WO2020088454A1 - 氢化苯乙烯/共轭二烯烃共聚物及其发泡材料和应用 - Google Patents

氢化苯乙烯/共轭二烯烃共聚物及其发泡材料和应用 Download PDF

Info

Publication number
WO2020088454A1
WO2020088454A1 PCT/CN2019/114015 CN2019114015W WO2020088454A1 WO 2020088454 A1 WO2020088454 A1 WO 2020088454A1 CN 2019114015 W CN2019114015 W CN 2019114015W WO 2020088454 A1 WO2020088454 A1 WO 2020088454A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
hydrogenated
styrene
structural unit
copolymer
Prior art date
Application number
PCT/CN2019/114015
Other languages
English (en)
French (fr)
Inventor
梁红文
莫笑君
李望明
刘朝周
杨帆
康铮
王旭
佘振银
Original Assignee
中国石油化工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司 filed Critical 中国石油化工股份有限公司
Priority to MX2021004876A priority Critical patent/MX2021004876A/es
Priority to EP19878283.1A priority patent/EP3842465B1/en
Priority to CN201980053850.9A priority patent/CN112752777B/zh
Priority to JP2021523405A priority patent/JP7288505B2/ja
Priority to US17/286,919 priority patent/US11897988B2/en
Priority to ES19878283T priority patent/ES2950414T3/es
Publication of WO2020088454A1 publication Critical patent/WO2020088454A1/zh
Priority to JP2022164820A priority patent/JP2023002642A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/10Copolymers of styrene with conjugated dienes

