WO2020080831A1 - 삼차원 구조 전극 및 이를 포함하는 전기화학소자 - Google Patents

삼차원 구조 전극 및 이를 포함하는 전기화학소자 Download PDF

Info

Publication number
WO2020080831A1
WO2020080831A1 PCT/KR2019/013610 KR2019013610W WO2020080831A1 WO 2020080831 A1 WO2020080831 A1 WO 2020080831A1 KR 2019013610 W KR2019013610 W KR 2019013610W WO 2020080831 A1 WO2020080831 A1 WO 2020080831A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode
conductive layer
colloidal solution
dimensional structure
Prior art date
Application number
PCT/KR2019/013610
Other languages
English (en)
French (fr)
Inventor
엄인성
이상영
권요한
김주명
임준원
이재헌
김제영
김승혁
Original Assignee
주식회사 엘지화학
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학, 울산과학기술원 filed Critical 주식회사 엘지화학
Priority to CN201980006976.0A priority Critical patent/CN111557056B/zh
Priority to JP2020538567A priority patent/JP7062153B2/ja
Priority to US16/959,860 priority patent/US11495802B2/en
Priority to EP19873406.3A priority patent/EP3719878B1/en
Publication of WO2020080831A1 publication Critical patent/WO2020080831A1/ko
Priority to US17/954,856 priority patent/US11978911B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/747Woven material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a three-dimensional structure electrode and an electrochemical device comprising the same.
  • lithium secondary batteries having high output and capacity compared to weight using lithium transition metal oxides, lithium composite oxides, etc. as the positive electrode active material have been in the spotlight.
  • Electrode assembly having an anode / separator / cathode structure, and typically, a jelly-roll having a long sheet-like anode and a cathode wound with a separator interposed therebetween.
  • Wind-up type Electrode assembly, stacked (stacked) electrode assembly in which a plurality of positive and negative electrodes cut in units of a predetermined size are sequentially stacked with a separator interposed therebetween, and the positive and negative electrodes of a predetermined unit are separated through a separator.
  • stacked / folded electrode assemblies having a structure in which bi-cells or full cells stacked with are wound with a separator sheet.
  • the positive electrode and the negative electrode constituting the electrode are made of a structure in which an electrode active material is applied to an electrode current collector made of metal, and the negative electrode is generally an electrode plate made of copper or aluminum It is made of a structure in which a carbon-based active material is applied, and the positive electrode is made of a structure in which an active material made of LiCoO 2 , LiMnO 2 , LiNiO 2 is coated on an electrode plate made of aluminum or the like.
  • Korean Registered Patent No. 1728828 discloses a 3D electrode of a structure in which a nonwoven fabric made of polymer fibers and a plurality of conductive materials form a three-dimensional aggregate, and the pore structure inside the aggregate is filled with an active material. have.
  • the three-dimensional electrode is designed such that the active material has a high theoretical capacity, it may exhibit insufficient reversible capacity due to low electronic conductivity of the material.
  • the high-capacity negative electrode active material that exceeds the theoretical capacity of natural graphite reacts with lithium through an alloying or conversion reaction, and thus has a large volume change.
  • Such a volume change has a problem of significantly deteriorating the life characteristics of the battery.
  • an excessive amount of conductive material is included in the electrode design, which is a big problem in increasing the energy density of the battery.
  • the three-dimensional structure electrode of the present invention is a three-dimensional structure electrode of the present invention.
  • an active material layer that forms the same aggregate structure as the conductive layer, and the electrode active material particles are uniformly filled in an interconnected pore structure formed in the aggregate structure to form a three-dimensional filling structure; It includes,
  • the active material layer provides a three-dimensional structure electrode formed between the upper conductive layer and the lower conductive layer.
  • the thickness of the three-dimensional structure electrode may be 3 to 1000 ⁇ m.
  • the thickness of the upper conductive layer and the lower conductive layer may be 3% to 30% of the active material layer, respectively.
  • the porosity of the electrode active material layer is 5 to 95% by volume, and the porosity of the upper conductive layer and the lower conductive layer may be 5 to 80% by volume.
  • the average diameter of the polymer fibers may be 0.001 to 1000 ⁇ m, and the average diameter of the active material particles may be 0.001 to 30 ⁇ m.
  • the content of each material included in the three-dimensional structure electrode is as follows.
  • the active material layer includes 5 to 70% by weight of the porous nonwoven fabric and 20 to 85% by weight of the active material particles based on the weight of the active material layer, and the content ratio of the active material particles and the conductive material in the active material layer is relative to the active material particles As a weight ratio of the conductive material, it may be 0.1: 100 to 50: 100.
  • the upper conductive layer or the lower conductive layer may include 10 to 50% by weight of a conductive material and 50 to 90% by weight of a porous nonwoven fabric, based on the total weight of the upper conductive layer or the lower conductive layer.
  • the types of materials included in the three-dimensional structure electrode are as follows.
  • the conductive material is carbon nanotube, silver nanowire, nickel nanowire, gold nanowire, graphene, graphene oxide, reduced graphene oxide, polypyrrole, poly 3,4-ethylenedioxythiophene, polyaniline , These derivatives and mixtures thereof.
  • the active material particles are selected from the group comprising lithium metal oxide, carbon-based material, oxide, silicon (Si), tin (Sn), germanium (Ge), sulfur (S), derivatives thereof, and mixtures thereof It may be one or more.
  • Preparing an upper conductive layer by simultaneously spinning the polymer solution and the first colloidal solution on top of the active material layer may include.
  • step (b) comprises the steps of dispersing the conductive material in the dispersion medium to prepare a colloidal solution; It may include.
  • step (c) is a step of introducing the conductive material to the active material particles, to prepare a mixed powder
  • Dispersing the complex in the dispersion medium to prepare the colloidal solution may include.
  • the step (d) may be to use one method selected from the group comprising a double electric spinning, double electric spray (electrospray), double spray (spray), and combinations thereof, the spinning speed of the polymer solution Is 2 to 15 ⁇ l / min, and the spinning speeds of the first colloidal solution and the second colloidal solution may be 30 to 300 ⁇ l / min.
  • the composition of each solution in the manufacturing method of the three-dimensional structure electrode is as follows.
  • the second colloidal solution contains 1 to 50% by weight of the active material particles relative to the total weight of the second colloidal solution, and the content ratio of the active material particles and the conductive material in the second colloidal solution is the conductivity to the active material particles As a weight ratio of the material, it may be 0.1: 100 to 50: 100.
  • the dispersion medium is deionized water, isopropyl alcohol (iso-propylalcohol), butanol (buthalol), ethanol (ethanol), hexanol (hexanol), acetone (Acatone), dimethylformamide (N, N-dimethylformamide), It may be one or more selected from the group comprising dimethylacetamide (N, N-Methylpyrrolidone) and combinations thereof.
  • an electrode assembly including a negative electrode, a positive electrode, and a separator interposed between the negative electrode and the positive electrode is embedded in a battery case, and the negative electrode or the positive electrode is three-dimensional according to any one of claims 1 to 21. It provides an electrochemical device characterized in that the structural electrode.
  • the electrochemical device is selected from the group comprising a lithium secondary battery, super capacitor (Super Capacitor), lithium-sulfur battery, sodium ion battery, lithium-air battery, zinc-air battery, aluminum-air battery, and magnesium ion battery It can be one.
  • the three-dimensional structure electrode according to the present invention by the above-described active material layer and the sandwich structure of the upper conductive layer and the lower conductive layer, while minimizing the added material and using a current collector of a light material, while improving the weight and capacity per volume of the electrode, Even if an active material having a large volume change is applied, it is possible to maintain an electronic conduction network and prevent desorption of the active material.
  • FIG. 1 is a schematic diagram showing the structure of a 3D structure electrode and a method for manufacturing the 3D structure electrode according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a lithium secondary battery according to the present invention.
  • FIG. 3 is a photograph showing the appearance of a three-dimensional structure electrode according to an embodiment of the present invention.
  • FIG. 4 is a photograph of a cross-section and a surface of a three-dimensional structure electrode according to an embodiment of the present invention observed with a scanning electron microscope.
  • the term "combination (s)" included in the expression of the marki form means one or more mixtures or combinations selected from the group consisting of elements described in the expression of the marki form, It means to include one or more selected from the group consisting of the above components.
  • the present invention relates to an anode for electrochemical storage and an electrochemical device comprising the same.
  • the electrochemical device includes all devices that undergo an electrochemical reaction, and specific examples include all types of primary, secondary cells, fuel cells, solar cells, or capacitors.
  • a lithium secondary battery including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery or a lithium ion polymer secondary battery is preferable among the secondary batteries.
  • conductive layer means “upper conductive layer or lower conductive layer.”
  • the three-dimensional structure electrode according to the present invention is (a) a porous nonwoven fabric comprising a plurality of polymer fibers and a conductive material are three-dimensionally irregular and continuously connected to each other to form an aggregate formed with interconnected pore structures therein.
  • an active material layer that forms the same aggregate structure as the conductive layer, and the active material particles are uniformly filled in the aggregate structure to form a three-dimensional filling structure. It includes, the active material layer is a structure formed between the upper conductive layer and the lower conductive layer.
  • FIG. 1 is a schematic diagram showing the structure of a 3D structure electrode and a method for manufacturing the 3D structure electrode according to an embodiment of the present invention.
  • the three-dimensional structure electrode 100 is a three-dimensional filling structure, in the case of the active material layer 110, a plurality of polymer fibers 10 included in the porous nonwoven fabric serves as a support, and the plurality of The positive electrode active material particles 20 and the conductive material 30 are uniformly filled between the polymer fibers 10, and an interconnected porous network is formed by the plurality of polymer fibers 10. to be.
  • a separate binder is not added, and instead of a metal current collector, a porous nonwoven fabric made of a light material is used.
  • the electron conducting network can be uniformized to contribute to the high power characteristics of the electrochemical element, which improves the discharge characteristics compared to the general electrode.
  • the upper conductive layer 120 and the lower conductive layer 130 are formed on the upper and lower portions of the active material layer to form a sandwich electrode structure, and the upper conductive layer and the lower electrode are formed.
  • the conductive layer is filled with a conductive material 30 in a plurality of polymer fibers 10 included in a porous nonwoven fabric to form a three-dimensional aggregate structure.
  • the active material is developed in a variety of structures and components, in particular, the commercially available negative electrode material, graphite, exhibits a very reversible charge / discharge behavior, thereby showing long life characteristics.
  • graphite has a low theoretical capacity (theoretical capacity is limited to about 370mAh / g)
  • various materials such as high-capacity silicon and transition metal oxide have been developed to replace graphite.
  • studies have been conducted to replace carbon-based materials such as graphite by using silicon having a high theoretical capacity (4200mAh / g) as a negative electrode active material.
  • the negative electrode active material containing a Si element or a metal element undergoes a large structural change in the process of metal alloying with Li, and a large volume expansion occurs.
  • the host metal (M) not only accumulates Li ions but also accepts the same number of electrons as Li ions. That is, the metal becomes an anion state having a larger radius than a neutral atom by the following charge transfer reaction.
  • the metal in which Li is inserted increases in volume by 100 to 400%.
  • the Li alloy exhibits ion-bonding properties, so it is brittle and the mechanical stability is poor due to mechanical stress caused by volume change.
  • the volume change as described above increases as the cycle continues, which may result in electrode network disconnection and deterioration behavior such as cracking of the active material and formation of a surface-unstable solid-electrolyte-interphase (SEI) layer.
  • SEI solid-electrolyte-interphase
  • the adhesive force between the current collector and the active material layer is low, and the adhesive force between the active material and the active material is low, resulting in high stress at the interface during charging and discharging, resulting in desorption of the active material.
  • the conductive layer acts as a buffer zone for alleviating the desorption of the active material, thereby suppressing the desorption of the active material, and changes in the volume of the active material. Even if it is possible to maintain the electron conductive network through the conductive layer. Through this, it is possible to prevent a decrease in the capacity of the battery, increase the conductivity of the electrode, improve the cycle life characteristics of the battery, and increase the energy density. Furthermore, even if a strong external force is applied by bending or the like, the desorption phenomenon of the active material is suppressed, which can contribute to the improvement of the fluidity of the electrode.
  • the three-dimensional structure electrode 100 is a structure in which the active material layer 110 is interposed between the upper conductive layer 120 and the lower conductive layer 130.
  • the active material layer 110 is a porous non-woven fabric and a conductive material contained in the porous non-woven fabric is three-dimensionally irregular and continuously connected to form an aggregate having a pore structure interconnected therein, and the active material particles are filled in the aggregate. Structure. More specifically, the conductive material is uniformly filled in a plurality of non-uniform spaces formed inside the porous nonwoven fabric, and the active material particles are filled therein.
  • the porosity of the active material layer can be 5 to 95% to improve the performance of the electrochemical device by appropriately adjusting the mobility of the ions while being able to easily absorb the electrolyte, and the ion conductivity of the three-dimensional structure electrode and It may be more preferably 30 to 90% by volume to improve the mechanical strength.
  • the porosity of the active material layer exceeds 95% by volume, there arises a problem that the loading value of the electrode becomes too small compared to the volume, and the distance between the active material particles and the conductive material increases, making it difficult to form an electron conductive network. have.
  • the porosity is less than 5% by volume, the porosity may be too small to deteriorate the ion conductivity of the 3D structure electrode.
  • the upper conductive layer and the lower conductive layer are preferably smaller than the porosity of the active material layer in terms of suppressing desorption of the active material and maintaining the electron conduction network, and preferably 5 to 80% by volume, and more preferably 20 to 60% by volume. desirable.
  • the porosity of the upper conductive layer and the lower conductive layer is less than 5% by volume, the porosity is too small to degrade ion mobility and electron mobility from the active material layer, thereby deteriorating battery performance, and porosity of 80% by volume or more It is difficult to suppress desorption of the active material particles from the active material layer, and there is a problem that it is difficult to increase the energy density of the battery.
  • the porosity of the three-dimensional electrode can be controlled by the diameter of the polymer fiber and the active material particles, and the content of the added polymer fiber, conductive material, and active material particles.
  • the thickness of the three-dimensional structure electrode according to the present invention may be 3 to 1000 ⁇ m for ease of electrode manufacturing process and smooth electron conduction network formation.
  • the thickness of the electrode exceeds 1000 ⁇ m, the electronic conductivity in the thickness direction may be lowered and the output characteristics of the battery may be lowered. If the thickness is less than 3 ⁇ m, the electrode capacity may be reduced because the thickness of the electrode becomes too thin. There is this.
  • the thickness of the upper conductive layer or the lower conductive layer may be 3 to 30% of the active material layer, and more preferably 5 to 10%.
  • the thickness of the upper conductive layer or the lower conductive layer is less than 3% of the active material layer, the thickness is too thin to prevent desorption of the active material due to a change in the volume of the active material and damage to the electronic conduction network by desorption of the active material.
  • the thickness of the upper conductive layer or the lower conductive layer exceeds 30% of the active material layer, a problem that ion mobility from the active material layer may be deteriorated may occur.
  • the weight per area of the active material layer may be 0.001 mg / cm 2 to 1 g / cm 2
  • the weight per area of the upper conductive layer and the lower conductive layer is the weight of the active material layer Contrast may be about 5 to 10%.
  • the weight per area of the electrode is reduced by minimizing the additive material in the three-dimensional structure electrode and using a lightweight non-porous non-woven fabric instead of a typical metal current collector.
  • the weight per area of the electrode is affected by the content of the active material, the weight per area of the upper conductive layer and the lower conductive layer that do not contain active material particles is reduced compared to the active material layer, and the weight per area of the entire electrode is also an active material layer Smaller than
  • the weight per area of the electrode decreases than the above range, the energy density of the electrode is lowered, and when the weight per area of the electrode is greater than the above range, a problem that the electrode may be heavy compared to the performance of the electrode may occur.
  • the weight per area of the upper conductive layer and the lower conductive layer is more preferably 0.001 to 50 mg / cm 2 .
  • the three-dimensional structure electrode may be a plurality of electrodes to form a multi-layer structure to maximize the loading amount of the active material particles, and to improve the capacity and energy density of the electrochemical device.
  • the weight per area of the three-dimensional structure electrode formed in the multi-layer structure as described above may be 0.002 to 10 g / cm 2 .
  • the three-dimensional structure electrode according to the present invention may be polarized for excellent wettability to the electrolyte.
  • the three-dimensional structure electrode may be an anode or a cathode.
  • the plurality of polymer fibers included in the active material layer and the conductive layer are non-uniformly aggregated to form a porous nonwoven form, there is no particular limitation on the type. However, it is preferable for the polymer to have heat resistance to secure the thermal stability of the electrode.
  • the polymer constituting the plurality of polymer fibers is polyethylene terephthalate, polyimide, polyamide, polysulfone, polyvinylidene fluoride, polyacrylonitrile, polyethylene, polypropylene, polyetherimide, polyvinyl alcohol, polyethylene Oxide, polyacrylic acid, polyvinylpyrrolidone, agarose, alginate, polyvinylidene hexafluoropropylene, polyurethane, nylon 6, polypyrrole, poly 3,4-ethylenedioxythiophene, polyaniline, derivatives thereof, and It may be one or more selected from the group containing a mixture of these, in addition to carbon nanotubes (carbon nanotube), graphene, graphene oxide, reduced graphene oxide, polypyrrole, poly 3,4-ethylenedioxythiophene, Polyaniline, derivatives thereof, and mixtures thereof.
  • polyacrylonitrile is most preferable in view of the mechanical and chemical stability of the polymer.
  • the polymer fiber may have an average diameter of 0.001 to 100 ⁇ m, and more preferably 0.01 to 2 ⁇ m.
  • polymer fibers within the above numerical range sufficient space for filling active material particles and conductive materials in a plurality of polymer fibers forming a three-dimensional aggregate structure can be secured, and uniform pore structures can be formed in the polymer fibers. It can be advantageous for electrolyte absorption and ion migration.
  • the polymer fiber When the diameter of the polymer fiber is less than 0.001 ⁇ m, the polymer fiber has vulnerable properties to serve as a support, and when it exceeds 100 ⁇ m, the thickness of the polymer fiber becomes too thick, reducing pores formed therein, so that the active material particles and A problem may arise that the conductive material is difficult to fill.
  • the active material layer electrode may include 5 to 70% by weight of the porous nonwoven fabric, and more preferably 15 to 60% by weight of the porous nonwoven fabric, based on the total weight of the active material layer.
  • the upper conductive layer or the lower conductive layer may include 50 to 90% by weight of a porous nonwoven fabric, more preferably 60 to 80% by weight of a porous nonwoven fabric, based on the weight of the upper conductive layer or the lower conductive layer. have.
  • the electronic conductivity may be deteriorated as a result of excessively decreasing the content of the active material particles or the conductive material compared to the porous nonwoven fabric.
