WO2020096366A1 - 멕세인-전도성 고분자 복합체 재료 및 이를 포함하는 슈퍼커패시터 - Google Patents

멕세인-전도성 고분자 복합체 재료 및 이를 포함하는 슈퍼커패시터 Download PDF

Info

Publication number
WO2020096366A1
WO2020096366A1 PCT/KR2019/015048 KR2019015048W WO2020096366A1 WO 2020096366 A1 WO2020096366 A1 WO 2020096366A1 KR 2019015048 W KR2019015048 W KR 2019015048W WO 2020096366 A1 WO2020096366 A1 WO 2020096366A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
mxene
conductive polymer
composite material
network
Prior art date
Application number
PCT/KR2019/015048
Other languages
English (en)
French (fr)
Inventor
박호석
쌈바지 군드기리쉬
박정희
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2020096366A1 publication Critical patent/WO2020096366A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a supercapacitor including a mexane-conducting polymer composite material having excellent electrical conductivity and excellent ion transport ability.
  • Aluminum electrolytic capacitors are the only capacitors used for fast charging and discharging, and can meet the requirements of next-generation flexible / wearable electronic devices such as AC filtering and power conversion.
  • conventional aluminum electrolytic capacitors have a problem in that they are not suitable for portable or wearable electronic devices because of their large volume.
  • the conventional electric double layer capacitor using activated carbon exhibits a high resistance behavior at a frequency of 1 Hz or more, and thus has limitations in application to devices requiring high output.
  • One object of the present invention is to provide a mexane-conducting polymer composite material having excellent electrical conductivity and ion transporting ability and excellent mechanical properties by including a mexane flake and a conductive polymer having excellent electrical conductivity and having a porous structure.
  • Another object of the present invention is to provide a supercapacitor comprising the above-mentioned mexane-conducting polymer composite material as an electrode material.
  • Mxene-conductive polymer composite material includes a conductive polymer; And an anionic functional group that interacts with the conductive polymer, and includes an electrically conductive mexane flake, and has a porous structure.
  • the mexane flakes are Ti 2 C, (Ti 0.5 , Nb 0.5 ) 2 C, V 2 C, Nb 2 C, Mo 2 C, Ti 3 C 2 , Ti 3 CN, Zr 3 C 2 , Hf 3 C 2 , Ti 4 N 3 , Nb 4 C 3 , Ta 4 C 3 , Mo 2 TiC 2 , Cr 2 TiC 2 and Mo 2 Ti 2 C 3 . .
  • At least some of the monomers of the conductive polymer may be oxidized by interaction with the anionic functional group.
  • the conductive polymer is poly (3,4-ethylenedioxythiophene) (PEDOT), polyphenylene, polythiophene, poly (alkylthiophene) ), Polyfuran, polypyrrole, poly (phenylenevinylene), poly (thienylenevinylene), and polyacetylene.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • the above polymer compound may be included, and in this case, the conductive polymer may include one monomer selected from the group consisting of the following Chemical Formulas 2-1 to 2-9.
  • the conductive polymer comprises a poly (3,4-ethylenedioxythiophene) (PEDOT) molecule and a polystyrene sulfonate (PSS) molecule that interacts with the PEDOT molecule, and at least some of the monomers of the PEDOT molecule are It may have an oxidized quinoid structure.
  • the PEDOT molecule may include a monomer of a benzoid structure (Benziod structure) and a monomer of the quinoid structure in a neutral state, or may include only the monomer of the quinoid structure.
  • the mexane (Mxene) -conductive polymer composite material is 30 parts by weight to 150 parts by weight, preferably 40 parts by weight to 60 parts by weight, based on 100 parts by weight of the conductive polymer can do.
  • Super capacitor includes a first electrode; A second electrode spaced apart from the first electrode 110A and disposed to face each other; And an electrolyte disposed between the first electrode and the second electrode, wherein at least one of the first electrode and the second electrode 110B is a conductive polymer; And an anionic functional group that interacts with the conductive polymer, and includes an electrically conductive Mxene flake, and may be formed of a Mxene-conductive polymer composite material having a porous structure.
  • the electrolyte may include a first polymer network formed of a first polymer including first main chains cross-linked in a network; It is formed of a second polymer that is cross-linked in a network shape and is at least partially chemically bonded to the first polymer network, and is more flexible than the first polymer, and surrounds at least a portion of the first polymer network A second polymer network arranged so as to be arranged; And it may be formed of a gel electrolyte comprising a liquid electrolyte carried inside the double cross-linked network defined by the first and second polymer networks.
  • the first polymer may have higher strength than the second polymer.
  • the first polymer is polyvinyl alcohol (Polyvinyl alcohol), polyacrylamidomethylpropanesulfonic acid (poly2-Acrylamido-2-methyl-1-propanesulfonic acid), polyacrylic acid (Polyacrlic Acid), polypyrrole It includes at least one selected from the group consisting of poly (N-pyrrolidone) and polysaccharide, and the second polymer includes hydroxyethyl methacrylate, acryl amide and It may include one or more polymers selected from the group consisting of dimethylacrylamide.
  • the second polymer is methylenebisacrylamide, ethylene glycol dimethacrylate, ethylene glycol diglycidyl ether, hexanediol diacrylate , Hydroxyethyl methacrylate chains cross-linked by one or more selected from the group consisting of diallyl acrylamide (N, N-diallylacrylamide) and divinylbenzene.
  • the degree of crosslinking of the second polymer network may be lower than that of the first polymer network.
  • the chain length of the second polymer network may be longer than the chain length of the first polymer network.
  • the liquid electrolyte may include an ionic liquid or an organic electrolyte.
  • the liquid electrolyte includes the ionic liquid
  • each of the first and second polymer networks may include a polar functional group for dissociating cations and anions of the ionic liquid.
  • the Mxene-conducting polymer composite material of the present invention contains a Mexene flake and a conductive polymer having excellent electrical conductivity, and the anionic functional group of the Mexene flake oxidizes at least some of the monomers of the conductive polymer Since it transitions to a state, it can not only have excellent electrical activity ability, but also excellent electrical conductivity. In addition, since the Mxene-conductive polymer composite material has a porous structure, ion transport capacity is very excellent.
  • 1A and 1B are planar and cross-sectional SEM images of a Mexane-PEDOT: PSS composite, which is an embodiment of the Mxene-conductive polymer composite material of the present invention.
  • FIG 3 is a cross-sectional view illustrating a super capacitor according to an embodiment of the present invention.
  • FIG. 4 is a view showing a double-crosslinking network synthesis reaction using PVA and hydroxyethyl methacrylate (HEMA).
  • 6A to 6C are graphs showing CV curves, GCD curves, and charging and discharging efficiencies of a supercapacitor (“MP12”) manufactured according to an embodiment, respectively.
  • MP12 supercapacitor
  • 7A to 7E are units according to the scanning speed for the first supercapacitor ('MP11') and the second supercapacitor ('MP12') and the supercapacitor ('Ti3C2') according to the comparative example.
  • FIG. 8 shows CV curves measured at different bending angles for a supercapacitor ('MP12') prepared according to an example using a composite in which the weight ratio of Ti3C2 and PEDOT: PSS is 1: 2.
  • FIG. 9 shows AC line filtering characteristics through the supercapacitor measured at different frequencies for a supercapacitor ('MP12') prepared according to an embodiment using a composite in which the weight ratio of Ti3C2 and PEDOT: PSS is 1: 2. It is a graph to show.
  • FIG. 10 shows capacitance retention and charge / discharge efficiency per unit area per test cycle measured for a supercapacitor ('MP12') prepared according to an embodiment using a composite in which the weight ratio of Ti3C2 and PEDOT: PSS is 1: 2. It is a graph.
  • FIG. 1A and 1B show planar and cross-sectional SEM images, respectively, of the Mexane-PEDOT: PSS composite, which is an example of the Mxene-conductive polymer composite material of the present invention
  • FIG. 2 shows the Mexane-PEDOT: PSS. It is a diagram for explaining the mechanism of monomer oxidation in the complex.
  • the mexane (Mxene) -conducting polymer composite material comprises a conductive polymer and a mexane flake having an anionic functional group interacting with the conductive polymer It may include, and may have a porous three-dimensional network structure.
  • the mexane flake may have a single molecular layer structure or a multilayer structure within several molecular layers so that it may have electrical conductivity, and the mexane may be represented by the following Chemical Formula 1.
  • M represents one or more transition metals
  • X represents carbon or nitrogen
  • T represents an anionic functional group.
  • n can be 1, 2 or 3.
  • the mexane is Ti 2 C, (Ti 0.5 , Nb 0.5 ) 2 C, V 2 C, Nb 2 C, Mo 2 C, Ti 3 C 2 , Ti 3 CN, Zr 3 C 2 , Hf 3 C 2 , Ti 4 N 3 , Nb 4 C 3 , Ta 4 C 3 , Mo 2 TiC 2 , Cr 2 TiC 2 , Mo 2 Ti 2 C 3 and the like.
  • the mexane flake may have a size of about 50 to 1000 nm, preferably about 50 to 200 nm.
  • the mexane flake may be prepared from a compound on Max (MAX) represented by the following Chemical Formula 2, and a known method of manufacturing a mexane flake may be applied without limitation in order to prepare the mexane flake.
  • MAX compound on Max
  • M represents one or more transition metals
  • A represents a group 13 or 14 element of the periodic table
  • X represents carbon or nitrogen.
  • the compound powder on the max (MAX) is immersed in an aqueous hydrofluoric acid (HF) solution to remove the interlayer bonding element A to prepare a multi-layered mexane flake, Subsequently, the multi-layered mexane flakes are immersed in an organic solvent containing guest molecules such as dimethyl sulfoxide (DMSO), hydrazine, and urea to intercalate the guest molecules, followed by centrifugation to perform single separation.
  • DMSO dimethyl sulfoxide
  • urea an organic solvent containing guest molecules such as dimethyl sulfoxide (DMSO), hydrazine, and urea to intercalate the guest molecules, followed by centrifugation to perform single separation.
  • An electrically conductive mexane flake composed of a molecular layer or several molecular layers can be prepared.
  • the conductive polymer may be a polymer compound having electrical conductivity.
  • the conductive polymer may include at least one monomer oxidized by interaction with the anionic functional group of the mexane.
  • the conductive polymer is poly (3,4-ethylenedioxythiophene) (PEDOT), polyphenylene, polythiophene, poly (alkylthiophene), One or more polymer compounds selected from polyfuran, polypyrrole, poly (phenylenevinylene), poly (thienylenevinylene), polyacetylene, and the like It may include, at least some of the monomers of the conductive polymer may have an electrochemical structure corresponding to the oxidation state (oxidation state) as shown in Table 1.
  • the Mxene-conductive polymer composite material according to the embodiment of the present invention, all of the monomers of the conductive polymer may be in an oxidized state, or only some of them may be in an oxidized state.
  • It may be a composite material of a titanium carbide (Ti 2 C, Ti 3 C 2 ) flake and PEDOT: PSS to which an anionic functional group such as (-F) is bonded, and in this case, as described in Reaction Scheme 1 below, the anionic The functional group and the PEDOT molecule interact to oxidize the benzoid structure of the PEDOT to be converted into a quinoid structure, whereby the electrical activity and conductivity of the PEDOT: PSS can be improved. .
  • the mexane (Mxene) -conducting polymer composite material can be prepared by adding a conductive polymer solution to the mexane flake colloidal solution and stirring at room temperature, and may have a porous three-dimensional network structure.
  • the Mxene-conductive polymer composite material may include internal pores having a size of about 2 to 50 nm, and the ratio of the internal pores, that is, the porosity, may be changed by adjusting the content of the Mexane flakes. have.
  • the Mxene (Mxene) -conductive polymer composite material may include about 30 parts by weight to 150 parts by weight of the Mexane flake based on 100 parts by weight of the conductive polymer.
  • the content of the mexane flake is less than 30 parts by weight based on 100 parts by weight of the conductive polymer, the proportion of the monomers that have been converted to the oxidized state among the monomers of the conductive polymer is not high, and the internal porosity decreases, thereby reducing the There may be a problem that the electrical activity or the ion transport capacity improvement is not high, and when the content of the mexane flake exceeds 150 parts by weight, the electrical activity of the oxidized state structure in the composite material is lowered and the porosity is excessively increased, which is required.
  • the Mxene-conductive polymer composite material may include about 40 parts by weight to 60 parts by weight of the Mexane flake based on 100 parts by weight of the conductive polymer.