Definitions

  • the invention belongs to the field of polymer preparation, and specifically relates to a hydrogenated styrene / conjugated diene copolymer, a foamed material obtained by foaming the copolymer, and applications of the foamed material.
  • SEBS Hydrogenated styrene / butadiene block polymer
  • SEPS hydrogenated styrene / isoprene block polymer
  • SEEPS hydrogenated styrene / isoprene and butadiene block polymer
  • CN102083872B discloses a method for preparing a styrene-butadiene copolymer.
  • the rate of monomer consumption in polymerization is equal to or greater than the rate of monomer addition, and the maximum reaction temperature and initiation are controlled
  • the temperature difference does not exceed 50 ° C to prepare a copolymer containing styrene monomer microblocks and conjugated diene monomer microblocks.
  • the copolymer must be chemically cross-linked with EVA and foamed to have higher resilience and lower compression deformation.
  • the object of the present invention is to provide a hydrogenated styrene / conjugated diene copolymer that can obtain higher resilience and lower compression deformation without using a chemical foaming process, as well as foamed materials obtained from the copolymer and their application.
  • the first aspect of the present invention provides a hydrogenated styrene / conjugated diene copolymer, characterized in that the copolymer contains a styrene-based structural unit represented by Formula 1, and a hydrogenated conjugated diene represented by Formula 2.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 are each H, C1-C3 alkyl, R 10 is H or C1-C4 alkyl ;
  • the content of styrene-based structural units is 15-50% by weight, preferably 18-45% by weight, based on the hydrogenated conjugated diene-based structural unit shown in formula 2 and the formula 3
  • the total amount of hydrogenated conjugated diene-based structural units is based on the total amount of hydrogenated conjugated diene-based structural units shown in Formula 3 is 8-32%, preferably 10-30%, more preferably 12-25%, styrene-based
  • the randomness of the unit in the hydrogenated conjugated diene structural unit is 30-80%, preferably 35-75%, and the hydrogenation degree of the copolymer is 85-100%, preferably 95-100%.
  • the second aspect of the present invention provides a hydrogenated styrene / conjugated diene copolymer foam material obtained by foaming the above hydrogenated styrene / conjugated diene copolymer.
  • the third aspect of the present invention provides the application of the above hydrogenated styrene / conjugated diene copolymer and foamed material in the preparation of foamed shoe soles.
  • the hydrogenated styrene / conjugated diene copolymer provided by the present invention has a tensile strength at break of 30-60 MPa, an elongation at break of 300-600%, and a hardness (Shore A) of 70-98, which is a high Strong elastomer with a tensile strength at 10% strain greater than 4MPa, an elastic recovery at 10% strain greater than 98%, a tensile strength at 300% strain greater than 8MPa, and physical foaming such as carbon dioxide can be used
  • the hydrogenated styrene / conjugated diene copolymer provided by the present invention can obtain a foam with excellent rebound performance of more than 60% and compression deformation of less than 30% by using a carbon dioxide supercritical foaming process.
  • FIG. 1 is a TEM (transmission scanning electron microscope) image of the hydrogenated styrene / conjugated diene copolymer provided in Example 1 of the present invention.
  • Figure 2 is a TEM image of a conventional SEBS.
  • Example 3 is a nuclear magnetic hydrogen spectrum chart of the hydrogenated styrene / conjugated diene copolymer provided in Example 1 of the present invention.
  • A is the stress-strain curve of the hydrogenated styrene / conjugated diene copolymer provided in Example 1 of the present invention
  • B is the stress-strain curve of the commercially available product SEBS.
  • FIG. 5 is a DSC curve of the hydrogenated styrene / conjugated diene copolymer provided in Example 1 of the present invention
  • B is a DSC curve of the commercially available product SEBS.
  • the styrene-based structural unit represented by Formula 1 the hydrogenated conjugated diene-based structural unit represented by Formula 2, and the hydrogenated conjugated diene-based structural unit represented by Formula 3 are each represented by the following formula,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are each H, C1-C3 alkyl groups
  • R 10 is H, C1-C4 alkyl groups
  • the C1-C4 alkyl group may be, for example, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, or tert-butyl.
  • R 10 is a substituent on the benzene ring, which may be one or more, and each is located in the ortho, meta or para position of the vinyl group, preferably in the para position.
  • the styrene structural unit is a styrene structural unit, that is, R 1 , R 2 , and R 3 are all H, and R 10 is methyl, ethyl, propyl, isopropyl, n-butyl, and isobutyl Base, tert-butyl.
  • the conjugated diene structural units are butadiene structural units and / or isoprene structural units, that is, R 4 , R 5 , R 6 , R 7 and R 8 are all H, and R 9 is H or methyl .
  • the content of styrene structural units in the copolymer provided by the present invention must not exceed 50% by weight.
  • the inventors of the present invention found that when the content of the conjugated diene structural unit is not less than 50% by weight, the hydrogenated copolymer macroscopically exhibits high tensile modulus and tensile strength, and high elasticity at low strain Reply, the reason may be that the hydrogenated polyethylene chain of the polyconjugated diene structural unit in the molecular chain is interrupted by the polystyrene structural unit into multiple polyethylene crystalline phases, which is affected by the crystallization of the polyethylene link The polystyrene structural units are squeezed onto the surface of the material, and the entanglement of the polystyrene structural unit links increases the cohesion of the copolymer.
  • the content of styrene-based structural units is 15-50% by weight, preferably 18-45% by weight, and the content of conjugated diene-based structural units (ie, hydrogenated conjugated).
  • the total amount of the olefin-based structural unit and the hydrogenated conjugated diene-based structural unit represented by Formula 3 is 50 to 85% by weight, preferably 55 to 82% by weight.
  • the hydrogenated conjugated diene-based structure that is, 1,2-polymerized structure
  • the hydrogenated The content of the conjugated diene-based structural unit is 8-32%, preferably 10-30%, more preferably 12-25%.
  • the traditional SEBS causes too much compression deformation, so the content of 1,2-structure is very high, generally up to more than 35%.
  • the present invention requires that the randomness of the styrene structural unit in the conjugated diene structural unit is 30-80%, preferably 35-75%, and the hydrogenation degree of the copolymer is 85-100%, preferably 95 -100%.
  • the invention controls the specific content of 1,2-structure and 1,4-structure of the conjugated diene, and after hydrogenation, the 1,4-structure is changed into a polyethylene structure to ensure that a certain amount of ethylene crystallizes to form a crystalline phase. Improve strength and prevent aging.
  • the content of styrene-based structural units, the content of 1,2-polymerized structural units and the degree of hydrogenation can all be calculated by the nuclear magnetic resonance hydrogen spectroscopy ( 1 H-NMR) method using the following formula.
  • Ax is the spectral peak area corresponding to ⁇ in the range of x
  • M 1 is the relative mole fraction of non-block St
  • M 2 is the relative mole fraction of block St
  • M 3 and M 4 are 1, respectively. Relative mole fraction of 2-polymerized structure and 1,4-polymerized structure.
  • the total butadiene content of the copolymer (denoted by Bd) is
  • the total hydrogenation degree of the copolymer (indicated by H) is calculated as follows:
  • the randomness of the styrene-based structural unit of the copolymer in which the above substituents R 1 to R 10 are all H in the conjugated diene-based structural unit is determined by the following formula by the 1 H-NMR method spectrum Calculated and measured:
  • Randomness (A 6.8-7.2 -X) / A 6.1-7.2
  • the crystallization temperature of the hydrogenated styrene / conjugated diene copolymer measured by DSC is 18 ° C or higher, preferably 18-70 ° C, and the enthalpy of heat is not lower than 1.7J / g, preferably 2.0 -25.0J / g.
  • DSC adopts TA company's DSC-Q10 thermal analyzer, measured according to GB / T19466.3-2004 standard method, In and Sn correct temperature and enthalpy value, nitrogen protection, temperature rise from -80 °C to 130 °C, speed 10 °C / min, the temperature drops from 130 °C to -80 °C, the speed is 2 °C / min.
  • the molecular weight of the hydrogenated styrene / conjugated diene copolymer is 30,000 to 500,000, preferably 40,000 to 200,000.
  • the molecular weights in them all indicate the number average molecular weight measured by the gel permeation chromatography (GPC) test method.
  • the hydrogenated styrene / conjugated diene copolymer of the present invention has a 300% constant tensile strength of 8 MPa or more, preferably 10-20 MPa, a tensile strength at break of 30 MPa or more, preferably 30-60 MPa, and an elongation at break 300-600% is preferably 350-500%, hardness (Shore A) is 80 or more, preferably 80-98, and melt index MFR (g / 10min, 200 ° C, 5kg) is 0-8, preferably 1-2.
  • the inventor of the present invention found that the TEM image of the copolymer provided by the present invention is shown in FIG. 1. It can be seen from the TEM that the micro-regions (white parts in the figure) formed by the styrene-based structural units shown in Formula 1 are dispersed in the hydrogenated conjugated two shown in Formula 2 in the form of columnar / spherical distribution and layered distribution In the micro-regions (non-white parts in the figure) formed by the olefin-based structural unit and the hydrogenated conjugated diene-based structural unit represented by Formula 3, this phase structure gives the polymer excellent mechanical properties.
  • the traditional SEBS is a block copolymer.
  • each polydiene segment (PB) is connected to a polystyrene segment (PS) at the end, and the polybutadiene segments are gathered together in the entire system.
  • the soft segment forms a high elasticity of rubber, and the polystyrene segments gather together to form a hard segment, which exhibits high hardness of plastic.
  • the TEM picture is shown in Figure 2. It can be seen from Figure 2 that the polystyrene micro-regions of traditional SEBS only exist in a spherical structure.
  • the above-mentioned hydrogenated styrene / conjugated diene random copolymer provided by the present invention can be foamed by a chemical foaming or physical foaming method to obtain a foamed material.
  • the physical foaming may be, for example, a foaming method using inert gas such as carbon dioxide and nitrogen, preferably carbon dioxide supercritical foaming, nitrogen supercritical foaming, or the like.
  • Carbon dioxide gas may be used directly as the carbon dioxide, or may be generated in situ by chemical methods such as carbonate decomposition.
  • the traditional styrene-butadiene copolymer must be foamed by chemical cross-linking to obtain a foam material that meets the requirements of rebound and compression deformation.
  • the hydrogenated styrene / conjugated diene copolymer provided by the present invention can be obtained by anionically polymerizing styrene and conjugated diene to obtain a base rubber, and then selectively hydrogenated (referring to hydrogenating the double bond of the conjugated diene unit, The benzene ring is not hydrogenated) and purified.
  • the step of synthesizing the base rubber includes, under anaerobic and anhydrous conditions, a styrene monomer represented by the following formula A and a conjugated diene represented by the following formula B
  • the monomer, polymerization solvent, molecular structure regulator and alkyl lithium initiator are added to the polymerization kettle for random copolymerization to obtain the base glue.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 have the same meanings and optional ranges as above.
  • the polymerization reaction may be carried out in various polymerization solvents commonly used in the art, and is not particularly limited.
  • the polymerization solvent may be selected from C3-C20 linear or branched or cyclic alkanes, preferably selected from C4-C20 linear or branched or cyclic alkanes, more preferably selected from n-butane, At least one of isobutane, n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, n-octane, n-nonane, n-decane, and octane, more preferably cyclopentane, cyclohexane One or more of hexane and n-hexane.
  • the amount of the polymerization solvent is not particularly limited, and may be a conventional choice in the art.
  • the amount of the polymerization solvent is such that the initial total monomer concentration is 2-20% by weight, preferably 5-16% by weight.
  • the alkyl lithium initiator is at least one of n-butyl lithium and sec-butyl lithium.
  • the amount of the alkyl lithium initiator used is 0.5 mmol to 3 mmol relative to 100 g of the polymerized monomer (the total amount of styrene-based monomer and conjugated diene-based monomer).
  • the molecular structure regulator is a composite regulator of two or more Lewis bases, preferably at least one of the molecular structure regulators is tetrahydrofuran, and preferably, tetrahydrofuran accounts for more than 80% by weight of the total molecular structure regulator, preferably 95% by weight or more.
  • Lewis bases such as tertiary amine compounds and other ether compounds such as diethyl ether, anisole, dioxane, dimethoxyethane, diethylene glycol dimethyl ether, ethylene glycol dibutyl ether, tetrahydrofurfural Ethyl ether, divinyl ether, ethylene glycol ethyl t-butyl ether, ethylene glycol propyl t-butyl ether, ethylene glycol methyl t-butyl ether, ditetrahydrofurfuryl propane, triethylamine, tetra One or more of methylethylenediamine, N-methylmorpholine and the like, and the amount thereof is 2-30 mg / kg relative to the weight of the polymerization solvent, further preferably 5-28 mg / kg.
  • the total concentration of the molecular structure regulator in the solvent system is preferably 350-650 mg / kg.
  • Each polymerization monomer can be added at one time, or can be added in portions or continuously in proportion, as long as the styrene-based monomer and the conjugated diene-based monomer are present in the reactor at the same time, so that random copolymerization can occur.
  • the amount of molecular structure regulator and the reaction temperature are the key factors to control the randomness. Therefore, the total amount of molecular structure regulator should be strictly controlled between 350-650mg / kg during the synthesis of the base rubber, and the amount of THF in the molecular structure regulator The total amount is 80% by weight or more, preferably 95% by weight or more, and the reaction temperature is controlled at 55-100 ° C.
