WO2020078377A1 - 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用 - Google Patents

铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用 Download PDF

Info

Publication number
WO2020078377A1
WO2020078377A1 PCT/CN2019/111445 CN2019111445W WO2020078377A1 WO 2020078377 A1 WO2020078377 A1 WO 2020078377A1 CN 2019111445 W CN2019111445 W CN 2019111445W WO 2020078377 A1 WO2020078377 A1 WO 2020078377A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminosilicate glass
mol
glass
aluminosilicate
glass composition
Prior art date
Application number
PCT/CN2019/111445
Other languages
English (en)
French (fr)
Inventor
张广涛
韩文梅
李志勇
李刚
王俊峰
闫冬成
王丽红
Original Assignee
东旭科技集团有限公司
东旭集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东旭科技集团有限公司, 东旭集团有限公司 filed Critical 东旭科技集团有限公司
Priority to JP2021521014A priority Critical patent/JP7219336B2/ja
Priority to KR1020217014698A priority patent/KR102628724B1/ko
Priority to US17/285,986 priority patent/US11932576B2/en
Priority to EP19872541.8A priority patent/EP3868726B1/en
Publication of WO2020078377A1 publication Critical patent/WO2020078377A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • C03B25/02Annealing glass products in a discontinuous way
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/004Refining agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Definitions

  • the invention relates to the field of glass manufacturing, in particular to aluminosilicate glass composition, aluminosilicate glass, and preparation method and application thereof.
  • AMLCD active matrix liquid crystal display
  • OLED organic light emitting diode
  • LTPS TFT- LCD active matrix liquid crystal display
  • Mainstream silicon-based TFTs can be divided into amorphous silicon (a-Si) TFTs, polycrystalline silicon (p-Si) TFTs and single crystal silicon (SCS) TFTs, of which amorphous silicon (a-Si) TFTs are now mainstream TFT-LCDs Applied technology, amorphous silicon (a-Si) TFT technology, the processing temperature in the production process can be completed at a temperature of 300-450 °C. LTPS polycrystalline silicon (p-Si) TFTs need to be processed multiple times at higher temperatures during the manufacturing process.
  • the substrate must not be deformed during multiple high-temperature processes, which puts higher requirements on the substrate glass performance, and the preferred strain
  • the point is higher than 650 ° C, more preferably higher than 670 ° C, 700 ° C, and 720 ° C, so that the substrate has as little thermal shrinkage as possible in the panel manufacturing process.
  • the expansion coefficient of the glass substrate needs to be close to that of silicon to minimize stress and damage. Therefore, the preferred linear thermal expansion coefficient of the substrate glass is between 28-39 ⁇ 10 -7 / °C.
  • the glass used as the display substrate should have a lower liquidus temperature.
  • a transparent conductive film, an insulating film, a semiconductor (polycrystalline silicon, amorphous silicon, etc.) film and a metal film need to be formed on the glass surface of the underlying substrate by sputtering, chemical vapor deposition (CVD), etc.
  • the photo-etching technology forms various circuits and patterns.
  • the glass contains alkali metal oxides (Na 2 O, K 2 O, Li 2 O), the alkali metal ions diffuse into the deposited semiconductor material during the heat treatment process and damage
  • alkali metal oxides Na 2 O, K 2 O, Li 2 O
  • the substrate glass During the processing of the glass substrate, the substrate glass is placed horizontally. Under the effect of its own weight, the glass sags to a certain extent. The degree of sag is proportional to the glass density and inversely proportional to the glass's elastic modulus. With the development of substrate manufacturing in the direction of large size and thinning, the sag of the glass plate in manufacturing must be paid attention to. Therefore, the composition should be designed so that the substrate glass has the lowest possible density and the highest possible elastic modulus.
  • ultraviolet light is used as energy to separate the display unit from the substrate glass in contact with it.
  • a glass substrate with a high and stable transmittance in the ultraviolet region is required. For example, for a glass substrate with a thickness of 0.5 mm, penetration at a wavelength of 308 nm and / or 343 nm is required The rate is higher than 60%, and the transmission rate between different glass substrates in the batch is extremely poor within 1%.
  • the purpose of the present invention is to overcome the defects of the existing aluminosilicate glass that display substrate glass homogenization effect is not ideal and the penetration rate at 308 nm is low, to provide an aluminosilicate glass and a preparation method and application thereof,
  • the aluminosilicate glass has lower density and higher elastic modulus, good thermal stability and lower thermal shrinkage, and the aluminosilicate glass has high penetration at 308 nm and / or 343 nm rate.
  • the first aspect of the present invention provides an aluminosilicate glass composition. Based on the total molar amount of the aluminosilicate glass, based on the oxide, the aluminosilicate glass contains 67- 74mol% of SiO 2, 10-15mol% of Al 2 O 3, 0-5mol% of B 2 O 3, 1-10mol% of MgO, 1-10mol% of CaO, 0-3mol% of SrO, 2-8mol % BaO, 0.1-4 mol% ZnO, 0.1-4 mol% RE 2 O 3 and less than 0.05 mol% R 2 O, where RE is a rare earth element and R is an alkali metal.
  • the aluminosilicate glass composition contains 69-72 mol% SiO 2 and 12-14 mol% Al 2 O 3 , 0-2mol% B 2 O 3 , 4-7mol% MgO, 4-7mol% CaO, 0-2mol% SrO, 3-6mol% BaO, 0.5-1.5mol% ZnO, 0.1-1.5 mol% RE 2 O 3 and less than 0.05 mol% R 2 O.
  • the RE is yttrium and lanthanide
  • the R is Li, Na and K.
  • the RE is Y, La and Lu.
  • the aluminosilicate glass composition further contains a clarifying agent, based on the total molar amount of each component, the content of the clarifying agent ⁇ 0.5 mol%, more preferably, the content of the clarifying agent ⁇ 0.3mol%.
  • the present invention provides a method for preparing aluminosilicate glass.
  • the method includes mixing raw materials that meet the requirements of the aluminosilicate glass composition to obtain a mixture M1, and adding NH 4 NO to M1 After 3 , the mixture M2 is obtained, and the mixture M2 is melted, annealed and mechanically processed to obtain the aluminosilicate glass; based on obtaining 100 g of the aluminosilicate glass, the addition of the NH 4 NO 3 The amount is 5-15g.
  • the present invention provides aluminosilicate glass prepared by the above method.
  • the oxygen ion concentration of the aluminosilicate glass V o ⁇ 0.08 mol / cm 3 , further preferably V o ⁇ 0.084 mol / cm 3 , more preferably V o ⁇ 0.086 mol / cm 3 ;
  • V o [(2 * N Si + 3 * N Al + 3 * N B + N Mg + N Ca + N Sr + N Ba + N Zn + 3 * N NH4 + 3 * N Y + 3 * N La + 3 * N Lu ) / (N Si + N Al + N B + N Mg + N Ca + N Sr + N Ba + N Zn + N Y + N La + N Lu )) / (m o / ⁇ )
  • N Si , N Al , N B , N Mg , N Ca , N Sr , N Ba , N Zn , N Y , N La and N Lu respectively represent mixing
  • NNH 4 means to M1
  • m o represents the mass of the aluminosilicate glass obtained after the mixture M2 is melted, in g;
  • represents the density of the obtained aluminosilicate glass, in g / cm 3 .
  • the viscosity of the aluminosilicate glass is the corresponding temperature T 100 ⁇ 1680 ° C. at 100 poises.
  • the strain point T st of the aluminosilicate glass is ⁇ 740 ° C.
  • the liquidus temperature T L of the aluminosilicate glass is ⁇ 1240 ° C.
  • the elemental sulfur content in the form of elemental sulfur S in the aluminosilicate glass is ⁇ 100 ppm.
  • the iron oxide content in the form of Fe 2 O 3 in the aluminosilicate glass is ⁇ 150 ppm.
  • the content of chromium oxide in the form of Cr 2 O 3 in the aluminosilicate glass is ⁇ 50 ppm.
  • the density of the aluminosilicate glass is ⁇ 2.75 g / cm 3 , further preferably ⁇ 2.7 g / cm 3 ; the coefficient of thermal expansion at 50-350 ° C is less than 40 ⁇ 10 -7 / ° C, further preferably ⁇ 39.5 ⁇ 10 -7 / ° C; Young's modulus> 80 GPa, more preferably> 83 GPa.
  • the corresponding temperature T 100 at a viscosity of 100 poises is 1690-1800 ° C, further preferably 1690-1710 ° C;
  • the corresponding temperature T 35000 at a viscosity of 35000 poises is 1250-1350 ° C, further preferably 1265-1310 ° C
  • the strain point T st is 740-765 ° C, further preferably 750-765 ° C; the liquidus temperature T L ⁇ 1220 ° C.
  • the transmittance at a wavelength of 308 nm is ⁇ 72%, further preferably ⁇ 74%; the transmittance at a wavelength of 343 nm is ⁇ 84%, further preferably ⁇ 86%; the transmittance at a wavelength of 550 nm is ⁇ 91% , More preferably ⁇ 92%.
  • the present invention provides the application of the aluminosilicate glass composition or aluminosilicate glass according to the present invention in the preparation of display devices and / or solar cells, preferably in the preparation of substrate glass for flat panel display products Substrate materials and / or glass film materials for screen surface protection, carrier glass materials for flexible display products and / or surface encapsulation glass materials and / or glass film materials for screen surface protection, and substrate glass substrate materials for flexible solar cells , Safety glass, bulletproof glass, smart car glass, smart traffic display, smart window and smart card ticket, and other glass materials that need high thermal stability, high UV transmittance and mechanical stability.
  • the aluminosilicate glass of the present invention has the advantages of high ultraviolet transmittance, visible light transmittance, high strain point (high heat resistance) and the like. It can be used to prepare display devices and / or solar cells, and is particularly suitable for preparing substrate glass substrate materials for flat panel display products and / or glass film materials for screen surface protection, carrier glass materials for flexible display products and / or surface encapsulating glass Materials and / or glass film materials for screen surface protection, glass substrate materials for flexible solar cells, safety glass, bulletproof glass, smart car glass, smart traffic displays, smart windows and smart card tickets, and other applications that require high thermal stability The application field of glass materials with high transparency, high ultraviolet transmittance and mechanical stability.
  • the present invention provides an aluminosilicate glass composition. Based on the total molar amount of the aluminosilicate glass composition, based on the oxide, the aluminosilicate glass composition contains 67- 74mol% of SiO 2, 10-15mol% of Al 2 O 3, 0-5mol% of B 2 O 3, 1-10mol% of MgO, 1-10mol% of CaO, 0-3mol% of SrO, 2-8mol % BaO, 0.1-4 mol% ZnO, 0.1-4 mol% RE 2 O 3 and less than 0.05 mol% R 2 O, where RE is a rare earth element and R is an alkali metal.
  • the aluminosilicate glass composition contains 69-72 mol% of SiO 2 and 12-14 mol % Al 2 O 3 , 0-2mol% B 2 O 3 , 4-7mol% MgO, 4-7mol% CaO, 0-2mol% SrO, 3-6mol% BaO, 0.5-1.5mol% ZnO, 0.1-1.5mol% RE 2 O 3 and less than 0.05mol% R 2 O.
  • the content of SiO 2 is 67-74 mol%, preferably 69-72 mol% , Specifically, for example, it may be 67mol%, 67.3mol%, 67.5mol%, 67.7mol%, 67.8mol%, 68mol%, 68.7mol%, 69mol%, 69.4mol%, 70.8mol%, 70.9mol%, 71.8mol %, 72 mol%, 72.4 mol%, 73.6 mol%, 73.9 mol%, 74 mol%, and any value in the range formed by any two of these values.
  • SiO 2 is a glass-forming body. If the content of SiO 2 is too low, it is not conducive to the enhancement of chemical resistance. It will cause too high expansion coefficient and too low strain point, which will lead to devitrification of the glass and high temperature resistivity Small, the Joule heating effect is weakened, so that its own heat can not meet the needs of melting. When the content of SiO 2 increases, it helps to reduce the coefficient of thermal expansion, improve the strain point, enhance the chemical resistance, and increase the high temperature resistivity; but too high content will also cause the melting temperature of the glass to increase and the meltability to decrease. As the temperature of the liquid phase increases, the devitrification resistance decreases.
  • the Al 2 O 3 content may be 10-15 mol%, preferably 12-14mol%, specifically, for example, 10mol%, 10.3mol%, 10.9mol%, 11mol%, 11.7mol%, 12mol%, 12.6mol%, 13mol%, 13.3mol%, 13.5mol%, 13.6mol %, 13.8 mol%, 13.9 mol%, 14 mol%, 14.4 mol%, 14.5 mol%, 14.9 mol%, 15 mol%, and any value in the range formed by any two of these values.
  • Al 2 O 3 can improve the strength of the glass structure.
  • the content of Al 2 O 3 is less than 10 mol%, the heat resistance of the glass is difficult to improve, and it is also easily eroded by external moisture and chemical reagents.
  • the high content of A1 2 O 3 contributes to the increase of the annealing temperature and mechanical strength of the glass; however, when the content of Al 2 O 3 is higher than 15 mol%, the glass is prone to devitrification and the glass is difficult to melt.
  • the content of B 2 O 3 is 0-5 mol%, preferably 0- 2mol%, specifically, for example, 0, 0.4mol%, 0.7mol%, 1.4mol%, 1.6mol%, 1.9mol%, 2mol%, 2.5mol%, 3.5mol%, 4mol%, 4.3mol%, 4.7 mol%, 5mol%, and any value in the range formed by any two of these values.
  • B 2 O 3 In the high-aluminum alkali-free silicate glass system, the use of boron oxide B 2 O 3 can bring good high-temperature fluxing effect, and at the same time help to improve the glass resistance. However, in the low-temperature viscosity area, B 2 O 3 significantly reduces the annealing temperature of the glass, which is not conducive to the improvement of the thermal stability of the glass.
  • the content of the MgO may be 1-10 mol%, preferably 4- 7mol%, specifically, for example, 1mol%, 1.1mol%, 1.2mol%, 1.5mol%, 1.8mol%, 2.8mol%, 3mol%, 3.6mol%, 4.4mol%, 4.6mol%, 5mol%, 5.5 mol%, 6.4 mol%, 7 mol%, 7.4 mol%, 8 mol%, 9 mol%, 10 mol%, and any value in the range formed by any two of these values.
  • the content of the CaO may be 1-10 mol%, preferably 4- 7mol%, specifically, for example, 1mol%, 1.1mol%, 1.2mol%, 1.5mol%, 1.8mol%, 2.1mol%, 2.5mol%, 3.8mol%, 4.3mol%, 4.9mol%, 5.3mol %, 5.7 mol%, 6.6 mol%, 7 mol%, 7.4 mol%, 8 mol%, 9 mol%, 10 mol%, and any value in the range formed by any two of these values.
  • the content of the SrO may be 0-3 mol%, preferably 0- 2mol%, specifically, for example, 0, 0.1mol%, 0.44mol%, 0.8mol%, 1mol%, 1.4mol%, 1.5mol%, 1.7mol%, 2mol%, 2.2mol%, 2.6mol%, 3mol % And any value in the range formed by any two of these values.
  • MgO, CaO and SrO are all alkaline earth metal oxides, which can effectively reduce the high temperature viscosity of the glass to improve the meltability and formability of the glass, and can also increase the annealing point temperature of the glass, and MgO, SrO have improved The characteristics of chemical stability and mechanical stability, but too much content will increase the density and increase the incidence of cracks, devitrification, and phase separation.
  • the alkali-free aluminosilicate glass of the present invention BaO is used as a flux and a component to prevent the glass from crystallizing. If the content is too much, the high-temperature volume resistivity of the glass will increase, the density will be too high, and the specific modulus of the product will decrease. .
  • MgO, CaO, SrO, and BaO are all alkaline earth metal oxides, it is found through experiments that the influence of each oxide on the stability of glass formation is quite different. Properly increasing the content of BaO and controlling the reasonable ratio range can help form Increased stability, improved resistance to crystallization, and overall performance optimization.
  • the content of the BaO is 2-8 mol%, preferably 3-6 mol%, specifically, for example, may be 2mol%, 2.3mol%, 3.2mol%, 3.5mol%, 4.1mol%, 4.9mol%, 5.3mol%, 5.9mol%, 6.3mol%, 6.9mol%, 7mol%, 7.3mol%, 8mol% and these Any value in the range formed by any two values in the value.
  • the content of the ZnO may be 0.1-4 mol%, preferably 0.5- 1.5mol%, specifically, for example, 0.1mol%, 0.14mol%, 0.2mol%, 0.25mol%, 0.3mol%, 0.4mol%, 0.5mol%, 0.6mol%, 0.8mol%, 0.9mol%, 1 mol%, 1.2 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 4 mol%, and any value in the range formed by any two of these values.
  • ZnO can reduce the high-temperature viscosity of the glass (such as the viscosity at 1500 °C), which is conducive to eliminating bubbles. At the same time, it can improve the strength and hardness below the softening point, increase the chemical resistance of the glass, and reduce the coefficient of thermal expansion of the glass. In the alkali-free glass system, adding an appropriate amount of ZnO helps to suppress crystallization and can reduce the crystallization temperature.
  • the RE 2 O 3 content is 0.1-4 mol%, preferably 0.1-1.5 mol%, the RE is yttrium and lanthanide element.
  • the RE is Y, La, and Lu.
  • RE 2 O 3 may be, for example, 0.1 mol%, 0.24 mol%, 0.28 mol%, 0.34 mol%, 0.4 mol%, 0.44 mol%, 0.8 mol%, 0.94 mol%, 0.96 mol%, 1.34 mol%, 1.4 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 3.3 mol%, 3.5 mol%, 3.9 mol%, 4 mol%, and any value in the range formed by any two of these values.
  • the rare earth oxide RE 2 O 3 has a unique ability to improve certain properties of the glass, such as the flexural strength, elastic modulus, strain point and other properties of the glass.
  • the aluminosilicate glass composition of the present invention further contains a clarifying agent, and the content of the clarifying agent is ⁇ 0.5 mol% based on the total molar amount of each component, preferably ⁇ 0.3mol%.
  • the present invention provides a method for preparing aluminosilicate glass.
  • the method includes:
  • the raw materials that meet the requirements of the aluminosilicate glass composition are mixed to obtain a mixture M1, and NH 4 NO 3 is added to M1 to obtain a mixture M2.
  • the mixture M2 is obtained by melting treatment, annealing treatment and mechanical processing. Describe aluminosilicate glass;
  • the amount of the NH 4 NO 3 added is 5-15 g.
  • the method further includes performing secondary melt thinning treatment on the product obtained by the mechanical processing treatment.
  • the present invention provides aluminosilicate glass prepared by the above method.
  • the oxygen ion concentration of the aluminosilicate glass V o ⁇ 0.08 mol / cm 3 , preferably V o ⁇ 0.084 mol / cm 3 , further preferably V o ⁇ 0.086 mol / cm 3 ;
  • V o [(2 * N Si + 3 * N Al + 3 * N B + N Mg + N Ca + N Sr + N Ba + N Zn + 3 * N NH4 + 3 * N Y + 3 * N La + 3 * N Lu ) / (N Si + N Al + N B + N Mg + N Ca + N Sr + N Ba + N Zn + N Y + N La + N Lu )) / (m o / ⁇ )
  • N Si , N Al , N B , N Mg , N Ca , N Sr , N Ba , N Zn , N Y , N La and N Lu respectively represent mixing
  • N NH4 means to M1 The amount of NH 4 NO 3 added in the material;
  • m o represents the mass of the aluminosilicate glass obtained after the mixture M2 is melted, in g;
  • represents the density of the obtained aluminosilicate glass, in g / cm 3 .
  • the aluminosilicate glass of the present invention has a temperature T 100 ⁇ 1680 ° C when the viscosity is 100 poises.
  • the aluminosilicate glass of the present invention has a strain point T st ⁇ 740 ° C.
  • the aluminosilicate glass of the present invention has a liquidus temperature T L ⁇ 1240 ° C.
  • the aluminosilicate glass of the present invention has an elemental sulfur content in the form of elemental sulfur S ⁇ 100ppm; further preferably, the aluminosilicate glass of the present invention has an elemental sulfur content in the form of elemental sulfur S ⁇ 50ppm.
  • the iron oxide content in the form of Fe 2 O 3 in the aluminosilicate glass of the present invention is ⁇ 150 ppm.
  • the chromium oxide content in the form of Cr 2 O 3 in the aluminosilicate glass of the present invention is ⁇ 50 ppm.
  • the density of the aluminosilicate glass of the present invention is ⁇ 2.75 g / cm 3 , more preferably ⁇ 2.65 g / cm 3 ;
  • the coefficient of thermal expansion at 50-350 ° C is ⁇ 40 ⁇ 10 -7 / ° C, more preferably ⁇ 39.5 ⁇ 10 -7 / ° C;
  • the aluminosilicate glass of the present invention has a temperature T 100 of 1690-1800 ° C at a viscosity of 100 poises, more preferably 1690-1710 ° C; a temperature T 35000 of 1250- at a viscosity of 35000 poises 1350 ° C, more preferably 1265-1310 ° C; strain point T st is 740-765 ° C, more preferably 750-765 ° C; liquidus temperature T L ⁇ 1220 ° C.
  • the aluminosilicate glass of the present invention has a transmittance at a wavelength of 308 nm ⁇ 72%, more preferably ⁇ 74%; a transmittance at a wavelength of 343 nm ⁇ 84%, more preferably ⁇ 86%; wavelength
  • the transmittance at 550 nm is ⁇ 91%, more preferably ⁇ 92%.
  • the aluminosilicate glass of the present invention has a heat shrinkage rate Y t ⁇ 10 ppm at 600 ° C./10 min, and more preferably Y t ⁇ 7 ppm.
  • the present invention provides the application of the aluminosilicate glass composition or aluminosilicate glass according to the present invention in the preparation of display devices and / or solar cells, preferably in the preparation of substrate glass for flat panel display products Substrate materials and / or glass film materials for screen surface protection, carrier glass materials for flexible display products and / or surface encapsulation glass materials and / or glass film materials for screen surface protection, and substrate glass substrate materials for flexible solar cells , Safety glass, bulletproof glass, smart car glass, smart traffic display, smart window and smart card ticket, and other glass materials that need high thermal stability, high UV transmittance and mechanical stability.
  • the glass density was measured with reference to ASTM C-693 in g / cm 3 .
  • the temperature of the liquidus of the glass, T L is measured in degrees Celsius using the ladder furnace method.
  • UV-visible spectrophotometer was used to determine the glass transmittance.
  • the thickness of the glass sample was 0.5 mm, and the transmittance at 308 nm, 343 nm, and 550 nm was taken as the unit.
  • ICP JY2000 inductively coupled spectrometer
  • the glass is heated from 25 ° C (measured the initial length, marked as L 0 ) to 600 ° C at a heating rate of 5 ° C / min. Hold for 10 minutes at °C, and then reduce the temperature to 25 °C at a cooling rate of 5 °C / min.
  • the glass length shrinks by a certain amount. Measure its length again, marked as L t , then the thermal shrinkage rate Y t is expressed as:
  • the difference is that the mixture composition (corresponding to the glass composition) and the performance measurement results of the obtained product are shown in Table 2.
  • the difference is that the mixture composition (corresponding to the glass composition) and the performance measurement results of the obtained product are shown in Table 3.
  • the method of the present invention has a significant effect on the problems of obtaining high ultraviolet transmittance, high strain point (high heat resistance), and high viscosity glass.
  • the glass composition of this application and the low-iron, low-sulfur, and high-viscosity glass obtained by additionally adding an oxidant simultaneously have the advantages of high ultraviolet and visible light transmittance, high thermal stability, high glass formation stability, and high mechanical strength.
  • the glass prepared by the method of the present invention can be used for preparing display devices and / or solar cells, and is particularly suitable for preparing substrate glass substrate materials for flat panel display products and / or glass film materials for screen surface protection and flexible display products.
  • Plate glass material and / or surface encapsulation glass material and / or glass film material for screen surface protection substrate glass substrate material for flexible solar cells, safety glass, bulletproof glass, smart car glass, smart traffic display, smart window and Smart card tickets and other application fields that require high thermal stability, high UV transmittance and mechanical stability glass materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

一种铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用。以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,该铝硅酸盐玻璃组合物含有67‑74mol%的SiO 2、10‑15mol%的Al 2O 3、0‑5mol%的B 2O 3、1‑10mol%的MgO、1‑10mol%的CaO、0‑3mol%的SrO、2‑8mol%的BaO、0.1‑4mol%的ZnO、0.1‑4mol%RE 2O 3和小于0.05mol%的R 2O,其中RE为稀土元素,R为碱金属。

Description

铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用 技术领域
本发明涉及玻璃制造领域,具体涉及铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用。
背景技术
随着光电行业的快速发展,对各种显示器件的需求正在不断增长,比如有源矩阵液晶显示(AMLCD)、有机发光二极管(OLED)以及应用低温多晶硅技术的有源矩阵液晶显示(LTPS TFT-LCD)器件,这些显示器件都基于使用薄膜半导体材料生产薄膜晶体管(TFT)技术。主流的硅基TFT可分为非晶硅(a-Si)TFT、多晶硅(p-Si)TFT和单晶硅(SCS)TFT,其中非晶硅(a-Si)TFT为现在主流TFT-LCD应用的技术,非晶硅(a-Si)TFT技术,在生产制程中的处理温度可以在300-450℃温度下完成。LTPS多晶硅(p-Si)TFT在制程过程中需要在较高温度下多次处理,基板必须在多次高温处理过程中不能发生变形,这就对基板玻璃性能提出更高的要求,优选的应变点高于650℃,更优选的是高于670℃、700℃、720℃,以使基板在面板制程中具有尽量小的热收缩。同时玻璃基板的膨胀系数需要与硅的膨胀系数相近,尽可能减小应力和破坏,因此基板玻璃优选的线性热膨胀系数在28-39×10 -7/℃之间。为了便于生产,作为显示器基板用的玻璃应该具有较低的液相线温度。
用于平面显示的玻璃基板,需要通过溅射、化学气相沉积(CVD)等技术在底层基板玻璃表面形成透明导电膜、绝缘膜、半导体(多晶硅、无定形硅等)膜及金属膜,然后通过光蚀刻(Photo-etching)技术形成各种电路和图形,如果玻璃含有碱金属氧化物(Na 2O,K 2O,Li 2O),在热处理过 程中碱金属离子扩散进入沉积半导体材料,损害半导体膜特性,因此,玻璃应不含碱金属氧化物,首选的是以SiO 2、Al 2O 3、B 2O 3、碱土金属氧化物RO(RO=Mg、Ca、Sr)等为主成分的碱土铝硅酸盐玻璃。
在玻璃基板的加工过程中,基板玻璃是水平放置的,玻璃在自重作用下,有一定程度的下垂,下垂的程度与玻璃的密度成正比、与玻璃的弹性模量成反比。随着基板制造向着大尺寸、薄型化方向的发展,制造中玻璃板的下垂必须引起重视。因此应设计组成,使基板玻璃具有尽可能低的密度和尽可能高的弹性模量。
在一些平面显示制造过程中,需要使用紫外线作为能量将显示单元与其接触的衬底玻璃进行分离。为了降低分离的成本、提高成功几率,需要玻璃基板在紫外区有较高且稳定的穿透率,例如,对于厚度为0.5mm的玻璃基板,要求在波长为308nm和/或343nm下的穿透率高于60%,且批次内不同玻璃基板之间穿透率极差在1%之内。但是由于不可避免的因素,玻璃基板制造过程中总是会过多过少的引入SO 3、Fe 3O 4、Cr 2O 3等在紫外区有较强吸收的组分,因此在玻璃基板制造过程中需要严格控制各类杂质组分的含量。另一方面,不同价态的铁离子对紫外光的吸收程度也是有区别的,因此在玻璃制造过程中通过一定方式控制铁价态并且完成澄清均化处理,有利于制造在308nm和/或343nm处具有高穿透率的玻璃基板。
发明内容
本发明的目的是为了克服现有的铝硅酸盐玻璃存在显示基板玻璃均化效果不理想和308nm处穿透率偏低的缺陷,提供一种铝硅酸盐玻璃及其制备方法和应用,该铝硅酸盐玻璃具有较低的密度和较高的弹性模量,良好的热稳定性及较低的热收缩率,并且该铝硅酸盐玻璃在308nm和/或343nm处具有高穿透率。
为了实现上述目的,本发明第一方面提供了一种铝硅酸盐玻璃组合物, 以该铝硅酸盐玻璃的总摩尔量为基准,以氧化物计,该铝硅酸盐玻璃含有67-74mol%的SiO 2、10-15mol%的Al 2O 3、0-5mol%的B 2O 3、1-10mol%的MgO、1-10mol%的CaO、0-3mol%的SrO、2-8mol%的BaO、0.1-4mol%的ZnO、0.1-4mol%的RE 2O 3和小于0.05mol%的R 2O,其中RE为稀土元素,R为碱金属。
优选地,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,该铝硅酸盐玻璃组合物含有69-72mol%的SiO 2、12-14mol%的Al 2O 3、0-2mol%的B 2O 3、4-7mol%的MgO、4-7mol%的CaO、0-2mol%的SrO、3-6mol%的BaO、0.5-1.5mol%的ZnO、0.1-1.5mol%的RE 2O 3和小于0.05mol%的R 2O。
优选地,以摩尔百分比计,B 2O 3/(B 2O 3+SiO 2)<0.05。
优选地,以摩尔百分比计,B 2O 3/(MgO+CaO+SrO+BaO)<0.3。
优选地,所述RE为钇和镧系元素,所述R为Li、Na和K。
优选地,所述RE为Y、La和Lu。
优选地,以摩尔百分比计,(SrO+BaO)/(MgO+CaO+SrO+BaO+ZnO+Y 2O 3+La 2O 3+Lu 2O 3)>0.3。
优选地,所述铝硅酸盐玻璃组合物还含有澄清剂,以各组分的总摩尔量为基准,所述澄清剂的含量≤0.5mol%,更优选地,所述澄清剂的含量≤0.3mol%。
第二方面,本发明提供了一种制备铝硅酸盐玻璃的方法,该方法包括取满足所述铝硅酸盐玻璃组合物所需原材料混合后得到混合料M1,向M1中加入NH 4NO 3后得到混合料M2,混合料M2经熔融处理、退火处理和机械加工制得所述铝硅酸盐玻璃;以得到100g所述铝硅酸盐玻璃为基准,所述NH 4NO 3的加入量为5-15g。
第三方面,本发明提供了上述方法制备得到的铝硅酸盐玻璃。
优选地,所述铝硅酸盐玻璃的氧离子浓度V o≥0.08mol/cm 3,进一步优选V o≥0.084mol/cm 3,更优选V o≥0.086mol/cm 3
V o=[(2*N Si+3*N Al+3*N B+N Mg+N Ca+N Sr+N Ba+N Zn+3*N NH4+3*N Y+3*N La+3*N Lu)/(N Si+N Al+N B+N Mg+N Ca+N Sr+N Ba+N Zn+N Y+N La+N Lu)]/(m o/ρ)
其中,以得到100g所述铝硅酸盐玻璃为基准,N Si、N Al、N B、N Mg、N Ca、N Sr、N Ba、N Zn、N Y、N La和N Lu分别表示混合料M1中SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、BaO、ZnO、Y 2O 3、La 2O 3和Lu 2O 3的物质的量;NNH 4表示向M1中添加的NH 4NO 3的物质的量;m o表示混合料M2熔融后所得到铝硅酸盐玻璃的质量,单位为g;ρ表示所得到铝硅酸盐玻璃的密度,单位为g/cm 3
优选地,所述铝硅酸盐玻璃的粘度为100泊时对应的温度T 100≥1680℃。
优选地,所述铝硅酸盐玻璃的应变点T st≥740℃。
优选地,所述铝硅酸盐玻璃的液相线温度T L≤1240℃。
优选地,所述铝硅酸盐玻璃中以单质硫S形式表征的硫元素含量<100ppm。
优选地,所述铝硅酸盐玻璃中以Fe 2O 3形式表征的铁氧化物含量<150ppm。
优选地,所述铝硅酸盐玻璃中以Cr 2O 3形式表征的铬氧化物含量<50ppm。
优选地,所述铝硅酸盐玻璃的密度≤2.75g/cm 3,进一步优选<2.7g/cm 3;50-350℃的热膨胀系数<40×10 -7/℃,进一步优选<39.5×10 -7/℃;杨氏模量>80GPa,进一步优选>83GPa。
优选地,粘度为100泊时对应的温度T 100为1690-1800℃,进一步优选为1690-1710℃;粘度为35000泊时对应的温度T 35000为1250-1350℃,进一步优选为1265-1310℃;应变点T st为740-765℃,进一步优选为750-765℃;液相线温度T L<1220℃。
优选地,波长为308nm处的透过率≥72%,进一步优选≥74%;波长为343nm处的透过率≥84%,进一步优选≥86%;波长为550nm处的透过 率≥91%,进一步优选≥92%。
优选地,在600℃/10min条件下的热收缩率Y t<10ppm,进一步优选Y t<7ppm。
第四方面,本发明提供了本发明所述的铝硅酸盐玻璃组合物或铝硅酸盐玻璃在制备显示器件和/或太阳能电池中的应用,优选为在制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的载板玻璃材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗和智能卡票以及用于其他需要高热稳定性、高紫外透过率和机械稳定性玻璃材料中的应用。
本发明的铝硅酸盐玻璃,具有高紫外透过率和可见光透过率、高应变点(高耐热性)等优点。可用于制备显示器件和/或太阳能电池,尤其适用于制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的载板玻璃材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗和智能卡票以及用于其他需要高热稳定性、高紫外透过率和机械稳定性玻璃材料的应用领域。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
第一方面,本发明提供了一种铝硅酸盐玻璃组合物,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,该铝硅酸盐玻璃组合物含有67-74mol%的SiO 2、10-15mol%的Al 2O 3、0-5mol%的B 2O 3、1-10mol%的MgO、1-10mol%的CaO、0-3mol%的SrO、2-8mol%的BaO、0.1-4mol%的ZnO、0.1-4mol%的RE 2O 3和小于0.05mol%的R 2O,其中RE为稀土元素, R为碱金属。
在本发明的优选实施方式中,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,该铝硅酸盐玻璃组合物含有69-72mol%的SiO 2、12-14mol%的Al 2O 3、0-2mol%的B 2O 3、4-7mol%的MgO、4-7mol%的CaO、0-2mol%的SrO、3-6mol%的BaO、0.5-1.5mol%的ZnO、0.1-1.5mol%的RE 2O 3和小于0.05mol%的R 2O。
在本发明的铝硅酸盐玻璃组合物中,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,SiO 2的含量为67-74mol%,优选为69-72mol%,具体地,例如可以为67mol%、67.3mol%、67.5mol%、67.7mol%、67.8mol%、68mol%、68.7mol%、69mol%、69.4mol%、70.8mol%、70.9mol%、71.8mol%、72mol%、72.4mol%、73.6mol%、73.9mol%、74mol%以及这些数值中的任意两个所构成的范围中的任意数值。SiO 2是玻璃形成体,若SiO 2的含量过低,不利于耐化性的增强,会造成膨胀系数过高、应变点过低,导致玻璃容易失透,同时会带来玻璃高温电阻率过小,焦耳热效应削弱,使自身发热量无法达到熔化的需要。当SiO 2的含量升高时,有助于减小热膨胀系数、提高应变点、增强耐化性、增大高温电阻率;但含量过高也会造成玻璃的熔化温度升高、熔融性降低、液相温度升高,耐失透性降低。
在本发明的铝硅酸盐玻璃组合物中,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,所述Al 2O 3的含量可以为10-15mol%,优选为12-14mol%,具体地,例如可以为10mol%、10.3mol%、10.9mol%、11mol%、11.7mol%、12mol%、12.6mol%、13mol%、13.3mol%、13.5mol%、13.6mol%、13.8mol%、13.9mol%、14mol%、14.4mol%、14.5mol%、14.9mol%、15mol%以及这些数值中的任意两个所构成的范围中的任意数值。Al 2O 3可以提高玻璃结构的强度,在Al 2O 3的含量低于10mol%的情况下,玻璃耐热性难以提升,也容易受到外界水气及化学试剂的侵蚀,高含量的A1 2O 3有助于玻璃退火点温度、机械强度的增高;但在Al 2O 3的含量高于15mol%的情况下, 玻璃容易出现析晶现象、玻璃难以熔解。
在本发明的铝硅酸盐玻璃组合物中,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,B 2O 3的含量为0-5mol%,优选为0-2mol%,具体地,例如可以为0、0.4mol%、0.7mol%、1.4mol%、1.6mol%、1.9mol%、2mol%、2.5mol%、3.5mol%、4mol%、4.3mol%、4.7mol%、5mol%以及这些数值中的任意两个数值所构成的范围中的任意数值。在高铝无碱硅酸盐玻璃体系中,使用氧化硼B 2O 3可以带来良好的高温助熔效果,同时有利于提升玻璃耐化性。但是在低温粘度区,B 2O 3却使得玻璃退火点温度显著降低,不利于玻璃热稳定性的提升。
在本发明的铝硅酸盐玻璃组合物中,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,所述MgO的含量可以为1-10mol%,优选为4-7mol%,具体地,例如可以为1mol%、1.1mol%、1.2mol%、1.5mol%、1.8mol%、2.8mol%、3mol%、3.6mol%、4.4mol%、4.6mol%、5mol%、5.5mol%、6.4mol%、7mol%、7.4mol%、8mol%、9mol%、10mol%以及这些数值中的任意两个数值所构成的范围中的任意数值。
在本发明的铝硅酸盐玻璃组合物中,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,所述CaO的含量可以为1-10mol%,优选为4-7mol%,具体地,例如可以为1mol%、1.1mol%、1.2mol%、1.5mol%、1.8mol%、2.1mol%、2.5mol%、3.8mol%、4.3mol%、4.9mol%、5.3mol%、5.7mol%、6.6mol%、7mol%、7.4mol%、8mol%、9mol%、10mol%以及这些数值中的任意两个数值所构成的范围中的任意数值。
在本发明的铝硅酸盐玻璃组合物中,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,所述SrO的含量可以为0-3mol%,优选为0-2mol%,具体地,例如可以为0、0.1mol%、0.44mol%、0.8mol%、1mol%、1.4mol%、1.5mol%、1.7mol%、2mol%、2.2mol%、2.6mol%、3mol%以及这些数值中的任意两个数值所构成的范围中的任意数值。
在本发明中,MgO、CaO和SrO均为碱土金属氧化物,它们可以有效降低玻璃的高温粘度从而提高玻璃的熔融性及成形性,还可以提高玻璃的退火点温度,且MgO、SrO具有提高化学稳定性和机械稳定性的特点,但是其含量过多会使密度增加,裂纹、失透、分相的发生率均提高。
在本发明的无碱铝硅酸盐玻璃中,BaO作为助熔剂和防止玻璃出现析晶的成分,如果含量过多,玻璃高温体积电阻率会升高,密度过高,产品的比模量下降。虽然MgO、CaO、SrO、BaO均为碱土金属氧化物,但通过实验发现,各氧化物对玻璃形成稳定性的影响有较大差异,适当提高BaO含量,控制合理配比范围,有助于形成稳定性提高、抗析晶性能提升、整体性能优化。因此,综合考虑,以该无碱铝硅酸盐玻璃的总摩尔量为基准,以氧化物计,所述BaO的含量为2-8mol%,优选为3-6mol%,具体地,例如可以为2mol%、2.3mol%、3.2mol%、3.5mol%、4.1mol%、4.9mol%、5.3mol%、5.9mol%、6.3mol%、6.9mol%、7mol%、7.3mol%、8mol%以及这些数值中的任意两个数值所构成的范围中的任意数值。
在本发明的铝硅酸盐玻璃组合物中,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,所述ZnO的含量可以为0.1-4mol%,优选为0.5-1.5mol%,具体地,例如可以为0.1mol%、0.14mol%、0.2mol%、0.25mol%、0.3mol%、0.4mol%、0.5mol%、0.6mol%、0.8mol%、0.9mol%、1mol%、1.2mol%、1.5mol%、2mol%、2.5mol%、3mol%、4mol%以及这些数值中的任意两个所构成的范围中的任意数值。ZnO可以降低玻璃高温粘度(如1500℃下的粘度),有利于消除气泡;同时在软化点以下有提升强度、硬度,增加玻璃的耐化学性,降低玻璃热膨胀系数的作用。在无碱玻璃体系中,添加适量ZnO有助于抑制析晶,可以降低析晶温度。
以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,所述RE 2O 3的含量0.1-4mol%,优选为0.1-1.5mol%,所述RE为钇和镧系元素。在本发明的具体实施方式中,所述RE为Y、La和Lu。具体地,RE 2O 3例如可 以为0.1mol%、0.24mol%、0.28mol%、0.34mol%、0.4mol%、0.44mol%、0.8mol%、0.94mol%、0.96mol%、1.34mol%、1.4mol%、1.5mol%、2mol%、2.5mol%、3mol%、3.3mol%、3.5mol%、3.9mol%、4mol%以及这些数值中的任意两个所构成的范围中的任意数值。在本发明的玻璃用组合物中,稀土氧化物RE 2O 3在提高玻璃的某些性能方面具有独特的能力,例如玻璃的抗弯强度、弹性模量、应变点等性能随稀土氧化物的加入而大幅上升,促使玻璃脆性降低,断裂韧性大幅增加,并且能够降低玻璃的高温粘度和高温体积电阻率,为玻璃大型工业制造,特别是电熔和/或电助熔方式熔融玻璃带来巨大便利。碱土金属、ZnO等网络外体引入玻璃组成后,过剩的氧原子使得玻璃结构中的桥氧键断裂生成非桥氧,这些非桥氧的存在显著降低了玻璃的抗弯强度。RE 2O 3的加入促使玻璃的内部结构发生变化,所生成的Si-O-RE化学键将玻璃中孤立岛状网络单元重新连接,可以改善玻璃的网络结构,从而可以大幅提高玻璃的抗弯强度、弹性模量、应变点、化学稳定性以及降低高温体积电阻率等性能。但是进一步增加RE 2O 3时,由于可供调整的非桥氧数量减少,过量的RE 2O 3对玻璃的上述性能影响不大。
综合考虑热稳定性、高温粘度和玻璃形成稳定性,以摩尔百分比计,B 2O 3/(B 2O 3+SiO 2)<0.05。
综合考虑热稳定性和高温粘度,以摩尔百分比计,B 2O 3/(MgO+CaO+SrO+BaO)<0.3。
综合考虑玻璃形成稳定性、热稳定性和机械性能,以摩尔百分比计,(SrO+BaO)/(MgO+CaO+SrO+BaO+ZnO+Y 2O 3+La 2O 3+Lu 2O 3)>0.3。
在本发明的铝硅酸盐玻璃组合物中,所述铝硅酸盐玻璃组合物还含有澄清剂,以各组分的总摩尔量为基准,所述澄清剂的含量≤0.5mol%,优选≤0.3mol%。
第二方面,本发明提供了一种制备铝硅酸盐玻璃的方法,该方法包括:
取满足所述铝硅酸盐玻璃组合物所需原材料混合后得到混合料M1,向 M1中加入NH 4NO 3后得到混合料M2,混合料M2经熔融处理、退火处理和机械加工制得所述铝硅酸盐玻璃;
以得到100g所述铝硅酸盐玻璃为基准,所述NH 4NO 3的加入量为5-15g。
在本发明的方法中,优选地,所述方法还包括对机械加工处理得到的产物进行二次熔融拉薄处理。
第三方面,本发明提供了上述方法制备得到的铝硅酸盐玻璃。
优选情况下,所述铝硅酸盐玻璃的氧离子浓度V o≥0.08mol/cm 3,优选V o≥0.084mol/cm 3,进一步优选V o≥0.086mol/cm 3
V o=[(2*N Si+3*N Al+3*N B+N Mg+N Ca+N Sr+N Ba+N Zn+3*N NH4+3*N Y+3*N La+3*N Lu)/(N Si+N Al+N B+N Mg+N Ca+N Sr+N Ba+N Zn+N Y+N La+N Lu)]/(m o/ρ)
其中,以得到100g所述铝硅酸盐玻璃为基准,N Si、N Al、N B、N Mg、N Ca、N Sr、N Ba、N Zn、N Y、N La和N Lu分别表示混合料M1中SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、BaO、ZnO、Y 2O 3、La 2O 3和Lu 2O 3的物质的量;N NH4表示向M1中添加的NH 4NO 3的物质的量;m o表示混合料M2熔融后所得到铝硅酸盐玻璃的质量,单位为g;ρ表示所得到铝硅酸盐玻璃的密度,单位为g/cm 3
优选情况下,本发明的铝硅酸盐玻璃,粘度为100泊时对应的温度T 100≥1680℃。
优选情况下,本发明的铝硅酸盐玻璃,应变点T st≥740℃。
优选情况下,本发明的铝硅酸盐玻璃,液相线温度T L≤1240℃。
优选情况下,本发明的铝硅酸盐玻璃,以单质硫S形式表征的硫元素含量<100ppm;进一步优选地,本发明的铝硅酸盐玻璃,以单质硫S形式表征的硫元素含量<50ppm。
优选情况下,本发明的铝硅酸盐玻璃中以Fe 2O 3形式表征的铁氧化物含量<150ppm。
优选情况下,本发明的铝硅酸盐玻璃中以Cr 2O 3形式表征的铬氧化物含 量<50ppm。
优选情况下,本发明的铝硅酸盐玻璃的密度≤2.75g/cm 3,更优选<2.65g/cm 3;50-350℃的热膨胀系数<40×10 -7/℃,更优选<39.5×10 -7/℃;杨氏模量>80GPa,更优选>83GPa。
优选情况下,本发明的铝硅酸盐玻璃,粘度为100泊时对应的温度T 100为1690-1800℃,更优选为1690-1710℃;粘度为35000泊时对应的温度T 35000为1250-1350℃,更优选为1265-1310℃;应变点T st为740-765℃,更优选为750-765℃;液相线温度T L<1220℃。
优选情况下,本发明的铝硅酸盐玻璃,波长为308nm处的透过率≥72%,更优选≥74%;波长为343nm处的透过率≥84%,更优选≥86%;波长为550nm处的透过率≥91%,更优选≥92%。
优选情况下,本发明的铝硅酸盐玻璃,在600℃/10min条件下的热收缩率Y t<10ppm,更优选Y t<7ppm。
第四方面,本发明提供了本发明所述的铝硅酸盐玻璃组合物或铝硅酸盐玻璃在制备显示器件和/或太阳能电池中的应用,优选为在制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的载板玻璃材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗和智能卡票以及用于其他需要高热稳定性、高紫外透过率和机械稳定性玻璃材料中的应用。
实施例
以下将通过实施例对本发明进行详细描述。以下实施例中,如无特别说明,所用的各材料均可通过商购获得,如无特别说明,所用的方法为本领域的常规方法。
参照ASTM C-693测定玻璃密度,单位为g/cm 3
参照ASTM E-228使用卧式膨胀仪测定50-350℃的玻璃热膨胀系数,单位为10 -7/℃。
参照ASTM C-623测定玻璃杨氏模量,单位为GPa。
参照ASTM C-965使用旋转高温粘度计测定玻璃高温粘温曲线,其中,100P粘度对应的温度T 100,单位为℃;粘度为X泊对应的温度T X,单位为℃。
参照ASTM C-829使用梯温炉法测定玻璃液相线温度T L,单位为℃。
参照ASTM C-336使用退火点应变点测试仪测定玻璃应变点T st,单位为℃。
使用岛津UV-2600型紫外可见分光光度计紫外-可见分光光度计测定玻璃透过率,玻璃样品厚度为0.5mm,分别取308nm、343nm、550nm处透过率,单位为%。
使用JY2000型电感耦合光谱仪(ICP)测试玻璃中的铁含量,以Fe 2O 3形式表征,单位为ppm;
使用CS-9900型红外碳硫分析仪测试玻璃中的硫含量,以S形式表征,单位为ppm;
采用如下热处理的方法(差值计算法)测定经过热处理后的热收缩率:将玻璃从25℃(测定初始长度,标记为L 0)以5℃/min的升温速率升温至600℃并在600℃保温10min,然后以5℃/min的降温速率降温至25℃,玻璃长度发生一定量的收缩,再次测量其长度,标记为L t,则热收缩率Y t表示为:
Figure PCTCN2019111445-appb-000001
实施例1-7
按照表1所示称量各组分,混匀,将混合料倒入高锆砖坩埚(ZrO 2>85wt%)中,然后在1650℃电阻炉中加热48小时,并使用铂铑合金(80wt%Pt+20wt%Rh)搅拌器匀速缓慢搅拌。将熔制好的玻璃液浇注入 不锈钢模具内,成形为规定的块状玻璃制品,然后将玻璃制品在退火炉中退火2小时,关闭电源随炉冷却到25℃。将玻璃制品进行切割、研磨、抛光,然后用去离子水清洗干净并烘干,制得厚度为0.5mm的玻璃成品。分别对各玻璃成品的各种性能进行测定,结果见表1。
实施例8-15
按照实施例1的方法,不同的是,混合料成分(对应玻璃组成)和得到的产品的性能测定结果见表2。
对比例1-7
按照实施例1的方法,不同的是,混合料成分(对应玻璃组成)和得到的产品的性能测定结果见表3。
表1
Figure PCTCN2019111445-appb-000002
表2
Figure PCTCN2019111445-appb-000003
表3
Figure PCTCN2019111445-appb-000004
将表1-2实施例与表3中对比例的数据进行比较可知:本发明方法对于获得高紫外透过率、高应变点(高耐热性)、高粘度玻璃的问题有明显效果,使用本申请玻璃组合物及低铁、低硫、额外加入氧化剂方法制得的高粘度玻璃同时兼具紫外和可见光透过率高、热稳定性高、玻璃形成稳定性较高、机械强度高等优点。本发明的方法所制得的玻璃可用于制备显示器件和/或 太阳能电池,尤其适用于制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的载板玻璃材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗和智能卡票以及用于其他需要高热稳定性、高紫外透过率和机械稳定性玻璃材料的应用领域。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (14)

  1. 一种铝硅酸盐玻璃组合物,其特征在于,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,该铝硅酸盐玻璃组合物含有67-74mol%的SiO 2、10-15mol%的Al 2O 3、0-5mol%的B 2O 3、1-10mol%的MgO、1-10mol%的CaO、0-3mol%的SrO、2-8mol%的BaO、0.1-4mol%的ZnO、0.1-4mol%的RE 2O 3和小于0.05mol%的R 2O,其中RE为稀土元素,R为碱金属。
  2. 根据权利要求1所述的铝硅酸盐玻璃组合物,其特征在于,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,该铝硅酸盐玻璃组合物含有69-72mol%的SiO 2、12-14mol%的Al 2O 3、0-2mol%的B 2O 3、4-7mol%的MgO、4-7mol%的CaO、0-2mol%的SrO、3-6mol%的BaO、0.5-1.5mol%的ZnO、0.1-1.5mol%的RE 2O 3和小于0.05mol%的R 2O。
  3. 根据权利要求1或2所述的铝硅酸盐玻璃组合物,其特征在于,所述RE为钇和镧系元素,所述R为Li、Na和K;
    优选地,所述RE为Y、La和Lu。
  4. 根据权利要求1-3中任意一项所述的铝硅酸盐玻璃组合物,其特征在于,以摩尔百分比计,B 2O 3/(B 2O 3+SiO 2)<0.05。
  5. 根据权利要求1-4中任意一项所述的铝硅酸盐玻璃组合物,其特征在于,以摩尔百分比计,B 2O 3/(MgO+CaO+SrO+BaO)<0.3。
  6. 根据权利要求1-5中任意一项所述的铝硅酸盐玻璃组合物,其特征在于,以摩尔百分比计,
    (SrO+BaO)/(MgO+CaO+SrO+BaO+ZnO+Y 2O 3+La 2O 3+Lu 2O 3)>0.3。
  7. 根据权利要求1-6中任意一项所述的铝硅酸盐玻璃组合物,其特征在于,所述铝硅酸盐玻璃组合物还含有澄清剂,以各组分的总摩尔量为基准,所述澄清剂的含量≤0.5mol%,优选≤0.3mol%。
  8. 一种制备铝硅酸盐玻璃的方法,其特征在于,该方法包括:
    取满足权利要求1-7中任意一项所述的铝硅酸盐玻璃组合物所需原材料混合后得到混合料M1,向M1中加入NH 4NO 3后得到混合料M2,混合料M2经熔融处理、退火处理和机械加工制得所述铝硅酸盐玻璃;
    以得到100g所述铝硅酸盐玻璃为基准,所述NH 4NO 3的加入量为5-15g。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括对机械加工处理得到的产物进行二次熔融拉薄处理。
  10. 权利要求8或9所述的方法制备得到的铝硅酸盐玻璃。
  11. 根据权利要求10所述的铝硅酸盐玻璃,其特征在于,所述铝硅酸盐玻璃的氧离子浓度V o≥0.08mol/cm 3,优选V o≥0.084mol/cm 3,进一步优选V o≥0.086mol/cm 3
    V o=[(2*N Si+3*N Al+3*N B+N Mg+N Ca+N Sr+N Ba+N Zn+3*N NH4+3*N Y+3*N La+3*N Lu)/(N Si+N Al+N B+N Mg+N Ca+N Sr+N Ba+N Zn+N Y+N La+N Lu)]/(m o/ρ)
    其中,以得到100g所述铝硅酸盐玻璃为基准,N Si、N Al、N B、N Mg、N Ca、N Sr、N Ba、N Zn、N Y、N La和N Lu分别表示混合料M1中SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、BaO、ZnO、Y 2O 3、La 2O 3和Lu 2O 3的物质的量;N NH4表示向M1中添加的NH 4NO 3的物质的量;m o表示混合料M2熔融后所得到铝硅酸盐玻璃的质量,单位为g;ρ表示所得到铝硅酸盐玻璃的密度,单位为g/cm 3
  12. 根据权利要求10或11所述的铝硅酸盐玻璃,其特征在于,所述铝硅酸盐玻璃的粘度为100泊时对应的温度T 100≥1680℃;
    优选地,所述铝硅酸盐玻璃的应变点T st≥740℃;
    优选地,所述铝硅酸盐玻璃的液相线温度T L≤1240℃;
    优选地,所述铝硅酸盐玻璃中以单质硫S形式表征的硫元素含量<100ppm;
    优选地,所述铝硅酸盐玻璃中以Fe 2O 3形式表征的铁氧化物含量<150ppm;
    优选地,所述铝硅酸盐玻璃中以Cr 2O 3形式表征的铬氧化物含量<50ppm。
  13. 根据权利要求10-12中任意一项所述的铝硅酸盐玻璃,其特征在于,所述铝硅酸盐玻璃的密度≤2.75g/cm 3,优选<2.7g/cm 3;50-350℃的热膨胀系数<40×10 -7/℃,优选<39.5×10 -7/℃;杨氏模量>80GPa,优选>83GPa;
    优选地,粘度为100泊时对应的温度T 100为1690-1800℃,优选为1690-1710℃;粘度为35000泊时对应的温度T 35000为1250-1350℃,优选为1265-1310℃;应变点T st为740-765℃,优选为750-765℃;液相线温度T L<1220℃;
    优选地,波长为308nm处的透过率≥72%,优选≥74%;波长为343nm处的透过率≥84%,优选≥86%;波长为550nm处的透过率≥91%,优选≥92%;
    优选地,在600℃/10min条件下的热收缩率Y t<10ppm,优选Y t<7ppm。
  14. 权利要求1-7中任意一项所述的铝硅酸盐玻璃组合物或权利要求10-13中任意一项所述的铝硅酸盐玻璃在制备显示器件和/或太阳能电池中 的应用,优选为在制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的载板玻璃材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗和智能卡票以及用于其他需要高热稳定性、高紫外透过率和机械稳定性玻璃材料中的应用。
PCT/CN2019/111445 2018-10-16 2019-10-16 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用 WO2020078377A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021521014A JP7219336B2 (ja) 2018-10-16 2019-10-16 アルミノケイ酸塩ガラス組成物、アルミノケイ酸塩ガラス、その製造方法及び使用
KR1020217014698A KR102628724B1 (ko) 2018-10-16 2019-10-16 알루미노실리케이트 유리 조성물, 알루미노실리케이트 유리 및 그 제조 방법과 응용
US17/285,986 US11932576B2 (en) 2018-10-16 2019-10-16 Aluminosilicate glass composition, aluminosilicate glass, preparation method therefor and application thereof
EP19872541.8A EP3868726B1 (en) 2018-10-16 2019-10-16 Aluminosilicate glass composition, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811203508.6A CN109160727B (zh) 2018-10-16 2018-10-16 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用
CN201811203508.6 2018-10-16

Publications (1)

Publication Number Publication Date
WO2020078377A1 true WO2020078377A1 (zh) 2020-04-23

Family

ID=64878266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111445 WO2020078377A1 (zh) 2018-10-16 2019-10-16 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用

Country Status (7)

Country Link
US (1) US11932576B2 (zh)
EP (1) EP3868726B1 (zh)
JP (1) JP7219336B2 (zh)
KR (1) KR102628724B1 (zh)
CN (1) CN109160727B (zh)
TW (1) TWI712572B (zh)
WO (1) WO2020078377A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231819B (zh) 2018-10-16 2021-04-09 东旭光电科技股份有限公司 无碱铝硅酸盐玻璃及其制备方法和应用
CN109160727B (zh) 2018-10-16 2020-10-13 东旭光电科技股份有限公司 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用
CN111018345A (zh) * 2019-11-23 2020-04-17 石家庄旭新光电科技有限公司 一种oled面板用铝硅酸盐玻璃用组合物、及铝硅酸盐玻璃及其制备方法
TW202343307A (zh) * 2020-10-30 2023-11-01 美商坎柏斯庫爾有限責任公司 具有部分玻璃層之交易卡
CN115872617A (zh) * 2021-09-29 2023-03-31 成都光明光电股份有限公司 玻璃组合物
CN114716143B (zh) * 2022-04-13 2022-12-13 青岛融合装备科技有限公司 用于液晶玻璃基板的无碱硼铝硅酸盐玻璃

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066273A (zh) * 2008-05-13 2011-05-18 康宁股份有限公司 含稀土元素的玻璃材料和基板以及包括这种基板的器件
JP2016074551A (ja) * 2014-10-03 2016-05-12 旭硝子株式会社 無アルカリガラスの製造方法
JP2016113363A (ja) * 2014-12-16 2016-06-23 日本電気硝子株式会社 珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料
CN105859127A (zh) * 2016-04-01 2016-08-17 东旭科技集团有限公司 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
CN108341595A (zh) * 2018-02-12 2018-07-31 东旭集团有限公司 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用
CN109160727A (zh) * 2018-10-16 2019-01-08 东旭科技集团有限公司 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9401818D0 (en) * 1994-01-31 1994-03-23 Cookson Group Plc Glass compositions
DE19934072C2 (de) * 1999-07-23 2001-06-13 Schott Glas Alkalifreies Aluminoborosilicatglas, seine Verwendungen und Verfahren zu seiner Herstellung
CN1331790C (zh) * 2004-03-08 2007-08-15 华南理工大学 一种玻璃材料及其制备方法与应用
CN107244806A (zh) 2011-01-25 2017-10-13 康宁股份有限公司 具有高热稳定性和化学稳定性的玻璃组合物
JP5831838B2 (ja) 2011-03-08 2015-12-09 日本電気硝子株式会社 無アルカリガラス
DE102011052622B9 (de) 2011-08-12 2013-03-21 Schott Ag Arsen- und antimonfreies, titanoxidhaltiges Borosilikatglas, Verfahren zu dessen Herstellung, Verwendung des Glases und Verwendung sauerstoffhaltiger Selenverbindungen zur Läuterung
JP5943064B2 (ja) 2012-02-27 2016-06-29 旭硝子株式会社 無アルカリガラスの製造方法
JP5914453B2 (ja) * 2012-12-28 2016-05-11 AvanStrate株式会社 ディスプレイ用ガラス基板およびその製造方法
CN105601105B (zh) * 2015-12-30 2018-09-07 芜湖东旭光电装备技术有限公司 一种玻璃用组合物、低脆性无碱玻璃及其制备方法和应用
CN105859129B (zh) * 2016-04-07 2019-03-19 东旭科技集团有限公司 一种玻璃用组合物和玻璃及其制备方法和应用
CN107129142B (zh) 2017-04-18 2021-02-09 东旭光电科技股份有限公司 无碱玻璃基板及其制备方法
CN109231819B (zh) 2018-10-16 2021-04-09 东旭光电科技股份有限公司 无碱铝硅酸盐玻璃及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066273A (zh) * 2008-05-13 2011-05-18 康宁股份有限公司 含稀土元素的玻璃材料和基板以及包括这种基板的器件
JP2016074551A (ja) * 2014-10-03 2016-05-12 旭硝子株式会社 無アルカリガラスの製造方法
JP2016113363A (ja) * 2014-12-16 2016-06-23 日本電気硝子株式会社 珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料
CN105859127A (zh) * 2016-04-01 2016-08-17 东旭科技集团有限公司 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用
CN108341595A (zh) * 2018-02-12 2018-07-31 东旭集团有限公司 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用
CN109160727A (zh) * 2018-10-16 2019-01-08 东旭科技集团有限公司 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3868726A4 *

Also Published As

Publication number Publication date
CN109160727B (zh) 2020-10-13
EP3868726A1 (en) 2021-08-25
KR20210086648A (ko) 2021-07-08
TWI712572B (zh) 2020-12-11
EP3868726B1 (en) 2023-04-26
US20210340056A1 (en) 2021-11-04
CN109160727A (zh) 2019-01-08
TW202021921A (zh) 2020-06-16
US11932576B2 (en) 2024-03-19
JP7219336B2 (ja) 2023-02-07
KR102628724B1 (ko) 2024-01-23
EP3868726A4 (en) 2021-12-22
JP2022505105A (ja) 2022-01-14

Similar Documents

Publication Publication Date Title
TWI712572B (zh) 鋁矽酸鹽玻璃組合物、鋁矽酸鹽玻璃及其製備方法和應用
KR102282396B1 (ko) 유리용 조성물, 알칼리 토류 알루미늄 규산염 유리 및 그 제조 방법과 적용
TWI712570B (zh) 無鹼鋁矽酸鹽玻璃及其製備方法和應用
TWI738086B (zh) 玻璃用組合物、鋁矽酸鹽玻璃及其製備方法和應用
JP6663010B2 (ja) 低ホウ素とバリウムフリーのアルカリ土類アルミノシリケートガラス及びその応用
TW201305083A (zh) 平面顯示器用玻璃基板及其製造方法
CN108503214B (zh) 一种高应变点无碱铝硼硅酸盐玻璃及其制备方法
TW202235393A (zh) 玻璃
CN111018345A (zh) 一种oled面板用铝硅酸盐玻璃用组合物、及铝硅酸盐玻璃及其制备方法
JPWO2019177070A1 (ja) ガラス
TW202235390A (zh) 玻璃
CN109020195B (zh) 铝硅酸盐玻璃及其制备方法和应用
CN110330226B (zh) 无碱铝硼硅酸盐玻璃及其制备方法和应用
CN114772928A (zh) 无碱铝硅酸盐基板玻璃及其制备方法和应用
TWI853844B (zh) 無鹼玻璃板
CN117923790A (zh) 一种不含硼低热收缩率基板玻璃
TWI230145B (en) Substrate glass for plate panel display
CN117602823A (zh) 无碱铝硼硅酸盐玻璃用组合物、无碱铝硼硅酸盐玻璃及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217014698

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019872541

Country of ref document: EP

Effective date: 20210517