WO2020093426A1 - 一种使石墨烯水平平铺自组装形成石墨烯膜的方法 - Google Patents

一种使石墨烯水平平铺自组装形成石墨烯膜的方法 Download PDF

Info

Publication number
WO2020093426A1
WO2020093426A1 PCT/CN2018/115441 CN2018115441W WO2020093426A1 WO 2020093426 A1 WO2020093426 A1 WO 2020093426A1 CN 2018115441 W CN2018115441 W CN 2018115441W WO 2020093426 A1 WO2020093426 A1 WO 2020093426A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
self
interface
horizontally
film
Prior art date
Application number
PCT/CN2018/115441
Other languages
English (en)
French (fr)
Inventor
张锦英
黄家良
史烨禾
赵雪雯
成永红
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to US17/043,702 priority Critical patent/US11724940B2/en
Publication of WO2020093426A1 publication Critical patent/WO2020093426A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the invention belongs to the technical field of new energy material preparation, and relates to a method for horizontally tiling graphene to self-assemble to form a graphene film.
  • Graphene is widely used in research fields such as transparent conductive films, electromagnetic shielding films, and thermally conductive heat dissipation films due to its outstanding physical and chemical properties and unique two-dimensional structure of a single atomic layer.
  • Chen's group prepared the rGO film by spin coating method combined with thermal reduction, which can be used as a conductive transparent electrode [ACS Nano, 2008, 2: 463-470].
  • Mullen's group used dip coating to assemble GO onto the quartz wafer, and thermally reduced the rGO film that can be used as a transparent conductive electrode [Nano Lett, 2008, 8: 323-327].
  • the research group Zheng used the method of volatilization-induced self-assembly combined with high-temperature annealing graphitization to prepare ultra-thin flexible graphene films [AdvFunct Mater, 2014, 24: 4542-4548].
  • the film exhibited excellent electromagnetic shielding efficiency as high as 20dB, while also exhibiting excellent thermal conductivity (up to 1100W m -1 K -1 ).
  • the film-forming technology of graphene films is particularly important.
  • the related research work on the regulation of the microscopic assembly structure of the building block graphene still needs to be supplemented and improved.
  • Direct methods include silicon carbide or metal surface epitaxial growth method and chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • the direct method can obtain a graphene film with good quality and stable performance, it requires high equipment, and the obtained film often has difficulties in transferring to other substrates, so it is not easy to achieve large-scale applications.
  • Indirect methods include vacuum suction filtration method, spray coating method, spin coating method, electrophoresis method, self-assembly method, etc.
  • the indirect method such as first preparing graphene and then forming a film does not require complicated equipment and has low cost, so it is relatively easy to implement large-scale applications.
  • a common vacuum suction filtration method is to adjust the concentration of the graphene / graphene oxide aqueous solution to a desired concentration, and then perform rapid vacuum suction filtration. If the thickness of the prepared film is large, it can be transferred directly; if the thickness of the film is small, the solvent can be used to dissolve the filter membrane before being transferred to a suitable substrate.
  • Vacuum-filtered different volumes of graphene oxide aqueous dispersion with mixed cellulose ester film to obtain graphene oxide film on the mixed cellulose ester film.
  • the graphene oxide film was transferred to glass On the substrate or plastic substrate, the graphene film was successfully obtained after chemical reduction and thermal annealing treatment [Nature Nanotech, 2008, 3 (5): 270-274].
  • the spraying method is to spray the graphene dispersion liquid onto the preheated substrate with a spray gun, and the graphene film can be obtained after the solvent is volatilized.
  • Gilje et al. Sprayed graphene oxide dissolved in water onto the SiO 2 / Si substrate by spraying method, and obtained a graphene film after reduction [Nano Lett, 2007, 7 (11): 3394-3398].
  • the spin coating method is to drop the graphene solution onto the rotating substrate, and the graphene solution can be spread evenly on the substrate by adjusting the rotation speed of the substrate, and the graphene film can be obtained after drying.
  • Robinson et al. Added graphene oxide suspension droplets onto SiO 2 / Si substrates and dried them with N 2 to prepare relatively flat graphene films [Nano Lett, 2008, 8 (10): 3441-3445].
  • Graphene oxide has more polar oxygen-containing groups, so it has good suspendability in polar solvents and can be charged.
  • the graphene oxide film can be prepared by the electrophoretic properties of the graphene oxide suspension. Graphene can be charged and become a stable suspension after treatment. Under certain conditions, graphene can also be electrophoretically deposited with polymers to obtain composite films. Wu et al. Obtained graphene / isopropanol dispersion by ultrasonic treatment. The addition of magnesium nitrate aqueous solution can make the graphene sheet positively charged, and then the graphene film can be formed on the surface of the ITO conductive glass by electrophoretic deposition [AdvMater, 2009, 21 (17): 1756-1760].
  • the self-assembly method is to use the physical and chemical properties of the interface where graphene is located, so that graphene is arranged and combined spontaneously at the interface.
  • Chen et al. Used self-assembly method to synthesize graphene oxide film.
  • the graphene oxide suspension is heated in a constant temperature water bath to form a condensed film very quickly at the liquid air boundary, and then the suspension under the film is poured out and dried to obtain a graphene oxide film [AdvMater, 2009, 21 (29): 3007-3011].
  • the vacuum suction filtration method is simple and efficient, but the existing vacuum suction filtration method can only orient the graphene horizontally, but cannot control the orientation of the (002) plane of the graphene, that is, the graphene cannot be spread as horizontally as possible, so the suction filtration
  • the obtained graphene film has a layered structure at the micrometer scale, but at the nanometer scale, its elementary graphene will generate many folds due to its forced compression by external force.
  • the presence of folds greatly increases the voids and specific surface area inside the graphene film , Increase the contact resistance and phonon scattering between the sheets, and ultimately lead to the loss of electrical and thermal conductivity; spraying method and suspension coating method can prepare a large area of graphene film, but the microstructure of the graphene film is disordered, The random stacking of elementary graphene causes a lot of contact resistance and phonon scattering, resulting in poor electrical and thermal conductivity of the graphene film; the electrophoresis method is easy to operate, easy to control, low in cost, and suitable for large-scale preparation.
  • the prepared film is relatively uniform, but its elementary graphene is freely oriented, and many graphene edges are exposed on the surface of the graphene film, indicating that there are Large contact resistance and phonon scattering.
  • the self-assembly method is simple and easy, and can make the graphene oxide tile on the liquid surface.
  • the (002) planes of graphene oxide are parallel to each other, and the obtained graphene oxide film exhibits good uniformity and controllability.
  • graphene oxide is used as an intermediate, subsequent complicated reduction treatment will destroy the original regularity and leveling.
  • the paved microstructure causes loss of electrical and thermal conductivity.
  • the object of the present invention is to provide a method for horizontally tiling graphene to self-assemble to form a graphene film.
  • a graphene film whose (002) planes of graphene are parallel to each other.
  • the invention discloses a method for horizontally self-assembling graphene to form a graphene film.
  • Toluene and alcohol are added to an aqueous solution of graphene in proportion and mixed thoroughly, and then poured into a vacuum suction filter device; to be suction filtered
  • a vacuum suction filter device to be suction filtered
  • graphene is confined at the interface and spread horizontally under the action of shear force at the interface.
  • the (002) plane of graphene tends to be parallel to the interface, and graphene occurs
  • the graphene film is formed by self-assembly.
  • the suction filter device is started to draw out the solution, and the graphene film on the microscopic level with the (002) plane of the graphene parallel to each other is obtained on the filter paper.
  • the above method for horizontally tiling graphene to self-assemble to form a graphene film includes the following steps:
  • the mixture A is poured into the vacuum suction filtration device immediately after mixing.
  • the graphene transfers to the delamination interface until it is finally limited to all At the interface, graphene spontaneously tiles horizontally and drifts freely under the action of the interface shearing force, and its (002) plane tends to be parallel to the interface, while performing highly oriented self-assembly;
  • the concentration of graphene in the graphene suspension is 0.01-2 mg / mL.
  • the volume ratio of water to toluene is ⁇ 1: 8; the volume ratio of alcohol to toluene is 1: 8 to 2: 1.
  • step 3 the mixture A is processed under the condition that the ultrasonic power is 30-60W for 5-30s.
  • step 3 the waiting time for observing the delamination phenomenon of mixture A is 0.5 to 5 min.
  • the drying temperature is 25-80 ° C, and the drying time is 2-24 hours.
  • the method further includes repeating steps 2) to 4) to control the thickness of the graphene film by controlling the number of times of lamination.
  • the present invention has the following beneficial effects:
  • the method disclosed in the present invention can effectively control the micro-assembly structure of graphene film, can make graphene tile as horizontally as possible, and form graphene films with (002) planes of graphene parallel to each other on the micro level; the whole process is Physical process, no chemical reaction, simple process; the toluene and alcohol used are inexpensive and can be reused after purification; the required equipment is only a common vacuum suction filter device, and the cost is low; there is no raw material waste in the film making process, and the yield is 100%; Direct use of graphene avoids the subsequent reduction reaction required for the use of graphene oxide, and the product quality is good; the entire production cycle takes only a few minutes and the production efficiency is high; suitable for industrial production.
  • the graphene film prepared by the invention not only has the (002) planes of graphene parallel to each other on the microstructure level, but also is uniform and dense overall on the macroscopic level.
  • the transparency of the transparent conductive film is greatly improved and the square resistance is reduced after adopting the present invention.
  • the square resistance of the graphene film decreases after adopting the invention, and the thermal conductivity and air tightness are significantly improved.
  • the invention can repeat the entire film-forming step multiple times on the same area, and the thickness of the graphene film can be controlled by controlling the number of superimposed layers so that the thickness can be adjusted accurately.
  • Figure 2 is a graphene film obtained by suction filtration of 5 layers, and the (002) planes of graphene on the micro level are parallel to each other;
  • FIG. 3 is a comparison graph of the same amount of graphene obtained by the ordinary suction filtration method (a) and the method (b) of the present invention.
  • the present invention provides a method for horizontally tiling graphene to self-assemble to form a graphene film, which includes the following steps:
  • the concentration range of graphene is 0.01 ⁇ 2mg / ml, preferably the concentration range is 0.5 ⁇ 1mg / ml;
  • step b) Take out a certain amount of the suspension in step a), add water, alcohol and toluene, adjust the amount of these three liquids to achieve a predetermined suitable volume ratio between the three, and get mixture A; the volume of water and toluene The ratio should be greater than or equal to 1: 8, no upper limit; the volume ratio of alcohol to toluene is between 1: 8 and 2: 1; the preferred volume ratio of water, alcohol and toluene is 1: 1: 2;
  • Ultrasonic and oscillate mixture A wait until it is evenly mixed in a short time, and then pour it into the suction filter device; the ultrasonic power is between 30W and 60W, and the time is between 5-30s;
  • the waiting time range is 0.5 to 5min, preferably the waiting time is 1 to 2min;
  • the filter membrane Dry the filter membrane to obtain graphene membranes whose (002) planes of graphene are parallel to each other on the micro level; the drying temperature range is 25 ⁇ 80 °C, preferably the temperature is 60 °C; the drying time range is 2 ⁇ 24h , The preferred time is 12h.
  • step b) Take out 1mL of the suspension prepared in step a), add water, alcohol and toluene to it, adjust the dosage of these three liquids to achieve a predetermined suitable volume ratio of 1: 1: 2 between the three to obtain a mixture A;
  • step i) Take out 5mL of the suspension in step a), directly filter the membrane with the same suction filtration device, and dry at 60 ° C for 12h to obtain graphene membrane No. 2.
  • step b) Take out 1mL of the suspension in step a), add water, alcohol, and toluene, adjust the dosage of these three liquids so that the predetermined suitable volume ratio between the three is 2: 1: 4, and mixture A is obtained;
  • step i) Take out 5mL of the suspension in step a), directly filter the membrane with the same suction filtration device, and dry at 60 ° C for 12h to obtain graphene membrane 2.
  • the invention reduces the square resistance of the graphene film by 40%, and significantly improves the electrical conductivity.
  • FIG. 3 a comparison graph of membranes obtained by the same amount of graphene under the ordinary suction filtration method (a) and the method (b) of the present invention, as can be seen from the figure, obtained by using the method of the present invention
  • the coverage area of the membrane is much larger than that obtained by the ordinary suction filtration method, which shows that the present invention has the effect of promoting the graphene sheets to spread as horizontally as possible (the 002 planes are parallel to each other).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供了一种使石墨烯水平平铺自组装形成石墨烯膜的方法,该方法向石墨烯水溶液中按比例加入甲苯、酒精后充分混合均匀,然后倒入真空抽滤装置中;待抽滤瓶中的溶液形成上下分层的溶液体系时,石墨烯被限制在界面处,并在界面处剪切力的作用下水平铺展,石墨烯的(002)面趋于和界面平行,石墨烯发生自组装形成石墨烯膜,此时启动抽滤装置抽掉溶液,则在滤纸上获得在微观层面上石墨烯的(002)面相互平行的石墨烯膜。该方法工艺简单,所用试剂、设备成本低;制膜过程中无原料浪费,产率100%;直接采用石墨烯,避免了采用氧化石墨烯所需的后续还原反应,产品品质好;整个生产周期只要几分钟,生产效率高;适合工业化生产。

Description

一种使石墨烯水平平铺自组装形成石墨烯膜的方法 技术领域
本发明属于新能源材料制备技术领域,涉及一种使石墨烯水平平铺自组装形成石墨烯膜的方法。
背景技术
石墨烯由于其突出的理化性质以及独特的单原子层二维结构,被广泛应用于透明导电膜、电磁屏蔽膜、导热散热膜等研究领域。Chen课题组通过旋涂的方法结合热还原制备了rGO薄膜,该材料可以用作导电透明电极[ACS Nano,2008,2:463-470]。Mullen课题组采用浸涂的方法将GO组装到石英片上,热还原得到了可以用作透明导电电极的rGO薄膜[Nano Lett,2008,8:323-327]。Zheng课题组利用挥发诱导自组装的方法结合高温退火石墨化制备了超薄柔性的石墨烯膜[AdvFunct Mater,2014,24:4542-4548]。该膜展现了极佳的电磁屏蔽效率高达20dB,同时还表现了优异的热导率(达1100W m -1K -1)。
因此,石墨烯膜的成膜技术显得尤为重要。其中,对于构筑基元石墨烯的微观组装结构调控的相关研究工作依然有待补充完善。
当前石墨烯膜的主要制备方法可分为直接法和间接法两大类。直接法包括碳化硅或金属表面外延生长法和化学气相沉积法(CVD)等。直接法虽然能得到质量好、性能稳定的石墨烯薄膜,但对设备要求高,得到的薄膜在转移到其它基底上时也往往存在困难,所以不容易实现大规模应用。间接法包括真空抽滤法,喷涂法,旋涂法,电泳法,自组装法等。间接法这类先制备石墨烯再成膜的方法则不需要复杂的设备,成本较低,因此比较容易实现大规模应用。
(1)真空抽滤法
常见的真空抽滤法是将石墨烯/氧化石墨烯水溶液的浓度调整至需要的浓度, 然后进行快速真空抽滤。如果制备的薄膜厚度较大,可直接转移;如果薄膜厚度较小,可以使用溶剂先将滤膜溶解,然后再转移到合适的基底上。Eda等用混合纤维素酯薄膜真空抽滤不同体积的氧化石墨烯水分散液,在混合纤维素酯薄膜上得到氧化石墨烯膜,混合纤维素酯被溶解后再将氧化石墨烯膜转移到玻璃基底或塑料基底上,最后经化学还原和热退火处理后成功得到石墨烯薄膜[Nature nanotech,2008,3(5):270-274]。
(2)喷涂法
喷涂法是用喷雾枪将石墨烯分散液喷涂到经预热的基底上,待溶剂挥发后可得到石墨烯薄膜。Gilje等人用喷涂法,将溶于水的氧化石墨烯喷涂到SiO 2/Si基底上,还原后得到石墨烯薄膜[Nano Lett,2007,7(11):3394-3398]。
(3)旋涂法
旋涂法是将石墨烯溶液滴到旋转的基底上,通过调节基底转速可使石墨烯溶液在基底上均匀铺展,干燥后可得到石墨烯薄膜。Robinson等将氧化石墨烯悬浮液滴加到SiO 2/Si基板上,用N 2吹干,制备了较平整的石墨烯薄膜[Nano Lett,2008,8(10):3441-3445]。
(4)电泳法
氧化石墨烯带有较多的极性含氧基团,因此在极性溶剂中具有良好的悬浮性并能带上电荷,可利用氧化石墨烯悬浮液的可电泳性制备氧化石墨烯薄膜。石墨烯经过处理也能带电并成为稳定的悬浮液。在一定条件下,石墨烯还能与高分子共同电泳沉积得到复合膜。Wu等通过超声波处理得到石墨烯/异丙醇分散液,加入硝酸镁水溶液可使石墨烯片带上正电,然后通过电泳沉积可在ITO导电玻璃表面形成石墨烯膜[Adv Mater,2009,21(17):1756-1760]。
(5)自组装法
自组装法是利用石墨烯所在界面处的物理化学性质,使石墨烯在界面处自发 地排列结合。Chen等利用自组装法合成氧化石墨烯薄膜。将氧化石墨烯悬浮液在恒温水浴中加热,在液体空气界处非常迅速形成一层冷凝的薄膜,随后将膜下面的悬浮液倒出,干燥后可得到氧化石墨烯薄膜[Adv Mater,2009,21(29):3007-3011]。
上述方法虽然能够实现石墨烯的规模化制备,但也存在无法规避的问题。真空抽滤法简单高效,但是现有的真空抽滤法仅仅能使石墨烯水平取向,而无法控制石墨烯(002)面的朝向,即不能使石墨烯尽量地水平铺展,所以由此抽滤得到的石墨烯膜在微米尺度下虽有层状结构但是在纳米尺度下其基元石墨烯由于被外力强制压缩自身会产生很多褶皱,褶皱的存在大大增加了石墨烯膜内部的空隙和比表面积,增大了片与片之间的接触电阻和声子的散射,最终导致导电导热性能的损失;喷涂法、悬涂法可以制备大面积的石墨烯膜,但是石墨烯膜的微观结构杂乱无章,基元石墨烯毫无规律地堆叠造成了很大的接触电阻和声子散射,导致石墨烯膜的导电导热性能较差;电泳法操作简便、易于控制、成本较低、适于规模化制备,制得的膜较为均匀,但其基元石墨烯是自由取向,石墨烯膜表面裸露出很多石墨烯的边缘,表明片与片之间存在很大的接触电阻和声子散射,此外使用电泳法成膜后,将膜从电极上转移出去时会遇到很多不便;自组装方法简单易行,能够使氧化石墨烯在液体表面平铺成膜,氧化石墨烯的(002)面相互平行,得到的氧化石墨烯膜呈现较好的均匀性和可控性,但是由于采用氧化石墨烯作为中间体,后续复杂的还原处理会破坏原先规整平铺的微观结构,致使导电导热性能的损失。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种使石墨烯水平平铺自组装形成石墨烯膜的方法,该方法操作简单,制备效率高、成本低,能够获得在微观层面上石墨烯的(002)面相互平行的石墨烯膜。
为了达到上述目的,本发明采用以下技术方案予以实现:
本发明公开了一种使石墨烯水平平铺自组装形成石墨烯膜的方法,,向石墨烯水溶液中按比例加入甲苯、酒精后充分混合均匀,然后倒入真空抽滤装置中;待抽滤瓶中的溶液形成上下分层的溶液体系时,石墨烯被限制在界面处,并在界面处剪切力的作用下水平铺展,石墨烯的(002)面趋于和界面平行,石墨烯发生自组装形成石墨烯膜,此时启动抽滤装置抽掉溶液,则在滤纸上获得在微观层面上石墨烯的(002)面相互平行的石墨烯膜。
优选地,上述的一种使石墨烯水平平铺自组装形成石墨烯膜的方法,包括以下步骤:
1)将石墨烯分散在水中,超声处理,得到石墨烯悬浮液;
2)向石墨烯悬浮液中按比例加入甲苯、酒精和水,充分混合,得到混合物A;
3)将混合物A进行短时间的超声、振荡处理,待其混合均匀后即刻倒入真空抽滤装置中,待观察混合物A发生分层现象,石墨烯向分层界面处转移直至最终全部限制在界面处,石墨烯在界面剪切力度作用下自发水平平铺、自由漂移,其(002)面趋于和界面平行,同时进行高度取向的自组装;
4)自组装完成后,在界面处形成稳定均匀的石墨烯膜,启动真空抽滤装置,将溶液抽除,界面处的石墨烯膜整体缓缓下降并最终完整附着在滤纸表面;
5)将滤膜烘干,得到在微观层面上石墨烯的(002)面相互平行的石墨烯膜。
进一步优选地,步骤1)中,石墨烯悬浮液中石墨烯的浓度为0.01~2mg/mL。
进一步优选地,混合物A中,水与甲苯的体积比≥1:8;酒精与甲苯的体积比为1:8~2:1。
进一步优选地,步骤3)中,将混合物A在超声功率为30~60W的条件下,处理5~30s。
进一步优选地,步骤3)中,观察混合物A发生分层现象的等待时间为0.5~5min。
进一步优选地,步骤5)中,烘干温度为25~80℃,烘干时间为2~24h。
进一步优选地,还包括重复步骤2)~步骤4)的操作,通过控制层叠次数控制石墨烯膜的厚度。
与现有技术相比,本发明具有以下有益效果:
本发明公开的方法能对石墨烯膜的微观组装结构进行有效调控,能使石墨烯尽可能地水平平铺,形成在微观层面上石墨烯的(002)面相互平行的石墨烯膜;全程为物理过程,无化学反应,工艺简单;所用甲苯、酒精价格低廉,提纯后可重复使用;所需设备仅为普通真空抽滤装置,成本低;制膜过程中无原料浪费,产率100%;直接采用石墨烯,避免了采用氧化石墨烯所需的后续还原反应,产品品质好;整个生产周期只要几分钟,生产效率高;适合工业化生产。
本发明制备的石墨烯膜不仅在微观结构层面上石墨烯的(002)面相互平行而且宏观上整体均匀致密。在透明导电膜领域,和普通真空抽滤法相比,采用本发明后透明导电膜的透光度大幅提升,方阻下降。在电磁屏蔽膜、导热散热膜、气体密封膜领域,和普通真空抽滤法相比,采用本发明后石墨烯膜的方阻下降,导热系数和气密性显著提高。本发明可以在同一区域上多次重复整个成膜步骤,通过控制层层叠加的次数来控制石墨烯膜的厚度,使厚度精准可调。
附图说明
图1为本发明中的混合溶液体系在真空抽滤装置中静置2min后分层的状态;
图2为抽滤5层后得到的在微观层面上石墨烯的(002)面相互平行的石墨烯膜;
图3为相同量的石墨烯分别在普通抽滤法(a)和本发明所述方法(b)下得到的膜的对比图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面结合附图对本发明做进一步详细描述:
本发明提供的一种使石墨烯水平平铺自组装形成石墨烯膜的方法,包括以下步骤:
a)将石墨烯分散在水中,超声,使之能短暂形成稳定的悬浮液;石墨烯浓度范围0.01~2mg/ml,优选浓度范围0.5~1mg/ml;
b)取出一定量的步骤a)中的悬浮液,加入水、酒精、甲苯,调节这三种液体的用量使三者之间达到预定的合适的体积比,得混合物A;水与甲苯的体积比要大于等于1:8,无上限;酒精与甲苯的体积比在1:8到2:1之间;水、酒精、甲苯的优选体积比1:1:2;
c)将混合物A超声、振荡,待其短时间内混合均匀,随即倒入抽滤装置中;超声功率在30W到60W之间,时间5~30s之间;
d)在几分钟内,混合物A发生分层,石墨烯逐渐向界面处转移,并最终全部被限制在界面处,与此同时,到达分界面的石墨烯在界面剪切力度作用下自发水平平铺、自由漂移,其(002)面趋于和界面平行,同时进行高度取向的自组装;等待所需时间范围0.5~5min,优选等待时间为1~2min;
e)自组装完成后,在界面处形成稳定均匀的石墨烯膜,从侧面看石墨烯膜均匀平整,结构稳定;
f)启动抽滤装置,将溶液抽除,界面处的石墨烯膜整体缓缓下降并最终完整附着在滤纸表面;
g)将滤膜烘干,即可得到在微观层面上石墨烯的(002)面相互平行的石墨烯膜;烘干温度范围25~80℃,优选温度60℃;烘干时间范围2~24h,优选时间12h。
实施例1
a)将高导电石墨烯(TNERGO-50,中国科学院成都有机化学有限公司)分散在水中,超声,使之能短暂形成稳定的悬浮液,石墨烯浓度1mg/mL;
b)取出1mL步骤a)中制得的悬浮液,向其中加入水、酒精、甲苯,调节这三种液体的用量使三者之间达到预定的合适的体积比1:1:2,得混合物A;
c)将混合物A超声、振荡,待其短时间内混合均匀,随即倒入抽滤装置中;超声功率在45W,时间15s;
d)在2分钟内,混合物A发生分层,石墨烯逐渐向界面处转移,并最终全部被限制在界面处,与此同时,到达分界面的石墨烯在界面剪切力度作用下自发水平平铺、自由漂移,其(002)面趋于和界面平行,同时进行高度取向的自组装;
e)自组装完成后,在界面处形成稳定均匀的石墨烯膜,结果参见图1,从侧面看石墨烯膜均匀平整,结构稳定;
f)启动抽滤装置,将溶液抽除,界面处的石墨烯膜整体缓缓下降并最终完整附着在滤纸表面;
g)重复步骤b)-f),一共抽滤5层;
h)将滤膜在60℃下烘干12h,即可得到在微观层面上石墨烯的(002)面相互平行的石墨烯膜①号;
i)取出5mL的步骤a)中的悬浮液,用相同的抽滤装置直接抽滤成膜,在60℃ 下烘干12h,得到石墨烯膜②号。
测量两种不同微观结构的石墨烯膜的方阻,①号方阻3.34Ω/□,②号方阻10.04Ω/□。结果参见图2,可以看出,本实施例通过调控石墨烯膜的微观结构使石墨烯膜的方阻下降了三分之二,从而显著提高了导电性能。
实施例2
a)将导电导热型石墨烯(SE1233,常州第六元素材料科技股份有限公司)分散在水中,超声,使之能短暂形成稳定的悬浮液,石墨烯浓度1mg/mL;
b)取出1mL的步骤a)中的悬浮液,加入水、酒精、甲苯,调节这三种液体的用量使三者之间达到预定的合适的体积比2:1:4,得混合物A;
c)将混合物A超声、振荡,待其短时间内混合均匀,随即倒入抽滤装置中;超声功率在45W,时间15s;
d)在2分钟内,混合物A发生分层,石墨烯逐渐向界面处转移,并最终全部被限制在界面处,与此同时,到达分界面的石墨烯在界面剪切力度作用下自发水平平铺、自由漂移,其(002)面趋于和界面平行,同时进行高度取向的自组装;
e)自组装完成后,在界面处形成稳定均匀的石墨烯膜,从侧面看石墨烯膜均匀平整,结构稳定;
f)启动抽滤装置,将溶液抽除,界面处的石墨烯膜整体缓缓下降并最终完整附着在滤纸表面;
g)重复步骤b)-f),一共抽滤5层;
h)将滤膜在60℃下烘干12h,即可得到在微观层面上石墨烯的(002)面相互平行的石墨烯膜①号;
i)取出5mL的步骤a)中的悬浮液,用相同的抽滤装置直接抽滤成膜,在60℃下烘干12h,得到石墨烯膜②号。
测量两种不同微观结构的石墨烯膜的方阻,①号方阻26.24Ω/□,②号方阻 42.15Ω/□。本发明通过调控石墨烯膜的微观结构使石墨烯膜的方阻下降了40%,显著提高了导电性能。
参见图3,相同量的石墨烯分别在普通抽滤法(a)和本发明所述方法(b)下得到的膜的对比图,从图中可以看出,使用本发明所述方法得到的膜的覆盖面积比普通抽滤法得到的膜大得多,这说明本发明具有促使石墨烯片尽可能水平铺展(其002面相互平行)的作用。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。

Claims (8)

  1. 一种使石墨烯水平平铺自组装形成石墨烯膜的方法,其特征在于,向石墨烯水溶液中按比例加入甲苯、酒精后充分混合均匀,然后倒入真空抽滤装置中;待抽滤瓶中的溶液形成上下分层的溶液体系时,石墨烯被限制在界面处,并在界面处剪切力的作用下水平铺展,石墨烯的(002)面趋于和界面平行,石墨烯发生自组装形成石墨烯膜,此时启动抽滤装置抽掉溶液,则在滤纸上获得在微观层面上石墨烯的(002)面相互平行的石墨烯膜。
  2. 根据权利要求1所述的一种使石墨烯水平平铺自组装形成石墨烯膜的方法,其特征在于,包括以下步骤:
    1)将石墨烯分散在水中,超声处理,得到石墨烯悬浮液;
    2)向石墨烯悬浮液中按比例加入甲苯、酒精和水,充分混合,得到混合物A;
    3)将混合物A进行短时间的超声、振荡处理,待其混合均匀后即刻倒入真空抽滤装置中,待观察混合物A发生分层现象,石墨烯向分层界面处转移直至最终全部限制在界面处,石墨烯在界面剪切力度作用下自发水平平铺、自由漂移,其(002)面趋于和界面平行,同时进行高度取向的自组装;
    4)自组装完成后,在界面处形成稳定均匀的石墨烯膜,启动真空抽滤装置,将溶液抽除,界面处的石墨烯膜整体缓缓下降并最终完整附着在滤纸表面;
    5)将滤膜烘干,得到在微观层面上石墨烯的(002)面相互平行的石墨烯膜。
  3. 根据权利要求2所述的使石墨烯水平平铺自组装形成石墨烯膜的方法,其特征在于,步骤1)中,石墨烯悬浮液中石墨烯的浓度为0.01~2mg/mL。
  4. 根据权利要求2所述的使石墨烯水平平铺自组装形成石墨烯膜的方法,其特征在于,混合物A中,水与甲苯的体积比≥1:8;酒精与甲苯的体积比为1:8~2:1。
  5. 根据权利要求2所述的使石墨烯水平平铺自组装形成石墨烯膜的方法, 其特征在于,步骤3)中,将混合物A在超声功率为30~60W的条件下,处理5~30s。
  6. 根据权利要求2所述的使石墨烯水平平铺自组装形成石墨烯膜的方法,其特征在于,步骤3)中,观察混合物A发生分层现象的等待时间为0.5~5min。
  7. 根据权利要求2所述的使石墨烯水平平铺自组装形成石墨烯膜的方法,其特征在于,步骤5)中,烘干温度为25~80℃,烘干时间为2~24h。
  8. 根据权利要求2所述的使石墨烯水平平铺自组装形成石墨烯膜的方法,其特征在于,还包括重复步骤2)~步骤4)的操作,通过控制层叠次数控制石墨烯膜的厚度。
PCT/CN2018/115441 2018-11-06 2018-11-14 一种使石墨烯水平平铺自组装形成石墨烯膜的方法 WO2020093426A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/043,702 US11724940B2 (en) 2018-11-06 2018-11-14 Method for forming graphene film through horizontally tiling and self-assembling graphene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811314339.3A CN109205607B (zh) 2018-11-06 2018-11-06 一种使石墨烯水平平铺自组装形成石墨烯膜的方法
CN201811314339.3 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020093426A1 true WO2020093426A1 (zh) 2020-05-14

Family

ID=64995506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115441 WO2020093426A1 (zh) 2018-11-06 2018-11-14 一种使石墨烯水平平铺自组装形成石墨烯膜的方法

Country Status (3)

Country Link
US (1) US11724940B2 (zh)
CN (1) CN109205607B (zh)
WO (1) WO2020093426A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788476A (zh) * 2021-09-13 2021-12-14 中钢集团南京新材料研究院有限公司 一种连续制备石墨烯薄膜的系统及方法
CN114225716A (zh) * 2021-12-14 2022-03-25 河北工业大学 一种氧化石墨烯改性复合纳滤膜及其制备方法与应用
CN115709988A (zh) * 2022-11-30 2023-02-24 广东墨睿科技有限公司 一种石墨烯超导膜及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913185B (zh) * 2019-03-11 2021-05-04 中国科学院合肥物质科学研究院 一种含导热膜的多层结构导热复合材料及其制备方法
CN114633531A (zh) * 2022-03-01 2022-06-17 浙江工业大学 一种各向异性导热电磁屏蔽尼龙复合膜的制备方法
CN115180615B (zh) * 2022-07-27 2023-07-18 浙江大学 一种高取向石墨烯膜的制备方法
CN117303356A (zh) * 2023-09-19 2023-12-29 深圳市中明华顶胜新材料有限公司 一种层数可控的石墨烯薄膜制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708443A (zh) * 2013-12-17 2014-04-09 南京科孚纳米技术有限公司 一种石墨烯纳米微片薄膜的制备工艺
CN104592535A (zh) * 2013-10-31 2015-05-06 青岛泰浩达碳材料有限公司 柔性石墨烯复合薄膜的制备方法
CN105254920A (zh) * 2015-09-21 2016-01-20 武汉理工大学 一种石墨烯纸预浸料的制备方法
WO2017213045A1 (ja) * 2016-06-08 2017-12-14 国立研究開発法人産業技術総合研究所 窒素ドープグラフェン膜とその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101559944B (zh) * 2009-05-27 2011-05-11 天津大学 导电石墨烯膜及其自组装制备方法
CN102153065B (zh) * 2010-11-09 2012-05-30 厦门大学 一种金纳米棒-石墨烯复合膜及其制备方法
CN103253653B (zh) * 2012-02-15 2016-01-27 国家纳米科学中心 氧化石墨烯膜、石墨烯膜及其制备方法和应用
CN103641098A (zh) * 2013-11-29 2014-03-19 太原理工大学 一种将纳米碳材料快速组装到油水界面形成柔性薄膜的方法
US10145005B2 (en) * 2015-08-19 2018-12-04 Guardian Glass, LLC Techniques for low temperature direct graphene growth on glass
JP7038659B2 (ja) * 2015-12-28 2022-03-18 ナノテク インストゥルメンツ,インコーポレイテッド グラフェン-炭素ハイブリッド発泡体
CN106943896A (zh) * 2017-03-29 2017-07-14 中国石油化工股份有限公司 一种三维多孔石墨烯功能化组装体膜材料的制备及应用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104592535A (zh) * 2013-10-31 2015-05-06 青岛泰浩达碳材料有限公司 柔性石墨烯复合薄膜的制备方法
CN103708443A (zh) * 2013-12-17 2014-04-09 南京科孚纳米技术有限公司 一种石墨烯纳米微片薄膜的制备工艺
CN105254920A (zh) * 2015-09-21 2016-01-20 武汉理工大学 一种石墨烯纸预浸料的制备方法
WO2017213045A1 (ja) * 2016-06-08 2017-12-14 国立研究開発法人産業技術総合研究所 窒素ドープグラフェン膜とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CUI, YIZHI ET AL.: "Synthesis and Structural Characterization of Single-and Bi-layer Graphene", CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, vol. 34, no. 8, 1 August 2014 (2014-08-01), pages 876 - 882, XP055705472, DOI: 10.3969/j.issn.1672-7126.2014.08.19 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788476A (zh) * 2021-09-13 2021-12-14 中钢集团南京新材料研究院有限公司 一种连续制备石墨烯薄膜的系统及方法
CN114225716A (zh) * 2021-12-14 2022-03-25 河北工业大学 一种氧化石墨烯改性复合纳滤膜及其制备方法与应用
CN115709988A (zh) * 2022-11-30 2023-02-24 广东墨睿科技有限公司 一种石墨烯超导膜及其制备方法
CN115709988B (zh) * 2022-11-30 2024-01-26 广东墨睿科技有限公司 一种石墨烯超导膜及其制备方法

Also Published As

Publication number Publication date
CN109205607B (zh) 2020-03-17
CN109205607A (zh) 2019-01-15
US20210253433A1 (en) 2021-08-19
US11724940B2 (en) 2023-08-15

Similar Documents

Publication Publication Date Title
WO2020093426A1 (zh) 一种使石墨烯水平平铺自组装形成石墨烯膜的方法
WO2021047318A1 (zh) 一种辐射制冷复合光子结构薄膜及其制备方法
CN103611431B (zh) 一种多孔陶瓷支撑的石墨烯膜的制备方法
CN105777206B (zh) 一种制备超薄有机硅膜的方法
CN108854571B (zh) 一种利用超声雾化沉积法制备分离膜的方法
WO2022000608A1 (zh) 一种气凝胶复合膜及制备方法和应用
CN108914187A (zh) 一种钛合金表面高硬度耐磨抗氧化复合梯度陶瓷涂层及其制备方法
CN108445166B (zh) 一种三维多孔石墨烯超薄膜及其制备方法
CN101664646B (zh) 一种陶瓷超滤膜的制备方法及自动涂膜装置
CN106430079B (zh) 一种电场诱导聚合物基功能梯度复合微米柱的制造方法
CN108330679A (zh) 一种石墨烯涂层导电纤维的制备方法
Miki et al. Preparation of nanoporous TiO2 film with large surface area using aqueous sol with trehalose
CN109295451A (zh) 等离子体辅助气溶胶沉积成膜方法及气溶胶沉积装置
Chen et al. Sol–gel preparation of thick titania coatings aided by organic binder materials
CN103280454B (zh) 基于导电纳米带电极的微纳单晶场效应晶体管及制备方法
WO2014194484A1 (zh) 一种用于室温检测的no2气体传感器的制作方法
CN109433018A (zh) 一种厚度小于50nm超薄硅基醇水分离膜的制备方法
CN104851846A (zh) 一种柔性防水氧封装结构及其制备方法和应用
CN103290411A (zh) 一种纳米材料转移沉积方法
CN106596654B (zh) 基于三维多孔石墨烯超薄膜的垂直响应型气体传感器及其制备方法
CN107540402A (zh) 一种多孔钛酸铜钙薄膜的制备方法
CN106517812B (zh) 绒面透明导电的FTO/Gr-CNTs复合薄膜及其制备方法
TW201117412A (en) Manufacturing method for solar cell Cux ZnSnSy (CZTS) this film
WO2011158995A1 (ko) 이중막 구조의 fto제조방법
CN102685943A (zh) 一种高效节能新型纳米材料电热膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939713

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 29.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18939713

Country of ref document: EP

Kind code of ref document: A1