  • the polymerization reaction time is 45-120 minutes, preferably 60-90 minutes.
  • a cocatalyst and a nickel-based main catalyst or a titanium-based main catalyst are added, and a hydrogenation reaction is carried out in the presence of hydrogen to obtain a hydrogenated rubber solution.
  • the amount of promoter is 8 mg-129 mg per 100 g of polymer.
  • the amount of the main catalyst is 17 mg-200 mg per 100 g of polymer.
  • the amount of polymer can be calculated according to the amount of monomer feed.
  • the cocatalyst is one or more of alcohols and esters, preferably monohydric alcohols, polyhydric alcohols, linear alkyl ester compounds, benzoate compounds, phthalate compounds, p-hydroxybenzoic acid One or more of ester compounds; further preferred are C1-C10 monohydric alcohols, C2-C10 polyhydric alcohols, C2-C10 linear alkyl ester compounds, C7-C15 benzoate compounds, C7 -C15 phthalate compounds, C7-C15 paraben compounds or one or more; most preferably methanol, isooctyl alcohol, methyl benzoate, dimethyl phthalate, One or more of dibutyl phthalate.
  • alcohols and esters preferably monohydric alcohols, polyhydric alcohols, linear alkyl ester compounds, benzoate compounds, phthalate compounds, p-hydroxybenzoic acid
  • ester compounds further preferred are C1-C10 monohydric alcohols, C2-C10 polyhydric alcohols, C
  • the hydrogenated gum solution is terminated with soft water, and then the hydrogenated gum solution is purified to remove metal ion impurities in the hydrogenated gum solution, and then condensed with water vapor, followed by drying and crushing to obtain the hydrogenated styrene / co-polymer Random copolymer of conjugated diene.
  • the metal ion impurities in the hydrogenated gum solution can be removed by tert-decanoic acid acidification, soft water emulsification extraction, centrifugal separation, and standing to separate the aqueous phase.
  • the metal ion in the polymer can be removed by referring to the method described in CN201410063616.3.
  • the removed glue solution is condensed with steam, the solvent is recycled and recycled, and the polymer particles are dried and crushed to obtain the finished product.
  • the conditions for the acidification of t-decanoic acid include the amount of t-decanoic acid is 0.5ml-1ml per 100g of polymer, and the acidification time is 15-25 minutes.
  • the conditions of soft water emulsification extraction include the amount of soft water is 50-100 ml per 100 g of polymer, and the emulsification time is 15-25 minutes.
  • the conditions for water vapor coagulation include passing 110-130 ° C water vapor into a 10L coagulation kettle, and the coagulation time is 20-40 minutes.
  • the drying conditions include that the temperature of the blast drying box is set at 80-120 ° C and the drying time is 1-4h.
  • the invention also provides a hydrogenated styrene / conjugated diene random copolymer foamed material, which is obtained by supercritical foaming of carbon dioxide with the hydrogenated styrene / conjugated diene random copolymer.
  • the hydrogenated styrene / conjugated diene copolymer provided by the present invention can be supercritically foamed with carbon dioxide to obtain a density adjustable in the range of 0.1-0.9g / cm 3 and a hardness (Shao C) Adjustable material in the range of 5-85; the material also has the characteristics of high rebound, high shock absorption, low compression distortion, high anti-slip, yellowing resistance, and no VOC release.
  • the material obtained by the above-mentioned hydrogenated styrene / conjugated diene random copolymer provided by the present invention by carbon dioxide supercritical foaming has a rebound measured by ASTM-D2632 of 58-65%, and measured by GB / T 6669-2008 The compression deformation is 20-28%.
  • the inventors of the present invention also found that the hydrogenated styrene / conjugated diene copolymer and white oil, polyolefin, inorganic filler, SEBS (hydrogenated styrene-butadiene block copolymer), SEPS (hydrogenated At least one of styrene-isoprene block copolymer) is used as an ingredient, and carbon dioxide supercritical foaming is used together, which helps to further improve the performance of the foamed material.
  • SEBS hydrogenated styrene-butadiene block copolymer
  • SEPS hydrogenated At least one of styrene-isoprene block copolymer
  • the weight ratio of the above-mentioned hydrogenated styrene / conjugated diene copolymer to the ingredients may be 5-10: 1.
  • the conditions for carbon dioxide supercritical foaming include that the foaming pressure can be, for example, 10-30 MPa, and the foaming temperature can be, for example, 110-140 ° C.
  • the foamed material may be wire, profile, sheet, etc.
  • the invention also provides the application of the above-mentioned hydrogenated styrene / conjugated diene copolymer foam material in the preparation of foam shoe soles and the like.
  • the foamed sole made of the material obtained by foaming the hydrogenated styrene / conjugated diene copolymer provided by the present invention has the characteristics of high rebound and low compression deformation. Compared with the foam sole made of traditional SEBS and EVA foam materials, it has the advantages of high rebound and low compression permanent deformation.
  • the molecular weight and distribution of the polymer were tested by gel permeation chromatography.
  • the instrument used was Shimadzu Corporation ’s LCD-10ADvp gel chromatograph, the detector was RID-10A differential refractive index detector, and the separation columns were GPC804 and 805.
  • the flow rate of the mobile phase THF is 1 mL / min, the test temperature is normal temperature, calibration is performed with monodisperse polystyrene, and Shimadzu CR-7A performs data processing.
  • the content of styrene structural units, the content of 1,2-structure, the degree of hydrogenation and the randomness are all calculated according to the nuclear magnetic hydrogen spectrum.
  • the instrument is measured by Bruker AV400 spectrometer (400MHz) at normal temperature, and CDCl 3 is the solvent.
  • the melt index (MFR) is measured using the GB / T3682.1-2018 method (200 ° C, 5kg).
  • DSC spectrum is measured by TA company's DSC-Q10 thermal analyzer, according to GB / T19466.3-2004 standard method, In and Sn correct temperature and enthalpy value, nitrogen protection, temperature rise from -80 °C to 130 °C, speed It is 10 °C / min, the temperature is reduced from 130 °C to -80 °C, and the speed is 2 °C / min.
  • the rebound of the foamed material is measured according to ASTM-D2632, the compression deformation is measured according to GB / T 6669-2008, the dry friction coefficient and wet friction coefficient are measured according to ASTM-F609 method, and the density is measured according to GB / T6343-2009 method,
  • the oxidation induction period (OIT) is tested according to GB / T2951.9-1997 standard.
  • the hydrogenated gum solution is transferred to a water-washing kettle, and the temperature is raised to 60-65 ° C.
  • Tert-decanoic acid elutes to remove the metal lithium in the gum solution, and then emulsified and extracted with 300 mL of soft water for 15 minutes, then centrifuged and left to stand The water phase was separated, and the remaining gum solution was condensed by steam and dried to obtain a hydrogenated styrene / butadiene copolymer.
  • Table 1 The properties of the copolymer are shown in Table 1.
  • the TEM image of the obtained hydrogenated styrene / butadiene copolymer is shown in FIG. 1.
  • the TEM image of the hydrogenated styrene / butadiene copolymer has both layered and columnar / spherical structures.
  • the nuclear magnetic hydrogen spectrum of the resulting hydrogenated styrene / butadiene copolymer is shown in FIG. 3.
  • the hydrogenation structure can be seen from Fig. 3, and the calculation results of microstructure, hydrogenation degree and randomness are shown in Table 1.
  • the stress-strain curve of the obtained hydrogenated styrene / butadiene copolymer is shown in A of FIG. 4, and it can be seen from FIG. 4 that the tensile strength of the hydrogenated copolymer provided by the present invention can reach more than 41 MPa, and the 300% constant tensile strength reaches Above 11MPa, it has a high tensile modulus and 300% tensile strength.
  • the DSC chart of the obtained hydrogenated styrene / butadiene copolymer is shown as A in FIG. 5. It can be seen from Fig. 5 that the crystallization temperature of the hydrogenated copolymer of the present invention is around 55 ° C, and the enthalpy value is around 20 J / g.
  • the polymer was synthesized according to the method of Example 1, except that the base rubber with an S / B mass ratio of 30/70 was synthesized by anionic polymerization.
  • the specific base rubber synthesis operation is as follows:
  • the polymer was synthesized according to the method of Example 1, except that the base rubber with an S / B mass ratio of 20/80 was synthesized by anionic polymerization.
  • the specific base rubber synthesis operation is as follows:
  • the polymer was synthesized according to the method of Example 1, except that the base rubber with S / B mass ratio of 45/55 was synthesized by anionic polymerization.
  • the specific base rubber synthesis operation is as follows:
  • the base rubber is synthesized by anionic polymerization (the base rubber S / B mass ratio is 38/62), and then obtained by selective hydrogenation using a titanium-based catalyst, which specifically includes the following steps:
  • the polymer was synthesized according to the method of Example 1, except that the base rubber with S / B mass ratio of 25/75 was synthesized by anionic polymerization.
  • the specific base rubber synthesis operation is as follows:
  • the polymer was synthesized according to the method of Example 1, except that the base rubber with S / B mass ratio of 32/68 was synthesized by anionic polymerization.
  • the specific base rubber synthesis operation is as follows:
  • the preparation of the styrene / butadiene copolymer was carried out according to the method of Example 2 of CN102083872B, and then the copolymer was hydrogenated and purified according to the steps (1-b) and (1-c) of the above Example 1 of the present invention.
  • the preparation of hydrogenated styrene / butadiene copolymer was carried out according to the method of Example 2, except that the base rubber with a S / B mass ratio of 60/40 was synthesized.
  • SEBS product triblock copolymer of hydrogenated styrene-butadiene-styrene, S / B weight ratio 33/67, 1.2-polymerized structure content 36.5-37.5%, number average molecular weight 198,000.
  • the TEM picture is shown in Figure 2. As can be seen from Figure 2, only spherical structures exist.
  • the stress-strain curve is shown as B in Figure 4. It can be seen from FIG. 4 that the commercial product SEBS has a tensile strength of about 20 MPa, and the strength is much smaller than that of the copolymer of the present invention.
  • the DSC curve is shown as B in FIG. 5. It can be seen from Fig. 5 that the crystallization temperature of the commercially available product SEBS is around 16 ° C, and the enthalpy value is 2.6 J / g.
  • the base rubber is synthesized by anionic polymerization (the base rubber S / B mass ratio is 38/62), and then obtained by selective hydrogenation using a titanium-based catalyst, which specifically includes the following steps:
  • the base rubber is synthesized by anionic polymerization (the base rubber S / B mass ratio is 38/62), and then obtained by selective hydrogenation using a titanium-based catalyst, which specifically includes the following steps:
  • the base rubber is synthesized by anionic polymerization (the base rubber S / B mass ratio is 30/70), and then obtained by selective hydrogenation using a titanium-based catalyst.
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 S / B 30/70 30/70 60/40 33/67 38/62 38/62 30/70 1,2-structure content,% 15.6 15.6 18.2 36.8 37.3 19.0 6.2 Degree of hydrogenation,% 0 98.2 97.1 99.0 97.7 80.0 97.8 Randomness,% 95.1 95.1 68.0 0.8 84.8 40.1 20.3 Crystallization temperature, °C no no 28.3 16.9 no 24.1 45.1 Enthalpy, J / g no no 1.5 2.6 no 3.9 18.2 Number average molecular weight, ten thousand 14.0 14.0 6.0 19.8 5.1 5.3 4.9 300% constant tensile strength, MPa 0.4 0.5 4.7 4.3 1.8 1.1 8.0 Tensile strength at break, MPa 1.1 1.8 15.7 25.8 8.3 6.9 25.0 Elongation at break,% 467 544 577 521 655 567 499 Hard
  • the copolymers prepared in the above Examples 1-7 and Comparative Examples 1-7 are blended and granulated in an extruder.
  • the granulation conditions include a granulation temperature (head temperature) of 200 ° C, and then Hydrogenated styrene / butadiene copolymer particles (particle size 0.5-1 cm) are immersed in carbon dioxide supercritical fluid, so that the supercritical fluid reaches the equilibrium of dissolution in the matrix of hydrogenated styrene / butadiene copolymer particles, and then hydrogenated
  • the styrene / butadiene copolymer particles are placed in a high-pressure reaction kettle and heated and expanded.
  • the conditions for expansion include a foaming pressure of 20 MPa and a foaming temperature of 120 ° C. to obtain hydrogenated styrene / butadiene copolymer foamed particles.
  • the foamed particles pass through the mold and are molded to form a foamed sheet (thickness of about 1 cm).
  • the performance test results of the foamed sheet are shown in Table 2 below.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 S / B 35/65 30/70 20/80 45/55 38/62 25/75 32/68 Rebound,% 62 61 65 61 62 60
  • Compression deformation % twenty three 20 20 twenty four twenty one twenty three twenty one Hardness, Shore C 46 40 35 48 47 40 41 Dry slip friction coefficient 0.60 0.65 0.62 0.63 0.62 0.64 0.63 Wet slip coefficient 0.20 0.21 0.20 0.23 0.22 0.21 0.20 Density, g / cm 3 0.24 0.21 0.19 0.27 0.26 0.20 0.23
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 S / B 30/70 30/70 60/40 33/67 38/62 38/62 30/70 Rebound,% 9 12 33 50 38 30 41 Compression deformation,% 72 70 50 35 32 34 45 Hardness, Shore C 12 15 55 45 44 47 49 Dry slip friction coefficient 0.51 0.49 0.49 0.53 0.48 0.46 Wet slip coefficient 0.12 0.12 0.10 0.10 0.12 0.11 0.13 Density, g / cm 3 0.22 0.34 0.32 0.32 0.31 0.35 0.38
  • Example 1 Example 2
  • Example 3 Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3
  • S / B 35/65 30/70 20/80 45/55 30/70 30/70 60/40 Rebound,% 60 63 63 65 20 13 25 Compression deformation,% 30 28 28 28 65 73 51 Hardness, Shore C 48 46 46 45 12 17 57 Dry slip friction coefficient 0.58 0.57 0.57 0.56 0.52 0.51 0.53 Wet slip coefficient 0.20 0.21 0.21 0.20 0.11 0.13 0.10 Density, g / cm 3 0.30 0.35 0.35 0.34 0.34 0.47 0.42
  • the present invention controls the specific styrene content, specific 1,2-structure content, and the specific degree of hydrogenation and randomness of the hydrogenated copolymer so that the copolymer thus obtained passes carbon dioxide Foaming can obtain foaming materials with high resilience and low compression deformation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