  • the Mxene-conducting polymer composite material of the present invention contains a Mexene flake and a conductive polymer having excellent electrical conductivity, and the anionic functional group of the Mexene flake oxidizes at least some of the monomers of the conductive polymer Since it transitions to a state, it can not only have excellent electrical activity ability, but also excellent electrical conductivity. In addition, since the Mxene-conductive polymer composite material has a porous structure, ion transport capacity is very excellent.
  • FIG. 3 is a cross-sectional view for explaining a supercapacitor according to an embodiment of the present invention
  • FIG. 4 is a view showing a double-crosslinking network synthesis reaction using PVA and hydroxyethyl methacrylate (HEMA).
  • the supercapacitor 100 may include a first electrode 110A, a second electrode 110B, and an electrolyte 120.
  • the first electrode 110A and the second electrode 110B may be disposed to face each other in a spaced apart state.
  • At least one of the first electrode 110A and the second electrode 110B may be formed of the above-described mexane-conductive polymer composite material.
  • both the first electrode 110A and the second electrode 110B may be formed of the mexane-conductive polymer composite material.
  • the first electrode 110A may be formed of the mexane-conductive polymer composite material
  • the second electrode 110B may be formed of a known porous carbon material.
  • first electrode (110A) and the second electrode (110B) of the electrode formed of the material of the mexane-conductive polymer composite may have a film structure of about 100 to 400 nm thick.
  • the electrolyte 120 may be disposed between the first electrode 110A and the second electrode 110B, and ions may be formed of a conductive material.
  • the material of the electrolyte 120 is not particularly limited, and a known electrolyte material can be applied without limitation.
  • the electrolyte 120 may be formed of a gel electrolyte including a first polymer network, a second polymer network and a liquid electrolyte.
  • the first polymer network may be formed of a relatively high toughness first polymer.
  • the first polymer network may have a structure in which first main chains are cross-linked to each other.
  • the first polymer network is preferably about 10 ⁇ 10 -- mol / cm3 or more in order to realize high toughness and high strength properties.
  • the first polymer is polyvinyl alcohol (Polyvinyl alcohol), polyacrylamidomethylpropanesulfonic acid (poly2-Acrylamido-2-methyl-1-propanesulfonic acid, PAMPS), polyacrylic acid (Polyacrlic Acid), Polypyrrolidone (Poly (N-pyrrolidone)), polysaccharide (Polysaccharide), and the like, may be formed of a polymer material having relatively high strength and high toughness.
  • the polysaccharide may include polymers such as alginate, gellan gum, and agarose.
  • the first polymer network may be formed by polymerizing linear polymer chains and then crosslinking them through a radical recombination reaction using a thermal initiator.
  • K2S2O8 or the like may be used as the initiator.
  • the first polymer network is formed of polyvinyl alcohol (PVA)
  • argon gas is used to remove dissolved oxygen after preparing a polymer solution by mixing linear polyvinyl alcohol, K 2 S 2 O 8 and distilled water. And then stirred at a temperature of about 80 ° C. for 3 hours to crosslink the linear polyvinyl alcohols to prepare the first polymer network.
  • the degree of cross-linking of the first polymer network may be higher than that of the second polymer network.
  • the gel electrolyte according to the present invention may have characteristics of high mechanical strength and high toughness.
  • the first polymer network may have a crosslinking degree of about 10 ⁇ 10 - 4mol / cm3 to 20 ⁇ 10 - 4mol / cm3.
  • the second polymer network may be formed of a second polymer having higher flexibility than the first polymer constituting the first polymer network.
  • the second polymer network may include second main chains cross-linked with each other in a network, and at least a portion of the second main chains are chemically chemically connected to the first polymer network. Can be combined. That is, the first polymer network and the second polymer network may form a cross-through double cross-linked network.
  • the degree of crosslinking of the second network may be about 10 - 4mol / cm3 or less.
  • the second polymer may include polymers such as hydroxyethyl methacrylate (HEMA), acryl amide, and dimethylacrylamide.
  • the double cross-linked network of the first polymer network and the second polymer network expands the first polymer network through solvent swelling, and then the expanded first polymer network in distilled water, the second
  • the crosslinking agent may include an ethoxysilane-based, acrylic-based, or epoxy-based compound, but is not limited thereto.
  • the crosslinking agent is methylenebisacrylamide (MBAA), ethylene glycol dimethacrylate, ethylene glycol diglycidyl ether, hexanediol diacrylate , Diallyl acrylamide (N, N-diallylacrylamide), divinylbenzene (divinylbenzene), and the like.
  • MBAA methylenebisacrylamide
  • the initiator a known polymerization initiator can be applied without limitation.
  • the initiator may include K 2 S 2 O 8 .
  • the degree of crosslinking of the second polymer network may be lower than that of the first polymer network, and the chain length of the second polymer network may be longer than the chain length of the first polymer network.
  • the double crosslinked network formed by the first and second polymer networks may form an internal space in which the liquid electrolyte can be supported, and the liquid electrolyte may be supported in an inner space formed by the double crosslinked network. .
  • the liquid electrolyte may include an ionic liquid, an organic electrolyte, an aqueous electrolyte, and the like.
  • the ionic liquid a known material can be applied without limitation, and for example, the ionic liquid is one selected from BIMI: BF4, EMIM: TFSI, EMIM: BF4, etc., which are imidazolium-based ionic liquids. Can be.
  • the organic electrolyte a known organic electrolyte can be applied without limitation, for example, the organic electrolyte is an organic solvent and LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 2 , LiB (C 2 H 5 ) 4, and the like.
  • the water-based electrolyte a known water-based electrolyte can be applied without limitation, and, for example, the water-based electrolyte may include an aqueous solution such as sulfuric acid, phosphoric acid and potassium hydroxide.
  • each of the first and second polymer networks may include a polar functional group for dissociating cations and anions of the ionic liquid.
  • the polar functional group is an alcohol group (-OH), an amide group (-CONH 2 ), a carboxyl group (-COOH), a ketone group (-CO-), an aldehyde group (-CHO), an amine group (-NH 2 ) , Ester group (-COOR), ether group (-O-), and the like.
  • the first and second polymer networks include many polar functional groups, ion conductivity may be significantly improved.
  • the first polymer may be included in a proportion of about 5 to 15 wt%
  • the second polymer may be included in a proportion of about 25 to 35 wt%
  • the liquid phase may be included in a ratio of about 55 to 65 wt%.
  • the gel electrolyte of the present invention since the first polymer network providing high strength and toughness and the second polymer network providing high flexibility and elasticity are cross-linked with each other to support the liquid electrolyte inside the double-crosslinked network, external stress is generated. When applied, the stress can be effectively dissipated by the first polymer network having high strength and toughness, as well as the flexibility and reversible deformability provided by the second polymer network. In addition, due to the improved mechanical properties of the double crosslinked network, more liquid electrolyte can be carried inside the double crosslinked network, and as a result, the gel electrolyte simultaneously provides a wide range of potential windows and improved ion conductivity. can do.
  • the supercapacitor 100 includes a first current collector 130A electrically connected to the first electrode 110A and a second current collector electrically connected to the second electrode 110B ( 130B), and the structure and material of a known supercapacitor current collector can be applied without limitation to the first current collector 130A and the second current collector 130B. Omitted.
  • the precipitated slurry was lyophilized to obtain a multilayer of Ti 3 C 2 .
  • the obtained multilayer Ti 3 C 2 was mixed with DMSO and stirred at room temperature for 24 hours to extend the interlayer spacing of the multilayer Ti 3 C 2 through intercalation, and then the collected solution was 3500 rpm. DMSO was isolated by centrifugation at 5 min.
  • ultrasonic treatment was performed while injecting argon gas in an ice bath, and after ultrasonic treatment, the solution was centrifuged at 3500 rpm for 1 hour to remove the unremoved material and collect the supernatant. The collected supernatant was evaporated from the solvent through lyophilization, and the remaining Ti 3 C 2 flakes were used.
  • a PEDOT: PSS solution was added to the colloidal solution of Ti 3 C 2 and stirred at room temperature for 2 hours to synthesize a Ti 3 C 2 / PEDOT: PSS colloidal solution. At this time, the weight ratio of Ti 3 C 2 to PEDOT: PSS was adjusted to 1: 1 ('MP11') and 1: 2 ('MP12').
  • a second polymer solution was prepared by mixing HEMA (hydroxyethyl methacrylate) monomer, MBAA (Methylenebisacrylamide) crosslinker, initiator K2S2O8, and ionic liquid EMIM: BF4 in distilled water together with the PVA network. Subsequently, the second polymer solution was injected with argon gas and vigorously stirred at a temperature of 80 ° C. for 20 minutes to prepare a gel electrolyte.
  • HEMA hydroxyethyl methacrylate
  • MBAA Methylenebisacrylamide crosslinker
  • initiator K2S2O8 initiator K2S2O8
  • ionic liquid EMIM BF4
  • the second polymer solution in the gel state was placed in a vacuum oven at 70 ° C. and heat treated to remove water from the second polymer solution in the gel state.
  • a supercapacitor After coating a gold (Au) current collector on a PET film, a supercapacitor was prepared by inserting the gel electrolyte between two electrode plates on which an electrode was formed of the mexane-PEDOT: PSS composite. In the supercapacitor, since the gel electrolyte also functions as a separator, a separate separator was not applied.
  • 6A to 6C are graphs each showing a CV capacitor, a GCD curve, and a charge / discharge efficiency of a supercapacitor prepared according to an embodiment. It was prepared using a 1: 2 complex.
  • the supercapacitor ('' manufactured according to the embodiment has excellent voltage-current characteristics and excellent capacitance exhibiting high current density.
  • Figure 6a As shown in FIG. 6B and FIG. 6C, it shows a rectangular current-voltage graph without resistance behavior from a slow scanning speed of 0.1 V / s to a fast scanning speed of 1000 V / s, and the rate characteristics of the supercapacitor are excellent.
  • the graph shows the symmetrical shape of the left and right, and the charge and discharge ratios of the supercapacitors are almost identical and reversible, indicating a high Coulomb efficiency value.
  • 7A to 7E are capacities per unit area and the scanning speed according to the scanning speed for the first supercapacitor '' and the second supercapacitor '' and the supercapacitor '' according to the comparative example manufactured according to the embodiment.
  • the capacitance per unit volume according to, the phase angle according to the frequency, the Nyquist plot and the capacitance per unit area according to the frequency are respectively shown.
  • the first supercapacitor '' and the second supercapacitor '' compared to the supercapacitor '' according to the comparative example have a capacitance per unit area according to a scanning speed and a scanning speed It can be seen that the capacitance per unit volume is excellent.
  • the second supercapacitor '' is more capacitive than the first supercapacitor '', has lower equivalent series resistance, and has a capacity retention rate in a wider frequency range. It can be confirmed that it is excellent, and the second supercapacitor (") shows a large phase angle of 79.1 degrees at a frequency of 120 Hz, which shows excellent capacitor behavior.
  • the composite material preferably contains the mexane flakes in an amount of about 40 parts by weight or more and 60 parts by weight or less based on 100 parts by weight of the conductive polymer.
  • FIG. 8 shows CV curves measured at different bending angles for a supercapacitor (') prepared according to an example using a composite in which the weight ratio of Ti3C2 to PEDOT: PSS is 1: 2.
  • FIG. 9 is a graph showing alternating current line filtering characteristics through the supercapacitor measured at different frequencies for a supercapacitor ('') prepared according to an embodiment using a composite in which the weight ratio of Ti3C2 to PEDOT: PSS is 1: 2. to be.
  • FIG. 10 is a graph showing capacitance retention and charge / discharge efficiency per unit area per test cycle measured for a supercapacitor ('' measured according to an example) using a composite in which the weight ratio of Ti3C2 to PEDOT: PSS is 1: 2. .
  • the supercapacitor maintains capacitance and charge / discharge efficiency even after several charge / discharge cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

