WO2020087721A1 - pH稳定性提高的碳化硅化学机械抛光液及制备方法和应用 - Google Patents

pH稳定性提高的碳化硅化学机械抛光液及制备方法和应用 Download PDF

Info

Publication number
WO2020087721A1
WO2020087721A1 PCT/CN2018/123714 CN2018123714W WO2020087721A1 WO 2020087721 A1 WO2020087721 A1 WO 2020087721A1 CN 2018123714 W CN2018123714 W CN 2018123714W WO 2020087721 A1 WO2020087721 A1 WO 2020087721A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
silicon carbide
acid
mechanical polishing
chemical mechanical
Prior art date
Application number
PCT/CN2018/123714
Other languages
English (en)
French (fr)
Inventor
窦文涛
宗艳民
梁庆瑞
王含冠
Original Assignee
山东天岳先进材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811303460.6A external-priority patent/CN109554119B/zh
Priority claimed from CN201811303464.4A external-priority patent/CN109321141B/zh
Application filed by 山东天岳先进材料科技有限公司 filed Critical 山东天岳先进材料科技有限公司
Publication of WO2020087721A1 publication Critical patent/WO2020087721A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Definitions

  • the present application relates to the technical field of chemical mechanical polishing, in particular to a silicon carbide chemical mechanical polishing solution with stable pH value, preparation method and application thereof.
  • potassium permanganate becomes the most widely used oxidant, but potassium permanganate consumes H + during the oxidation process, the pH of the polishing liquid increases, the stability of the abrasive decreases, and agglomeration and sedimentation occurs, resulting in polishing The instability of the liquid is prone to scratches, which affects the polishing quality. Therefore, it is critical to stabilize the pH of the polishing liquid.
  • Cabot Company discloses a continuous silicon carbide CMP polishing solution, using potassium permanganate as an oxidant, and using a conventional pH buffer system, which can ensure that the pH value of the CMP polishing solution before use is within a reasonable range, but it is difficult to ensure CMP polishing
  • the liquid is always in the acidic range during use.
  • Sinmat uses potassium permanganate as oxidant, pH is 4, and core (silica or alumina) -shell (manganese oxide) particles are used as abrasives.
  • the hardness of the particle shell is small ( ⁇ 6), which is not suitable for carbonization Chemical mechanical polishing of silicon.
  • ASAHI GLASS company's CMP polishing liquid uses potassium permanganate as oxidant, acidic silicon oxide or cerium oxide as abrasive. During the use of the polishing liquid, the pH value is not controlled, and the abrasive hardness is low. Therefore, ASAHI GLASS company's CMP The polishing liquid has a low polishing efficiency for silicon carbide.
  • this application uses a specific acidic surface modifier and a pH stabilizer to ensure that the pH value of the CMP polishing liquid is The silicon carbide chemical mechanical polishing process is always within the appropriate range.
  • potassium permanganate has become the mainstream oxidant of high-speed and high-efficiency SiC chemical mechanical polishing liquid, but a large amount of hydrogen ions will be consumed in the oxidation process of potassium permanganate, resulting in an increase in the pH value of the polishing liquid and irreversible agglomeration of the abrasive to control the polishing
  • the pH value of the liquid becomes very important, and the pH buffer system widely mentioned in the patent cannot control the pH of the polishing liquid to 3.5 to 4, and has a single role. It only serves as a pH buffer and is stable to the polishing liquid.
  • aluminum nitrate can serve as a pH stabilizing buffer
  • Al 3+ can simultaneously stabilize the debris and potassium permanganate that are thrown away during the polishing process to form manganese oxidation Substances (such as MnO 2 ), thereby reducing the influence of the “impurities” formed during the polishing process on the stability of the polishing liquid.
  • the polishing liquid of the present application can be recycled.
  • the widely used dispersion stabilizers are surfactants or polymers. Although surfactants or polymer dispersion stabilizers are also used in the above patents, the actual In the course of the experiment, in the presence of potassium permanganate, these conventional dispersion stabilizers did not have a stabilizing effect, and even destroyed the stability of the polishing solution. However, the use of core-shell (inorganic / organic or inorganic / inorganic) abrasive particles has complicated and cumbersome preparation processes and difficult quality control.
  • water-soluble small-molecule acids such as acetic acid, propionic acid, etc.
  • water-soluble small-molecule acids resistant to oxidation of potassium permanganate are used to modify the surface of alumina, on the one hand, it provides a soft layer, on the other hand, it inhibits the aggregation of alumina.
  • the polishing liquid includes: oxidant, high hardness abrasive and pH stability Agent, the pH stabilizer is aluminum nitrate. Because the pH stabilizer aluminum nitrate is added to the polishing solution, the pH stability of the polishing solution during chemical mechanical polishing is stronger, and the polishing solution is not prone to hard agglomeration.
  • the present application provides a silicon carbide chemical mechanical polishing liquid with improved pH stability.
  • the polishing liquid includes: an oxidizing agent, a high-hardness abrasive, and a pH stabilizer.
  • the pH stabilizer is aluminum nitrate.
  • the oxidizing agent is selected from one or any of hydrogen peroxide, potassium persulfate, periodate, and potassium permanganate.
  • the oxidizing agent is selected from potassium permanganate.
  • the high-hardness abrasive is selected from one or any of alumina, silicon carbide, diamond, boron carbide, and silicon carbon.
  • the high-hardness abrasive is selected from alumina. More preferably, the high-hardness abrasive is selected from an acidic alumina dispersion. More preferably, the alumina may be ⁇ -alumina with high hardness (Mohs hardness 9.0), or may be transition phase alumina such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -oxidation One or more of aluminum.
  • the polishing liquid further includes a surface modifier of high-hardness abrasive.
  • the surface modifier may be an organic acid selected from acetic acid, propionic acid, citric acid, malic acid, itaconic acid, maleic acid, One or any of malonic acid, crotonic acid, gluconic acid, glycolic acid, lactic acid, and mandelic acid; preferably, acetic acid and / or propionic acid.
  • the surface of alumina is modified with water-soluble small molecule acid (such as acetic acid, propionic acid, etc.) resistant to oxidation of potassium permanganate. On the one hand, it provides a soft layer, on the other hand, it can inhibit the aggregation of alumina and improve the alumina. The dispersion effect of the particles and the stability of the dispersion.
  • the final concentration of the aluminum nitrate is 0.01 to 5%.
  • the final concentration of the aluminum nitrate is 0.05 to 1%.
  • the final concentration of the oxidant is 0.01-10%.
  • the final concentration of the oxidant is 0.1-4%.
  • the polishing liquid further includes a surfactant, a corrosion inhibitor, a defoamer, a brightener, a viscosity modifier, or a polymer dispersant.
  • the surfactant may be sodium dodecylbenzenesulfonate, fatty alcohol polyoxyethylene ether, Tween 20, cetyltrimethylammonium bromide, polyethylene glycol, or glycerin. One or more.
  • the corrosion inhibitor may be an inorganic corrosion inhibitor or an organic corrosion inhibitor; preferably, the inorganic corrosion inhibitor may be one or more of sodium nitrite and copper sulfate pentahydrate, and the organic corrosion inhibitor may be benzoic acid Monoethanolamine, hexamethylenetetramine (Urotropine), Rhodine (di-o-tolylthiourea), hexamethylenetetramine, polyaspartic acid, phenylpropyltriazole, urea, containing One or more of keto-based corrosion inhibitors;
  • the brightener is one or more of salicylic acid, sulfosalicylic acid, propargyl alcohol, benzoic acid, cellulose ether, gelatin, saccharin, sulfonic acid, glucose;
  • the viscosity modifier is selected from one or more of glycerin, polyethylene glycol, gelatin, bone glue;
  • the dispersant may be an inorganic dispersant or an organic dispersant; preferably, the inorganic dispersant may be sodium hexametaphosphate, and the organic dispersant may be a small molecule organic dispersant and a polymer-based dispersant; more preferably, a small molecule organic
  • the dispersant can be one or more of sodium dodecylbenzenesulfonate, sodium dodecylsulfonate, and coconut acid diethanolamide
  • the polymer-based dispersant can be polyacrylic acid, sodium polyacrylate, poly Ethylene glycol 4000, carboxymethyl cellulose, polyvinylpyrrolidone, polyacrylate, polymethacrylic acid, polymethacrylate, polymaleic acid, polymaleate, polymaleic acid, polymaleic acid
  • salts acrylic acid copolymers, acrylic acid salt copolymers, polyaspartic acid, and polyaspartate.
  • the high-hardness abrasive is an acidic alumina dispersion with a concentration of 10-30%, and the amount of the surface modifier is 0.5-2.0% by weight of alumina.
  • the high-hardness abrasive is an acidic alumina dispersion with a concentration of 15-25%, and the amount of the surface modifier is 1.0-1.5% by weight of alumina.
  • the high-hardness abrasive is an acidic alumina dispersion with a concentration of 20%, and the amount of the surface modifier is 1.2-1.3% by weight of alumina.
  • the acidic alumina dispersion may be Saint-Gobain's acidic alumina dispersion, or self-made acidic alumina dispersion using alumina powder;
  • the preparation method of the acidic alumina dispersion liquid 15-25 g of alumina powder with a particle size of 100 nm is dispersed in 100 ml of water, the pH value is adjusted to 0 to 1 with nitric acid, and 4 to 4 are ground with a star ball mill After 6 hours, an acidic alumina dispersion with a pH of 3.5 to 4 was prepared.
  • polishing liquid is prepared by the following method:
  • polishing solution is obtained by the following preparation method:
  • acidic alumina dispersion disperse 10-30 grams of alumina powder with a particle size of 100 nm in 100 ml of water, adjust the pH to 0 to 1 with nitric acid, and grind for 4 to 6 hours with a star ball mill. An acidic alumina dispersion with a pH of 3.5 to 4 is prepared;
  • polishing solution is obtained by the following preparation method:
  • acidic alumina dispersion disperse 20 grams of alumina powder with a particle size of 50-100 nm in 100 ml of water, adjust the pH to 0 to 1 with nitric acid, and grind for 4 to 6 hours with a star ball mill. An acidic alumina dispersion with a pH of 3.5 to 4 is prepared;
  • step (1) and the step (2) are combined, the specific steps are: dispersing alumina in water, adjusting the pH value to 0 to 1 with nitric acid, adding a surface modifier organic acid, Disperse with a ball mill, complete the ball mill dispersion and surface modification at the same time.
  • the present application also provides the application of a silicon carbide chemical mechanical polishing solution with improved pH stability in silicon carbide polishing.
  • the polishing solution of this application has a very high removal rate for the Si and C surfaces of the SiC single crystal.
  • the Si surface is 0.5 to 1.5 ⁇ m / hr
  • the C surface is 3.5 to 6 ⁇ m / hr
  • the roughness Ra of 10 ⁇ 10 ⁇ m is detected with an atomic force microscope ⁇ 0.1nm
  • the pH of the polishing solution changed from 3.6 to 3.9
  • the pH of the polishing solution without aluminum nitrate changed to 5.6.
  • a method for preparing a silicon carbide chemical mechanical polishing solution with stable pH value includes the steps of: surface modifying a high-hardness abrasive dispersion with a surface modifier, The pH stabilizer and the oxidizing agent are added sequentially, and the surface modifier is an organic acid. Because the pH stabilizer is added to the preparation method of the polishing liquid, the pH value of the polishing liquid during chemical mechanical polishing is more stable, and the organic acid surface modifier is used in the polishing liquid to disperse the high-hardness abrasive The surface modification of the liquid makes the polishing liquid less prone to hard agglomeration.
  • the method for preparing a silicon carbide chemical mechanical polishing liquid with improved pH stability includes the following steps: surface modification of a high-hardness abrasive dispersion liquid with a surface modifier, and then adding a pH stabilizer and an oxidizing agent in sequence, wherein The surface modifier is an organic acid.
  • the oxidizing agent is selected from one or any of hydrogen peroxide, potassium persulfate, periodate, and potassium permanganate.
  • the oxidizing agent is selected from potassium permanganate.
  • the high-hardness abrasive is selected from one or any of alumina, diamond, diamond, boron carbide, and silicon carbon, wherein the high-hardness abrasive has a Zeta potential greater than + 30mv.
  • the high-hardness abrasive is selected from alumina. More preferably, the alumina may be ⁇ -alumina with high hardness (Mohs hardness 9.0), or may be transition phase alumina such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina One or more.
  • the high-hardness abrasive dispersion liquid is selected from an acidic alumina dispersion liquid.
  • the acidic alumina dispersion may be Saint-Gobain's acidic alumina dispersion, or self-made acidic alumina dispersion made of alumina powder;
  • the preparation method of the acidic alumina dispersion liquid 15-25 g of alumina powder with a particle size of 100 nm is dispersed in 100 ml of water, the pH value is adjusted to 0 to 1 with nitric acid, and 4 to 4 are ground with a star ball mill After 6 hours, an acidic alumina dispersion with a pH of 3.5 to 4 was prepared.
  • the pH stabilizer is a strong acid and weak base salt.
  • the pH stabilizer is aluminum nitrate.
  • the organic acid is selected from one of acetic acid, propionic acid, citric acid, malic acid, itaconic acid, maleic acid, malonic acid, crotonic acid, gluconic acid, glycolic acid, lactic acid and mandelic acid Kind or any kind.
  • the organic acid is selected from acetic acid and / or propionic acid.
  • the surface of alumina is modified with water-soluble small molecule acid (such as acetic acid, propionic acid, etc.) resistant to oxidation of potassium permanganate. On the one hand, it provides a soft layer, on the other hand, it can inhibit the aggregation of alumina and improve the alumina. The dispersion effect of the particles and the stability of the dispersion.
  • the final concentration of the aluminum nitrate is 0.01 to 5%.
  • the final concentration of the aluminum nitrate is 0.05 to 1%.
  • the final concentration of the oxidant is 0.01-10%.
  • the final concentration of the oxidant is 0.1 to 4%.
  • surfactants can also be added to the preparation method of the polishing solution.
  • the surfactant uses one or more of sodium dodecylbenzenesulfonate, fatty alcohol polyoxyethylene ether, Tween 20, cetyltrimethylammonium bromide, polyethylene glycol, glycerin Species.
  • preparation method includes the following steps:
  • the surface modifier is acetic acid and / or propionic acid.
  • the preparation method includes the following steps:
  • the method for preparing a silicon carbide chemical mechanical polishing solution with improved pH stability includes the following steps:
  • step (1) and the step (2) are combined, the specific steps are: dispersing alumina in water, adjusting the pH to 0 to 1 with nitric acid, adding a surface modifier organic acid, Disperse with a ball mill, complete the ball mill dispersion and surface modification at the same time.
  • This application uses inorganic aluminum nitrate as a pH stabilizer, and at the same time can act as a dispersion stabilizer, so that the polishing liquid can maintain the stability of the pH value well during the chemical mechanical polishing process, and the dispersion stability of the polishing liquid Good and well dispersed.
  • aluminum nitrate can play a role in buffering pH stability; on the other hand, Al 3+ can simultaneously stabilize the debris and potassium permanganate thrown during the polishing process to form manganese oxide (such as MnO 2 ) , Thereby reducing the influence of "impurities" formed during polishing on the stability of the polishing solution.
  • This application uses organic acids to modify the surface of the abrasive particles, so that the abrasive particles only undergo soft agglomeration, reduce the hard agglomeration of the particles, and enhance the dispersion uniformity and stability of the alumina abrasive particles.
  • the polishing liquid of the invention has no pollution to the environment, and can be used in the manner of circulating feeding.
  • Figure 1 is the surface morphology of silicon carbide polished by the polishing solution without aluminum nitrate
  • FIG. 2 is the surface morphology of silicon carbide polished by the application of a polishing solution added with aluminum nitrate;
  • FIG. 3 is an atomic force microscope diagram of silicon carbide polished using a polishing solution added with aluminum nitrate in this application;
  • Figure 4 shows the stability of alumina over time after adding silica without aluminum nitrate
  • Figure 5 is the stability of aluminum oxide over time after adding aluminum nitrate and silicon oxide
  • Fig. 6 shows the change of the alumina particle size with the concentration of silica before and after adding aluminum nitrate, (a) 20nm, (b) 4nm;
  • Fig. 7 is the change of alumina particle size and potential with ascorbic acid concentration after adding ascorbic acid without adding aluminum nitrate;
  • Figure 8 is the change of TSI of alumina system after adding ascorbic acid without adding aluminum nitrate
  • Fig. 9 is the variation of alumina particle size and zeta potential with ascorbic acid concentration after adding aluminum nitrate to the alumina-manganese oxide system of the present application;
  • Figure 11 shows the pH value of alumina polishing solution changes with time after adding potassium permanganate in this application
  • Fig. 12 shows the variation of alumina particle size and zeta potential with the concentration of aluminum nitrate in 0.04M potassium permanganate solution
  • Fig. 13 shows the variation of TSI with time of alumina in 0.04M potassium permanganate solution of the present application.
  • a silicon carbide chemical mechanical polishing liquid with stable pH value includes: an acidic alumina dispersion liquid with a concentration of 15%, 100 ml, a surface modifier organic acid of 0.5% (based on the weight of alumina), 0.05% ( Final concentration) pH stabilizer aluminum nitrate and 0.1% (final concentration) oxidizer potassium permanganate.
  • a silicon carbide chemical mechanical polishing liquid with stable pH value includes: an acidic alumina dispersion liquid with a concentration of 25% 100 ml, a surface modifier organic acid of 2.0% (based on the weight of alumina), 1.0% ( Final concentration) pH stabilizer aluminum nitrate and 4.0% (final concentration) oxidizer potassium permanganate.
  • a silicon carbide chemical mechanical polishing liquid with stable pH value includes: an acidic alumina dispersion liquid with a concentration of 20%, 100 ml, a surface modifier organic acid of 1.0% (based on the weight of alumina), 0.08% ( Final concentration) pH stabilizer aluminum nitrate and 2.5% (final concentration) oxidizer potassium permanganate.
  • a silicon carbide chemical mechanical polishing liquid with stable pH value includes: an acidic alumina dispersion liquid with a concentration of 22%, 100 ml, a surface modifier organic acid of 1.2% (based on the weight of alumina), 0.08% Final concentration) pH stabilizer aluminum nitrate and 1.5% (final concentration) oxidizer potassium permanganate.
  • a method for preparing a silicon carbide chemical mechanical polishing solution with stable pH value includes the following steps:
  • acidic alumina dispersion disperse 15 grams of alumina powder with a particle size of 100 nm in 100 ml of water, adjust the pH to 0.5 with nitric acid, and grind for 5 hours with a star ball mill to obtain a pH of 3.8 Acidic alumina dispersion;
  • a method for chemically mechanically polishing a silicon carbide single crystal using a silicon carbide chemical mechanical polishing solution with a stable pH value includes the following steps:
  • the polishing parameters are set to 30 rpm for the polishing pad, 25 rpm for the polishing head, 1.7 kg / cm2 for the polishing pressure, and 4.5 L / min for the polishing fluid.
  • the potassium permanganate solution and the alumina dispersion are mixed in equal volumes, and the silicon carbide material is polished for 30 minutes.
  • the surface morphology of the polished silicon carbide was detected with an optical surface measuring instrument and a surface defect detector, and the surface roughness of the polished silicon carbide was characterized with an atomic force microscope, and the material removal of the Si and C surfaces of the silicon carbide was calculated rate.
  • Figure 1 shows the surface morphology of silicon carbide polished with aluminum nitrate-free polishing liquid
  • Figure 2 shows the surface morphology of silicon carbide polished with aluminum nitrate-added polishing liquid
  • Figure 3 shows the polishing liquid with aluminum nitrate-added polishing liquid Atomic force microscope image of polished silicon carbide.
  • a test method for the effect of silica adsorption on the stability of alumina includes the following steps:
  • Step (1) Configure a silicon oxide solution with a concentration of 0.002wt% -0.2wt% and a particle size of 20nm. Adjust its pH to 3-4 with nitric acid. After ultrasonic treatment, mix it with 0.2wt% alumina solution in equal volume , Stand still, observe the effect of silicon oxide concentration on system stability;
  • Step (2) Add 0.4wt% -4wt% aluminum nitrate solution in a medium volume of 0.4wt% alumina solution, stir for 30min, mix with the same volume of silica solution with pH 3-4, shake for 3min, and let stand , To observe the effect of adding aluminum nitrate on the stability of alumina-silica system.
  • Figure 4 shows the stability of alumina over time after adding silica without aluminum nitrate. From left to right, the mass concentration of silica is 0, 0.001%, 0.003%, 0.005%, 0.008%, 0.01%, 0.03% , 0.05%, 0.08% and 0.1%. The results show that, without aluminum nitrate, after 15 minutes of adding silicon oxide to aluminum oxide, sedimentation began to occur.
  • Figure 5 shows the stability of alumina over time after the addition of aluminum nitrate and silica.
  • the mass concentration of silica from left to right is 0, 0.001%, 0.003%, 0.005%, 0.008%, 0.01%, 0.03%, 0.05%, 0.08% and 0.1%.
  • the results showed that after adding aluminum nitrate, no obvious precipitation was found within 24 hours after adding silicon oxide to aluminum oxide.
  • the addition of aluminum nitrate can significantly improve the stability of the alumina-silica system. It is more obvious for the 20nm silicon oxide system.
  • the addition of aluminum nitrate can keep the system stable for 24h; and the addition of aluminum nitrate greatly reduces the particle size of the system.
  • the stability index TSI of the system after the addition of aluminum nitrate was also measured by a stability analyzer. It can also be seen that the TSI decreased significantly after the addition of aluminum nitrate, indicating that the addition of aluminum nitrate greatly improved the dispersion stability of the alumina-silica system.
  • aluminum nitrate can improve the stability of the system, aluminum nitrate is adsorbed on the surface of silicon oxide particles, neutralizing the surface charge of silicon oxide or inverting its charge, thereby reducing the electrostatic attraction between silicon oxide and aluminum oxide. Therefore, the particles can be stably dispersed.
  • the test method of the effect of the formation of manganese compounds on the stability of the system includes the following steps:
  • Step (1) after mixing 0.2wt% alumina with 0.02M potassium permanganate in equal volume, a small amount of ascorbic acid is added thereto, and ascorbic acid and potassium permanganate undergo redox reaction to form Mn compound, and observe the amount of ascorbic acid added And the formation of manganese oxide affects the stability of the alumina system.
  • Step (2) Mix 0.4wt% alumina solution with 0.4wt% aluminum nitrate solution in equal volume for 30min, then mix with 0.02M potassium permanganate solution in equal volume, add a small amount of ascorbic acid with a 25 ⁇ l pipette to control the final system
  • concentration of ascorbic acid in the medium is 1 ⁇ 10 -8 M, 5 ⁇ 10 -8 M, 1 ⁇ 10 -7 M, 5 ⁇ 10 -7 M, 1 ⁇ 10 -6 M
  • the pH is 3.5-4
  • the experiment is at room temperature get on. Observe the effect of the addition of aluminum nitrate on the stability of the alumina-manganese oxide system.
  • Aluminum nitrate was added to the system to study the change of alumina particle size and zeta potential with ascorbic acid concentration after adding ascorbic acid, the TSI (unstable index) of the alumina system after adding ascorbic acid, and the observation of the settlement of the alumina system after adding ascorbic acid ,
  • concentration of ascorbic acid is 10 -8 M, 5 ⁇ 10 -8 M, 10 -7 M, 5 ⁇ 10 -7 M, 10 -6 M, 5 ⁇ 10 -6 M, 10 -5 M, 5 ⁇ 10 ⁇ 5 M, 10 ⁇ 4 M, 5 ⁇ 10 ⁇ 4 M.
  • Figure 9 shows the change in alumina particle size and zeta potential with the concentration of ascorbic acid after adding aluminum nitrate in the alumina-manganese oxide system.
  • Figure 10 shows the change in TSI after adding aluminum nitrate in the alumina-manganese oxide system.
  • a method for preparing a silicon carbide chemical mechanical polishing solution with stable pH value includes the following steps:
  • acidic alumina dispersion disperse 15 grams of alumina powder with a particle size of 100 nm in 100 ml of water, adjust the pH to 0 to 1 with nitric acid, and grind for 4 to 6 hours with a star ball mill to obtain Acidic alumina dispersion with a pH of 3.5;
  • a method for preparing a silicon carbide chemical mechanical polishing solution with stable pH value includes the following steps:
  • a method for preparing a silicon carbide chemical mechanical polishing solution with stable pH value includes the following steps:
  • acidic alumina dispersion disperse 20 grams of alumina powder with a particle size of 100 nm in 100 ml of water, adjust the pH to 0 to 1 with nitric acid, and grind for 4 to 6 hours with a star ball mill to prepare Acidic alumina dispersion with pH 3.8;
  • a method for preparing a silicon carbide chemical mechanical polishing solution with stable pH value includes the following steps:
  • acidic alumina dispersion disperse 22 grams of alumina powder with a particle size of 100 nm in 100 ml of water, adjust the pH to 0 to 1 with nitric acid, and grind for 4 to 6 hours with a star ball mill to obtain Acidic alumina dispersion with pH 3.8;
  • Figure 11 shows the effect of the addition of aluminum nitrate on the pH of the alumina dispersion in the presence of 0.01M potassium permanganate. It can be found that the pH of the alumina dispersion added with aluminum nitrate is slightly higher than 4 when potassium permanganate is added, and the pH can be reduced to 3.5-4 within half an hour, and it will remain basically unchanged within 40 hours without adding nitric acid.
  • the pH of the aluminum dispersion has been increasing.
  • the pH of alumina before addition is 3-4, and the pH of potassium permanganate is 6-7. It is normal to increase the pH after mixing. With time, potassium permanganate undergoes an oxidation reaction, consuming H +, but the dispersion liquid The pH remains stable.
  • FIG. 12 shows the change in alumina particle size and zeta potential with the concentration of aluminum nitrate in 0.04M potassium permanganate solution.
  • Figure 13 shows the sedimentation TSI of alumina in 0.04M potassium permanganate solution with time.
  • the particle size of aluminum oxide is reduced, the zeta potential is increased, and the stability is enhanced after aluminum nitrate is added. But as the concentration of aluminum nitrate increases, the particle size of aluminum oxide increases and the potential decreases (see Figure 12). Due to the dark color of potassium permanganate, macroscopic observation is not convenient. After standing for 2 hours, we found that aluminum oxide precipitate appeared at the bottom of the sample without aluminum nitrate. However, after 12 hours, the sample with aluminum nitrate still did not see precipitation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

本申请提出了一种pH稳定性提高的碳化硅化学机械抛光液,所述抛光液包括:氧化剂、高硬度磨料和pH稳定剂,所述pH稳定剂为硝酸铝。本申请的抛光液在进行化学机械抛光过程能很好的保持pH值的稳定性,并且抛光液的分散稳定性好且分散均匀。本申请由于在抛光液中加入了pH值稳定剂硝酸铝,使得该抛光液在进行化学机械抛光过程中的pH值稳定性更强,并且抛光液不容易发生硬团聚。本申请的抛光液对环境无污染,可以采用循环供料的方式使用。

Description

pH稳定性提高的碳化硅化学机械抛光液及制备方法和应用 技术领域
本申请涉及化学机械抛光技术领域,尤其涉及一种pH值稳定的碳化硅化学机械抛光液及制备方法和应用。
背景技术
由于碳化硅的高硬度(9.5)和强化学惰性,目前使用碱性过氧化氢-氧化硅CMP抛光液的抛光速度非常低(<50nm/hr),原因有两个:一是氧化硅的硬度小(6~7);二是碱性条件下氧化剂的化学作用弱。因此,使用硬度仅次于碳化硅的α-Al 2O 3磨料的酸性(pH<7,尤其是pH<4)碳化硅化学机械抛光液成为主流。
为提高化学氧化作用,高锰酸钾成为最广泛使用的氧化剂,但高锰酸钾在氧化过程中会消耗H +,抛光液的pH增大,磨料的稳定性下降,发生团聚沉降,造成抛光液的不稳定,容易产生划痕,从而影响抛光质量,因此,稳定抛光液的pH就成为关键。
Cabot公司公开了连续的碳化硅CMP抛光液,使用高锰酸钾作为氧化剂,并使用常规的pH缓冲体系,能够保证CMP抛光液使用前的pH值处于合理的范围内,但很难保证CMP抛光液在使用过程中始终处于酸性范围内。Sinmat公司使用高锰酸钾作为氧化剂,pH为4,以核(氧化硅或氧化铝)‐壳(锰氧化物)颗粒为磨料,该颗粒外壳的硬度较小(<6),不适用于碳化硅的化学机械抛光。ASAHI GLASS公司CMP抛光液以高锰酸钾为氧化剂,酸性氧化硅或氧化铈为磨料,在抛光液的使用过程中,pH值得不到控制,并且磨料硬度较低,因此,ASAHI GLASS公司的CMP抛光液对碳化硅的抛光效率低。
鉴于现有技术中的碳化硅CMP抛光液在化学机械抛光过程中很难保证pH值的稳定性,本申请采用特定的酸性表面改性剂以及pH稳定剂,能够保证CMP抛光液的pH值在碳化硅化学机械抛光过程中始终处于合适的范围内。
发明内容
目前高锰酸钾已成为高速高效SiC化学机械抛光液的主流氧化剂,但在高锰酸钾的氧化过程中会消耗大量氢离子,导致抛光液的pH值升高,磨料发生不可逆团聚,控制抛光液的pH值就变得非常重要,而专利中广泛提及的pH缓冲体系,无法控制抛光液的pH为3.5~4,且作用单一,只起到pH缓冲剂的作用,对抛光液的稳定性无作用或起反作用;而硝酸铝一方面可以起到pH稳定缓冲作用,另一方面,Al 3+可以同时稳定抛光过程中抛下来的碎屑和高锰酸钾发生氧化作用后形成锰氧化物(如MnO 2),从而减少了抛光过程中形成的“杂质”对抛光液稳定性的影响,本申请抛光液可以循环使用。
控制磨料颗粒的聚集、团聚是保证抛光质量的关键所在,目前广泛使用的分散稳定剂是表面活性剂或聚合物,虽然在在上述专利中也使用表面活性剂或聚合物分散稳定剂,但实际上在实验过程中,高锰酸钾存在下,这些常规分散稳定剂均起不到稳定作用,甚至破坏抛光液的稳定性。而使用核-壳(无机/有机或无机/无机)磨料颗粒,存在制备工艺复杂繁琐,质量控制难。因此,采取了耐高锰酸钾氧化的水溶性小分子酸(如乙酸、丙酸等)对氧化铝表面改性,一方面提供一个软层,另一方面抑制氧化铝的聚集团聚。
为了解决现有碳化硅化学机械抛光液的pH值稳定性不好的问题,本申请提出了一种pH值稳定的碳化硅化学机械抛光液,该抛光液包括:氧 化剂、高硬度磨料和pH稳定剂,所述pH稳定剂为硝酸铝。由于该抛光液中加入了pH值稳定剂硝酸铝,使得该抛光液在进行化学机械抛光过程中的pH值稳定性更强,并且抛光液不容易发生硬团聚。
一方面,本申请提供了一种pH稳定性提高的碳化硅化学机械抛光液,所述抛光液包括:氧化剂、高硬度磨料和pH稳定剂,所述pH稳定剂为硝酸铝。
进一步,所述氧化剂选自过氧化氢、过硫酸钾、高碘酸盐、高锰酸钾中的一种或任意几种。优选的,所述氧化剂选自高锰酸钾。
进一步的,所述高硬度磨料选自氧化铝、金刚砂、金刚石、碳化硼、硅碳中的一种或任意几种。优选的,所述高硬度磨料选自氧化铝。更优选的,所述高硬度磨料选自酸性氧化铝分散液。更优选的,所述氧化铝可以是高硬度的α‐氧化铝(莫氏硬度9.0),也可以是过渡相氧化铝如θ‐氧化铝、γ‐氧化铝、κ‐氧化铝、δ‐氧化铝中的一种或多种。
进一步的,所述抛光液还包括高硬度磨料的表面改性剂,所述表面改性剂可为有机酸,选自乙酸、丙酸、柠檬酸、苹果酸、衣康酸、马来酸、丙二酸、巴豆酸、葡糖酸、乙醇酸、乳酸和扁桃酸中的一种或任意几种;优选,乙酸和/或丙酸。采用耐高锰酸钾氧化的水溶性小分子酸(如乙酸、丙酸等)对氧化铝表面改性,一方面提供一个软层,另一方面可抑制氧化铝的聚集团聚,提高了氧化铝颗粒的分散效果和分散液的稳定性。
进一步的,所述硝酸铝的终浓度为0.01~5%。优选的,所述硝酸铝的终浓度为0.05~1%。
进一步的,所述氧化剂的终浓度为0.01~10%。优选的,所述氧化剂的终浓度为0.1~4%。
进一步的,所述抛光液还包括表面活性剂、缓蚀剂、消泡剂、光亮 剂、粘度调节剂或聚合物分散剂。
更进一步的,所述表面活性剂可为十二烷基苯磺酸钠、脂肪醇聚氧乙烯醚、吐温20、十六烷基三甲基溴化铵、聚乙二醇、甘油中的一种或多种。
所述缓蚀剂可为无机缓蚀剂或有机缓蚀剂;优选的,无机缓蚀剂可为亚硝酸钠、五水硫酸铜中的一种或多种,有机缓蚀剂可为苯甲酸单乙醇胺、六亚甲基四胺(乌洛托品)、若丁(二邻甲苯硫脲)、六次甲基四胺、聚天冬氨酸、苯丙三唑、尿素、含有唑基和酮基的缓蚀剂中的一种或多种;
所述光亮剂是水杨酸、磺基水杨酸、丙炔醇、苯甲酸、纤维素醚、明胶、糖精、磺酸、葡萄糖中的一种或多种;
所述粘度调节剂选自甘油、聚乙二醇、明胶、骨胶中的一种或多种;
所述分散剂可为无机分散剂或有机分散剂;优选的,无机分散剂可为六偏磷酸钠,有机分散剂为小分子有机分散剂和聚合物基分散剂;更优选的,小分子有机分散剂可为十二烷基苯磺酸钠、十二烷基磺酸钠、椰油酸二乙醇酰胺中的一种或多种,聚合物基分散剂可为聚丙烯酸、聚丙烯酸钠、聚乙二醇4000、羧甲基纤维素、聚乙烯吡咯烷酮、聚丙烯酸盐、聚甲基丙烯酸、聚甲基丙烯酸盐、聚马来酸、聚马来酸盐、聚马来酸、聚马来酸盐、丙烯酸共聚物、丙烯酸盐共聚物、聚天冬酸、聚天冬酸盐中一种或多种。
更进一步的,所述高硬度磨料为浓度为10~30%的酸性氧化铝分散液,所述表面改性剂的用量为氧化铝重量的0.5~2.0%。优选的,所述高硬度磨料为浓度为15~25%的酸性氧化铝分散液,所述表面改性剂的用量为氧化铝重量的1.0~1.5%。更优选的,所述高硬度磨料为浓度为20%的酸性氧化铝分散液,所述表面改性剂的用量为氧化铝重量的1.2~1.3%。
进一步的,所述酸性氧化铝分散液可为圣戈班的酸性氧化铝分散液,也可采用氧化铝粉自制酸性氧化铝分散液;
更进一步的,酸性氧化铝分散液的制备方法,将15~25克颗粒粒径为100nm的氧化铝粉分散在100ml水中,用硝酸将pH值调至0~1,用星型球磨机研磨4~6小时,制得pH值为3.5~4的酸性氧化铝分散液。
进一步的,所述抛光液由以下方法制备得到:
(1)提供酸性氧化铝分散液;
(2)采用表面改性剂对酸性氧化铝分散液进行表面改性;
(3)调节pH值为3.5~4,加入pH值稳定剂搅拌分散;
(4)加入氧化剂,配制成pH稳定性提高的碳化硅化学机械抛光液。
更进一步的,所述抛光液由以下制备方法得到:
(1)提供酸性氧化铝分散液:将10~30克颗粒粒径为100nm的氧化铝粉分散在100ml水中,用硝酸将pH值调至0~1,用星型球磨机研磨4~6小时,制得pH值为3.5~4的酸性氧化铝分散液;
(2)采用有机酸经球磨分散对酸性氧化铝分散液进行表面改性:在上述酸性氧化铝分散液中加入0.5~2%(基于氧化铝的重量)的有机酸,继续用球磨机分散2~4小时,得到改性酸性氧化铝分散液;
(3)将改性氧化铝分散液稀释至0.5~2%,加入硝酸调节pH值为3.5~4,加入0.05~1%的硝酸铝,搅拌分散1~2小时;
(4)加入0.1~4%的高锰酸钾作为氧化剂,配制成pH值稳定的碳化硅化学机械抛光液。
更进一步的,所述抛光液由以下制备方法得到:
(1)提供酸性氧化铝分散液:将20克颗粒粒径为50‐100nm的氧化铝粉分散在100ml水中,用硝酸将pH值调至0~1,用星型球磨机研磨4~6小时,制得pH值为3.5~4的酸性氧化铝分散液;
(2)采用乙酸和/或丙酸经球磨分散对酸性氧化铝分散液进行表面改性:在上述酸性氧化铝分散液中加入0.5~2%(基于氧化铝的重量)的乙酸和/或丙酸,继续用球磨机分散2~4小时,得到改性酸性氧化铝分散液;
(3)将改性氧化铝分散液稀释至0.5~2%,加入硝酸调节pH值为3.5~4,加入0.05~1%的硝酸铝,搅拌分散1~2小时;
(4)加入0.1~4%的高锰酸钾作为氧化剂,配制成pH稳定性提高的碳化硅化学机械抛光液。
更进一步的,将所述步骤(1)和所述步骤(2)合并,具体步骤为:将氧化铝分散在水中,用硝酸将pH值调至0~1,加入表面改性剂有机酸,用球磨机分散,同时完成球磨分散和表面改性。
另一方面,本申请还提供了一种pH稳定性提高的碳化硅化学机械抛光液在碳化硅抛光中的应用。
本申请抛光液对SiC单晶的Si面和C面都具有非常高的去除速度,Si面0.5~1.5μm/hr,C面3.5~6μm/hr,用原子力显微镜检测10×10μm的粗糙度Ra<0.1nm,抛光液的pH由3.6变化为3.9,而未加硝酸铝抛光液的pH变为5.6。
根据本申请的又一方面,提供了一种pH值稳定的碳化硅化学机械抛光液的制备方法,该制备方法包括以下步骤:用表面改性剂对高硬度磨料分散液进行表面改性,再依次加入pH稳定剂和氧化剂,其中表面改性剂为有机酸。由于该抛光液的制备方法中加入了pH稳定剂,使得该抛光液在进行化学机械抛光过程中的pH值稳定性更强,并且在抛光液中使用有机酸表面改性剂对高硬度磨料分散液进行表面改性,使得抛光液不容 易发生硬团聚。
该制备pH稳定性提高的碳化硅化学机械抛光液的方法,所述制备方法包括以下步骤:用表面改性剂对高硬度磨料分散液进行表面改性,再依次加入pH稳定剂和氧化剂,其中表面改性剂为有机酸。
进一步的,所述氧化剂选自过氧化氢、过硫酸钾、高碘酸盐、高锰酸钾中的一种或任意几种。优选的,所述氧化剂选自高锰酸钾。
进一步的,所述高硬度磨料选自氧化铝、金刚砂、金刚石、碳化硼、硅碳中的一种或任意几种,其中所述高硬度磨料的Zeta电势大于+30mv。优选的,所述高硬度磨料选自氧化铝。更优选的,氧化铝可以是高硬度的α‐氧化铝(莫氏硬度9.0),也可以是过渡相氧化铝如θ‐氧化铝、γ‐氧化铝、κ‐氧化铝、δ‐氧化铝中的一种或多种。
更进一步的,所述高硬度磨料分散液选自酸性氧化铝分散液。
更进一步的,所述酸性氧化铝分散液可为圣戈班的酸性氧化铝分散液,也可采用氧化铝粉自制酸性氧化铝分散液;
更进一步的,酸性氧化铝分散液的制备方法,将15~25克颗粒粒径为100nm的氧化铝粉分散在100ml水中,用硝酸将pH值调至0~1,用星型球磨机研磨4~6小时,制得pH值为3.5~4的酸性氧化铝分散液。
进一步的,所述pH稳定剂为强酸弱碱盐。优选的,所述pH稳定剂为硝酸铝。
更进一步的,所述有机酸选自乙酸、丙酸、柠檬酸、苹果酸、衣康酸、马来酸、丙二酸、巴豆酸、葡糖酸、乙醇酸、乳酸和扁桃酸中的一种或任意几种。优选的,所述有机酸选自乙酸和/或丙酸。采用耐高锰酸钾氧化的水溶性小分子酸(如乙酸、丙酸等)对氧化铝表面改性,一方面提供一个软层,另一方面可抑制氧化铝的聚集团聚,提高了氧化铝颗粒的分散效果和分散液的稳定性。
更进一步的,所述硝酸铝的终浓度为0.01~5%。优选的,所述硝酸铝的终浓度为0.05~1%。所述氧化剂的终浓度为0.01~10%。优选,所述氧化剂的终浓度为0.1~4%。
更进一步的,在所述抛光液的制备方法中还可加入表面活性剂、缓蚀剂、消泡剂、光亮剂、粘度调节剂或聚合物分散剂。
所述表面活性剂采用包括十二烷基苯磺酸钠、脂肪醇聚氧乙烯醚、吐温20、十六烷基三甲基溴化铵、聚乙二醇、甘油中的一种或多种。
进一步的,所述制备方法包括以下步骤:
(1)提供酸性氧化铝分散液;
(2)表面改性:在上述酸性氧化铝分散液中加入表面改性剂,继续用球磨机分散,得到表面改性酸性氧化铝分散液;
(3)将表面改性氧化铝分散液稀释,加入硝酸调节pH值为3.5~4,加入pH值稳定剂,搅拌分散;
(4)加入氧化剂,配制成pH值稳定的碳化硅化学机械抛光液。
更进一步的,表面改性剂为乙酸和/或丙酸。
更进一步的,所述制备方法包括以下步骤:
(1)提供酸性氧化铝分散液:将10~30克颗粒粒径为50‐100nm的氧化铝粉分散在100ml水中,用1mol/L的硝酸将pH值调至0~1,用星型球磨机研磨4~6小时,制得pH值为3.5~4的酸性氧化铝分散液,其中,所用pH调节剂是硝酸和氢氧化钾;
(2)采用乙酸和/或丙酸经球磨分散对酸性氧化铝分散液进行表面改性:在上述酸性氧化铝分散液中加入0.5~2%(基于氧化铝的重量)的乙酸和/或丙酸,继续用球磨机分散2~4小时,得到改性酸性氧化铝分散液;
(3)将改性氧化铝分散液稀释至0.5~2%,加入硝酸调节pH值为 3.5~4,加入0.05~1%的硝酸铝,搅拌分散1~2小时;
(4)加入0.1~4%的高锰酸钾作为氧化剂,配制成pH稳定性提高的碳化硅化学机械抛光液。
可选地,所述的制备pH稳定性提高的碳化硅化学机械抛光液的方法包括以下步骤:
(1)提供酸性氧化铝分散液:将Zeta电势为正值且大于+30mv的氧化铝分散在水中,用硝酸将pH值调至0~1,用星型球磨机研磨,最终pH值控制在3.5~4,其中所用pH调节剂是硝酸和氢氧化钾;
(2)表面改性:在上述酸性氧化铝分散液中加入表面改性剂有机酸,继续用球磨机分散,得到表面改性酸性氧化铝分散液;
(3)将表面改性氧化铝分散液稀释,加入硝酸调节pH值为3.5~4,加入pH值稳定剂,搅拌分散;
(4)加入氧化剂,配制成pH稳定性提高的碳化硅化学机械抛光液。
可选地,将所述步骤(1)和所述步骤(2)合并,具体步骤为:将氧化铝分散在水中,用硝酸将pH值调至0~1,加入表面改性剂有机酸,用球磨机分散,同时完成球磨分散和表面改性。
本申请具有如下有益效果:
1.本申请使用无机硝酸铝作为pH稳定剂,同时可以起到分散稳定剂的作用,使得抛光液在进行化学机械抛光过程能很好的保持pH值的稳定性,并且抛光液的分散稳定性好且分散均匀。
2、硝酸铝一方面可以起到pH稳定缓冲作用,另一方面,Al 3+可以同时稳定抛光过程中抛下来的碎屑和高锰酸钾发生氧化作用后形成锰氧化物(如MnO 2),从而减少了抛光过程中形成的“杂质”对抛光液稳定性的影响。
3.本申请使用有机酸对磨料颗粒进行表面改性,使得磨料颗粒只发生软团聚,减少颗粒的硬团聚,增强了氧化铝磨料颗粒的分散均匀性和稳定性。
4.本发明的抛光液对环境无污染,可以采用循环供料的方式使用。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为未加硝酸铝的抛光液抛光的碳化硅表面形貌;
图2为本申请使用添加硝酸铝的抛光液抛光的碳化硅表面形貌;
图3为本申请使用添加硝酸铝的抛光液抛光的碳化硅的原子力显微镜图;
图4为未加硝酸铝的加入氧化硅后氧化铝随时间的稳定性;
图5为本申请添加硝酸铝的加入氧化硅后氧化铝随时间的稳定性;
图6为本申请添加硝酸铝前后氧化铝粒径随氧化硅浓度变化,(a)20nm、(b)4nm;
图7为未加硝酸铝的加入抗坏血酸后氧化铝粒径和电势随抗坏血酸浓度的变化;
图8为未加硝酸铝的加入抗坏血酸后氧化铝体系的TSI变化;
图9为本申请氧化铝‐锰氧化物体系加入硝酸铝后氧化铝粒径和zeta电势随抗坏血酸浓度变化;
图10为本申请氧化铝‐锰氧化物体系加入硝酸铝后TSI的变化;
图11为本申请加入高锰酸钾后氧化铝抛光液pH值随时间变化;
图12为本申请在0.04M高锰酸钾溶液中氧化铝粒径和zeta电势随硝酸铝浓度变化;
图13为本申请在0.04M高锰酸钾溶液中氧化铝的沉降TSI随时间变化。
具体实施方式
为了更清楚的阐释本申请的整体构思,下面结合以下具体实施例进行详细说明,但不限制本申请的保护范围。
实施例1:
一种pH值稳定的碳化硅化学机械抛光液,该抛光液包括:浓度为15%的酸性氧化铝分散液100ml、0.5%(基于氧化铝的重量)的表面改性剂有机酸、0.05%(终浓度)的pH值稳定剂硝酸铝和0.1%(终浓度)的氧化剂高锰酸钾。
实施例2:
一种pH值稳定的碳化硅化学机械抛光液,该抛光液包括:浓度为25%的酸性氧化铝分散液100ml、2.0%(基于氧化铝的重量)的表面改性剂有机酸、1.0%(终浓度)的pH值稳定剂硝酸铝和4.0%(终浓度)的氧化剂高锰酸钾。
实施例3:
一种pH值稳定的碳化硅化学机械抛光液,该抛光液包括:浓度为20%的酸性氧化铝分散液100ml、1.0%(基于氧化铝的重量)的表面改性剂有机酸、0.08%(终浓度)的pH值稳定剂硝酸铝和2.5%(终浓度)的氧化剂高锰酸钾。
实施例4:
一种pH值稳定的碳化硅化学机械抛光液,该抛光液包括:浓度为22%的酸性氧化铝分散液100ml、1.2%(基于氧化铝的重量)的表面改性剂有机酸、0.08%(终浓度)的pH值稳定剂硝酸铝和1.5%(终浓度)的氧化剂高锰酸钾。
实施例5:
pH值稳定的碳化硅化学机械抛光液的制备方法,该制备方法包括以下步骤:
(1)提供酸性氧化铝分散液:将15克颗粒粒径为100nm的氧化铝粉分散在100ml水中,用硝酸将pH值调至0.5,用星型球磨机研磨5小时,制得pH值为3.8的酸性氧化铝分散液;
(2)采用有机酸经球磨分散对酸性氧化铝分散液进行表面改性:在上述酸性氧化铝分散液中加入0.5%(基于氧化铝的重量)的有机酸,继续用球磨机分散3小时,得到改性酸性氧化铝分散液;
(3)将改性氧化铝分散液稀释至1.0%,加入硝酸调节pH值为3.8,加入0.05%的硝酸铝,搅拌分散1.5小时;
(4)加入0.1%的高锰酸钾作为氧化剂,配制成pH值稳定的碳化硅化学机械抛光液。
实施例6:
使用pH值稳定的碳化硅化学机械抛光液对碳化硅单晶进行化学机械抛光的方法,该抛光方法包括以下步骤:
抛光参数设置为抛光垫转速为30rpm,抛光头转速为25rpm,抛光压力为1.7kg/cm2,抛光液流速为4.5L/min。将高锰酸钾溶液与氧化铝分散液等体积混合,对碳化硅材料抛光30min。
用光学表面量测仪和表面缺陷检测仪对抛光后的碳化硅表面形貌进行检测,用原子力显微镜表征抛光后碳化硅的表面粗糙度,并计算了碳化硅Si面和C面的材料移除率。
图1显示了使用未加硝酸铝的抛光液抛光的碳化硅表面形貌;图2显示了使用添加硝酸铝的抛光液抛光的碳化硅表面形貌;图3显示了使用添加硝酸铝的抛光液抛光的碳化硅的原子力显微镜图。从图1看出,抛光液中不添加硝酸铝,所抛光的碳化硅表面有明显的深划痕且多;从图2看出,抛光液中添加硝酸铝,所抛光的碳化硅表面几乎没有划痕且均匀;从图3看出,抛光液中添加硝酸铝,所抛光的碳化硅表面的粗糙度小。
实施例7:
氧化硅吸附对氧化铝稳定性的影响测试方法,具体方法包括如下步骤:
步骤(1)、配置浓度为0.002wt%‐0.2wt%、颗粒大小为20nm的氧化硅溶液,用硝酸调其pH值为3‐4,超声处理后与0.2wt%的氧化铝溶液等体积混合,静置,观察氧化硅浓度对体系稳定性的影响;
步骤(2)、在0.4wt%的氧化铝溶液中等体积的加入0.4wt%‐4wt%的硝酸铝溶液,搅拌30min后与pH为3‐4的氧化硅溶液等体积混合,震荡3min,静置,观察加入硝酸铝对氧化铝‐氧化硅体系稳定性的影响。
图4显示了未加硝酸铝的加入氧化硅后氧化铝随时间的稳定性,由左至右氧化硅质量浓度依次为0、0.001%、0.003%、0.005%、0.008%、0.01%、0.03%、0.05%、0.08%和0.1%。结果显示,未加硝酸铝,氧化铝中加入氧化硅15分钟后,就开始发生沉降。在低浓度氧化硅范围内,由于氧化硅带负电,氧化铝带正电,两者相互吸引,氧化硅颗粒吸附在氧化铝颗粒 表面,降低氧化铝的表面电势,使氧化铝颗粒间的静电斥力不足以克服范德华引力,导致颗粒聚集,随着氧化硅浓度增加,氧化硅的吸附量增加,氧化铝的表面电势发生反转,颗粒表现为负电性,斥力增大,颗粒分散稳定。
图5显示了添加硝酸铝的加入氧化硅后氧化铝随时间的稳定性,由左至右氧化硅质量浓度依次为0、0.001%、0.003%、0.005%、0.008%、0.01%、0.03%、0.05%、0.08%和0.1%。结果显示,添加硝酸铝后,氧化铝中加入氧化硅24小时内未发现明显沉淀。加入硝酸铝可以明显提高氧化铝‐氧化硅体系的稳定性,对于20nm氧化硅体系更加明显,加入硝酸铝可以使体系在24h内保持稳定;而且加入硝酸铝大大降低了体系的粒径。不加硝酸铝时,当氧化硅浓度为0.003wt%‐0.01wt%时,颗粒聚集迅速,动态光散射无法测出体系的粒径,但是,当加入0.1wt%的硝酸铝后,体系可以在24h内稳定分散,稳定性明显提高。通过稳定性分析仪测加入硝酸铝后的体系不稳定性指数TSI也可以看出加入硝酸铝后TSI明显降低,说明加入硝酸铝大大提高了氧化铝‐氧化硅体系的分散稳定性。对于硝酸铝可以提高体系的稳定性的原因,硝酸铝吸附在氧化硅颗粒表面,中和氧化硅的表面电荷或使其电荷发生反转,从而减少了氧化硅与氧化铝之间的静电引力,因此使得颗粒能够稳定分散。
实施例8:
锰化合物的生成对体系稳定性的影响的测试方法(加入还原剂抗坏血酸模拟抛光过程中高锰酸钾的氧化),具体方法包括以下步骤:
步骤(1)、将0.2wt%氧化铝与0.02M高锰酸钾等体积混合后,向其中加入少量抗坏血酸,抗坏血酸与高锰酸钾发生氧化还原反应生成Mn化合物,观察抗酸血酸加量及锰氧化物的生成对氧化铝体系稳定性的影 响。
步骤(2)、将0.4wt%的氧化铝溶液与0.4wt%的硝酸铝溶液等体积混合30min后与0.02M高锰酸钾溶液等体积混合,用25μl移液枪加入少量抗坏血酸,控制最终体系中抗坏血酸的浓度为1×10 ‐8M、5×10 ‐8M、1×10 ‐7M、5×10 ‐7M、1×10 ‐6M,pH为3.5‐4,实验在室温下进行。观察加入硝酸铝对氧化铝‐锰氧化物体系稳定性的影响。
在体系中未加硝酸铝,研究了加入抗坏血酸后氧化铝粒径和电势随抗坏血酸浓度的变化情况、加入抗坏血酸后氧化铝体系的TSI(不稳定性指数)以及加入抗坏血酸后氧化铝体系的沉降观察,其中,抗坏血酸的浓度分别为10 ‐8M、5×10 ‐8M、10 ‐7M、5×10 ‐7M和10 ‐6M。图7显示了加入抗坏血酸后氧化铝粒径和电势随抗坏血酸浓度的变化,图8显示了加入抗坏血酸后氧化铝体系的TSI。由实验可知,随着抗坏血酸浓度的增加,锰氧化物的生成量增加,氧化铝粒径逐渐增大,体系稳定性逐渐降低。当抗坏血酸浓度为10 ‐7M时,粒径急剧增大,1h后可发现明显沉降。0.01M高锰酸钾并未能引起氧化铝颗粒沉淀,而加入抗坏血酸后,当抗坏血酸浓度仅为10 ‐7M时,氧化铝在4h内即可出现沉淀,说明抗坏血酸的与高锰酸钾反应生成锰氧化物造成了氧化铝颗粒的沉淀。由电势可知,生成的氧化锰带负电,可吸附在氧化铝表面,屏蔽氧化铝表面电荷,从而使颗粒聚集。
在体系中添加硝酸铝,研究了加入抗坏血酸后氧化铝粒径和zeta电势随抗坏血酸浓度的变化情况、加入抗坏血酸后氧化铝体系的TSI(不稳定性指数)以及加入抗坏血酸后氧化铝体系的沉降观察,其中,抗坏血酸的浓度分别为10 ‐8M、5×10 ‐8M、10 ‐7M、5×10 ‐7M、10 ‐6M、5×10 ‐6M、10 ‐5M、5×10 ‐5M、10 ‐4M、5×10 ‐4M。氧化铝与硝酸铝混合后,混合液与高锰酸钾等体积混合,然后向其中加入抗坏血酸,观察加入硝酸铝对体 系稳定性的影响。图9为氧化铝‐锰氧化物体系加入硝酸铝后氧化铝粒径和zeta电势随抗坏血酸浓度变化,图10为氧化铝‐锰氧化物体系加入硝酸铝后TSI的变化。可以发现,随着抗坏血酸浓度的增加,氧化铝粒径逐渐增大,电势逐渐降低(但始终为正值,见图9),TSI逐渐增大,说明体系稳定性逐渐降低。但是,与未加硝酸铝的溶液相比,同样抗坏血酸浓度情况下,加入硝酸铝的溶液粒径减小,TSI降低,说明加入硝酸铝明显提高了体系的稳定性。由沉降结果可以看出,当抗坏血酸浓度为10 ‐6M时,未加硝酸铝的体系半小时后即出现沉淀,而加入硝酸铝后,6h内未发现沉淀。加入硝酸铝后,当抗坏血酸浓度为10 ‐4M时,才出现沉淀,比未加硝酸铝溶液提高了两个数量级(见图10所示)。
实施例9:
pH值稳定的碳化硅化学机械抛光液的制备方法
一种pH值稳定的碳化硅化学机械抛光液的制备方法,该制备方法包括以下步骤:
(1)提供酸性氧化铝分散液:将15克颗粒粒径为100nm的氧化铝粉分散在100ml水中,用硝酸将pH值调至0~1,用星型球磨机研磨4~6小时,制得pH值为3.5的酸性氧化铝分散液;
(2)表面改性:在100ml上述酸性氧化铝分散液中加入表面改性剂有机酸0.5%(基于氧化铝的重量),继续用球磨机分散,得到表面改性酸性氧化铝分散液;
(3)将表面改性氧化铝分散液稀释至0.5~2%,加入硝酸调节pH值为3.5~4,加入pH值稳定剂硝酸铝0.05%(基于氧化铝的重量),搅拌分散1.5小时;
(4)加入氧化剂高锰酸钾0.1%(基于氧化铝的重量),配制成pH 值稳定的碳化硅化学机械抛光液。
实施例10:
pH值稳定的碳化硅化学机械抛光液的制备方法
一种pH值稳定的碳化硅化学机械抛光液的制备方法,该制备方法包括以下步骤:
(1)提供酸性氧化铝分散液:将25克颗粒粒径为100nm的氧化铝粉分散在100ml水中,用硝酸将pH值调至0~1,用星型球磨机研磨4~6小时,制得pH值为4.0的酸性氧化铝分散液;
(2)表面改性:在100ml上述酸性氧化铝分散液中加入表面改性剂有机酸2.0%(基于氧化铝的重量),继续用球磨机分散,得到表面改性酸性氧化铝分散液;
(3)将表面改性氧化铝分散液稀释至0.5~2%,加入硝酸调节pH值为3.5~4,加入pH值稳定剂硝酸铝1.0%(基于氧化铝的重量),搅拌分散1.5小时;
(4)加入氧化剂高锰酸钾4.0%(基于氧化铝的重量),配制成pH值稳定的碳化硅化学机械抛光液。
实施例11:
pH值稳定的碳化硅化学机械抛光液的制备方法
一种pH值稳定的碳化硅化学机械抛光液的制备方法,该制备方法包括以下步骤:
(1)提供酸性氧化铝分散液:将20克颗粒粒径为100nm的氧化铝粉分散在100ml水中,用硝酸将pH值调至0~1,用星型球磨机研磨4~6小时,制得pH值为3.8的酸性氧化铝分散液;
(2)表面改性:在100ml上述酸性氧化铝分散液中加入表面改性剂有机酸1.0%(基于氧化铝的重量),继续用球磨机分散,得到表面改性酸性氧化铝分散液;
(3)将表面改性氧化铝分散液稀释至0.5~2%,加入硝酸调节pH值为3.5~4,加入pH值稳定剂硝酸铝0.08%(基于氧化铝的重量),搅拌分散1.5小时;
(4)加入氧化剂高锰酸钾1.5%(基于氧化铝的重量),配制成pH值稳定的碳化硅化学机械抛光液。
实施例12:
pH值稳定的碳化硅化学机械抛光液的制备方法
一种pH值稳定的碳化硅化学机械抛光液的制备方法,该制备方法包括以下步骤:
(1)提供酸性氧化铝分散液:将22克颗粒粒径为100nm的氧化铝粉分散在100ml水中,用硝酸将pH值调至0~1,用星型球磨机研磨4~6小时,制得pH值为3.8的酸性氧化铝分散液;
(2)表面改性:在100ml上述酸性氧化铝分散液中加入表面改性剂有机酸1.2%(基于氧化铝的重量),继续用球磨机分散,得到表面改性酸性氧化铝分散液;
(3)将表面改性氧化铝分散液稀释至0.5~2%,加入硝酸调节pH值为3.5~4,加入pH值稳定剂硝酸铝0.08%(基于氧化铝的重量),搅拌分散1.5小时;
(4)加入氧化剂高锰酸钾1.5%(基于氧化铝的重量),配制成pH值稳定的碳化硅化学机械抛光液。
实施例13:
本申请的碳化硅化学机械抛光液的pH稳定性的测试结果:图11为0.01M高锰酸钾存在时,硝酸铝的加入对氧化铝分散液pH的影响。可以发现,加入硝酸铝的氧化铝分散液在刚加入高锰酸钾时,pH稍高于4,在半小时内pH可降低至3.5‐4,且40h内基本保持不变,而不加硝酸铝的分散液pH一直增大。氧化铝加入前pH为3‐4,高锰酸钾的pH为6‐7,混合后pH增高是正常的,随着时间的变化,高锰酸钾发生氧化反应,消耗H+,但分散液的pH仍保持稳定。
实施例14:
本申请的碳化硅化学机械抛光液的氧化铝分散稳定性的测试结果:
配制最终体系中0.1wt%的氧化铝和0.1wt%、0.3wt%、0.5wt%、和1wt%的硝酸铝溶液,观察加入硝酸铝后的氧化铝颗粒在0.04M高锰酸钾溶液中的沉降稳定性。图12显示了在0.04M高锰酸钾溶液中氧化铝粒径和zeta电势随硝酸铝浓度变化。图13显示了在0.04M高锰酸钾溶液中氧化铝的沉降TSI随时间变化。
与不加硝酸铝的样品相比,加入硝酸铝后氧化铝粒径减小、zeta电势升高、稳定性增强。但是随着硝酸铝浓度的增加,氧化铝的粒径增大、电势降低(见图12所示)。由于高锰酸钾颜色较深,宏观观察不太方便,我们静置样品2h后,发现不加硝酸铝的样品底部出现氧化铝沉淀,而12h后,加入硝酸铝的样品依然未看到沉淀,此外,通过测2h内氧化铝在0.04M高锰酸钾溶液中的沉降过程中的不稳定性指数TSI,也可以发现,加入硝酸铝后,明显降低了体系的TSI值,大大提高了氧化铝的分散稳定性。但是,随着硝酸铝浓度增加,体系不稳定,这由图12可以看出,随着硝酸铝浓度增加,体系粒径逐渐增大,zeta电势逐渐降低。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (17)

  1. 一种pH稳定性提高的碳化硅化学机械抛光液,其特征在于,所述抛光液包括:氧化剂、高硬度磨料和pH稳定剂,所述pH稳定剂为硝酸铝。
  2. 根据权利要求1所述的碳化硅化学机械抛光液,其特征在于,所述氧化剂选自过氧化氢、过硫酸钾、高碘酸盐、高锰酸钾中的一种或任意几种。
  3. 根据权利要求2所述的碳化硅化学机械抛光液,其特征在于,所述氧化剂为高锰酸钾。
  4. 根据权利要求2所述的碳化硅化学机械抛光液,其特征在于,
    所述高硬度磨料选自氧化铝、金刚砂、金刚石、碳化硼、硅碳中的一种或任意几种,其中高硬度磨料的Zeta电势大于+30mv。
  5. 根据权利要求4所述的碳化硅化学机械抛光液,其特征在于,
    所述高硬度磨料选自氧化铝;
    优选的,所述氧化铝可以是高硬度的α‐氧化铝(莫氏硬度9.0),也可以是过渡相氧化铝如θ‐氧化铝、γ‐氧化铝、κ‐氧化铝、δ‐氧化铝中的一种或多种。
  6. 根据权利要求4所述的碳化硅化学机械抛光液,其特征在于,
    所述高硬度磨料选自酸性氧化铝分散液。
  7. 根据权利要求1‐6任一所述的碳化硅化学机械抛光液,其特征在于,
    所述抛光液还包括高硬度磨料的表面改性剂;
    所述表面改性剂可为有机酸,优选的,所述有机酸选自乙酸、丙酸、柠檬酸、苹果酸、衣康酸、马来酸、丙二酸、巴豆酸、葡糖酸、乙醇酸、 乳酸和扁桃酸中的一种或任意几种;更优选的,所述有机酸选自乙酸和/或丙酸。
  8. 根据权利要求7所述的碳化硅化学机械抛光液,其特征在于,所述硝酸铝的终浓度为0.01~5%;优选的,所述硝酸铝的终浓度为0.05~1%。
  9. 根据权利要求8所述的碳化硅化学机械抛光液,其特征在于,所述氧化剂的终浓度为0.01~10%;优选的,所述氧化剂的终浓度为0.1~4%。
  10. 根据权利要求9所述的碳化硅化学机械抛光液,其特征在于,所述抛光液还包括表面活性剂、缓蚀剂、消泡剂、光亮剂、粘度调节剂或聚合物分散剂。
  11. 根据权利要求8或9所述的碳化硅化学机械抛光液,其特征在于,所述高硬度磨料为浓度为10~30%的酸性氧化铝分散液,所述表面改性剂的用量为氧化铝重量的0.5~2.0%;
    优选的,所述高硬度磨料为浓度为15~25%的酸性氧化铝分散液,所述表面改性剂的用量为氧化铝重量的1.0~1.5%。
  12. 根据权利要求11所述的碳化硅化学机械抛光液,其特征在于,所述抛光液由以下方法制备得到:
    (1)提供酸性氧化铝分散液;
    (2)采用表面改性剂对酸性氧化铝分散液进行表面改性;
    (3)调节pH值为3.5~4,加入pH值稳定剂搅拌分散;
    (4)加入氧化剂,配制成pH稳定性提高的碳化硅化学机械抛光液。
  13. 权利要求1‐12任一所述的pH稳定性提高的碳化硅化学机械抛光液在碳化硅抛光中的应用。
  14. 一种制备权利要求1‐12中任一项所述的pH稳定性提高的碳化硅化学机械抛光液的方法,其特征在于,所述制备方法包括以下步骤:
    用表面改性剂对高硬度磨料分散液进行表面改性,再依次加入pH稳 定剂和氧化剂,其中表面改性剂为有机酸。
  15. 根据权利要求14所述的制备pH稳定性提高的碳化硅化学机械抛光液的方法,其特征在于,
    所述pH稳定剂为强酸弱碱盐;
    优选的,所述pH稳定剂为硝酸铝。
  16. 根据权利要求14所述的制备pH稳定性提高的碳化硅化学机械抛光液的方法,其特征在于,所述制备方法包括以下步骤:
    (1)提供酸性氧化铝分散液:将Zeta电势为正值且大于+30mv的氧化铝分散在水中,用硝酸将pH值调至0~1,用星型球磨机研磨,最终pH值控制在3.5~4,其中所用pH调节剂是硝酸和氢氧化钾;
    (2)表面改性:在上述酸性氧化铝分散液中加入表面改性剂有机酸,继续用球磨机分散,得到表面改性酸性氧化铝分散液;
    (3)将表面改性氧化铝分散液稀释,加入硝酸调节pH值为3.5~4,加入pH值稳定剂,搅拌分散;
    (4)加入氧化剂,配制成pH稳定性提高的碳化硅化学机械抛光液。
  17. 根据权利要求16所述的制备pH稳定性提高的碳化硅化学机械抛光液的方法,其特征在于,将所述步骤(1)和所述步骤(2)合并,具体步骤为:将氧化铝分散在水中,用硝酸将pH值调至0~1,加入表面改性剂有机酸,用球磨机分散,同时完成球磨分散和表面改性。
PCT/CN2018/123714 2018-11-02 2018-12-26 pH稳定性提高的碳化硅化学机械抛光液及制备方法和应用 WO2020087721A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811303460.6 2018-11-02
CN201811303460.6A CN109554119B (zh) 2018-11-02 2018-11-02 一种pH稳定性提高的碳化硅化学机械抛光液及其应用
CN201811303464.4A CN109321141B (zh) 2018-11-02 2018-11-02 一种制备pH稳定性提高的碳化硅化学机械抛光液的方法
CN201811303464.4 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020087721A1 true WO2020087721A1 (zh) 2020-05-07