公开了一种氢化苯乙烯/共轭二烯烃共聚物及其发泡材料和应用,该共聚物含有苯乙烯类结构单元、氢化共轭二烯烃类结构单元;以共聚物的总量为基准,苯乙烯类结构单元的含量为15-50wt%优选18-45重量%,氢化共轭二烯烃类结构单元中1,2-聚合结构单元的含量为8-32%优选10-30%更优选12-25%,苯乙烯类结构单元在所述氢化共轭二烯烃类结构单元中的无规度为30-80%优选为35-75%,所述共聚物中共轭二烯烃的氢化度为85-100%优选95-100%。该氢化苯乙烯/共轭二烯烃共聚物的扯断拉伸强度为30-60MPa、扯断伸长率300-600%、硬度(邵氏A)为70-98,并且可以采用超临界二氧化碳发泡工艺制作反弹大于60%,压缩变形小于30%的性能优异的发泡体。

Description

氢化苯乙烯/共轭二烯烃共聚物及其发泡材料和应用 技术领域
本发明属于高分子聚合物制备领域,具体涉及一种氢化苯乙烯/共轭二烯烃共聚物以及由该共聚物发泡得到的发泡材料和该发泡材料的应用。
背景技术
氢化苯乙烯/丁二烯嵌段聚合物(简称SEBS)、氢化苯乙烯/异戊二烯嵌段聚合物(简称SEPS)、氢化苯乙烯/异戊二烯和丁二烯嵌段聚合物(简称SEEPS)已在各种消费类电子电器、汽车、建材、工具、日用品等得到广泛应用,其突出的特点是低模量、高拉伸强度(15-38MPa)和弹性回复好、耐老化性能佳等。但在一些需要拉伸模量与压缩模量高、硬度低、高填充的应用场景中,传统氢化苯乙烯/共轭二烯烃嵌段聚合物难于满足要求,如发泡鞋底、人造革、电线,采用拉伸模量低的材料生产这些制品时,需要较大的形变才能产生所需要的应力,因此会导致鞋底反弹力不足、人造革的面层与布层脱落、电线的铜丝先于皮层断裂等。而采用EVA生产的发泡鞋底存在压缩歪与止滑性不佳的问题,采用软质PVC或聚氨酯生产人造革存在环境污染与使用时释放有毒VOC的问题。
目前市场上已有部分鞋厂采用常规SEBS进行发泡制备中底,所得发泡鞋底反弹性能比EVA优良(压缩比在30%-35%之间,回弹率最高到50%),但存在的缺点是常规SEBS由于熔体粘度偏低导致发泡制品的泡孔不均匀,甚至部分破裂因而导致压缩变形偏大。而且一般需采用化学发泡法进行发泡。
CN102083872B公开了一种苯乙烯-丁二烯共聚物的制备方法,其通过控制加料速度,使得单体在聚合中消耗的速度与单体添加的速度相当或更大,并控制最高反应温度与引发温度相差不超过50℃来制备包含苯乙烯单体微嵌段和共轭二烯单体微嵌段的共聚物。该共聚物必须与EVA进行化学交联发泡得到的材料才具有更高的反弹性和更低的压缩变形。
发明内容
本发明的目的在于提供一种无需采用化学发泡工艺即可获得较高反弹性、较低压缩变形的氢化苯乙烯/共轭二烯烃共聚物以及由该共聚物得到的发泡材料和它们的应用。
本发明第一方面提供了一种氢化苯乙烯/共轭二烯烃共聚物,其特征在于,该共聚物含有式1所示的苯乙烯类结构单元、式2所示的氢化共轭二烯烃类结构单元和/或式3所示的氢化共轭二烯烃类结构单元,
Figure PCTCN2019114015-appb-000001
其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9各自为H、C1-C3的烷基,R 10为H或C1-C4的烷基;以共聚物的总量为基准,苯乙烯类结构单元的含量为15-50重量%优选18-45重量%,以式2所示的氢化共轭二烯烃类结构单元和式3所示的氢化共轭二烯烃类结构单元的总量为基准,式3所示的氢化共轭二烯烃类结构单元的含量为8-32%优选10-30%更优选12-25%,苯乙烯类结构单元在所述氢化共轭二烯烃类结构单元中的无规度为30-80%优选为35-75%,所述共聚物的氢化度为85-100%优选95-100%。
本发明第二方面提供了由上述氢化苯乙烯/共轭二烯烃共聚物经发泡得到的氢化苯乙烯/共轭二烯烃共聚物发泡材料。
本发明第三方面提供了上述氢化苯乙烯/共轭二烯烃共聚物和发泡材料在制备发泡鞋底中的应用。
本发明提供的氢化苯乙烯/共轭二烯烃共聚物的扯断拉伸强度为30-60MPa、扯断伸长率300-600%、硬度(邵氏A)为70-98,是一种高强度的弹性体,具有在10%的应变下的拉伸强度大于4MPa、10%的应变下的弹性回复大于98%,300%应变下的拉伸强度大于8MPa,并且可以采用物理发泡例如二氧化碳超临界发泡工艺制作轻质发泡材料的特点。由本发明提供的氢化苯乙烯/共轭二烯烃共聚物采用二氧化碳超临界发泡工艺可获得反弹大于60%、压缩变形小于30%的性能优异的发泡体。
附图说明
图1是本发明实施例1提供的氢化苯乙烯/共轭二烯烃共聚物的TEM(透射扫描电镜)图。
图2是传统的SEBS的TEM图。
图3是本发明实施例1提供的氢化苯乙烯/共轭二烯烃共聚物的核磁氢谱图。
图4中A是本发明实施例1提供的氢化苯乙烯/共轭二烯烃共聚物的应力应变曲线,B是市售品SEBS的应力应变曲线。
图5是A是本发明实施例1提供的氢化苯乙烯/共轭二烯烃共聚物的DSC曲线,B是市售品SEBS的DSC曲线。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
根据本发明,式1所示的苯乙烯类结构单元、式2所示的氢化共轭二烯烃类结构单元和式3所示的氢化共轭二烯烃类结构单元分别为如下式所示,
Figure PCTCN2019114015-appb-000002
其中R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9各自为H、C1-C3的烷基,R 10为H、C1-C4的烷基,其中C1-C4的烷基例如可以是甲基、乙基、丙基、异丙基、正丁基、异丁基、叔丁基。
本发明中,R 10为苯环上的取代基,可以为一个或多个,各自位于乙烯基的邻位、间位或对位,优选位于对位。
作为优选,所述苯乙烯类结构单元为苯乙烯结构单元即R 1、R 2、R 3均为H,R 10为甲基、乙基、丙基、异丙基、正丁基、异丁基、叔丁基。所述共轭二烯烃类结构单元为丁二烯结构单元和/或异戊二烯结构单元即R 4、R 5、R 6、R 7和R 8均为H,R 9为H或甲基。
为了确保较高的反弹性和较低的压缩变形性,本发明提供的共聚物中,苯乙烯类结构单元的含量必须不超过50重量%。本发明的发明人发现,当共轭二烯烃类结构单元的含量不低 于50重量%时,该氢化共聚物宏观上体现出高的拉伸模量与拉伸强度、低应变下的高弹性回复,究其原因,可能是因为分子链中聚共轭二烯烃类结构单元氢化后的聚乙烯链被聚苯乙烯类结构单元间断成多个聚乙烯结晶相,受聚乙烯链节结晶的影响,聚苯乙烯类结构单元被挤到材料的表面,而聚苯乙烯结构单元链节的相互缠结使得共聚物的内聚力提高。以共聚物的总量为基准,苯乙烯类结构单元的含量为15-50重量%优选18-45重量%,共轭二烯烃类结构单元的含量(即以式2所示的氢化共轭二烯烃类结构单元和式3所示的氢化共轭二烯烃类结构单元的总量)为50-85重量%优选为55-82重量%。
为了保证聚合物拥有良好的拉伸模量与加工性能,还必须严格控制共聚物中式3所示的氢化共轭二烯烃类结构(即1,2-聚合结构)单元的含量。以式2所示的氢化共轭二烯烃类结构单元(即1,4-聚合结构)和式3所示的氢化共轭二烯烃类结构单元的总量为基准,式3所示的氢化共轭二烯烃类结构单元的含量为8-32%优选10-30%更优选12-25%。而传统的SEBS为避免乙烯结晶,造成压缩变形太大,因此其中1,2-结构含量很高,一般高达35%以上。
为了保证氢化后共轭二烯烃结构单元链节中聚乙烯结晶相均匀分布且聚苯乙烯链相互缠结形成较高内聚力,从而带来高反弹与低压缩形变的性能,还必须严格控制苯乙烯类结构单元的无规度和共聚物的氢化度。其中本发明要求苯乙烯类结构单元在所述共轭二烯烃类结构单元中的无规度为30-80%优选为35-75%,所述共聚物的氢化度为85-100%优选95-100%。
本发明通过控制特定含量的共轭二烯1,2-结构、1,4-结构,加氢后使1,4-结构变成聚乙烯结构,确保一定量的乙烯结晶,形成结晶相,来提高强度和防止老化。
本发明中,苯乙烯类结构单元的含量、1,2-聚合结构单元的含量和氢化度均可通过核磁共振氢谱( 1H-NMR)法采用下述公式计算得到。
在上述取代基R 1到R 10均为H的共聚物中,δ6.1-7.2归属苯环上的质子,δ4.4-4.9归属1,2-聚合结构,δ4.9-5.8归属1,4-聚合结构,δ0.4-3.0归属烷烃区域,δ4.1-5.9归属烯烃区域。
5M 1+3M 2=A 6.8-7.2
2M 2=A 6.1-6.8
2M 3=A 4.4-4.9
2M 4+M 3=A 4.1-5.9
式中,Ax为δ在x范围所对应的谱峰面积,M 1为非嵌段St的相对摩尔分数,M 2为嵌段St的相对摩尔分数,M 3和M 4分别为Bd的1,2-聚合结构和1,4-聚合结构的相对摩尔分数。
根据上述归属,共聚物总的丁二烯含量(用Bd表示)为
Bd=[A 0.4-3.0-3(M 1+M 2)-3M 3-4M 4]/8+(M 3+M 4);   (I)
而1,2结构含量=M 3/Bd;   (II)
共聚物的总加氢度(用H表示)计算方式如下:
H=1-(M 3+M 4)/{[A 0.4-3.0-3(M 1+M 2)-3M 3-4M 4]/8+(M 3+M 4)}。   (III)
苯乙烯类结构单元的含量、1,2-聚合结构单元的含量和氢化度的具体获取方法也可参见《合成橡胶工业》,2012-09-15,53(5):332-335。
本发明中,上述取代基R 1到R 10均为H的共聚物的苯乙烯类结构单元在所述共轭二烯烃类结构单元中的无规度通过 1H-NMR方法谱图采用如下公式计算得到测得:
无规度=(A 6.8-7.2-X)/A 6.1-7.2
A 6.8-7.2表示嵌段苯环的对位和间位的三个质子和非嵌段苯乙烯的五个质子的峰面积,A 6.1- 6.8表示嵌段苯环两个邻位质子的峰面积,X表示嵌段苯环对位和间位的三个质子对应的峰面积,X/A 6.1-6.8=3/2,A 6.1-7.2表示共聚物中苯环上所有质子的峰面积。
根据本发明的优选实施方式,通过DSC测得的该氢化苯乙烯/共轭二烯烃共聚物的结晶温度为18℃以上优选为18-70℃,且热焓不低于1.7J/g优选2.0-25.0J/g。DSC采用TA公司的DSC-Q10热分析仪、按GB/T19466.3-2004标准方法测得,In和Sn校正温度和热焓值,氮气保护,升温由-80℃到130℃,速度为10℃/min,降温由130℃到-80℃,速度为2℃/min。
为了获得更高的反弹性和更低的压缩变形性,作为优选,所述氢化苯乙烯/共轭二烯烃共聚物的分子量为3万-50万,优选为4万-20万。
本发明中,除非另有说明,其中的分子量均表示采用凝胶渗透色谱(GPC)测试方法测得的数均分子量。
作为优选,本发明氢化苯乙烯/共轭二烯烃共聚物的300%定伸强度为8MPa以上,优选10-20MPa、扯断拉伸强度为30MPa以上优选为30-60MPa、扯断伸长率为300-600%优选为350-500%、硬度(邵氏A)为80以上优选为80-98、熔融指数MFR(g/10min,200℃,5kg)为0-8优选1-2。
本发明中,300%定伸强度、扯断拉伸强度、扯断伸长率、硬度(邵氏A)均通过按GB/T528-2009方法测得。
本发明的发明人发现,本发明提供的共聚物的TEM图如图1所示。通过TEM可以看到,式1所示的苯乙烯类结构单元形成的微区(图中白色部分)以柱状分布/球状分布与层状分布共存的形态分散在式2所示的氢化共轭二烯烃类结构单元和式3所示的氢化共轭二烯烃类结构单元形成的微区(图中非白色部分)内,该相结构赋予聚合物优良的力学性能。
而传统SEBS是一种嵌段共聚物,其相结构中每个聚二烯链段(PB)的末端都连接一个聚苯乙烯链段(PS),整个体系中聚丁二烯段聚集在一起形成软段,呈现橡胶的高弹性,聚苯乙烯段聚集在一起,形成硬段,呈塑料的高硬度。其TEM图如图2所示。从图2可以看出,传统 SEBS的聚苯乙烯微区仅以球形结构存在。
本发明提供的上述氢化苯乙烯/共轭二烯烃无规共聚物可以通过化学发泡或物理发泡方法进行发泡,得到发泡材料。所述物理发泡例如可以为使用二氧化碳、氮气等惰性气体的发泡方法,优选二氧化碳超临界发泡、氮气超临界发泡等。所述二氧化碳可以直接使用二氧化碳气体,也可以通过碳酸盐分解等化学方法原位产生。而传统的苯乙烯-丁二烯共聚物必须通过化学交联发泡才能获得反弹性和压缩变形均满足使用要求的发泡材料。
本发明提供的氢化苯乙烯/共轭二烯烃共聚物可以通过将苯乙烯、共轭二烯烃经阴离子聚合得到基础胶,随后再经选择性氢化(指对共轭二烯单元双键进行氢化,对苯环不氢化)以及纯化而得。
作为本发明的一种实施方式,所述基础胶的合成步骤包括在无氧无水的条件下,将下式A所示的苯乙烯类单体和下式B所示的共轭二烯烃类单体、聚合溶剂、分子结构调节剂和烷基锂引发剂加入到聚合釜中进行无规共聚,得到基础胶。
Figure PCTCN2019114015-appb-000003
其中R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10的含义和可选范围与上述相同。
根据本发明,聚合反应可以各自在本领域常用的各种聚合溶剂中进行,没有特别限定,例如可以为烃类溶剂。一般地,所述聚合溶剂可以选自C3-C20的直链或支链或环状烷烃,优选选自C4-C20的直链或支链烷烃或环状烷烃,更优选选自正丁烷、异丁烷、正戊烷、环戊烷、正己烷、环己烷、正庚烷、正辛烷、正壬烷、正癸烷、辛烷中的至少一种,进一步优选环戊烷、环己烷、正己烷中的一种或多种。本发明对于所述聚合溶剂的用量没有特别限定,可以为本领域的常规选择。作为优选,步骤(1)的聚合体系中,聚合溶剂的用量使得单体的初始总浓度为2-20重量%优选为5-16重量%。
作为优选,烷基锂引发剂为正丁基锂、仲丁基锂中的至少一种。
优选地,相对于100g的聚合单体(苯乙烯类单体和共轭二烯烃类单体的总量),烷基锂引发剂的用量为0.5mmol-3mmol。
本发明中,分子结构调节剂为两种以上路易斯碱的复合调节剂,优选其中至少一种分子结构调节剂为四氢呋喃,且优选地,四氢呋喃占分子结构调节剂总量的80重量%以上,优选95 重量%以上。其他路易斯碱例如叔胺类化合物以及其他醚类化合物如乙醚、苯甲醚、二氧六环、二甲氧基乙烷、二乙二醇二甲醚、乙二醇二丁醚、四氢糠醛乙基醚、二乙烯基醚、乙二醇乙基叔丁基醚、乙二醇丙基叔丁基醚、乙二醇甲基叔丁基醚、双四氢糠丙烷、三乙胺、四甲基乙二胺、N-甲基吗啉等中的一种或多种,其用量为相对于聚合溶剂的重量为2-30mg/kg,进一步优选为5-28mg/kg。分子结构调节剂在溶剂体系中的总浓度优选为350-650mg/kg。
各聚合单体可以一次性加入,也可以分次或连续按比例加入,只要保证反应器内同时存在苯乙烯类单体和共轭二烯烃类单体,使其发生无规共聚即可。
为保证聚合物的高拉伸强度,基础胶的无规度控制很关键。其中,分子结构调节剂用量和反应温度是控制无规度的关键因素,因此基础胶合成过程中需严格控制分子结构调节剂总用量在350-650mg/kg之间,THF用量在分子结构调节剂总量的80重量%以上,优选95重量%以上,反应温度控制在55-100℃。
作为优选,聚合反应时间为45-120分钟优选60-90分钟。
基础胶终止反应后加入助催化剂与镍系主催化剂或钛系主催化剂,在氢气存在下进行加氢反应,得氢化胶液。
可采用现有方法对所述的基础胶进行选择性加氢,以氢化共轭二烯烃的双键而不氢化苯环中的双键。例如,可以采用CN104945541B公开的氢化方法,该文献的内容在此一并引入作为参考。
优选地,助催化剂用量为8mg-129mg每100g聚合物。
优选地,主催化剂用量为17mg-200mg每100g聚合物。
其中,聚合物的量可以根据单体投料量计算得到。
所述助催化剂为醇类、酯类中一种或几种,优选为一元醇、多元醇、直链烷基酯类化合物、苯甲酸酯类化合物、苯二甲酸酯类化合物、对羟基苯甲酸酯类化合物中一种或几种;进一步优选为C1-C10的一元醇、C2-C10的多元醇、C2-C10的直链烷基酯类化合物、C7-C15的苯甲酸酯类化合物、C7-C15的苯二甲酸酯类化合物、C7-C15的对羟基苯甲酸酯类化合物中一种或几种;最优选为甲醇、异辛醇、苯甲酸甲酯、邻苯二甲酸二甲酯、邻苯二甲酸二丁酯中一种或几种。
作为优选,加氢胶液经软水终止反应,然后将氢化胶液进行纯化,脱除氢化胶液中的金属离子杂质,之后用水蒸气凝聚,随后经干燥、粉碎得到所述的氢化苯乙烯/共轭二烯烃无规共聚物。可以通过叔癸酸酸化、软水乳化萃取、离心分离、静置,分出水相,来脱除氢化胶液中的金属离子杂质。例如,可以参照CN201410063616.3记载的方法将聚合物中金属离子脱除,脱除后的胶液用水蒸气凝聚,溶剂回收循环使用,聚合物颗粒经干燥、粉碎得到成品。
优选地,叔癸酸酸化的条件包括叔癸酸的用量为0.5ml-1ml每100g聚合物,酸化时间为15-25分钟。
优选地,软水乳化萃取的条件包括软水的用量为50-100ml每100g聚合物,乳化时间为15-25分钟。
优选地,水汽凝聚的条件包括往10L的凝聚釜中通110-130℃的水蒸汽,凝聚时间为20-40min。
优选地,干燥的条件包括鼓风干燥箱的温度设置为80-120℃,干燥时间为1-4h。
本发明还提供了一种氢化苯乙烯/共轭二烯烃无规共聚物发泡材料,由所述的氢化苯乙烯/共轭二烯烃无规共聚物经二氧化碳超临界发泡得到。
本发明的发明人创新地发现,采用本发明上述提供的氢化苯乙烯/共轭二烯烃共聚物可以使用二氧化碳超临界发泡得到密度在0.1-0.9g/cm 3范围内可调、硬度(邵氏C)在5-85范围内可调的材料;该材料还同时具有高反弹、高减震、低压缩歪、高止滑、耐黄变、无VOC释放的特点。由本发明提供的上述氢化苯乙烯/共轭二烯烃无规共聚物通过二氧化碳超临界发泡得到的材料,根据ASTM-D2632测得的反弹为58-65%,根据GB/T 6669-2008测得的压缩变形为20-28%。
本发明的发明人研究还发现,将所述氢化苯乙烯/共轭二烯烃共聚物和白油、聚烯烃、无机填料、SEBS(氢化苯乙烯-丁二烯嵌段共聚物)、SEPS(氢化苯乙烯-异戊二烯嵌段共聚物)中的至少一种作为配料,一并采用二氧化碳超临界发泡,有助于进一步提升发泡材料的性能。
其中上述氢化苯乙烯/共轭二烯烃共聚物与所述配料的重量比可以为5-10:1。
二氧化碳超临界发泡的条件包括发泡压力例如可以为10-30MPa,发泡温度例如可以为110-140℃。
所述发泡材料可为线材、型材、片材等。
本发明还提供了上述氢化苯乙烯/共轭二烯烃共聚物发泡材料在制备发泡鞋底等中的应用。
采用本发明提供的氢化苯乙烯/共轭二烯烃共聚物发泡得到的材料制得的发泡鞋底具有高反弹、压缩变形低的特征。与传统的SEBS、EVA发泡材料制得的发泡鞋底相比,具有高反弹和低压缩永久变形的优势。
下面的实施例将对本发明做进一步的说明,但并不用于限制本发明。
以下实施例中,聚合物的分子量及分布用凝胶渗透色谱测试,所用仪器为日本岛津公司LCD-10ADvp凝胶色谱仪,检测器为RID-10A示差折光检测器,分离柱为GPC804、805,流动相THF的流速为1mL/min,测试温度为常温,用单分散的聚苯乙烯做标定,岛津CR-7A进行数据处理。
苯乙烯结构单元含量、1,2-结构的含量、氢化度和无规度均根据核磁氢谱通过计算获得,使用仪器为Bruker AV400光谱仪(400MHz)在常温下测得,CDCl 3为溶剂。
聚合物机械力学性能(300%定伸强度、扯断拉伸强度、扯断伸长率等)GB/T528-2009方法测试。
熔融指数(MFR)采用GB/T3682.1-2018方法(200℃,5kg)测得。
DSC谱图采用TA公司的DSC-Q10热分析仪,按GB/T19466.3-2004标准方法测得,In和Sn校正温度和热焓值,氮气保护,升温由-80℃到130℃,速度为10℃/min,降温由130℃到-80℃,速度为2℃/min。
发泡材料的反弹根据ASTM-D2632测得,压缩变形根据GB/T 6669-2008测得,干摩擦系数和湿摩擦系数根据ASTM-F609方法测得,密度采用GB/T6343-2009方法测得,氧化诱导期(OIT)按GB/T2951.9-1997标准测试。
实施例1
由阴离子聚合合成基础胶(基础胶S/B的质量比为35/65),再利用钛系催化剂选择性氢化而得,具体包括以下步骤:
步骤(1-a):基础胶合成
在以高纯氮气置换的5L聚合釜中加入3000mL纯环己烷(水值<20mg/kg)、用量相当于350mg/kg溶剂的四氢呋喃、5mg/kg的四氢糠醛乙基醚,开启搅拌,升温至60℃,加入6.0mmol正丁基锂,然后再加入195g丁二烯和105g苯乙烯的混合单体,混合单体采取一次性加入的方式加入聚合釜中,控制反应温度在100℃以下,然后再在70℃下反应50分钟,得到聚合胶液。
步骤(1-b):基础胶的加氢
将聚合胶液引入5L加氢釜中,升温至70℃,加入助催化剂邻苯二甲酸二丁酯4mL(0.2mol/L)和主催化剂双环戊二烯二氯化钛0.2g,并通入氢气,加氢压力控制在1.5MPa,加氢反应2个小时。
步骤(1-c):胶液纯化
加氢反应完毕后,加氢胶液转移至水洗釜,升温至60~65℃,叔癸酸酸洗脱除胶液中的金属锂,然后用300mL软水乳化萃取15min后离心分离、静置,分出水相,将剩余胶液经水汽凝聚,干燥得到氢化苯乙烯/丁二烯共聚物。共聚物的性质如表1所示。
所得氢化苯乙烯/丁二烯共聚物的TEM图如图1所示。从图1可以看出,该氢化苯乙烯/丁二烯共聚物的TEM图中同时存在层状和柱状/球状结构。
所得氢化苯乙烯/丁二烯共聚物的核磁氢谱图如图3所示。从图3可以看出其氢化结构, 微观结构、氢化度和无规度的计算结果如表1所示。
所得氢化苯乙烯/丁二烯共聚物的应力应变曲线图如图4的A所示,从图4可以看出本发明提供的氢化共聚物拉伸强度能达到41MPa以上,300%定伸强度达11MPa以上,拥有较高的拉伸模量和300%定伸强度。
所得氢化苯乙烯/丁二烯共聚物的DSC图如图5中的A所示。从图5可以看出本发明的氢化共聚物结晶温度在55℃左右,热焓值在20J/g左右。
实施例2
按照实施例1的方法合成聚合物,不同的是,由阴离子聚合合成S/B的质量比为30/70的基础胶,具体的基础胶合成操作如下:
在以高纯氮气置换的5L聚合釜中加入3000mL纯环己烷(水值<20mg/kg)、用量相当于450mg/kg溶剂的四氢呋喃、10mg/kg的四甲基乙二胺,开启搅拌,升温至60℃,加入6.0mmol正丁基锂,然后再加入210g丁二烯和90g苯乙烯的混合单体,混合单体采取一次性加入的方式加入聚合釜中,控制反应温度在100℃以下,然后再在70℃下反应55分钟。胶液按实施例1方法进行氢化和纯化,得到共聚物的性质如表1所示。TEM图与实施例1类似。
实施例3
按照实施例1的方法合成聚合物,不同的是,由阴离子聚合合成S/B的质量比为20/80的基础胶,具体的基础胶合成操作如下:
在以高纯氮气置换的5L聚合釜中加入3000mL纯环己烷(水值<20mg/kg)、用量相当于550mg/kg溶剂的四氢呋喃、15mg/kg的双四氢糠丙烷,开启搅拌,升温至60℃,加入6.0mmol正丁基锂,然后再加入240g丁二烯和60g苯乙烯的混合单体,混合单体采取一次性加入的方式加入聚合釜中,控制反应温度在100℃以下,然后再在70℃下反应55分钟。胶液按实施例1方法进行氢化和纯化得到共聚物的性质如表1所示。TEM图与实施例1类似。
实施例4
按照实施例1的方法合成聚合物,不同的是,由阴离子聚合合成S/B的质量比为45/55的基础胶,具体的基础胶合成操作如下:
在以高纯氮气置换的5L聚合釜中加入3000mL纯环己烷(水值<20mg/kg)、用量相当于500mg/kg溶剂的四氢呋喃、12mg/kg的四氢糠醛乙基醚,开启搅拌,升温至60℃,加入6.0mmol正丁基锂,然后再加入165g丁二烯和135g苯乙烯的混合单体,混合单体采取一次性加入的方式加入聚合釜中,控制反应温度在100℃以下,然后再在70℃下反应55分钟。胶液按实施例 1方法进行氢化和纯化得到共聚物的性质如表1所示。TEM图与实施例1类似。
实施例5
由阴离子聚合合成基础胶(基础胶S/B的质量比为38/62),再利用钛系催化剂选择性氢化而得,具体包括以下步骤:
步骤(1-a):基础胶合成
在以高纯氮气置换的5L聚合釜中加入3000mL纯环己烷(水值<20mg/kg)、用量相当于550mg/kg溶剂的四氢呋喃、25mg/kg的四氢糠醛乙基醚,开启搅拌,升温至60℃,加入10.0mmol正丁基锂,然后再加入186g丁二烯和114g苯乙烯的混合单体,混合单体采取一次性加入的方式加入聚合釜中,控制反应温度在100℃以下,然后再在70℃下反应55分钟,得到聚合胶液。
步骤(1-b):基础胶的加氢
同实施例1。
步骤(1-c):胶液纯化
同实施例1。得到氢化苯乙烯/丁二烯共聚物,性质如表1所示。
实施例6
按照实施例1的方法合成聚合物,不同的是,由阴离子聚合合成S/B的质量比为25/75的基础胶,具体的基础胶合成操作如下:
在以高纯氮气置换的5L聚合釜中加入3000mL纯环己烷(水值<20mg/kg)、用量相当于580mg/kg溶剂的四氢呋喃、20mg/kg的双四氢糠丙烷,开启搅拌,升温至60℃,加入6.0mmol正丁基锂,然后再加入225g丁二烯和75g苯乙烯的混合单体,混合单体采取一次性加入的方式加入聚合釜中,控制反应温度在100℃以下,然后再在70℃下反应55分钟。胶液按实施例1方法进行氢化和纯化得到共聚物的性质如表1所示。TEM图与实施例1类似。
实施例7
按照实施例1的方法合成聚合物,不同的是,由阴离子聚合合成S/B的质量比为32/68的基础胶,具体的基础胶合成操作如下:
在以高纯氮气置换的5L聚合釜中加入3000mL纯环己烷(水值<20mg/kg)、用量相当于580mg/kg溶剂的四氢呋喃、25mg/kg的双四氢糠丙烷,开启搅拌,升温至60℃,加入4.0mmol正丁基锂,然后再加入204g丁二烯和96g苯乙烯的混合单体,混合单体采取一次性加入的方式加入聚合釜中,控制反应温度在100℃以下,然后再在70℃下反应55分钟。胶液按实施例1方法进行氢化和纯化得到共聚物的性质如表1所示。TEM图与实施例1类似。
对比例1
按照CN102083872B实施例2的方法进行苯乙烯/丁二烯共聚物的制备。
对比例2
按照CN102083872B实施例2的方法进行苯乙烯/丁二烯共聚物的制备,然后按照本发明上述实施例1的步骤(1-b)和(1-c)对共聚物进行加氢和纯化。
对比例3
按照实施例2的方法进行氢化苯乙烯/丁二烯共聚物的制备,不同的是合成S/B的质量比为60/40的基础胶。
对比例4
传统SEBS产品(氢化苯乙烯-丁二烯-苯乙烯的三嵌段共聚物,S/B重量比为33/67,1.2-聚合结构含量36.5-37.5%,数均分子量为19.8万)。其TEM图如图2所示。从图2可以看出,其中仅存在球状结构。其应力应变曲线如图4中的B所示。从图4可以看出,该市售品SEBS的拉伸强度在20MPa左右,强度远小于本发明的共聚物的拉伸强度。其DSC曲线如图5中的B所示。从图5可以看出,该市售品SEBS的结晶温度在16℃左右,热焓值为2.6J/g。
对比例5
由阴离子聚合合成基础胶(基础胶S/B的质量比为38/62),再利用钛系催化剂选择性氢化而得,具体包括以下步骤:
步骤(1-a):基础胶合成
在以高纯氮气置换的5L聚合釜中加入3000mL纯环己烷(水值<20mg/kg)、用量相当于250mg/kg溶剂的双四氢糠丙烷,开启搅拌,升温至60℃,加入8.0mmol正丁基锂,然后再加入186g丁二烯和114g苯乙烯的混合单体,混合单体采取一次性加入的方式加入聚合釜中,控制反应温度在100℃以下,然后再在80℃下反应60分钟,得到聚合胶液。
步骤(1-b):基础胶的加氢
同实施例1。
步骤(1-c):胶液纯化
同实施例1。得到氢化苯乙烯/丁二烯共聚物,性质如表1所示。
对比例6
由阴离子聚合合成基础胶(基础胶S/B的质量比为38/62),再利用钛系催化剂选择性氢化而得,具体包括以下步骤:
步骤(1-a):基础胶合成
同与实施例1。
步骤(1-b):基础胶的加氢
将聚合胶液引入5L加氢釜中,升温至70℃,加入助催化剂邻苯二甲酸二丁酯4mL(0.1mol/L)和主催化剂双环戊二烯二氯化钛0.1g,并通入氢气,加氢压力控制在1.0MPa,加氢反应1个小时。
步骤(1-c):胶液纯化
同实施例1。得到氢化苯乙烯/丁二烯共聚物,性质如表1所示。
对比例7
由阴离子聚合合成基础胶(基础胶S/B的质量比为30/70),再利用钛系催化剂选择性氢化而得,具体包括以下步骤:
步骤(1-a):基础胶合成
在以高纯氮气置换的5L聚合釜中加入3000mL纯环己烷(水值<20mg/kg)、用量相当于200mg/kg溶剂的四氢呋喃,开启搅拌,升温至70℃,加入8.0mmol正丁基锂,然后再加入210g丁二烯和90g苯乙烯的混合单体,混合单体采取一次性加入的方式加入聚合釜中,控制反应温度在100℃以下,然后再在80℃下反应60分钟,得到聚合胶液。
步骤(1-b):基础胶的加氢
同实施例1。
步骤(1-c):胶液纯化
同实施例1。得到氢化苯乙烯/丁二烯共聚物,性质如表1所示。
实施例1-7和对比例1-7所合成样品的性能测试结果如下表1所示。
表1
Figure PCTCN2019114015-appb-000004
Figure PCTCN2019114015-appb-000005
续表1
实施例 对比例1 对比例2 对比例3 对比例4 对比例5 对比例6 对比例7
S/B 30/70 30/70 60/40 33/67 38/62 38/62 30/70
1,2-结构含量,% 15.6 15.6 18.2 36.8 37.3 19.0 6.2
氢化度,% 0 98.2 97.1 99.0 97.7 80.0 97.8
无规度,% 95.1 95.1 68.0 0.8 84.8 40.1 20.3
结晶温度,℃ 28.3 16.9 24.1 45.1
热焓,J/g 1.5 2.6 3.9 18.2
数均分子量,万 14.0 14.0 6.0 19.8 5.1 5.3 4.9
300%定伸强度,MPa 0.4 0.5 4.7 4.3 1.8 1.1 8.0
扯断拉伸强度,MPa 1.1 1.8 15.7 25.8 8.3 6.9 25.0
扯断伸长率,% 467 544 577 521 655 567 499
硬度,邵A 测不出 测不出 95 73 79 80 95
MFR,g/10min 2.13 1.46 1.87 2.31 3.48 3.12
TEM特征 层状 球状 柱状 柱状 柱状
氧化诱导期,min 3.8 10.6 22.0 18.5 20.6 13.2 49.0
注:结晶温度和热焓中的“无”表示DSC曲线中看不到结晶峰,TEM特征中的“无”表示TEM中看不到层状、柱状、球状结构中的任意一种,“测不出”表示聚合物太软,用邵A硬度计测不出数据。
从上表1的结果可以看出,本发明提供的共聚物具有较好的机械性能和抗氧化性能。
性能测试
1)在挤出机中对上述实施例1-7和对比例1-7制得的共聚物进行共混造粒,造粒的条件包括造粒温度(机头温度)为200℃,然后将氢化苯乙烯/丁二烯共聚物粒子(粒径为0.5-1cm)在二氧化碳超临界流体中浸渍,使超临界流体在氢化苯乙烯/丁二烯共聚物粒子基体中达到溶解平衡后,将氢化苯乙烯/丁二烯共聚物粒子置于高压反应釜中加热发泡,发泡的条件包括发泡压力20MPa,发泡温度120℃,得到氢化苯乙烯/丁二烯共聚物发泡粒子。发泡粒子通过模具,模压形成发泡板材(厚度1cm左右),发泡板材性能测试结果如下表2。
2)将实施例1-4和对比例1-3制得的共聚物与白油(26#,山东利丰化工新材料有限公司)、聚丙烯(燕山石化k8303)、CaCO 3、SEBS(巴陵石化YH503)或SEPS(巴陵石化YH4053)进行共混,配方如表3所示。将共混物进行CO 2超临界发泡,发泡的条件包括发泡压力20MPa,发泡温度120℃,得到氢化苯乙烯/丁二烯共聚物发泡粒子。发泡粒子通过模具,模压形成发泡板材(厚度1cm左右),发泡板材性能测试结果如下表4。
表2
实施例 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7
S/B 35/65 30/70 20/80 45/55 38/62 25/75 32/68
反弹,% 62 61 65 61 62 60 64
压缩变形,% 23 20 20 24 21 23 21
硬度,邵C 46 40 35 48 47 40 41
干滑摩擦系数 0.60 0.65 0.62 0.63 0.62 0.64 0.63
湿滑摩擦系数 0.20 0.21 0.20 0.23 0.22 0.21 0.20
密度,g/cm 3 0.24 0.21 0.19 0.27 0.26 0.20 0.23
续表2
实施例 对比例1 对比例2 对比例3 对比例4 对比例5 对比例6 对比例7
S/B 30/70 30/70 60/40 33/67 38/62 38/62 30/70
反弹,% 9 12 33 50 38 30 41
压缩变形,% 72 70 50 35 32 34 45
硬度,邵C 12 15 55 45 44 47 49
干滑摩擦系数 0.51 0.49 0.49 0.49 0.53 0.48 0.46
湿滑摩擦系数 0.12 0.12 0.10 0.10 0.12 0.11 0.13
密度,g/cm 3 0.22 0.34 0.32 0.32 0.31 0.35 0.38
表3
共聚物来源 共聚物 白油 聚丙烯 CaCO 3 SEBS SEPS
实施例1 85 10 5 10 0 0
实施例2 80 8 2 10 5 5
实施例3 80 8 2 20 10 0
实施例4 80 8 2 20 0 10
对比例1 85 10 5 10 0 0
对比例2 85 10 5 10 0 0
对比例3 85 10 5 10 0 0
表4
实施例 实施例1 实施例2 实施例3 实施例4 对比例1 对比例2 对比例3
S/B 35/65 30/70 20/80 45/55 30/70 30/70 60/40
反弹,% 60 63 63 65 20 13 25
压缩变形,% 30 28 28 28 65 73 51
硬度,邵C 48 46 46 45 12 17 57
干滑摩擦系数 0.58 0.57 0.57 0.56 0.52 0.51 0.53
湿滑摩擦系数 0.20 0.21 0.21 0.20 0.11 0.13 0.10
密度,g/cm 3 0.30 0.35 0.35 0.34 0.34 0.47 0.42
从表2的结果可以看出,本发明通过控制氢化共聚物特定的苯乙烯含量、特定的1,2-结构含量,以及特定的氢化度和无规度,使得由此获得的共聚物通过二氧化碳发泡即可获得反弹性高、压缩变形低的发泡材料。
从表2和表4的结果可以看出,采用本发明氢化共聚物的配方胶,由于填料的加入,发泡体的密度和硬度有所提高,但发泡体的反弹和压缩变形性能仍然较好。