다공성 구조를 갖는 멕세인(Mxene)-전도성 고분자 복합체 재료가 개시된다. 상기 복합체 재료는 전도성 고분자 및 상기 전도성 고분자와 상호 작용하는 음이온성 작용기를 구비하고, 전기 전도성을 갖는 멕세인(Mxene) 플레이크를 포함한다. 이러한 복합체 재료는 전기 전도성이 우수하고 높은 이온 수송 능력을 가지며, 기계적 특성이 우수하다.

Description

멕세인-전도성 고분자 복합체 재료 및 이를 포함하는 슈퍼커패시터
본 발명은 전기 전도성이 우수하고 이온 수송 능력이 우수한 멕세인-전도성 고분자 복합체 재료 및 이를 포함하는 슈퍼커패시터에 관한 것이다.
알루미늄 전해 커패시터는 빠른 충방전에 사용되는 유일한 커패시터로서, 교류 필터링, 전력 변환 등 차세대 플렉서블/웨어러블 전자소자의 요구 사항을 충족시킬 수 있다.
그러나, 종래 알루미늄 전해 커패시터는 부피가 크기 때문에 휴대용 또는 웨어러블 전자 소자에 적합하지 않는 문제점이 있다. 그리고, 종래 활성탄을 이용한 전기 이중층 커패시터는 1Hz 이상의 주파수에서 높은 저항 거동을 나타내기 때문에 높은 출력이 필요한 소자에 적용하는 데에 있어 제한이 있었다.
이러한 문제점을 해결하기 위한, 초소형 고주파 슈퍼커패시터의 개발은 전해 커패시터의 교류 필터링을 대체하기 위해 나노 구조의 탄소를 사용하여 시작되었으며, 전도성 고분자 및 금속 산화물/탄소 복합체로 수행되었지만 높은 단위 부피당 정전용량이나 대면적의 플렉서블 소자 제작은 아직 큰 도전과제로 남아있다.
본 발명의 일 목적은 전기 전도성이 우수한 멕세인 플레이크와 전도성 고분자를 포함하고 다공성 구조를 가져서 우수한 전기 전도성과 이온 수송 능력을 갖고, 기계적 특성이 우수한 멕세인-전도성 고분자 복합체 재료를 제공하는 것이다.
본 발명의 다른 목적은 상기 멕세인-전도성 고분자 복합체 재료를 전극 재료로 포함하는 슈퍼 커패시터를 제공하는 것이다.
본 발명의 실시예에 따른 멕세인(Mxene)-전도성 고분자 복합체 재료는 전도성 고분자; 및 상기 전도성 고분자와 상호 작용하는 음이온성 작용기를 구비하고, 전기 전도성을 갖는 멕세인(Mxene) 플레이크를 포함하고, 다공성 구조를 갖는다.
일 실시예에 있어서, 상기 멕세인 플레이크는 Ti2C, (Ti0.5,Nb0.5)2C, V2C, Nb2C, Mo2C, Ti3C2, Ti3CN, Zr3C2, Hf3C2, Ti4N3, Nb4C3, Ta4C3, Mo2TiC2, Cr2TiC2 및 Mo2Ti2C3로 이루어진 그룹에서 선택된 하나 이상의 물질로 형성될 수 있다.
일 실시예에 있어서, 상기 음이온성 작용기는 하이드록시기(-OH), 카르보닐기(=O) 및 플루오린기(-F)로 이루어진 그룹에서 선택된 하나 이상을 포함할 수 있다.
일 실시예에 있어서, 상기 전도성 고분자의 단량체들 중 적어도 일부는 상기 음이온성 작용기와의 상호 작용에 의해 산화될 수 있다.
일 실시예에 있어서, 상기 전도성 고분자는 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리페닐렌(polyphenylene), 폴리티오펜(polythiophene), 폴리(알킬티오펜)(poly(alkylthiophene)), 폴리퓨란(polyfuran), 폴리피롤(polypyrrole), 폴리페닐렌비닐렌(poly(phenylenevinylene)), 폴리(디에닐렌비닐렌)(poly(thienylenevinylene)) 및 폴리아세틸렌(polyacetylene)으로 이루어진 그룹에서 선택된 하나 이상의 고분자 화합물을 포함할 수 있고, 이 경우, 상기 전도성 고분자는 하기 화학식 2-1 내지 2-9로 이루어진 그룹에서 선택된 하나의 단량체를 포함할 수 있다.
[화학식 2-1]
Figure PCTKR2019015048-appb-I000001
[화학식 2-2]
Figure PCTKR2019015048-appb-I000002
[화학식 2-3]
Figure PCTKR2019015048-appb-I000003
[화학식 2-4]
Figure PCTKR2019015048-appb-I000004
[화학식 2-5]
Figure PCTKR2019015048-appb-I000005
[화학식 2-6]
Figure PCTKR2019015048-appb-I000006
[화학식 2-7]
Figure PCTKR2019015048-appb-I000007
[화학식 2-8]
Figure PCTKR2019015048-appb-I000008
[화학식 2-9]
Figure PCTKR2019015048-appb-I000009
일 실시예에 있어서, 상기 전도성 고분자는 PEDOT(poly(3,4-ethylenedioxythiophene)) 분자 및 상기 PEDOT 분자와 상호 작용하는 PSS(polystyrene sulfonate) 분자를 포함하고, 상기 PEDOT 분자의 단량체들 중 적어도 일부는 산화된 퀴노이드 구조(Quinoid structure)를 가질 수 있다. 일 실시예로, 상기 PEDOT 분자는 중성 상태인 벤조이드 구조(Benziod structure)의 단량체 및 상기 퀴노이드 구조의 단량체를 함께 포함하거나 상기 퀴노이드 구조의 단량체만을 포함할 수 있다.
일 실시예에 있어서, 상기 멕세인(Mxene)-전도성 고분자 복합체 재료는 상기 전도성 고분자 100 중량부를 기준으로 상기 멕세인 플레이크는 30 중량부 내지 150 중량부, 바람직하게는 40 중량부 내지 60 중량부 포함할 수 있다.
본 발명의 실시예에 따른 슈퍼 커패시터는 제1 전극; 상기 제1 전극(110A)과 이격된 상태에서 서로 마주보게 배치된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 배치된 전해질을 포함하고, 상기 제1 전극과 상기 제2 전극(110B) 중 적어도 하나 이상은 전도성 고분자; 및 상기 전도성 고분자와 상호 작용하는 음이온성 작용기를 구비하고, 전기 전도성을 갖는 멕세인(Mxene) 플레이크를 포함하고, 다공성 구조를 갖는 멕세인(Mxene)-전도성 고분자 복합체 재료로 형성될 수 있다.
일 실시예에 있어서, 상기 전해질은 망상형(network)으로 가교된 제1 주쇄들(main chains)을 포함하는 제1 고분자로 형성된 제1 고분자 네트워크; 망상형으로 가교되고 적어도 일부가 상기 제1 고분자 네트워크와 화학적으로 결합된 제2 주쇄들을 포함하고, 상기 제1 고분자보다 유연성이 높은 제2 고분자로 형성되며, 상기 제1 고분자 네트워크의 적어도 일부를 둘러싸도록 배치된 제2 고분자 네트워크; 및 상기 제1 및 제2 고분자 네트워크에 의해 정의되는 이중 가교 네트워크 내부에 담지된 액상 전해질을 포함하는 겔 전해질로 형성될 수 있다. 이 경우, 상기 제1 고분자는 상기 제2 고분자보다 높은 강도를 가질 수 있다.
일 실시예에 있어서, 상기 제1 고분자는 폴리피닐알코올(Polyvinyl alcohol), 폴리아크릴아미도메틸프로판설폰산(poly2-Acrylamido-2-methyl-1-propanesulfonic acid), 폴리아크릴산(Polyacrlic Acid), 폴리피롤리돈(Poly(N-pyrrolidone)) 및 폴리사카라이드(Polysaccharide)로 이루어진 그룹에서 선택된 하나 이상을 포함하고, 상기 제2 고분자는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate), 아크릴 아마이드(acryl amide) 및 디메틸아크릴아마이드(dimethylacrylamide)로 이루어진 그룹에서 선택된 하나 이상의 중합체를 포함할 수 있다. 예를 들면, 상기 제2 고분자는 메틸렌비스아크릴아미드(Methylenebisacrylamide), 에틸렌글리콜디메타크릴레이트(ethylene glycol dimethacrylate), 에틸렌글리콜디그리딜에테르(ethylene glycol diglycidyl ether), 헥산디올디아크릴레이트(hexanediol diacrylate), 디알릴아크릴아미드(N,N-diallylacrylamide) 및 디비닐벤젠(divinylbenzene)로 이루어진 그룹에서 선택된 하나 이상에 의해 가교된 하이드록시에틸 메타크릴레이트 사슬들을 포함할 수 있다.
일 실시예에 있어서, 상기 제2 고분자 네트워크의 가교도는 상기 제1 고분자 네트워크의 가교도보다 낮을 수 있다.
일 실시예에 있어서, 상기 제2 고분자 네트워크의 사슬 길이는 상기 제1 고분자 네트워크의 사슬 길이보다 길 수 있다.
일 실시예에 있어서, 상기 액상 전해질은 이온성 액체(ionic liquid) 또는 유기 전해질을 포함할 수 있다.
일 실시예에 있어서, 상기 액상 전해질은 상기 이온성 액체를 포함하고, 상기 제1 및 제2 고분자 네트워크 각각은 상기 이온성 액체의 양이온과 음이온을 해리시키기 위한 극성 관능기를 포함할 수 있다.
본 발명의 멕세인(Mxene)-전도성 고분자 복합체 재료에 따르면, 전기 전도성이 우수한 멕세인 플레이크와 전도성 고분자를 포함하고, 상기 멕세인 플레이크의 음이온성 작용기가 상기 전도성 고분자의 단량체들 중 적어도 일부를 산화상태로 전이시키므로 우수한 전기적 활성 능력을 가질 수 있을 뿐만 아니라 전기 전도성이 우수하다. 또한, 상기 멕세인(Mxene)-전도성 고분자 복합체 재료는 다공성 구조를 가지므로, 이온 수송 능력이 매우 우수한다.
도 1a 및 도 1b는 본 발명의 멕세인(Mxene)-전도성 고분자 복합체 재료의 일 실시예인 멕세인-PEDOT:PSS 복합체에 대한 평면 및 단면 SEM 이미지들이다.
도 2는 멕세인-PEDOT:PSS 복합체에서의 단량체 산화 메커니즘을 설명하기 위한 도면이다.
도 3은 본 발명의 실시예에 따른 슈퍼 커패시터를 설명하기 위한 단면도이다.
도 4는 PVA 및 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate, HEMA)를 이용한 이중 가교 네트워크 합성 반응을 나타내는 도면이다.
도 5는 Ti3C2, Ti3C2-PEDOT:PSS 복합체 및 PEDOT:PSS에 대한 XPS 데이터들을 나타낸다.
도 6a 내지 도 6c는 실시예에 따라 제조된 슈퍼커패시터(‘MP12’)의 CV 곡선, GCD 곡선 및 충방전 효율을 각각 나타내는 그래프들이다.
도 7a 내지 도 7e는 실시예에 따라 제조된 제1 슈퍼커패시터(‘MP11’) 및 제2 슈퍼커패시터(‘MP12’) 그리고 비교예에 따른 슈퍼커패시터(‘Ti3C2’)에 대한 주사 속도에 따른 단위 면적당 정전용량, 주사 속도에 따른 단위 부피당 정전용량, 주파수에 따른 위상각, 나이퀴스트 선도(Nyquist plot) 및 주파수에 따른 단위 면적당 정전용량을 각각 나타낸다.
도 8은 Ti3C2와 PEDOT:PSS의 중량비가 1:2인 복합체를 이용하여 실시예에 따라 제조된 슈퍼커패시터(‘MP12’)에 대해, 상이한 굽힘 각도에서 측정된 CV 곡선을 나타낸다.
도 9는 Ti3C2와 PEDOT:PSS의 중량비가 1:2인 복합체를 이용하여 실시예에 따라 제조된 슈퍼커패시터(‘MP12’)에 대해, 상이한 주파수에서 측정된 상기 슈퍼커패시터를 통한 교류라인 필터링 특성을 나타내는 그래프이다.
도 10은 Ti3C2와 PEDOT:PSS의 중량비가 1:2인 복합체를 이용하여 실시예에 따라 제조된 슈퍼커패시터(‘MP12’)에 대해 측정된 테스트 사이클당 단위 면적당 정전용량 유지율 및 충방전 효율을 나타내는 그래프이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1a 및 도 1b는 본 발명의 멕세인(Mxene)-전도성 고분자 복합체 재료의 일 실시예인 멕세인-PEDOT:PSS 복합체에 대한 평면 및 단면 SEM 이미지들을 각각 나타내고, 도 2는 멕세인-PEDOT:PSS 복합체에서의 단량체 산화 메커니즘을 설명하기 위한 도면이다.
도 1a, 도 1b 및 도 2를 참조하면, 본 발명의 실시예에 따른 멕세인(Mxene)-전도성 고분자 복합체 재료는 전도성 고분자 및 상기 전도성 고분자와 상호 작용하는 음이온성 작용기를 구비하는 멕세인 플레이크를 포함할 수 있고, 다공성 3차원 네트워크 구조를 가질 수 있다.
상기 멕세인 플레이크는 전기 전도성을 가질 수 있도록 단일 분자층 구조 또는 수 분자층 이내의 적층 구조를 가질 수 있고, 멕세인은 하기 화학식 1로 표현될 수 있다.
[화학식 1]
Mn+1XnTx
상기 화학식 1에 있어서, M은 전이금속 하나 이상의 금속을 나타내고, X는 탄소 또는 질소를 나타내며, T는 음이온성 작용기를 나타낸다. 그리고 n은 1, 2 또는 3일 수 있다.
일 실시예에 있어서, 상기 멕세인은 Ti2C, (Ti0.5,Nb0.5)2C, V2C, Nb2C, Mo2C, Ti3C2, Ti3CN, Zr3C2, Hf3C2, Ti4N3, Nb4C3, Ta4C3, Mo2TiC2, Cr2TiC2, Mo2Ti2C3 등으로 이루어진 그룹에서 선택된 하나 이상을 포함할 수 있다. 일 실시예로, 상기 멕세인 플레이크는 약 50 내지 1000 nm, 바람직하게는 약 50 내지 200 nm의 크기를 가질 수 있다. 한편, 상기 음이온성 작용기는 하이드록시기(-OH), 카르보닐기(=O), 플루오린기(-F) 등으로부터 선택된 하나 이상을 포함할 수 있고, 상기 멕세인 플레이크의 표면에 결합될 수 있다.
상기 멕세인 플레이크는 하기 화학식 2로 표현되는 맥스(MAX) 상의 화합물로부터 제조될 수 있고, 상기 멕세인 플레이크의 제조하기 위해서는 공지의 멕세인 플레이크 제조방법이 제한 없이 적용될 수 있다.
[화학식 2]
Mn+1AXn
상기 화학식 2에 있어서, M은 전이금속 하나 이상의 금속을 나타내고, A는 주기율표의 13족 또는 14족 원소를 나타내며, X는 탄소 또는 질소를 나타낸다.
일 실시예로, 상기 멕세인 플레이크를 제조하기 위해, 상기 맥스(MAX) 상의 화합물 분말을 불산(Fluoric acid, HF) 수용액에 침지시켜 층간 결합 원소인 A를 제거하여 다층 멕세인 플레이크를 제조하고, 이어서 상기 다층 멕세인 플레이크를 DMSO(dimethyl sulfoxide), 히드라진(hydrazine), 우레아(urea) 등의 게스트 분자를 포함하는 유기 용매에 침지하여 상기 게스트 분자를 인터칼레이션(Intercalation)한 후 원심분리함으로써 단일 분자층 또는 수 분자층으로 이루어진 전기 전도성 멕세인 플레이크를 제조할 수 있다.
상기 전도성 고분자는 전기 전도성을 갖는 고분자 화합물일 수 있다.
일 실시예로, 상기 전도성 고분자는 상기 멕세인의 음이온성 작용기와의 상호 작용에 의해 산화된 단량체(monomer)를 적어도 하나 이상 포함할 수 있다. 예를 들면, 상기 전도성 고분자는 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리페닐렌(polyphenylene), 폴리티오펜(polythiophene), 폴리(알킬티오펜)(poly(alkylthiophene)), 폴리퓨란(polyfuran), 폴리피롤(polypyrrole), 폴리페닐렌비닐렌(poly(phenylenevinylene)), 폴리(디에닐렌비닐렌)(poly(thienylenevinylene)), 폴리아세틸렌(polyacetylene) 등으로부터 선택된 하나 이상의 고분자 화합물을 포함할 수 있고, 상기 전도성 고분자의 단량체들 중 적어도 일부는 표 1에 기재된 바와 같은 산화상태(oxidation state)에 대응되는 전기화학적 구조를 가질 수 있다. 예를 들면, 본 발명의 실시예에 따른 멕세인(Mxene)-전도성 고분자 복합체 재료에 있어서, 상기 전도성 고분자의 단량체들 전부가 산화 상태일 수도 있고, 이들 중 일부만이 산화 상태일 수도 있다.
conductive polymer neutral state oxidation state
poly(3,4-ethylenedioxythiophee)<PEDOT>
Figure PCTKR2019015048-appb-I000010
Figure PCTKR2019015048-appb-I000011
polyphenylene
Figure PCTKR2019015048-appb-I000012
Figure PCTKR2019015048-appb-I000013
polythiophene
Figure PCTKR2019015048-appb-I000014
Figure PCTKR2019015048-appb-I000015
poly(alkylthiophene)
Figure PCTKR2019015048-appb-I000016
Figure PCTKR2019015048-appb-I000017
polyfuran
Figure PCTKR2019015048-appb-I000018
Figure PCTKR2019015048-appb-I000019
polypyrrole
Figure PCTKR2019015048-appb-I000020
Figure PCTKR2019015048-appb-I000021
poly(phenylenevinylene)
Figure PCTKR2019015048-appb-I000022
Figure PCTKR2019015048-appb-I000023
poly(thienylenevinylene)
Figure PCTKR2019015048-appb-I000024
Figure PCTKR2019015048-appb-I000025
polyacetylene
Figure PCTKR2019015048-appb-I000026
Figure PCTKR2019015048-appb-I000027
일 실시예에 있어서, 도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 멕세인(Mxene)-전도성 고분자 복합체 재료는 표면에 하이드록시기(-OH), 카르보닐기(=O), 플루오린기(-F) 등의 음이온성 작용기가 결합된 티타늄탄화물(Ti2C, Ti3C2) 플레이크와 PEDOT:PSS의 복합체 재료일 수 있고, 이 경우, 하기 반응식 1에 기재된 바와 같이, 상기 음이온성 작용기와 PEDOT 분자가 상호작용하여 상기 PEDOT의 벤조이드 구조(Benzoid structure)가 산화되어 퀴노이드 구조(Quinoid structure)로 전환될 수 있고, 이에 의해 상기 PEDOT:PSS의 전기 활성 및 전도성이 향상될 수 있다.
[반응식 1]
Figure PCTKR2019015048-appb-I000028
본 발명의 실시예에 따른 멕세인(Mxene)-전도성 고분자 복합체 재료는 상기 멕세인 플레이크 콜로이드 용액에 전도성 고분자 용액을 첨가한 후 실온에서 교반하여 제조할 수 있고, 다공성 3차원 네트워크 구조를 가질 수 있다. 예를 들면, 상기 멕세인(Mxene)-전도성 고분자 복합체 재료는 약 2 내지 50 nm 크기의 내부 기공을 포함할 수 있고, 상기 내부 기공의 비율, 즉 기공률은 멕세인 플레이크의 함량을 조절함으로써 변경할 수 있다.
일 실시예에 있어서, 상기 멕세인(Mxene)-전도성 고분자 복합체 재료는 상기 전도성 고분자 100 중량부를 기준으로 상기 멕세인 플레이크를 약 30 중량부 내지 150 중량부를 포함할 수 있다. 상기 전도성 고분자 100 중량부를 기준으로, 상기 멕세인 플레이크의 함량이 30 중량부 미만인 경우, 전도성 고분자의 단량체들 중 산화상태로 전이된 단량체의 비율이 높지 않을 뿐만 아니라 내부 기공률이 감소하여 상기 복합체 재료의 전기 활성이나 이온 수송 능력 향상이 높지 않은 문제점이 발생할 수 있고, 상기 멕세인 플레이크의 함량이 150 중량부를 초과하는 경우에는 상기 복합체 재료에서 산화 상태 구조의 전기 활성이 저하되고 기공률이 지나치게 증가하여 요구되는 성능을 달성하기 위해서는 복합체 필름의 두께를 증가시켜야 하는 문제점이 발생할 수 있다. 예를 들면, 상기 멕세인(Mxene)-전도성 고분자 복합체 재료는 상기 전도성 고분자 100 중량부를 기준으로 상기 멕세인 플레이크를 약 40 중량부 내지 60 중량부를 포함할 수 있다.
본 발명의 멕세인(Mxene)-전도성 고분자 복합체 재료에 따르면, 전기 전도성이 우수한 멕세인 플레이크와 전도성 고분자를 포함하고, 상기 멕세인 플레이크의 음이온성 작용기가 상기 전도성 고분자의 단량체들 중 적어도 일부를 산화상태로 전이시키므로 우수한 전기적 활성 능력을 가질 수 있을 뿐만 아니라 전기 전도성이 우수하다. 또한, 상기 멕세인(Mxene)-전도성 고분자 복합체 재료는 다공성 구조를 가지므로, 이온 수송 능력이 매우 우수한다.
도 3은 본 발명의 실시예에 따른 슈퍼 커패시터를 설명하기 위한 단면도이고, 도 4는 PVA 및 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate, HEMA)를 이용한 이중 가교 네트워크 합성 반응을 나타내는 도면이다.
도 3을 참조하면, 본 발명의 실시예에 따른 슈퍼 커패시터(100)는 제1 전극(110A), 제2 전극(110B) 및 전해질(120)을 포함할 수 있다.
상기 제1 전극(110A) 및 상기 제2 전극(110B)은 이격된 상태에서 서로 마주보게 배치될 수 있다.
일 실시예에 있어서, 상기 제1 전극(110A)과 상기 제2 전극(110B) 중 적어도 하나 이상은 앞에서 설명한 멕세인-전도성 고분자 복합체 재료로 형성될 수 있다. 예를 들면, 상기 제1 전극(110A)과 상기 제2 전극(110B) 모두 상기 멕세인-전도성 고분자 복합체 재료로 형성될 수 있다. 이와 달리, 상기 제1 전극(110A)은 상기 멕세인-전도성 고분자 복합체 재료로 형성될 수 있고, 상기 제2 전극(110B)은 공지의 다공성 탄소 재료로 형성될 수 있다.
한편, 상기 제1 전극(110A)과 상기 제2 전극(110B) 중 상기 멕세인-전도성 고분자 복합체 재료로 형성된 전극은 약 100 내지 400 nm 두께의 필름 구조를 가질 수 있다.
상기 전해질(120)은 상기 제1 전극(110A)과 상기 제2 전극(110B) 사이에 배치될 수 있고, 이온을 전도성이 있는 재료로 형성될 수 있다. 상기 전해질(120)의 재료는 특별히 제한되지 않고, 공지의 전해질 재료가 제한 없이 적용될 수 있다.
일 실시예에 있어서, 도 4에 도시된 바와 같이, 상기 전해질(120)은 제1 고분자 네트워크, 제2 고분자 네트워크 및 액상 전해질을 포함하는 겔 전해질로 형성될 수 있다.
상기 제1 고분자 네트워크는 상대적으로 고인성의 제1 고분자로 형성될 수 있다. 상기 제1 고분자 네트워크는 제1 주쇄들(main chains)이 서로 망상형(network)으로 가교된 구조를 가질 수 있다. 일 실시예에 있어서, 상기 제1 고분자 네트워크는 고인성 및 고강도 특성을 구현하기 위해 약 10×10-⁴mol/cm³이상인 것이 바람직하다.
일 실시예로, 상기 제1 고분자는 폴리피닐알코올(Polyvinyl alcohol), 폴리아크릴아미도메틸프로판설폰산(poly2-Acrylamido-2-methyl-1-propanesulfonic acid, PAMPS), 폴리아크릴산(Polyacrlic Acid), 폴리피롤리돈(Poly(N-pyrrolidone)), 폴리사카라이드(Polysaccharide) 등과 같은 상대적으로 고강도 및 고인성 특성을 갖는 고분자 물질로 형성될 수 있다. 상기 폴리사카라이드(Polysaccharide)는 알지네이트(alginate), 젤란검(gellan gum), 아가로오스(agarose) 등의 중합체를 포함할 수 있다.
일 실시예에 있어서, 상기 제1 고분자 네트워크는 선형 고분자 사슬들을 중합한 후 이들을 열 개시제를 사용하는 라디컬 재조합(radical recombination) 반응을 통해 가교시킴으로써 형성될 수 있다. 이 때, 상기 개시제로는 K2S2O8 등이 사용될 수 있다. 예를 들면, 상기 제1 고분자 네트워크가 폴리비닐알코올(PVA)로 형성된 경우, 선형 폴리비닐알코올, K2S2O8 및 증류수를 혼합하여 고분자 용액을 제조한 후 용존 산소를 제거하기 위해 아르곤 가스를 주입하고, 이어서 약 80℃의 온도에서 3시간 동안 교반하여 상기 선형 폴리비닐알코올들은 가교시킴으로써 상기 제1 고분자 네트워크를 제조할 수 있다.
일 실시예에 있어서, 상기 제1 고분자 네트워크의 가교도(degree of cross-linking)는 상기 제2 고분자 네트워크의 가교도보다 높을 수 있다. 상기 제1 고분자 네트워크에 의해 본 발명에 따른 겔 전해질은 높은 기계적 강도 및 높은 인성(toughness)의 특성을 가질 수 있다. 일 실시예로, 상기 제1 고분자 네트워크는 약 10×10-⁴mol/cm³내지 20×10-⁴mol/cm³의 가교도를 가질 수 있다.
상기 제2 고분자 네트워크는 상기 제1 고분자 네트워크를 구성하는 제1 고분자보다 유연성이 높은 제2 고분자로 형성될 수 있다. 일 실시예로, 상기 제2 고분자 네트워크는 서로 망상형(network)으로 가교된 제2 주쇄들(main chains)을 포함할 수 있고, 상기 제2 주쇄들의 적어도 일부는 상기 제1 고분자 네트워크와 화학적으로 결합될 수 있다. 즉, 상기 제1 고분자 네트워크와 상기 제2 고분자 네트워크는 상호 관통형 이중가교 네트워크를 형성할 수 있다. 일 실시예로, 상기 제2 네트워크의 가교도는 약 10-⁴mol/cm³이하일 수 있다. 일 실시예로, 상기 제2 고분자는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate, HEMA), 아크릴 아마이드(acryl amide), 디메틸아크릴아마이드(dimethylacrylamide) 등의 중합체를 포함할 수 있다.
일 실시예에 있어서, 상기 제1 고분자 네트워크와 상기 제2 고분자 네트워크의 이중 가교 네트워크는 상기 제1 고분자 네트워크를 용매 팽윤을 통해 확장시킨 후, 증류수 내에서 상기 확장된 제1 고분자 네트워크, 상기 제2 고분자를 형성하기 위한 모노머, 가교제 및 개시제를 혼합하고 반응시킴으로써, 상기 제1 고분자 네트워크와 화학적으로 결합된 상기 제2 고분자 네트워크를 제조할 수 있다. 이 때, 상기 가교제는 에톡시실란계, 아크릴계, 에폭시계 화합물을 포함할 수 있으나, 이에 제한되지 않는다. 예를 들면, 상기 가교제는 메틸렌비스아크릴아미드(Methylenebisacrylamide, MBAA), 에틸렌글리콜디메타크릴레이트(ethylene glycol dimethacrylate), 에틸렌글리콜디그리딜에테르(ethylene glycol diglycidyl ether), 헥산디올디아크릴레이트(hexanediol diacrylate), 디알릴아크릴아미드(N,N-diallylacrylamide), 디비닐벤젠(divinylbenzene) 등으로부터 선택된 하나 이상을 포함할 수 있다. 상기 개시제로는 공지의 중합 개시제가 제한 없이 적용될 수 있다. 예를 들면, 상기 개시제는 K2S2O8을 포함할 수 있다.
일 실시예에 있어서, 상기 제2 고분자 네트워크의 가교도는 상기 제1 고분자 네트워크의 가교도보다 낮을 수 있고, 상기 제2 고분자 네트워크의 사슬 길이는 상기 제1 고분자 네트워크의 사슬 길이보다 길 수 있다.
상기 제1 및 제2 고분자 네트워크에 의해 형성되는 이중 가교 네트워크는 상기 액상 전해질이 담지될 수 있는 내부 공간을 형성할 수 있고, 상기 액상 전해질은 상기 이중 가교 네트워크에 의해 형성된 내부 공간에 담지될 수 있다.
일 실시예로, 상기 액상 전해질은 이온성 액체, 유기 전해질, 수계 전해질 등을 포함할 수 있다. 상기 이온성 액체로는 공지의 물질이 제한 없이 적용될 수 있고, 예를 들면, 상기 이온성 액체는 이미다졸리움 계열의 이온성 액체인 BIMI:BF4, EMIM:TFSI 및 EMIM:BF4 등으로부터 선택된 하나일 수 있다. 상기 유기 전해질로는 공지의 유기 전해질이 제한 없이 적용될 수 있고, 예를 들면, 상기 유기 전해질은 유기용매 및 이에 용해된 LiBF4, LiClO4, LiPF6, LiAsF6, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiC(SO2CF3)2, LiB(C2H5)4 등의 염을 포함할 수 있다. 상기 수계 전해질로는 공지의 수계 전해질이 제한 없이 적용될 수 있고, 예를 들면, 상기 수계 전해질은 황산, 인산, 수산화칼륨 등의 수용액을 포함할 수 있다.
한편, 상기 액상 전해질이 이온성 액체를 포함하는 경우, 상기 제1 및 제2 고분자 네트워크 각각은 상기 이온성 액체의 양이온과 음이온을 해리시키기 위한 극성 관능기를 포함할 수 있다. 예를 들면, 상기 극성 관능기는 알콜기(-OH), 아미드기(-CONH2), 카르복실기(-COOH), 케톤기(-CO-), 알데히드기(-CHO), 아민기(-NH2), 에스테르기(-COOR), 에테르기(-O-) 등으로부터 선택된 하나 이상을 포함할 수 있다. 이와 같이, 상기 제1 및 제2 고분자 네트워크가 많은 극성 관능기를 포함하는 경우, 이온 전도도가 현저하게 향상될 수 있다.
본 발명의 실시예에 따른 겔 전해질에 있어서, 상기 제1 고분자는 약 5 내지 15 wt%의 비율로 포함될 수 있고, 상기 제2 고분자는 약 25 내지 35 wt%의 비율로 포함될 수 있으며, 상기 액상 전해질은 약 55 내지 65 wt%의 비율로 포함될 수 있다.
본 발명의 겔 전해질에 따르면, 높은 강도 및 인성을 제공하는 제1 고분자 네트워크와 높은 유연성 및 탄성을 제공하는 제2 고분자 네트워크가 서로 가교되어 형성된 이중 가교 네트워크 내부에 액상 전해질을 담지하므로, 외부 응력이 인가되었을 때 고강도 및 고인성의 제1 고분자 네트워크에 의해 응력을 효과적으로 분산시킬 수 있을 뿐만 아니라 제2 고분자 네트워크에 의해 제공되는 유연성 및 가역 변형성 또한 보유할 수 있다. 또한, 상기 이중 가교 네트워크의 향상된 기계적 특성으로 인하여 상기 이중 가교 네트워크 내부에 더 많은 액상 전해질을 담지할 수 있고, 그 결과 상기 겔 전해질은 넓은 범위의 전위창(potential window) 및 향상된 이온전도도를 동시에 제공할 수 있다.
한편, 본 발명의 실시예에 따른 슈퍼 커패시터(100)는 상기 제1 전극(110A)와 전기적으로 연결된 제1 집전체(130A) 및 상기 제2 전극(110B)와 전기적으로 연결된 제2 집전체(130B)를 더 포함할 수 있고, 상기 제1 집전체(130A) 및 상기 제2 집전체(130B)로는 공지의 슈퍼 커패시터용 집전체의 구조 및 재료가 제한 없이 적용될 수 있으므로, 이에 대한 상세한 설명은 생략한다.
이하 본 발명에 따른 구체적인 실시예 및 실험예에 대해 상술한다. 다만, 하기 실시예는 본 발명의 일부 실시 형태에 불과한 것으로서, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
[멕세인-PEDOT:PSS 복합체 제조]
10ml의 약 50% HF(Fluoric acid) 수용액에 1g의 Max 상의 카바이드 화합물인 Ti3AlC2 분말을 서서히 가한 후, 실온에서 18시간 동안 교반하하고, 이어서, 잔류물을 분리하여 버리고 증류수로 세척하며, 세척 후 3500rpm에서 2분간 원심분리하는 공정을 현탁액의 pH가 6이 될 때까지 반복 수행하였다.
이어서, 침전된 슬러리를 동결건조시켜 다층의 Ti3C2를 수득하였다.
이어서, 수득된 다층 Ti3C2를 DMSO와 혼합한 후 실온에서 24시간 동안 교반하여 인터칼시네이션(intercalation)을 통해 다층 Ti3C2의 층간 간격을 확장시켰고, 이어서, 수집된 용액을 3500rpm에서 5분 동안 원심분리하여 DMSO를 분리하였다.
층간 간격이 벌어진 상기 다층 Ti3C2의 박리를 위해 얼음 수조 내에서 아르곤 기체를 주입하면서 초음파 처리를 수행하였고, 초음파 처리 후, 용액을 3500rpm에서 1시간 동안 원심분리하여 박리되지 않은 물질을 제거하고 상등액을 수집하였으며, 수집한 상등액을 동결건조를 통해 용매를 증발시키고 남은 Ti3C2 플레이크를 사용하였다.
상기 Ti3C2의 콜로이드 용액에 PEDOT:PSS 용액을 첨가하고 실온에서 2시간 동안 교반함으로써 Ti3C2/PEDOT:PSS 콜로이드 용액을 합성하였다. 이 때, Ti3C2 대 PEDOT:PSS의 중량비는 1:1('MP11') 및 1:2('MP12')로 조절되었다.
[전해질의 제조]
증류수에 PVA(polyvinyl alcohol) 사슬들과 개시제인 K2S2O8를 투입하고 혼합하여 제1 고분자 용액을 제조한 뒤, 용존 산소를 제거하기 위해 아르곤 기체를 주입하였다. 이어서, 균질한 농도를 위해 상기 제1 고분자 용액을 80℃의 온도에서 상기 고분자 용액의 점도가 최대치에 도달할 때까지 3시간 동안 교반한 후 반응을 중단시키고 상기 제1 고분자 용액을 실온까지 냉각하여, 제1 고분자 네트워크인 PVA 네트워크를 제조하였다.
이어서, 상기 PVA 네트워크와 함께 HEMA(hydroxyethyl methacrylate) 단량체, MBAA(Methylenebisacrylamide) 가교제, 개시제인 K2S2O8 및 이온성 액체 EMIM:BF4를 증류수 내에서 혼합하여 제2 고분자 용액을 제조하였다. 이어서, 상기 제2 고분자 용액을 아르곤 가스를 주입하며 80℃의 온도에서 20분 동안 격렬하게 교반하여 겔 전해질을 제조하였다.
이어서, 상기 겔 상태의 제2 고분자 용액을 70℃의 진공 오븐 내에 넣고 열처리하여 상기 겔 상태의 제2 고분자 용액으로부터 물을 제거하였다.
[슈퍼 커패시터의 제조]
PET 필름에 금(Au) 집전체를 코팅한 후 그 위에 상기 멕세인-PEDOT:PSS 복합체로 전극을 형성한 2개의 전극 플레이트 사이에 상기 겔 전해질을 삽입하여 슈퍼커패시터를 제조하였다. 상기 슈퍼커패시터에서 상기 겔 전해질은 분리막의 기능도 수행하므로, 별도의 분리막은 적용하지 않았다.
[실험예]
도 5는 Ti3C2, Ti3C2-PEDOT:PSS 복합체 및 PEDOT:PSS에 대한 XPS 데이터들을 나타낸다.
먼저, 도 1a, 도 1b, 도 2 및 도 5를 참조하면, 실시예의 합성 방법에 따를 경우 Ti3C2와 PEDOT:PSS의 복합체화가 성공적으로 이루어지고, 제조된 Ti3C2-PEDOT:PSS 복합체는 다공성 구조를 가짐을 확인할 수 있다.
도 6a 내지 도 6c는 실시예에 따라 제조된 슈퍼커패시터(‘’의 CV 곡선, GCD 곡선 및 충방전 효율을 각각 나타내는 그래프들이다. 상기 슈퍼커패시터(‘’의 전극은 Ti3C2 대 PEDOT:PSS의 중량비가 1:2인 복합체를 이용하여 제조되었다.
도 6a 내지 도 6c를 참조하면, 실시예에 따라 제조된 슈퍼커패시터(‘’는 우수한 전압-전류 특성과 높은 전류밀도를 나타내는 우수한 정전용량을 가짐을 알 수 있다. 구체적으로, 도 6a에 도시된 바와 같이, 0.1V/s의 느린 주사속도부터 1000V/s의 빠른 주사속도까지 저항 거동 없이 직사각형의 전류-전압 그래프를 나타내어 슈퍼커패시터의 율속 특성이 뛰어남을 알 수 있다. 그리고 도 6b 및 도 6c에 도시된 바와 같이, 그래프가 좌우 대칭적인 형상으로 나타난 것으로 보아 슈퍼커패시터의 충전과 방전 비율이 거의 일치하고 가역적으로 나타나 높은 쿨롱 효율 값을 나타냄을 확인할 수 있다.
도 7a 내지 도 7e는 실시예에 따라 제조된 제1 슈퍼커패시터(‘’및 제2 슈퍼커패시터(‘’그리고 비교예에 따른 슈퍼커패시터(‘’에 대한 주사 속도에 따른 단위 면적당 정전용량, 주사 속도에 따른 단위 부피당 정전용량, 주파수에 따른 위상각, 나이퀴스트 선도(Nyquist plot) 및 주파수에 따른 단위 면적당 정전용량을 각각 나타낸다.
먼저 도 7a 및 도 7b를 참조하면, 비교예에 따른 슈퍼커패시터(‘’에 비해 제1 슈퍼커패시터(‘’및 제2 슈퍼커패시터(‘’가 주사 속도에 따른 단위 면적당 정전용량 및 주사 속도에 따른 단위 부피당 정전용량이 우수함을 확인할 수 있다.
이어서, 도 7c 내지 도 7e를 참조하면, 제1 슈퍼커패시터(‘’에 비해 제2 슈퍼커패시터(‘’가 더욱 용량성이고, 더욱 낮은 등가직렬저항 특성을 가지며, 보다 넓은 주파수 범위에서 용량 유지율이 우수함을 확인할 수 있다. 그리고 제2 슈퍼커패시터(‘’는 120Hz의 주파수에서 79.1도의 큰 위상각(phase angle)을 나타내어 뛰어난 커패시터 거동을 보임을 확인할 수 있다.
따라서, 상기 복합체 재료는 상기 전도성 고분자 100 중량부 기준으로 상기 멕세인 플레이크를 약 40 중량부 이상 60 중량부 이하로 포함하는 것이 바람직할 것으로 판단된다.
도 8은 Ti3C2 대 PEDOT:PSS의 중량비가 1:2인 복합체를 이용하여 실시예에 따라 제조된 슈퍼커패시터(‘’에 대해, 상이한 굽힘 각도에서 측정된 CV 곡선을 나타낸다.
도 8을 참조하면, 상기 슈퍼커패시터는 상이한 굽힘 각도에서도 성능이 일정하게 유지됨을 알 수 있다.
도 9는 Ti3C2 대 PEDOT:PSS의 중량비가 1:2인 복합체를 이용하여 실시예에 따라 제조된 슈퍼커패시터(‘’에 대해, 상이한 주파수에서 측정된 상기 슈퍼커패시터를 통한 교류라인 필터링 특성을 나타내는 그래프이다.
도 9를 참조하면, 상이한 주파수에서 상기 슈퍼커패시터의 교류라인 필터링 효과가 우수함을 알 수 있다.
도 10은 Ti3C2 대 PEDOT:PSS의 중량비가 1:2인 복합체를 이용하여 실시예에 따라 제조된 슈퍼커패시터(‘’에 대해 측정된 테스트 사이클당 단위 면적당 정전용량 유지율 및 충방전 효율을 나타내는 그래프이다.
도 10을 참조하면, 여러 번의 충방전 후에도 상기 슈퍼커패시터는 정전용량 및 충방전 효율이 유지됨을 알 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
[부호의 설명]
100: 슈퍼 커패시터 110A: 제1 전극
110B: 제2 전극 120: 전해질

Claims (24)

  1. 전도성 고분자; 및
    상기 전도성 고분자와 상호 작용하는 음이온성 작용기를 구비하고, 전기 전도성을 갖는 멕세인(Mxene) 플레이크를 포함하고,
    다공성 구조를 갖는, 멕세인(Mxene)-전도성 고분자 복합체 재료.
  2. 제1항에 있어서,
    상기 멕세인 플레이크는 Ti2C, (Ti0.5,Nb0.5)2C, V2C, Nb2C, Mo2C, Ti3C2, Ti3CN, Zr3C2, Hf3C2, Ti4N3, Nb4C3, Ta4C3, Mo2TiC2, Cr2TiC2 및 Mo2Ti2C3로 이루어진 그룹에서 선택된 하나 이상의 물질로 형성된 것을 특징으로 하는, 멕세인(Mxene)-전도성 고분자 복합체 재료.
  3. 제1항에 있어서,
    상기 음이온성 작용기는 하이드록시기(-OH), 카르보닐기(=O) 및 플루오린기(-F)로 이루어진 그룹에서 선택된 하나 이상을 포함하는 것을 특징으로 하는, 멕세인(Mxene)-전도성 고분자 복합체 재료.
  4. 제1항에 있어서,
    상기 전도성 고분자의 단량체들 중 적어도 일부는 상기 음이온성 작용기와의 상호 작용에 의해 산화된 것을 특징으로 하는, 멕세인(Mxene)-전도성 고분자 복합체 재료.
  5. 제4항에 있어서,
    상기 전도성 고분자는 폴리(3,4-에틸렌디옥시티오펜)(PEDOT), 폴리페닐렌(polyphenylene), 폴리티오펜(polythiophene), 폴리(알킬티오펜)(poly(alkylthiophene)), 폴리퓨란(polyfuran), 폴리피롤(polypyrrole), 폴리페닐렌비닐렌(poly(phenylenevinylene)), 폴리(디에닐렌비닐렌)(poly(thienylenevinylene)) 및 폴리아세틸렌(polyacetylene)으로 이루어진 그룹에서 선택된 하나 이상의 고분자 화합물을 포함하는 것을 특징으로 하는, 멕세인(Mxene)-전도성 고분자 복합체 재료.
  6. 제5항에 있어서,
    상기 전도성 고분자는 하기 화학식 2-1 내지 2-9로 이루어진 그룹에서 선택된 하나의 단량체를 포함하는 것을 특징으로 하는, 멕세인(Mxene)-전도성 고분자 복합체 재료:
    [화학식 2-1]
    Figure PCTKR2019015048-appb-I000029
    [화학식 2-2]
    Figure PCTKR2019015048-appb-I000030
    [화학식 2-3]
    Figure PCTKR2019015048-appb-I000031
    [화학식 2-4]
    Figure PCTKR2019015048-appb-I000032
    [화학식 2-5]
    Figure PCTKR2019015048-appb-I000033
    [화학식 2-6]
    Figure PCTKR2019015048-appb-I000034
    [화학식 2-7]
    Figure PCTKR2019015048-appb-I000035
    [화학식 2-8]
    Figure PCTKR2019015048-appb-I000036
    [화학식 2-9]
    Figure PCTKR2019015048-appb-I000037
  7. 제4항에 있어서,
    상기 전도성 고분자는 PEDOT(poly(3,4-ethylenedioxythiophene)) 분자 및 상기 PEDOT 분자와 상호 작용하는 PSS(polystyrene sulfonate) 분자를 포함하고,
    상기 PEDOT 분자의 단량체들 중 적어도 일부는 산화된 퀴노이드 구조(Quinoid structure)를 갖는 것을 특징으로 하는, 멕세인(Mxene)-전도성 고분자 복합체 재료.
  8. 제7항에 있어서,
    상기 PEDOT 분자는 중성 상태인 벤조이드 구조(Benziod structure)의 단량체 및 상기 퀴노이드 구조의 단량체를 함께 포함하거나 상기 퀴노이드 구조의 단량체만을 포함하는 것을 특징으로 하는, 멕세인(Mxene)-전도성 고분자 복합체 재료.
  9. 제1항에 있어서,
    상기 전도성 고분자 100 중량부를 기준으로 상기 멕세인 플레이크는 30 중량부 내지 150 중량부 포함되는 것을 특징으로 하는, 멕세인(Mxene)-전도성 고분자 복합체 재료.
  10. 제9항에 있어서,
    상기 전도성 고분자 100 중량부를 기준으로 상기 멕세인 플레이크는 40 중량부 내지 60 중량부 포함되는 것을 특징으로 하는, 멕세인(Mxene)-전도성 고분자 복합체 재료.
  11. 제9항에 있어서,
    상기 멕세인(Mxene)-전도성 고분자 복합체 재료는 2 내지 50 nm 크기의 내부 기공을 포함하는 것을 특징으로 하는, 멕세인(Mxene)-전도성 고분자 복합체 재료.
  12. 제1 전극;
    상기 제1 전극과 이격된 상태에서 서로 마주보게 배치된 제2 전극; 및
    상기 제1 전극과 상기 제2 전극 사이에 배치된 전해질을 포함하고,
    상기 제1 전극과 상기 제2 전극 중 적어도 하나 이상은 전도성 고분자; 및 상기 전도성 고분자와 상호 작용하는 음이온성 작용기를 구비하고, 전기 전도성을 갖는 멕세인(Mxene) 플레이크를 포함하고, 다공성 구조를 갖는 멕세인(Mxene)-전도성 고분자 복합체 재료로 형성된 것을 특징으로 하는, 슈퍼 커패시터.
  13. 제11항에 있어서,
    상기 제1 전극과 상기 제2 전극 중 상기 멕세인(Mxene)-전도성 고분자 복합체 재료로 형성된 전극은 상기 전도성 고분자 100 중량부를 기준으로 상기 멕세인 플레이크는 40 중량부 내지 60 중량부 포함하는 것을 특징으로 하는, 슈퍼 커패시터.
  14. 제13항에 있어서,
    상기 멕세인(Mxene)-전도성 고분자 복합체 재료로 형성된 전극은 100 내지 400 nm의 두께를 갖는 것을 특징으로 하는, 슈퍼 커패시터.
  15. 제12항에 있어서,
    상기 전해질은 망상형(network)으로 가교된 제1 주쇄들(main chains)을 포함하는 제1 고분자로 형성된 제1 고분자 네트워크; 망상형으로 가교되고 적어도 일부가 상기 제1 고분자 네트워크와 화학적으로 결합된 제2 주쇄들을 포함하고, 상기 제1 고분자보다 유연성이 높은 제2 고분자로 형성되며, 상기 제1 고분자 네트워크의 적어도 일부를 둘러싸도록 배치된 제2 고분자 네트워크; 및 상기 제1 및 제2 고분자 네트워크에 의해 정의되는 이중 가교 네트워크 내부에 담지된 액상 전해질을 구비하는 겔 전해질을 포함하는 것을 특징으로 하는, 슈퍼 커패시터.
  16. 제15항에 있어서,
    상기 제1 고분자는 상기 제2 고분자보다 높은 강도를 갖는 것을 특징으로 하는, 슈퍼 커패시터.
  17. 제16항에 있어서,
    상기 제1 고분자는 폴리피닐알코올(Polyvinyl alcohol), 폴리아크릴아미도메틸프로판설폰산(poly2-Acrylamido-2-methyl-1-propanesulfonic acid), 폴리아크릴산(Polyacrlic Acid), 폴리피롤리돈(Poly(N-pyrrolidone)) 및 폴리사카라이드(Polysaccharide)로 이루어진 그룹에서 선택된 하나 이상을 포함하고,
    상기 제2 고분자는 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate), 아크릴 아마이드(acryl amide) 및 디메틸아크릴아마이드(dimethylacrylamide)로 이루어진 그룹에서 선택된 하나 이상의 중합체를 포함하는 것을 특징으로 하는, 슈퍼 커패시터.
  18. 제15항에 있어서,
    상기 제2 고분자는 메틸렌비스아크릴아미드(Methylenebisacrylamide), 에틸렌글리콜디메타크릴레이트(ethylene glycol dimethacrylate), 에틸렌글리콜디그리딜에테르(ethylene glycol diglycidyl ether), 헥산디올디아크릴레이트(hexanediol diacrylate), 디알릴아크릴아미드(N,N-diallylacrylamide) 및 디비닐벤젠(divinylbenzene)로 이루어진 그룹에서 선택된 하나 이상에 의해 가교된 하이드록시에틸 메타크릴레이트 사슬들을 포함하는 것을 특징으로 하는, 슈퍼 커패시터.
  19. 제15항에 있어서,
    상기 제2 고분자 네트워크의 가교도는 상기 제1 고분자 네트워크의 가교도보다 낮은 것을 특징으로 하는, 슈퍼 커패시터.
  20. 제15항에 있어서,
    상기 제2 고분자 네트워크의 사슬 길이는 상기 제1 고분자 네트워크의 사슬 길이보다 긴 것을 특징으로 하는, 슈퍼 커패시터.
  21. 제15항에 있어서,
    상기 액상 전해질은 이온성 액체(ionic liquid) 또는 유기 전해질을 포함하는 것을 특징으로 하는, 슈퍼 커패시터.
  22. 제21항에 있어서,
    상기 액상 전해질은 상기 이온성 액체를 포함하고,
    상기 제1 및 제2 고분자 네트워크 각각은 상기 이온성 액체의 양이온과 음이온을 해리시키기 위한 극성 관능기를 포함하는 것을 특징으로 하는, 슈퍼 커패시터.
  23. 제14항에 있어서,
    상기 제1 전극과 상기 제2 전극은 상기 멕세인(Mxene)-전도성 고분자 복합체 재료로 형성되고,
    상기 전해질은 상기 전해질은 망상형(network)으로 가교된 제1 주쇄들(main chains)을 포함하는 제1 고분자로 형성된 제1 고분자 네트워크; 망상형으로 가교되고 적어도 일부가 상기 제1 고분자 네트워크와 화학적으로 결합된 제2 주쇄들을 포함하고, 상기 제1 고분자보다 유연성이 높은 제2 고분자로 형성되며, 상기 제1 고분자 네트워크의 적어도 일부를 둘러싸도록 배치된 제2 고분자 네트워크; 및 상기 제1 및 제2 고분자 네트워크에 의해 정의되는 이중 가교 네트워크 내부에 담지된 액상 전해질을 구비하는 겔 전해질을 포함하고,
    120Hz의 주파수에서 79.1°이상의 위상각(phase angle)을 나타내는 것을 특징으로 하는, 슈퍼 커패시터.
  24. 제23항에 있어서,
    1000V/s의 이상의 주사속도에서 충방전이 가능한 것을 특징으로 하는, 슈퍼 커패시터.
PCT/KR2019/015048 2018-11-07 2019-11-07 멕세인-전도성 고분자 복합체 재료 및 이를 포함하는 슈퍼커패시터 WO2020096366A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0135737 2018-11-07
KR1020180135737A KR102112664B1 (ko) 2018-11-07 2018-11-07 멕세인-전도성 고분자 복합체 재료 및 이를 포함하는 슈퍼커패시터

Publications (1)

Publication Number Publication Date
WO2020096366A1 true WO2020096366A1 (ko) 2020-05-14

Family

ID=70611025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015048 WO2020096366A1 (ko) 2018-11-07 2019-11-07 멕세인-전도성 고분자 복합체 재료 및 이를 포함하는 슈퍼커패시터

Country Status (2)

Country Link
KR (1) KR102112664B1 (ko)
WO (1) WO2020096366A1 (ko)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518353A (zh) * 2020-05-18 2020-08-11 东莞理工学院 一种MXene/聚合物复合材料及其制备方法和应用
CN111777069A (zh) * 2020-07-20 2020-10-16 桂林电子科技大学 一种结构稳定的MXene复合材料及其制备方法和应用
CN111978712A (zh) * 2020-09-07 2020-11-24 湖南工程学院 一种电磁防护塑料及其制备方法
CN111978701A (zh) * 2020-08-31 2020-11-24 辽宁科技大学 一种导电聚酯复合材料及其制备方法和应用
CN113136031A (zh) * 2021-04-26 2021-07-20 吉林大学 一种多段电响应型聚合物及其制备方法、二维智能复合薄膜及其制备方法和应用
CN113506686A (zh) * 2021-06-07 2021-10-15 中国科学院半导体研究所 一种热充电型电容器及其制备方法
CN113512207A (zh) * 2021-05-28 2021-10-19 吉林大学 一种取向性导电耐低温水凝胶制备方法及其应用
WO2022032745A1 (zh) * 2020-08-10 2022-02-17 五邑大学 一种VO2/MXene复合材料及其制备方法与应用
CN114426775A (zh) * 2020-10-29 2022-05-03 南京理工大学 具有蜻蜓翅膀微观结构的增强增韧自修复材料及其制备方法
CN114551111A (zh) * 2022-01-17 2022-05-27 江南大学 一种墨水直写3d打印导电聚合物基微型超级电容器及其制备方法
CN114865226A (zh) * 2022-05-25 2022-08-05 齐齐哈尔大学 MXene基无机粒子/PVDF基聚合物复合隔膜的制备方法及应用
CN114854157A (zh) * 2022-05-18 2022-08-05 中国科学院大学 多功能MXene/聚离子液体复合材料
CN115055172A (zh) * 2022-07-11 2022-09-16 东莞理工学院 一种聚离子液体修饰MXene吸附剂的制备方法及应用
CN115232331A (zh) * 2022-08-22 2022-10-25 兰州理工大学 一种mpae导电复合水凝胶及其制备方法和应用
CN115231562A (zh) * 2022-07-28 2022-10-25 国网湖南省电力有限公司 基于离子液体微乳液剥离制备MXene的方法
CN115910626A (zh) * 2022-12-19 2023-04-04 益阳市万京源电子有限公司 一种内阻低的固态铝电解电容器及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785534B (zh) * 2020-06-08 2021-12-31 华中科技大学 一种离子液体共价键合固载MXene的方法及其产物
KR102353597B1 (ko) 2020-06-11 2022-01-20 한국화학연구원 금속-유기 단분자 및 맥신을 함유하는 전극소재, 이의 제조방법
CN111892781B (zh) * 2020-07-03 2023-01-13 江苏扬农化工集团有限公司 一种Mxene/超高分子量聚乙烯复合材料及其制备方法和用途
KR102423110B1 (ko) 2020-11-19 2022-07-21 한국과학기술연구원 다공성 고분자 액추에이터 및 그 제조방법
KR102663499B1 (ko) 2021-06-08 2024-05-07 대구가톨릭대학교산학협력단 반응성기를 가지는 개질 맥신 화합물 및 이를 포함하는 광경화성 수지 조성물
KR102629285B1 (ko) * 2022-05-16 2024-01-25 한국과학기술원 피롤 표면처리된 맥신을 구비하는 슈퍼캐패시터 및 이의 제조방법
CN115260692B (zh) * 2022-08-16 2023-10-24 北京航空航天大学 一种复合水凝胶、制备方法、电磁屏蔽装置和位移传感器

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BOOTA, MUHAMMAD ET AL.: "Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (Mxene)", ADVANCED MATERIALS, vol. 28, no. 7, 12 December 2015 (2015-12-12), pages 1517 - 1522, XP055707305 *
LEE, MIN-HSUAN ET AL.: "MoO3-induced oxidation doping of PEDOT:PSS for high performance full-solution-processed inverted quantum-dot light emitting diodes", JOURNAL OF MATERIALS CHEMISTRY C, vol. 5, no. 40, 18 September 2017 (2017-09-18), pages 10555 - 10561, XP055707312 *
QIN, LEIQUIANG ET AL.: "High-Performance Ultrathin Flexible Solid-State Supercapacitors Based on Solution Processable Mol.33C MXene and PEDOT:PSS", ADVANCED FUNCTIONAL MATERIALS, vol. 28, no. 2, 22 November 2017 (2017-11-22), pages 1703808, XP055707310 *
YANG, JEN MING ET AL.: "Two step modification of poly (vinyl alcohol) by UV radiation with 2-hydroxy ethyl methacrylate and sol-gel process for the application of polymer electrolyte membrane", JOURNAL OF MEMBRANE SCIENCE, vol. 341, no. 1-2, 12 June 2009 (2009-06-12), pages 186 - 194, XP026321371 *
ZHU, MINSHEN ET AL.: "Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene", ADVANCED ENERGY MATERIALS, vol. 6, no. 21, 5 August 2016 (2016-08-05), pages 1 - 9 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111518353B (zh) * 2020-05-18 2022-03-22 东莞理工学院 一种MXene/聚合物复合材料及其制备方法和应用
CN111518353A (zh) * 2020-05-18 2020-08-11 东莞理工学院 一种MXene/聚合物复合材料及其制备方法和应用
CN111777069B (zh) * 2020-07-20 2022-12-23 桂林电子科技大学 一种结构稳定的MXene复合材料及其制备方法和应用
CN111777069A (zh) * 2020-07-20 2020-10-16 桂林电子科技大学 一种结构稳定的MXene复合材料及其制备方法和应用
WO2022032745A1 (zh) * 2020-08-10 2022-02-17 五邑大学 一种VO2/MXene复合材料及其制备方法与应用
CN111978701A (zh) * 2020-08-31 2020-11-24 辽宁科技大学 一种导电聚酯复合材料及其制备方法和应用
CN111978701B (zh) * 2020-08-31 2023-05-23 辽宁科技大学 一种导电聚酯复合材料及其制备方法和应用
CN111978712A (zh) * 2020-09-07 2020-11-24 湖南工程学院 一种电磁防护塑料及其制备方法
CN114426775A (zh) * 2020-10-29 2022-05-03 南京理工大学 具有蜻蜓翅膀微观结构的增强增韧自修复材料及其制备方法
CN113136031A (zh) * 2021-04-26 2021-07-20 吉林大学 一种多段电响应型聚合物及其制备方法、二维智能复合薄膜及其制备方法和应用
CN113512207A (zh) * 2021-05-28 2021-10-19 吉林大学 一种取向性导电耐低温水凝胶制备方法及其应用
CN113506686A (zh) * 2021-06-07 2021-10-15 中国科学院半导体研究所 一种热充电型电容器及其制备方法
CN114551111B (zh) * 2022-01-17 2023-02-21 江南大学 一种墨水直写3d打印导电聚合物基微型超级电容器及其制备方法
CN114551111A (zh) * 2022-01-17 2022-05-27 江南大学 一种墨水直写3d打印导电聚合物基微型超级电容器及其制备方法
CN114854157A (zh) * 2022-05-18 2022-08-05 中国科学院大学 多功能MXene/聚离子液体复合材料
CN114865226B (zh) * 2022-05-25 2023-01-13 齐齐哈尔大学 MXene基无机粒子/PVDF基聚合物复合隔膜的制备方法及应用
CN114865226A (zh) * 2022-05-25 2022-08-05 齐齐哈尔大学 MXene基无机粒子/PVDF基聚合物复合隔膜的制备方法及应用
CN115055172A (zh) * 2022-07-11 2022-09-16 东莞理工学院 一种聚离子液体修饰MXene吸附剂的制备方法及应用
CN115055172B (zh) * 2022-07-11 2024-03-12 东莞理工学院 一种聚离子液体修饰MXene吸附剂的制备方法及应用
CN115231562A (zh) * 2022-07-28 2022-10-25 国网湖南省电力有限公司 基于离子液体微乳液剥离制备MXene的方法
CN115231562B (zh) * 2022-07-28 2023-10-27 国网湖南省电力有限公司 基于离子液体微乳液剥离制备MXene的方法
CN115232331A (zh) * 2022-08-22 2022-10-25 兰州理工大学 一种mpae导电复合水凝胶及其制备方法和应用
CN115232331B (zh) * 2022-08-22 2024-04-26 兰州理工大学 一种mpae导电复合水凝胶及其制备方法和应用
CN115910626A (zh) * 2022-12-19 2023-04-04 益阳市万京源电子有限公司 一种内阻低的固态铝电解电容器及其制备方法

Also Published As

Publication number Publication date
KR20200052597A (ko) 2020-05-15
KR102112664B1 (ko) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2020096366A1 (ko) 멕세인-전도성 고분자 복합체 재료 및 이를 포함하는 슈퍼커패시터
Wang et al. Recyclable and tear-resistant all-in-one supercapacitor with dynamic electrode/electrolyte interface
WO2010080009A2 (ko) 공융혼합물과 니트릴 화합물을 포함하는 전해질 및 이를 구비한 전기화학소자
WO2010101429A2 (ko) 아미드 화합물을 포함하는 전해질 및 이를 구비한 전기화학소자
CN108630461B (zh) 一种离子液体凝胶基全凝胶超级电容器的制备方法
US20060088972A1 (en) Electrode for electrolytic capacitor, electrolytic capacitor, and manufacturing method therefor
WO2012088691A1 (zh) 导电高分子材料及其制备方法和应用
WO2014163272A1 (ko) 슈퍼 커패시터용 전극 조성물, 상기 조성물의 경화물, 상기 경화물을 포함하는 전극, 상기 전극을 포함하는 커패시터 및 상기 슈퍼 커패시터의 제조 방법
WO2011087334A2 (ko) 아미드 화합물을 포함하는 전해질 및 이를 구비한 전기화학소자
EP2395514A1 (en) Electrically conductive polymer composition and process for production thereof, and solid electrolytic capacitor utilizing electrically conductive polymer composition
WO2016129745A1 (ko) 가역적인 산-염기 상호작용을 통해 물리적으로 가교된 실리콘 음극용 고분자 바인더
WO2010011110A2 (ko) 공융혼합물을 포함하는 전해질 및 이를 구비한 전기화학소자
WO2009113585A1 (ja) 電気化学素子用膜、電気化学素子用電極及び電池
CN107275121B (zh) 一种具有自愈合的超级电容器及其制备方法
JP2005209576A (ja) 共重合体化合物及びそれを用いた電気化学セル
CN111995780B (zh) 一种基于改性钛酸钡纳米线原位聚合高介电薄膜的制备方法
WO2020159202A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
CN112164593A (zh) MoO3/P6ICA复合电极材料及其制备方法和超级电容器
CN112500591A (zh) 苝四甲酰二亚胺类改性的聚酰亚胺聚合物材料的制备方法
JP2004189789A (ja) 導電性高分子およびそれを用いた固体電解コンデンサ
WO2020054889A1 (ko) 고체 고분자 전해질, 이를 포함하는 전극 구조체 및 전기화학소자, 그리고 고체 고분자 전해질 막의 제조방법
Han et al. All‐Sprayable Hierarchically Nanostructured Conducting Polymer Hydrogel for Massively Manufactured Flexible All‐Solid‐State Supercapacitor
WO2022075565A1 (ko) 직물소재를 이용한 리튬-황 전지 양극, 이를 포함하는 리튬-황 전지 및 그 제조방법
WO2021172896A2 (ko) 염료감응 태양전지 및 이의 전해질, 그리고 태양전지와 전해질의 제조방법
WO2021029480A1 (ko) 바인더 프리 자가지지형 전극 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19882757

Country of ref document: EP

Kind code of ref document: A1