Family

ID=70462985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123714 WO2020087721A1 (zh) 2018-11-02 2018-12-26 pH稳定性提高的碳化硅化学机械抛光液及制备方法和应用

Country Status (1)

Country Link
WO (1) WO2020087721A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168860A1 (ja) 2021-02-04 2022-08-11 株式会社フジミインコーポレーテッド 研磨用組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274063B1 (en) * 1998-11-06 2001-08-14 Hmt Technology Corporation Metal polishing composition
CN1333317A (zh) * 2000-01-18 2002-01-30 普莱克斯·S·T·技术有限公司 抛光浆料
CN102105266A (zh) * 2008-06-13 2011-06-22 福吉米株式会社 氧化铝颗粒以及包含该氧化铝颗粒的抛光组合物
CN104559797A (zh) * 2014-12-22 2015-04-29 深圳市力合材料有限公司 一种硅晶片细抛光组合物及其制备方法
CN106147616A (zh) * 2015-04-28 2016-11-23 天津西美半导体材料有限公司 溶剂型表面改性氧化铝抛光液的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274063B1 (en) * 1998-11-06 2001-08-14 Hmt Technology Corporation Metal polishing composition
CN1333317A (zh) * 2000-01-18 2002-01-30 普莱克斯·S·T·技术有限公司 抛光浆料
CN102105266A (zh) * 2008-06-13 2011-06-22 福吉米株式会社 氧化铝颗粒以及包含该氧化铝颗粒的抛光组合物
CN104559797A (zh) * 2014-12-22 2015-04-29 深圳市力合材料有限公司 一种硅晶片细抛光组合物及其制备方法
CN106147616A (zh) * 2015-04-28 2016-11-23 天津西美半导体材料有限公司 溶剂型表面改性氧化铝抛光液的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168860A1 (ja) 2021-02-04 2022-08-11 株式会社フジミインコーポレーテッド 研磨用組成物
KR20230141821A (ko) 2021-02-04 2023-10-10 가부시키가이샤 후지미인코퍼레이티드 연마용 조성물

Similar Documents

Publication Publication Date Title
CN109554119B (zh) 一种pH稳定性提高的碳化硅化学机械抛光液及其应用
TWI720954B (zh) 研磨方法及拋光用組成物
JP5856256B2 (ja) ニッケル−リン記憶ディスク用の研磨組成物
JP4827963B2 (ja) 炭化珪素の研磨液及びその研磨方法
CN109321141B (zh) 一种制备pH稳定性提高的碳化硅化学机械抛光液的方法
IL182536A (en) Composition for chemical-mechanical polishing containing active material - interior
WO2012102180A1 (ja) 研磨材及び研磨用組成物
JP6110715B2 (ja) Ni−Pメッキされたアルミ磁気ディスク基板粗研磨用研磨剤組成物、Ni−Pメッキされたアルミ磁気ディスク基板の研磨方法、Ni−Pメッキされたアルミ磁気ディスク基板の製造方法、及びNi−Pメッキされたアルミ磁気ディスク基板
US8557137B2 (en) Polishing composition for nickel phosphorous memory disks
WO2017183290A1 (ja) 合成石英ガラス基板用研磨剤及び合成石英ガラス基板の研磨方法
JPWO2012169515A1 (ja) 研磨材及び研磨用組成物
JPWO2019065994A1 (ja) 研磨用組成物
WO2020087721A1 (zh) pH稳定性提高的碳化硅化学机械抛光液及制备方法和应用
TW527411B (en) Method for polishing a memory or rigid disk with an oxidized halide-containing polishing system
TW201425557A (zh) Cmp用硏磨液、儲存液及硏磨方法
TW201739893A (zh) 研磨用組成物
JP2010023199A (ja) 研磨用組成物及び研磨方法
WO2015057433A1 (en) Polishing composition and method for nickel-phosphorous coated memory disks
JP6559410B2 (ja) 研磨用組成物
US7087187B2 (en) Meta oxide coated carbon black for CMP
TWI306471B (zh)
JP6584945B2 (ja) 磁気ディスク基板用研磨液組成物
JP7061859B2 (ja) 研磨用組成物および磁気ディスク基板の製造方法
CN115449300B (zh) 抛光液及其在碳化硅晶体抛光中的应用
JP6985116B2 (ja) 合成石英ガラス基板用の研磨剤及び合成石英ガラス基板の研磨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938658

Country of ref document: EP

Kind code of ref document: A1