Claims (12)

  1. 一种氢化苯乙烯/共轭二烯烃共聚物,其特征在于,该共聚物含有式1所示的苯乙烯类结构单元、式2所示的共轭二烯烃类结构单元和式3所示的共轭二烯烃类结构单元,
    Figure PCTCN2019114015-appb-100001
    其中,R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9各自为H、C1-C3的烷基,R 10为H或C1-C4的烷基;以共聚物的总量为基准,苯乙烯类结构单元的含量为15-50wt%优选18-45wt%,以式2所示的氢化共轭二烯烃类结构单元和式3所示的氢化共轭二烯烃类结构单元的总量为基准,式3所示的氢化共轭二烯烃类结构单元的含量为8-32%,苯乙烯类结构单元在所述共轭二烯烃类结构单元中的无规度为30-80%,所述共聚物中共轭二烯烃的氢化度为85-100%。
  2. 根据权利要求1所述的氢化苯乙烯/共轭二烯烃共聚物,其中,以共聚物的总量为基准,苯乙烯类结构单元的含量为25-35wt%,以式2所示的氢化共轭二烯烃类结构单元和式3所示的氢化共轭二烯烃类结构单元的总量为基准,式3所示的氢化共轭二烯烃类结构单元的含量为10-30%优选12-25%,苯乙烯类结构单元在所述共轭二烯烃类结构单元中的无规度为35-70%,所述共聚物中共轭二烯烃的氢化度为95-100%。
  3. 根据权利要求1或2所述的氢化苯乙烯/共轭二烯烃共聚物,其中,通过DSC测得的该氢化苯乙烯/共轭二烯烃共聚物的结晶温度为18℃以上优选为18-70℃,且热焓不低于1.7J/g优选2-25J/g。
  4. 根据权利要求1-3中任意一项所述的氢化苯乙烯/共轭二烯烃共聚物,其中,式1所示的苯乙烯类结构单元形成的微区与式2所示的氢化共轭二烯烃类结构单元和式3所示的氢化 共轭二烯烃类结构单元形成的微区成柱状/球状与层状共存分布。
  5. 根据权利要求1-4中任意一项所述的氢化苯乙烯/共轭二烯烃共聚物,其中,式1所示的苯乙烯类结构单元、式2所示的氢化共轭二烯烃类结构单元和式3所示的氢化共轭二烯烃类结构单元分别为如下式1-1所示的结构单元、式2-1所示的结构单元和式3-1所示的结构单元
    Figure PCTCN2019114015-appb-100002
  6. 根据权利要求1-5中任意一项所述的氢化苯乙烯/共轭二烯烃共聚物,其中,通过凝胶色谱法测得该共聚物的数均分子量为3万-50万,优选4万-20万,更优选5万-8万。
  7. 根据权利要求1-6中任意一项所述的氢化苯乙烯/共轭二烯烃共聚物,其中,该共聚物的300%定伸强度为8MPa以上,优选10-20MPa、扯断拉伸强度为30MPa以上优选为30-60MPa、扯断伸长率为300-600%优选为350-500%、硬度(邵氏A)为80以上优选为80-98、熔融指数(200℃,5kg)为0-8g/10min优选1-2g/10min。
  8. 由权利要求1-7中任意一项所述的氢化苯乙烯/共轭二烯烃共聚物通过发泡优选物理发泡得到的发泡材料。
  9. 根据权利要求8所述的发泡材料,其中,根据ASTM-D2632测得的该发泡体的反弹为58-65%,根据GB/T 6669-2008测得的该发泡体的压缩变形为20-28%。
  10. 根据权利要求8或9所述的发泡材料,其中,所述发泡为超临界二氧化碳发泡或超临界氮气发泡。
  11. 权利要求8-10中任意一项所述的发泡材料在制备发泡鞋底中的应用。
  12. 由权利要求1-7中任意一项所述的氢化苯乙烯/共轭二烯烃共聚物在制备发泡鞋底中的应用。
PCT/CN2019/114015 2018-10-30 2019-10-29 氢化苯乙烯/共轭二烯烃共聚物及其发泡材料和应用 WO2020088454A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2021004876A MX2021004876A (es) 2018-10-30 2019-10-29 Copolimero de estireno hidrogenado/diolefina conjugada, material espumante del mismo y aplicacion del mismo.
EP19878283.1A EP3842465B1 (en) 2018-10-30 2019-10-29 Hydrogenated styrene/conjugated diolefin copolymer, foaming material thereof, and application thereof
CN201980053850.9A CN112752777B (zh) 2018-10-30 2019-10-29 氢化苯乙烯/共轭二烯烃共聚物及其发泡材料和应用
JP2021523405A JP7288505B2 (ja) 2018-10-30 2019-10-29 水添スチレン・共役ジエン共重合体及びその発泡材料並びに使用
US17/286,919 US11897988B2 (en) 2018-10-30 2019-10-29 Hydrogenated styrene/conjugated diolefin copolymer, foaming material thereof, and application thereof
ES19878283T ES2950414T3 (es) 2018-10-30 2019-10-29 Copolímero de diolefina conjugada/estireno hidrogenado, material espumante del mismo y aplicación del mismo
JP2022164820A JP2023002642A (ja) 2018-10-30 2022-10-13 水添スチレン・共役ジエン共重合体及びその発泡材料並びに使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811281317.1 2018-10-30
CN201811281317 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020088454A1 true WO2020088454A1 (zh) 2020-05-07

Family

ID=70464339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114015 WO2020088454A1 (zh) 2018-10-30 2019-10-29 氢化苯乙烯/共轭二烯烃共聚物及其发泡材料和应用

Country Status (7)

Country Link
US (1) US11897988B2 (zh)
EP (1) EP3842465B1 (zh)
JP (2) JP7288505B2 (zh)
CN (1) CN112752777B (zh)
ES (1) ES2950414T3 (zh)
MX (1) MX2021004876A (zh)
WO (1) WO2020088454A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021004033T5 (de) 2020-07-31 2023-06-01 China Petroleum & Chemical Corporation Zusammensetzung, Herstellungsverfahren dafür und Anwendung der Zusammensetzung und Selbstheilungsverfahren für eine Bohrlochzementierung in einem Öl/Gasfeld

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027615A1 (en) * 1998-11-06 2000-05-18 The Dow Chemical Company Fabricated articles produced from alpha-olefin/vinyl or vinylidene aromatic and/or hindered aliphatic or cycloaliphatic vinyl or vinylidene interpolymer compositions
CN1844178A (zh) * 2005-04-08 2006-10-11 中国石化集团巴陵石油化工有限责任公司 一种苯乙烯-共轭二烯烃嵌段聚合物选择氢化的方法
CN102083872A (zh) 2008-07-15 2011-06-01 中国石油化工集团公司 一种可注射发泡的苯乙烯属单体-二烯烃共聚物及其制备方法和用途
CN102786621A (zh) * 2012-07-19 2012-11-21 大连理工大学 一类基于稀土催化体系高顺式苯乙烯/异戊二烯/丁二烯三元共聚物及其制备方法
CN104945541A (zh) 2014-03-27 2015-09-30 中国石油化工股份有限公司 一种共轭二烯类聚合物的选择性氢化方法
CN108219090A (zh) * 2016-12-21 2018-06-29 中国石油化工股份有限公司 一种氢化苯乙烯-共轭二烯共聚物及其制备方法和在自粘膜中的应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275179A (en) * 1979-09-24 1981-06-23 Mobil Oil Corporation Poly(p-methylstyrene) polyblend
JP2720510B2 (ja) * 1989-04-14 1998-03-04 日本合成ゴム株式会社 オレフィン性不飽和重合体の水素化方法
JP3199374B2 (ja) * 1990-10-01 2001-08-20 旭化成株式会社 架橋ゴム組成物
US5132372A (en) * 1991-09-09 1992-07-21 Shell Oil Company Process for selective hydrogenation of conjugated diolefin polymers
US6005050A (en) * 1994-11-28 1999-12-21 Idemitsu Petrochemical Co., Ltd. Impact resistant polystyrene composition
JP4153577B2 (ja) * 1997-11-28 2008-09-24 旭化成ケミカルズ株式会社 耐油性に優れた熱可塑性エラストマー
WO2001042342A1 (en) * 1999-12-07 2001-06-14 Dow Global Technologies Inc. Hydrogenated vinyl aromatic polymer foams
US20030181584A1 (en) 2002-02-07 2003-09-25 Kraton Polymers U.S. Llc Elastomeric articles prepared from controlled distribution block copolymers
EA007296B1 (ru) 2002-06-04 2006-08-25 Кратон Полимерз Рисёч Б.В. Композиция, содержащая сопряженный блок-сополимер, и способ ее получения
JP5502319B2 (ja) 2006-02-13 2014-05-28 旭化成ケミカルズ株式会社 水添ブロック共重合体、該水添ブロック共重合体含有樹脂組成物、それらの架橋体および架橋発泡体
CN101616985B (zh) 2007-02-20 2012-06-13 旭化成化学株式会社 冲击吸收体组合物
ES2682802T3 (es) * 2008-12-22 2018-09-21 Asahi Kasei Kabushiki Kaisha Composición reticulable y espumable, espuma reticulada y entresuela de zapato que las comprende
JP2011094074A (ja) 2009-10-30 2011-05-12 Asahi Kasei Chemicals Corp 発泡体用変性ブロック共重合体及びその組成物
IT1403084B1 (it) 2010-10-25 2013-10-04 Polimeri Europa Spa Copolimeri stirene-butadiene idrogenati e processo per la loro preparazione.
CN103347914B (zh) 2011-02-14 2016-08-10 可乐丽股份有限公司 氢化嵌段共聚物和包含其的组合物
US20130225020A1 (en) 2012-02-24 2013-08-29 Kraton Polymers Us Llc High flow, hydrogenated styrene-butadiene-styrene block copolymer and applications
CN103848938B (zh) * 2012-11-30 2016-07-06 中国石油化工股份有限公司 一种选择性氢化的三元共聚物及其制备方法和应用
WO2017014283A1 (ja) * 2015-07-22 2017-01-26 Jsr株式会社 水添共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ
TW201708286A (zh) * 2015-07-22 2017-03-01 Jsr Corp 氫化共軛二烯類聚合物及其製造方法、聚合物組成物、交聯聚合物以及輪胎

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027615A1 (en) * 1998-11-06 2000-05-18 The Dow Chemical Company Fabricated articles produced from alpha-olefin/vinyl or vinylidene aromatic and/or hindered aliphatic or cycloaliphatic vinyl or vinylidene interpolymer compositions
CN1844178A (zh) * 2005-04-08 2006-10-11 中国石化集团巴陵石油化工有限责任公司 一种苯乙烯-共轭二烯烃嵌段聚合物选择氢化的方法
CN102083872A (zh) 2008-07-15 2011-06-01 中国石油化工集团公司 一种可注射发泡的苯乙烯属单体-二烯烃共聚物及其制备方法和用途
CN102786621A (zh) * 2012-07-19 2012-11-21 大连理工大学 一类基于稀土催化体系高顺式苯乙烯/异戊二烯/丁二烯三元共聚物及其制备方法
CN104945541A (zh) 2014-03-27 2015-09-30 中国石油化工股份有限公司 一种共轭二烯类聚合物的选择性氢化方法
CN108219090A (zh) * 2016-12-21 2018-06-29 中国石油化工股份有限公司 一种氢化苯乙烯-共轭二烯共聚物及其制备方法和在自粘膜中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BU SHAO-HUAWU CHUN-HONG: "Determination of hydrogenation degree and microstructure of styrene-ethylene-butadiene-styrene block copolymer by 'H-NMR", JOURNAL CHINASYNTHETICRUBBER INDUSTRY, vol. 53, no. 5, 15 September 2012 (2012-09-15), pages 332 - 335

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021004033T5 (de) 2020-07-31 2023-06-01 China Petroleum & Chemical Corporation Zusammensetzung, Herstellungsverfahren dafür und Anwendung der Zusammensetzung und Selbstheilungsverfahren für eine Bohrlochzementierung in einem Öl/Gasfeld

Also Published As

Publication number Publication date
JP2023002642A (ja) 2023-01-10
MX2021004876A (es) 2021-08-11
US11897988B2 (en) 2024-02-13
EP3842465A4 (en) 2022-06-22
EP3842465A1 (en) 2021-06-30
EP3842465B1 (en) 2023-06-14
CN112752777B (zh) 2022-10-14
ES2950414T3 (es) 2023-10-09
CN112752777A (zh) 2021-05-04
JP7288505B2 (ja) 2023-06-07
US20210371564A1 (en) 2021-12-02
JP2022506196A (ja) 2022-01-17

Similar Documents

Publication Publication Date Title
US9133293B2 (en) Copolymer rubber having a star-shaped block structure, the preparation process and use thereof
JP5314812B1 (ja) ゴム組成物及びタイヤ
CN108623762B (zh) 经由植物油的原子转移自由基聚合的热塑性弹性体
TW201538584A (zh) 橡膠組成物
TW201821441A (zh) 橡膠組成物
JPS63101440A (ja) ゴム組成物
WO2020088454A1 (zh) 氢化苯乙烯/共轭二烯烃共聚物及其发泡材料和应用
JPH04249511A (ja) セグメント化エラストマー
JP2004131707A (ja) 3元ブロック共重合体及び製造方法
KR101879527B1 (ko) 분지형 광범위 mwd 공액 디엔 중합체
JP2024061789A (ja) 硬化性組成物及びシーラント
JP2009084458A (ja) ブロック共重合体及びその製造方法
JPH093129A (ja) ポリブタジエンゴムの製造方法
RU2775599C1 (ru) Гидрированный сополимер стирола и сопряженного диолефина, пеноматериал из этого сополимера и его применение
JPS5938209A (ja) 分岐状共役ジエン系重合体
JPH0686500B2 (ja) 共役ジオレフィン系重合体の製造方法
FR3079835A1 (fr) Additif pour feuille impermeable contenant de l'asphalte, procede de production d'une feuille impermeable contenant de l'asphalte, composition d'asphalte, et feuille impermeable contenant de l'asphalte
KR102654433B1 (ko) 고무 조성물
JPS58162603A (ja) 低ヒステリシスロスで破壊特性に優れたゴム組成物
TW202106727A (zh) 二烯系橡膠及橡膠組成物
WO2023127746A1 (ja) 発泡体および緩衝材
CN113930042A (zh) 一种sebs/tpu合金材料及其应用
JPS62156101A (ja) スチレンブタジエン共重合体ゴムの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019878283

Country of ref document: EP

Effective date: 20210326

ENP Entry into the national phase

Ref document number: 2021523405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE