WO2020084934A1 - 電気集塵装置 - Google Patents

電気集塵装置 Download PDF

Info

Publication number
WO2020084934A1
WO2020084934A1 PCT/JP2019/035325 JP2019035325W WO2020084934A1 WO 2020084934 A1 WO2020084934 A1 WO 2020084934A1 JP 2019035325 W JP2019035325 W JP 2019035325W WO 2020084934 A1 WO2020084934 A1 WO 2020084934A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
charged particles
electrostatic precipitator
dust collecting
unit
Prior art date
Application number
PCT/JP2019/035325
Other languages
English (en)
French (fr)
Inventor
貴誌 乾
浩之 豊角
瑞慶覧 章朝
崇磨 渡久地
Original Assignee
富士電機株式会社
学校法人幾徳学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 学校法人幾徳学園 filed Critical 富士電機株式会社
Priority to KR1020217010217A priority Critical patent/KR102543513B1/ko
Priority to FIEP19875886.4T priority patent/FI3848125T3/fi
Priority to CN201980065844.5A priority patent/CN113164973A/zh
Priority to EP19875886.4A priority patent/EP3848125B1/en
Priority to JP2020518834A priority patent/JP6807072B2/ja
Publication of WO2020084934A1 publication Critical patent/WO2020084934A1/ja
Priority to US17/220,950 priority patent/US20210220839A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/6447Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors
    • H05B6/645Method of operation or details of the microwave heating apparatus related to the use of detectors or sensors using temperature sensors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/08Ionising electrode being a rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/12Cleaning the device by burning the trapped particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/24Details of magnetic or electrostatic separation for measuring or calculating of parameters, e.g. efficiency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/32Checking the quality of the result or the well-functioning of the device

Definitions

  • the present invention relates to an electric dust collector.
  • Patent Documents 1, 2, 3, 4, and 5 Conventionally, an electrostatic precipitator that processes exhaust gas from a diesel engine or the like is known (see, for example, Patent Documents 1, 2, 3, 4, and 5).
  • an electrostatic precipitator in the first aspect of the present invention, includes a dust collecting unit that collects charged particles, and a microwave generating unit that generates microwaves to be introduced into the dust collecting unit and burns the charged particles collected in the dust collecting unit by microwaves. , Is provided.
  • the microwave generation unit may have a frequency control unit that burns charged particles at different positions by changing the frequency of the microwave.
  • the microwave generator may have a polarization controller that controls the polarization direction of the microwave.
  • the dust collector may have a first electrode and a second electrode.
  • the dust collecting part may collect the charged particles by an electric field generated by a potential difference between the first electrode and the second electrode.
  • the position of the electric field generated by the potential difference between the first electrode and the second electrode may be different from the position of the electric field applied by the microwave.
  • the microwave generator may generate microwaves intermittently.
  • the microwave generator may generate microwaves at predetermined time intervals.
  • the microwave generation unit generates the microwave energy generated when the charged particles collected in the dust collection unit are burned and decomposed, while the charged particles collected in the dust collection unit are not burned. It may be smaller than the energy of microwaves.
  • the microwave generation unit may be capable of changing the time interval for generating the microwave or the irradiation time of the microwave.
  • the microwave generator generates the pulse width of the microwave generated while the charged particles collected in the dust collector continue to burn, while the charged particles collected in the dust collector continue to burn. It may be smaller than the pulse width of the microwave generated in the absence.
  • the microwave generator may be able to change the microwave output.
  • the microwave generator generates the pulse amplitude of the microwave generated when the charged particles collected in the dust collecting section are burned and decomposed, and the charged particle collected in the dust collecting section is not burned and decomposed. It may be smaller than the pulse amplitude of the microwave generated in.
  • the microwave generation unit may generate microwaves based on the collection state of the charged particles collected by the dust collection unit.
  • the electrostatic precipitator may further include an elapsed time measurement unit that measures the elapsed time after stopping the generation of microwaves.
  • the microwave generation unit may generate the microwave based on the elapsed time measured by the elapsed time measurement unit.
  • the electrostatic precipitator may further include a particle amount measuring unit that measures the amount of the charged particles collected in the dust collecting unit.
  • the microwave generation unit may generate microwaves based on the amount of charged particles measured by the particle amount measurement unit.
  • the electrostatic precipitator may include a plurality of particle amount measuring units.
  • the charged particles may be generated by charging particles contained in the exhaust gas discharged from the gas source.
  • the dust collector may collect charged particles.
  • the microwave generator may generate microwaves based on the type of fuel of the gas source.
  • the microwave generation unit may control the time interval for generating the microwave and at least one of the frequency and the polarization direction of the microwave based on the type of fuel of the gas source.
  • the dust collector may have a temperature sensor that detects the temperature of the dust collector.
  • the microwave generator may generate microwaves based on the temperature detected by the temperature sensor.
  • the dust collector may have a plurality of temperature sensors arranged at different positions.
  • the microwave generator may generate microwaves based on the temperatures detected by the plurality of temperature sensors.
  • the electrostatic precipitator may further include a concentration measuring unit that measures the concentration of at least one of carbon dioxide, oxygen and carbon monoxide in the dust collecting unit.
  • the microwave generation unit may generate microwaves based on the concentration measured by the concentration measurement unit.
  • the electrostatic precipitator may include a plurality of concentration measuring units.
  • the dust collector may further have a catalyst that promotes the combustion of charged particles by microwaves.
  • the catalyst may be provided in a part of the dust collecting part.
  • the catalyst may be applied to the inner wall of the dust collecting part.
  • the dust collecting part may further have a soot collecting part that collects soot generated by combustion of charged particles by microwaves.
  • the soot accumulation unit may be arranged periodically along the traveling direction of the microwave. The period in which the soot accumulating portion is arranged may be equal to the period of microwaves.
  • FIG. 4 is a diagram showing absorbed power at positions P1 to P5 in FIG. It is a figure which shows the injection energy dependence of the burning rate of the charged particle 28 at the time of carrying out intermittent irradiation and continuous irradiation of a microwave.
  • Oxygen generated with the combustion decomposition of charged particles 28 by the microwave (O 2) a diagram showing the time dependence of the concentration of carbon dioxide (CO 2) and carbon monoxide (CO). It is another example of a microwave irradiation pattern. It is another example of a microwave irradiation pattern. It is a figure which shows an example of the electrostatic precipitator 20 which concerns on one Embodiment of this invention. It is a figure which shows an example of a structure of the partition 32 (2nd electrode). It is a figure which shows an example of the YZ cross section in the position X1 of the X-axis direction in FIG. It is a figure which shows an example of the YZ cross section in the position X2 of the X-axis direction in FIG.
  • FIG. 11 It is a figure which shows another example of the electrostatic precipitator 20 which concerns on one Embodiment of this invention. It is a figure which shows another example of the YZ cross section in the position X2 of the X-axis direction in FIG. It is a figure which shows another example of the YZ cross section in the position X2 of the X-axis direction in FIG. It is a figure which shows another example of the YZ cross section in position X1 of the X-axis direction in FIG. It is a figure which shows the XY cross section which passes along the outer wall 39, the opening 48, the space 41, the opening 38, the 1st electrode 30, and the partition 32 (2nd electrode) in the dust collection part 22 of FIG. 11 and FIG.
  • FIG. 1 is a diagram showing an example of an exhaust gas treatment system 10 incorporating an electrostatic precipitator 20 according to an embodiment of the present invention.
  • the exhaust gas processing system 10 processes the exhaust gas emitted by the engine 60 of, for example, a ship.
  • the exhaust gas treatment system 10 has an electric dust collector (ESP: Electrostatic Precipitator) 20, an economizer 50, an engine 60, a scrubber 70, a wastewater treatment device 80 and a sensor 90.
  • ESP Electrostatic Precipitator
  • the electrostatic precipitator 20 includes a microwave generator 40.
  • the engine 60 emits exhaust gas due to combustion of fuel.
  • the exhaust gas contains substances such as nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM: Particle Matter).
  • NOx nitrogen oxides
  • SOx sulfur oxides
  • PM particulate matter
  • PM also called black carbon
  • the particulate matter (PM) is fine particles whose main component is carbon.
  • Exhaust gas discharged from the engine 60 is supplied to the electric dust collector 20.
  • the electrostatic precipitator 20 removes particulate matter (PM) contained in the exhaust gas.
  • the economizer 50 exchanges heat of exhaust gas from which particulate matter (PM) has been removed to generate hot water and steam.
  • the hot water and the steam may be used for hot water and heating used onboard, respectively.
  • the exhaust gas that has passed through the economizer 50 is supplied to the scrubber 70.
  • the pump 75 for example, pumps up seawater and supplies it to the scrubber 70.
  • the scrubber 70 uses the seawater supplied by the pump 75 as an absorption liquid and collects and separates the sulfur oxides and the like in the exhaust gas into droplets of the absorption liquid.
  • the exhaust gas from which sulfur oxides and the like have been separated and removed is supplied to the sensor 90.
  • the sensor 90 measures a predetermined characteristic of exhaust gas.
  • the characteristic is, for example, the concentration of sulfur oxides contained in the exhaust gas.
  • the exhaust gas treatment system 10 may control the spray amount of seawater in the scrubber 70, etc., based on the measurement result of the sensor 90.
  • the absorption liquid of the scrubber 70 is supplied to the wastewater treatment device 80.
  • the wastewater treatment device 80 removes the sulfur oxides and the like contained in the absorbing liquid, and then discharges the absorbing liquid to the outside of the exhaust gas treatment system 10 (for example, the ocean).
  • FIG. 2 is a block diagram showing the configuration of the electrostatic precipitator 20 according to one embodiment of the present invention.
  • the electrostatic precipitator 20 includes a dust collector 22, a charger 24, and a microwave generator 40. Exhaust gas discharged from the engine 60 is supplied to the charging unit 24.
  • the exhaust gas contains particulate matter (PM).
  • the charging unit 24 generates negative ions by, for example, negative corona discharge, and charges the particulate matter (PM) to generate charged particles.
  • the charged particles are sent to the dust collecting unit 22.
  • the dust collector 22 collects charged particles.
  • the dust collecting unit 22 collects the charged particles by Coulomb force, for example, by disposing a member to which a ground potential or the like is applied in a path through which exhaust gas passes.
  • the microwave generation unit 40 generates a microwave to be introduced into the dust collecting unit 22.
  • the microwave is an electromagnetic wave having a frequency of about 300 MHz to 300 GHz.
  • the electrostatic precipitator 20 of the present example burns the charged particles collected in the dust collector 22 with the microwave generated by the microwave generator 40.
  • the heating rate Q of the object to be heated by the microwave is expressed by the following equation.
  • Q (1/2) ⁇
  • 2 indicates the heating rate by Joule heating by the electric field.
  • is the electrical conductivity of the fine particles contained in the object to be heated.
  • E is an electric field generated by microwaves. Application of an electric field to the object to be heated causes charge transfer in the object to be heated. This charge transfer or current causes Joule loss.
  • the first term represents heat generation due to this Joule loss.
  • 2 indicates the heating rate by dielectric heating by an electric field.
  • is the angular frequency of the microwave
  • ⁇ ′′ is the imaginary part of the dielectric constant of the object to be heated.
  • 2 indicates the heating rate by Joule heating due to eddy current.
  • ⁇ ′′ is the imaginary part of the magnetic permeability of the object to be heated.
  • the electrostatic precipitator 20 of the present example burns the charged particles collected in the dust collector 22 with the microwave generated by the microwave generator 40. In order to irradiate the dust collecting portion 22 with microwaves, it suffices to dispose an antenna for microwave irradiation inside the electrostatic precipitator 20. Therefore, the electrostatic precipitator 20 of the present example can remove the particulate matter (PM) in a simple structure and in a space-saving manner as compared with methods such as hammering, air cleaning, and water cleaning.
  • PM particulate matter
  • FIG. 3 is a conceptual diagram showing an example of the dust collecting unit 22.
  • the dust collecting portion 22 of this example has a waveguide shape.
  • the traveling direction of the microwave is the X axis
  • the amplitude direction of the microwave is the Y axis.
  • a direction perpendicular to both the X axis and the Y axis is the Z axis.
  • the microwave generated by the microwave generator 40 is introduced from one end of the dust collector 22 in the X-axis direction.
  • the inner wall of the dust collecting portion 22 is formed of a material that reflects microwaves.
  • a reflecting plate 26 that reflects microwaves is provided at the other end of the dust collecting portion 22.
  • the microwave introduced from one end of the dust collecting portion travels in the + X axis direction, is reflected by the reflecting plate 26, and travels in the ⁇ X axis direction.
  • the microwave traveling in the + X axis direction and the microwave traveling in the ⁇ X axis direction interfere with each other. As a result, a traveling wave or a standing wave is formed in the dust collecting part 22.
  • the electric field component and the magnetic field component of the microwave are shown by a broken line portion and a dashed line portion, respectively.
  • the phases of the electric field component and the magnetic field component of the microwave are different by 180 degrees.
  • Position P0 is the position where the reflector 26 is arranged in the X-axis direction. Positions where the electric field component of the standing wave exhibits the maximum and the magnetic field component exhibits the minimum in the X-axis direction are defined as position P1 and position P5. In the X-axis direction, the position P5 is farther from the position P0 than the position P1. The position in which the electric field component of the standing wave is minimum and the magnetic field component is maximum in the X-axis direction is defined as position P3. In the X-axis direction, the center between the position P1 and the position P3 and the center between the position P3 and the position P5 are set as the position P2 and the position P4, respectively.
  • Charged particles 28 are arranged on the bottom surface 27 of the dust collecting portion 22.
  • the charged particles 28 are arranged at positions P1 to P5, respectively.
  • FIG. 4 is a diagram showing an example of a microwave irradiation pattern.
  • FIG. 4 is an example of an intermittent irradiation pattern of microwaves.
  • intermittent irradiation means repeating irradiation with microwaves of predetermined power for a predetermined time continuously (period T1 in FIG. 4) and then stopping irradiation for a predetermined period of time (period T2 in FIG. 4).
  • T1 and T2 may be different or equal.
  • T1 may be smaller or larger than T2.
  • T2 may be 1.0 times or more and 5.0 times or less than T1.
  • FIG. 5 is a diagram showing another example of a microwave irradiation pattern.
  • FIG. 5 is an example of a continuous microwave irradiation pattern.
  • continuous irradiation refers to continuous irradiation with microwaves having a predetermined power without stopping for a predetermined period.
  • FIG. 6 is a diagram showing absorbed power at positions P1 to P5 in FIG. From FIG. 6, the absorbed power shows a larger value at the positions P1 and P5 where the electric field component has the maximum value than at the position P3 where the microwave magnetic field component has the maximum value. This indicates that many charged particles 28 are burning at the positions P1 and P5 where the electric field component of the microwave shows the maximum value. Therefore, by disposing the charged particles 28 at the position where the electric field component of the microwave shows the maximum value, the charged particles 28 can be efficiently burned.
  • FIG. 7 is a diagram showing the injection energy dependence of the burning rate of the charged particles 28 in the case of intermittent irradiation and continuous irradiation with microwaves. From FIG. 7, when the microwave is continuously irradiated, the burning rate of the charged particles 28 increases up to the injection energy E1 as the injection energy increases. However, when the injection energy E1 is exceeded, the burning rate of the charged particles 28 hardly increases as the injection energy increases. On the other hand, when the microwave is intermittently irradiated, the burning rate of the charged particles 28 increases as the injection energy increases. That is, it is possible to reduce the energy consumption required for combustion decomposition of the charged particles 28 by intermittently irradiating the charged particles 28 with microwaves.
  • FIG. 8 is a diagram showing the time dependence of the concentrations of oxygen (O 2 ), carbon dioxide (CO 2 ), and carbon monoxide (CO) generated along with the combustion decomposition of the charged particles 28 by microwaves.
  • the microwave is turned on at time zero and the state of the microwave on is maintained until t3.
  • the microwave is turned off, and this microwave off state is maintained until t4.
  • the carbon monoxide (CO) concentration shows a decreasing tendency, and the oxygen (O 2 ) concentration and the carbon dioxide (CO 2 ) concentration have begun to change at substantially constant values. This indicates that the combustion decomposition of the charged particles 28 is proceeding in a predetermined steady state.
  • the carbon monoxide (CO) concentration and the carbon dioxide (CO 2 ) concentration start to decrease and the oxygen (O 2 ) concentration starts to increase.
  • the carbon monoxide (CO) concentration gradually decreases even after the time t3, as indicated by the dashed-dotted arrow in FIG. This indicates that the combustion decomposition of the charged particles 28 continues even after the microwave is turned off. That is, the charged particles 28 burn in a chain. From the above, it is understood that the charged particles 28 can be burnt and decomposed without continuously irradiating the charged particles 28 with the microwave.
  • the microwave When the microwave is turned on again at time t4, the incomplete combustion of the charged particles 28 is repeated again. This corresponds to the case of intermittent irradiation in FIG. From the above, after the combustion decomposition of the charged particles 28 is set to a predetermined steady state (from time t2 to time t3 in FIG. 8), the microwave is turned off to promote the combustion decomposition of the charged particles 28, and the combustion decomposition is completed. By turning on the microwave again at the timing (time t4 in FIG. 8), the energy consumption can be reduced and the charged particles 28 can be decomposed by combustion.
  • the microwave may be turned on before the carbon monoxide (CO) concentration and the carbon dioxide (CO 2 ) concentration become zero. That is, the microwave may be turned on before the combustion decomposition of the charged particles 28 is completed (between time t3 and time t4 in FIG. 8).
  • the microwave is turned on after the combustion decomposition of the charged particles 28 is completed, the combustion efficiency of the charged particles 28 may be reduced.
  • the energy consumption can be reduced and the charged particles 28 can be continuously burned.
  • the microwave generation unit 40 may control the microwave on and off based on at least one of the carbon monoxide (CO) concentration and the carbon dioxide (CO 2 ) concentration. For example, the microwave generation unit 40 may turn on the microwave when the carbon monoxide (CO) concentration falls below a predetermined threshold value larger than zero after turning off the microwave.
  • CO carbon monoxide
  • the microwave generation unit 40 makes the energy of the microwave generated in the state where the combustion decomposition of the charged particles 28 continues to be smaller than the energy of the microwave generated in the state where the charged particles 28 are not burning.
  • the combustion state of the charged particles 28 may be determined based on at least one of carbon monoxide (CO) concentration and carbon dioxide (CO 2 ) concentration.
  • FIG. 9 is a diagram showing another example of the microwave irradiation pattern.
  • the microwave generator 40 may be capable of changing the output of microwaves. That is, when the energy of the microwave is reduced, the microwave generation unit 40 sets the pulse amplitude of the microwave generated in the state where the combustion of the charged particles 28 is not continued to Pw1 as in the present example, and the charged particles 28 are generated.
  • the pulse amplitude of the microwave generated in the state where the combustion is continued may be Pw2 smaller than Pw1. This can further reduce energy consumption.
  • FIG. 10 is a diagram showing another example of the microwave irradiation pattern.
  • the microwave generation unit 40 may be capable of changing the time interval for generating the microwave or the irradiation time of the microwave. That is, when the energy of the microwave is reduced, the microwave generation unit 40 sets the pulse width of the microwave generated in a state in which the charged particles 28 are not continuously burned to T1 as in the present example, and the charged particles 28 are charged.
  • the pulse width of the microwave generated in the state where the combustion is continued may be T1 ′ smaller than T1. This can further reduce energy consumption.
  • the microwave generation unit 40 may reduce one of the amplitude and the pulse width of the microwave pulse, or may reduce both of them.
  • FIG. 11 is a diagram showing an example of the electrostatic precipitator 20 according to one embodiment of the present invention.
  • the electric dust collector 20 includes a dust collector 22.
  • the shape of the dust collecting portion 22 in this example is a cylindrical shape, but may be another shape such as a box shape.
  • the dust collecting portion 22 of this example has an opening 42 to which exhaust gas is supplied, a gas flow path 44 through which exhaust gas flows, and an opening 46 from which exhaust gas is discharged.
  • the charged particles 28 may be generated by charging particles contained in the exhaust gas discharged from the gas source.
  • the gas source is, for example, the engine 60 (see FIG. 1).
  • the charging unit 24 charges the particles contained in the exhaust gas discharged from the gas source to generate the charged particles 28.
  • the dust collector 22 of this example collects the charged particles 28.
  • the exhaust gas supplied to the openings 42 contains the charged particles 28 charged by the charging unit 24.
  • the gas flow path 44 has a partition wall 32 that surrounds a space in which gas flows.
  • the partition wall 32 may have a tubular shape.
  • the charged particles 28 are removed from the exhaust gas in the gas passage 44.
  • the exhaust gas from which the charged particles 28 have been removed is discharged from the opening 46.
  • the dust collecting unit 22 has a charged particle accumulation unit 36 that accumulates charged particles 28.
  • the charged particle accumulating portion 36 of this example has a partition wall 32, a space 41 and an outer wall 39 in the YZ plane.
  • the space 41 is arranged outside the partition wall 32.
  • the outer wall 39 is arranged outside the space 41 in the YZ plane.
  • the outer wall 39 may have a tubular shape.
  • the partition wall 32 is provided with an opening (described later) for passing the charged particles 28.
  • the partition wall 32 and the outer wall 39 may be formed of a metal material.
  • a potential capable of electrically attracting the charged particles 28 is applied to the outer wall 39.
  • the potential applied to the outer wall 39 may be the ground potential.
  • the charged particles 28 contained in the exhaust gas passing through the gas passage 44 pass through the openings (described later) of the partition wall 32 and adhere to the outer wall 39 of the charged particle accumulating portion 36 and the like. By introducing the microwave into the space 41, the charged particles 28 attached to the outer wall 39 or the like can be burned.
  • the outer wall 39 of this example has an opening 48 for introducing the microwave generated by the microwave generator 40.
  • the outer wall 39 may have a plurality of openings 48.
  • the traveling direction of the exhaust gas in the dust collecting portion 22 is the X axis.
  • Two orthogonal axes in a plane perpendicular to the X axis are the Y axis and the Z axis.
  • a plurality of openings 48 may be arranged along the X-axis direction.
  • a plurality of openings 48 may be arranged along the outer circumference of the outer wall 39 on the YZ plane. In the example of FIG. 11, the two openings 48 are arranged so as to sandwich the gas flow path 44 in the Y-axis direction.
  • the dust collecting part 22 has reflecting parts 34 for reflecting microwaves at both ends of the charged particle collecting part 36 in the X-axis direction.
  • the reflecting portions 34 provided at one end and the other end in the X-axis direction may be provided so as to surround the space 41 in the YZ plane.
  • the microwave introduced from the opening 48 propagates through the charged particle accumulating portion 36, is reflected by the reflecting portion 34, and forms a traveling wave or a standing wave in the charged particle accumulating portion 36.
  • the dust collecting part 22 has a first electrode 30 and a second electrode.
  • the first electrode 30 may be arranged along the central axis of the dust collecting portion 22.
  • the first electrode 30 may have a rod shape having a long axis on the X axis.
  • the first electrode 30 may be provided continuously from the opening 42 to the opening 46 along the X-axis direction.
  • the second electrode may be arranged around the first electrode 30 in the YZ plane.
  • the partition wall 32 functions as the second electrode.
  • the partition wall 32 may have a tubular shape that houses the first electrode 30.
  • the first electrode 30 may be arranged at the center of the region surrounded by the partition wall 32 on the YZ plane.
  • the gas flow channel 44 may be sandwiched between the first electrode 30 and the partition wall 32 in the YZ plane.
  • openings 48 are provided.
  • three openings 48 are arranged along the X axis on one side and the other side in the diametrical direction of the outer wall 39 in the YZ section.
  • the microwave generated by the microwave generator 40 may be introduced into the six openings 48.
  • the opening 48 is provided so as to penetrate the outer wall 39.
  • the microwave generation unit 40 may include at least one of a frequency control unit 52 that controls the frequency of the microwave and a polarization control unit 54 that controls the polarization direction of the microwave.
  • the microwave generation unit 40 of this example has both a frequency control unit 52 and a polarization control unit 54.
  • the frequency controller 52 and the polarization controller 54 will be described later.
  • FIG. 12 is a diagram showing an example of the configuration of the partition wall 32.
  • the partition wall 32 is shown by hatching.
  • the outer wall 39 is shown by a broken line.
  • the first electrode 30, the charging unit 24, and the microwave generating unit 40 are omitted.
  • the partition wall 32 has an opening 38 through which the charged particles 28 pass.
  • a plurality of openings 38 may be provided.
  • the openings 38 may be provided periodically in the X-axis direction and in the YZ plane.
  • the position of the opening 38 and the position of the opening 48 may be different in the X-axis direction. That is, when the dust collecting portion 22 is viewed from the + Y axis direction to the ⁇ Y axis direction, the opening 48 and the partition wall 32 may overlap and the opening 48 and the opening 38 may not overlap. When the dust collecting portion 22 is viewed from the + Y axis direction to the ⁇ Y axis direction, part of the opening 48 may overlap part of the opening 38.
  • FIG. 13 is a diagram showing an example of a YZ cross section at a position X1 in the X axis direction in FIG.
  • the cross section is a YZ plane that passes through the opening 48, the first electrode 30, the gas flow path 44, the partition wall 32, the opening 38, the space 41, and the outer wall 39.
  • the cross section is a cross section when the dust collecting portion 22 shown in FIG. 12 is viewed from the + X axis direction to the ⁇ X axis direction.
  • the first electrode 30 is provided at the center of the cross section.
  • a gas flow path 44 is provided around the first electrode 30.
  • the gas flow path 44 is surrounded by the partition wall 32.
  • the partition wall 32 is provided with an opening 38.
  • a space 41 is provided outside the partition wall 32.
  • the space 41 is surrounded by the outer wall 39.
  • the outer wall 39 is provided with an opening 48 for introducing microwaves.
  • the partition wall 32 is provided with four openings 38, and the outer wall 39 is provided with two openings 48.
  • the first electrode 30 may be set to a predetermined DC high potential with respect to the ground potential.
  • the predetermined high potential is, for example, 10 kV.
  • the partition wall 32 (second electrode) may be grounded.
  • a predetermined high DC voltage (for example, 10 kV) is applied between the first electrode 30 and the partition wall 32.
  • the first electrode 30 When a predetermined high DC voltage is applied between the first electrode 30 and the partition wall 32 (second electrode), the first electrode 30 is discharged. When the first electrode 30 is discharged, the particles contained in the gas flowing between the first electrode 30 and the partition wall 32 are charged. The charged particles are attracted to the partition wall 32 and move into the space 41.
  • the position of the electric field generated by the potential difference between the first electrode 30 and the partition wall 32 (second electrode) and the position of the electric field applied by the microwave introduced from the opening 48 may be different. That is, the region to which the electric field for accumulating the charged particles 28 is applied may be different from the region to which the electric field of microwaves for burning the accumulated charged particles 28 is applied.
  • the electric field for accumulating the charged particles 28 is applied from the center to the position of the partition wall 32 in the radial direction of FIG. 13 by the first electrode 30 and the partition wall 32 (second electrode).
  • the microwave electric field for burning the charged particles 28 is applied between the partition wall 32 and the outer wall 39 in the radial direction of FIG. The microwave propagates in the space 41 in the X-axis direction and the circumferential direction in the YZ plane.
  • FIG. 14 is a diagram showing an example of a YZ cross section at a position X2 in the X axis direction in FIG.
  • the cross section is a YZ plane that passes through the first electrode 30, the gas flow path 44, the partition wall 32, the opening 38, the space 41, and the outer wall 39.
  • the cross section is a cross section when the dust collecting portion 22 shown in FIG. 12 is viewed from the + X axis direction to the ⁇ X axis direction.
  • the partition wall 32 is provided with four openings 38.
  • the two openings 38 are provided at positions facing each other in the Y-axis direction.
  • the other two openings 38 are provided at positions facing each other in the Z-axis direction.
  • the charged particles 28 attracted to the partition wall 32 pass through the opening 38 and reach the space 41.
  • the charged particles 28 are accumulated on the inner wall of the partition wall 32 and the inner wall of the outer wall 39 in the space 41.
  • the charged particles 28 accumulated in the space 41 are combusted and decomposed by the microwave introduced from the opening 48.
  • the position of the electric field generated by the potential difference between the first electrode 30 and the partition wall 32 (second electrode) and the position of the electric field applied by the microwave introduced from the opening 48. Can be different. Also in FIG. 14, the microwave propagates in the space 41 in the X-axis direction and the circumferential direction in the YZ plane.
  • the microwave generation unit 40 generate microwaves intermittently. That is, it is preferable that the microwave generation unit 40 generate microwaves at predetermined time intervals. As described in the description of FIG. 7, the intermittent irradiation of the microwave with respect to the charged particles 28 allows the charged particles 28 to be efficiently burned.
  • the microwave propagating in the space 41 can most efficiently burn the charged particles 28 at the position where the electric field component of the microwave shows the maximum value (see FIG. 6).
  • the charged particles 28 tend to be uniformly accumulated in the space 41 on the inner wall of the partition wall 32 and the inner wall of the outer wall 39 in the X-axis direction and in the YZ plane.
  • the position in the X-axis direction where the electric field component of the microwave shows the maximum value can be changed by changing the frequency of the microwave. Since the microwave generation unit 40 of this example has the frequency control unit 52, by changing the frequency of the microwave propagating in the space 41, it is possible to burn the charged particles 28 at different positions in the X-axis direction. Therefore, the electrostatic precipitator 20 of the present example can combust and decompose the charged particles 28 accumulated in the space 41 regardless of the position where they are accumulated in the X-axis direction.
  • the microwave generation unit 40 of this example has a polarization control unit 54.
  • the reflection and transmission of microwaves on the metal surface depends on the polarization direction of the microwaves. Therefore, the polarization control unit 54 controls the polarization direction of the microwave propagating through the charged particle accumulation unit 36, and the transmittance of the microwaves in the openings 48 and 38 is reduced. Even if the opening 38 is present, the microwave can be a traveling wave or a standing wave.
  • the position in the circumferential direction (in the YZ plane) where the electric field component of the microwave shows the maximum value can be changed by changing the polarization direction of the microwave. Since the microwave generation unit 40 of this example has the polarization control unit 54, it is possible to burn the charged particles 28 at different positions in the YZ plane by changing the polarization direction of the microwave propagating in the space 41. it can. Therefore, the electrostatic precipitator 20 of the present example can combust and decompose the charged particles 28 accumulated in the space 41 regardless of the position where they are accumulated in the YZ plane.
  • FIG. 15 is a diagram showing another example of the electrostatic precipitator 20 according to an embodiment of the present invention.
  • the dust collector 22 has a temperature sensor 21.
  • the temperature sensor 21 may measure the temperature of the charged particle accumulation portion 36.
  • the dust collecting part 22 may include a plurality of temperature sensors 21 arranged at different positions.
  • the dust collector 22 has two temperature sensors 21.
  • the temperature sensor 21-1 is arranged on the opening 46 side in the X-axis direction.
  • the temperature sensor 21-2 is arranged on the opening 42 side in the X-axis direction.
  • the temperature sensor 21 is connected to the measuring unit 61.
  • the temperature sensor 21 of this example is a thermocouple.
  • the temperature sensor 21 has a contact 25 and a pair of metal wires 23. Each metal wire 23 connects the contact 25 and the measurement unit 61.
  • the measuring unit 61 may be a voltmeter.
  • the temperature sensor 21 may be a PN diode, a thermistor, or the like.
  • the contact 25 may be disposed on the charged particle accumulating portion 36. In this example, when the dust collecting portion 22 is viewed from the X-axis direction, the contact 25 of the temperature sensor 21-1 and the contact 25 of the temperature sensor 21-2 are arranged at positions facing each other in the Y-axis direction. .
  • the temperature of the charged particle accumulating portion 36 rises, and when the combustion and decomposition ends, the temperature of the charged particle accumulating portion 36 decreases. Since the electrostatic precipitator 20 of this example has the temperature sensor 21 in the charged particle accumulating portion 36, it is possible to measure the temperature change due to the combustion decomposition of the charged particles 28.
  • the microwave generator 40 may generate microwaves based on the temperature detected by the temperature sensor 21.
  • the microwave generation unit 40 may start generation of microwaves.
  • the microwave generation unit 40 may stop the generation of microwaves.
  • the electrostatic precipitator 20 can measure temperatures at two places in the dust collecting part 22. Therefore, it is easier to generate and stop the microwave depending on the position of the charged particles 28, as compared with the case where the dust collecting unit 22 has one temperature sensor 21.
  • the microwave generation unit 40 may generate microwaves based on the collection state of the charged particles 28 collected by the dust collection unit 22.
  • the electrostatic precipitator 20 of this example further includes an elapsed time measuring unit 62.
  • the elapsed time measuring unit 62 measures the elapsed time after stopping the generation of microwaves.
  • the collection state of the charged particles 28 can be determined by the elapsed time, for example. Therefore, the microwave generation unit 40 may generate the microwave based on the elapsed time.
  • the elapsed time after stopping the generation of microwaves may be the elapsed time from time t3 in FIG. 8, for example.
  • the microwave generation unit 40 may start generation of microwaves, for example, when the time from time t3 to time t4 in FIG. 8 has elapsed.
  • FIG. 16 is a diagram showing another example of the YZ cross section at the position X2 in the X axis direction in FIG.
  • the electrostatic precipitator 20 of this example further includes a particle amount measuring unit 64.
  • the particle amount measuring unit 64 of this example has a constant current source 33.
  • the particle amount measuring unit 64 measures the amount of the charged particles 28 based on the resistance value between the partition wall (second electrode) 32 and the outer wall 39 (indicated by the resistance 31 in FIG. 16).
  • the constant current source 33 supplies a constant current to the resistor 31.
  • the resistance value of the resistor 31 varies depending on the amount of the charged particles 28 attached to the partition wall 32 and the outer wall 39.
  • the microwave generation unit 40 may generate microwaves based on the collection state of the charged particles 28 collected by the dust collection unit 22.
  • the collection state of the charged particles 28 is the amount of the charged particles 28 measured by the particle amount measuring unit 64.
  • the resistance value indicated by the resistance 31 decreases. Therefore, the amount of accumulated charged particles 28 can be measured.
  • the microwave generation unit 40 may start generating microwaves. Further, when the resistance value indicated by the resistor 31 rises with time and becomes constant at a predetermined resistance value, the microwave generation unit 40 may stop the generation of microwaves.
  • the electrostatic precipitator 20 may include a plurality of particle amount measuring units 64.
  • the electrostatic precipitator 20 may include a plurality of particle amount measuring units 64 in the YZ cross section of FIG. 16, or may include the particle amount measuring units 64 at different positions in the X-axis direction.
  • the electrostatic precipitator 20 includes the plurality of particle amount measuring units 64, it is easier to generate and stop the microwave according to the position of the charged particles 28 than when the electrostatic precipitator 20 includes one particle amount measuring unit 64.
  • FIG. 17 is a diagram showing another example of the YZ cross section at the position X2 in the X axis direction in FIG.
  • the electrostatic precipitator 20 of this example further includes a concentration measuring unit 66.
  • the concentration measuring unit 66 may measure the concentration of at least one of carbon dioxide (CO 2 ), oxygen (O 2 ) and carbon monoxide (CO).
  • the concentration measuring unit 66 of this example includes a carbon dioxide (CO 2 ) gas sensor 35 and a measuring unit 37 that measures the concentration of carbon dioxide (CO 2 ) gas.
  • the carbon dioxide (CO 2 ) gas sensor 35 may be provided in the charged particle accumulation unit 36.
  • the carbon dioxide (CO 2 ) gas sensor 35 is, for example, a solid electrolyte type carbon dioxide (CO 2 ) gas sensor having a substance that reacts with carbon dioxide (CO 2 ) gas in an electrode.
  • the measuring unit 37 is, for example, a voltmeter.
  • the concentration of carbon dioxide (CO 2 ) gas can be measured by measuring the potential difference between both ends of the carbon dioxide (CO 2 ) gas sensor 35.
  • the microwave generation unit 40 may generate microwaves based on the concentration of carbon dioxide (CO 2 ) measured by the concentration measurement unit 66.
  • carbon dioxide (CO 2 ) gas is generated.
  • the concentration of carbon dioxide (CO 2 ) gas gradually decreases with the combustion decomposition of the charged particles 28 (time t3 to t4 in FIG. 8). Therefore, when the carbon dioxide (CO 2 ) concentration decreases with the passage of time and is no longer detected, the microwave generation unit 40 may start generating microwaves. Further, when the carbon dioxide (CO 2 ) concentration increases with time and becomes constant at a predetermined concentration, the microwave generation unit 40 may stop the generation of microwaves.
  • the electrostatic precipitator 20 may include a plurality of concentration measuring units 66.
  • the electrostatic precipitator 20 may include a plurality of concentration measuring units 66 in the YZ section of FIG. 16, or may include the concentration measuring units 66 at different positions in the X-axis direction.
  • the microwave generator 40 may generate microwaves based on the type of fuel that generates the charged particles 28.
  • the fuel is the fuel supplied to the engine 60 of FIG.
  • the exhaust gas of the engine 60 changes according to the type of fuel supplied to the engine 60. Therefore, the component and amount of the charged particles 28 collected in the dust collecting part 22 may change depending on the type of the fuel. Therefore, the charged particles 28 can be efficiently burned and decomposed by controlling the time interval for generating the microwave and at least one of the frequency and the polarization direction of the microwave depending on the type of the fuel. it can.
  • FIG. 18 is a diagram showing another example of the YZ cross section at the position X1 in the X axis direction in FIG.
  • the dust collecting portion 22 of this example further includes a catalyst 72.
  • the catalyst 72 promotes combustion of the charged particles 28 by microwaves.
  • the catalyst 72 is, for example, zinc oxide (ZnO), cobalt oxide (CoO), tricobalt tetraoxide (CO 3 O 4 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), or lead zirconate titanate (PZT). ) Etc.
  • the catalyst 72 may be applied to the inner wall 73 of the dust collecting part 22.
  • the catalyst 72 is applied to the wall surface on the outer side (the space 41 side) of the partition wall 32 (the second electrode) and the inner wall surface (the space 41 side) of the outer wall 39 in the YZ cross section.
  • the catalyst 72 may be provided in a part of the dust collecting part 22.
  • the catalyst 72 may be applied to a part of the partition wall 32 (second electrode).
  • the catalyst 72 When the catalyst 72 is applied to the entire surface of the partition wall 32 in the charged particle accumulating portion 36, the effect of promoting the combustion of the charged particles 28 is enhanced, but the cost associated with the increase in the usage amount of the catalyst 72 is increased. Further, when the catalyst 72 is applied to the entire surface of the partition wall 32, maintenance of the catalyst 72 is more troublesome than when it is applied to a part thereof. Therefore, it is preferable that the catalyst 72 is applied to a part of the partition wall 32 in the charged particle accumulating portion 36.
  • the catalyst 72 may be applied to a position on the partition wall 32 where the charged particles 28 are less likely to be decomposed by combustion.
  • the catalyst 72 may be applied to a part of the partition wall 32 (second electrode) in the YZ cross section of FIG. Further, the catalyst 72 may be applied to a part of the partition wall 32 (second electrode) in the X-axis direction.
  • FIG. 19 is a diagram showing an XY cross section that passes through the outer wall 39, the opening 48, the space 41, the opening 38, the first electrode 30, and the partition wall 32 (second electrode) in the dust collecting portion 22 of FIGS. 11 and 12.
  • FIG. 19 is a cross-sectional view of an XY cross section that passes through the diameters of the openings 42 and 46 in the Y axis direction, as viewed from the + Z axis direction to the ⁇ Z axis direction.
  • the microwave propagating in the space 41 is schematically shown.
  • the dust collecting unit 22 may have a soot accumulation unit 74 that accumulates soot generated by combustion of the charged particles 28 by microwaves.
  • the soot accumulation unit 74 accumulates soot generated by incomplete combustion of fuel in the engine 60 (see FIG. 1).
  • the soot includes charged particles 28.
  • the soot accumulating portion 74 is a projection that is provided on at least one surface of the partition wall 32 (second electrode) and the outer wall 39 and projects into the space 41.
  • the soot accumulation unit 74 may be formed of the same material as the partition wall 32 (second electrode) and the outer wall 39.
  • the soot accumulation unit 74 may be provided in an annular shape along the surface of the partition wall 32 (second electrode) on the YZ plane.
  • the soot accumulation units 74 may be arranged periodically along the traveling direction of the microwave (X-axis direction in this example). The period in which the soot accumulation unit 74 is arranged may be equal to the period of the standing wave of the microwave. In this example, the soot accumulation unit 74 is arranged in each of the partition wall 32 (second electrode) and the outer wall 39 so as to have the same period as the microwave. By making the period in which the soot accumulation unit 74 is arranged equal to the period of the microwave, soot can be accumulated at the position where the electric field component of the microwave shows the maximum value. Therefore, the charged particles 28 can be efficiently burned.
  • the soot accumulating portion 74 may be provided in a circular shape over the entire inner wall (the inner wall facing the space 41) of the partition wall 32 (second electrode) in the YZ plane.
  • Polarization control section 60 ... ..Engine, 61 ... Measuring unit, 62 ... Elapsed time measuring unit, 64 ... Particle amount measuring unit, 66 ... Concentration measuring unit, 70 ⁇ Scrubber, 72 ... catalyst 73 ... inner wall, 74 ... soot accumulation unit, 75 ... pumps, 80 ... waste water treatment apparatus, 90 ... sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)

Abstract

帯電粒子を捕集する集塵部と、集塵部に導入するマイクロ波を発生し、集塵部に捕集された帯電粒子をマイクロ波により燃焼させるマイクロ波発生部と、を備える電気集塵装置を提供する。

Description

電気集塵装置
 本発明は、電気集塵装置に関する。
 従来、ディーゼルエンジン等からの排ガスを処理する電気集塵装置が知られている(例えば、特許文献1、2、3、4および5参照)。
 特許文献1 特開2013-188708号公報
 特許文献2 特開2012-170869号公報
 特許文献3 特開2011-245429号公報
 特許文献4 特開2011-252387号公報
 特許文献5 特開2016-53341号公報
解決しようとする課題
 電気集塵装置においては、エネルギーを効率化することが好ましい。また、DPF(Diesel Particular Filter)を船舶に用いることが研究されているが、DPFの船舶用途は実用化されていない。また、DPFは大きく、且つ重いので、船舶用途に適していない。
一般的開示
 上記課題を解決するために、本発明の第1の態様においては、電気集塵装置を提供する。電気集塵装置は、帯電粒子を捕集する集塵部と、集塵部に導入するマイクロ波を発生し、集塵部に捕集された帯電粒子をマイクロ波により燃焼させるマイクロ波発生部と、を備える。
 マイクロ波発生部は、マイクロ波の周波数を変更することで、異なる位置の帯電粒子を燃焼させる周波数制御部を有してよい。
 マイクロ波発生部は、マイクロ波の偏波方向を制御する偏波制御部を有してよい。
 集塵部は、第1電極および第2電極を有してよい。集塵部は、第1電極と第2電極との電位差により発生する電界により、帯電粒子を捕集してよい。集塵部において、第1電極と第2電極との電位差により発生する電界の位置と、マイクロ波により印加される電界の位置とは、異なっていてよい。
 マイクロ波発生部は、断続的にマイクロ波を発生してよい。マイクロ波発生部は、マイクロ波を予め定められた時間間隔で発生してよい。
 マイクロ波発生部は、集塵部に捕集された帯電粒子が燃焼分解している状態で発生させるマイクロ波のエネルギーを、集塵部に捕集された帯電粒子が燃焼していない状態で発生させるマイクロ波のエネルギーよりも小さくしてよい。マイクロ波発生部は、マイクロ波を発生する時間間隔またはマイクロ波の照射時間を変更可能であってよい。マイクロ波発生部は、集塵部に捕集された帯電粒子の燃焼が継続している状態で発生させるマイクロ波のパルス幅を、集塵部の捕集された帯電粒子の燃焼が継続していない状態で発生させるマイクロ波のパルス幅よりも小さくしてよい。
 マイクロ波発生部は、マイクロ波の出力を変更可能であってよい。マイクロ波発生部は、集塵部に捕集された帯電粒子が燃焼分解している状態で発生させるマイクロ波のパルス振幅を、集塵部の捕集された帯電粒子が燃焼分解していない状態で発生させるマイクロ波のパルス振幅よりも小さくしてよい。
 マイクロ波発生部は、集塵部に捕集された帯電粒子の捕集状態に基づいて、マイクロ波を発生してよい。
 電気集塵装置は、マイクロ波の発生を停止してからの経過時間を計測する経過時間計測部をさらに備えてよい。マイクロ波発生部は、経過時間計測部により計測された経過時間に基づいて、マイクロ波を発生してよい。
 電気集塵装置は、集塵部に捕集された前記帯電粒子の量を計測する粒子量計測部をさらに備えてよい。マイクロ波発生部は、粒子量計測部により計測された帯電粒子の量に基づいて、マイクロ波を発生してよい。電気集塵装置は、粒子量計測部を複数備えてもよい。
 前記帯電粒子は、ガス源が排出する排ガスに含まれる粒子を帯電させて生成されてよい。集塵部は、帯電粒子を捕集してよい。マイクロ波発生部は、ガス源の燃料の種類に基づいて、マイクロ波を発生してよい。マイクロ波発生部は、ガス源の燃料の種類に基づいて、マイクロ波を発生する時間間隔、並びにマイクロ波の周波数および偏波方向の少なくとも一つを制御してよい。
 集塵部は、集塵部の温度を検出する温度センサを有してよい。マイクロ波発生部は、温度センサにより検出された温度に基づいて、マイクロ波を発生してよい。
 集塵部は、それぞれ異なる位置に配置された複数の温度センサを有してよい。マイクロ波発生部は、複数の温度センサにより検出された温度に基づいて、マイクロ波を発生してよい。
 電気集塵装置は、集塵部における二酸化炭素、酸素および一酸化炭素の少なくとも一つの濃度を計測する濃度計測部をさらに備えてよい。マイクロ波発生部は、濃度計測部により計測された濃度に基づいて、マイクロ波を発生してよい。電気集塵装置は、濃度計測部を複数備えてもよい。
 集塵部は、帯電粒子のマイクロ波による燃焼を促進する触媒をさらに有してよい。触媒は、集塵部の一部に設けられていてよい。
 触媒は、集塵部の内壁に塗布されていてよい。
 集塵部は、帯電粒子のマイクロ波による燃焼により生じた煤を集積する煤集積部をさらに有してよい。煤集積部は、マイクロ波の進行方向に沿って周期的に配置されていてよい。煤集積部が配置される周期は、マイクロ波の周期と等しくてよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本発明の一つの実施形態に係る電気集塵装置20を組み込んだ排ガス処理システム10の一例を示す図である。 本発明の一つの実施形態に係る電気集塵装置20の構成を示すブロック図である。 集塵部22の一例を示す概念図である。 マイクロ波の照射パターンの一例を示す図である。 マイクロ波の照射パターンの他の一例を示す図である。 図3の位置P1~位置P5における吸収電力を示す図である。 マイクロ波を断続照射および連続照射した場合における、帯電粒子28の燃焼率の注入エネルギー依存性を示す図である。 マイクロ波による帯電粒子28の燃焼分解に伴って発生する酸素(O)、二酸化炭素(CO)および一酸化炭素(CO)の濃度の時間依存性を示す図である。 マイクロ波の照射パターンの他の一例である。 マイクロ波の照射パターンの他の一例である。 本発明の一つの実施形態に係る電気集塵装置20の一例を示す図である。 隔壁32(第2電極)の構成の一例を示す図である。 図12におけるX軸方向の位置X1におけるYZ断面の一例を示す図である。 図12におけるX軸方向の位置X2におけるYZ断面の一例を示す図である。 本発明の一つの実施形態に係る電気集塵装置20の他の一例を示す図である。 図12におけるX軸方向の位置X2におけるYZ断面の他の一例を示す図である。 図12におけるX軸方向の位置X2におけるYZ断面の他の一例を示す図である。 図12におけるX軸方向の位置X1におけるYZ断面の他の一例を示す図である。 図11および図12の集塵部22における、外壁39、開口48、空間41、開口38、第1電極30および隔壁32(第2電極)を通るXY断面を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本発明の一つの実施形態に係る電気集塵装置20を組み込んだ排ガス処理システム10の一例を示す図である。排ガス処理システム10は、例えば船舶等のエンジン60が排出する排ガスを処理する。
 排ガス処理システム10は、電気集塵装置(ESP:Electrostatic Precipitator)20、エコノマイザ(Economizer)50、エンジン60、スクラバ70、排水処理装置80およびセンサ90を有する。電気集塵装置20は、マイクロ波発生部40を備える。
 エンジン60は、燃料の燃焼による排ガスを排出する。当該排ガスには、窒素酸化物(NOx)、硫黄酸化物(SOx)および粒子状物質(PM:Particle Matter)等の物質が含まれる。粒子状物質(PM)はブラックカーボンとも称され、化石燃料の不完全燃焼により発生する。粒子状物質(PM)は、炭素を主成分とする微粒子である。
 エンジン60から排出された排ガスは、電気集塵装置20に供給される。電気集塵装置20は、当該排ガスに含まれる粒子状物質(PM)を除去する。
 エコノマイザ50は、粒子状物質(PM)が除去された排ガスの熱を熱交換して、温水と蒸気を発生する。当該温水および当該蒸気は、船内において使用される温水および暖房に、それぞれ使用されてよい。エコノマイザ50を通過した排ガスは、スクラバ70に供給される。
 ポンプ75は、例えば海水を汲み上げてスクラバ70に供給する。スクラバ70は、ポンプ75により供給された海水を吸収液として、排ガス中の硫黄酸化物等を当該吸収液の液滴に捕集して分離する。硫黄酸化物等が分離および除去された排ガスは、センサ90に供給される。
 センサ90は、排ガスの所定の特性を測定する。当該特性は、例えば排ガスに含まれる硫黄酸化物等の濃度である。排ガス処理システム10は、センサ90の測定結果に基づいて、スクラバ70における海水の噴霧量等を制御してよい。
 スクラバ70の吸収液は、排水処理装置80に供給される。排水処理装置80は、吸収液に含まれる硫黄酸化物等を除去した後に、当該吸収液を排ガス処理システム10の外部(例えば海洋)へ排出する。
 図2は、本発明の一つの実施形態に係る電気集塵装置20の構成を示すブロック図である。電気集塵装置20は、集塵部22、帯電部24およびマイクロ波発生部40を備える。帯電部24には、エンジン60から排出された排ガスが供給される。当該排ガスには、粒子状物質(PM)が含まれる。帯電部24は、例えばマイナスコロナ放電によりマイナスイオンを発生し、粒子状物質(PM)を帯電させて帯電粒子を生成する。当該帯電粒子は、集塵部22に送られる。
 集塵部22は、帯電粒子を捕集する。集塵部22は、例えば排ガスが通過する経路に接地電位等を印加した部材を配置することで、帯電粒子をクーロン力によって捕集する。
 マイクロ波発生部40は、集塵部22に導入するマイクロ波を発生する。マイクロ波とは、300MHzから300GHz程度の周波数を有する電磁波である。
 本例の電気集塵装置20は、集塵部22に捕集された帯電粒子を、マイクロ波発生部40が発生したマイクロ波により燃焼させる。一般に、マイクロ波による被加熱物の加熱率Qは、以下の式により表される。
 Q=(1/2)σ|E|+(1/2)ωε''|E|+(1/2)ωμ''|B|
 第1項である(1/2)σ|E|は、電界によるジュール加熱による加熱率を示す。ここで、σは被加熱物に含まれる微粒子の導電率である。また、Eはマイクロ波による電界である。被加熱物への電界の印加は、被加熱物中において電荷移動をもたらす。この電荷移動、即ち電流は、ジュール損失をもたらす。第1項は、このジュール損失による発熱を表す。
 第2項である(1/2)ωε''|E|は、電界による誘電加熱による加熱率を示す。ここで、ωはマイクロ波の角周波数、ε''は被加熱物の誘電率の虚数部である。被加熱物へ電界が印加されると、電界の変化に対して、被加熱物に含まれる電気双極子が時間遅れで追従する。この電気双極子の時間遅れの追従は、損失をもたらす。第2項は、この損失による発熱を表す。
 第3項である(1/2)ωμ''|B|は、渦電流によるジュール加熱による加熱率を示す。ここで、μ''は被加熱物の透磁率の虚数部である。被加熱物へ磁界が印加されると、磁界の変化を妨げる向きに渦電流が発生する。この渦電流は、ジュール損失をもたらす。第3項は、このジュール損失による発熱を表す。
 本例の電気集塵装置20は、集塵部22に捕集された帯電粒子を、マイクロ波発生部40が発生したマイクロ波により燃焼させる。集塵部22にマイクロ波を照射するためには、電気集塵装置20の内部にマイクロ波照射用のアンテナを配置するだけでよい。このため、本例の電気集塵装置20は、槌打、空気洗浄、水洗浄等の方法と比較して、粒子状物質(PM)をシンプルな構成、且つ、省スペースで除去できる。
 図3は、集塵部22の一例を示す概念図である。本例の集塵部22は、導波管形状を有している。本例において、マイクロ波の進行方向をX軸とし、マイクロ波の振幅方向をY軸とする。また、X軸およびY軸に共に垂直な向きをZ軸とする。
 マイクロ波発生部40により発生されたマイクロ波は、集塵部22のX軸方向における一端から導入される。集塵部22の内壁は、マイクロ波を反射する材料で形成されている。またX軸方向において、集塵部22の他端にはマイクロ波を反射する反射板26が設けられている。集塵部の一端から導入されたマイクロ波は、+X軸方向に進み、反射板26により反射して-X軸方向に進む。集塵部22において、+X軸方向に進むマイクロ波と-X軸方向に進むマイクロ波は、干渉する。この結果、集塵部22において進行波または定在波が形成される。
 図3において、マイクロ波の電界成分および磁界成分を、それぞれ破線部および一点鎖線部にて示す。マイクロ波の電界成分と磁界成分は、位相が180度異なる。
 X軸方向において、反射板26が配置される位置を位置P0とする。X軸方向において、定在波の電界成分が最大を示し、磁界成分が最小を示す位置を、位置P1および位置P5とする。X軸方向において、位置P5は位置P1よりも、位置P0から離れている。X軸方向において、定在波の電界成分が最小を示し、磁界成分が最大を示す位置を、位置P3とする。X軸方向において、位置P1と位置P3との中央、および位置P3と位置P5との中央を、それぞれ位置P2および位置P4とする。
 集塵部22の底面27には、帯電粒子28が配置されている。本例において、帯電粒子28は、位置P1~位置P5に、それぞれ配置されている。
 図4は、マイクロ波の照射パターンの一例を示す図である。図4は、マイクロ波の断続照射パターンの一例である。本例において断続照射とは、所定の電力のマイクロ波を所定時間連続して(図4におけるT1の期間)照射した後、所定時間照射を停止する(図4におけるT2の期間)ことを繰り返すことを指す。T1とT2は異なっていてよく、等しくてもよい。T1はT2よりも小さくてよく、大きくてもよい。T2は、T1の1.0倍以上5.0倍以下であってよい。
 図5は、マイクロ波の照射パターンの他の一例を示す図である。図5は、マイクロ波の連続照射パターンの一例である。本例において連続照射とは、所定の電力のマイクロ波を、所定の期間停止することなく照射し続けることを指す。
 図6は、図3の位置P1~位置P5における吸収電力を示す図である。図6より、吸収電力は、マイクロ波の磁界成分が最大値を示す位置P3よりも、電界成分が最大値を示す位置P1および位置P5において、大きな値を示す。これは、マイクロ波の電界成分が最大値を示す位置P1および位置P5において、帯電粒子28が多く燃焼していることを示している。このため、帯電粒子28をマイクロ波の電界成分が最大値を示す位置に配置することにより、帯電粒子28を効率的に燃焼し得る。
 図7は、マイクロ波を断続照射および連続照射した場合における、帯電粒子28の燃焼率の注入エネルギー依存性を示す図である。図7より、マイクロ波を連続照射した場合、注入エネルギーの増加に伴い、帯電粒子28の燃焼率は、注入エネルギーE1までは増加する。しかしながら、帯電粒子28の燃焼率は、注入エネルギーE1を超えると注入エネルギーの増加に伴い殆ど増加しない。これに対し、マイクロ波を断続照射した場合、帯電粒子28の燃焼率は注入エネルギーの増加に伴い増加する。即ち、マイクロ波を帯電粒子28に連続照射するよりも断続照射する方が、帯電粒子28の燃焼分解に要する消費エネルギーを削減できる。
 図8は、マイクロ波による帯電粒子28の燃焼分解に伴って発生する酸素(O)、二酸化炭素(CO)および一酸化炭素(CO)の濃度の時間依存性を示す図である。本例においては、時間ゼロにおいてマイクロ波をONとし、このマイクロ波ONの状態をt3まで維持している。時間t3においてマイクロ波をOFFとし、このマイクロ波OFFの状態をt4まで維持している。
 時間ゼロから時間t1まで経過すると、一酸化炭素(CO)濃度が急激に立ち上がると共に、酸素(O)濃度が低下し始め、二酸化炭素(CO)濃度が増加し始めている。これは、帯電粒子28が酸素(O)と化合して帯電粒子28の燃焼分解が始まり、一酸化炭素(CO)および二酸化炭素(CO)が発生し始めたことを示している。また、帯電粒子28が不完全燃焼しており、二酸化炭素(CO)よりも一酸化炭素(CO)が多く発生していることを示している。
 時間t2を経過すると、一酸化炭素(CO)濃度が減少傾向を示すと共に、酸素(O)濃度および二酸化炭素(CO)濃度が概ね一定値で推移し始めている。これは、帯電粒子28の燃焼分解が所定の定常状態で進んでいることを示している。
 時間t3を経過すると、一酸化炭素(CO)濃度および二酸化炭素(CO)濃度が減少し始めると共に、酸素(O)濃度が増加し始める。一酸化炭素(CO)濃度は、図8において一点鎖線の矢印で示したように、時間t3を過ぎても緩やかに減少する。これは、マイクロ波をOFFとした後においても、帯電粒子28の燃焼分解が続いていることを示している。即ち、帯電粒子28は連鎖的に燃焼する。以上より、マイクロ波を帯電粒子28に連続的に照射し続けなくても、帯電粒子28を燃焼分解できることが分かる。
 時間t3から時間t4まで経過すると、一酸化炭素(CO)濃度および二酸化炭素(CO)濃度がほぼゼロになると共に、酸素(O)濃度が時間ゼロにおける濃度まで回復する。これは、帯電粒子28の燃焼分解が終わったことを示している。
 時間t4において再びマイクロ波をONにすると、帯電粒子28の不完全燃焼が再び繰り返される。これは、図7における断続照射の場合に相当する。以上より、帯電粒子28の燃焼分解を所定の定常状態(図8における時間t2から時間t3まで)とした後、マイクロ波をOFFにして帯電粒子28の燃焼分解を進行させ、燃焼分解が終わったタイミング(図8における時間t4)で再びマイクロ波をONにすることにより、エネルギー消費量を低減して帯電粒子28を燃焼分解できる。
 また、マイクロ波をOFFにした後、一酸化炭素(CO)濃度および二酸化炭素(CO)濃度がゼロになる前に、マイクロ波をONにしてもよい。つまり、帯電粒子28の燃焼分解が終わる前(図8における時間t3と時間t4との間)に、マイクロ波をONにしてもよい。帯電粒子28の燃焼分解が終了した後に、マイクロ波をONにすると、帯電粒子28の燃焼効率が低下する場合がある。帯電粒子28の燃焼分解が継続している状態でマイクロ波をONにすることで、エネルギー消費量を低減して、帯電粒子28を継続して燃焼させることができる。
 マイクロ波発生部40は、一酸化炭素(CO)濃度および二酸化炭素(CO)濃度の少なくとも一方に基づいて、マイクロ波をONおよびOFFを制御してよい。例えばマイクロ波発生部40は、マイクロ波をOFFにした後に、一酸化炭素(CO)濃度がゼロより大きい所定の閾値を下回った場合に、マイクロ波をONにしてよい。
 また、マイクロ波発生部40は、帯電粒子28の燃焼分解が継続している状態で発生させるマイクロ波のエネルギーを、帯電粒子28が燃焼していない状態で発生させるマイクロ波のエネルギーよりも小さくしてよい。帯電粒子28の燃焼状態は、一酸化炭素(CO)濃度および二酸化炭素(CO)濃度の少なくとも一方に基づいて判定してよい。
 図9は、マイクロ波の照射パターンの他の一例を示す図である。マイクロ波発生部40は、マイクロ波の出力を変更可能であってよい。即ち、マイクロ波のエネルギーを小さくする場合、本例のように、マイクロ波発生部40は、帯電粒子28の燃焼が継続していない状態で発生させるマイクロ波のパルス振幅をPw1とし、帯電粒子28の燃焼が継続している状態で発生させるマイクロ波のパルス振幅を、Pw1よりも小さいPw2としてよい。これにより、エネルギー消費量を更に低減できる。
 図10は、マイクロ波の照射パターンの他の一例を示す図である。マイクロ波発生部40は、マイクロ波を発生する時間間隔またはマイクロ波の照射時間を変更可能であってよい。即ち、マイクロ波のエネルギーを小さくする場合、本例のように、マイクロ波発生部40は、帯電粒子28の燃焼が継続していない状態で発生させるマイクロ波のパルス幅をT1とし、帯電粒子28の燃焼が継続している状態で発生させるマイクロ波のパルス幅を、T1よりも小さいT1'としてよい。これにより、エネルギー消費量を更に削減できる。また、マイクロ波発生部40は、マイクロ波のパルスの振幅およびパルス幅の一方を小さくしてよく、両方を小さくしてもよい。
 図11は、本発明の一つの実施形態に係る電気集塵装置20の一例を示す図である。電気集塵装置20は、集塵部22を備える。本例の集塵部22の形状は円筒型であるが、箱型等、他の形状であってもよい。
 本例の集塵部22は、排ガスが供給される開口42、排ガスが流れるガス流路44、および、排ガスが排出される開口46を有する。帯電粒子28は、ガス源が排出する排ガスに含まれる粒子を帯電させて生成されてよい。当該ガス源は、例えばエンジン60(図1参照)である。本例においては、帯電部24が、当該ガス源が排出する排ガスに含まれる粒子を帯電させて帯電粒子28を生成する。本例の集塵部22は、当該帯電粒子28を捕集する。開口42に供給される排ガスは、帯電部24により帯電させられた帯電粒子28を含む。ガス流路44は、ガスが流れる空間を囲む隔壁32を有する。隔壁32は筒形状を有してよい。帯電粒子28は、ガス流路44において排ガスから除去される。帯電粒子28が除去された排ガスは、開口46から排出される。
 集塵部22は、帯電粒子28を集積する帯電粒子集積部36を有する。本例の帯電粒子集積部36は、YZ面内において隔壁32、空間41および外壁39を有する。空間41は、隔壁32の外側に配置される。外壁39は、YZ面内において空間41の外側に配置される。外壁39は筒形状を有してよい。また、隔壁32には、帯電粒子28を通過させるための開口(後述)が設けられる。隔壁32および外壁39は、金属材料で形成されてよい。
 外壁39には、帯電粒子28を電気的に吸引できる電位が印加される。外壁39に印加される電位は、接地電位であってよい。ガス流路44を通過する排ガスに含まれる帯電粒子28は、隔壁32の開口(後述)を通って、帯電粒子集積部36の外壁39等に付着する。空間41にマイクロ波を導入することで、外壁39等に付着した帯電粒子28を燃焼させることができる。
 本例の外壁39は、マイクロ波発生部40により発生されたマイクロ波を導入するための開口48を有する。外壁39は、複数の開口48を有してよい。本例において、集塵部22における排ガスの進行方向をX軸とする。X軸と垂直な面における2つの直交軸をY軸およびZ軸とする。開口48は、X軸方向に沿って複数配置されていてよい。また開口48は、外壁39のYZ面における外周に沿って複数配置されていてもよい。図11の例では、2つの開口48が、Y軸方向においてガス流路44を挟んで配置されている。
 集塵部22は、帯電粒子集積部36のX軸方向における両端に、マイクロ波を反射させるための反射部34を有する。X軸方向における一端および他端に設けられる反射部34は、YZ面内において空間41を囲うように設けられてよい。開口48から導入されたマイクロ波は、帯電粒子集積部36を伝搬して反射部34により反射し、帯電粒子集積部36において進行波または定在波を形成する。
 集塵部22は、第1電極30および第2電極を有する。第1電極30は、集塵部22の中心軸に沿って配置されてよい。第1電極30は、X軸に長手を有する棒形状を有してよい。第1電極30は、開口42から開口46まで、X軸方向に沿って連続的に設けられてよい。第2電極は、YZ面内において第1電極30の周囲に配置されてよい。本例では、隔壁32が第2電極として機能する。隔壁32は、第1電極30を収容する筒形状を有してよい。第1電極30は、YZ面において隔壁32が囲む領域の中心に配置されていてよい。YZ面内において、ガス流路44は第1電極30と隔壁32とに挟まれてよい。
 本例において、開口48は6つ設けられている。本例においては、外壁39のYZ断面における直径方向の一方側および他方側に、それぞれ3つの開口48がX軸に沿って配列されている。マイクロ波発生部40により発生されたマイクロ波は、6つの開口48に導入されてよい。開口48は、外壁39を貫通して設けられている。
 マイクロ波発生部40は、マイクロ波の周波数を制御する周波数制御部52、および、マイクロ波の偏波方向を制御する偏波制御部54の少なくとも一方を有してよい。本例のマイクロ波発生部40は、周波数制御部52および偏波制御部54の両方を有している。周波数制御部52および偏波制御部54については後述する。
 図12は、隔壁32の構成の一例を示す図である。図12において、隔壁32をハッチングにて示している。また、図12においては外壁39を破線で示している。また、図12においては、第1電極30、帯電部24およびマイクロ波発生部40を省略している。
 隔壁32は、帯電粒子28が通る開口38を有する。開口38は、複数設けられてよい。開口38は、X軸方向およびYZ面内において周期的に設けられてよい。
 X軸方向において、開口38の位置と開口48の位置は、異なっていてよい。即ち、集塵部22を+Y軸方向から-Y軸方向に見た場合に、開口48と隔壁32とは重なってよく、開口48と開口38は重ならなくてよい。集塵部22を+Y軸方向から-Y軸方向に見た場合に、開口48の一部は開口38の一部と重なっていてもよい。
 図13は、図12におけるX軸方向の位置X1におけるYZ断面の一例を示す図である。当該断面は、開口48、第1電極30、ガス流路44、隔壁32、開口38、空間41および外壁39を通るYZ面である。当該断面は、図12に示す集塵部22を+X軸方向から-X軸方向に見た場合の断面である。
 当該断面の中心位置には第1電極30が設けられる。第1電極30の周囲には、ガス流路44が設けられる。ガス流路44は、隔壁32で囲まれている。隔壁32には、開口38が設けられている。隔壁32の外側には、空間41が設けられる。空間41は、外壁39で囲まれている。外壁39には、マイクロ波を導入するための開口48が設けられる。図13の断面においては、隔壁32に4つの開口38が設けられ、外壁39に2つの開口48が設けられている。
 第1電極30は、接地電位に対して直流の所定の高電位に設定されてよい。所定の高電位とは、例えば10kVである。隔壁32(第2電極)は、接地されてよい。第1電極30と隔壁32との間には、直流の所定の高電圧(例えば10kV)が印加される。
 第1電極30と隔壁32(第2電極)との間に直流の所定の高電圧が印加されると、第1電極30が放電する。第1電極30が放電すると、第1電極30と隔壁32との間を流れるガスに含まれる粒子が帯電する。帯電粒子は、隔壁32に引き付けられ、空間41内に移動する。
 第1電極30と隔壁32(第2電極)との間の電位差により発生する電界の位置と、開口48から導入されたマイクロ波により印加される電界の位置は、異なっていてよい。即ち、帯電粒子28を集積するための電界が印加される領域と、集積された帯電粒子28を燃焼させるためのマイクロ波の電界が印加される領域は、異なっていてよい。本例においては、帯電粒子28を集積するための電界は、第1電極30と隔壁32(第2電極)とにより、図13の半径方向において中心から隔壁32の位置まで印加される。これに対し、帯電粒子28を燃焼させるためのマイクロ波の電界は、図13の半径方向において、隔壁32と外壁39との間に印加される。マイクロ波は、空間41をX軸方向およびYZ面内における円周方向に伝搬する。
 図14は、図12におけるX軸方向の位置X2におけるYZ断面の一例を示す図である。当該断面は、第1電極30、ガス流路44、隔壁32、開口38、空間41および外壁39を通るYZ面である。当該断面は、図12に示す集塵部22を+X軸方向から-X軸方向に見た場合の断面である。
 図14の断面において、隔壁32には4つの開口38が設けられている。2つの開口38は、Y軸方向に対向する位置に設けられている。他の2つの開口38は、Z軸方向に対向する位置に設けられている。
 隔壁32に引き付けられた帯電粒子28は、開口38を通り、空間41に到達する。帯電粒子28は、空間41において隔壁32の内壁と、外壁39の内壁とに集積される。空間41に集積された帯電粒子28は、開口48から導入されたマイクロ波により燃焼分解する。
 図14においても、図13と同様に第1電極30と隔壁32(第2電極)との間の電位差により発生する電界の位置と、開口48から導入されたマイクロ波により印加される電界の位置は、異なっていてよい。図14においても、マイクロ波は空間41をX軸方向およびYZ面内における円周方向に伝搬する。
 マイクロ波発生部40は、マイクロ波を断続的に発生することが好ましい。即ち、マイクロ波発生部40は、マイクロ波を予め定められた時間間隔で発生することが好ましい。図7の説明において述べたように、マイクロ波を帯電粒子28に連続照射するよりも断続照射する方が、帯電粒子28を効率的に燃焼させることができる。
 空間41を伝搬するマイクロ波は、当該マイクロ波の電界成分が最大値を示す位置において、帯電粒子28を最も効率的に燃焼させ得る(図6参照)。帯電粒子28は、空間41において隔壁32の内壁および外壁39の内壁とに、X軸方向およびYZ面内において均等に集積されやすい。マイクロ波の電界成分が最大値を示すX軸方向の位置は、当該マイクロ波の周波数を変更することにより、変更できる。本例のマイクロ波発生部40は周波数制御部52を有するので、空間41を伝搬するマイクロ波の周波数を変更することで、X軸方向において異なる位置の帯電粒子28を燃焼させることができる。このため、本例の電気集塵装置20は、空間41に集積した帯電粒子28を、X軸方向において集積した位置にかかわらず、燃焼分解させることができる。
 また、本例のマイクロ波発生部40は、偏波制御部54を有する。金属表面におけるマイクロ波の反射および透過は、マイクロ波の偏波方向に依存する。このため、偏波制御部54により帯電粒子集積部36を伝搬するマイクロ波の偏波方向を制御し、開口48および開口38におけるマイクロ波の透過率を低減することで、空間41に開口48および開口38が存在しても、当該マイクロ波を進行波または定在波にできる。
 空間41において、マイクロ波の電界成分が最大値を示す周方向(YZ面内)の位置は、当該マイクロ波の偏波方向を変更することにより、変更できる。本例のマイクロ波発生部40は偏波制御部54を有するので、空間41を伝搬するマイクロ波の偏波方向を変更することで、YZ面内において異なる位置の帯電粒子28を燃焼させることができる。このため、本例の電気集塵装置20は、空間41に集積した帯電粒子28を、YZ面内において集積した位置にかかわらず、燃焼分解させることができる。
 図15は、本発明の一つの実施形態に係る電気集塵装置20の他の一例を示す図である。本例の電気集塵装置20において、集塵部22は温度センサ21を有する。温度センサ21は、帯電粒子集積部36の温度を測定してよい。集塵部22は、それぞれ異なる位置に配置された複数の温度センサ21を有してよい。本例においては、集塵部22は2つの温度センサ21を有する。温度センサ21-1は、X軸方向において開口46側に配置される。温度センサ21-2は、X軸方向において開口42側に配置される。温度センサ21は、計測部61に接続される。
 本例の温度センサ21は、熱電対である。温度センサ21は、接点25および一対の金属線23を有する。それぞれの金属線23は、接点25と計測部61とを接続する。計測部61は電圧計であってよい。なお、温度センサ21は、PNダイオード、サーミスタ等であってもよい。接点25は、帯電粒子集積部36に配置されてよい。本例においては、集塵部22をX軸方向から見た場合に、温度センサ21-1の接点25と温度センサ21-2の接点25は、Y軸方向において対向する位置に配置されている。
 空間41において、マイクロ波の照射により帯電粒子28が燃焼分解すると、帯電粒子集積部36の温度が上昇し、燃焼分解が終わると帯電粒子集積部36の温度が下降する。本例の電気集塵装置20は、帯電粒子集積部36に温度センサ21を有するので、帯電粒子28の燃焼分解に伴う温度変化を計測できる。
 マイクロ波発生部40は、温度センサ21により検出した温度に基づいてマイクロ波を発生してよい。温度センサ21により検出した温度が経過時間に伴い下降し、所定の低温域において温度が一定となった場合、マイクロ波発生部40はマイクロ波の発生を開始してよい。また、温度センサ21により検出した温度が経過時間に伴い上昇し、所定の高温域において温度が一定となった場合、マイクロ波発生部40はマイクロ波の発生を停止してよい。
 また、本例においては、集塵部22において2つの温度センサ21がそれぞれ異なる位置に設けられるので、電気集塵装置20は、集塵部22における2か所の温度を測定できる。このため、集塵部22が1つの温度センサ21を有する場合よりも、帯電粒子28の位置に応じたマイクロ波の発生および停止をしやすくなる。
 マイクロ波発生部40は、集塵部22に捕集された帯電粒子28の捕集状態に基づいてマイクロ波を発生してよい。本例の電気集塵装置20は、経過時間計測部62をさらに備える。経過時間計測部62は、マイクロ波の発生を停止してからの経過時間を計測する。帯電粒子28の捕集状態は、例えば当該経過時間によって判断できる。このため、マイクロ波発生部40は、当該経過時間に基づいてマイクロ波を発生してよい。
 マイクロ波の発生を停止してからの経過時間は、例えば図8における時間t3からの経過時間であってよい。マイクロ波発生部40は、例えば図8における時間t3から時間t4までの時間が経過した場合、マイクロ波の発生を開始してよい。
 図16は、図12におけるX軸方向の位置X2におけるYZ断面の他の一例を示す図である。本例の電気集塵装置20は、粒子量計測部64をさらに備える。本例の粒子量計測部64は、定電流源33を有する。粒子量計測部64は、隔壁(第2電極)32と外壁39との間の抵抗値(図16においては、抵抗31で示されている)に基づいて、帯電粒子28の量を計測する。定電流源33は、抵抗31に定電流を供給する。抵抗31の抵抗値は、隔壁32と外壁39に付着している帯電粒子28の量により変動する。
 マイクロ波発生部40は、集塵部22に捕集された帯電粒子28の捕集状態に基づいてマイクロ波を発生してよい。本例において、帯電粒子28の捕集状態とは、粒子量計測部64によって計測された、帯電粒子28の量である。帯電粒子集積部36に帯電粒子28を含む煤が集積すると、抵抗31で示される抵抗値が低下する。このため、集積した帯電粒子28の量を測定できる。
 抵抗31で示される抵抗値が経過時間に伴い下降し、所定の抵抗値で一定となった場合、マイクロ波発生部40はマイクロ波の発生を開始してよい。また、抵抗31で示される抵抗値が経過時間に伴い上昇し、所定の抵抗値で一定となった場合、マイクロ波発生部40はマイクロ波の発生を停止してよい。
 電気集塵装置20は、粒子量計測部64を複数備えてもよい。電気集塵装置20は、図16のYZ断面において粒子量計測部64を複数備えてもよいし、X軸方向における異なる位置において、それぞれ粒子量計測部64を備えてもよい。電気集塵装置20が粒子量計測部64を複数備える場合、粒子量計測部64を1つ備える場合よりも、帯電粒子28の位置に応じたマイクロ波の発生および停止をしやすくなる。
 図17は、図12におけるX軸方向の位置X2におけるYZ断面の他の一例を示す図である。本例の電気集塵装置20は、濃度計測部66をさらに備える。濃度計測部66は、二酸化炭素(CO)、酸素(O)および一酸化炭素(CO)の少なくとも一つの濃度を計測してよい。本例の濃度計測部66は、二酸化炭素(CO)ガスセンサ35および二酸化炭素(CO)ガスの濃度を計測する計測部37を有する。二酸化炭素(CO)ガスセンサ35は、帯電粒子集積部36に設けられてよい。
 二酸化炭素(CO)ガスセンサ35は、例えば二酸化炭素(CO)ガスと反応する物質を電極に有する固体電解質型二酸化炭素(CO)ガスセンサである。計測部37は、例えば電圧計である。この場合、二酸化炭素(CO)ガスセンサ35の抵抗値が二酸化炭素(CO)ガスとの反応により変化するので、二酸化炭素(CO)ガスセンサ35に電流を流し、計測部37(電圧計)で二酸化炭素(CO)ガスセンサ35の両端の電位差を測定することにより、二酸化炭素(CO)ガスの濃度を測定できる。
 マイクロ波発生部40は、濃度計測部66により計測された二酸化炭素(CO)の濃度に基づいてマイクロ波を発生してよい。マイクロ波の照射により帯電粒子28が燃焼分解すると、二酸化炭素(CO)ガスが発生する。図8に示したように、二酸化炭素(CO)ガスの濃度は、帯電粒子28の燃焼分解に伴い徐々に減少する(図8の時間t3~t4)。このため、二酸化炭素(CO)濃度が経過時間に伴い減少し、検出されなくなった場合、マイクロ波発生部40はマイクロ波の発生を開始してよい。また、二酸化炭素(CO)濃度が経過時間に伴い増加し、所定の濃度において一定となった場合、マイクロ波発生部40はマイクロ波の発生を停止してよい。
 電気集塵装置20は、濃度計測部66を複数備えてもよい。電気集塵装置20は、図16のYZ断面において濃度計測部66を複数備えてもよいし、X軸方向における異なる位置において、それぞれ濃度計測部66を備えてもよい。電気集塵装置20が濃度計測部66を複数備える場合、濃度計測部66を1つ備える場合よりも、帯電粒子28の位置に応じたマイクロ波の発生および停止をしやすくなる。
 マイクロ波発生部40は、帯電粒子28を発生する燃料の種類に基づいてマイクロ波を発生してもよい。当該燃料とは、図1のエンジン60に供給される燃料である。エンジン60の排ガスは、エンジン60に供給される燃料の種類に応じて変化する。このため、集塵部22に捕集される帯電粒子28の成分および量は、当該燃料の種類に応じて変化し得る。このため、当該燃料の種類に応じて、マイクロ波を発生する時間間隔、並びにマイクロ波の周波数および偏波方向の少なくとも一つを制御することで、帯電粒子28を効率的に燃焼分解させることができる。
 図18は、図12におけるX軸方向の位置X1におけるYZ断面の他の一例を示す図である。本例の集塵部22は、触媒72をさらに有する。触媒72は、帯電粒子28のマイクロ波による燃焼を促進する。触媒72は、例えば酸化亜鉛(ZnO)、酸化コバルト(CoO)、四酸化三コバルト(CO)、酸化アルミニウム(Al)酸化ジルコニウム(ZrO)、チタン酸ジルコン酸鉛(PZT)等である。
 触媒72は、集塵部22の内壁73に塗布されていてよい。本例においては、触媒72は、YZ断面における隔壁32(第2電極)の外側(空間41側)の壁面、および外壁39の内側(空間41側)の壁面に塗布されている。
 触媒72は、集塵部22の一部に設けられていてよい。触媒72は、隔壁32(第2電極)の一部に塗布されていてよい。帯電粒子集積部36において、触媒72が隔壁32の全面に塗布されていると、帯電粒子28の燃焼を促進する効果が高くなるが、触媒72の使用量増加に伴うコストが高くなる。また、触媒72が隔壁32の全面に塗布されていると、一部に塗布されている場合よりも触媒72のメンテナンスの手間がかかる。このため、触媒72は、帯電粒子集積部36において隔壁32の一部に塗布されていることが好ましい。触媒72は、隔壁32のうち帯電粒子28が燃焼分解しにくい位置に塗布されていてよい。
 触媒72は、図18のYZ断面における隔壁32(第2電極)の一部に塗布されていてよい。また、触媒72は、隔壁32(第2電極)のX軸方向における一部に塗布されていてもよい。
 図19は、図11および図12の集塵部22における、外壁39、開口48、空間41、開口38、第1電極30および隔壁32(第2電極)を通るXY断面を示す図である。図19は、開口42および開口46のY軸方向の直径を通るXY断面を、+Z軸方向から-Z軸方向に見た断面図である。図19においては、空間41を伝搬するマイクロ波を模式的に示している。
 集塵部22は、帯電粒子28のマイクロ波による燃焼により生じた煤を集積する煤集積部74を有してよい。煤集積部74は、エンジン60(図1参照)において燃料の不完全燃焼により発生した煤を集積する。当該煤は、帯電粒子28を含む。例えば、煤集積部74は、隔壁32(第2電極)および外壁39の少なくとも一方の表面に設けられ、空間41の内部に突出する突起である。煤集積部74は、隔壁32(第2電極)および外壁39と同一の材料で形成されてよい。煤集積部74は、YZ面において、隔壁32(第2電極)の表面に沿って環状に設けられてよい。
 煤集積部74は、マイクロ波の進行方向(本例においてはX軸方向)に沿って周期的に配置されてよい。煤集積部74が配置される周期は、マイクロ波の定在波の周期と等しくてよい。本例においては、煤集積部74は、隔壁32(第2電極)および外壁39のそれぞれにおいて、マイクロ波の周期と等しく配置されている。煤集積部74が配置される周期をマイクロ波の周期と等しくすることで、マイクロ波の電界成分が最大値を示す位置に煤を集積し得る。このため、帯電粒子28を効率的に燃焼し得る。なお、煤集積部74は、YZ面内において隔壁32(第2電極)の内壁(空間41に面した内壁)の全体にわたり、周回状に設けられてよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10・・・排ガス処理システム、20・・・電気集塵装置、21・・・温度センサ、22・・・集塵部、24・・・帯電部、25・・・接点、26・・・反射板、27・・・底面、28・・・帯電粒子、30・・・第1電極、31・・・抵抗、32・・・隔壁、33・・・定電流源、34・・・反射部、35・・・ガスセンサ、36・・・帯電粒子集積部、37・・・計測部、38・・・開口、39・・・外壁、40・・・マイクロ波発生部、41・・・空間、42・・・開口、44・・・ガス流路、46・・・開口、48・・・開口、50・・・エコノマイザ、52・・・周波数制御部、54・・・偏波制御部、60・・・エンジン、61・・・計測部、62・・・経過時間計測部、64・・・粒子量計測部、66・・・濃度計測部、70・・・スクラバ、72・・・触媒、73・・・内壁、74・・・煤集積部、75・・・ポンプ、80・・・排水処理装置、90・・・センサ

Claims (17)

  1.  帯電粒子を捕集する集塵部と、
     前記集塵部に導入するマイクロ波を発生し、前記集塵部に捕集された前記帯電粒子を前記マイクロ波により燃焼させるマイクロ波発生部と、
     を備える電気集塵装置。
  2.  前記マイクロ波発生部は、前記マイクロ波の周波数を変更することで、異なる位置の前記帯電粒子を燃焼させる周波数制御部を有する、請求項1に記載の電気集塵装置。
  3.  前記マイクロ波発生部は、前記マイクロ波の偏波方向を制御する偏波制御部を有する、請求項1または2に記載の電気集塵装置。
  4.  前記集塵部は、第1電極および第2電極を有し、
     前記集塵部は、前記第1電極と前記第2電極との電位差により発生する電界により、前記帯電粒子を捕集し、
     前記集塵部において、前記第1電極と前記第2電極との電位差により発生する電界の位置と、前記マイクロ波により印加される電界の位置とが異なる、
     請求項1から3のいずれか一項に記載の電気集塵装置。
  5.  前記マイクロ波発生部は、断続的に前記マイクロ波を発生する、請求項1から4のいずれか一項に記載の電気集塵装置。
  6.  前記マイクロ波発生部は、前記マイクロ波を発生する時間間隔または前記マイクロ波の照射時間を変更可能である、請求項5に記載の電気集塵装置。
  7.  前記マイクロ波発生部は、前記マイクロ波の出力を変更可能である、請求項5または6に記載の電気集塵装置。
  8.  前記マイクロ波発生部は、前記集塵部に捕集された前記帯電粒子の捕集状態に基づいて、前記マイクロ波を発生する、請求項5から7のいずれか一項に記載の電気集塵装置。
  9.  前記マイクロ波の発生を停止してからの経過時間を計測する経過時間計測部をさらに備え、
     前記マイクロ波発生部は、前記経過時間計測部により計測された経過時間に基づいて、前記マイクロ波を発生する、
     請求項8に記載の電気集塵装置。
  10.  前記集塵部に捕集された前記帯電粒子の量を計測する粒子量計測部をさらに備え、
     前記マイクロ波発生部は、前記粒子量計測部により計測された前記帯電粒子の量に基づいて、前記マイクロ波を発生する、
     請求項8に記載の電気集塵装置。
  11.  前記帯電粒子は、ガス源が排出する排ガスに含まれる粒子を帯電させて生成され、
     前記集塵部は、前記帯電粒子を捕集し、
     前記マイクロ波発生部は、前記ガス源の燃料の種類に基づいて前記マイクロ波を発生する、請求項5から10のいずれか一項に記載の電気集塵装置。
  12.  前記集塵部は、前記集塵部の温度を検出する温度センサを有し、
     前記マイクロ波発生部は、前記温度センサにより検出された温度に基づいて前記マイクロ波を発生する、
     請求項5に記載の電気集塵装置。
  13.  前記集塵部は、それぞれ異なる位置に配置された複数の前記温度センサを有し、
     前記マイクロ波発生部は、複数の前記温度センサにより検出された温度に基づいて、前記マイクロ波を発生する、
     請求項12に記載の電気集塵装置。
  14.  前記集塵部における二酸化炭素、酸素および一酸化炭素の少なくとも一つの濃度を計測する濃度計測部をさらに備え、
     前記マイクロ波発生部は、前記濃度計測部により計測された前記濃度に基づいて前記マイクロ波を発生する、
     請求項5に記載の電気集塵装置。
  15.  前記集塵部は、前記帯電粒子の前記マイクロ波による燃焼を促進する触媒をさらに有する、請求項1から14のいずれか一項に記載の電気集塵装置。
  16.  前記触媒は、前記集塵部の内壁に塗布されている、請求項15に記載の電気集塵装置。
  17.  前記集塵部は、前記帯電粒子の前記マイクロ波による燃焼により生じた煤を集積する煤集積部をさらに有し、
     前記煤集積部は、前記マイクロ波の進行方向に沿って周期的に配置されている、
     請求項1から16のいずれか一項に記載の電気集塵装置。
PCT/JP2019/035325 2018-10-26 2019-09-09 電気集塵装置 WO2020084934A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217010217A KR102543513B1 (ko) 2018-10-26 2019-09-09 전기 집진 장치
FIEP19875886.4T FI3848125T3 (fi) 2018-10-26 2019-09-09 Sähköinen pölynerotin
CN201980065844.5A CN113164973A (zh) 2018-10-26 2019-09-09 电气集尘装置
EP19875886.4A EP3848125B1 (en) 2018-10-26 2019-09-09 Electric dust collector
JP2020518834A JP6807072B2 (ja) 2018-10-26 2019-09-09 電気集塵装置
US17/220,950 US20210220839A1 (en) 2018-10-26 2021-04-02 Electric dust collector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018202301 2018-10-26
JP2018-202301 2018-10-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/220,950 Continuation US20210220839A1 (en) 2018-10-26 2021-04-02 Electric dust collector

Publications (1)

Publication Number Publication Date
WO2020084934A1 true WO2020084934A1 (ja) 2020-04-30

Family

ID=70330715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035325 WO2020084934A1 (ja) 2018-10-26 2019-09-09 電気集塵装置

Country Status (7)

Country Link
US (1) US20210220839A1 (ja)
EP (1) EP3848125B1 (ja)
JP (1) JP6807072B2 (ja)
KR (1) KR102543513B1 (ja)
CN (1) CN113164973A (ja)
FI (1) FI3848125T3 (ja)
WO (1) WO2020084934A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181149A1 (ja) 2021-02-25 2022-09-01 富士電機株式会社 電気集塵装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374082A (ja) * 1989-08-16 1991-03-28 Matsushita Electric Ind Co Ltd 触媒反応装置
JP2002339731A (ja) * 2001-05-18 2002-11-27 Mitsubishi Heavy Ind Ltd エンジン排ガスの処理方法およびその装置
JP2011245429A (ja) 2010-05-27 2011-12-08 Fuji Electric Co Ltd 電気集塵装置
JP2011252387A (ja) 2010-05-31 2011-12-15 Denso Corp 内燃機関の排気浄化装置
JP2012154247A (ja) * 2011-01-26 2012-08-16 Denso Corp 排気処理装置
JP2012170869A (ja) 2011-02-21 2012-09-10 Fuji Electric Co Ltd 電気集塵装置
JP2013188708A (ja) 2012-03-14 2013-09-26 Fuji Electric Co Ltd 電気集塵装置
JP2016053341A (ja) 2014-09-04 2016-04-14 株式会社東芝 排気浄化装置
JP2017223471A (ja) * 2016-06-13 2017-12-21 日本碍子株式会社 微粒子数検出器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074112A (en) * 1990-02-21 1991-12-24 Atomic Energy Of Canada Limited Microwave diesel scrubber assembly
JP2738251B2 (ja) * 1993-01-20 1998-04-08 松下電器産業株式会社 内燃機関用フィルタ再生装置
JP2004076669A (ja) * 2002-08-20 2004-03-11 Toyota Motor Corp 排気ガス浄化装置
JP2010149000A (ja) * 2008-12-24 2010-07-08 Daikin Ind Ltd 集塵装置
JP5918441B2 (ja) * 2012-05-14 2016-05-18 コリア エレクトロテクノロジー リサーチ インスティテュートKorea Electrotechnology Research Institute カットオフ値付近条件に基づく被加熱物の均一加熱のためのマイクロ波加熱装置
JP2016200063A (ja) * 2015-04-10 2016-12-01 株式会社東芝 排気浄化装置
JP6597190B2 (ja) * 2015-10-30 2019-10-30 富士通株式会社 マイクロ波照射装置及び排気浄化装置
JP6733275B2 (ja) * 2016-04-12 2020-07-29 富士通株式会社 マイクロ波加熱装置及び排気浄化装置
JP6645353B2 (ja) * 2016-05-13 2020-02-14 富士通株式会社 排気浄化装置
KR102074398B1 (ko) * 2016-06-15 2020-02-06 후지 덴키 가부시키가이샤 입자상 물질 연소장치
JP6880848B2 (ja) * 2017-03-10 2021-06-02 富士通株式会社 マイクロ波照射装置、排気浄化装置、自動車及び管理システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374082A (ja) * 1989-08-16 1991-03-28 Matsushita Electric Ind Co Ltd 触媒反応装置
JP2002339731A (ja) * 2001-05-18 2002-11-27 Mitsubishi Heavy Ind Ltd エンジン排ガスの処理方法およびその装置
JP2011245429A (ja) 2010-05-27 2011-12-08 Fuji Electric Co Ltd 電気集塵装置
JP2011252387A (ja) 2010-05-31 2011-12-15 Denso Corp 内燃機関の排気浄化装置
JP2012154247A (ja) * 2011-01-26 2012-08-16 Denso Corp 排気処理装置
JP2012170869A (ja) 2011-02-21 2012-09-10 Fuji Electric Co Ltd 電気集塵装置
JP2013188708A (ja) 2012-03-14 2013-09-26 Fuji Electric Co Ltd 電気集塵装置
JP2016053341A (ja) 2014-09-04 2016-04-14 株式会社東芝 排気浄化装置
JP2017223471A (ja) * 2016-06-13 2017-12-21 日本碍子株式会社 微粒子数検出器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3848125A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181149A1 (ja) 2021-02-25 2022-09-01 富士電機株式会社 電気集塵装置
KR20230029962A (ko) 2021-02-25 2023-03-03 후지 덴키 가부시키가이샤 전기 집진 장치
CN116056793A (zh) * 2021-02-25 2023-05-02 富士电机株式会社 电气集尘装置

Also Published As

Publication number Publication date
FI3848125T3 (fi) 2023-06-30
EP3848125A1 (en) 2021-07-14
KR102543513B1 (ko) 2023-06-13
JP6807072B2 (ja) 2021-01-06
EP3848125A4 (en) 2021-11-17
EP3848125B1 (en) 2023-05-31
JPWO2020084934A1 (ja) 2021-02-15
CN113164973A (zh) 2021-07-23
US20210220839A1 (en) 2021-07-22
KR20210049920A (ko) 2021-05-06

Similar Documents

Publication Publication Date Title
US20120103057A1 (en) Particulate matter detection sensor
US8628606B2 (en) Exhaust gas treatment device having two honeycomb bodies for generating an electric potential, method for treating exhaust gas and motor vehicle having the device
JP5163695B2 (ja) 内燃機関の排気浄化装置
JP2007107491A (ja) 容積型内燃機の燃焼促進用空気処理装置
JP2013167160A (ja) 排気ガス浄化装置と浄化方法
US8900520B2 (en) Apparatus for treating exhaust particulate matter
WO2020084934A1 (ja) 電気集塵装置
JP4156276B2 (ja) 排気浄化装置
EP1375850A2 (en) Exhaust gas processing system
Hołub et al. Experimental results of a combined DBD reactor-catalyst assembly for a direct marine diesel-engine exhaust treatment
Wongchang et al. Impact of high-voltage discharge after-treatment technology on diesel engine particulate matter composition and gaseous emissions
JP2014155917A (ja) 放電プラズマリアクタ
JP2004177407A (ja) 流体中、特に内燃エンジンの排気ガス中に含まれている粒子の量を測定する装置
US9388717B2 (en) Apparatuses and methods for reducing pollutants in gas streams
JP7243915B2 (ja) 集塵装置
Yoshida Collection and incineration of particulate matters from the diesel engine by charged dielectric surface and dielectric barrier discharge
Mohapatro et al. Treatment of NOX from diesel engine exhaust by dielectric barrier discharge method
Skariah et al. Energy Yield and Removal Efficiency of NO x Curtailment Process With High Voltage Pulse Powered DBD Electrode Configurations
JP2006170021A (ja) 排ガス浄化装置
JP2006026483A (ja) 排ガス浄化装置
KR101339085B1 (ko) 절연유지가 용이한 하전방식의 매연여과장치
JPH0838849A (ja) コロナ放電式排ガス処理装置及び方法
JP2004293417A (ja) 内燃機関の排気ガス浄化方法及びその装置
JPH07119437A (ja) 排気ガス処理装置
JP2008002998A (ja) Pm測定装置及び該pm測定装置を利用した制御システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020518834

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875886

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217010217

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019875886

Country of ref document: EP

Effective date: 20210406

NENP Non-entry into the national phase

Ref country code: DE