WO2020096253A1 - 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2020096253A1
WO2020096253A1 PCT/KR2019/014328 KR2019014328W WO2020096253A1 WO 2020096253 A1 WO2020096253 A1 WO 2020096253A1 KR 2019014328 W KR2019014328 W KR 2019014328W WO 2020096253 A1 WO2020096253 A1 WO 2020096253A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
carbon
lithium secondary
secondary battery
Prior art date
Application number
PCT/KR2019/014328
Other languages
English (en)
French (fr)
Inventor
이초롱
김윤경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190133909A external-priority patent/KR20200053403A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19881633.2A priority Critical patent/EP3817103A4/en
Priority to JP2021507886A priority patent/JP7244626B2/ja
Priority to CN201980051112.0A priority patent/CN112514112B/zh
Priority to US17/265,275 priority patent/US20220115642A1/en
Publication of WO2020096253A1 publication Critical patent/WO2020096253A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same, and more specifically, a lithium secondary battery for improving the performance of a battery by mixing and applying various types of carbon as a positive electrode active material
  • the present invention relates to a positive electrode active material, a manufacturing method thereof, and a lithium secondary battery including the same.
  • the electrochemical device is the area that is receiving the most attention in this aspect, and among them, the development of a lithium-based secondary battery such as a lithium-sulfur battery capable of charging and discharging has become a focus of attention, and recently, in developing such a battery, capacity In order to improve the density and specific energy, it has led to research and development on the design of new electrodes and cells.
  • lithium-sulfur (Li-S) batteries have high energy density and are in the spotlight as next-generation secondary batteries that can replace lithium-ion batteries.
  • a reduction reaction of sulfur and an oxidation reaction of lithium metal occur during discharge, wherein sulfur is a lithium polysulfide having a linear structure from S 8 of a ring structure (Li 2 S 2 , Li 2 S 4 , Li 2 S 6 , Li 2 S 8 ), which is characterized in that the lithium-sulfur battery exhibits a stepwise discharge voltage until polysulfide (PS) is completely reduced to Li 2 S.
  • PS polysulfide
  • the sulfur anode of the lithium-sulfur battery is non-conductive, and most of the cathode material is a mixture of sulfur contributing to the electrochemical reaction and a conductive carbon-based material, which is a carrier, and is used in this case. Depending on the material, it affects the reactivity of the sulfur, high rate characteristics and life characteristics.
  • the electrode structure changes as the final reaction product Li 2 S increases in volume compared to S, and the polysulfide, an intermediate product, dissolves easily in the electrolyte and continuously melts during the discharge reaction, resulting in the positive electrode active material. The amount decreases. As a result, degeneration of the battery is accelerated, and the reactivity and life characteristics of the battery are inevitably reduced.
  • an object of the present invention is to provide a positive electrode active material for a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same, which can improve the performance of a battery by mixing and applying a variety of carbons as a positive electrode active material.
  • the present invention includes two or more active material complexes in which sulfur is supported on a carbon material, and the carbon material included in any one of the active material complexes of the two or more active material complexes is incorporated into an active material complex of another species. It provides a positive electrode active material for a lithium secondary battery characterized in that any one or more of the average particle size and shape of the carbon material included.
  • the present invention (a) by mixing and reacting each of two or more different carbon materials having different one or more of the average particle size and shape with sulfur to prepare two or more active material composites in which sulfur is supported on each of the carbon materials. step; And (b) provides a method for producing a positive electrode active material for a lithium secondary battery comprising the step of mixing the two or more active material composite prepared above.
  • the positive electrode containing the positive electrode active material for the lithium secondary battery; Lithium-based negative electrode; An electrolyte interposed between the positive electrode and the negative electrode; And a separator; provides a lithium secondary battery comprising a.
  • the positive electrode active material for a lithium secondary battery according to the present invention a method of manufacturing the same, and a lithium secondary battery including the same, there is an advantage of improving performance such as battery life characteristics by mixing and applying various types of carbons as a positive electrode active material.
  • FIG. 1 is a graph comparing and comparing the life characteristics of a lithium-sulfur battery according to an embodiment of the present invention and a lithium-sulfur battery according to a comparative example.
  • FIG. 2 is a graph comparing and comparing the charging profile of a lithium-sulfur battery according to an embodiment of the present invention and a lithium-sulfur battery according to a comparative example.
  • the positive electrode active material for a lithium secondary battery according to the present invention includes two or more active material complexes in which sulfur is supported on a carbon material, and the carbon material included in any one of the two or more active material complexes in the active material complex of another species Characterized in that at least one of the average particle size and the shape of the carbon material included is different.
  • the present applicant uses a lithium secondary battery, particularly, a carbon material applied as a sulfur carrier of a lithium-sulfur battery, having two or more types having different particle sizes and shapes, so that the lithium carrier having the advantages of each carbon material mixed is lithium secondary. It was applied to the battery to improve the life characteristics.
  • the active material composite is sulfur is supported on a carbon material, that is, as containing sulfur and carbon material, it can be used without limitation of two or more.
  • the active material complex is two types
  • the first active material complex in which sulfur is supported on the first carbon material and the second active material complex in which sulfur is supported on the second carbon material are included
  • the active material complex is three or more types
  • a third active material complex and the like may be further included. That is, in the present invention, the number of the active material composites, there is no particular limitation as long as the average particle size and shape of the carbon material contained in each active material composite are different from each other.
  • active material composites may be mixed in various proportions as a positive electrode active material of a lithium secondary battery.
  • the mixing ratio may be 1: 9 to 9: 1 as a weight ratio, and preferably 2: 8 to 8: 2.
  • three or more types of active material complexes they can be applied at an appropriate mixing ratio within a range not departing from the spirit of the present invention.
  • the carbon material included in each of the active material composites is for improving conductivity, and pores are provided to support sulfur, such as carbon nanotube (CNT), graphene and graphene oxide (GO). If it is formed and has a conductive carbon material, it can be used without particular limitation.
  • CNT carbon nanotube
  • GO graphene oxide
  • each carbon material included in each active material composite must achieve at least one of an average particle size and a shape different from each other to achieve the object of the present invention, which is to improve the life characteristics of a lithium secondary battery.
  • the average particle size of the carbon material is 2 to 200 ⁇ m, preferably 5 to 100 ⁇ m, and if the average particle size of the carbon material is outside the above range, electrode coating failure may occur or slurry clogging may occur. If the particle sizes of the carbon materials included in the active material composite are not different from each other, the effect of improving the life characteristics of the battery may be very insignificant or not.
  • the carbon material included in any one active material complex has an average particle size of 5 to 40 ⁇ m, and the other The carbon material included in the active material composite of the species may have an average particle size of 15 to 90 ⁇ m.
  • the carbon material included in any one active material complex has an average particle size of 5 ⁇ m or more and less than 25 ⁇ m, and other The carbon material included in one type of active material composite may have an average particle size of 25 ⁇ m or more to 90 ⁇ m or less.
  • the average particle size of the carbon material contained in one active material complex and the carbon contained in the other active material complex may be 5 to 65 ⁇ m, preferably 15 to 45 ⁇ m, and more preferably 25 to 35 ⁇ m. If the difference in average particle size of both carbon materials is less than 5 ⁇ m, there may be difficulty in maximizing the advantage due to the difference in average particle size, and when it exceeds 65 ⁇ m, there may be no more substantial benefit.
  • the carbon material contained in any one active material complex having a relatively high average particle size and the other relatively small average particle size are different.
  • the proportion of the carbon material contained in the active material composite of the species may be 1: 1 to 4: 1, preferably 2: 1 to 4: 1 as a weight ratio.
  • the shape of each carbon material may naturally be different.
  • the shape between the carbon materials must be different to improve the life characteristics of the battery.
  • the shape of the CNT is typically an entangle type in which the CNT is entangled to form a spherical shape, and the CNT is aligned and elongated in a certain direction. It can be classified as a bundle type that forms a skein of shape.
  • the entangle type has an advantage in terms of overvoltage improvement or capacity development, and includes particles having an aspect ratio of 1 to 2.
  • it is effective in improving high-rate properties and decomposing reaction by-products, and includes particles having an aspect ratio greater than 2. Therefore, it is preferable to configure the shape of each carbon material included in each active material composite differently to have all of these advantages.
  • each of the carbon materials included in each of the active material composites is different from each other (in this case, the average particle size and shape naturally vary), or in the case of the same type, any one or more of the average particle size and shape between the carbon materials Only if it is different can it meet the spirit of the present invention.
  • pores on which sulfur is supported are formed on the surface of the carbon material, and in this case, the pore volume of the carbon material may be 0.5 to 5 cm 3 .
  • the method of manufacturing the positive electrode active material for a lithium secondary battery (a) by mixing and reacting each of two or more different carbon materials having at least one of the average particle size and shape with sulfur, to which two or more types of sulfur supported on each of the carbon materials It includes a step of preparing an active material complex and (b) mixing the two or more active material complexes prepared above.
  • the active material composite may include two or more carbon materials having at least one of average particle size and shape, respectively.
  • the first active material composite is prepared by mixing and reacting sulfur and the first carbon material, and then, the second active material is mixed and reacted with sulfur and the second carbon material.
  • the number of active material complexes or the production order such as the production of complexes and the production of each active material complex at the same time depending on the process environment, etc. (however, the number of active material complexes being manufactured must be two or more) .
  • the mixing ratio of sulfur and carbon materials contained in each active material composite there is no particular limitation on the mixing ratio of sulfur and carbon materials contained in each active material composite.
  • the reaction may be carried out for 5 to 60 minutes, preferably 20 to 40 minutes at a temperature of 120 to 200 ° C, preferably 150 to 180 ° C.
  • the definition of the carbon material, the description of the average particle size and shape, etc., is replaced by the above-described bar.
  • the prepared active material composites may be mixed in various ratios as a positive electrode active material of a lithium secondary battery.
  • the mixing ratio may be 1: 9 to 9: 1 as a weight ratio, and preferably 2: 8 to 8: 2.
  • the active material complexes mixed in the step (b) are preferably in the form of a slurry, but there is no particular limitation on the mixed form unless it is outside the scope of the present invention, and it can be applied to those commonly used in the art.
  • the lithium secondary battery when describing a lithium secondary battery including the positive electrode active material for a lithium secondary battery, includes: a positive electrode comprising a positive electrode active material for a lithium secondary battery; Lithium-based negative electrode; An electrolyte interposed between the positive electrode and the negative electrode; And a separation membrane.
  • the content of the positive electrode active material may be 50 to 95 parts by weight, preferably 60 to 90 parts by weight based on 100 parts by weight of the positive electrode. If the content of the positive electrode active material is less than 50 parts by weight relative to 100 parts by weight of the total positive electrode, the electrochemical properties of the battery due to the positive electrode active material may be lowered, and if it exceeds 95 parts by weight, a small amount of additional components such as binders and conductive materials As it may be included, it may be difficult to manufacture an efficient battery.
  • the lithium secondary battery according to the present invention may be a lithium-based secondary battery such as a lithium-sulfur battery, a lithium metal battery, and a lithium air battery, but the lithium-sulfur battery may best meet the spirit of the present invention.
  • the overall configuration of the positive electrode except for the positive electrode active material, the negative electrode, the electrolyte, and the separator may be a common one used in the art, and will be described below in detail.
  • the positive electrode included in the lithium secondary battery of the present invention further includes a binder and a conductive material in addition to the positive electrode active material described above.
  • the binder is a component that assists in the bonding of the positive electrode active material and the conductive material and the like to the current collector, for example, polyvinylidene fluoride (PVdF), polyvinylidene fluoride-polyhexafluoropropylene copolymer (PVdF / HFP), polyvinyl acetate, polyvinyl alcohol, polyvinyl ether, polyethylene, polyethylene oxide, alkylated polyethylene oxide, polypropylene, polymethyl (meth) acrylate, polyethyl (meth) acrylate, polytetrafluoroethylene (PTFE) ), Polyvinylchloride, polyacrylonitrile, polyvinylpyridine, polyvinylpyrrolidone, styrene-butadiene rubber, acrylonitrile-butad
  • the binder is usually 1 to 50 parts by weight, preferably 3 to 15 parts by weight, based on 100 parts by weight of the total positive electrode. If the content of the binder is less than 1 part by weight, the adhesive force between the positive electrode active material and the current collector may be insufficient, and if it exceeds 50 parts by weight, the adhesive strength is improved, but the content of the positive electrode active material decreases, so that the battery capacity may be lowered.
  • the conductive material included in the positive electrode is not particularly limited as long as it has excellent electrical conductivity without causing a side reaction in the internal environment of the lithium secondary battery and does not cause a chemical change in the battery, and typically graphite or conductive carbon can be used.
  • Graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, denka black, thermal black, channel black, furnace black, lamp black, and summer black; A carbon-based material having a crystal structure of graphene or graphite; Conductive fibers such as carbon fibers and metal fibers; Carbon fluoride; Metal powders such as aluminum and nickel powders; Conductive whiskey such as zinc oxide and potassium titanate; Conductive oxides such as titanium oxide; And conductive polymers, such as polyphenylene derivatives; may be used alone or in combination of two or more, but is not limited thereto.
  • the conductive material is usually added in 0.5 to 50 parts by weight, preferably 1 to 30 parts by weight based on 100 parts by weight of the total weight of the positive electrode. If the content of the conductive material is less than 0.5 part by weight, it is difficult to expect an effect of improving the electrical conductivity or the electrochemical properties of the battery may be deteriorated. If the content of the conductive material exceeds 50 parts by weight, the amount of the positive electrode active material is relatively high. Less, the capacity and energy density may decrease.
  • the method of including the conductive material in the positive electrode is not particularly limited, and a conventional method known in the art, such as coating on a positive electrode active material, can be used. In addition, if necessary, the addition of a conductive material as described above may be substituted because a conductive second coating layer is added to the positive electrode active material.
  • a filler may be optionally added to the positive electrode of the present invention as a component that inhibits its expansion.
  • the filler is not particularly limited as long as it can suppress the expansion of the electrode without causing a chemical change in the battery, and for example, olefin polymers such as polyethylene and polypropylene; Fibrous materials such as glass fiber and carbon fiber; Etc. can be used.
  • the positive electrode of the present invention can be prepared by dispersing and mixing the positive electrode active material, binder, and conductive material in a dispersion medium (solvent) to form a slurry, and then applying it on a positive electrode current collector, followed by drying and rolling.
  • a dispersion medium solvent
  • NMP N-methyl-2-pyrrolidone
  • DMF Dimethyl formamide
  • DMSO Dimethyl sulfoxide
  • ethanol isopropanol
  • water and mixtures thereof
  • the positive electrode current collector includes platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), ruthenium (Ru), nickel (Ni), stainless steel (STS), aluminum (Al ), Molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ), and alloys thereof , Surface treatment of carbon (C), nickel (Ni), titanium (Ti) or silver (Ag) on the surface of aluminum (Al) or stainless steel may be used, but is not limited thereto.
  • the positive electrode current collector may be in the form of foil, film, sheet, punched, porous body, foam, or the like.
  • the cathode may be manufactured according to a conventional method known in the art.
  • a negative electrode active material, a conductive material, a binder, and a filler can be dispersed and mixed in a dispersion medium (solvent) to make a slurry, and then coated on a negative electrode current collector, followed by drying and rolling to produce a negative electrode.
  • a lithium metal or a lithium alloy eg, an alloy of lithium and a metal such as aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium, or indium
  • aluminum, zinc, bismuth, cadmium, antimony, silicon, lead, tin, gallium, or indium may be used.
  • Examples of the negative electrode current collector include platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), ruthenium (Ru), nickel (Ni), stainless steel (STS), and copper (Cu) ), Molybdenum (Mo), chromium (Cr), carbon (C), titanium (Ti), tungsten (W), ITO (In doped SnO 2 ), FTO (F doped SnO 2 ), and alloys thereof , Surface treatment of copper (Cu) or stainless steel with carbon (C), nickel (Ni), titanium (Ti), or silver (Ag) may be used, but is not limited thereto.
  • the shape of the negative electrode current collector may be in the form of foil, film, sheet, punched, porous body, foam, or the like.
  • the separator is interposed between the positive electrode and the negative electrode to prevent a short circuit between them and serves to provide a passage for lithium ions.
  • olefin-based polymers such as polyethylene and polypropylene, glass fibers, and the like can be used in the form of sheets, multi-layer membranes, microporous films, woven fabrics, and non-woven fabrics, but are not limited thereto.
  • a solid electrolyte such as a polymer (eg, organic solid electrolyte, inorganic solid electrolyte, etc.) is used as the electrolyte
  • the solid electrolyte may also serve as a separator.
  • an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator may generally range from 0.01 to 10 ⁇ m, and the thickness may generally range from 5 to 300 ⁇ m.
  • a carbonate, ester, ether, or ketone may be used alone or in combination of two or more as a non-aqueous electrolyte (non-aqueous organic solvent), but is not limited thereto.
  • a lithium salt may be further added to the electrolyte solution (so-called non-aqueous electrolyte solution containing lithium salt), and the lithium salt is a well-known one that is soluble in a non-aqueous electrolyte solution, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiPF 3 (CF 2 CF 3 ) 3 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lower aliphatic lithium carboxylate, lithium phenyl borate, lithium imide, and the like, but are not limited thereto.
  • LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 LiPF 6 , LiCF 3 SO 3 , LiCF 3
  • the (non-aqueous) electrolytic solution is for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, glyme-based compound, hexamethylphosphoric acid tria Addition of mid, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, etc. It may be. If necessary, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included to impart non-flammability, or carbon dioxide gas may be further included to improve high temperature storage characteristics.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride
  • the lithium secondary battery of the present invention can be manufactured according to a conventional method in the art. For example, it can be produced by placing a porous separator between the positive electrode and the negative electrode, and adding a non-aqueous electrolyte.
  • the lithium secondary battery according to the present invention is applied to a battery cell used as a power source for a small device, and can be particularly suitably used as a unit cell of a battery module that is a power source for a medium-to-large-sized device.
  • the present invention also provides a battery module including two or more lithium secondary batteries are electrically connected (serial or parallel).
  • the number of lithium secondary batteries included in the battery module may be variously adjusted in consideration of the use and capacity of the battery module.
  • the present invention provides a battery pack electrically connecting the battery modules according to conventional techniques in the art.
  • the battery module and the battery pack are a power tool (Power Tool); An electric vehicle including an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle (PHEV); Electric truck; Electric commercial vehicles;
  • the power storage system may be used as a power supply for any one or more medium and large devices, but is not limited thereto.
  • a first active material composite was prepared by mixing sulfur and carbon nanotubes having an average particle size of 57.27 ⁇ m and an entangled shape in a weight ratio of 7.5: 2.5 and reacting at 155 ° C. for 30 minutes. Carbon nanotubes having a particle size of 22.59 ⁇ m and a bundle shape were mixed in a weight ratio of 7.5: 2.5 and then reacted at 155 ° C. for 30 minutes to prepare a second active material composite. Subsequently, the prepared first active material composite and the second active material composite were stirred and mixed at a rate of 1,500 rpm when preparing a slurry in a weight ratio of 8: 2, thereby preparing a positive electrode active material.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the first active material composite and the second active material composite were mixed by changing to a weight ratio of 5: 5 instead of a weight ratio of 8: 2.
  • a positive electrode active material was prepared in the same manner as in Example 1, except that the first active material composite and the second active material composite were mixed by changing to a weight ratio of 2: 8 instead of a weight ratio of 8: 2.
  • a positive electrode active material was prepared by mixing sulfur and carbon nanotubes having an average particle size of 57.27 ⁇ m and having an entangled shape in a weight ratio of 7.5: 2.5 and reacting at 155 ° C. for 30 minutes (ie, in the first active material composite of Example 1). Applicable).
  • a positive electrode active material was prepared by mixing carbon nanotubes having an average particle size of 22.59 ⁇ m and a bundle shape in a weight ratio of 7.5: 2.5 and reacting at 155 ° C. for 30 minutes (that is, in the second active material composite of Example 1). Applicable).
  • the positive electrode active materials prepared in Examples 1 to 3 and Comparative Examples 1 and 2, super-P as a conductive material, and polyvinylidene fluoride (PVdF) as a binder were mixed in a weight ratio of 88: 5: 7, and NMP solvent After preparing the slurry by dispersing it on, it was coated with a thickness of 500 ⁇ m on an aluminum current collector (Al foil), and then dried in a vacuum oven at 120 ° C. for 13 hours to prepare a positive electrode for a lithium-sulfur battery.
  • PVdF polyvinylidene fluoride
  • FIG. 1 is a graph comparing the life characteristics of a lithium-sulfur battery according to an embodiment of the present invention and a lithium-sulfur battery according to a comparative example
  • FIG. 2 is a lithium-sulfur battery according to an embodiment of the present invention It is a graph comparing and comparing the charging profile of the lithium-sulfur battery according to the comparative example.
  • a lithium-sulfur battery (Examples 4 to 6) in which two or more active material complexes are applied as a positive electrode active material according to the present invention is usually applied to one single active material complex as a positive electrode active material.
  • the lithium-sulfur batteries (Comparative Examples 3 and 4)
  • the life characteristics were improved.
  • the initial discharge capacity also increased compared to the batteries prepared in Comparative Examples 3 and 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

