WO2020093296A1 - Procédé de calcul de flux de puissance basé sur l'intervalle pour un système d'énergie intégré puissance-chaleur - Google Patents

Procédé de calcul de flux de puissance basé sur l'intervalle pour un système d'énergie intégré puissance-chaleur Download PDF

Info

Publication number
WO2020093296A1
WO2020093296A1 PCT/CN2018/114473 CN2018114473W WO2020093296A1 WO 2020093296 A1 WO2020093296 A1 WO 2020093296A1 CN 2018114473 W CN2018114473 W CN 2018114473W WO 2020093296 A1 WO2020093296 A1 WO 2020093296A1
Authority
WO
WIPO (PCT)
Prior art keywords
state variable
load
node
flow
energy system
Prior art date
Application number
PCT/CN2018/114473
Other languages
English (en)
Chinese (zh)
Inventor
滕贤亮
杜刚
吴仕强
王文学
卫志农
孙国强
臧海祥
陈�胜
Original Assignee
国电南瑞科技股份有限公司
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司, 河海大学 filed Critical 国电南瑞科技股份有限公司
Publication of WO2020093296A1 publication Critical patent/WO2020093296A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Definitions

  • the invention relates to the field of operation scheduling and control of an integrated energy system, and in particular to an interval power flow calculation method of an electric-thermal interconnected integrated energy system.
  • Energy Internet can cover energy systems such as power supply, gas supply, heating, cooling, hydrogen supply and electrified transportation.
  • power supply gas supply
  • heating cooling
  • hydrogen supply electrified transportation
  • the uncertainties of power systems and thermal systems increase.
  • the distribution of power flow may fundamentally change, such as the reverse flow of reactive power in the grid
  • the node voltage exceeds the limit and the flow of the heat network pipeline is reversed. Therefore, it is necessary to use the uncertainty analysis method to describe the coupling characteristics and power flow distribution of the electric heating interconnection system, and then analyze the mutual influence and risk assessment of the electric heating system.
  • Uncertainty power flow calculation methods are mainly divided into three categories: stochastic power flow, fuzzy power flow and interval power flow according to the modeling method of uncertainty. Among them, the information of the uncertainty required by the interval flow is the least, and only the upper and lower bounds of the uncertainty need to be known. Random power flow and fuzzy power flow need to obtain the probability density function and membership density function of uncertain quantities, and these functions are often difficult to determine in practice, and they are often chosen by humans. At present, the most representative method of interval power flow calculation in power systems is the interval algorithm, but the interval iterative algorithm will encounter the problem of expansion of the interval solution set during the interval operation, resulting in poor numerical stability and computational complexity of the local optimal solution. Too large and other issues.
  • the present invention provides a linear optimization-based In the electric-thermal interconnected interval power flow method, the power flow and thermal power flow equations are linearized by multivariate Taylor expansion, and the upper and lower limits of each state variable are iteratively solved using an optimization method. At the same time, considering that it is difficult for the electric heating load to reach the maximum or minimum at the same time, the concept of uncertain load budget is introduced to overcome the conservativeness of the interval solution.
  • the method for calculating the interval power flow of the integrated energy system with electricity and heat according to the present invention includes:
  • the model of the integrated energy system of electricity-heat interconnection established in step (1) is as follows:
  • P i and Q i are the injected active and reactive power of node i respectively
  • ⁇ ij ⁇ i - ⁇ j
  • U i and ⁇ i are the voltage and phase angle of node i
  • U j and ⁇ j are respectively Is the voltage and phase angle of node j
  • G ij and B ij are the conductance and susceptance of the ⁇ -type equivalent circuit
  • n represents the number of branches connected to node i
  • A is the network node-branch pipe correlation matrix
  • m is the heat network pipeline flow
  • m q is the node inflow load flow
  • B is the loop correlation matrix
  • h f is the pipeline pressure drop caused by friction loss
  • K is the pipeline resistance coefficient
  • L is the pipeline length
  • D is the pipeline diameter
  • is the water density
  • g is the acceleration of gravity
  • f is the friction coefficient
  • is the pipe roughness
  • Re is the Reynolds number
  • is the
  • the unary quadratic function of the flow m in step (2) is specifically:
  • step (3) specifically includes:
  • m q, i is the inflow load flow of the node of the ith pipe of the heat network
  • step (4) specifically includes:
  • Represents the vth element of the state variable at the kth iteration, with Respectively The upper and lower bounds of the interval, M represents the number of elements of the state variable, the load variable Z L [P L ; Q L ; ⁇ L ] T , P L is the active power of the electric load, Q L is the reactive power of the electric load, ⁇ L is the heat load power, Z Lr represents the rth load value, Represents the expected value of the rth load, ⁇ r represents the standard deviation of the rth load, ⁇ is the set of uncertain loads, n r is the number of uncertain loads, Uncertain budget for load, uncertain budget for load Value is greater than expected
  • the present invention Compared with the prior art, the present invention has obvious advantages: the present invention introduces a linear optimization method into the heat network, linearizes the power flow and thermal power flow equations through multivariate Taylor expansion, and successively iteratively solves each state variable by using the optimization method Upper and lower limits. At the same time, considering that it is difficult for the electric heating load to reach the maximum or minimum at the same time, the concept of uncertain load budget is introduced to overcome the conservativeness of the interval solution.
  • Figure 1 is a diagram of Beauty's electric-thermal interconnection integrated energy system.
  • This embodiment provides a method for calculating the interval power flow of an integrated electric-thermal interconnected energy system, including the following steps:
  • P i and Q i are the injected active and reactive power of node i respectively
  • ⁇ ij ⁇ i - ⁇ j
  • U i and ⁇ i are the voltage and phase angle of node i
  • U j and ⁇ j are respectively Is the voltage and phase angle of node j
  • G ij and B ij are the conductance and susceptance of the ⁇ -type equivalent circuit
  • n represents the number of branches connected to node i
  • A is the network node-branch pipe correlation matrix
  • m is the heat network pipeline flow
  • m q is the node inflow load flow
  • B is the loop correlation matrix
  • h f is the pipeline pressure drop caused by friction loss
  • K is the pipeline resistance coefficient
  • L is the pipeline length
  • D is the pipeline diameter
  • is the water density
  • g is the acceleration of gravity
  • f is the friction coefficient
  • is the pipe roughness
  • Re is the Reynolds number
  • is the
  • Equations (1)-(2) are grid steady-state models
  • equations (3)-(8) are heat network hydraulic models
  • equation (3) is the node flow balance equation
  • equation (4) is the loop pressure equation
  • equation (5) Is the head loss equation
  • the simultaneous equations (6)-(8) can obtain the pipeline resistance coefficient K.
  • Equations (9)-(11) are the thermal network thermal model
  • equation (9) is the heat load power equation
  • equation (10) is the pipeline temperature drop equation
  • equation (11) is the node power conservation equation.
  • the fixed hot spot ratio in the coupling element is described by equation (12)
  • the variable thermoelectric ratio is described by equation (13).
  • the electrical load probability model is described by equation (14), and the thermal load probability model is described by equation (15).
  • the resistance coefficient K of the pipeline can be determined by equations (6)-(8), and the pressure drop of the pipeline can be obtained by bringing K into equation (5), so K is an important physical quantity.
  • equation (8) is the logarithmic equation in the transcendental equation, so the specific value of K cannot be given when the pipeline flow rate is unknown in advance.
  • K the initial value of the flow m (0) , the initial value of the resistance coefficient K (0) , and then iteratively calculated K (1) K (2) ... K (i) , but the calculation is too large and more complicated. Therefore, the present invention proposes a conversion method of the drag coefficient K.
  • equation (16) is transformed into:
  • the present invention adopts an iterative method to ensure the linearization accuracy, and selects the initial iteration value by the following method.
  • a linear optimization method is used to iteratively solve the upper and lower limits of the state variable. It includes the following steps:
  • Represents the vth element of the state variable at the kth iteration, with Respectively The upper and lower bounds of the interval, M represents the number of elements of the state variable, the load variable Z L [P L ; Q L ; ⁇ L ] T , P L is the active power of the electric load, Q L is the reactive power of the electric load, ⁇ L is the heat load power, Z Lr represents the rth load value, Represents the expected value of the rth load, ⁇ r represents the standard deviation of the rth load, ⁇ is the set of uncertain loads, n r is the number of uncertain loads, Uncertain budget for load;
  • is the preset threshold.
  • NLP nonlinear programming
  • LP linear programming
  • the following embodiment performs simulation verification on this embodiment.
  • Method 1 represents the solution of the deterministic power flow
  • Method 2 represents the interval solution obtained by (30) and (31)
  • Method 3 represents the random sampling of 10000 groups within the expected value of each load ⁇ 10% Uniformly distributed, and the interval solution of the state quantity calculated by the Newton method of load flow; from Table 1 we can see that the deterministic power flow values are within the range of the range power flow, and the upper / lower limits of Method 3 are basically similar to the upper / lower limits of Method 1. Thus, the correctness and rationality of the proposed linear optimization method are verified.
  • Method 4 means adding the uncertainty budget and the interval solution obtained by the basic invention method. It can be seen that the interval range is greatly reduced after the uncertainty budget is added.
  • Table 2 gives the total width of each state variable interval range. As can be seen from Table 2, after considering the uncertain budget, the interval length of the power flow is greatly reduced, so the uncertain budget can effectively overcome the conservativeness of the interval

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Power Engineering (AREA)
  • Game Theory and Decision Science (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

La présente invention concerne un procédé de calcul de flux de puissance basé sur l'intervalle pour un système d'énergie intégré puissance-chaleur, comprenant les étapes consistant à : (1) obtenir des informations de système d'énergie intégré puissance-chaleur et établir un modèle de système d'énergie intégré puissance-chaleur en fonction des informations ; (2) convertir une équation de chute de pression de tuyau dans le modèle de système en une fonction quadratique à une variable d'un débit m ; (3) obtenir la valeur initiale itérative d'une variable d'état par calcul selon le modèle de système d'énergie intégré puissance-chaleur ; (4) résoudre de manière itérative les limites supérieure et inférieure de la variable d'état au moyen d'un procédé d'optimisation linéaire en fonction de la valeur initiale itérative de la variable d'état et de la fonction quadratique à une variable du débit m ; et (5) donner aux limites supérieure et inférieure de la variable d'état la forme d'un intervalle et sortir l'intervalle en tant que solution de flux de puissance. La présente invention présente une faible complexité de calcul et surmonte le conservatisme de la solution d'intervalle.
PCT/CN2018/114473 2018-11-06 2018-11-08 Procédé de calcul de flux de puissance basé sur l'intervalle pour un système d'énergie intégré puissance-chaleur WO2020093296A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811310786.1A CN109242365B (zh) 2018-11-06 2018-11-06 一种电-热互联综合能源系统的区间潮流计算方法
CN201811310786.1 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020093296A1 true WO2020093296A1 (fr) 2020-05-14

Family

ID=65076923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114473 WO2020093296A1 (fr) 2018-11-06 2018-11-08 Procédé de calcul de flux de puissance basé sur l'intervalle pour un système d'énergie intégré puissance-chaleur

Country Status (2)

Country Link
CN (1) CN109242365B (fr)
WO (1) WO2020093296A1 (fr)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111626003A (zh) * 2020-05-19 2020-09-04 西安建筑科技大学 一种供暖系统热负荷分层预测方法、存储介质及预测设备
CN111680405A (zh) * 2020-05-25 2020-09-18 西安理工大学 一种自然循环能力水力特性计算方法
CN111799776A (zh) * 2020-06-09 2020-10-20 国网山东省电力公司经济技术研究院 考虑供热网储热特性的电-热综合能源系统优化调度方法
CN111799777A (zh) * 2020-06-11 2020-10-20 国网山东省电力公司经济技术研究院 一种考虑天然气与电力耦合的综合能源规划方法
CN111831963A (zh) * 2020-07-14 2020-10-27 中国南方电网有限责任公司 电力市场背景下的综合能源服务商的可调控能力评估方法
CN111882136A (zh) * 2020-08-06 2020-11-03 南方电网科学研究院有限责任公司 一种园区综合能源系统的双目标优化调度方法及装置
CN111898248A (zh) * 2020-07-02 2020-11-06 北京市煤气热力工程设计院有限公司 综合能源仿真规划设计系统
CN111914425A (zh) * 2020-08-06 2020-11-10 江苏筑森建筑设计有限公司 一种直流配电线路电压损失的校核方法
CN112016033A (zh) * 2020-08-07 2020-12-01 大连理工大学 一种基于前推回代法的电-热-气综合能源系统潮流计算方法
CN112070358A (zh) * 2020-08-11 2020-12-11 山东电力研究院 低真空供热机组电负荷调整区间确定方法及系统
CN112182905A (zh) * 2020-10-16 2021-01-05 北京科东电力控制系统有限责任公司 一种用于综合能源系统的供热管网仿真方法和装置
CN112200695A (zh) * 2020-10-30 2021-01-08 东南大学 一种城市级综合能源系统优化调度方法
CN112330127A (zh) * 2020-10-29 2021-02-05 东南大学 一种多时间尺度电热综合能源系统静态安全控制方法
CN112436519A (zh) * 2020-12-14 2021-03-02 国网辽宁省电力有限公司鞍山供电公司 基于改进关联矩阵的辐射状配电网潮流计算方法及装置
CN112699513A (zh) * 2020-12-22 2021-04-23 广东电网有限责任公司广州供电局 一种综合能源系统抗差状态估计方法及装置
CN112884282A (zh) * 2021-01-19 2021-06-01 中国能源建设集团云南省电力设计院有限公司 一种电力系统互联综合风险评估方法
CN112986731A (zh) * 2021-02-08 2021-06-18 天津大学 计及地震不确定性的电气互联系统韧性评估与提升方法
CN113159983A (zh) * 2021-03-15 2021-07-23 东南大学 离网型光气热电联产综合能源系统协调控制方法
CN113155888A (zh) * 2021-04-25 2021-07-23 山东大学 热电联供系统动态等效电路及其工作方法
CN113297813A (zh) * 2021-05-21 2021-08-24 华南理工大学 基于改进三阶牛顿迭代法的电-气能源系统潮流计算方法
CN113313369A (zh) * 2021-05-21 2021-08-27 华南理工大学 基于改进雅可比矩阵的热网潮流计算方法
CN113360289A (zh) * 2021-07-08 2021-09-07 山东大学 基于边缘计算的多区域综合能源系统分布式协同优化方法
CN113515853A (zh) * 2021-06-08 2021-10-19 国网江苏省电力有限公司连云港供电分公司 一种基于线性方程的电热互联综合能源系统优化调度方法
CN113595084A (zh) * 2021-06-18 2021-11-02 湖南大学 一种考虑气象因素的配电网潮流高效计算方法
CN113627021A (zh) * 2021-08-11 2021-11-09 东南大学 一种基于序列凸规划的电气互联系统最优能流计算方法
CN113690891A (zh) * 2021-07-29 2021-11-23 国网江苏省电力有限公司连云港供电分公司 一种基于解析法的电-热互联综合能源系统概率潮流确定方法
CN113705911A (zh) * 2021-08-31 2021-11-26 西安热工研究院有限公司 一种基于灰狼算法的热电负荷经济性优化分配方法
CN113806972A (zh) * 2021-08-04 2021-12-17 浙江大学 一种考虑供需双侧灵活性的综合能源系统可靠性分析方法
CN113837577A (zh) * 2021-09-14 2021-12-24 国网河南省电力公司经济技术研究院 一种农村电热联合系统耦合元件规划方法
CN113919754A (zh) * 2021-11-18 2022-01-11 华北电力大学 一种基于区块链的综合能源系统分布式状态估计方法
CN114004081A (zh) * 2021-10-29 2022-02-01 合肥工业大学 一种基于仿射算法的配电网负荷供应能力计算方法
CN114004110A (zh) * 2021-11-24 2022-02-01 天津大学 一种面向电-热综合能源系统的量子化事件驱动仿真方法
CN114048919A (zh) * 2021-11-25 2022-02-15 杭州众工电力科技有限公司 一种基于热网调节优化的综合能源系统灵活性评价方法
CN114069638A (zh) * 2021-11-09 2022-02-18 国网浙江省电力有限公司杭州供电公司 考虑可调节负荷影响和负荷不确定性的混合量测状态估计方法
CN114154276A (zh) * 2021-10-29 2022-03-08 天津大学 考虑蒸汽空腔断流弥合的长输供热系统停泵水锤数值仿真算法
CN114219296A (zh) * 2021-12-15 2022-03-22 东南大学 一种基于微分变换的电热综合能源系统动态能流计算方法
CN114417603A (zh) * 2022-01-18 2022-04-29 福州大学 计及热网输配能力的电热综合能源系统仿射能流计算方法
CN114662756A (zh) * 2022-03-23 2022-06-24 福州大学 考虑源-荷不确定性的热电微能网双层仿射优化调度方法
CN115238597A (zh) * 2022-09-23 2022-10-25 国网浙江省电力有限公司宁波供电公司 涉及园区级综合能源系统源网荷碳排放模型的构建方法
CN115906411A (zh) * 2022-10-24 2023-04-04 国网江苏省电力有限公司苏州供电分公司 考虑全动态的电热综合能源系统最优能流建模方法及系统
CN116523250A (zh) * 2023-05-08 2023-08-01 上海枢源节能科技有限公司 一种能源调控辅助决策方法
CN116739404A (zh) * 2023-03-30 2023-09-12 天津大学 一种综合能源系统熵态模型中网络化特征模块的构建方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110728032B (zh) * 2019-09-20 2021-04-27 河海大学 一种计及环网的电-热互联综合能源系统快速潮流计算方法
CN110765577B (zh) * 2019-09-20 2021-04-27 河海大学 一种基于概率能量流的辐射型热网统计特征获取方法
CN110707704A (zh) * 2019-10-08 2020-01-17 河海大学 基于gmm及多点线性半不变量法的电-热互联综合能源系统概率潮流分析方法
CN110752605B (zh) * 2019-10-29 2021-05-14 国家电网有限公司 一种电热耦合综合能源系统最优潮流计算方法
CN110991061B (zh) * 2019-12-10 2023-07-07 国网浙江省电力有限公司杭州供电公司 热电综合能源仿真规划方法
CN111799799B (zh) * 2020-07-13 2022-03-08 福州大学 一种基于区间泰勒展开法的交直流混合配电网区间潮流计算方法
CN113283077B (zh) * 2021-05-21 2022-07-01 福州大学 考虑相关性的电-热-氢综合能源系统区间能流计算方法
CN114899825B (zh) * 2022-04-20 2024-04-16 国家电网有限公司技术学院分公司 一种基于网络等值变换的配电网综合优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107451680A (zh) * 2017-07-12 2017-12-08 河海大学 一种电‑气互联系统随机最优潮流启发式计算方法
CN107563674A (zh) * 2017-10-09 2018-01-09 清华大学 一种考虑管道动态特性的电‑热耦合系统状态估计方法
CN107887912A (zh) * 2017-12-14 2018-04-06 清华大学 一种静态潮流分析方法及静态潮流分析系统
CN108460547A (zh) * 2018-05-16 2018-08-28 山东大学 热电联供系统热电联合状态估计方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107451680A (zh) * 2017-07-12 2017-12-08 河海大学 一种电‑气互联系统随机最优潮流启发式计算方法
CN107563674A (zh) * 2017-10-09 2018-01-09 清华大学 一种考虑管道动态特性的电‑热耦合系统状态估计方法
CN107887912A (zh) * 2017-12-14 2018-04-06 清华大学 一种静态潮流分析方法及静态潮流分析系统
CN108460547A (zh) * 2018-05-16 2018-08-28 山东大学 热电联供系统热电联合状态估计方法及系统

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111626003A (zh) * 2020-05-19 2020-09-04 西安建筑科技大学 一种供暖系统热负荷分层预测方法、存储介质及预测设备
CN111626003B (zh) * 2020-05-19 2023-04-18 西安建筑科技大学 一种供暖系统热负荷分层预测方法、存储介质及预测设备
CN111680405A (zh) * 2020-05-25 2020-09-18 西安理工大学 一种自然循环能力水力特性计算方法
CN111799776A (zh) * 2020-06-09 2020-10-20 国网山东省电力公司经济技术研究院 考虑供热网储热特性的电-热综合能源系统优化调度方法
CN111799777A (zh) * 2020-06-11 2020-10-20 国网山东省电力公司经济技术研究院 一种考虑天然气与电力耦合的综合能源规划方法
CN111898248A (zh) * 2020-07-02 2020-11-06 北京市煤气热力工程设计院有限公司 综合能源仿真规划设计系统
CN111831963A (zh) * 2020-07-14 2020-10-27 中国南方电网有限责任公司 电力市场背景下的综合能源服务商的可调控能力评估方法
CN111882136A (zh) * 2020-08-06 2020-11-03 南方电网科学研究院有限责任公司 一种园区综合能源系统的双目标优化调度方法及装置
CN111914425A (zh) * 2020-08-06 2020-11-10 江苏筑森建筑设计有限公司 一种直流配电线路电压损失的校核方法
CN111914425B (zh) * 2020-08-06 2024-05-07 江苏筑森建筑设计有限公司 一种直流配电线路电压损失的校核方法
CN111882136B (zh) * 2020-08-06 2023-10-20 南方电网科学研究院有限责任公司 一种园区综合能源系统的双目标优化调度方法及装置
CN112016033A (zh) * 2020-08-07 2020-12-01 大连理工大学 一种基于前推回代法的电-热-气综合能源系统潮流计算方法
CN112016033B (zh) * 2020-08-07 2024-02-13 大连理工大学 一种基于前推回代法的电-热-气综合能源系统潮流计算方法
CN112070358A (zh) * 2020-08-11 2020-12-11 山东电力研究院 低真空供热机组电负荷调整区间确定方法及系统
CN112182905B (zh) * 2020-10-16 2023-08-29 北京科东电力控制系统有限责任公司 一种用于综合能源系统的供热管网仿真方法和装置
CN112182905A (zh) * 2020-10-16 2021-01-05 北京科东电力控制系统有限责任公司 一种用于综合能源系统的供热管网仿真方法和装置
CN112330127A (zh) * 2020-10-29 2021-02-05 东南大学 一种多时间尺度电热综合能源系统静态安全控制方法
CN112200695A (zh) * 2020-10-30 2021-01-08 东南大学 一种城市级综合能源系统优化调度方法
CN112436519A (zh) * 2020-12-14 2021-03-02 国网辽宁省电力有限公司鞍山供电公司 基于改进关联矩阵的辐射状配电网潮流计算方法及装置
CN112699513A (zh) * 2020-12-22 2021-04-23 广东电网有限责任公司广州供电局 一种综合能源系统抗差状态估计方法及装置
CN112699513B (zh) * 2020-12-22 2024-02-02 广东电网有限责任公司广州供电局 一种综合能源系统抗差状态估计方法及装置
CN112884282A (zh) * 2021-01-19 2021-06-01 中国能源建设集团云南省电力设计院有限公司 一种电力系统互联综合风险评估方法
CN112884282B (zh) * 2021-01-19 2024-02-02 中国能源建设集团云南省电力设计院有限公司 一种电力系统互联综合风险评估方法
CN112986731A (zh) * 2021-02-08 2021-06-18 天津大学 计及地震不确定性的电气互联系统韧性评估与提升方法
CN113159983A (zh) * 2021-03-15 2021-07-23 东南大学 离网型光气热电联产综合能源系统协调控制方法
CN113159983B (zh) * 2021-03-15 2024-05-14 东南大学 离网型光气热电联产综合能源系统协调控制方法
CN113155888B (zh) * 2021-04-25 2022-04-15 山东大学 热电联供系统动态等效电路及其工作方法
CN113155888A (zh) * 2021-04-25 2021-07-23 山东大学 热电联供系统动态等效电路及其工作方法
CN113297813A (zh) * 2021-05-21 2021-08-24 华南理工大学 基于改进三阶牛顿迭代法的电-气能源系统潮流计算方法
CN113313369A (zh) * 2021-05-21 2021-08-27 华南理工大学 基于改进雅可比矩阵的热网潮流计算方法
CN113515853A (zh) * 2021-06-08 2021-10-19 国网江苏省电力有限公司连云港供电分公司 一种基于线性方程的电热互联综合能源系统优化调度方法
CN113595084B (zh) * 2021-06-18 2023-09-15 湖南大学 一种考虑气象因素的配电网潮流高效计算方法
CN113595084A (zh) * 2021-06-18 2021-11-02 湖南大学 一种考虑气象因素的配电网潮流高效计算方法
CN113360289A (zh) * 2021-07-08 2021-09-07 山东大学 基于边缘计算的多区域综合能源系统分布式协同优化方法
CN113360289B (zh) * 2021-07-08 2022-06-10 山东大学 基于边缘计算的多区域综合能源系统分布式协同优化方法
CN113690891B (zh) * 2021-07-29 2024-01-05 国网江苏省电力有限公司连云港供电分公司 一种基于解析法的电-热互联综合能源系统概率潮流确定方法
CN113690891A (zh) * 2021-07-29 2021-11-23 国网江苏省电力有限公司连云港供电分公司 一种基于解析法的电-热互联综合能源系统概率潮流确定方法
CN113806972A (zh) * 2021-08-04 2021-12-17 浙江大学 一种考虑供需双侧灵活性的综合能源系统可靠性分析方法
CN113806972B (zh) * 2021-08-04 2022-11-22 浙江大学 一种考虑供需双侧灵活性的综合能源系统可靠性分析方法
CN113627021A (zh) * 2021-08-11 2021-11-09 东南大学 一种基于序列凸规划的电气互联系统最优能流计算方法
CN113705911A (zh) * 2021-08-31 2021-11-26 西安热工研究院有限公司 一种基于灰狼算法的热电负荷经济性优化分配方法
CN113837577B (zh) * 2021-09-14 2024-03-19 国网河南省电力公司经济技术研究院 一种农村电热联合系统耦合元件规划方法
CN113837577A (zh) * 2021-09-14 2021-12-24 国网河南省电力公司经济技术研究院 一种农村电热联合系统耦合元件规划方法
CN114004081B (zh) * 2021-10-29 2024-02-27 合肥工业大学 一种基于仿射算法的配电网负荷供应能力计算方法
CN114154276A (zh) * 2021-10-29 2022-03-08 天津大学 考虑蒸汽空腔断流弥合的长输供热系统停泵水锤数值仿真算法
CN114004081A (zh) * 2021-10-29 2022-02-01 合肥工业大学 一种基于仿射算法的配电网负荷供应能力计算方法
CN114069638A (zh) * 2021-11-09 2022-02-18 国网浙江省电力有限公司杭州供电公司 考虑可调节负荷影响和负荷不确定性的混合量测状态估计方法
CN114069638B (zh) * 2021-11-09 2023-10-31 国网浙江省电力有限公司杭州供电公司 考虑可调节负荷影响和负荷不确定性的混合量测状态估计方法
CN113919754A (zh) * 2021-11-18 2022-01-11 华北电力大学 一种基于区块链的综合能源系统分布式状态估计方法
CN114004110B (zh) * 2021-11-24 2024-04-12 天津大学 一种面向电-热综合能源系统的量子化事件驱动仿真方法
CN114004110A (zh) * 2021-11-24 2022-02-01 天津大学 一种面向电-热综合能源系统的量子化事件驱动仿真方法
CN114048919A (zh) * 2021-11-25 2022-02-15 杭州众工电力科技有限公司 一种基于热网调节优化的综合能源系统灵活性评价方法
CN114219296B (zh) * 2021-12-15 2024-05-14 东南大学 一种基于微分变换的电热综合能源系统动态能流计算方法
CN114219296A (zh) * 2021-12-15 2022-03-22 东南大学 一种基于微分变换的电热综合能源系统动态能流计算方法
CN114417603A (zh) * 2022-01-18 2022-04-29 福州大学 计及热网输配能力的电热综合能源系统仿射能流计算方法
CN114662756A (zh) * 2022-03-23 2022-06-24 福州大学 考虑源-荷不确定性的热电微能网双层仿射优化调度方法
CN115238597A (zh) * 2022-09-23 2022-10-25 国网浙江省电力有限公司宁波供电公司 涉及园区级综合能源系统源网荷碳排放模型的构建方法
CN115906411A (zh) * 2022-10-24 2023-04-04 国网江苏省电力有限公司苏州供电分公司 考虑全动态的电热综合能源系统最优能流建模方法及系统
CN115906411B (zh) * 2022-10-24 2024-06-04 国网江苏省电力有限公司苏州供电分公司 考虑全动态的电热综合能源系统最优能流建模方法及系统
CN116739404A (zh) * 2023-03-30 2023-09-12 天津大学 一种综合能源系统熵态模型中网络化特征模块的构建方法
CN116739404B (zh) * 2023-03-30 2024-05-28 天津大学 一种综合能源系统熵态模型中网络化特征模块的构建方法
CN116523250A (zh) * 2023-05-08 2023-08-01 上海枢源节能科技有限公司 一种能源调控辅助决策方法

Also Published As

Publication number Publication date
CN109242365B (zh) 2022-01-14
CN109242365A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020093296A1 (fr) Procédé de calcul de flux de puissance basé sur l'intervalle pour un système d'énergie intégré puissance-chaleur
Yao et al. Dynamic optimal energy flow in the heat and electricity integrated energy system
CN109726483B (zh) 一种电热互联综合能源系统辐射状热网模型及其系统
CN107730129B (zh) 考虑光热热电联产与电锅炉的电-气-热互联系统风险评估方法
Tan et al. A wind power accommodation capability assessment method for multi-energy microgrids
Xu et al. Quantification of flexibility of a district heating system for the power grid
CN111061986A (zh) 一种多运行模式的热电综合能源系统潮流计算方法
CN111428351B (zh) 基于前推回代法的电-热综合能源系统潮流计算方法
CN109255489A (zh) 一种基于半不变量法的电-热互联综合能源系统概率能量流计算方法
Li et al. Gradient descent iterative method for energy flow of integrated energy system considering multiple modes of compressors
CN110532642A (zh) 一种综合能源系统概率能流的计算方法
Lan et al. Modeling of the enthalpy transfer using electric circuit equivalents: Theory and application to transients of multi-carrier energy systems
Chen et al. Robust state estimation of electricity‐gas‐heat integrated energy system based on the bilinear transformations
Ding et al. Operational reliability assessment of integrated heat and electricity systems considering the load uncertainties
CN114781102A (zh) 一种城市综合能源系统的能量流建模方法及应用
Man et al. State estimation for integrated energy system containing electricity, heat and gas
Liu et al. A new power flow model for combined heat and electricity analysis in an integrated energy system
Sun et al. Multi-energy flow calculation method for we-energy based energy internet
Qin et al. Hybrid physics and data-driven method for modeling and analysis of electricity–heat integrated energy systems
CN113690891B (zh) 一种基于解析法的电-热互联综合能源系统概率潮流确定方法
Wang et al. Integrated energy system optimal operation using Data-Driven district heating network model
CN114048699B (zh) 综合能源系统电热联合电磁暂态仿真模型建立和计算方法
Alisic et al. Modeling and stability of prosumer heat networks
CN114549232A (zh) 电-热综合能源系统混合能流计算方法
Lei et al. A Novel Methodology for Electric-Thermal Mixed Power Flow Simulation and Transmission Loss Analysis in Multi-Energy Micro-Grids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939237

Country of ref document: EP

Kind code of ref document: A1