  • the content of the porous nonwoven fabric is less than the above range, the structure of the electrode cannot be maintained because the porous nonwoven fabric is insufficient to sufficiently serve as a support.
  • the content ratio of the porous nonwoven fabric in the conductive layer is higher than that of the active material layer in order to prevent desorption of the active material.
  • the active material particles are in the group comprising the aforementioned lithium metal-based oxide, other oxides, silicon (Si), tin (Sn), germanium (Ge), sulfur (S), derivatives thereof, and mixtures thereof It may be one or more selected.
  • the lithium metal oxide and its derivative may be a positive electrode active material, and the electrode to which it is applied may be a positive electrode.
  • oxide, silicon (Si), tin (Sn), germanium (Ge), sulfur (S), and derivatives thereof may be a negative electrode active material, the electrode to which it is applied can be a negative electrode.
  • the active material particles may have a surface coated with a carbon-based compound
  • the carbon-based compound includes, but is not limited to, non-graphitized carbon, graphite-based carbon, and the like.
  • one or more of a complex oxide of a metal and lithium of cobalt, manganese, nickel, or a combination thereof can be used.
  • a compound represented by any one of the following chemical formulas can be used.
  • oxides of the active material particles are SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5, and the like.
  • Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me ' y O z (Me: Mn , Fe, Pb, Ge; Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8)
  • Metal composite oxides such as; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; Conductive polymers such as polyacetylene, and the like, but are not limited thereto.
  • Particularly preferred active material particles include Si, SiO, Ge, Sn, and S as active material particles having a large theoretical capacity.
  • the average diameter of the active material particles may be 0.001 to 30 ⁇ m, more preferably 0.001 to 10 ⁇ m.
  • the porosity of the active material layer can be adjusted within the above-described range.
  • the dispersibility in the second colloidal solution containing the active material particles can be improved, and the pores of the three-dimensional structure electrode by electrospinning can be made uniform.
  • the average diameter of the active material particles is less than 0.001 ⁇ m, the density of the electrode is lowered, so that the electrode cannot have a proper capacity per volume, the size of the particles is too small to handle, and it is difficult to prevent active material detachment.
  • the average diameter of the active material particles exceeds 30 ⁇ m, the dispersion state of the second colloidal solution to be described later may be uneven due to the size of the active material particles, and the active material particles may be difficult to fill uniformly in the pores, and the volume of the active material It may increase to an excessively large size.
  • the active material layer may contain 20 to 85% by weight of the active material particles, more preferably 30 to 75% by weight of the active material particles, based on the weight of the active material layer.
  • the content of the active material particles exceeds 85% by weight, the content of the active material particles is too large for the porous nonwoven fabric, which makes it difficult for the porous nonwoven fabric to perform the role of supporting the electrode, making it difficult to maintain the electrode structure. Conversely, when the content of the active material particles is less than 20%, the content of the active material particles is too small to form an electronic conduction network between the active material particles and the conductive material, and the output of the electrode may be lowered.
  • the conductive material plays a role of forming an electron conductive network together with the active material particles, and if the electron conductive network can be formed, the type is not particularly limited.
  • the conductive material is a carbon nanotube (CNT), silver nanowire, nickel nanowire, gold nanowire, graphene, graphene oxide, reduced graphene oxide, polypyrrole, poly 3,4-ethylenedioxythiophene , Polyaniline, derivatives thereof, and mixtures thereof, and may be one or more selected from the group, and carbon nanotubes are more preferable in terms of mechanical strength and electronic conductivity.
  • CNT carbon nanotube
  • the content of the conductive material is a weight ratio of the conductive material to the active material particles, and may be 0.1: 100 to 50: 100.
  • the content of the conductive material is less than the above range, the formation of Myeongwoo electron conducting network may be insufficient, resulting in a decrease in the output of the electrochemical device, and when the content of the conductive material exceeds the above range, the first colloidal solution and the second colloidal solution will be described later. There is a problem that a uniform electrode structure cannot be formed because the dispersion state of is not maintained.
  • the upper conductive layer and the lower conductive layer may include 10 to 50% by weight of a conductive material, more preferably 20 to 40% by weight, based on the total weight of the upper conductive layer or the lower conductive layer. It may contain a weight% of the conductive material.
  • the content of the conductive material exceeds 50% by weight, the content of the porous nonwoven fabric constituting the conductive layer is small, so that the conductive layer is difficult to support and active material desorption cannot be effectively suppressed.
  • the content of the conductive material is less than 10% by weight, it is difficult to form an electronic conductive network of the conductive layer, and there is a problem that the output characteristics of the electrode may be reduced when the electronic conductive network of the active material layer is damaged due to a change in volume of the active material.
  • the method of manufacturing a three-dimensional structure electrode comprises the steps of: (a) dissolving a polymer in a solvent to prepare a polymer solution containing a polymer and a solvent; (b) dispersing the conductive material in the dispersion medium to prepare a first colloidal solution comprising a first conductive material, a dispersant, and a dispersion medium; (c) dispersing the active material particles and the conductive material in a dispersion medium to prepare a second colloidal solution further comprising active material particles in the first colloidal solution; (d) preparing three-dimensional structural fibers from the polymer solution, the first colloidal solution, and the second colloidal solution; (e) compressing the three-dimensional structural fibers to obtain three-dimensional structural fibers; Including, (d) the step of producing a three-dimensional structural fiber using the polymer solution, the first colloidal solution, and the second colloidal solution to form a porous nonwoven fabric comprising a plurality of polymer fibers, the porosity It
  • the step (d) of manufacturing the three-dimensional structural fiber using the polymer solution, the first colloidal solution, and the second colloidal solution is simultaneously conducting lower conduction by simultaneously spinning the polymer solution and the first colloidal solution.
  • lithium metal-based oxides oxides containing metal oxides, silicon (Si), tin (Sn), germanium (Ge), sulfur (S), these One or more selected from the group comprising a derivative, and mixtures thereof can be used.
  • the second colloidal solution is spun simultaneously with the polymer solution to form a pore structure interconnected by a plurality of polymer fibers serving as a support, and a three-dimensional filling structure formed by the active material particles and the conductive material
  • the first colloidal solution is spun at the same time as the polymer solution to the upper and lower portions of the active material layer to form a three-dimensional aggregate structure by a plurality of polymer fibers and conductive materials.
  • step (a) of preparing a polymer solution containing a polymer and a solvent will be described.
  • the polymer solution may include 5 to 30% by weight of polymer, based on the total weight of the polymer solution, to form a plurality of polymer fibers and a porous nonwoven fabric therefrom by spraying the polymer solution, more preferably 10 To 15% by weight of polymer.
  • the polymer solution When the polymer fiber is less than 5% by weight, the polymer solution may not be spun evenly, and a problem in which beads may be formed may occur. If it exceeds 30% by weight, the polymer solution is hardened at the end of the spinning nozzle and spinning is performed. This may cause problems that are not smooth.
  • the solvent that can be used in the polymer solution is not particularly limited as long as it can dissolve the polymer.
  • the content of the conductive material in the first colloidal solution includes 0.1 to 50% by weight of the conductive material relative to the total weight of the first colloidal solution, and more preferably 1 to 20% by weight of the conductive material. desirable.
  • the content of the conductive material in the second colloidal solution may be 0.1: 100 to 50: 100 in a weight ratio of the conductive material to the active material particles.
  • the content of the conductive material is less than the above range, the formation of Myeongwoo electron conducting network may be insufficient, and the output of the electrochemical device may be lowered.
  • the content of the conductive material exceeds the above range, the dispersion state of the first colloidal solution is not maintained There is a problem that a uniform electrode structure cannot be formed.
  • the second colloidal solution may include 1 to 50% by weight of active material particles relative to the total weight of the second colloidal solution. Through this, porosity in the three-dimensional structure electrode can be adjusted.
  • the content of the active material particles is less than 1% by weight, the loading amount of the active material of the three-dimensional structure electrode becomes small, it is difficult to form an electron conduction network between the active material particles and the conductive material, and the output of the electrode may be lowered.
  • the content of the active material particles exceeds 50% by weight, it is difficult to disperse the active material particles, and when the active material layer is formed, the content of the active material particles is too large, and thus the porous nonwoven fabric is difficult to perform the role of supporting the electrode, making it difficult to maintain the electrode structure. There is a problem.
  • step (b) the conductive material is dispersed in the dispersion medium to prepare a first colloidal solution.
  • the step includes crushing the active material particles; And preparing the second colloidal solution by dispersing the pulverized active material particles and the pulverized conductive material in the dispersion medium. It may include.
  • step (c) comprises the steps of preparing the mixed powder by introducing the conductive material into the active material particles; Pulverizing the mixed powder to obtain an active material particle / conductive material complex; And dispersing the complex in the dispersion medium to prepare the second colloidal solution; It may include.
  • Crushing the active material particles as described above is for uniform dispersion of the active material particles in the second colloidal solution and is related to limiting the average diameter of the active material particles in the three-dimensional structure electrode. Specifically, when the active material particles having an average diameter in micrometers are pulverized into particles having an average diameter in nanometers prior to preparation of the second colloidal solution, the active material particles are easily dispersed uniformly in the colloidal solution.
  • the active material particles have an average diameter in nanometers, a grinding step may be unnecessary.
  • the electronic conductivity of the surface of the active material particles can be further enhanced.
  • the dispersant is a material that can help disperse the conductive material in the colloidal solution, and the content of the dispersant is relative to the total weight of the first colloidal solution and the second colloidal solution. It may be 0.001 to 10%, and more preferably 0.01 to 1%.
  • the content of the dispersant is less than 0.001% by weight, the amount of the dispersant is too small to disperse particles in the colloidal solution, and when it exceeds 10% by weight, the amount of the dispersant is excessively increased and the viscosity of the colloidal solution is increased You can.
  • the dispersant may be at least one selected from the group comprising polyvinylpyrrolidone, poly3,4-ethylenedioxythiophene, and mixtures thereof.
  • polyvinylpyrrolidone is preferred in terms of dispersion effect.
  • the dispersion medium is not particularly limited as long as it is capable of dispersing the active material particles and the conductive material, and deionized water, isopropyl alcohol, butanol, ethanol, hexanol ), Acetone (Acatone), dimethylformamide (N, N-dimethylformamide), dimethylacetamide (N, N-dimethylacetamide), methyl pyrrolidone (N, N-Methylpyrrolidone) and combinations thereof. It may be one or more. Specifically, a mixed solvent of distilled water and isopropyl alcohol is preferable from the viewpoint of dispersion effect.
  • step (d) includes forming a lower conductive layer; Forming an active material layer on the lower conductive layer; Forming an upper conductive layer on the active material layer; It includes.
  • the step (d) is to simultaneously emit the polymer solution and the first colloidal solution or the second colloidal solution to form a three-dimensional aggregate structure of the porous nonwoven fabric and the conductive material.
  • it may be one selected from the group including double electric radiation, double electric spray, double spray, and combinations thereof.
  • the method of double electrospinning is preferable in terms of the three-dimensional filling structure and uniform pore formation.
  • Step (d) may be performed for 50 minutes to 24 hours.
  • the three-dimensional structure electrode may be formed within the range of the execution time. In particular, as the execution time increases, high-loading of the active material particles in the three-dimensional structure electrode is possible.
  • the spinning speed of the polymer solution is 2 to 15 ⁇ l / min, and the spinning speed of the first colloid solution and the second colloid solution may be 30 to 300 ⁇ l / min. More preferably, the spinning speed of the polymer solution may be 5 to 10 ⁇ l / min, and the spinning speed of the first colloid solution and the second colloid solution may be 50 to 200 ⁇ l / min.
  • the three-dimensional structure electrode as described above may be formed by spinning the solution at the above-mentioned spinning speed, and loading of the active material particles in the three-dimensional structure electrode may be improved.
  • the spinning speed of the solution is less than the above-mentioned range, the polymer solution may not be uniformly spun, and beads may be formed or the colloidal solution may not be spun uniformly.
  • the present invention is a negative electrode, a positive electrode and an electrode assembly including a negative electrode interposed between the negative electrode and the positive electrode and a separator interposed between the negative electrode and the positive electrode is embedded in a battery case, wherein the negative electrode or the positive electrode is the above-mentioned 3 It provides an electrochemical device characterized in that it is a dimensional structure electrode.
  • the electrochemical device is selected from the group comprising a lithium secondary battery, super capacitor (Super Capacitor), lithium-sulfur battery, sodium ion battery, lithium-air battery, zinc-air battery, aluminum-air battery, and magnesium ion battery It may be one type, and specifically, may be a lithium secondary battery.
  • the lithium secondary battery may include all of a cylindrical battery, a prismatic battery, a coin battery, a pouch battery, and the like, and the shape of the lithium secondary battery is not particularly limited.
  • FIG. 2 is a schematic diagram showing a lithium secondary battery 200 according to an embodiment of the present invention.
  • the electrode assembly 210 is stored in a storage portion of the battery case 220, and the electrode assembly 210 is disposed in the battery case 140.
  • the electrolyte is injected into the storage unit to be completely immersed, and the cap assembly 230 for sealing the case is mounted and coupled to the battery case 110.
  • a separator 212 is interposed between the positive electrode 213 containing the positive electrode active material and the negative electrode 211 containing the negative electrode active material.
  • a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent a polymer electrolyte, an inorganic solid electrolyte, and a composite material of a polymer electrolyte and an inorganic solid electrolyte may be used.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based or aprotic solvent may be used as the non-aqueous organic solvent.
  • the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio when used in combination with one or more can be appropriately adjusted according to the desired battery performance, which will be widely understood by those skilled in the art. You can.
  • the non-aqueous organic solvent is, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, Gamma-butylo lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1,3-dioxorun, formamide, dimethylformamide, dioxo Run, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxy methane, dioxone derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo
  • An aprotic organic solvent such as a bonate derivative, a tetrahydrofuran derivative, an ether, methyl pyropionate, and ethy
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, A polymerization agent or the like containing an ionic dissociating group may be used.
  • the inorganic solid electrolyte is, for example, Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 nitrides such as SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , halides, sulfates, and the like can be used.
  • the lithium salt is dissolved in a non-aqueous organic solvent or the like to act as a source of lithium ions in the battery to operate the lithium secondary battery, and promotes the movement of lithium ions between the positive and negative electrodes.
  • the lithium salt is a material that is soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
  • PAN polyacrylonitrile
  • N dimethylformamide
  • polyacrylonitrile (PAN) After adding the polyacrylonitrile (PAN) to dimethylformamide (N, N-dimethylformamide), the content of polyacrylonitrile (polyacrylonitrile, PAN) in the solution is 10% by weight (wt%). A polymer solution was prepared as much as possible.
  • carbon nanotubes are used as the conductive material, and as a dispersion medium, diionized water and iso-propylalcohol are mixed in a weight ratio of 3: 7. Co-solvant was used. Specifically, carbon nanotubes were added to be 5% by weight of the first colloidal solution, and polyvinylpyrrolidone, a dispersant, was added to contain 1% by weight relative to the colloidal solution.
  • silicon (Si) having an average diameter of 100 nm is used as the active material particles, and carbon nanotubes are used as a conductive material.
  • Deionized water and iso-propylalcohol were used as co-solvant.
  • the carbon nanotube was added at 10% by weight relative to the weight of silicon (Si), thereby preparing a colloidal solution in which the silicon (Si) and the carbon nanotubes were dispersed together.
  • the dispersant polyvinylpyrrolidone, was added to contain 1% by weight relative to the colloidal solution.
  • the injection rate of the polymer solution is 5 ⁇ l / min
  • the injection rate of the colloidal solution is 120 At ⁇ l / min
  • three-dimensional structural fibers were prepared by simultaneously spinning (double electrospinning) for about 240 minutes.
  • the active material layer was formed by spinning the polymer solution and the second colloidal solution on top of the lower conductive layer.
  • the polymer solution and the first colloidal solution were spun on top to form an upper conductive layer.
  • the manufactured three-dimensional structural fiber was compressed using a roll press (purchased from: Gibae E & T Co., Ltd.). Through this, a three-dimensional structure electrode with an active material loading of about 2 mg / cm 2 and a thickness of about 12 ⁇ m could be obtained.
  • a lithium secondary battery was produced by applying the obtained three-dimensional structure electrode as an anode.
  • lithium metal was used as the negative electrode
  • polyethylene polyethylene, Tonen 20 ⁇ m
  • the non-aqueous electrolyte was injected to prepare a cylindrical lithium secondary battery.
  • the electrode of the form in which only the active material layer is formed without forming the first conductive layer and the lower conductive layer when the first colloidal solution is not prepared and double electrospinning is about 2.0 mg / cm 2 , and the thickness is about 10 ⁇ m.
  • An electrode was prepared in the same manner as in Example except that it was prepared.
  • a lithium secondary battery was manufactured in the same manner as in the example.
  • FIG. 3 is a photograph showing the appearance of the electrode according to the embodiment. Referring to FIG. 3, it can be confirmed that the structure of the electrode is well maintained without detaching the active material particles even when the electrode is bent.
  • the electronic conductivity measurement is a surface resistance measurement using a 4probe tip of Dasol ENG Co., Ltd., and the results according to Examples and Comparative Examples are recorded in FIG. 5.
  • the electrode of the Example compared to Comparative Example 1 in which the electronic conductivity of 47.5 S / cm was recorded, the electrode of the Example exhibited a value increased by about 6 times to 72.0 S / cm.
  • the electrode of the embodiment has a high electronic conductivity, it can be inferred that it can be used as an electrode without a separate current collector, and it can also improve the output characteristics of the battery including the same.
  • the cells prepared in the above Examples and Comparative Examples were charged at the first time until they became 0.01 V at a constant current (CC) of 0.2 C at 25 ° C. After that, discharge was performed at a constant current (CC) of 0.2 C until 1.2 V was reached. This was repeated 1 to 100 cycles, and the degree of deterioration of the discharge capacity was observed. The results are shown in FIG. 6.
  • the battery of the example showed excellent cycle characteristics compared to the battery of the comparative example. This is considered to be because the active material is detached from the electrode due to the volume change of the active material in the electrode disclosed in the comparative example, and the electronic conduction network is broken.
  • the electrode of the embodiment can maintain the electronic conduction network and prevent desorption of the active material even if an active material having a large volume change is applied by the upper / lower conductive layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