다종의 탄소를 양극 활물질로 혼합 적용하여 전지의 성능 개선시킬 수 있는, 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지가 개시된다. 상기 리튬 이차전지용 양극 활물질은, 황이 탄소재에 담지된 2종 이상의 활물질 복합체를 포함하며, 상기 2종 이상의 활물질 복합체 중 어느 한 종의 활물질 복합체에 포함된 탄소재는 다른 종의 활물질 복합체에 포함된 탄소재와 평균입도 및 형상 중 어느 하나 이상이 다른 것을 특징으로 한다.

Description

리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
본 출원은 2018년 11월 08일자 한국 특허 출원 제10-2018-0136482호 및 2019년 10월 25일자 한국 특허 출원 제10-2019-0133909호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것으로서, 더욱 상세하게는, 다종의 탄소를 양극 활물질로 혼합 적용하여 전지의 성능을 개선시킬 수 있는, 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
에너지 저장 기술에 대한 관심이 갈수록 높아짐에 따라, 휴대폰, 태블릿(tablet), 랩탑(laptop) 및 캠코더, 나아가서는 전기 자동차(EV) 및 하이브리드 전기 자동차(HEV)의 에너지까지 적용분야가 확대되면서, 전기화학소자에 대한 연구 및 개발이 점차 증대되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고, 그 중에서도 충방전이 가능한 리튬-황 전지와 같은 리튬계 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서 용량 밀도 및 비 에너지를 향상시키기 위하여, 새로운 전극과 전지의 설계에 대한 연구개발로 이어지고 있다.
이와 같은 전기화학소자, 그 중에서도 리튬 이차전지 가운데 리튬-황(Li-S) 전지는 높은 에너지 밀도를 가져, 리튬이온전지를 대체할 수 있는 차세대 이차전지로 각광 받고 있다. 이러한 리튬-황 전지 내에서는, 방전 시 황의 환원반응과 리튬 메탈의 산화반응이 일어나며, 이 때, 황은 고리 구조의 S8로부터 선형 구조의 리튬 폴리설파이드(Li2S2, Li2S4, Li2S6, Li2S8)를 형성하게 되는데, 리튬-황 전지는 폴리설파이드(Polysulfide, PS)가 완전히 Li2S로 환원되기까지 단계적 방전 전압을 나타내는 것이 특징이다.
이와 같은 리튬-황 전지의 황 양극은 비전도성으로서, 양극재의 대부분은 전기화학 반응에 기여하는 황(sulfur)과 이의 담지체인 전도성의 탄소계 물질을 혼합하여 사용하고 있으며, 이 때 사용되는 탄소계 물질에 따라 황의 반응성, 고율 특성 및 수명 특성 등에 영향을 미치게 된다. 하지만, 리튬-황 전지는 최종 반응 생성물인 Li2S가 S에 비해 부피가 증가하면서 전극 구조를 변화시키고, 중간 생성물인 폴리설파이드는 전해질에 쉽게 용해되기 때문에 방전 반응 중에 지속적으로 녹아 나와 양극 활물질의 양이 감소한다. 결국, 전지의 퇴화가 가속되어 전지의 반응성 및 수명특성이 저하될 수 밖에 없다. 이를 해결하기 위하여, 탄소의 표면을 개질시키는 기술들이 개발되고 있으나, 열처리 등 길고 복잡한 공정이 수반되어야 하는 어려움이 있거나 폴리설파이드의 용출 감소 정도가 미약하여, 아직까지 구체적인 해결 방안을 찾지 못하고 있는 실정이다. 따라서, 전지의 성능에 영향을 미치는 형태, 크기, 전도도 등의 인자를 최적화 할 수 있는 황의 담지체가 요구된다.
따라서, 본 발명의 목적은, 다종의 탄소를 양극 활물질로 혼합 적용하여 전지의 성능 개선시킬 수 있는, 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 황이 탄소재에 담지된 2종 이상의 활물질 복합체를 포함하며, 상기 2종 이상의 활물질 복합체 중 어느 한 종의 활물질 복합체에 포함된 탄소재는 다른 종의 활물질 복합체에 포함된 탄소재와 평균입도 및 형상 중 어느 하나 이상이 다른 것을 특징으로 하는 리튬 이차전지용 양극 활물질을 제공한다.
또한, 본 발명은, (a) 평균입도 및 형상 중 어느 하나 이상이 서로 다른 2종 이상의 탄소재 각각을 황과 혼합 및 반응시켜, 상기 탄소재 각각에 황이 담지된 2종 이상의 활물질 복합체를 제조하는 단계; 및 (b) 상기 제조된 2종 이상의 활물질 복합체를 혼합하는 단계를 포함하는 리튬 이차전지용 양극 활물질의 제조방법을 제공한다.
또한, 본 발명은, 상기 리튬 이차전지용 양극 활물질을 포함하는 양극; 리튬계 음극; 상기 양극과 음극의 사이에 개재되는 전해질; 및 분리막;을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지에 의하면, 다종의 탄소를 양극 활물질로 혼합 적용함으로써 전지 수명특성 등의 성능을 개선시킬 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 리튬-황 전지와 비교예에 따른 리튬-황 전지의 수명 특성을 비교 대조한 그래프이다.
도 2는 본 발명의 일 실시예에 따른 리튬-황 전지와 비교예에 따른 리튬-황 전지의 충전 프로파일을 비교 대조한 그래프이다.
이하, 본 발명을 상세히 설명한다.
본 발명에 따른 리튬 이차전지용 양극 활물질은, 황이 탄소재에 담지된 2종 이상의 활물질 복합체를 포함하며, 상기 2종 이상의 활물질 복합체 중 어느 한 종의 활물질 복합체에 포함된 탄소재는 다른 종의 활물질 복합체에 포함된 탄소재와 평균입도 및 형상 중 어느 하나 이상이 다른 것을 특징으로 한다.
본 출원인은, 리튬 이차전지, 그 중에서도 리튬-황 전지의 황 담지체로 적용되는 탄소재를 입도와 형상이 서로 다른 2종 이상 사용함으로써, 각각의 탄소재가 가지는 장점이 혼합된 황 담지체를 리튬 이차전지에 적용하여 수명특성을 개선시켰다.
상기 활물질 복합체는 황이 탄소재에 담지된, 즉 다시 말해, 황과 탄소재를 포함하는 것으로서, 2종 이상 제한 없이 사용될 수 있다. 예를 들어, 상기 활물질 복합체가 2종인 경우, 황이 제1 탄소재에 담지된 제1 활물질 복합체 및 황이 제2 탄소재에 담지된 제2 활물질 복합체를 포함하게 되며, 상기 활물질 복합체가 3종 이상인 경우에는, 제1 및 제2 활물질 복합체 이외에, 제3 활물질 복합체 등이 추가로 포함될 수 있다. 즉, 본 발명에 있어서, 상기 활물질 복합체의 개수는, 각 활물질 복합체에 포함된 탄소재의 평균입도와 형상이 서로 다르기만 하다면 특별한 제한이 없음을 일러둔다.
이와 같은 활물질 복합체들은 리튬 이차전지의 양극 활물질로서 다양한 비율로 혼합될 수 있다. 예를 들어, 2종의 활물질 복합체가 사용되면, 그 혼합비는 중량비로서 1 : 9 내지 9 : 1일 수 있고, 바람직하게는 2 : 8 내지 8 : 2일 수 있다. 그밖에, 3종 이상의 활물질 복합체가 사용되는 경우에는, 본 발명의 취지에 벗어나지 않는 범위 내에서 적절한 혼합비로 적용될 수 있다.
상기 활물질 복합체 각각에 포함되는 탄소재는 전도성을 향상시키기 위한 것으로서, 탄소나노튜브(carbon nanotube, CNT), 그래핀(graphene) 및 그래핀 옥사이드(graphene oxide, GO) 등, 황의 담지가 가능하도록 기공이 형성되어 있고 전도성을 가지는 탄소 소재라면 특별한 제한 없이 사용될 수 있다.
이와 같이 각 활물질 복합체에 포함되는 각각의 탄소재는, 전술한 바와 같이, 평균입도 및 형상 중 어느 하나 이상이 서로 달라야만, 리튬 이차전지의 수명특성 개선이라는 본 발명의 목적을 달성할 수 있다. 상기 탄소재의 평균입도는 2 내지 200 ㎛, 바람직하게는 5 내지 100 ㎛로서, 상기 탄소재의 평균입도가 상기 범위를 벗어날 경우, 전극 코팅 불량을 야기하거나 슬러리 막힘 현상이 발생할 수 있고, 상기 각 활물질 복합체에 포함되는 각각의 탄소재 입도가 서로 다르지 않은 경우에는, 전지의 수명특성 개선 효과가 매우 미미하거나 없을 수 있다.
즉, 예를 들어, 상기 양극 활물질이 2종의 활물질 복합체를 포함하는 경우, 상기 2종의 활물질 복합체 중, 어느 한 종의 활물질 복합체에 포함된 탄소재는 평균입도가 5 내지 40 ㎛이고, 다른 한 종의 활물질 복합체에 포함된 탄소재는 평균입도가 15 내지 90 ㎛일 수 있다. 또 다른 예로, 상기 양극 활물질이 2종의 활물질 복합체를 포함하는 경우, 상기 2종의 활물질 복합체 중, 어느 한 종의 활물질 복합체에 포함된 탄소재는 평균입도가 5 ㎛ 이상 내지 25 ㎛ 미만이고, 다른 한 종의 활물질 복합체에 포함된 탄소재는 평균입도가 25 ㎛ 이상 내지 90 ㎛ 이하일 수 있다.
추가적으로, 상기 양극 활물질이 2종의 활물질 복합체를 포함하는 경우, 상기 2종의 활물질 복합체 중, 어느 한 종의 활물질 복합체에 포함된 탄소재의 평균입도와, 다른 한 종의 활물질 복합체에 포함된 탄소재의 평균입도 차이는 5 내지 65 ㎛, 바람직하게는 15 내지 45 ㎛, 더욱 바람직하게는 25 내지 35 ㎛일 수 있다. 만일, 양 탄소재의 평균입도 차이가 5 ㎛ 미만이면, 평균입도 차이에 의한 이점을 극대화시키는 데에 어려움이 있을 수 있고, 65 ㎛를 초과하는 경우에는 더 이상의 실익이 없을 수 있다.
또한, 상기 양극 활물질이 2종의 활물질 복합체를 포함한 경우, 상기 2종의 활물질 복합체 중, 상대적으로 평균입도가 큰 어느 한 종의 활물질 복합체에 포함된 탄소재와, 상대적으로 평균입도가 작은 다른 한 종의 활물질 복합체에 포함된 탄소재의 비율은, 중량비로서 1 : 1 내지 4 : 1, 바람직하게는 2 : 1 내지 4 : 1일 수 있다.
상기 탄소재 형상의 경우, 예를 들어, 어느 하나는 탄소나노튜브로 적용하고, 나머지는 그래핀 옥사이드 등 다른 탄소재로 적용하게 되면 자연스럽게 각 탄소재의 형상이 상이해질 수 있다. 반면, 동종의 탄소재를 사용하고 또한 그 입도까지 동일한 경우에는, 탄소재들 간 형상이 반드시 달라야만 전지의 수명특성을 개선시킬 수가 있다. 여기서, 상기 탄소재 중 탄소나노튜브(CNT)의 형상에 대하여 설명하면, 상기 CNT의 형상으로는 대표적으로 CNT가 엉켜 구형의 형태를 이루는 entangle type과, CNT가 일정 방향으로 정렬(align)되어 길쭉한 형상의 타래를 이루는 bundle type으로 분류할 수 있다. 상기 entangle type의 경우 과전압 개선이나 용량 발현 측면에서 이점을 가지고 있고, 종횡비(aspect ratio)가 1 내지 2인 입자를 포함한다. 또한, 상기 bundle type의 경우에는 고율 특성 개선 및 반응 부산물 분해에 효과가 있고, 종횡비(aspect ratio)가 2를 초과하는 입자를 포함한다. 따라서, 이들의 장점을 모두 가지도록 각 활물질 복합체에 포함되는 각 탄소재의 형상을 서로 다르게 구성하는 것이 바람직하다.
종합하면, 상기 각 활물질 복합체에 포함되는 각각의 탄소재는 서로 종류가 다르거나(이 경우 탄소재 간 평균입도와 형상은 자연스레 달라짐), 동종일 경우에는 탄소재 간에 평균입도 및 형상 중 어느 하나 이상이 달라야만 본 발명의 취지에 부합할 수 있는 것이다. 한편, 상기 탄소재의 표면에는 황이 담지되는 기공이 형성되어 있으며, 이때, 상기 탄소재의 기공 부피는 0.5 내지 5 cm3일 수 있다.
다음으로, 본 발명에 따른 리튬 이차전지용 양극 활물질의 제조방법에 대하여 설명한다. 상기 리튬 이차전지용 양극 활물질의 제조방법은, (a) 평균입도 및 형상 중 어느 하나 이상이 서로 다른 2종 이상의 탄소재 각각을 황과 혼합 및 반응시켜, 상기 탄소재 각각에 황이 담지된 2종 이상의 활물질 복합체를 제조하는 단계 및 (b) 상기 제조된 2종 이상의 활물질 복합체를 혼합하는 단계를 포함한다.
상기 (a) 단계에서 활물질 복합체는, 평균입도 및 형상 중 어느 하나 이상이 서로 다른 탄소재를 각각 포함하는 것으로서, 2종 이상일 수 있다. 예를 들어, 2종의 활물질 복합체가 제조되는 경우에는, 황과 제1 탄소재를 혼합 및 반응시켜 제1 활물질 복합체를 제조하고, 이어서, 황과 제2 탄소재를 혼합 및 반응시켜 제2 활물질 복합체를 제조할 수 있으며, 공정 환경 등에 따라 각각의 활물질 복합체를 동시에 제조할 수도 있는 등, 활물질 복합체의 개수나 제조 순서에는 특별한 제한이 없다(단, 제조되는 활물질 복합체의 개수는 둘 이상이어야 한다). 이때, 각 활물질 복합체에 포함되는 황과 탄소재의 혼합비에는 특별한 제한이 없다.
상기 (a) 단계에 있어서, 상기 반응은 120 내지 200 ℃, 바람직하게는 150 내지 180 ℃의 온도에서 5 내지 60 분, 바람직하게는 20 내지 40 분 동안 수행될 수 있다. 그밖에, 상기 탄소재에 대한 정의나, 그 평균입도 및 형상 등에 관한 설명은 전술한 바로 대체한다.
상기 (b) 단계에 있어서, 상기 제조된 활물질 복합체들은 리튬 이차전지의 양극 활물질로서 다양한 비율로 혼합될 수 있다. 예를 들어, 2종의 활물질 복합체가 사용되면, 그 혼합비는 중량비로서 1 : 9 내지 9 : 1일 수 있고, 바람직하게는 2 : 8 내지 8 : 2일 수 있다. 그밖에, 3종 이상의 활물질 복합체가 사용되는 경우에는, 본 발명의 취지에 벗어나지 않는 범위 내에서 적절한 혼합비로 적용될 수 있다. 한편, 상기 (b) 단계에서 혼합되는 활물질 복합체들은 슬러리의 형태가 바람직하나, 본 발명의 범주를 벗어나지만 않는다면 그 혼합 형태에는 특별한 제한이 없고, 또한, 당업계에서 통용되는 그것을 준용할 수 있다.
마지막으로, 상기 리튬 이차전지용 양극 활물질을 포함하는 리튬 이차전지에 대하여 설명하면, 상기 리튬 이차전지는, 상기 리튬 이차전지용 양극 활물질을 포함하는 양극; 리튬계 음극; 상기 양극과 음극의 사이에 개재되는 전해질; 및 분리막;을 포함한다.
여기서, 상기 양극 활물질의 함량은 상기 양극 100 중량부에 대하여 50 내지 95 중량부, 바람직하게는 60 내지 90 중량부일 수 있다. 상기 양극 활물질의 함량이 양극 전체 중량 100 중량부에 대하여 50 중량부 미만이면 양극 활물질에 의한 전지의 전기화학적 특성이 저하될 수 있고, 95 중량부를 초과하면 바인더 및 도전재와 같은 추가적인 구성 성분이 소량으로 포함될 수 있어 효율적인 전지의 제조가 어려울 수 있다. 그밖에, 본 발명에 따른 리튬 이차전지는, 리튬-황 전지, 리튬 메탈 전지 및 리튬 공기 전지 등의 리튬계 이차전지일 수 있으나, 리튬-황 전지가 본 발명의 취지에 가장 부합할 수 있다.
한편, 상기 양극 활물질을 제외한 양극의 제반 구성, 음극, 전해질 및 분리막은 당업계에서 사용하는 통상의 것일 수 있으며, 이하, 이들에 대한 구체적인 설명을 하도록 한다.
본 발명의 리튬 이차전지에 포함되는 양극은, 전술한 양극 활물질 이외에 바인더 및 도전재 등을 더 포함한다. 상기 바인더는 양극 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분으로서, 예컨대, 폴리비닐리덴플루오라이드(PVdF), 폴리비닐리덴플루오라이드-폴리헥사플루오로프로필렌 공중합체(PVdF/HFP), 폴리비닐아세테이트, 폴리비닐알코올, 폴리비닐에테르, 폴리에틸렌, 폴리에틸렌옥사이드, 알킬화 폴리에틸렌옥사이드, 폴리프로필렌, 폴리메틸(메트)아크릴레이트, 폴리에틸(메트)아크릴레이트, 폴리테트라플루오로에틸렌(PTFE), 폴리비닐클로라이드, 폴리아크릴로니트릴, 폴리비닐피리딘, 폴리비닐피롤리돈, 스티렌-부타디엔 고무, 아크릴로니트릴-부타디엔 고무, 에틸렌-프로필렌-디엔 모노머(EPDM) 고무, 술폰화 EPDM 고무, 스틸렌-부틸렌 고무, 불소 고무, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 및 이들의 혼합물로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 바인더는 통상적으로 양극 총 중량 100 중량부를 기준으로 1 내지 50 중량부, 바람직하게는 3 내지 15 중량부 첨가된다. 상기 바인더의 함량이 1 중량부 미만이면 양극 활물질과 집전체와의 접착력이 불충분해질 수 있고, 50 중량부를 초과하면 접착력은 향상되지만 그만큼 양극 활물질의 함량이 감소하여 전지 용량이 낮아질 수 있다.
상기 양극에 포함되는 도전재는 리튬 이차전지의 내부 환경에서 부반응을 유발하지 않고 당해 전지에 화학적 변화를 유발하지 않으면서 우수한 전기전도성을 가지는 것이라면 특별히 제한되지 않으며, 대표적으로는 흑연 또는 도전성 탄소를 사용할 수 있으며, 예컨대, 천연 흑연, 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 뎅카 블랙, 써멀 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 결정구조가 그라펜이나 그라파이트인 탄소계 물질; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화 아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 산화물; 및 폴리페닐렌 유도체 등의 도전성 고분자;를 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 전체 중량 100 중량부를 기준으로 0.5 내지 50 중량부, 바람직하게는 1 내지 30 중량부로 첨가된다. 도전재의 함량이 0.5 중량부 미만으로 너무 적으면 전기전도성 향상 효과를 기대하기 어렵거나 전지의 전기화학적 특성이 저하될 수 있으며, 도전재의 함량이 50 중량부를 초과하여 너무 많으면 상대적으로 양극 활물질의 양이 적어져 용량 및 에너지 밀도가 저하될 수 있다. 양극에 도전재를 포함시키는 방법은 크게 제한되지 않으며, 양극 활물질에의 코팅 등 당분야에 공지된 통상적인 방법을 사용할 수 있다. 또한, 필요에 따라, 양극 활물질에 도전성의 제2 피복층이 부가됨으로 인해 상기와 같은 도전재의 첨가를 대신할 수도 있다.
또한, 본 발명의 양극에는 그 팽창을 억제하는 성분으로서 충진제가 선택적으로 첨가될 수 있다. 이러한 충진제는 당해 전지에 화학적 변화를 유발하지 않으면서 전극의 팽창을 억제할 수 있는 것이라면 특별히 제한되는 것은 아니며, 예컨대, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소 섬유 등의 섬유상 물질; 등을 사용할 수 있다.
상기 양극 활물질, 바인더 및 도전재 등을 분산매(용매)에 분산, 혼합시켜 슬러리를 만들고, 이를 양극 집전체 상에 도포한 후 건조 및 압연함으로써, 본 발명의 양극을 제조할 수 있다. 상기 분산매로는 NMP(N-methyl-2-pyrrolidone), DMF(Dimethyl formamide), DMSO(Dimethyl sulfoxide), 에탄올, 이소프로판올, 물 및 이들의 혼합물을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 양극 집전체로는 백금(Pt), 금(Au), 팔라듐(Pd), 이리듐(Ir), 은(Ag), 루테늄(Ru), 니켈(Ni), 스테인리스스틸(STS), 알루미늄(Al), 몰리브데늄(Mo), 크롬(Cr), 카본(C), 티타늄(Ti), 텅스텐(W), ITO(In doped SnO2), FTO(F doped SnO2), 및 이들의 합금과, 알루미늄(Al) 또는 스테인리스스틸의 표면에 카본(C), 니켈(Ni), 티타늄(Ti) 또는 은(Ag)을 표면 처리한 것 등을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 양극 집전체의 형태는 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포체 등의 형태일 수 있다.
상기 음극은 해당 기술 분야에 알려진 통상적인 방법에 따라 제조할 수 있다. 예를 들어, 음극 활물질, 도전재, 바인더, 필요에 따라 충진제 등을 분산매(용매)에 분산, 혼합시켜 슬러리를 만들고, 이를 음극 집전체 상에 도포한 후 건조 및 압연하여 음극을 제조할 수 있다. 상기 음극 활물질로는 리튬 금속이나 리튬 합금(예컨대, 리튬과 알루미늄, 아연, 비스무스, 카드뮴, 안티몬, 실리콘, 납, 주석, 갈륨 또는 인듐 등과 같은 금속과의 합금)를 사용할 수 있다. 상기 음극 집전체로는 백금(Pt), 금(Au), 팔라듐(Pd), 이리듐(Ir), 은(Ag), 루테늄(Ru), 니켈(Ni), 스테인리스스틸(STS), 구리(Cu), 몰리브데늄(Mo), 크롬(Cr), 카본(C), 티타늄(Ti), 텅스텐(W), ITO(In doped SnO2), FTO(F doped SnO2), 및 이들의 합금과, 구리(Cu) 또는 스테인리스 스틸의 표면에 카본(C), 니켈(Ni), 티타늄(Ti) 또는 은(Ag)을 표면 처리한 것 등을 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 음극 집전체의 형태는 호일, 필름, 시트, 펀칭된 것, 다공질체, 발포체 등의 형태일 수 있다.
상기 분리막은 양극과 음극 사이에 개재되어 이들 사이의 단락을 방지하고 리튬이온의 이동 통로를 제공하는 역할을 한다. 상기 분리막으로는 폴리에틸렌, 폴리프로필렌과 같은 올레핀계 폴리머, 유리섬유 등을 시트, 다중막, 미세다공성 필름, 직포 및 부직포 등의 형태로 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 한편 전해질로서 폴리머 등의 고체 전해질(예컨대, 유기 고체 전해질, 무기 고체 전해질 등)이 사용되는 경우에는 상기 고체 전해질이 분리막을 겸할 수도 있다. 구체적으로는, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막을 사용한다. 분리막의 기공 직경은 일반적으로 0.01 내지 10 ㎛, 두께는 일반적으로 5 내지 300 ㎛ 범위일 수 있다.
상기 전해질 또는 전해액으로는 비수계 전해액(비수계 유기 용매)으로서 카보네이트, 에스테르, 에테르 또는 케톤을 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 반드시 이에 한정되는 것은 아니다. 예를 들어, 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸에틸 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, γ-부틸로락톤, n-메틸 아세테이트, n-에틸 아세테이트, n-프로필 아세테이트, 인산 트리에스테르, 디부틸 에테르, N-메틸-2-피롤리디논, 1,2-디메톡시 에탄, 테트라히드록시 프랑(Franc), 2-메틸 테트라하이드로푸란과 같은 테트라하이드로푸란 유도체, 디메틸설폭시드, 포름아미드, 디메틸포름아미드, 디옥솔란 및 그 유도체, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산 메틸, 트리메톡시 메탄, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기 용매가 사용될 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 전해액에는 리튬염을 더 첨가하여 사용할 수 있으며(이른바, 리튬염 함유 비수계 전해액), 상기 리튬염으로는 비수계 전해액에 용해되기 좋은 공지의 것, 예를 들어 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiPF3(CF2CF3)3, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 페닐 붕산 리튬, 리튬 이미드 등을 들 수 있으나, 반드시 이에 한정되는 것은 아니다. 상기 (비수계) 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, 글라임(glyme)계 화합물, 헥사메틸인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 필요에 따라서는, 불연성을 부여하기 위해 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온보존 특성을 향상시키기 위해 이산화탄산 가스를 더 포함시킬 수도 있다.
한편, 본 발명의 리튬 이차전지는 당 분야의 통상적인 방법에 따라 제조될 수 있다. 예를 들어, 양극과 음극 사이에 다공성의 분리막을 넣고, 비수 전해액을 투입함으로써 제조할 수 있다. 본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지 셀에 적용됨은 물론, 중대형 디바이스의 전원인 전지모듈의 단위전지로 특히 적합하게 사용될 수 있다. 이러한 측면에서, 본 발명은 또한 2개 이상이 리튬 이차전지가 전기적으로 연결(직렬 또는 병렬)되어 포함된 전지모듈을 제공한다. 상기 전지모듈에 포함되는 리튬 이차전지의 수량은, 전지모듈의 용도 및 용량 등을 고려하여 다양하게 조절될 수 있음은 물론이다.
나아가, 본 발명은 당 분야의 통상적인 기술에 따라 상기 전지모듈을 전기적으로 연결한 전지팩을 제공한다. 상기 전지모듈 및 전지팩은 파워 툴(Power Tool); 전기차(Electric Vehicle, EV), 하이브리드 전기차(Hybrid Electric Vehicle, HEV), 및 플러그인 하이브리드 전기차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 전기 트럭; 전기 상용차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용 가능하나, 반드시 이에 한정되는 것은 아니다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 이는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예 1] 양극 활물질의 제조
먼저, 황(sulfur)과 평균입도가 57.27 ㎛이고 entangled 형상을 가지는 탄소나노튜브를 7.5 : 2.5의 중량비로 혼합한 후 155 ℃에서 30 분간 반응시켜 제1 활물질 복합체를 제조하였고, 또한, 황과 평균입도가 22.59 ㎛이고 bundle 형상을 가지는 탄소나노튜브를 7.5 : 2.5의 중량비로 혼합한 후 155 ℃에서 30 분간 반응시켜 제2 활물질 복합체를 제조하였다. 이어서, 상기 제조된 제1 활물질 복합체와 제2 활물질 복합체를 8 : 2의 중량비로 슬러리 제조 시 1,500 rpm의 속도로 교반 혼합하여, 양극 활물질을 제조하였다.
[실시예 2] 양극 활물질의 제조
제1 활물질 복합체와 제2 활물질 복합체를 8 : 2의 중량비 대신 5 : 5의 중량비로 변경하여 혼합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여, 양극 활물질을 제조하였다.
[실시예 3] 양극 활물질의 제조
제1 활물질 복합체와 제2 활물질 복합체를 8 : 2의 중량비 대신 2 : 8의 중량비로 변경하여 혼합한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여, 양극 활물질을 제조하였다.
[비교예 1] 양극 활물질의 제조
황과 평균입도가 57.27 ㎛이고 entangled 형상을 가지는 탄소나노튜브를 7.5 : 2.5의 중량비로 혼합한 후 155 ℃에서 30 분간 반응시켜 양극 활물질을 제조하였다(즉, 상기 실시예 1의 제1 활물질 복합체에 해당).
[비교예 2] 양극 활물질의 제조
황과 평균입도가 22.59 ㎛이고 bundle 형상을 가지는 탄소나노튜브를 7.5 : 2.5의 중량비로 혼합한 후 155 ℃에서 30 분간 반응시켜 양극 활물질을 제조하였다(즉, 상기 실시예 1의 제2 활물질 복합체에 해당).
[실시예 4~6, 비교예 3~4] 리튬-황 전지의 제조
리튬-황 전지용 양극의 제조
상기 실시예 1 내지 3, 비교예 1 및 2에서 각각 제조된 양극 활물질, 도전재로서 super-P 및 바인더로서 폴리비닐리덴플루오라이드(PVdF)를 88 : 5 : 7의 중량비로 혼합하고, NMP 용매에 분산시켜 슬러리를 제조한 후, 이를 알루미늄 집전체(Al foil)에 500 ㎛의 두께로 코팅한 후, 120 ℃의 진공 오븐에서 13 시간 동안 건조하여 리튬-황 전지용 양극을 제조하였다.
리튬-황 전지의 제조
상기 제조된 양극을 음극(Li metal foil)과 대면하도록 위치시킨 후, 그 사이에 폴리에틸렌 분리막을 개재시켰고, 이어서, 디메틸에테르 용매에 4 M 농도로 LiFSI가 용해된 전해액을 주입하여 리튬-황 전지를 제조하였다.
[실험예 1] 전지의 수명특성 평가
상기 실시예 4 내지 6, 비교예 3 및 4에서 제조된 리튬-황 전지의 충방전 반복에 따른 잔여 용량을 확인하여, 각 리튬-황 전지의 수명특성을 평가하였다. 도 1은 본 발명의 일 실시예에 따른 리튬-황 전지와 비교예에 따른 리튬-황 전지의 수명 특성을 비교 대조한 그래프이고, 도 2는 본 발명의 일 실시예에 따른 리튬-황 전지와 비교예에 따른 리튬-황 전지의 충전 프로파일을 비교 대조한 그래프이다.
도 1 및 2에 도시된 바와 같이, 본 발명에 따라 2종 이상의 활물질 복합체를 함께 양극 활물질로 적용한 리튬-황 전지(실시예 4 내지 6)는, 1종의 단일 활물질 복합체를 양극 활물질로 적용한 통상의 리튬-황 전지(비교예 3 및 4)에 비하여, 수명특성이 향상된 것을 확인할 수 있었다. 특히, 실시예 4에서 제조된 전지의 경우, 도 2를 통하여 확인할 수 있듯이, 비교예 3 및 4에서 제조된 전지에 비하여 초기 방전 용량 또한 증가한 것을 알 수 있었다. 이를 통하여, 본 발명에서와 같이 다종의 탄소재를 적정 비율로 혼합하여 황 담지체로 적용하게 되면, 수명특성 등 전지의 성능이 우수해지는 것을 알 수 있다.

Claims (14)

  1. 황이 탄소재에 담지된 2종 이상의 활물질 복합체를 포함하며,
    상기 2종 이상의 활물질 복합체 중 어느 한 종의 활물질 복합체에 포함된 탄소재는 다른 종의 활물질 복합체에 포함된 탄소재와 평균입도 및 형상 중 어느 하나 이상이 다른 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  2. 청구항 1에 있어서, 상기 양극 활물질은 2종의 활물질 복합체가 포함된 것이고, 상기 2종의 활물질 복합체는 1 : 9 내지 9 : 1의 중량비로 포함되는 것을 특징으로 하는, 리튬 이차전지용 양극 활물질.
  3. 청구항 1에 있어서, 상기 탄소재의 평균입도는 2 내지 200 ㎛인 것을 특징으로 하는, 리튬 이차전지용 양극 활물질.
  4. 청구항 2에 있어서, 상기 2종의 활물질 복합체 중, 어느 한 종의 활물질 복합체에 포함된 탄소재는 평균입도가 5 내지 40 ㎛이고, 다른 한 종의 활물질 복합체에 포함된 탄소재는 평균입도가 15 내지 90 ㎛인 것을 특징으로 하는, 리튬 이차전지용 양극 활물질.
  5. 청구항 2에 있어서, 상기 2종의 활물질 복합체 중, 어느 한 종의 활물질 복합체에 포함된 탄소재는 평균입도가 5 ㎛ 이상 내지 25 ㎛ 미만이고, 다른 한 종의 활물질 복합체에 포함된 탄소재는 평균입도가 25 ㎛ 이상 내지 90 ㎛ 이하인 것을 특징으로 하는, 리튬 이차전지용 양극 활물질.
  6. 청구항 2에 있어서, 상기 2종의 활물질 복합체 중, 어느 한 종의 활물질 복합체에 포함된 탄소재의 평균입도와, 다른 한 종의 활물질 복합체에 포함된 탄소재의 평균입도 차이는 5 내지 65 ㎛인 것을 특징으로 하는, 리튬 이차전지용 양극 활물질.
  7. 청구항 1에 있어서, 상기 탄소재는 탄소나노튜브, 그래핀 및 그래핀 옥사이드로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 리튬 이차전지용 양극 활물질.
  8. 청구항 7에 있어서, 상기 탄소재는 탄소나노튜브이고, 그 형상은 entangle type 또는 bundle type인 것을 특징으로 하는, 리튬 이차전지용 양극 활물질.
  9. 청구항 8에 있어서, 상기 entangle type의 탄소나노튜브는 종횡비(aspect ratio)가 1 내지 2인 입자를 포함하고, 상기 bundle type의 탄소나노튜브는 종횡비가 2를 초과하는 입자를 포함하는 것을 특징으로 하는, 리튬 이차전지용 양극 활물질.
  10. (a) 평균입도 및 형상 중 어느 하나 이상이 서로 다른 2종 이상의 탄소재 각각을 황과 혼합 및 반응시켜, 상기 탄소재 각각에 황이 담지된 2종 이상의 활물질 복합체를 제조하는 단계; 및
    (b) 상기 제조된 2종 이상의 활물질 복합체를 혼합하는 단계를 포함하는 리튬 이차전지용 양극 활물질의 제조방법.
  11. 청구항 10에 있어서, 상기 활물질 복합체는 2종의 활물질 복합체가 포함된 것이고, 상기 2종의 활물질 복합체는 1 : 9 내지 9 : 1의 중량비로 혼합되는 것을 특징으로 하는, 리튬 이차전지용 양극 활물질의 제조방법.
  12. 청구항 10에 있어서, 상기 반응은 120 내지 200 ℃의 온도에서 5 내지 60 분 동안 수행되는 것을 특징으로 하는, 리튬 이차전지용 양극 활물질의 제조방법.
  13. 청구항 1의 리튬 이차전지용 양극 활물질을 포함하는 양극; 리튬계 음극; 상기 양극과 음극의 사이에 개재되는 전해질; 및 분리막;을 포함하는 리튬 이차전지.
  14. 청구항 13에 있어서, 상기 리튬 이차전지는 리튬-황 전지인 것을 특징으로 하는, 리튬 이차전지.
PCT/KR2019/014328 2018-11-08 2019-10-29 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 WO2020096253A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19881633.2A EP3817103A4 (en) 2018-11-08 2019-10-29 POSITIVE ELECTRODE ACTIVE MATERIAL FOR A RECHARGEABLE LITHIUM BATTERY, MANUFACTURING METHOD FOR IT AND RECHARGEABLE LITHIUM BATTERY WITH IT
JP2021507886A JP7244626B2 (ja) 2018-11-08 2019-10-29 リチウム二次電池用正極活物質、その製造方法及びこれを含むリチウム二次電池
CN201980051112.0A CN112514112B (zh) 2018-11-08 2019-10-29 锂二次电池用正极活性材料、其制造方法和包含所述正极活性材料的锂二次电池
US17/265,275 US20220115642A1 (en) 2018-11-08 2019-10-29 Positive electrode active material for lithium rechargeable battery, manufacturing method therefor and lithium rechargeable battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0136482 2018-11-08
KR20180136482 2018-11-08
KR1020190133909A KR20200053403A (ko) 2018-11-08 2019-10-25 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR10-2019-0133909 2019-10-25

Publications (1)

Publication Number Publication Date
WO2020096253A1 true WO2020096253A1 (ko) 2020-05-14

Family

ID=70611387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014328 WO2020096253A1 (ko) 2018-11-08 2019-10-29 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (2)

Country Link
US (1) US20220115642A1 (ko)
WO (1) WO2020096253A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142832A (ko) * 2014-06-11 2015-12-23 (주)오렌지파워 리튬설퍼 전지용 양극조성물, 이를 포함하는 리튬설퍼 전지용 양극 및 이의 제조 방법
KR20160051610A (ko) * 2014-10-31 2016-05-11 주식회사 엘지화학 프리스탠딩 필름형 리튬-설퍼 전지용 양극재 및 이를 포함하는 리튬-설퍼 전지
CN106207097A (zh) * 2016-07-30 2016-12-07 肖丽芳 一种锂硫电池极片及其电池的制备方法
KR20170139761A (ko) * 2016-06-10 2017-12-20 한양대학교 산학협력단 질소가 도핑된 탄소를 함유하는 양극 활물질층 및 보호막을 구비하는 금속-황 전지용 양극, 이의 제조방법
KR20180017975A (ko) * 2016-08-12 2018-02-21 주식회사 엘지화학 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
KR20180136482A (ko) 2016-04-22 2018-12-24 베이징 유지 사이언스 앤드 테크놀로지 컴퍼니 리미티드 1,2-디클로로헥사플루오로시클로펜텐의 제조 방법
KR20190133909A (ko) 2018-05-24 2019-12-04 시크릿타운 주식회사 사용자 위치기반 증강현실 컨텐츠 제공방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142832A (ko) * 2014-06-11 2015-12-23 (주)오렌지파워 리튬설퍼 전지용 양극조성물, 이를 포함하는 리튬설퍼 전지용 양극 및 이의 제조 방법
KR20160051610A (ko) * 2014-10-31 2016-05-11 주식회사 엘지화학 프리스탠딩 필름형 리튬-설퍼 전지용 양극재 및 이를 포함하는 리튬-설퍼 전지
KR20180136482A (ko) 2016-04-22 2018-12-24 베이징 유지 사이언스 앤드 테크놀로지 컴퍼니 리미티드 1,2-디클로로헥사플루오로시클로펜텐의 제조 방법
KR20170139761A (ko) * 2016-06-10 2017-12-20 한양대학교 산학협력단 질소가 도핑된 탄소를 함유하는 양극 활물질층 및 보호막을 구비하는 금속-황 전지용 양극, 이의 제조방법
CN106207097A (zh) * 2016-07-30 2016-12-07 肖丽芳 一种锂硫电池极片及其电池的制备方法
KR20180017975A (ko) * 2016-08-12 2018-02-21 주식회사 엘지화학 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
KR20190133909A (ko) 2018-05-24 2019-12-04 시크릿타운 주식회사 사용자 위치기반 증강현실 컨텐츠 제공방법

Also Published As

Publication number Publication date
US20220115642A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2019088672A1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
KR102639662B1 (ko) 강유전성 고분자 보호층이 형성된 리튬 이차전지용 음극, 이의 제조 방법 및 상기 음극을 포함하는 리튬 이차전지
CN102136574A (zh) 阴极活性材料及包含该阴极活性材料的锂二次电池
WO2022071722A1 (ko) 고 에너지 밀도를 갖는 리튬-황 전지
WO2012086939A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2021235760A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2016209014A1 (ko) 리튬 이차전지의 제조방법 및 이를 사용하여 제조되는 리튬 이차전지
KR102448075B1 (ko) 리튬-황 전지용 양극 활물질의 제조방법, 이에 의해 제조되는 리튬-황 전지용 양극 활물질 및 이를 포함하는 리튬-황 전지
WO2012091301A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2021210814A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019059662A2 (ko) 금속 전극을 구비하는 금속이차전지
KR20210037849A (ko) 리튬 이차전지용 양극, 이의 제조방법 및 상기 양극을 포함하는 리튬 이차전지
WO2019098564A2 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조방법
WO2022149751A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
CN112514112B (zh) 锂二次电池用正极活性材料、其制造方法和包含所述正极活性材料的锂二次电池
KR20200089474A (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020017774A1 (ko) 리튬 이차전지용 바나듐 양극의 전기화학적 전처리 방법 및 이에 의해 전처리된 리튬 이차전지용 바나듐 양극
KR20200089788A (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR102651781B1 (ko) 고연신성 고분자 보호층이 형성된 리튬 이차전지용 음극, 이의 제조 방법 및 상기 음극을 포함하는 리튬 이차전지
WO2020096253A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20210015499A (ko) 양극 접착력 개선용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 상기 양극을 포함하는 리튬 이차전지
WO2023140502A1 (ko) 수명 성능이 개선된 리튬-황 전지
KR20210015048A (ko) 양극 접착력 개선용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 상기 양극을 포함하는 리튬 이차전지
WO2023096182A1 (ko) 에너지 밀도 및 출력이 개선된 리튬-황 전지
WO2023211230A1 (ko) 고 에너지 밀도를 갖는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019881633

Country of ref document: EP

Effective date: 20210126

ENP Entry into the national phase

Ref document number: 2021507886

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE