WO2020078377A1 - 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用 - Google Patents
铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用 Download PDFInfo
- Publication number
- WO2020078377A1 WO2020078377A1 PCT/CN2019/111445 CN2019111445W WO2020078377A1 WO 2020078377 A1 WO2020078377 A1 WO 2020078377A1 CN 2019111445 W CN2019111445 W CN 2019111445W WO 2020078377 A1 WO2020078377 A1 WO 2020078377A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminosilicate glass
- mol
- glass
- aluminosilicate
- glass composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B25/00—Annealing glass products
- C03B25/02—Annealing glass products in a discontinuous way
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
- C03C1/004—Refining agents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
Definitions
- the invention relates to the field of glass manufacturing, in particular to aluminosilicate glass composition, aluminosilicate glass, and preparation method and application thereof.
- AMLCD active matrix liquid crystal display
- OLED organic light emitting diode
- LTPS TFT- LCD active matrix liquid crystal display
- Mainstream silicon-based TFTs can be divided into amorphous silicon (a-Si) TFTs, polycrystalline silicon (p-Si) TFTs and single crystal silicon (SCS) TFTs, of which amorphous silicon (a-Si) TFTs are now mainstream TFT-LCDs Applied technology, amorphous silicon (a-Si) TFT technology, the processing temperature in the production process can be completed at a temperature of 300-450 °C. LTPS polycrystalline silicon (p-Si) TFTs need to be processed multiple times at higher temperatures during the manufacturing process.
- the substrate must not be deformed during multiple high-temperature processes, which puts higher requirements on the substrate glass performance, and the preferred strain
- the point is higher than 650 ° C, more preferably higher than 670 ° C, 700 ° C, and 720 ° C, so that the substrate has as little thermal shrinkage as possible in the panel manufacturing process.
- the expansion coefficient of the glass substrate needs to be close to that of silicon to minimize stress and damage. Therefore, the preferred linear thermal expansion coefficient of the substrate glass is between 28-39 ⁇ 10 -7 / °C.
- the glass used as the display substrate should have a lower liquidus temperature.
- a transparent conductive film, an insulating film, a semiconductor (polycrystalline silicon, amorphous silicon, etc.) film and a metal film need to be formed on the glass surface of the underlying substrate by sputtering, chemical vapor deposition (CVD), etc.
- the photo-etching technology forms various circuits and patterns.
- the glass contains alkali metal oxides (Na 2 O, K 2 O, Li 2 O), the alkali metal ions diffuse into the deposited semiconductor material during the heat treatment process and damage
- alkali metal oxides Na 2 O, K 2 O, Li 2 O
- the substrate glass During the processing of the glass substrate, the substrate glass is placed horizontally. Under the effect of its own weight, the glass sags to a certain extent. The degree of sag is proportional to the glass density and inversely proportional to the glass's elastic modulus. With the development of substrate manufacturing in the direction of large size and thinning, the sag of the glass plate in manufacturing must be paid attention to. Therefore, the composition should be designed so that the substrate glass has the lowest possible density and the highest possible elastic modulus.
- ultraviolet light is used as energy to separate the display unit from the substrate glass in contact with it.
- a glass substrate with a high and stable transmittance in the ultraviolet region is required. For example, for a glass substrate with a thickness of 0.5 mm, penetration at a wavelength of 308 nm and / or 343 nm is required The rate is higher than 60%, and the transmission rate between different glass substrates in the batch is extremely poor within 1%.
- the purpose of the present invention is to overcome the defects of the existing aluminosilicate glass that display substrate glass homogenization effect is not ideal and the penetration rate at 308 nm is low, to provide an aluminosilicate glass and a preparation method and application thereof,
- the aluminosilicate glass has lower density and higher elastic modulus, good thermal stability and lower thermal shrinkage, and the aluminosilicate glass has high penetration at 308 nm and / or 343 nm rate.
- the first aspect of the present invention provides an aluminosilicate glass composition. Based on the total molar amount of the aluminosilicate glass, based on the oxide, the aluminosilicate glass contains 67- 74mol% of SiO 2, 10-15mol% of Al 2 O 3, 0-5mol% of B 2 O 3, 1-10mol% of MgO, 1-10mol% of CaO, 0-3mol% of SrO, 2-8mol % BaO, 0.1-4 mol% ZnO, 0.1-4 mol% RE 2 O 3 and less than 0.05 mol% R 2 O, where RE is a rare earth element and R is an alkali metal.
- the aluminosilicate glass composition contains 69-72 mol% SiO 2 and 12-14 mol% Al 2 O 3 , 0-2mol% B 2 O 3 , 4-7mol% MgO, 4-7mol% CaO, 0-2mol% SrO, 3-6mol% BaO, 0.5-1.5mol% ZnO, 0.1-1.5 mol% RE 2 O 3 and less than 0.05 mol% R 2 O.
- the RE is yttrium and lanthanide
- the R is Li, Na and K.
- the RE is Y, La and Lu.
- the aluminosilicate glass composition further contains a clarifying agent, based on the total molar amount of each component, the content of the clarifying agent ⁇ 0.5 mol%, more preferably, the content of the clarifying agent ⁇ 0.3mol%.
- the present invention provides a method for preparing aluminosilicate glass.
- the method includes mixing raw materials that meet the requirements of the aluminosilicate glass composition to obtain a mixture M1, and adding NH 4 NO to M1 After 3 , the mixture M2 is obtained, and the mixture M2 is melted, annealed and mechanically processed to obtain the aluminosilicate glass; based on obtaining 100 g of the aluminosilicate glass, the addition of the NH 4 NO 3 The amount is 5-15g.
- the present invention provides aluminosilicate glass prepared by the above method.
- the oxygen ion concentration of the aluminosilicate glass V o ⁇ 0.08 mol / cm 3 , further preferably V o ⁇ 0.084 mol / cm 3 , more preferably V o ⁇ 0.086 mol / cm 3 ;
- V o [(2 * N Si + 3 * N Al + 3 * N B + N Mg + N Ca + N Sr + N Ba + N Zn + 3 * N NH4 + 3 * N Y + 3 * N La + 3 * N Lu ) / (N Si + N Al + N B + N Mg + N Ca + N Sr + N Ba + N Zn + N Y + N La + N Lu )) / (m o / ⁇ )
- N Si , N Al , N B , N Mg , N Ca , N Sr , N Ba , N Zn , N Y , N La and N Lu respectively represent mixing
- NNH 4 means to M1
- m o represents the mass of the aluminosilicate glass obtained after the mixture M2 is melted, in g;
- ⁇ represents the density of the obtained aluminosilicate glass, in g / cm 3 .
- the viscosity of the aluminosilicate glass is the corresponding temperature T 100 ⁇ 1680 ° C. at 100 poises.
- the strain point T st of the aluminosilicate glass is ⁇ 740 ° C.
- the liquidus temperature T L of the aluminosilicate glass is ⁇ 1240 ° C.
- the elemental sulfur content in the form of elemental sulfur S in the aluminosilicate glass is ⁇ 100 ppm.
- the iron oxide content in the form of Fe 2 O 3 in the aluminosilicate glass is ⁇ 150 ppm.
- the content of chromium oxide in the form of Cr 2 O 3 in the aluminosilicate glass is ⁇ 50 ppm.
- the density of the aluminosilicate glass is ⁇ 2.75 g / cm 3 , further preferably ⁇ 2.7 g / cm 3 ; the coefficient of thermal expansion at 50-350 ° C is less than 40 ⁇ 10 -7 / ° C, further preferably ⁇ 39.5 ⁇ 10 -7 / ° C; Young's modulus> 80 GPa, more preferably> 83 GPa.
- the corresponding temperature T 100 at a viscosity of 100 poises is 1690-1800 ° C, further preferably 1690-1710 ° C;
- the corresponding temperature T 35000 at a viscosity of 35000 poises is 1250-1350 ° C, further preferably 1265-1310 ° C
- the strain point T st is 740-765 ° C, further preferably 750-765 ° C; the liquidus temperature T L ⁇ 1220 ° C.
- the transmittance at a wavelength of 308 nm is ⁇ 72%, further preferably ⁇ 74%; the transmittance at a wavelength of 343 nm is ⁇ 84%, further preferably ⁇ 86%; the transmittance at a wavelength of 550 nm is ⁇ 91% , More preferably ⁇ 92%.
- the present invention provides the application of the aluminosilicate glass composition or aluminosilicate glass according to the present invention in the preparation of display devices and / or solar cells, preferably in the preparation of substrate glass for flat panel display products Substrate materials and / or glass film materials for screen surface protection, carrier glass materials for flexible display products and / or surface encapsulation glass materials and / or glass film materials for screen surface protection, and substrate glass substrate materials for flexible solar cells , Safety glass, bulletproof glass, smart car glass, smart traffic display, smart window and smart card ticket, and other glass materials that need high thermal stability, high UV transmittance and mechanical stability.
- the aluminosilicate glass of the present invention has the advantages of high ultraviolet transmittance, visible light transmittance, high strain point (high heat resistance) and the like. It can be used to prepare display devices and / or solar cells, and is particularly suitable for preparing substrate glass substrate materials for flat panel display products and / or glass film materials for screen surface protection, carrier glass materials for flexible display products and / or surface encapsulating glass Materials and / or glass film materials for screen surface protection, glass substrate materials for flexible solar cells, safety glass, bulletproof glass, smart car glass, smart traffic displays, smart windows and smart card tickets, and other applications that require high thermal stability The application field of glass materials with high transparency, high ultraviolet transmittance and mechanical stability.
- the present invention provides an aluminosilicate glass composition. Based on the total molar amount of the aluminosilicate glass composition, based on the oxide, the aluminosilicate glass composition contains 67- 74mol% of SiO 2, 10-15mol% of Al 2 O 3, 0-5mol% of B 2 O 3, 1-10mol% of MgO, 1-10mol% of CaO, 0-3mol% of SrO, 2-8mol % BaO, 0.1-4 mol% ZnO, 0.1-4 mol% RE 2 O 3 and less than 0.05 mol% R 2 O, where RE is a rare earth element and R is an alkali metal.
- the aluminosilicate glass composition contains 69-72 mol% of SiO 2 and 12-14 mol % Al 2 O 3 , 0-2mol% B 2 O 3 , 4-7mol% MgO, 4-7mol% CaO, 0-2mol% SrO, 3-6mol% BaO, 0.5-1.5mol% ZnO, 0.1-1.5mol% RE 2 O 3 and less than 0.05mol% R 2 O.
- the content of SiO 2 is 67-74 mol%, preferably 69-72 mol% , Specifically, for example, it may be 67mol%, 67.3mol%, 67.5mol%, 67.7mol%, 67.8mol%, 68mol%, 68.7mol%, 69mol%, 69.4mol%, 70.8mol%, 70.9mol%, 71.8mol %, 72 mol%, 72.4 mol%, 73.6 mol%, 73.9 mol%, 74 mol%, and any value in the range formed by any two of these values.
- SiO 2 is a glass-forming body. If the content of SiO 2 is too low, it is not conducive to the enhancement of chemical resistance. It will cause too high expansion coefficient and too low strain point, which will lead to devitrification of the glass and high temperature resistivity Small, the Joule heating effect is weakened, so that its own heat can not meet the needs of melting. When the content of SiO 2 increases, it helps to reduce the coefficient of thermal expansion, improve the strain point, enhance the chemical resistance, and increase the high temperature resistivity; but too high content will also cause the melting temperature of the glass to increase and the meltability to decrease. As the temperature of the liquid phase increases, the devitrification resistance decreases.
- the Al 2 O 3 content may be 10-15 mol%, preferably 12-14mol%, specifically, for example, 10mol%, 10.3mol%, 10.9mol%, 11mol%, 11.7mol%, 12mol%, 12.6mol%, 13mol%, 13.3mol%, 13.5mol%, 13.6mol %, 13.8 mol%, 13.9 mol%, 14 mol%, 14.4 mol%, 14.5 mol%, 14.9 mol%, 15 mol%, and any value in the range formed by any two of these values.
- Al 2 O 3 can improve the strength of the glass structure.
- the content of Al 2 O 3 is less than 10 mol%, the heat resistance of the glass is difficult to improve, and it is also easily eroded by external moisture and chemical reagents.
- the high content of A1 2 O 3 contributes to the increase of the annealing temperature and mechanical strength of the glass; however, when the content of Al 2 O 3 is higher than 15 mol%, the glass is prone to devitrification and the glass is difficult to melt.
- the content of B 2 O 3 is 0-5 mol%, preferably 0- 2mol%, specifically, for example, 0, 0.4mol%, 0.7mol%, 1.4mol%, 1.6mol%, 1.9mol%, 2mol%, 2.5mol%, 3.5mol%, 4mol%, 4.3mol%, 4.7 mol%, 5mol%, and any value in the range formed by any two of these values.
- B 2 O 3 In the high-aluminum alkali-free silicate glass system, the use of boron oxide B 2 O 3 can bring good high-temperature fluxing effect, and at the same time help to improve the glass resistance. However, in the low-temperature viscosity area, B 2 O 3 significantly reduces the annealing temperature of the glass, which is not conducive to the improvement of the thermal stability of the glass.
- the content of the MgO may be 1-10 mol%, preferably 4- 7mol%, specifically, for example, 1mol%, 1.1mol%, 1.2mol%, 1.5mol%, 1.8mol%, 2.8mol%, 3mol%, 3.6mol%, 4.4mol%, 4.6mol%, 5mol%, 5.5 mol%, 6.4 mol%, 7 mol%, 7.4 mol%, 8 mol%, 9 mol%, 10 mol%, and any value in the range formed by any two of these values.
- the content of the CaO may be 1-10 mol%, preferably 4- 7mol%, specifically, for example, 1mol%, 1.1mol%, 1.2mol%, 1.5mol%, 1.8mol%, 2.1mol%, 2.5mol%, 3.8mol%, 4.3mol%, 4.9mol%, 5.3mol %, 5.7 mol%, 6.6 mol%, 7 mol%, 7.4 mol%, 8 mol%, 9 mol%, 10 mol%, and any value in the range formed by any two of these values.
- the content of the SrO may be 0-3 mol%, preferably 0- 2mol%, specifically, for example, 0, 0.1mol%, 0.44mol%, 0.8mol%, 1mol%, 1.4mol%, 1.5mol%, 1.7mol%, 2mol%, 2.2mol%, 2.6mol%, 3mol % And any value in the range formed by any two of these values.
- MgO, CaO and SrO are all alkaline earth metal oxides, which can effectively reduce the high temperature viscosity of the glass to improve the meltability and formability of the glass, and can also increase the annealing point temperature of the glass, and MgO, SrO have improved The characteristics of chemical stability and mechanical stability, but too much content will increase the density and increase the incidence of cracks, devitrification, and phase separation.
- the alkali-free aluminosilicate glass of the present invention BaO is used as a flux and a component to prevent the glass from crystallizing. If the content is too much, the high-temperature volume resistivity of the glass will increase, the density will be too high, and the specific modulus of the product will decrease. .
- MgO, CaO, SrO, and BaO are all alkaline earth metal oxides, it is found through experiments that the influence of each oxide on the stability of glass formation is quite different. Properly increasing the content of BaO and controlling the reasonable ratio range can help form Increased stability, improved resistance to crystallization, and overall performance optimization.
- the content of the BaO is 2-8 mol%, preferably 3-6 mol%, specifically, for example, may be 2mol%, 2.3mol%, 3.2mol%, 3.5mol%, 4.1mol%, 4.9mol%, 5.3mol%, 5.9mol%, 6.3mol%, 6.9mol%, 7mol%, 7.3mol%, 8mol% and these Any value in the range formed by any two values in the value.
- the content of the ZnO may be 0.1-4 mol%, preferably 0.5- 1.5mol%, specifically, for example, 0.1mol%, 0.14mol%, 0.2mol%, 0.25mol%, 0.3mol%, 0.4mol%, 0.5mol%, 0.6mol%, 0.8mol%, 0.9mol%, 1 mol%, 1.2 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 4 mol%, and any value in the range formed by any two of these values.
- ZnO can reduce the high-temperature viscosity of the glass (such as the viscosity at 1500 °C), which is conducive to eliminating bubbles. At the same time, it can improve the strength and hardness below the softening point, increase the chemical resistance of the glass, and reduce the coefficient of thermal expansion of the glass. In the alkali-free glass system, adding an appropriate amount of ZnO helps to suppress crystallization and can reduce the crystallization temperature.
- the RE 2 O 3 content is 0.1-4 mol%, preferably 0.1-1.5 mol%, the RE is yttrium and lanthanide element.
- the RE is Y, La, and Lu.
- RE 2 O 3 may be, for example, 0.1 mol%, 0.24 mol%, 0.28 mol%, 0.34 mol%, 0.4 mol%, 0.44 mol%, 0.8 mol%, 0.94 mol%, 0.96 mol%, 1.34 mol%, 1.4 mol%, 1.5 mol%, 2 mol%, 2.5 mol%, 3 mol%, 3.3 mol%, 3.5 mol%, 3.9 mol%, 4 mol%, and any value in the range formed by any two of these values.
- the rare earth oxide RE 2 O 3 has a unique ability to improve certain properties of the glass, such as the flexural strength, elastic modulus, strain point and other properties of the glass.
- the aluminosilicate glass composition of the present invention further contains a clarifying agent, and the content of the clarifying agent is ⁇ 0.5 mol% based on the total molar amount of each component, preferably ⁇ 0.3mol%.
- the present invention provides a method for preparing aluminosilicate glass.
- the method includes:
- the raw materials that meet the requirements of the aluminosilicate glass composition are mixed to obtain a mixture M1, and NH 4 NO 3 is added to M1 to obtain a mixture M2.
- the mixture M2 is obtained by melting treatment, annealing treatment and mechanical processing. Describe aluminosilicate glass;
- the amount of the NH 4 NO 3 added is 5-15 g.
- the method further includes performing secondary melt thinning treatment on the product obtained by the mechanical processing treatment.
- the present invention provides aluminosilicate glass prepared by the above method.
- the oxygen ion concentration of the aluminosilicate glass V o ⁇ 0.08 mol / cm 3 , preferably V o ⁇ 0.084 mol / cm 3 , further preferably V o ⁇ 0.086 mol / cm 3 ;
- V o [(2 * N Si + 3 * N Al + 3 * N B + N Mg + N Ca + N Sr + N Ba + N Zn + 3 * N NH4 + 3 * N Y + 3 * N La + 3 * N Lu ) / (N Si + N Al + N B + N Mg + N Ca + N Sr + N Ba + N Zn + N Y + N La + N Lu )) / (m o / ⁇ )
- N Si , N Al , N B , N Mg , N Ca , N Sr , N Ba , N Zn , N Y , N La and N Lu respectively represent mixing
- N NH4 means to M1 The amount of NH 4 NO 3 added in the material;
- m o represents the mass of the aluminosilicate glass obtained after the mixture M2 is melted, in g;
- ⁇ represents the density of the obtained aluminosilicate glass, in g / cm 3 .
- the aluminosilicate glass of the present invention has a temperature T 100 ⁇ 1680 ° C when the viscosity is 100 poises.
- the aluminosilicate glass of the present invention has a strain point T st ⁇ 740 ° C.
- the aluminosilicate glass of the present invention has a liquidus temperature T L ⁇ 1240 ° C.
- the aluminosilicate glass of the present invention has an elemental sulfur content in the form of elemental sulfur S ⁇ 100ppm; further preferably, the aluminosilicate glass of the present invention has an elemental sulfur content in the form of elemental sulfur S ⁇ 50ppm.
- the iron oxide content in the form of Fe 2 O 3 in the aluminosilicate glass of the present invention is ⁇ 150 ppm.
- the chromium oxide content in the form of Cr 2 O 3 in the aluminosilicate glass of the present invention is ⁇ 50 ppm.
- the density of the aluminosilicate glass of the present invention is ⁇ 2.75 g / cm 3 , more preferably ⁇ 2.65 g / cm 3 ;
- the coefficient of thermal expansion at 50-350 ° C is ⁇ 40 ⁇ 10 -7 / ° C, more preferably ⁇ 39.5 ⁇ 10 -7 / ° C;
- the aluminosilicate glass of the present invention has a temperature T 100 of 1690-1800 ° C at a viscosity of 100 poises, more preferably 1690-1710 ° C; a temperature T 35000 of 1250- at a viscosity of 35000 poises 1350 ° C, more preferably 1265-1310 ° C; strain point T st is 740-765 ° C, more preferably 750-765 ° C; liquidus temperature T L ⁇ 1220 ° C.
- the aluminosilicate glass of the present invention has a transmittance at a wavelength of 308 nm ⁇ 72%, more preferably ⁇ 74%; a transmittance at a wavelength of 343 nm ⁇ 84%, more preferably ⁇ 86%; wavelength
- the transmittance at 550 nm is ⁇ 91%, more preferably ⁇ 92%.
- the aluminosilicate glass of the present invention has a heat shrinkage rate Y t ⁇ 10 ppm at 600 ° C./10 min, and more preferably Y t ⁇ 7 ppm.
- the present invention provides the application of the aluminosilicate glass composition or aluminosilicate glass according to the present invention in the preparation of display devices and / or solar cells, preferably in the preparation of substrate glass for flat panel display products Substrate materials and / or glass film materials for screen surface protection, carrier glass materials for flexible display products and / or surface encapsulation glass materials and / or glass film materials for screen surface protection, and substrate glass substrate materials for flexible solar cells , Safety glass, bulletproof glass, smart car glass, smart traffic display, smart window and smart card ticket, and other glass materials that need high thermal stability, high UV transmittance and mechanical stability.
- the glass density was measured with reference to ASTM C-693 in g / cm 3 .
- the temperature of the liquidus of the glass, T L is measured in degrees Celsius using the ladder furnace method.
- UV-visible spectrophotometer was used to determine the glass transmittance.
- the thickness of the glass sample was 0.5 mm, and the transmittance at 308 nm, 343 nm, and 550 nm was taken as the unit.
- ICP JY2000 inductively coupled spectrometer
- the glass is heated from 25 ° C (measured the initial length, marked as L 0 ) to 600 ° C at a heating rate of 5 ° C / min. Hold for 10 minutes at °C, and then reduce the temperature to 25 °C at a cooling rate of 5 °C / min.
- the glass length shrinks by a certain amount. Measure its length again, marked as L t , then the thermal shrinkage rate Y t is expressed as:
- the difference is that the mixture composition (corresponding to the glass composition) and the performance measurement results of the obtained product are shown in Table 2.
- the difference is that the mixture composition (corresponding to the glass composition) and the performance measurement results of the obtained product are shown in Table 3.
- the method of the present invention has a significant effect on the problems of obtaining high ultraviolet transmittance, high strain point (high heat resistance), and high viscosity glass.
- the glass composition of this application and the low-iron, low-sulfur, and high-viscosity glass obtained by additionally adding an oxidant simultaneously have the advantages of high ultraviolet and visible light transmittance, high thermal stability, high glass formation stability, and high mechanical strength.
- the glass prepared by the method of the present invention can be used for preparing display devices and / or solar cells, and is particularly suitable for preparing substrate glass substrate materials for flat panel display products and / or glass film materials for screen surface protection and flexible display products.
- Plate glass material and / or surface encapsulation glass material and / or glass film material for screen surface protection substrate glass substrate material for flexible solar cells, safety glass, bulletproof glass, smart car glass, smart traffic display, smart window and Smart card tickets and other application fields that require high thermal stability, high UV transmittance and mechanical stability glass materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Glass Compositions (AREA)
Abstract
Description
Claims (14)
- 一种铝硅酸盐玻璃组合物,其特征在于,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,该铝硅酸盐玻璃组合物含有67-74mol%的SiO 2、10-15mol%的Al 2O 3、0-5mol%的B 2O 3、1-10mol%的MgO、1-10mol%的CaO、0-3mol%的SrO、2-8mol%的BaO、0.1-4mol%的ZnO、0.1-4mol%的RE 2O 3和小于0.05mol%的R 2O,其中RE为稀土元素,R为碱金属。
- 根据权利要求1所述的铝硅酸盐玻璃组合物,其特征在于,以该铝硅酸盐玻璃组合物的总摩尔量为基准,以氧化物计,该铝硅酸盐玻璃组合物含有69-72mol%的SiO 2、12-14mol%的Al 2O 3、0-2mol%的B 2O 3、4-7mol%的MgO、4-7mol%的CaO、0-2mol%的SrO、3-6mol%的BaO、0.5-1.5mol%的ZnO、0.1-1.5mol%的RE 2O 3和小于0.05mol%的R 2O。
- 根据权利要求1或2所述的铝硅酸盐玻璃组合物,其特征在于,所述RE为钇和镧系元素,所述R为Li、Na和K;优选地,所述RE为Y、La和Lu。
- 根据权利要求1-3中任意一项所述的铝硅酸盐玻璃组合物,其特征在于,以摩尔百分比计,B 2O 3/(B 2O 3+SiO 2)<0.05。
- 根据权利要求1-4中任意一项所述的铝硅酸盐玻璃组合物,其特征在于,以摩尔百分比计,B 2O 3/(MgO+CaO+SrO+BaO)<0.3。
- 根据权利要求1-5中任意一项所述的铝硅酸盐玻璃组合物,其特征在于,以摩尔百分比计,(SrO+BaO)/(MgO+CaO+SrO+BaO+ZnO+Y 2O 3+La 2O 3+Lu 2O 3)>0.3。
- 根据权利要求1-6中任意一项所述的铝硅酸盐玻璃组合物,其特征在于,所述铝硅酸盐玻璃组合物还含有澄清剂,以各组分的总摩尔量为基准,所述澄清剂的含量≤0.5mol%,优选≤0.3mol%。
- 一种制备铝硅酸盐玻璃的方法,其特征在于,该方法包括:取满足权利要求1-7中任意一项所述的铝硅酸盐玻璃组合物所需原材料混合后得到混合料M1,向M1中加入NH 4NO 3后得到混合料M2,混合料M2经熔融处理、退火处理和机械加工制得所述铝硅酸盐玻璃;以得到100g所述铝硅酸盐玻璃为基准,所述NH 4NO 3的加入量为5-15g。
- 根据权利要求8所述的方法,其特征在于,所述方法还包括对机械加工处理得到的产物进行二次熔融拉薄处理。
- 权利要求8或9所述的方法制备得到的铝硅酸盐玻璃。
- 根据权利要求10所述的铝硅酸盐玻璃,其特征在于,所述铝硅酸盐玻璃的氧离子浓度V o≥0.08mol/cm 3,优选V o≥0.084mol/cm 3,进一步优选V o≥0.086mol/cm 3;V o=[(2*N Si+3*N Al+3*N B+N Mg+N Ca+N Sr+N Ba+N Zn+3*N NH4+3*N Y+3*N La+3*N Lu)/(N Si+N Al+N B+N Mg+N Ca+N Sr+N Ba+N Zn+N Y+N La+N Lu)]/(m o/ρ)其中,以得到100g所述铝硅酸盐玻璃为基准,N Si、N Al、N B、N Mg、N Ca、N Sr、N Ba、N Zn、N Y、N La和N Lu分别表示混合料M1中SiO 2、Al 2O 3、B 2O 3、MgO、CaO、SrO、BaO、ZnO、Y 2O 3、La 2O 3和Lu 2O 3的物质的量;N NH4表示向M1中添加的NH 4NO 3的物质的量;m o表示混合料M2熔融后所得到铝硅酸盐玻璃的质量,单位为g;ρ表示所得到铝硅酸盐玻璃的密度,单位为g/cm 3。
- 根据权利要求10或11所述的铝硅酸盐玻璃,其特征在于,所述铝硅酸盐玻璃的粘度为100泊时对应的温度T 100≥1680℃;优选地,所述铝硅酸盐玻璃的应变点T st≥740℃;优选地,所述铝硅酸盐玻璃的液相线温度T L≤1240℃;优选地,所述铝硅酸盐玻璃中以单质硫S形式表征的硫元素含量<100ppm;优选地,所述铝硅酸盐玻璃中以Fe 2O 3形式表征的铁氧化物含量<150ppm;优选地,所述铝硅酸盐玻璃中以Cr 2O 3形式表征的铬氧化物含量<50ppm。
- 根据权利要求10-12中任意一项所述的铝硅酸盐玻璃,其特征在于,所述铝硅酸盐玻璃的密度≤2.75g/cm 3,优选<2.7g/cm 3;50-350℃的热膨胀系数<40×10 -7/℃,优选<39.5×10 -7/℃;杨氏模量>80GPa,优选>83GPa;优选地,粘度为100泊时对应的温度T 100为1690-1800℃,优选为1690-1710℃;粘度为35000泊时对应的温度T 35000为1250-1350℃,优选为1265-1310℃;应变点T st为740-765℃,优选为750-765℃;液相线温度T L<1220℃;优选地,波长为308nm处的透过率≥72%,优选≥74%;波长为343nm处的透过率≥84%,优选≥86%;波长为550nm处的透过率≥91%,优选≥92%;优选地,在600℃/10min条件下的热收缩率Y t<10ppm,优选Y t<7ppm。
- 权利要求1-7中任意一项所述的铝硅酸盐玻璃组合物或权利要求10-13中任意一项所述的铝硅酸盐玻璃在制备显示器件和/或太阳能电池中 的应用,优选为在制备平板显示产品的衬底玻璃基板材料和/或屏幕表面保护用玻璃膜层材料、柔性显示产品的载板玻璃材料和/或表面封装玻璃材料和/或屏幕表面保护用玻璃膜层材料、柔性太阳能电池的衬底玻璃基板材料、安全玻璃、防弹玻璃、智能汽车玻璃、智能交通显示屏、智能橱窗和智能卡票以及用于其他需要高热稳定性、高紫外透过率和机械稳定性玻璃材料中的应用。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021521014A JP7219336B2 (ja) | 2018-10-16 | 2019-10-16 | アルミノケイ酸塩ガラス組成物、アルミノケイ酸塩ガラス、その製造方法及び使用 |
KR1020217014698A KR102628724B1 (ko) | 2018-10-16 | 2019-10-16 | 알루미노실리케이트 유리 조성물, 알루미노실리케이트 유리 및 그 제조 방법과 응용 |
US17/285,986 US11932576B2 (en) | 2018-10-16 | 2019-10-16 | Aluminosilicate glass composition, aluminosilicate glass, preparation method therefor and application thereof |
EP19872541.8A EP3868726B1 (en) | 2018-10-16 | 2019-10-16 | Aluminosilicate glass composition, preparation method therefor and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811203508.6A CN109160727B (zh) | 2018-10-16 | 2018-10-16 | 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用 |
CN201811203508.6 | 2018-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020078377A1 true WO2020078377A1 (zh) | 2020-04-23 |
Family
ID=64878266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/111445 WO2020078377A1 (zh) | 2018-10-16 | 2019-10-16 | 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11932576B2 (zh) |
EP (1) | EP3868726B1 (zh) |
JP (1) | JP7219336B2 (zh) |
KR (1) | KR102628724B1 (zh) |
CN (1) | CN109160727B (zh) |
TW (1) | TWI712572B (zh) |
WO (1) | WO2020078377A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109231819B (zh) | 2018-10-16 | 2021-04-09 | 东旭光电科技股份有限公司 | 无碱铝硅酸盐玻璃及其制备方法和应用 |
CN109160727B (zh) | 2018-10-16 | 2020-10-13 | 东旭光电科技股份有限公司 | 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用 |
CN111018345A (zh) * | 2019-11-23 | 2020-04-17 | 石家庄旭新光电科技有限公司 | 一种oled面板用铝硅酸盐玻璃用组合物、及铝硅酸盐玻璃及其制备方法 |
TW202343307A (zh) * | 2020-10-30 | 2023-11-01 | 美商坎柏斯庫爾有限責任公司 | 具有部分玻璃層之交易卡 |
CN115872617A (zh) * | 2021-09-29 | 2023-03-31 | 成都光明光电股份有限公司 | 玻璃组合物 |
CN114716143B (zh) * | 2022-04-13 | 2022-12-13 | 青岛融合装备科技有限公司 | 用于液晶玻璃基板的无碱硼铝硅酸盐玻璃 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102066273A (zh) * | 2008-05-13 | 2011-05-18 | 康宁股份有限公司 | 含稀土元素的玻璃材料和基板以及包括这种基板的器件 |
JP2016074551A (ja) * | 2014-10-03 | 2016-05-12 | 旭硝子株式会社 | 無アルカリガラスの製造方法 |
JP2016113363A (ja) * | 2014-12-16 | 2016-06-23 | 日本電気硝子株式会社 | 珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料 |
CN105859127A (zh) * | 2016-04-01 | 2016-08-17 | 东旭科技集团有限公司 | 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 |
CN108341595A (zh) * | 2018-02-12 | 2018-07-31 | 东旭集团有限公司 | 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用 |
CN109160727A (zh) * | 2018-10-16 | 2019-01-08 | 东旭科技集团有限公司 | 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9401818D0 (en) * | 1994-01-31 | 1994-03-23 | Cookson Group Plc | Glass compositions |
DE19934072C2 (de) * | 1999-07-23 | 2001-06-13 | Schott Glas | Alkalifreies Aluminoborosilicatglas, seine Verwendungen und Verfahren zu seiner Herstellung |
CN1331790C (zh) * | 2004-03-08 | 2007-08-15 | 华南理工大学 | 一种玻璃材料及其制备方法与应用 |
CN107244806A (zh) | 2011-01-25 | 2017-10-13 | 康宁股份有限公司 | 具有高热稳定性和化学稳定性的玻璃组合物 |
JP5831838B2 (ja) | 2011-03-08 | 2015-12-09 | 日本電気硝子株式会社 | 無アルカリガラス |
DE102011052622B9 (de) | 2011-08-12 | 2013-03-21 | Schott Ag | Arsen- und antimonfreies, titanoxidhaltiges Borosilikatglas, Verfahren zu dessen Herstellung, Verwendung des Glases und Verwendung sauerstoffhaltiger Selenverbindungen zur Läuterung |
JP5943064B2 (ja) | 2012-02-27 | 2016-06-29 | 旭硝子株式会社 | 無アルカリガラスの製造方法 |
JP5914453B2 (ja) * | 2012-12-28 | 2016-05-11 | AvanStrate株式会社 | ディスプレイ用ガラス基板およびその製造方法 |
CN105601105B (zh) * | 2015-12-30 | 2018-09-07 | 芜湖东旭光电装备技术有限公司 | 一种玻璃用组合物、低脆性无碱玻璃及其制备方法和应用 |
CN105859129B (zh) * | 2016-04-07 | 2019-03-19 | 东旭科技集团有限公司 | 一种玻璃用组合物和玻璃及其制备方法和应用 |
CN107129142B (zh) | 2017-04-18 | 2021-02-09 | 东旭光电科技股份有限公司 | 无碱玻璃基板及其制备方法 |
CN109231819B (zh) | 2018-10-16 | 2021-04-09 | 东旭光电科技股份有限公司 | 无碱铝硅酸盐玻璃及其制备方法和应用 |
-
2018
- 2018-10-16 CN CN201811203508.6A patent/CN109160727B/zh active Active
-
2019
- 2019-10-16 EP EP19872541.8A patent/EP3868726B1/en active Active
- 2019-10-16 KR KR1020217014698A patent/KR102628724B1/ko active IP Right Grant
- 2019-10-16 US US17/285,986 patent/US11932576B2/en active Active
- 2019-10-16 WO PCT/CN2019/111445 patent/WO2020078377A1/zh unknown
- 2019-10-16 TW TW108137261A patent/TWI712572B/zh active
- 2019-10-16 JP JP2021521014A patent/JP7219336B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102066273A (zh) * | 2008-05-13 | 2011-05-18 | 康宁股份有限公司 | 含稀土元素的玻璃材料和基板以及包括这种基板的器件 |
JP2016074551A (ja) * | 2014-10-03 | 2016-05-12 | 旭硝子株式会社 | 無アルカリガラスの製造方法 |
JP2016113363A (ja) * | 2014-12-16 | 2016-06-23 | 日本電気硝子株式会社 | 珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料 |
CN105859127A (zh) * | 2016-04-01 | 2016-08-17 | 东旭科技集团有限公司 | 一种玻璃用组合物、铝硅酸盐玻璃及其制备方法和应用 |
CN108341595A (zh) * | 2018-02-12 | 2018-07-31 | 东旭集团有限公司 | 玻璃用组合物、低夹杂物含量的玻璃及其制备方法和应用 |
CN109160727A (zh) * | 2018-10-16 | 2019-01-08 | 东旭科技集团有限公司 | 铝硅酸盐玻璃组合物、铝硅酸盐玻璃及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3868726A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN109160727B (zh) | 2020-10-13 |
EP3868726A1 (en) | 2021-08-25 |
KR20210086648A (ko) | 2021-07-08 |
TWI712572B (zh) | 2020-12-11 |
EP3868726B1 (en) | 2023-04-26 |
US20210340056A1 (en) | 2021-11-04 |
CN109160727A (zh) | 2019-01-08 |
TW202021921A (zh) | 2020-06-16 |
US11932576B2 (en) | 2024-03-19 |
JP7219336B2 (ja) | 2023-02-07 |
KR102628724B1 (ko) | 2024-01-23 |
EP3868726A4 (en) | 2021-12-22 |
JP2022505105A (ja) | 2022-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI712572B (zh) | 鋁矽酸鹽玻璃組合物、鋁矽酸鹽玻璃及其製備方法和應用 | |
KR102282396B1 (ko) | 유리용 조성물, 알칼리 토류 알루미늄 규산염 유리 및 그 제조 방법과 적용 | |
TWI712570B (zh) | 無鹼鋁矽酸鹽玻璃及其製備方法和應用 | |
TWI738086B (zh) | 玻璃用組合物、鋁矽酸鹽玻璃及其製備方法和應用 | |
JP6663010B2 (ja) | 低ホウ素とバリウムフリーのアルカリ土類アルミノシリケートガラス及びその応用 | |
TW201305083A (zh) | 平面顯示器用玻璃基板及其製造方法 | |
CN108503214B (zh) | 一种高应变点无碱铝硼硅酸盐玻璃及其制备方法 | |
TW202235393A (zh) | 玻璃 | |
CN111018345A (zh) | 一种oled面板用铝硅酸盐玻璃用组合物、及铝硅酸盐玻璃及其制备方法 | |
JPWO2019177070A1 (ja) | ガラス | |
TW202235390A (zh) | 玻璃 | |
CN109020195B (zh) | 铝硅酸盐玻璃及其制备方法和应用 | |
CN110330226B (zh) | 无碱铝硼硅酸盐玻璃及其制备方法和应用 | |
CN114772928A (zh) | 无碱铝硅酸盐基板玻璃及其制备方法和应用 | |
TWI853844B (zh) | 無鹼玻璃板 | |
CN117923790A (zh) | 一种不含硼低热收缩率基板玻璃 | |
TWI230145B (en) | Substrate glass for plate panel display | |
CN117602823A (zh) | 无碱铝硼硅酸盐玻璃用组合物、无碱铝硼硅酸盐玻璃及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19872541 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021521014 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217014698 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019872541 Country of ref document: EP Effective date: 20210517 |