본 발명은 3차원 구조 전극 및 이의 제조방법, 그리고 상기 전극을 포함하는 전기화학 소자에 관한 것으로, (a) 복수의 고분자 섬유를 포함하는 다공성 부직포 및 전도성 물질이 3차원적으로 불규칙하고 연속적으로 연결되어 내부에 상호 연결된 기공 구조가 형성된 집합체를 이루는 구조의 상부 전도층 및 하부 전도층; 및 (b) 상기 전도층과 동일한 집합체 구조를 형성하고 있으며, 상기 집합체 구조 내에 형성된 상호 연결된 기공 구조 내에 전극 활물질 입자가 균일하게 충진되어 3차원 충진 구조를 형성한 활물질층; 을 포함하며, 상기 활물질층은 상기 상부 전도층 및 하부 전도층 사이에 형성되어 있는 것을 특징으로 한다.

Description

삼차원 구조 전극 및 이를 포함하는 전기화학소자
본 발명은 삼차원 구조 전극 및 이를 포함하는 전기화학소자에 관한 것이다.
본 출원은 2018. 10. 18.자 한국 특허 출원 제10-2018-0124498호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
최근 전자산업 발전의 중요한 경향은 디바이스와 와이어리스, 모바일 추세와 아날로그의 디지털로의 전환으로 요약할 수 있다. 무선 전화기(일명, 휴대폰)와 노트북 컴퓨터의 급속한 보급, 아날로그 카메라에서 디지털 카메라로의 전화 등을 대표적인 예로 들 수 있다.
이러한 경향과 더불어 디바이스의 작동 전원으로서 전기 화학 소자에 대한 연구 및 개발이 활발히 진행되고 있다. 특히 양극 활물질로서 리튬 전이금속 산화물, 리튬 복합 산화물 등을 사용하는 중량 대비 높은 출력과 용량의 리튬 이차전지가 크게 각광받고 있다.
이차전지는 양극/분리막/음극 구조의 전극조립체가 어떠한 구조로 이루어져 있는지에 따라 분류되기도 하는 바, 대표적으로는, 긴 시트형의 양극들과 음극들을 분리막이 개재된 상태에서 권취한 구조의 젤리-롤(권취형) 전극조립체, 소정 크기의 단위로 절취한 다수의 양극과 음극들을 분리막을 개재한 상태로 순차적으로 적층한 스택형(적층형) 전극조립체, 소정 단위의 양극과 음극들을 분리막을 개재한 상태로 적층한 바이셀(Bi-cell) 또는 풀셀(Full cell)들을 분리막 시트로 권취한 구조의 스택/폴딩형 전극조립체 등을 들 수 있다.
한편, 전극은 이온의 교환을 통해서 전류를 발생시키는데, 전극을 이루는 양극 및 음극은 금속으로 이루어진 전극 집전체에 전극 활물질이 도포된 구조로 이루어지며, 일반적으로 음극은 구리 또는 알루미늄 등으로 이루어진 전극판에 탄소계 활물질이 도포된 구조로 이루어지고, 양극은 알루미늄 등으로 이루어진 전극판에 LiCoO 2, LiMnO 2, LiNiO 2 등으로 이루어진 활물질이 코팅된 구조로 이루어진다.
그러나 상기 전극의 구성 물질 중 실질적으로 전기 화학 소자의 용량 및 에너지 밀도에 기여하는 것은 활물질 뿐이므로, 도전재 및 바인더 등의 첨가 물질을 최소화할 때 전극의 용량이 증가하게 되고, 전기 화학 소자의 에너지 밀도를 높일 수 있다.
한국등록특허 1728828호는 상기 문제를 해결하기 위하여 고분자 섬유로 이루어진 부직포 및 복수의 전도성 물질이 3차원적으로 집합체를 이루고, 상기 집합체 내부의 기공 구조에 활물질이 충진된 구조의 3차원 전극을 개시하고 있다. 그러나 상기와 같은 3차원 전극은 활물질이 높은 이론 용량을 가지도록 설계한다 하더라도 물질 고유의 전자전도도가 낮아 불충분한 가역용량을 나타낼 수 있다.
특히 천연 흑연의 이론 용량을 뛰어넘는 고용량 음극 활물질은 합금화 또는 전환화 반응을 통해 리튬과 반응하기 때문에 부피변화가 큰 단점이 있다. 이러한 부피변화는 전지의 수명특성을 크게 열화시키는 문제가 있다. 또한 이러한 단점의 보완을 위해 전극 설계시 과량의 전도성 물질을 포함하게 되고 이는 전지의 에너지 밀도를 높이는데 큰 문제가 되고 있다.
상기와 같은 문제점을 해결하기 위하여 활물질의 입자 크기를 극단적으로 감소시키는 방법, 금속 원소에 리튬과의 반응성이 거의 없는 제 3의 원소를 첨가시켜 주는 방법 등이 있으나, 아직까지 상용화에 가까운 특성을 보이는 소재는 출현되지 않았다.
따라서 상기 문제의 해결을 위한 기술 개발이 필요한 실정이다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 기존 전극으로 활용되는 활물질층의 상부 및 하부에 복수의 고분자 섬유를 포함하는 다공성 부직포 및 복수의 카본나노튜브가 3차원적으로 연결되어 형성된 집합체를 이룬 구조의 전도층을 적층하였으며, 이를 통해 부피변화가 큰 활물질이 적용되어도 전자전도 네트워크를 유지하고 활물질 탈리를 방지하여 전지의 성능을 극대화하는 것을 목적으로 한다.
또한 기존 삼차원 전극에 대해 샌드위치 구조의 전도층을 상부 및 하부에 형성함으로써 활물질층 내 활물질의 고로딩이 가능하도록 하여 전지의 용량 및 에너지 밀도를 높이는 것을 목적을 목적으로 한다.
상기와 같은 과제를 해결하기 위하여, 본 발명의 3차원 구조 전극은,
(a) 복수의 고분자 섬유를 포함하는 다공성 부직포 및 전도성 물질이 3차원적으로 불규칙하고 연속적으로 연결되어 내부에 상호 연결된 기공 구조가 형성된 집합체를 이루는 구조의 상부 전도층 및 하부 전도층; 및
(b) 상기 전도층과 동일한 집합체 구조를 형성하고 있으며, 상기 집합체 구조 내에 형성된 상호 연결된 기공 구조 내에 전극 활물질 입자가 균일하게 충진되어 3차원 충진 구조를 형성한 활물질층; 을 포함하며,
상기 활물질층은 상기 상부 전도층 및 하부 전도층 사이에 형성된 3차원 구조 전극을 제공한다.
본 발명의 일 실시예에서, 상기 3차원 구조 전극의 두께는 3 내지 1000 ㎛일 수 있다.
아울러, 상기 상부 전도층 및 하부 전도층의 두께는 각각 상기 활물질층의 3% 내지 30%일 수 있다.
본 발명의 일 실시예에서, 상기 전극 활물질층의 기공도는 5 내지 95부피%이고, 상기 상부 전도층 및 하부 전도층의 기공도는 5 내지 80부피%일 수 있다.
상기 고분자 섬유의 평균 직경은 0.001 내지 1000 ㎛이고, 활물질 입자의 평균 직경은 0.001 내지 30㎛일 수 있다.
다음으로, 본 발명의 일 실시예에 따르면, 3차원 구조 전극에 포함된 각 물질의 함량은 다음과 같다.
상기 활물질 층은 활물질 층의 중량에 대하여 5 내지 70중량%의 다공성 부직포 및 20 내지 85중량%의 활물질 입자를 포함하며, 상기 활물질 층에서 활물질 입자 및 전도성 물질의 함량 비율은, 상기 활물질 입자에 대한 상기 전도성 물질의 중량 비율로, 0.1:100 내지 50:100일 수 있다.
상기 상부 전도층 또는 하부 전도층은 상기 상부 전도층 또는 하부 전도층의 총 중량에 대하여, 10 내지 50중량%의 전도성 물질 및 50 내지 90중량%의 다공성 부직포를 포함할 수 있다.
다음으로, 본 발명의 일 실시예에서, 3차원 구조 전극에 포함된 물질의 종류는 다음과 같다.
상기 전도성 물질은 카본 나노 튜브(carbon nanotube), 은 나노와이어, 니켈 나노와이어, 금 나노와이어, 그래핀, 그래핀 옥사이드, 환원된 그래핀 옥사이드, 폴리피롤, 폴리 3,4-에틸렌디옥시티오펜, 폴리아닐린, 이들의 유도체 및 이들의 혼합물을 포함하는 군에서 선택된 1종 이상일 수 있다.
상기 복수의 고분자 섬유를 이루는 고분자는,
폴리에틸렌테레프탈레이트, 폴리이미드, 폴리아미드, 폴리술폰, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리에틸렌, 폴리프로필렌, 폴리에터이미드, 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리아크릴릭엑시드, 폴리비닐피롤리돈, 아가로즈, 알지네이트, 폴리비닐리덴 헥사플로로프로필렌, 폴리우레탄, 나일론 6, 폴리피롤, 폴리 3,4-에틸렌디옥시티오펜, 폴리아닐린, 이들의 유도체, 및 이들의 혼합물을 포함하는 군으로부터 선택된 1종 이상일 수 있다.
상기 활물질 입자는, 리튬메탈계 산화물, 카본계 물질, 산화물, 실리콘(Si), 주석(Sn), 게르마늄(Ge), 황(S), 이들의 유도체, 및 이들의 혼합물을 포함하는 군에서 선택된 1종 이상일 수 있다.
다음으로, 3차원 구조 전극의 제조방법은,
(a) 고분자 및 용매를 포함하는 고분자 용액을 제조하는 단계;
(b) 전도성 물질, 분산제 및 분산매를 포함하는 제 1 콜로이드 용액을 제조하는 단계;
(c) 상기 제 1 콜로이드 용액에 활물질 입자를 더 포함하는 제 2 콜로이드 용액을 각각 제조하는 단계;
(d) 상기 고분자 용액 및 상기 제 1콜로이드 용액, 제 2 콜로이드 용액을 사용하여 삼차원 구조 섬유를 제조하는 단계;
(e) 상기 삼차원 구조 섬유를 압착하여 삼차원 구조 섬유를 수득하는 단계; 를 포함하고,
상기 (d) 단계는,
상기 고분자 용액과 상기 제 1 콜로이드 용액을 동시에 방사하여 하부 전도층을 제조하는 단계;
상기 하부 전도층의 상부에 상기 고분자 용액과 상기 제 2 콜로이드 용액을 동시에 방사하여 활물질층을 제조하는 단계; 및
상기 활물질층의 상부에 상기 고분자 용액과 상기 제 1 콜로이드 용액을 동시에 방사하여 상부 전도층을 제조하는 단계; 를 포함할 수 있다.
한편 본 발명의 일 실시예에 따르면, 상기 (b) 단계는 상기 전도성 물질을 상기 분산매에 분산시켜 콜로이드 용액을 제조하는 단계; 를 포함할 수 있다.
또한 상기 (c) 단계는 상기 활물질 입자에 상기 전도성 물질을 투입하여, 혼합 분말을 제조하는 단계;
상기 혼합 분말을 분쇄하여, 활물질 입자/전도성 물질 복합체를 수득하는 단계; 및
상기 복합체를 상기 분산매에 분산시켜, 상기 콜로이드 용액을 제조하는 단계; 를 포함할 수 있다.
상기 (d)단계는 이중 전기 방사, 이중 전기 분무(electrospray), 이중 스프레이(spray), 및 이들의 조합을 포함하는 군에서 선택된 1종의 방법을 사용하는 것일 수 있으며, 상기 고분자 용액의 방사 속도는 2 내지 15 ㎕/min이고, 상기 제 1 콜로이드 용액 및 제 2 콜로이드 용액의 방사 속도는 30 내지 300 ㎕/min일 수 있다.
본 발명의 일 실시예에 따르면 3차원 구조 전극의 제조방법에 있어서 각 용액의 조성은 다음과 같다.
또한 상기 3차원 구조 전극의 제조방법에 있어서, 상기 제 1콜로이드 용액은 상기 제 1 콜로이드 용액의 총 중량에 대하여, 0.1 내지 50중량%의 전도성 물질을 포함할 수 있다.
상기 제 2 콜로이드 용액은 상기 제 2 콜로이드 용액의 총 중량에 대하여, 활물질 입자 1 내지 50 중량%을 포함하며, 상기 제 2 콜로이드 용액 내 활물질 입자 및 전도성 물질의 함량 비율은 상기 활물질 입자에 대한 상기 전도성 물질의 중량 비율로, 0.1:100 내지 50:100일 수 있다.
상기 고분자 용액은 상기 고분자 용액의 총 중량에 대하여, 5 내지 30중량%의 고분자를 포함할 수 있다.
상기 분산제의 함량은 상기 제 1콜로이드 용액 및 제 2 콜로이드 용액의 총 중량에 대하여 0.001 내지 10중량%일 수 있다.
상기 분산제는 폴리비닐피롤리돈, 폴리3,4-에틸렌디옥시티오펜, 및 이들의 혼합물울 포함하는 군에서 선택된 1종 이상이고,
상기 분산매는 증류수(deionized water), 이소프로필알콜(iso-propylalcohol), 부탄올(buthalol), 에탄올(ethanol), 헥산올(hexanol), 아세톤(Acatone), 디메틸포름아마이드(N,N-dimethylformamide), 디메틸아세트아마이드(N,Ndimethylacetamide), 메틸 피롤리돈(N,N-Methylpyrrolidone) 및 이들의 조합을 포함하는 군에서 선택된 1종 이상일 수 있다.
또한 본 발명은 음극, 양극 및 상기 음극과 양극 사이에 개재된 분리막을 포함하는 전극 조립체가 전지 케이스에 내장되어 있고, 상기 음극 또는 양극은 제 1항 내지 제 21항 중 어느 한 항에 따른 3차원 구조 전극인 것을 특징으로 하는 전기화학소자를 제공한다.
상기 전기 화학 소자는 리튬 이차전지, 슈퍼 커패시터(Super Capacitor), 리튬-황 전지, 나트륨 이온 전지, 리튬-공기전지, 아연-공기전지, 알루미늄-공기전지, 및 마그네슘 이온 전지를 포함하는 군에서 선택된 1종일 수 있다.
본 발명에 따른 삼차원 구조 전극은 전술한 활물질층과 상부 전도층 및 하부 전도층의 샌드위치 구조에 의하여, 첨가 물질을 최소화하고 가벼운 소재의 집전체를 사용함으로써 전극의 무게 및 체적 당 용량을 향상시키면서, 부피변화가 큰 활물질이 적용되어도 전자전도 네트워크를 유지하고 활물질 탈리를 방지할 수 있다.
또한 이를 통해, 고에너지 밀도 및 고출력 특성을 가지고, 사이클 성능이 우수한 전기 화학 소자를 제공할 수 있다.
도 1은 본 발명의 일 구체예에 따른 3차원 구조 전극의 구조 및 상기 3차원 구조 전극 제조방법을 나타낸 모식도이다.
도 2는 본 발명에 따른 리튬 이차 전지를 나타낸 모식도이다.
도 3은 본 발명의 일 실시예에 따른 3차원 구조 전극의 외관을 나타낸 사진이다.
도 4는 본 발명의 일 실시예 에 따른 3차원 구조 전극의 단면 및 표면을 주사전자현미경으로 관찰한 사진이다.
도 5는 본 발명의 일 실시예 에 따른 3차원 구조 전극 및 비교예 1에 의해 제조된 전극의 전자전도도를 비교한 결과이다.
도 6은 본 발명의 일 실시예와 비교예에 따른 전지의 충방전 사이클 수명 특성을 나타낸 그래프이다.
본 명세서 및 특허청구범위에 사용된 용어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예에 도시된 구성은 본 발명의 가장 바람직한 하나의 실시양태에 불과하고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물 및 변형예가 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 「연결」되어 있다고 할 때, 이는 「직접적으로 연결되어 있는 경우」뿐만 아니라 그 중간에 다른 소자를 사이에 두고 「전기적으로 연결」되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미하다.
본원 명세서 전체에서 사용되는 용어 「약」, 「실질적으로」 등은 언급된 의미에 고유한 제조 및 물질 허용 오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로서 사용되고 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 「이들의 조합(들)」의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어지는 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어지는 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본 발명은 전기화학소장용 음극 및 이를 포함하는 전기화학소자에 대한 것이다. 본 발명에서 상기 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함하며, 구체적인 예를 들면, 모든 종류의 1차, 2차 전지, 연료 전지, 태양 전지 또는 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차 전지가 바람직하다.
본원 명세서 전체에서 「A 및/또는 B」의 기재는 「A 또는 B 또는 이들 모두」를 의미한다.
또한 본원 명세서에서 「전도층」의 기재는 「상부 전도층 또는 하부 전도층」을 의미한다.
또한 본원 명세서에서 「상부」 또는 「하부」의 기재는 활물질층을 기준으로 전도층의 상대적인 위치를 나타내는 용어이다.
이하 본 발명을 자세히 설명한다.
본 발명의 에 따른 3차원 구조 전극은 (a) 복수의 고분자 섬유를 포함하는 다공성 부직포 및 전도성 물질이 3차원적으로 불규칙하고 연속적으로 연결되어 내부에 상호 연결된 기공 구조가 형성된 집합체를 이루는 구조의 상부 전도층 및 하부 전도층; 및 상기 전도층과 동일한 집합체 구조를 형성하고 있으며, 상기 집합체 구조 내에 활물질 입자가 균일하게 충진되어 3차원 충진 구조를 형성한 활물질 층; 을 포함하며, 상기 활물질층은 상기 상부 전도층 및 하부 전도층 사이에 형성되어 있는 구조이다.
도 1은 본 발명의 일 구체예에 따른 3차원 구조 전극의 구조 및 상기 3차원 구조 전극 제조방법을 나타낸 모식도이다.
구체적으로, 본 발명에 따른 3차원 구조 전극(100)은 3차원 충진 구조로서, 활물질층의(110) 경우 상기 다공성 부직포에 포함된 복수의 고분자 섬유(10)가 지지체 역할을 하며, 상기 복수의 고분자 섬유(10) 사이에는 상기 양극 활물질 입자(20) 및 상기 전도성 물질(30)이 균일하게 충진되고, 상기 복수의 고분자 섬유(10)에 의해 상호 연결된 기공 구조(interconnected porous network)가 형상된 형태이다.
이는 삼차원 구조 전극에 첨가되는 물질을 최소화하고, 가벼운 소재의 집전체를 사용함으로써 면적 당 중량을 감소시키며, 그러면서도 우수한 전자전도 네트워크를 유지할 수 있도록 한다. 구체적으로 별도의 바인더가 첨가되지 않으며, 금속 집전체 대신 가벼운 소재의 다공성 부직포를 사용한다. 나아가 상기 3차원 충진 구조 내에서 활물질 입자가 전도성 물질에 둘러싸힌 형태를 이룸으로써, 전자전도 네트워크를 균일화하여 전기 화학 소 자의 고출력 특성에 기여할 수 있고, 이는 일반적인 전극에 대비하여 방전 특성을 향상시킨다.
아울러, 본 발명에 따른 3차원 전극은 상기 활물질 층의 상부와 하부에 상부 전도층(120) 및 하부 전도층(130)이 형성되어 샌드위치 형태의 전극 구조를 형성하고 있으며, 상기 상부 전도층 및 하부 전도층에는 다공성 부직포에 포함된 복수의 고분자 섬유(10)에 전도성 물질(30)이 충진되어 3차원적인 집합체 구조가 형성되어 있다.
일반적으로 활물질은 다양한 구조 및 성분으로 개발되며,특히 상용화된 음극 소재인 흑연은 매우 가역적인 충방전 거동을 보이며 그로 인해 긴 수명 특성을 보인다. 다만 흑연은 낮은 이론용량을 가지므로(이론 용량이 약 370mAh/g로 제한), 흑연을 대체하기 위해서 고용량 실리콘, 전이금속 산화물 등 다양한 소재가 개발되어 왔다. 그 중에서도 음극 활물질로서 높은 이론 용량(4200mAh/g)을 갖는 실리콘을 이용하여 상기 흑연과 같은 탄소계 물질을 대체하려는 연구가 진행되어 왔다.
그러나 대부분의 고용량 소재는 낮은 전기전도도로 인하여 충방전 속도가 느리다는 단점이 있었다. 또한 상기와 같은 고용량 소재는 전환반응 또는 합금화 반응으로 인해 부피 변화가 크다는 단점이 있다.
예를 들어, 합금화 반응의 경우, Si원소 또는 금속 원소를 포함하는 음극 활물질은 금속이 Li와 합금화하는 과정에서 구조적으로 큰 변화가 일어나고 큰 부피팽창이 발생한다. Li + χM - χ의 형성시 호스트 금속(M)은 Li 이온을 축적할 뿐 아니라 Li 이온과 동일한 수의 전자도 받아들이게 된다. 즉 금속은 다음의 전하 이동(charge transfer) 반응에 의해 중성 원자에 비해 반경이 큰 음이온 상태가 된다.
M 0 + χe - ↔ M χ-
이러한 결과로 Li이 없을 경우에 비해 Li이 삽입된 금속은 부피가 100 내지 400 % 정도 증가하게 된다. 더욱이 Li 함금은 이온결합 특성을 나타내므로 부서지기 쉽고, 부피변화에 따른 기계적 응력에 의해 기계적 안정성이 떨어진다.
따라서 상기와 같은 부피변화는 사이클이 지속됨에 따라 증가하며, 이는전극 네트워크 끊김을 유발하고 활물질 균열화 및 표면 불안정한 고체-전해액 인터페이스(solid-electrolyte-interphase, SEI) 층 생성과 같은 퇴화 거동을 야기하여 수 사이클의 충방전 이내에 용량이 급격하게 감퇴하는 문제점이 발생하게 된다.
특히 전극 구조 내부로 보면 집전체와 활물질층 간의 접착력이 활물질과 활물질 사이의 접착력이 낮아, 충방전시 계면에서 응력을 크게 받아 활물질의 탈리 현상이 발생하게 된다.
따라서, 이러한 현상을 방지하기 위해 상기 전도층을 활물질층의 상부 및 하부에 형성시킴으로써 상기 전도층이 활물질의 탈리를 완화할 수 있는 완충지대 역할을 하여 활물질 탈리를 억제하며, 활물질의 부피변화가 발생해도 상기 전도층을 통해 전자전도 네트워크를 유지할 수 있도록 한다. 이를 통해 전지의 용량 감소를 방지하고, 전극의 도전성을 증가시켜 전지의 사이클 수명특성을 향상시킬 수 있고, 에너지 밀도를 증가시킬 수 있다. 나아가 굽힘 등에 의해 강한 외력이 가해지더라도 활물질의 탈리 현상이 억제되므로 전극의 유동성 향상에도 기여할 수 있다.
이하, 본 발명에 따른 3차원 구조 전극의 구조에 대하여 설명한다.
상술한 바와 같이, 본 발명에 따른 3차원 구조 전극(100)은 상부 전도층(120) 및 하부 전도층(130) 사이에 활물질층(110)이 개재된 구조이다.
상기 활물질층(110)은 상기 다공성 부직포에 포함된 다공성 부직포 및 전도성 물질이 3차원적으로 불규칙하고 연속적으로 연결되어 내부에 상호 연결된 기공 구조가 형성된 집합체를 형성하고, 상기 집합체 내부에 활물질 입자가 충진된 구조를 갖는다. 더욱 구체적으로, 상기 다공성 부직포 내부에 형성된 불균일한 다수의 공간 내부에 전도성 물질이 균일하게 충진되고, 다시 그 내부에 활물질 입자가 충진된 구조이다.
상기 활물질층의 기공도는 전해질을 용이하게 흡수할 수 있는 동시에 이온의 이동도를 적절하게 조절함으로써 전기화학소자의 성능을 개선하기 위하여, 5 내지 95%일 수 있으며, 삼차원 구조 전극의 이온 전도성 및 기계적 강도 향상을 위하여 더욱 바람직하게는 30 내지 90 부피%일 수 있다.
상기 활물질층의 기공도가 95부피%를 초과하는 경우 전극의 로딩값이 체적에 비해 너무 작아지는 문제가 발생하고, 상기 활물질 입자 및 상기 전도성 물질 간의 거리가 증가하여 전자전도 네트워크 형성이 어렵다는 문제가 있다. 또한 상기 기공도가 5부피% 미만인 경우, 기공도가 너무 작아 3차원 구조 전극의 이온 전도성이 저하될 수 있다.
이에 대하여, 상기 상부 전도층 및 하부 전도층은, 활물질 탈리 억제 및 전자전도 네트워크 유지 측면에서 활물질층의 기공도보다 작은 것이 바람직하며, 5 내지 80부피%가 바람직하고, 20 내지 60부피%가 더욱 바람직하다.
상기 상부 전도층 및 하부 전도층의 기공도가 5부피% 미만인 경우 기공도가 너무 작아 활물질층으로부터의 이온 이동성 및 전자 이동성이 저하되어 전지 성능이 저하될 수 있으며, 기공도가 80부피% 이상인 경우 활물질층으로부터의 활물질 입자의 탈리를 억제하기 어렵고, 전지의 에너지 밀도를 높이기 어렵다는 문제점이 있다.
상기 삼차원 전극의 기공도는 상기 고분자 섬유 및 활물질 입자의 직경, 그리고 첨가되는 고분자 섬유, 전도성 물질, 활물질 입자의 함량에 의해 제어될 수 있다.
또한 본 발명에 따른 3차원 구조 전극의 두께는 전극 제조공정의 용이성및 원활한 전자전도 네트워크 형성을 위하여 3 내지 1000㎛일 수 있다. 전극의 두께가 1000㎛를 초과할 경우 두께 방향의 전자 전도성이 저하되어 전지의 출력 특성이 저하될 수 있으며, 두께가 3㎛ 미만인 경우 전극의 두께가 지나치게 얇아지므로 전극의 용량이 감소될 수 있다는 문제점이 있다. 나아가 본 발명의 효과를 극대화하기 위하여 10 내지 300㎛의 두께로 전극을 형성하는 것이 더욱 바람직하다.
또한 본 발명에 따른 3차원 전극에서, 상부 전도층 또는 하부 전도층의 두께는 각각 상기 활물질층의 3 내지 30%일 수 있으며 더욱 바람직하게는 5 내지 10%일 수 있다. 상기 상부 전도층 또는 하부 전도층의 두께가 활물질층의 3% 미만일 경우, 두께가 지나치게 얇아서 활물질의 부피 변화에 의한 활물질 탈리를 방지할 수 없고 활물질 탈리에 의해 전자전도 네트워크가 손상될 수 있다. 반대로 상부 전도층 또는 하부 전도층의 두께가 활물질층의 30%를 초과할 경우 활물질층으로부터의 이온이동성이 저하될 수 있다는 문제가 발생할 수 있다.
한편, 본 발명에 따른 3차원 구조 전극에서 상기 활물질층의 면적 당 중량은 0.001mg/cm 2 내지 1g/cm 2일 수 있으며, 상기 상부 전도층 및 하부 전도층의 면적 당 중량은 활물질층의 중량 대비 5 내지 10%정도일 수 있다.
상기 범위는 상기 3차원 구조 전극 내 첨가 물질을 최소화하고, 일반적인 금속 집전체 대신 가벼운 소재인 다공성 부직포를 사용함에 따라 전극의 면적 당 중량이 감소한 것이다. 또한 전극의 면적 당 중량은 활물질 함량에 영향을 받으므로 활물질 입자가 포함되어 있지 않은 상기 상부 전도층 및 하부 전도층의 면적 당 중량은 활물질층에 비해 감소하고, 전체적인 전극의 면적 당 중량 또한 활물질층보다 작다.
전극의 면적 당 중량이 상기 범위보다 감소할 경우 전극의 에너지 밀도가 낮아지며, 전극의 면적 당 중량이 상기 범위보다 클 경우 전극의 성능에 비해 전극이 무거워질 수 있다는 문제가 발생할 수 있다. 특히 3차원 구조 전극의 성능을 극대화하기 위하여 상기 상부 전도층 및 하부 전도층의 면적 당 중량은 0.001 내지 50 mg/cm 2가 더욱 바람직하다.
또한 상기 3차원 구조 전극은 활물질 입자의 로딩량을 극대화하고, 전기화학소자의 용량 및 에너지 밀도를 향상시키기 위해 복수 개의 전극이 다층 구조를 형성한 것일 수 있다.
상기와 같이 다층 구조로 형성된 3차원 구조 전극의 면적 당 중량은 0.002 내지 10 g/cm 2일 수 있다.
또한 본 발명에 따른 3차원 구조 전극은 전해질에 대한 우수한 젖음성(wettability)을 위해 극성일 수 있다.
또한 상기 3차원 구조 전극은 양극 또는 음극일 수 있다.
다음으로, 상기 3차원 구조 전극에 포함된 물질에 대해 설명한다.
먼저, 활물질층 및 전도층에 포함되는 복수의 고분자 섬유는 불균일하게 집합되어 다공성 부직포 형태를 형성할 수 있은 것이면 그 종류에 특별한 제한은 존재하지 않다. 다만 상기 고분자가 내열성을 갖는 것이 전극의 열 안정성 확보에 바람직하다.
구체적으로 상기 복수의 고분자 섬유를 이루는 고분자는 폴리에틸렌테레프탈레이트, 폴리이미드, 폴리아미드, 폴리술폰, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리에틸렌, 폴리프로필렌, 폴리에터이미드, 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리아크릴릭엑시드, 폴리비닐피롤리돈, 아가로즈, 알지네이트, 폴리비닐리덴 헥사플로로프로필렌, 폴리우레탄, 나일론 6, 폴리피롤, 폴리 3,4-에틸렌디옥시티오펜, 폴리아닐린, 이들의 유도체, 및 이들의 혼합물을 포함하는 군으로부터 선택된 1종 이상일 수 있으며, 그 외에 카본 나노 튜브(carbon nanotube), 그래핀, 그래핀 옥사이드, 환원된 그래핀 옥사이드, 폴리피롤, 폴리 3,4-에틸렌디옥시티오펜, 폴리아닐린, 이들의 유도체, 및 이들의 혼합물을 포함하는 군으로부터 선택된 1종 이상일 수 있다. 특히 고분자의 기계적, 화학적 안정성 등에 비추어 폴리아크릴로니트릴이 가장 바람직하다.
상기 고분자 섬유는 평균 직경이 0.001 내지 100㎛일 수 있으며, 더욱 바람직하게는 0.01 내지 2㎛일 수 있다.
상기 수치범위 내의 고분자 섬유를 사용함으로써, 3차원 집합체 구조를 형성한 복수의 고분자 섬유 내에 활물질 입자 및 전도성 물질이 충진될 수 있는 충분한 공간을 확보할 수 있으며, 고분자 섬유 내에 균일한 기공 구조가 형성될 수 있어 전해질 흡수 및 이온의 이동에 유리할 수 있다.
상기 고분자 섬유의 직경이 0.001㎛ 미만인 경우 고분자 섬유가 지지체의 역할을 하기에 취약한 물성을 가지게 되며, 100㎛를 초과할 경우 고분자 섬유의 두께가 지나치게 두꺼워져 내부에 형성되는 기공이 감소하므로 활물질 입자 및 전도성 물질이 충진되기 어렵다는 문제가 발생할 수 있다.
상기 활물질층 전극의 용량 증대 측면에서 활물질층의 총 중량에 대하여 5 내지 70중량%의 다공성 부직포를 포함할 수 있으며, 더욱 바람직하게는 15 내지 60중량%의 다공성 부직포를 포함할 수 있다. 또한 상부 전도층 또는 하부 전도층은 상부 전도층 또는 하부 전도층의 중량에 대하여 50 내지 90중량%의 다공성 부직포를 포함할 수 있으며, 더욱 바람직하게는 60 내지 80중량%의 다공성 부직포를 포함할 수 있다.
활물질층 또는 전도층 내 다공성 부직포의 함량이 상기 범위를 초과할 경우 상기 다공성 부직포 대비 활물질 입자 또는 전도성 물질의 함량이 지나치게 감소하는 결과 전자 전도성이 저하되는 문제가 발생할 수 있다. 반대로, 다공성 부직포의 함량이 상기 범위 미만일 경우 다공성 부직포가 지지체의 역할을 충분히 수행할 수 있을 정도로 충분하지 않아 전극의 구조가 유지될 수 없다. 특히 전도층 내 다공성 부직포는 활물질 탈리를 방지하기 위하여 활물질층에 비해서 그 함량 비율이 큰 것이 바람직하다.
다음으로, 활물질 입자는 앞서 언급한 리튬메탈계 산화물, 기타 산화물, 실리콘(Si), 주석(Sn), 게르마늄(Ge), 황(S), 이들의 유도체, 및 이들의 혼합물을 포함하는 군에서 선택된 1종 이상일 수 있다. 구체적으로, 리튬메탈계 산화물과 그 유도체는 양극 활물질이 될 수 있으며, 이를 적용한 전극은 양극이 될 수 있다. 한편, 산화물, 실리콘(Si), 주석(Sn), 게르마늄(Ge), 황(S), 및 이들의 유도체는, 음극 활물질이 될 수 있으며, 이를 적용한 전극은 음극이 될 수 있다.
또한 상기 활물질 입자는 표면이 탄소(Carbon)계 화합물로 코팅된 것일 수 있으며 상기 탄소계 화합물로는 난흑연화 탄소, 흑연계 탄소 등이 있으나 이에 한정되는 것은 아니다.
상기 활물질 입자 중 리튬메탈계 산화물은, 리튬니켈계 산화물, 리튬코발트계 산화물, 리튬망간계 산화물, 리튬타이타늄계 산화물, 리튬니켈망간계 산화물, 리튬니켈코발트망간계 산화물, 리튬니켈코발트알루미늄계 산화물, 리튬인산철계 산화물, 리튬인산바나듐계 산화물, 리튬인산망간계, 리튬망간실리케이트계 산화물, 리튬철실리케이트계 산화물, 및 이들의 조합을 포함하는 군 중에서 선택된 적어도 하나일 수 있다.
즉, 코발트, 망간, 니켈 또는 이들의 조합의 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있다. 그 구체적인 예로는, 하기 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다.
구체적으로 양극 활물질은 1 또는 그 이상의 전이금속으로 치환된 리튬 코발트 산화물(LiCoO 2), 리튬 니켈 산화물(LiNiO 2) 등의 층상 화합물; 1 또는 그 이상의 전이금속으로 치환된 리튬 망간 산화물; 화학식 LiNi 1-yM yO 2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B, Cr, Zn 또는 Ga 이고 상기 원소 중 하나 이상의 원소를 포함, 0.01≤y≤0.7 임)으로 표현되는 리튬 니켈계 산화물; Li 1+zNi 1/3Co 1/3Mn 1/3O 2, Li 1+zNi 0.4Mn 0.4Co 0.2O 2 등과 같이 Li 1+zNi bMn cCo 1-(b+c+d)M dO (2-e)A e (여기서, -0.5≤z≤0.5, 0.1≤b≤0.8, 0.1≤c≤0.8, 0≤d≤0.2, 0≤e≤0.2, b+c+d<1임, M = Al, Mg, Cr, Ti, Si 또는 Y 이고, A = F, P 또는 Cl 임)으로 표현되는 리튬 니켈 코발트 망간 복합산화물; 화학식 Li 1+xM 1-yM' yPO 4-zX z(여기서, M = 전이금속, 바람직하게는 Fe, Mn, Co 또는 Ni 이고, M' = Al, Mg 또는 Ti 이고, X = F, S 또는 N 이며, -0.5≤x≤+0.5, 0≤y≤0.5, 0≤z≤0.1 임)로 표현되는 올리빈계 리튬 금속 포스페이트 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
또한 상기 활물질 입자 중 산화물은 SnO, SnO 2, PbO, PbO 2, Pb 2O 3, Pb 3O 4, Sb 2O 3, Sb 2O 4, Sb 2O 5, GeO, GeO 2, Bi 2O 3, Bi 2O 4, Bi 2O 5 등의 금속 산화물일 수 있다.
기타 음극 활물질로 사용할 수 있는 물질들은 Li xFe 2O 3(0≤x≤1), Li xWO 2(0≤x≤1), Sn xMe 1-xMe' yO z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; 폴리아세틸렌 등의 도전성 고분자 등이 있으나, 이에 한정되는 것은 아니다.
특히, 바람직한 활물질 입자로서, 이론 용량이 큰 활물질 입자로는 Si, SiO, Ge, Sn, S가 있다.
상기 활물질 입자의 평균 직경은 0.001 내지 30㎛ 일 수 있으며, 더욱 바람직하게는 0.001 내지 10㎛일 수 있다. 활물질 입자의 크기를 상기와 같이 조절함으로써 활물질층의 기공도를 전술한 범위로 조절할 수 있다. 또한 후술하는 바와 같이, 활물질 입자를 포함하는 제 2 콜로이드 용액 내의 분산성을 향상시키고, 전기 방사법에 의한 삼차원 구조 전극의 기공을 균일하게 할 수 있다.
상기 활물질 입자의 평균 직경이 0.001㎛ 미만일 경우 전극의 밀도가 낮아져서 전극이 적절한 부피당 용량을 가질 수 없고, 입자의 크기가 지나치게 작아 취급이 힘들며, 활물질 탈리를 방지하기 어렵다. 또한 상기 활물질 입자의 평균 직경이 30㎛를 초과할 경우 활물질 입자의 크기로 인해 후술할 제 2 콜로이드 용액의 분산 상태가 고르지 않고, 활물질 입자가 기공 내에 균일하게 충진되기 어려울 수 있으며, 활물질의 부피가 지나치게 큰 크기로 증가하게 될 수 있다.
상기 활물질층은 활물질 층의 중량에 대하여, 20 내지 85중량%의 활물질 입자를 포함할 수 있으며, 더욱 바람직하게는 더욱 바람직하게는 30 내지 75중량%의 활물질 입자를 포함할 수 있다. 활물질 입자의 함량을 상기와 같은 범위로 조절함으로써 전기 화학 소자의 용량 및 에너지 밀도를 향상시킬 수 있고, 3차원 구조 전극의 기공도를 제어할 수 있다.
활물질 입자의 함량이 85중량%를 초과하는 경우 상기 다공성 부직포에 대하여 상기 활물질 입자의 함량이 지나치게 많아 다공성 부직포가 전극을 지지하는 역할을 수행하기 어려워 전극 구조를 유지하기 어렵다는 문제점이 있다. 반대로 활물질 입자의 함량이 20% 미만인 경우, 활물질 입자의 함량이 지나치게 적어 활물질 입자 및 전도성 물질 간에 전자전도 네트워크를 형성하기 어렵고, 전극의 출력이 저하될 수 있다.
다음으로, 본 발명에 따른 3차원 구조 전극에서, 전도성 물질은 활물질 입자와 함께 전자전도 네트워크를 형성하는 역할을 수행하며, 전자전도 네트워크를 형성할 수 있다면 그 종류는 특별히 제한되지 않는다.
상기 전도성 물질은 카본 나노 튜브(carbon nanotube, CNT), 은 나노와이어, 니켈 나노와이어, 금 나노와이어, 그래핀, 그래핀 옥사이드, 환원된 그래핀 옥사이드, 폴리피롤, 폴리 3,4-에틸렌디옥시티오펜, 폴리아닐린, 이들의 유도체 및 이들의 혼합물을 포함하는 군에서 선택된 1종 이상일 수 있으며, 기계적 강도 및 전자 전도성 측면에서 카본 나노 튜브가 더욱 바람직하다.
상기 활물질층에서, 전도성 물질의 함량은 상기 활물질 입자에 대한 상기 전도성 물질의 중량비로, 0.1:100 내지 50:100일 수 있다. 상기 범위의 전도성 물질을 함유함으로써 전자전도 네트워크를 형성하여 전기 화학 소자의 출력을 향상시킬 수 있다.
전도성 물질의 함량이 상기 범위 미만일 명우 전자전도 네트워크의 형성이 불충분하여 전기 화학 소자의 출력이 저하될 수 있고, 전도성 물질의 함량이 상기 범위를 초과할 경우 후술할 제 1 콜로이드 용액 및 제 2 콜로이드 용액의 분산상태가 유지되지 않아 균일한 전극 구조가 형성될 수 없다는 문제점이 있다.
또한 전자전도 네트워크 형성을 위해, 상부 전도층 및 하부 전도층은 상부 전도층 또는 하부 전도층의 총 중량에 대하여, 10 내지 50중량%의 전도성 물질을 포함할 수 있으며, 더욱 바람직하게는 20 내지 40중량%의 전도성 물질을 포함할 수 있다.
상기 전도성 물질의 함량이 50중량%를 초과할 경우 전도층을 구성하는 다공성 부직포의 함량이 적어 전도층이 지지되기 어려우며 활물질 탈리를 효과적으로 억제할 수 없다. 반대로 상기 전도성 물질의 함량이 10중량% 미만인 경우 전도층의 전자전도 네트워크 형성이 어려워, 활물질의 부피 변화로 인한 활물질층의 전자전도 네트워크 손상시 전극의 출력 특성이 감소할 수 있다는 문제점이 있다.
다음으로 본 발명에 따른 3차원 구조 전극을 제조하는 방법에 대해서 설명한다.
본 발명에 따른 3차원 구조 전극의 제조방법은 (a) 고분자를 용매에 용해시켜, 고분자 및 용매를 포함하는 고분자 용액을 제조하는 단계; (b) 전도성 물질을 분산매에 분산시켜 제 전도성 물질, 분산제 및 분산매를 포함하는 제 1 콜로이드 용액을 제조하는 단계; (c) 활물질 입자 및 전도성 물질을 분산매에 분산시켜 상기 제 1 콜로이드 용액에 활물질 입자를 더 포함하는 제 2 콜로이드 용액을 제조하는 단계; (d) 상기 고분자 용액 및 상기 제 1 콜로이드 용액, 상기 제 2 콜로이드 용액으로부터 3차원 구조 섬유를 제조하는 단계; (e) 상기 3차원 구조 섬유를 압착하여 3차원 구조 섬유를 수득하는 단계; 를 포함하고, 상기 (d) 상기 고분자 용액 및 상기 제 1 콜로이드 용액, 상기 제 2 콜로이드 용액을 사용하여 3차원 구조 섬유를 제조하는 단계는 복수의 고분자 섬유를 포함하는 다공성 부직포를 형성시키고, 상기 다공성 부직포에 포함된 복수의 고분자 섬유 사이에 상기 활물질 입자 및 상기 전도성 물질이 균일하게 충진시키고, 기공을 형성시키는 공정이다.
또한 더욱 구체적으로, 상기 (d) 상기 고분자 용액 및 상기 제 1 콜로이드 용액, 상기 제 2 콜로이드 용액을 사용하여 3차원 구조 섬유를 제조하는 단계는 상기 고분자 용액과 제 1 콜로이드 용액을 동시에 방사하여 하부 전도층을 제조하는 단계; 상기 하부 전도층의 상부에 상기 고분자 용액과 상기 제 2 콜로이드 용액을 동시에 방사하여 활물질층을 제조하는 단계; 상기 활물질층의 상부에 상기 고분자 용액과 상기 제 1 콜로이드 용액을 동시에 방사하여 상부 전도층을 제조하는 단계;를 포함한다.
즉 상기 고분자 용액 및 상기 제 1 콜로이드 용액 또는 제 2 콜로이드 용액을 동시에 분사함으로써 우수한 특성의 3차원 구조 전극을 제조할 수 있다.
상기 제 2 콜로이드 용액에 포함된 활물질 입자로는 전술한 바와 같이, 리튬메탈계 산화물, 금속 산화물을 포함하는 산화물, 실리콘(Si), 주석(Sn), 게르마늄(Ge), 황(S), 이들의 유도체, 및 이들의 혼합물을 포함하는 군에서 선택된 1종 이상을 사용할 수 있다.
구체적으로 상기 제 2 콜로이드 용액을 상기 고분자 용액과 동시에 방사하여 지지체의 역할을 하는 복수의 고분자 섬유에 의해 상호 연결된 기공 구조를 형성하고 상기 활물질 입자 및 상기 전도성 물질에 의한 3차원 충진 구조를 형성하고, 상기 제 1 콜로이드 용액을 상기 고분자 용액과 동시에 활물질층의 상부 및 하부에 방사하여 복수의 고분자 섬유 및 전도성 물질에 의한 3차원 집합체 구조를 형성하는 것이다.
먼저 상기 (a) 고분자 및 용매를 포함하는 고분자 용액을 제조하는 단계에 대해서 설명한다.
상기 고분자 용액의 분사에 의해 복수의 고분자 섬유 및 이로부터 다공성부직포를 형성하도록 상기 고분자 용액은 상기 고분자 용액의 총 중량에 대하여, 5 내지 30중량%의 고분자를 포함할 수 있으며, 더욱 바람직하게는 10 내지 15중량%의 고분자를 포함할 수 있다.
상기 고분자 섬유가 5중량% 미만인 경우 고분자 용액이 고르게 방사되지 못하고 비드(bead)가 형성되는 문제가 발생할 수 있으며, 30중량%를 초과할 경우에는 고분자 용액이 방사되는 노즐의 끝에서 굳어져 방사가 원활하지 않는 문제가 발생할 수 있다.
상기 고분자 용액에 사용될 수 있는 용매는 상기 고분자를 용해시킬 수 있는 것이면 특별히 제한되지 않는다. 대표적으로 디메틸포름아마이드(N,N-dimethylformamide), 디메틸 아세트아미드(N,N-dimethylacetamide), 메틸피롤리돈(N,N-Methylpyrrolidone), 및 이들의 조합을 포함하는 군에서 선택된 1종 이상이 사용될 수 있으며 디메틸포름아마이드(N,N-dimethylformamide)가 바람직하다.
다음으로 (b) 전도성 물질, 분산제 및 분산매를 포함하는 제 1 콜로이드 용액을 제조하는 단계 및 (c) 상기 제 1 콜로이드 용액에 활물질 입자를 더 포함하는 제 2 콜로이드 용액을 제조하는 단계에 대하여 설명한다.
상기 제 1 콜로이드 용액 내에서 상기 전도성 물질의 함량은 제 1 콜로이드 용액의 총 중량에 대하여 0.1 내지 50중량%의 전도성 물질을 포함하는 것이 바람직하며, 1 내지 20중량%의 전도성 물질을 포함하는 것이 더욱 바람직하다. 또한 제 2 콜로이드 용액에서 전도성 물질의 함량은 상기 활물질 입자에 대한 전도성 물질의 중량비로 0.1:100 내지 50:100일 수 있다. 상기와 같은 범위로 전도성 물질 함량을 조절함으로써 3차원 구조 전극의 전자전도 네트워크를 유지할 수 있다.
전도성 물질의 함량이 상기 범위 미만일 명우 전자전도 네트워크의 형성이 불충분하여 전기 화학 소자의 출력이 저하될 수 있고, 전도성 물질의 함량이 상기 범위를 초과할 경우 상기 제 1 콜로이드 용액의 분산상태가 유지되지 않아 균일한 전극 구조가 형성될 수 없다는 문제점이 있다.
상기 제 2 콜로이드 용액은 상기 제 2 콜로이드 용액의 총 중량에 대하여활물질 입자 1 내지 50중량%를 포함할 수 있다. 이를 통해 3차원 구조 전극 내 기공도를 조절할 수 있다.
상기 활물질 입자의 함량이 1중량% 미만인 경우 상기 3차원 구조 전극의 활물질 로딩량이 작아지고 활물질 입자 및 전도성 물질 간에 전자전도 네트워크를 형성하기 어려우며, 전극의 출력이 저하될 수 있다. 상기 활물질 입자의 함량이 50중량%를 초과할 경우 활물질 입자의 분산이 어렵고 이후 활물질 층 형성시 상기 활물질 입자의 함량이 지나치게 많아 다공성 부직포가 전극을 지지하는 역할을 수행하기 어려워 전극 구조를 유지하기 어렵다는 문제점이 있다.
상기 (b) 단계 및 상기 (c) 단계에 대해 구체적으로 설명하면, 상기 (b) 단계는 상기 전도성 물질을 상기 분산매에 분산시켜 제 1 콜로이드 용액을 제조하는 단계:를 포함하며, 상기 (c) 단계는 상기 활물질 입자를 분쇄하는 단계; 및 상기 분쇄된 활물질 입자 및 상기 분쇄된 전도성 물질을 상기 분산매에 분산시켜 상기 제 2 콜로이드 용액을 제조하는 단계; 를 포함할 수 있다.
더욱 구체적으로 상기 (c) 단계는 상기 활물질 입자에 상기 전도성 물질을 투입하여 혼합 분말을 제조하는 단계; 상기 혼합 분말을 분쇄하여 활물질 입자/전도성 물질 복합체를 수득하는 단계; 및 상기 복합체를 상기 분산매에 분산시켜 상기 제 2 콜로이드 용액을 제조하는 단계; 를 포함할 수 있다.
상기와 같이 활물질 입자를 분쇄하는 것은 제 2 콜로이드 용액 내 활물질 입자의 균일한 분산을 위한 것으로 이후 3차원 구조 전극 내 활물질 입자의 평균 직경을 한정한 것과 관련되어 있다. 구체적으로 상기 제 2 콜로이드 용액의 제조 전 마이크로미터 단위의 평균 직경을 가지는 활물질 입자를 나노미터 단위의 평균직경을 가지는 입자로 분쇄할 경우 활물질 입자가 상기 콜로이드 용액 내에 균일하게 분산되기 용이하다.
다만 상기 활물질 입자가 나노미터 단위의 평균 직경을 가질 경우 분쇄 단계가 불필요할 수 있다. 상기와 같이 제 2 콜로이드 용액 내에 활물질 입자가 균일하게 분산되도록 함으로써 활물질 입자 표면의 전자 전도성을 더욱 강화할 수 있다.
한편 상기 (b) 단계 및 (c) 단계에서, 상기 분산제는 콜로이드 용액 내 전도성 물질의 분산을 도울 수 있는 물질로, 상기 분산제의 함량은 상기 제 1 콜로이드 용액 및 제 2 콜로이드 용액의 총 중량에 대하여 0.001 내지 10%일 수 있으며, 더욱 바람직하게는 0.01 내지 1%일 수 있다.
상기 분산제의 함량이 0.001중량% 미만인 경우에는 분산제의 양이 너무 적어 콜로이드 용액 내 입자의 분산이 용이하지 않으며, 10중량%를 초과할 경우 분산제의 양이 지나치게 증가하여 콜로이드 용액의 점도가 지나치게 증가할 수 있다.
구체적으로 상기 분산제는, 폴리비닐피롤리돈, 폴리3,4-에틸렌디옥시티오펜, 및 이들의 혼합물울 포함하는 군에서 선택된 1종 이상일 수 있다. 구체적으로 분산 효과 측면에서 폴리비닐피롤리돈이 바람직하다.
상기 분산매는, 상기 활물질 입자 및 상기 전도성 물질을 분산시킬 수 있는 것이라면 특별히 한정되지 않으며 증류수(deionized water), 이소프로필알코올(iso-propylalcohol), 부탄올(buthalol), 에탄올(ethanol), 헥산올(hexanol), 아세톤(Acatone), 디메틸포름아마이드(N,N-dimethylformamide), 디메틸아세트아마이드(N,N-dimethylacetamide), 메틸 피롤리돈(N,N-Methylpyrrolidone) 및 이들의 조합을 포함하는 군에서 선택된 1종 이상일 수 있다. 구체적으로 분산 효과 측면에서 증류수 및 이소프로필알코올의 혼합 용매가 바람직하다.
다음으로 상기 (d) 상기 고분자 용액 및 상기 제 1 콜로이드 용액, 상기 제 2 콜로이드 용액을 사용하여 3차원 구조 섬유를 제조하는 단계에 대하여 설명한다.
전술한 바와 같이 상기 (d) 단계는 하부 전도층을 형성하는 단계; 하부 전도층의 위에 활물질층을 형성하는 단계; 활물질층의 상부에 상부 전도층을 형성하는 단계; 를 포함한다.
상기 (d) 단계는 상기 고분자 용액 및 상기 제 1 콜로이드 용액 또는 제 2 콜로이드 용액을 동시에 방사하여 다공성 부직포 및 전도성 물질이 3차원적인 집합체 구조를 형성하도록 하는 것이며 상기 용액을 동시에 방사할 수 있는 방법이라면 특별이 제한되지 않으나, 이중 전기 방사, 이중 전기 분무(electrospray), 이중 스프레이(spray), 및 이들의 조합을 포함하는 군에서 선택된 1종일 수 있다. 그 중에서도 3차원 충진 구조 및 균일한 기공형성 측면에서 이중 전기 방사의 방법이 바람직하다.
또한. 상기 (d) 단계는 50 분 내지 24 시간 동안 수행되는 것일 수 있다. 이러한 수행 시간의 범위 내에서 상기 삼차원 구조 전극이 형성될 수 있으며, 특히 수행 시간이 늘어남에 따라 상기 삼차원 구조 전극 내 활물질 입자의 고로딩이 가능하다.
상기 고분자용액의 방사 속도는 2 내지 15 ㎕/min이고, 상기 제 1 콜로이드 용액 및 제 2 콜로이드 용액의 방사 속도는 30 내지 300 ㎕/min일 수 있다. 더욱 바람직하게는 고분자 용액의 방사 속도는 5 내지 10㎕/min 일 수 있고, 제 1 콜로이드 용액 및 제 2 콜로이드 용액의 방사 속도는 50 내지 200㎕/min 일 수 있다. 상기와 같은 방사 속도로 용액을 방사함으로써 상기와 같은 3차원 구조 전극이 형성될 수 있으며, 3차원 구조 전극 내 활물질 입자의 로딩을 향상시킬 수 있다.
다만 용액의 방사 속도가 상기 속도 범위 이하일 경우 고분자 용액이 고르게 방사되지 못하여 비드가 형성되거나, 콜로이드 용액이 균일하게 방사되지 못할 수 있다.
또한 본 발명은 음극, 양극 및 상기 음극과 양극 사이에 개재된 음극, 양극 및 상기 음극과 양극 사이에 개재된 분리막을 포함하는 전극 조립체가 전지 케이스에 내장되어 있고, 상기 음극 또는 양극은 상술한 3차원 구조 전극인 것을 특징으로 하는 전기 화학 소자를 제공한다.
상기 전기 화학 소자는 리튬 이차전지, 슈퍼 커패시터(Super Capacitor), 리튬-황 전지, 나트륨 이온 전지, 리튬-공기전지, 아연-공기전지, 알루미늄-공기전지, 및 마그네슘 이온 전지를 포함하는 군에서 선택된 1종일 수 있으며, 구체적으로 리튬 이차전지일 수 있다. 또한 상기 리튬 이차전지는 원통형 전지, 각형 전지, 코인형 전지, 파우치형 전지 등을 모두 포함할 수 있으며, 상기 리튬 이차전지의 형태에 특별한 제한이 있는 것은 아니다.
도 2는 본 발명의 일 실시예에 따른 리튬 이차 전지(200)를 나타낸 모식도이다.
도 2를 참조하면 본 발명의 일 실시예에 따른 리튬 이차전지(200)는 전극 조립체(210)가 전지 케이스(220)의 수납부에 수납되고, 전지 케이스(140) 내에 전극 조립체(210)가 완전히 침지되도록 수납부에 전해질이 주입되고, 전지 케이스(110)에는 케이스를 밀봉하기 위한 캡 어셈블리(230)가 탑재되어 결합되어 있다. 상기 전극 조립체는 양극 활물질을 포함하는 양극(213)과 음극 활물질을 포함하는 음극(211) 사이에 분리막(212)을 개재시킨 것이다.
상기 전해질로는 유기 용매에 리튬 염을 용해시킨 비수전해질, 폴리머 전해질, 무기 고체전해질 및 폴리머 전해질과 무기 고체전해질과의 복합 재료 등이 사용될 수 있다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계 또는 비양성자성 용매를 사용할 수 있다. 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
구체적으로 상기 비수성 유기용매로는 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li 3N, LiI, Li 5NI 2, Li 3N-LiI-LiOH, LiSiO 4, LiSiO 4-LiI-LiOH, Li 2SiS 3, Li 4SiO 4, Li 4SiO 4-LiI-LiOH, Li 3PO 4-Li 2S-SiS 2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
리튬 염은 비수성 유기 용매 등에 용해되어 전지 내에서 리튬 이온 공급원으로 작용하여 리튬 이차전지를 작동시키고, 양극과 음극 사이의 리튬 이온 이동을 촉진시킨다.
구체적으로 상기 리튬 염은, 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10Cl 10, LiPF 6, LiCF 3SO 3, LiCF 3CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3SO 3Li, (CF 3SO 2) 2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 의해 한정되는 것으로 해석되어서는 아니된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가지 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예
고분자 용액의 제조
우선, 다공성 고분자를 제조하기 위한 고분자로는 고분자로는 폴리아크릴로나이트릴 (polyacrylonitrile, PAN)을 사용하고, 이를 용해시킬 용매로는 디메틸포름아마이드(N, N-dimethylformamide)을 사용하였다.
상기 폴리아크릴로나이트릴 (polyacrylonitrile, PAN)을 디메틸포름아마이드(N, N-dimethylformamide)에 첨가시킨 후, 용액 내의 폴리아크릴로나이트릴 (polyacrylonitrile, PAN)의 함량이 10 중량 퍼센트(wt%)가 되도록 고분자 용액을 제조하였다.
제 1 콜로이드 용액의 제조
전도성 물질을 포함하는 콜로이드 용액을 제조하기 위해, 전도성 물질로 카본나노튜브 (carbonnanotube)를 사용하며, 분산매로는 증류수(deionized water) 및 이소프로필알콜(iso-propylalcohol)을 중량비 3:7로 혼합한 코솔벤트(co-solvant)를 사용하였다. 구체적으로 카본나노튜브를 제 1 콜로이드 용액의 5중량%가 되도록 첨가하였으며, 분산제인 폴리비닐피롤리돈을 상기 콜로이드 용액에 대해 1중량% 함유되도록 첨가하였다.
제 2 콜로이드 용액의 제조
활물질 입자 및 전도성 물질을 포함하는 콜로이드 용액을 제조하기 위하여, 상기 활물질 입자로는 평균 직경 100 ㎚의 실리콘(Si)을 사용하고, 전도성 물질로는 카본나노튜브(carbonnanotube)를 사용하며, 분산매로는 증류수(deionized water) 및 이소프로필알콜(iso-propylalcohol)을 코솔벤트(co-solvant)로 사용하였다.
구체적으로, 상기 실리콘(Si)을 상기 분산매(증류수(deionized water) :이소프로필알콜(iso-propylalcohol)로 표시되는 중량비= 3:7)에 분산시킨 후, 용액 내의 실리콘(Si)의 함량이 1 중량%가 되도록 활물질 입자 용액을 제조하였다.
상기 활물질 입자 용액에 상기 카본나노튜브(carbonnanotube)를 실리콘(Si)의 중량에 대해 10 중량%로 첨가하여, 상기 실리콘(Si) 및 상기 카본나노튜브가 함께 분산된 콜로이드 용액을 제조하였다. 이때, 분산제인 폴리비닐피롤리돈을 상기 콜로이드 용액에 대해 1 중량% 함유되도록 첨가하였다.
이중 전기 방사를 통한 전극의 제조
상기 고분자 용액 및 상기 제 1 콜로이드 및 상기 제 2 콜로이드 용액을 전기 방사 장치(구입처: 나노엔씨)에 도입한 후, 상기 고분자 용액의 분사 속도는 5 ㎕/min로, 상기 콜로이드 용액의 분사 속도는 120 ㎕l/min으로 하여, 약 240 분 동안 동시에 방사(이중 전기 방사)하여, 삼차원 구조 섬유를 제조하였다.
구체적으로 상기 고분자 용액 및 상기 제 1 콜로이드 용액을 방사하여 하부 전도층을 형성한 후 상기 하부 전도층의 상부에 상기 고분자 용액 및 상기 제 2 콜로이드 용액을 방사하여 활물질층을 형성하였으며, 상기 활물질층의 상부에 상기 고분자 용액 및 상기 제 1 콜로이드 용액을 방사하여 상부 전도층을 형성하였다.
상기 제조된 삼차원 구조 섬유는, 롤 프레스(Roll Press, 구입처: ㈜기배이앤티)를 이용하여 압축하였다. 이를 통해, 활물질의 로딩이 약 2 ㎎/cm 2이고, 두께는 약 12 ㎛인 삼차원 구조 전극을 수득할 수 있었다.
리튬 이차 전지의 제작
상기 수득된 삼차원 구조 전극을 양극으로 적용하여, 리튬 이차 전지를 제작하였다.
구체적으로, 음극으로는 리튬 메탈을 사용하였으며, 분리막으로는 폴리에틸렌 (polyethylene, Tonen 20μm)을 사용하였다.
유기용매(EC:DEC = 1:1(v:v))에 LiPF6 의 농도가 1M이 되도록 용해하고 FEC 10중량%가 함유된 비수성 전해액을 제조하였다.
상기와 같이 제조된 양극, 음극 및 분리막을 넣어 원통형 셀을 형성한 후, 상기 비수성 전해액을 주입하여 원통형 리튬 이차 전지를 제조하였다.
비교예
제 1 콜로이드 용액을 제조하지 않고, 이중 전기 방사시 상부 전도층 및 하부 전도층을 형성하지 않고 활물질층만 형성된 형태의 전극을 활물질의 로딩이 약 2.0 ㎎/cm 2이고, 두께는 약 10 ㎛로 제조한 것을 제외하고 실시예와 동일한 방법으로 전극을 제조하였다.
또한 실시예와 같은 방법으로 리튬 이자전지를 제작하였다.
실험예 1: 전극의 관찰
주사 전자 현미경 (Scanning Electron Microscope, SEM)으로 실시예에 의해 제조된 전극의 상부 전도층 및 하부 전도층 및 활물질층의 단면과 표면을 관찰하였으며, 그 결과가 도 4에 도시되어 있다.
도 3은 상기 실시예에 따른 전극의 외관을 나타낸 사진이다. 도 3를 참조하면, 전극을 구부린 상태에서도 활물질 입자의 탈리 없이 전극의 구조가 잘 유지되는 것을 확인할 수 있다.
실험예 2: 전극의 전자전도도 비교
실시예 및 비교예를 통해 제조된 각 전극의 표면의 저항을 비교하기 위해, 전자전도도 측정을 진행하였다.
구체적으로, 상기 전자전도도 측정은, ㈜다솔이엔지 사의 4probe 팁을 이용하여 표면 저항을 측정한 것이며, 실시예 및 비교예에 따른 결과를 도 5에 기록하였다.
도 5에 따르면, 47.5 S/cm의 전자전도도를 기록한 비교예 1에 대비하여, 실시예의 전극은 72.0 S/cm로 약 6배 정도 증가한 수치를 나타내었다. 이를 통해, 실시예의 전극은 높은 전자전도도를 가지므로, 별도의 집전체 없이도 전극으로 사용할 수 있으며, 이를 포함하는 전지의 출력 특성 또한 향상시킬 수 있음을 유추할 수 있다.
실험예3: 사이클 특성의 평가
상기 실시예 및 비교예에서 각각 제조된 전지를 25 ℃에서 0.2C의 정전류(CC)로 0.01V가 될 때까지 1회째의 충전을 행하였다. 이후 0.2C의 정전류(CC)로 1.2V가 될 때까지 방전하였다. 이를 1 내지 100 회의 사이클로 반복 실시하여, 방전 용량의 퇴화도를 관찰하였다. 그 결과는 도 6에 도시하였다.
실시예의 전지는 비교예의 전지에 비하여 우수한 사이클 특성을 나타내었다. 이는 비교예에 개시된 전극에서 활물질의 부피변화로 인하여 활물질이 전극으로부터 탈리되고, 전자전도 네트워크가 끊어졌기 때문인 것으로 판단된다.
반면, 실시예의 전극은 상/하부 전도층에 의해 부피변화가 큰 활물질이 적용되어도 전자전도 네트워크를 유지하고 활물질 탈리를 방지할 수 있다.
또한 이를 통해, 고에너지 밀도 및 고출력 특성을 가지고, 사이클 성능이 우수한 전기 화학 소자를 제공할 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
<부호의 설명>
10: 고분자 섬유
20: 활물질 입자
30: 전도성 물질
100: 3차원 구조 전극
110: 활물질층
120: 상부 전도층
130: 하부 전도층

Claims (16)

  1. (a) 복수의 고분자 섬유를 포함하는 다공성 부직포 및 전도성 물질이 3차원적으로 불규칙하고 연속적으로 연결되어 내부에 상호 연결된 기공 구조가 형성된 집합체를 이루는 구조의 상부 전도층 및 하부 전도층; 및
    (b) 상기 전도층과 동일한 집합체 구조를 형성하고 있으며, 상기 집합체 구조 내에 형성된 상호 연결된 기공 구조 내에 전극 활물질 입자가 균일하게 충진되어 3차원 충진 구조를 형성한 활물질층; 을 포함하며,
    상기 활물질층은 상기 상부 전도층 및 하부 전도층 사이에 형성되어 있는 것을 특징으로 하는 3차원 구조 전극.
  2. 제 1항에 있어서,
    상기 3차원 구조 전극의 두께는 3 내지 1000 ㎛인 것을 특징으로 하는 3차원 구조 전극.
  3. 제 1항에 있어서,
    상기 상부 전도층 또는 하부 전도층의 두께는 각각 상기 활물질층의 3 내지 30%이고,
    상기 상부 전도층 및 하부 전도층의 기공도는 5 내지 80부피%인 것을 특징으로 하는 3차원 구조 전극.
  4. 제 1항에 있어서,
    상기 상부 전도층 또는 하부 전도층은 상기 상부 전도층 또는 하부 전도층의 총 중량에 대하여, 10 내지 50중량%의 전도성 물질 및 50 내지 90중량%의 다공성 부직포를 포함하는 것을 특징으로 하는 3차원 구조 전극.
  5. 제 1항에 있어서,
    상기 전도성 물질은 카본 나노 튜브(carbon nanotube), 은 나노와이어, 니켈 나노와이어, 금 나노와이어, 그래핀, 그래핀 옥사이드, 환원된 그래핀 옥사이드, 폴리피롤, 폴리 3,4-에틸렌디옥시티오펜, 폴리아닐린, 이들의 유도체 및 이들의 혼합물을 포함하는 군에서 선택된 1종 이상인 것을 특징으로 하는 3차원 구조 전극.
  6. 제 1항에 있어서,
    상기 복수의 고분자 섬유를 이루는 고분자는,
    폴리에틸렌테레프탈레이트, 폴리이미드, 폴리아미드, 폴리술폰, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴, 폴리에틸렌, 폴리프로필렌, 폴리에터이미드, 폴리비닐알코올, 폴리에틸렌옥사이드, 폴리아크릴릭엑시드, 폴리비닐피롤리돈, 아가로즈, 알지네이트, 폴리비닐리덴 헥사플로로프로필렌, 폴리우레탄, 나일론 6, 폴리피롤, 폴리 3,4-에틸렌디옥시티오펜, 폴리아닐린, 이들의 유도체, 및 이들의 혼합물을 포함하는 군으로부터 선택된 1종 이상인 것을 특징으로 하는 3차원 구조 전극.
  7. 제 1항에 있어서,
    상기 활물질 입자는, 리튬메탈계 산화물, 카본계 물질, 산화물, 실리콘(Si), 주석(Sn), 게르마늄(Ge), 황(S), 이들의 유도체, 및 이들의 혼합물을 포함하는 군에서 선택된 1종 이상인 것을 특징으로 하는 3차원 구조 전극
  8. (a) 고분자 및 용매를 포함하는 고분자 용액을 제조하는 단계;
    (b) 전도성 물질, 분산제 및 분산매를 포함하는 제 1 콜로이드 용액을 제조하는 단계;
    (c) 상기 제 1 콜로이드 용액에 활물질 입자를 더 포함하는 제 2 콜로이드 용액을 각각 제조하는 단계;
    (d) 상기 고분자 용액 및 상기 제 1콜로이드 용액, 상기 제 2 콜로이드 용액을 사용하여 삼차원 구조 섬유를 제조하는 단계;
    (e) 상기 삼차원 구조 섬유를 압착하여 삼차원 구조 섬유를 수득하는 단계; 를 포함하고,
    상기 (d) 단계는,
    상기 고분자 용액과 상기 제 1 콜로이드 용액을 동시에 방사하여 하부 전도층을 제조하는 단계;
    상기 하부 전도층의 상부에 상기 고분자 용액과 상기 제 2 콜로이드 용액을 동시에 방사하여 활물질층을 제조하는 단계; 및
    상기 활물질층의 상부에 상기 고분자 용액과 상기 제 1 콜로이드 용액을 동시에 방사하여 상부 전도층을 제조하는 단계;
    를 포함하는 것을 특징으로 하는 3차원 구조 전극의 제조방법.
  9. 제 8항에 있어서,
    상기 (d)단계는 이중 전기 방사, 이중 전기 분무(electrospray), 이중 스프레이(spray), 및 이들의 조합을 포함하는 군에서 선택된 1종의 방법을 사용하는 것을 특징으로 하는 3차원 구조 전극의 제조방법.
  10. 제 8항에 있어서,
    상기 (d) 단계에서 상기 고분자 용액의 방사 속도는 2 내지 15 ㎕/min이고,
    상기 제 1 콜로이드 용액 및 제 2 콜로이드 용액의 방사 속도는 30 내지 300 ㎕/min인 것을 특징으로 하는 3차원 구조 전극의 제조방법.
  11. 제 8항에 있어서,
    상기 제 1콜로이드 용액은 상기 제 1 콜로이드 용액의 총 중량에 대하여, 0.1 내지 50중량%의 전도성 물질을 포함하는 것을 특징으로 하는 3차원 구조 전극의 제조방법.
  12. 제 8항에 있어서,
    상기 고분자 용액은 상기 고분자 용액의 총 중량에 대하여, 5 내지 30중량%의 고분자를 포함하는 것을 특징으로 하는 3차원 구조 전극의 제조방법.
  13. 제 8항에 있어서,
    상기 (c) 단계는 상기 활물질 입자에 상기 전도성 물질을 투입하여, 혼합 분말을 제조하는 단계;
    상기 혼합 분말을 분쇄하여, 활물질 입자/전도성 물질 복합체를 수득하는 단계; 및
    상기 복합체를 상기 분산매에 분산시켜, 상기 콜로이드 용액을 제조하는 단계; 를 포함하는 것을 특징으로 하는 3차원 구조 전극의 제조방법.
  14. 제 8항에 있어서,
    상기 (b) 단계는 상기 전도성 물질을 상기 분산매에 분산시켜 콜로이드 용액을 제조하는 단계; 를 포함하는 것을 특징으로 하는 3차원 구조 전극의 제조방법.
  15. 음극, 양극 및 상기 음극과 양극 사이에 개재된 분리막을 포함하는 전극조립체가 전지 케이스에 내장되어 있고,
    상기 음극 또는 양극은 제 1항 내지 제 19항 중 어느 한 항에 따른 3차원 구조 전극인 것을 특징으로 하는 전기화학소자.
  16. 제 15항에 있어서,
    상기 전기 화학 소자는 리튬 이차전지, 슈퍼 커패시터(Super Capacitor), 리튬-황 전지, 나트륨 이온 전지, 리튬-공기전지, 아연-공기전지, 알루미늄-공기전지, 및 마그네슘 이온 전지를 포함하는 군에서 선택된 1종인 것을 특징으로 하는 전기화학소자.
PCT/KR2019/013610 2018-10-18 2019-10-16 삼차원 구조 전극 및 이를 포함하는 전기화학소자 WO2020080831A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980006976.0A CN111557056B (zh) 2018-10-18 2019-10-16 三维结构电极、其制造方法和包括其的电化学装置
JP2020538567A JP7062153B2 (ja) 2018-10-18 2019-10-16 三次元構造電極及びそれを含む電気化学素子
US16/959,860 US11495802B2 (en) 2018-10-18 2019-10-16 Three-dimensional structure electrode and electrochemical element including same
EP19873406.3A EP3719878B1 (en) 2018-10-18 2019-10-16 Three-dimensional structure electrode and electrochemical element including same
US17/954,856 US11978911B2 (en) 2018-10-18 2022-09-28 Three-dimensional structure electrode and electrochemical element including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180124498A KR102355101B1 (ko) 2018-10-18 2018-10-18 삼차원 구조 전극 및 이를 포함하는 전기화학소자
KR10-2018-0124498 2018-10-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/959,860 A-371-Of-International US11495802B2 (en) 2018-10-18 2019-10-16 Three-dimensional structure electrode and electrochemical element including same
US17/954,856 Division US11978911B2 (en) 2018-10-18 2022-09-28 Three-dimensional structure electrode and electrochemical element including same

