FIG. 1 shows a top view showing an upper electrode of a dry etching apparatus according to an embodiment of the present disclosure.
  • FIGS 2 to 4 show schematic diagrams of the distribution density of different intake holes.
  • FIG. 5 shows a flowchart of a method for manufacturing an upper electrode of a dry etching device according to an embodiment of the present disclosure.
  • FIG. 1 shows a top view of the upper electrode 2 of the dry etching apparatus according to an embodiment of the present disclosure.
  • 2 to 4 show schematic diagrams of the distribution density of different intake holes 22.
  • the dry etching equipment mainly includes a reaction chamber cavity, the upper electrode 2, and a lower electrode.
  • the upper electrode 2 and the lower electrode are disposed in the reaction chamber cavity.
  • the upper electrode 2 serves as an inlet for the reaction gas required for the dry etching process.
  • the lower electrode serves as an outlet of the reaction gas.
  • the upper electrode of the dry etching device includes a conductive plate body 20, which is divided into a plurality of areas A1, A2, and A3.
  • the conductive plate body 20 can be made of other suitable materials and the shape is not limited.
  • the areas of the plurality of regions A1, A2, and A3 may be the same or different.
  • Each area A1, A2, and A3 of the conductive plate body is provided with a plurality of air inlet holes 22, wherein at least two areas of the plurality of areas A1, A2, and A3 have different distribution densities of the air inlet holes 22.
  • the distribution density of the air intake holes 22 in the area A1, the area A2, and the area A3 are different.
  • the distribution density of the air inlet holes 22 in the area A1, the area A2, and the area A3 is determined according to the etching rate of each area. More specifically, the distribution density of the gas inlet holes 22 in the area A1, the area A2, and the area A3 depends on the etching rate of each area corresponding to the internal position of the reaction chamber cavity.
  • the etching rate of the region A3 is the fastest, the etching rate of the region A2 is second, and the etching rate of the region A1 is the slowest.
  • the etching rate of the region A3 is the fastest. Therefore, as shown in FIG. 2, the distribution density of the air inlet holes 22 in the region A3 may be the smallest, that is, the number of the air inlet holes 22 required in the region A3 is the smallest.
  • the etching rate of the area A1 is the slowest. Therefore, as shown in FIG. 3, the distribution density of the air inlet holes 22 in the area A1 may be the highest, that is, the number of air inlet holes 22 required in the area A1 is the largest.
  • the etching rate of the area A2 is slower than that of the area A3 and faster than the etching rate of the area A1, so as shown in FIG. 4, the distribution density of the air inlet holes 22 of the area A2 is higher than that
  • the distribution density of the area A3 is lower than the distribution density of the area A1, that is, the number of intake holes 22 required by the area A2 is greater than the number of intake holes 22 required by the area A3 and is smaller than that by the area A1
  • the number of intake holes 22 is required.
  • the diameter of the air inlet hole 22 may be 1 mm.
  • the area A3 corresponds to the four corners, edges, and center of the dry etching device (the etching rate is the fastest), so the low-density air intake holes 22 can be used as shown in FIG. 2.
  • the distance between two adjacent air intake holes 22 is, for example, 50 millimeters (millimeter, mm).
  • the area A1 corresponds to the center position of the four quadrants of the dry etching device (the etching rate is the slowest), so the high-density air intake holes 22 can be used as shown in FIG. 3.
  • the distance between two adjacent air intake holes 22 is, for example, 12.5 mm.
  • the area A2 corresponds to other positions of the dry etching equipment (the etching rate is centered), so the medium-density air inlet 22 may be used as shown in FIG. 4.
  • the distance between two adjacent air intake holes 22 is, for example, 25 mm.
  • the upper electrode of the dry etching device of the present disclosure can design the distribution density of the air intake holes of each region according to the different etching rates corresponding to the regions of the upper electrode corresponding to the inside of the dry etching device, thus can improve the uniformity of the reaction gas in the process and Obtain a more uniform plasma distribution.
  • FIG. 5 shows a flowchart of a method for manufacturing the upper electrode 2 of the dry etching apparatus according to an embodiment of the present disclosure.
  • the dry etching equipment mainly includes a reaction chamber cavity, the upper electrode 2, and a lower electrode.
  • the upper electrode 2 and the lower electrode are disposed in the reaction chamber cavity.
  • the upper electrode 2 serves as an inlet for the reaction gas required for the dry etching process.
  • the lower electrode serves as an outlet of the reaction gas.
  • a conductive plate body 20 is provided, and the conductive plate body is divided into a plurality of regions A1, A2, and A3.
  • a plurality of air inlet holes 22 are opened in each area A1, A2, and A3 of the conductive plate, wherein the distribution density of the air inlet holes 22 in at least two areas of the areas A1, A2, and A3 different.
  • a plurality of air inlet holes 22 are formed between adjacent air inlet holes 22 in at least one of the plurality of regions.
  • the upper electrode 2 can be modified on the basis of the existing upper electrode.
  • adjacent holes can be formed by drilling A plurality of intake holes 22 are formed between the intake holes 22, thereby increasing the distribution density of the intake holes 22.
  • the upper electrode 2 can be modified on the basis of the existing upper electrode.
  • an etching rate corresponding to an area corresponding to the internal area of the dry etching device is increased, a portion of the air inlet hole 22 can be blocked by This reduces the distribution density of the intake holes 22.
  • the air inlet holes 22 may be blocked at intervals, thereby reducing the distribution density of the air inlet holes 22 and making the air inlet holes 22 uniformly distributed.
  • the air inlet holes 22 are blocked, thereby reducing the distribution density of the air inlet holes 22.
  • the distribution density of the air intake holes of each region can be designed according to the different etching rates corresponding to the regions of the upper electrode corresponding to the inside of the dry etching device, so the manufacturing process can be improved
  • the reaction gas is uniform and obtains a more uniform plasma distribution.
  • the present disclosure can be modified on the basis of the existing upper electrode, thereby saving the manufacturing cost of the upper electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

一种干蚀刻设备的上电极,包括导电板体,所述导电板体分成多个区域,所述导电板体的每一个区域开设有多个进气孔,其中所述多个区域的至少两个区域的进气孔的分布密度不同。还提供一种干蚀刻设备的上电极的制造方法。

Description

干蚀刻设备的上电极及其制造方法 技术领域
本揭示涉及干蚀刻技术领域,特别是涉及一种干蚀刻设备的上电极及其制造方法。
背景技术
随着显示装置的发展,玻璃尺寸不断增大,干蚀刻设备的蚀刻均一性(uniformity)对产品性能及质量具有至关重要的作用。高阶产品对残膜均一性的要求越来越高。举例来说,栅极绝缘层蚀刻后的残膜均一性需要做到5%以下才能实现电性及色偏需求。栅极绝缘层的残膜厚度与色偏分布图呈现一致的关系。更明确地说,栅极绝缘层四角的厚度较薄,色偏的程度较低。栅极绝缘层中间的残膜厚度较厚,色偏的程度较高。也就是说,栅极绝缘层厚度不均会导致颜色不均的问题。
干蚀刻制程中,所需的反应气体在反应室腔体内的分布均一性直接决定蚀刻速率的均一性。反应气体通过上电极上的进气孔进入反应室腔体,在上下电极间的电源作用下形成等离体(plasma),进而对膜层进行蚀刻。局部plasma 密度越高,蚀刻速率越快。局部plasma 密度越低,蚀刻速率越慢。plasma密度与反应气体在反应室腔体的分布直接相关。现有干蚀刻设备采用的上电极进气孔分布均匀,而排气孔安置在反应室腔体的四角(即下电极的四角)。气体从进气孔进入反应室腔体后形成plasma,制程完成后从排气孔排出。由于排气孔分布不均匀(仅下电极的四角),必然使得反应气体从进气孔到出气孔之间形成固定气流路线,造成反应气体在反应室腔体内的分布不均。因此,蚀刻后的膜层不均,导致色偏问题严重。
因此有必要通过改变上电极进气孔密度来补偿气体分布不均。
技术问题
本揭示的目的在于提供一种干蚀刻设备的上电极及其制造方法,其能解决现有技术中的问题。
技术解决方案
为解决上述问题,本揭示提供的一种干蚀刻设备的上电极包括电板体,所述导电板体分成多个区域,所述导电板体的每一个区域开设有多个进气孔,其中所述多个区域的至少两个区域的进气孔的分布密度不同,所述多个区域的分布密度是根据所述多个区域对应至所述干蚀刻设备的反应室腔体的内部位置的蚀刻速率而定。
于一实施例中,所述多个区域的至少一个区域对应至所述干蚀刻设备的四角、边缘、以及中心部位的其中一者。
于一实施例中,所述多个区域的至少一个区域对应至所述干蚀刻设备的四个象限的中心位置。
于一实施例中,所述多个区域的至少一个区域对应至所述干蚀刻设备不包括所述干蚀刻设备的四角、边缘、中心部位、以及四个象限的中心位置的其他位置。
于一实施例中,对应至所述干蚀刻设备的四角、边缘、以及中心部位的其中一者的区域的进气孔的分布密度低于对应至所述干蚀刻设备的其他位置的进气孔的分布密度。
于一实施例中,对应至所述干蚀刻设备的其他位置的区域的进气孔的分布密度低于对应至所述干蚀刻设备的四个象限的中心位置的进气孔的分布密度。
为解决上述问题,本揭示提供的一种干蚀刻设备的上电极包括导电板体,所述导电板体分成多个区域,所述导电板体的每一个区域开设有多个进气孔,其中所述多个区域的至少两个区域的进气孔的分布密度不同。
于一实施例中,所述干蚀刻设备进一步包括一反应室腔体以及一下电极,所述上电极及所述下电极设置于所述反应室腔体中,所述多个区域的至少一个区域对应至所述干蚀刻设备的四角、边缘、以及中心部位的其中一者。
于一实施例中,所述多个区域的至少一个区域对应至所述干蚀刻设备的四个象限的中心位置。
于一实施例中,所述多个区域的至少一个区域对应至所述干蚀刻设备不包括所述干蚀刻设备的四角、边缘、中心部位、以及四个象限的中心位置的其他位置。
于一实施例中,对应至所述干蚀刻设备的四角、边缘、以及中心部位的其中一者的区域的进气孔的分布密度低于对应至所述干蚀刻设备的其他位置的进气孔的分布密度。
于一实施例中,对应至所述干蚀刻设备的其他位置的区域的进气孔的分布密度低于对应至所述干蚀刻设备的四个象限的中心位置的进气孔的分布密度。
为解决上述问题,本揭示提供的一种干蚀刻设备的上电极的制造方法包括:提供一导电板体,所述导电板体分成多个区域;以及于所述导电板体的每一个区域开设多个进气孔,其中所述多个区域的至少两个区域的进气孔的分布密度不同。
于一实施例中,所述干蚀刻设备的上电极的制造方法进一步包括:将所述多个区域的至少一个区域中的相邻进气孔之间形成多个进气孔。
于一实施例中,所述干蚀刻设备的上电极的制造方法进一步包括:将所述多个区域的至少一个区域中的进气孔的一部分堵住。
于一实施例中,所述干蚀刻设备的上电极的制造方法进一步包括:将所述多个区域的至少一个区域中的进气孔间隔地堵住。
有益效果
相较于现有技术,本揭示之干蚀刻设备的上电极及其制造方法可根据所述上电极各区域对应至所述干蚀刻设备内部的不同蚀刻速率设计各区域的进气孔的分布密度,因此可提高制程中反应气体均一性并获得较均匀的plasma分布。此外,本揭示还可在现有上电极的基础上进行改造,进而节省上电极的制造成本。
附图说明
图1显示显示根据本揭示一实施例之干蚀刻设备的上电极的上视图。
图2至图4显示不同进气孔的分布密度示意图。
图5显示根据本揭示一实施例之干蚀刻设备的上电极的制造方法流程图。
本发明的实施方式
以下各实施例的说明是参考附加的图式,用以例示本揭示可用以实施的特定实施例。
请参阅图1至图4,图1显示显示根据本揭示一实施例之干蚀刻设备的上电极2的上视图。图2至图4显示不同进气孔22的分布密度示意图。
所述干蚀刻设备主要包括一反应室腔体、所述上电极2、以及一下电极。所述上电极2及所述下电极设置于所述反应室腔体中。所述上电极2作为干蚀刻制程所需的反应气体的入口。所述下电极作为所述反应气体的出口。
所述干蚀刻设备的上电极包括一导电板体20,所述导电板体分成多个区域A1、A2以及A3。
所述导电板体20可以为其他适合之材质制成且形状不限。所述多个区域A1、A2及A3的面积可以相同或不相同。
所述导电板体的每一个区域A1、A2及A3开设有多个进气孔22,其中所述多个区域A1、A2及A3的至少两个区域的进气孔22的分布密度不同。
于本实施例中,所述区域A1、所述区域A2及所述区域A3的进气孔22的分布密度皆不同。
所述区域A1、所述区域A2及所述区域A3的进气孔22的分布密度是根据各区域的蚀刻速率而定。更明确地说,所述区域A1、所述区域A2及所述区域A3的进气孔22的分布密度是根据各区域对应至反应室腔体的内部位置的蚀刻速率而定。
举例来说,根据测量及实验可知,所述区域A3的蚀刻速率最快,所述区域A2的蚀刻速率次之,所述区域A1的蚀刻速率最慢。
所述区域A3的蚀刻速率最快,因此如图2所示,所述区域A3的进气孔22的分布密度可以最小,亦即所述区域A3所需进气孔22的数量最少。
所述区域A1的蚀刻速率最慢,因此如图3所示,所述区域A1的进气孔22的分布密度可以最高,亦即所述区域A1所需进气孔22的数量最多。
所述区域A2的蚀刻速率比所述区域A3的蚀刻速率慢且比所述区域A1的蚀刻速率快,因此如图4所示,所述区域A2的进气孔22的分布密度高于所述区域A3的分布密度且低于所述区域A1的分布密度,亦即所述区域A2所需进气孔22的数量大于所述区域A3所需进气孔22的数量且小于所述区域A1所需进气孔22的数量。
上述进气孔22的直径可以为1毫米。
所述区域A3对应至所述干蚀刻设备的四角、边缘、以及中心部位(蚀刻速率最快),因此可如图2所示采用低密度的进气孔22。相邻两进气孔22的间距例如为50毫米(millimeter,mm)。
所述区域A1对应至所述干蚀刻设备的四个象限的中心位置(蚀刻速率最慢),因此可如图3所示采用高密度的进气孔22。相邻两进气孔22的间距例如为12.5毫米。
所述区域A2对应至所述干蚀刻设备的其他位置(蚀刻速率居中),因此可如图4所示采用中密度的进气孔22。相邻两进气孔22的间距例如为25毫米。
本揭示之干蚀刻设备的上电极可根据所述上电极各区域对应至所述干蚀刻设备内部的不同蚀刻速率设计各区域的进气孔的分布密度,因此可提高制程中反应气体均一性并获得较均匀的plasma分布。
请参阅图1及图5,图5显示根据本揭示一实施例之干蚀刻设备的上电极2的制造方法流程图。
所述干蚀刻设备主要包括一反应室腔体、所述上电极2、以及一下电极。所述上电极2及所述下电极设置于所述反应室腔体中。所述上电极2作为干蚀刻制程所需的反应气体的入口。所述下电极作为所述反应气体的出口。
于操作S10中,提供一导电板体20,所述导电板体分成多个区域A1、A2以及A3。
于操作S12中,于所述导电板体的每一个区域A1、A2及A3开设多个进气孔22,其中所述区域A1、A2及A3的至少两个区域的进气孔22的分布密度不同。
于操作S14中,将所述多个区域的至少一个区域中的相邻进气孔22之间形成多个进气孔22。
本操作中,所述上电极2可在现有上电极的基础上进行改造,当某一区域对应至所述干蚀刻设备内部区域的蚀刻速率降低时,可通过例如钻孔的方式在相邻进气孔22之间形成多个进气孔22,藉此提高进气孔22的分布密度。
于操作S16中,将所述多个区域的至少一个区域中的进气孔22的一部分堵住。
本操作中,所述上电极2可在现有上电极的基础上进行改造,当某一区域对应至所述干蚀刻设备内部区域的蚀刻速率提高时,可堵住一部分进气孔22,藉此降低所述进气孔22的分布密度。
于一实施例中,可间隔地堵住所述进气孔22,藉此降低所述进气孔22的分布密度,使所述进气孔22的分布密度均匀。
堵住所述进气孔22,藉此降低所述进气孔22的分布密度。
本揭示之干蚀刻设备的上电极及其制造方法中,可根据所述上电极各区域对应至所述干蚀刻设备内部的不同蚀刻速率设计各区域的进气孔的分布密度,因此可提高制程中反应气体均一性并获得较均匀的plasma分布。此外,本揭示还可在现有上电极的基础上进行改造,进而节省上电极的制造成本。
综上所述,虽然本揭示已以优选实施例揭露如上,但上述优选实施例并非用以限制本揭示,本领域的普通技术人员,在不脱离本揭示的精神和范围内,均可作各种更动与润饰,因此本揭示的保护范围以权利要求界定的范围为准。

Claims (16)

  1. 一种干蚀刻设备的上电极,包括导电板体,所述导电板体分成多个区域,所述导电板体的每一个区域开设有多个进气孔,其中所述多个区域的至少两个区域的进气孔的分布密度不同,所述多个区域的分布密度是根据所述多个区域对应至所述干蚀刻设备的反应室腔体的内部位置的蚀刻速率而定。
  2. 根据权利要求1所述的干蚀刻设备的上电极,其中所述多个区域的至少一个区域对应至所述干蚀刻设备的四角、边缘、以及中心部位的其中一者。
  3. 根据权利要求2所述的干蚀刻设备的上电极,其中所述多个区域的至少一个区域对应至所述干蚀刻设备的四个象限的中心位置。
  4. 根据权利要求3所述的干蚀刻设备的上电极,其中所述多个区域的至少一个区域对应至所述干蚀刻设备不包括所述干蚀刻设备的四角、边缘、中心部位、以及四个象限的中心位置的其他位置。
  5. 根据权利要求4所述的干蚀刻设备的上电极,其中对应至所述干蚀刻设备的四角、边缘、以及中心部位的其中一者的区域的进气孔的分布密度低于对应至所述干蚀刻设备的其他位置的进气孔的分布密度。
  6. 根据权利要求5所述的干蚀刻设备的上电极,其中对应至所述干蚀刻设备的其他位置的区域的进气孔的分布密度低于对应至所述干蚀刻设备的四个象限的中心位置的进气孔的分布密度。
  7. 一种干蚀刻设备的上电极,包括导电板体,所述导电板体分成多个区域,所述导电板体的每一个区域开设有多个进气孔,其中所述多个区域的至少两个区域的进气孔的分布密度不同。
  8. 根据权利要求7所述的干蚀刻设备的上电极,其中所述干蚀刻设备进一步包括一反应室腔体以及一下电极,所述上电极及所述下电极设置于所述反应室腔体中,所述多个区域的至少一个区域对应至所述干蚀刻设备的四角、边缘、以及中心部位的其中一者。
  9. 根据权利要求8所述的干蚀刻设备的上电极,其中所述多个区域的至少一个区域对应至所述干蚀刻设备的四个象限的中心位置。
  10. 根据权利要求9所述的干蚀刻设备的上电极,其中所述多个区域的至少一个区域对应至所述干蚀刻设备不包括所述干蚀刻设备的四角、边缘、中心部位、以及四个象限的中心位置的其他位置。
  11. 根据权利要求10所述的干蚀刻设备的上电极,其中对应至所述干蚀刻设备的四角、边缘、以及中心部位的其中一者的区域的进气孔的分布密度低于对应至所述干蚀刻设备的其他位置的进气孔的分布密度。
  12. 根据权利要求11所述的干蚀刻设备的上电极,其中对应至所述干蚀刻设备的其他位置的区域的进气孔的分布密度低于对应至所述干蚀刻设备的四个象限的中心位置的进气孔的分布密度。
  13. 一种干蚀刻设备的上电极的制造方法,包括:
    提供一导电板体,所述导电板体分成多个区域;以及
    于所述导电板体的每一个区域开设多个进气孔,其中所述多个区域的至少两个区域的进气孔的分布密度不同。
  14. 根据权利要求13所述的干蚀刻设备的上电极的制造方法,进一步包括:
    将所述多个区域的至少一个区域中的相邻进气孔之间形成多个进气孔。
  15. 根据权利要求13所述的干蚀刻设备的上电极的制造方法,进一步包括:
    将所述多个区域的至少一个区域中的进气孔的一部分堵住。
  16. 根据权利要求13所述的干蚀刻设备的上电极的制造方法,进一步包括:
    将所述多个区域的至少一个区域中的进气孔间隔地堵住。
PCT/CN2019/077706 2018-11-13 2019-03-11 干蚀刻设备的上电极及其制造方法 WO2020098187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811344445.6 2018-11-13
CN201811344445.6A CN109360779A (zh) 2018-11-13 2018-11-13 干蚀刻设备的上电极及其制造方法

Publications (1)

Publication Number Publication Date
WO2020098187A1 true WO2020098187A1 (zh) 2020-05-22

Family

ID=65344842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077706 WO2020098187A1 (zh) 2018-11-13 2019-03-11 干蚀刻设备的上电极及其制造方法

Country Status (2)

Country Link
CN (1) CN109360779A (zh)
WO (1) WO2020098187A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109360779A (zh) * 2018-11-13 2019-02-19 深圳市华星光电半导体显示技术有限公司 干蚀刻设备的上电极及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201215800Y (zh) * 2008-04-15 2009-04-01 上海华虹Nec电子有限公司 半导体刻蚀设备的上部电极
CN102797012A (zh) * 2012-07-27 2012-11-28 京东方科技集团股份有限公司 一种刻蚀设备及其上部电极
US20160056021A1 (en) * 2013-05-15 2016-02-25 Tokyo Electron Limited Plasma etching apparatus and plasma etching method
CN107546092A (zh) * 2016-06-28 2018-01-05 周业投资股份有限公司 上电极装置
CN207038479U (zh) * 2017-07-31 2018-02-23 京东方科技集团股份有限公司 一种上部电极天板及干法刻蚀设备
CN108321101A (zh) * 2018-02-24 2018-07-24 惠科股份有限公司 一种电极组件和蚀刻设备
CN109360779A (zh) * 2018-11-13 2019-02-19 深圳市华星光电半导体显示技术有限公司 干蚀刻设备的上电极及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067242A (ja) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd ガス分散プレート及びその製造方法
WO2012122054A2 (en) * 2011-03-04 2012-09-13 Novellus Systems, Inc. Hybrid ceramic showerhead
CN107516625A (zh) * 2017-07-13 2017-12-26 江苏鲁汶仪器有限公司 一种等离子体刻蚀系统的喷淋头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201215800Y (zh) * 2008-04-15 2009-04-01 上海华虹Nec电子有限公司 半导体刻蚀设备的上部电极
CN102797012A (zh) * 2012-07-27 2012-11-28 京东方科技集团股份有限公司 一种刻蚀设备及其上部电极
US20160056021A1 (en) * 2013-05-15 2016-02-25 Tokyo Electron Limited Plasma etching apparatus and plasma etching method
CN107546092A (zh) * 2016-06-28 2018-01-05 周业投资股份有限公司 上电极装置
CN207038479U (zh) * 2017-07-31 2018-02-23 京东方科技集团股份有限公司 一种上部电极天板及干法刻蚀设备
CN108321101A (zh) * 2018-02-24 2018-07-24 惠科股份有限公司 一种电极组件和蚀刻设备
CN109360779A (zh) * 2018-11-13 2019-02-19 深圳市华星光电半导体显示技术有限公司 干蚀刻设备的上电极及其制造方法

Also Published As

Publication number Publication date
CN109360779A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
CN100437930C (zh) 用于实现均匀等离子处理的阶梯式上部电极
US8273211B2 (en) Flat panel display manufacturing apparatus
US20200083025A1 (en) Electrode assembly and etching apparatus
TWI490942B (zh) Plasma processing device
CN102142357A (zh) 等离子处理装置
TWI747103B (zh) 電漿侷限系統及方法
TW201836439A (zh) 氣體供給裝置、電漿處理裝置及氣體供給裝置之製造方法
JP2000030896A (ja) プラズマ閉込め装置
TWI547591B (zh) 電漿處理裝置及電漿cvd裝置及在電漿處理裝置中形成薄膜的製造方法
TW201724201A (zh) 用以改良清洗之具有非均勻氣流清除之框架及應用其之處理腔室及方法
WO2020098187A1 (zh) 干蚀刻设备的上电极及其制造方法
TW201502312A (zh) 氣體供給設備
JPH09320799A (ja) プラズマ処理装置およびプラズマ処理方法
US20190164727A1 (en) Part for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
JP2004186404A (ja) プラズマ処理装置
JP2003229408A (ja) プラズマ処理装置
WO2018201529A1 (zh) 干蚀刻设备及干蚀刻设备的电极
JPH07169745A (ja) 平行平板型ドライエッチング装置
JP2002329711A (ja) 平行平板型電極プラズマ処理装置
JP4024389B2 (ja) プラズマ処理装置
JP4416601B2 (ja) プラズマプロセス装置、及びそれを用いた液晶表示装置の製造方法
JP4417600B2 (ja) エッチング方法
CN109473333B (zh) 蚀刻机
KR101079224B1 (ko) 상부전극 어셈블리 및 플라즈마 처리 장치
JPS58125830A (ja) プラズマエツチング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884460

Country of ref document: EP

Kind code of ref document: A1