Publications (1)

Publication Number Publication Date
WO2020080831A1 true WO2020080831A1 (ko) 2020-04-23

Family

ID=70283133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/013610 WO2020080831A1 (ko) 2018-10-18 2019-10-16 삼차원 구조 전극 및 이를 포함하는 전기화학소자

Country Status (6)

Country Link
US (2) US11495802B2 (ko)
EP (1) EP3719878B1 (ko)
JP (1) JP7062153B2 (ko)
KR (1) KR102355101B1 (ko)
CN (1) CN111557056B (ko)
WO (1) WO2020080831A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122395A (zh) * 2020-08-31 2022-03-01 中南大学 一种钠离子电池用负极极片的制备及其应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041708A (zh) * 2019-12-30 2020-04-21 浙江清华柔性电子技术研究院 复合膜及其制备方法、压力传感器
JP2023529142A (ja) * 2020-06-11 2023-07-07 エルジー エナジー ソリューション リミテッド 負極活物質としてシリコン(Si)を含む全固体電池
CN112002559B (zh) * 2020-08-28 2022-01-28 西京学院 石墨/金/聚苯胺赝电容电极材料及其制备方法和应用
CN112164803B (zh) * 2020-11-03 2022-03-25 天目湖先进储能技术研究院有限公司 三维介电聚丙烯腈/纳米银-锂复合材料及其制备方法
US20220190325A1 (en) * 2020-12-16 2022-06-16 Nano And Advanced Materials Institute Limited Particles in electrospun polymer fibers with thermal response properties
CN113077995B (zh) * 2021-03-05 2022-03-08 广东轻工职业技术学院 一种柔性固态非对称超级电容器件及其制备方法与应用
CN115387028B (zh) * 2022-08-22 2024-05-28 湖南理工学院 一种导电性纤维网络封装的多孔Si/C复合材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160043769A (ko) * 2014-10-14 2016-04-22 울산과학기술원 삼차원구조 전극의 제조 방법, 그리고 상기 전극을 포함하는 전기 화학 소자
KR20160057255A (ko) * 2014-11-13 2016-05-23 (주)포스코켐텍 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20160062617A (ko) * 2014-11-25 2016-06-02 울산과학기술원 삼차원구조 집전체, 이의 제조 방법, 이를 포함하는 전극, 상기 전극의 제조방법, 및 상기 집전체를 포함하는 전기 화학 소자
KR101728828B1 (ko) 2016-04-01 2017-04-20 울산과학기술원 삼차원구조 전극, 및 이를 포함하는 전기 화학 소자
KR101817506B1 (ko) * 2016-12-06 2018-01-12 대한민국 종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자
KR20180006816A (ko) * 2016-07-11 2018-01-19 울산과학기술원 전기화학소자용 분리막, 이의 제조방법, 및 이를 포함하는 전기화학소자
KR20180124498A (ko) 2017-05-12 2018-11-21 주식회사 본브레테크놀로지 웨어러블 iot를 이용한 척추 측만증 교정시스템

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172539A (ja) 1987-01-10 1988-07-16 Fujitsu Ltd バスアクセス方式
JP2004311141A (ja) 2003-04-04 2004-11-04 Sony Corp 電極およびそれを用いた電池
JP5647447B2 (ja) 2010-06-30 2014-12-24 ダイニック株式会社 電気化学素子用電極およびその製造方法
KR101806547B1 (ko) * 2011-04-06 2018-01-10 주식회사 제낙스 금속 섬유를 포함하는 전극 구조체를 갖는 전지 및 상기 전극 구조의 제조 방법
DE102011080936A1 (de) * 2011-08-15 2013-02-21 Robert Bosch Gmbh Elektrode und Energiespeicher umfassend eine Elektrode
JP2013206623A (ja) 2012-03-27 2013-10-07 Kawasaki Heavy Ind Ltd ファイバー電極及びファイバー電極を有するファイバー電池
KR101951323B1 (ko) * 2012-09-24 2019-02-22 삼성전자주식회사 복합음극활물질, 이를 포함하는 음극 및 리튬전지, 및 이의 제조 방법
CN204441378U (zh) * 2013-05-07 2015-07-01 株式会社Lg化学 二次电池用电极以及包含其的二次电池和线缆型二次电池
US20150111107A1 (en) 2013-10-22 2015-04-23 Semiconductor Energy Laboratory Co., Ltd. Electrode and secondary battery, and manufacturing method thereof
CN107978732B (zh) 2014-06-20 2020-03-27 东莞新能源科技有限公司 极片及电池
US9281514B2 (en) * 2014-07-29 2016-03-08 Ford Global Technologies, Llc Batteries prepared by spinning
KR20160122937A (ko) * 2015-04-14 2016-10-25 한경대학교 산학협력단 전기방사 탄소 나노섬유를 이용한 리튬 이차전지용 음극활물질 및 그 제조방법
KR101734642B1 (ko) 2015-04-17 2017-05-11 현대자동차주식회사 리튬이온전지용 양극 및 이를 이용한 리튬이온전지
KR101943488B1 (ko) 2016-04-07 2019-01-29 울산과학기술원 전기화학소자용 전극, 이의 제조 방법, 및 이를 포함하는 전기화학소자
JP6486867B2 (ja) * 2016-06-02 2019-03-20 太陽誘電株式会社 電気化学デバイス用電極及び電気化学デバイス用電極の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160043769A (ko) * 2014-10-14 2016-04-22 울산과학기술원 삼차원구조 전극의 제조 방법, 그리고 상기 전극을 포함하는 전기 화학 소자
KR20160057255A (ko) * 2014-11-13 2016-05-23 (주)포스코켐텍 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20160062617A (ko) * 2014-11-25 2016-06-02 울산과학기술원 삼차원구조 집전체, 이의 제조 방법, 이를 포함하는 전극, 상기 전극의 제조방법, 및 상기 집전체를 포함하는 전기 화학 소자
KR101728828B1 (ko) 2016-04-01 2017-04-20 울산과학기술원 삼차원구조 전극, 및 이를 포함하는 전기 화학 소자
KR20180006816A (ko) * 2016-07-11 2018-01-19 울산과학기술원 전기화학소자용 분리막, 이의 제조방법, 및 이를 포함하는 전기화학소자
KR101817506B1 (ko) * 2016-12-06 2018-01-12 대한민국 종이 집전체, 이의 제조방법 및 이를 포함하는 전기화학소자
KR20180124498A (ko) 2017-05-12 2018-11-21 주식회사 본브레테크놀로지 웨어러블 iot를 이용한 척추 측만증 교정시스템

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122395A (zh) * 2020-08-31 2022-03-01 中南大学 一种钠离子电池用负极极片的制备及其应用
CN114122395B (zh) * 2020-08-31 2024-03-19 中南大学 一种钠离子电池用负极极片的制备及其应用

Also Published As

Publication number Publication date
US20230028893A1 (en) 2023-01-26
US11495802B2 (en) 2022-11-08
CN111557056B (zh) 2023-08-25
EP3719878A1 (en) 2020-10-07
JP7062153B2 (ja) 2022-05-06
US20200335796A1 (en) 2020-10-22
KR102355101B1 (ko) 2022-02-04
EP3719878A4 (en) 2021-03-17
JP2021511624A (ja) 2021-05-06
CN111557056A (zh) 2020-08-18
US11978911B2 (en) 2024-05-07
KR20200044253A (ko) 2020-04-29
EP3719878B1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2020080831A1 (ko) 삼차원 구조 전극 및 이를 포함하는 전기화학소자
WO2019093800A1 (ko) 삼차원구조 전극, 및 이를 포함하는 전기 화학 소자
WO2018135915A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2021066560A1 (ko) 양극 및 이를 포함하는 이차 전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2021101188A1 (ko) 음극 및 이를 포함하는 이차전지
WO2020091453A1 (ko) 리튬 이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2019004699A1 (ko) 리튬 이차전지
WO2021025349A1 (ko) 음극, 이의 제조방법 및 이를 포함하는 이차전지
WO2017209556A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이를 포함하는 리튬이차전지
WO2021133128A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이차전지
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2021066495A1 (ko) 전극 및 이를 포함하는 이차 전지
WO2020256440A1 (ko) 복합 음극, 및 상기 복합 음극을 포함한 리튬 이차 전지
WO2020180160A1 (ko) 리튬 이차전지
WO2024085297A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2020213962A1 (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2020067793A1 (ko) 황-탄소 복합체 및 그 제조방법
WO2019107838A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022211282A1 (ko) 리튬 이차전지
WO2022139452A1 (ko) 리튬 이차전지용 양극의 제조 방법 및 이에 의하여 제조된 리튬 이차전지용 양극
WO2022255665A1 (ko) 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리
WO2020091448A1 (ko) 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019873406

Country of ref document: EP

Effective date: 20200702

Ref document number: 2020538567

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE