WO2020077742A1 - 一种tft阵列基板的断线修复方法 - Google Patents

一种tft阵列基板的断线修复方法 Download PDF

Info

Publication number
WO2020077742A1
WO2020077742A1 PCT/CN2018/117577 CN2018117577W WO2020077742A1 WO 2020077742 A1 WO2020077742 A1 WO 2020077742A1 CN 2018117577 W CN2018117577 W CN 2018117577W WO 2020077742 A1 WO2020077742 A1 WO 2020077742A1
Authority
WO
WIPO (PCT)
Prior art keywords
array substrate
tft array
insulating layer
repairing
broken
Prior art date
Application number
PCT/CN2018/117577
Other languages
English (en)
French (fr)
Inventor
刘兆松
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/331,157 priority Critical patent/US10686029B1/en
Publication of WO2020077742A1 publication Critical patent/WO2020077742A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/236Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers using printing techniques, e.g. applying the etch liquid using an ink jet printer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Definitions

  • the present application relates to the field of display technology, and in particular to a method for repairing broken wires of a TFT array substrate.
  • signal traces are mainly used to provide video signals to drive pixel circuits, but due to the high and low fluctuations of the substrate surface, environmental particles, etching process, etc. As a result, signal traces are prone to disconnection, which in turn leads to a large number of line defects.
  • AMOLED active matrix organic light-emitting diode
  • the existing method for repairing the broken signal trace is usually to introduce a repair line.
  • the signal of the repair line is provided by the driver chip circuit.
  • the repair line and the signal trace are interleaved with an insulating layer in the middle. Once the signal trace is broken, the laser will be used.
  • the signal trace and the repair line are fused to realize the signal provided by the repair line to the broken line to eliminate the adverse display effect caused by the disconnection; however, the insulation layer between the signal trace and the repair line is simply fused by laser to achieve The connection between the two is difficult to grasp. If it is melted, the entire area will be penetrated, and the melting is insufficient, which is not enough to connect the repair line to the signal trace and affect the repair effect.
  • the existing method for repairing the broken wires of the TFT array substrate uses a laser to melt the signal traces and the repair lines. If they are melted, the entire trace area will be penetrated. Insufficient melting will cause the repair lines It is connected to the signal wiring, which further affects the repair effect of the broken wire, and further affects the display effect of the display screen.
  • the existing method for repairing the broken wires of the TFT array substrate uses a laser to fuse the signal traces with the repair lines. If they are melted, the entire trace area will be penetrated. , Further affected the effect of repairing broken wires, and further affected the display effect of the display screen.
  • the present application provides a method for repairing a broken wire of a TFT array substrate, which can improve the repair method of signal wiring of a large-size OLED display panel, to solve the existing method of repairing a broken wire of a TFT array substrate, and uses a laser to route and repair the signal wiring When the wire is melted, the entire wiring area will be penetrated after being melted, and insufficient repair will connect the repair line and the signal trace, which further affects the repair effect of the broken wire, and further affects the technology of the display effect of the display screen. problem.
  • This application provides a method for repairing a broken wire of a TFT array substrate, including:
  • TFT array substrate with broken signal traces on the TFT array substrate, the TFT array substrate including a substrate, the signal traces provided on the substrate, and covering the substrate And a first insulating layer on the signal trace, a repair line provided on the first insulating layer, and a second insulating layer covering the first insulating layer and the repair line;
  • S40 Perform curing treatment on the ink to connect the repair line to the signal trace.
  • the via hole is formed by laser drilling.
  • the via penetrates the second insulating layer and the first insulating layer and stops at the signal trace.
  • the material of the metal nanoparticles is silver.
  • the curing process is to heat-treat the metal nanoparticles.
  • the repair wire is made of tungsten or molybdenum.
  • the material of the first insulating layer is one or a combination of silicon oxide or silicon nitride, and the material of the second insulating layer The material is the same as the material of the first insulating layer.
  • the thickness of the second insulating layer is greater than the thickness of the first insulating layer.
  • the material of the signal trace is one or a combination of molybdenum and aluminum.
  • the signal trace includes a data line and a gate line.
  • the beneficial effects of the present application are as follows:
  • the present application provides a method for repairing a broken wire of a TFT array substrate, which burns through the insulating layer at the edge of the broken area and fills the solidified metal nanoparticles to realize a broken signal trace and repair line Connection further improves the repair effect at the broken line and further improves the repair yield.
  • FIG. 1 is a flowchart of a method for repairing a broken wire of a TFT array substrate of the present application.
  • 2A-2D are schematic diagrams of a method for repairing a broken wire of the TFT array substrate shown in FIG. 1.
  • This application is directed to the existing method for repairing the broken wires of the TFT array substrate.
  • the signal trace and the repair line are melted by using a laser, the entire trace area will be penetrated after being melted, and insufficient repair will cause the repair line It is connected to the signal wiring, which further affects the technical problem of repairing the broken wire and further affects the display effect of the display screen.
  • This embodiment can solve this defect.
  • the present application provides a method for repairing a broken wire of a TFT array substrate.
  • the method includes:
  • a TFT array substrate 10 is provided, the TFT array substrate 10 has a broken signal trace 12, the TFT array substrate 10 includes a substrate 11, and the substrate 11 is disposed on the substrate 11 The signal trace 12, the first insulating layer 13 covering the substrate 11 and the signal trace 12, the repair line 14 provided on the first insulating layer 13, covering the first The insulating layer 13 and the second insulating layer 15 on the repair line 14.
  • the S10 further includes:
  • the material of the signal traces 12 is one or a combination of molybdenum and aluminum.
  • the signal trace 12 includes a data line and a gate line, a plurality of the data lines and a plurality of the gate lines are arranged in parallel and spaced apart, a plurality of the data lines and a plurality of the gate lines are vertical in space Several sub-pixel regions arranged in an array are staggered.
  • a first insulating layer 13 is provided to cover the substrate 11 and the signal trace 12.
  • the material of the first insulating layer 13 is one or a combination of silicon oxide or silicon nitride.
  • a repair line 14 is provided on the surface of the first insulating layer 13, and the material of the repair line 14 is tungsten or molybdenum.
  • a second insulating layer 15 is provided to cover the first insulating layer 13 and the repair line 14.
  • the material of the second insulating layer 15 is the same as the material of the first insulating layer 13, and the thickness of the second insulating layer 15 is greater than the thickness of the first insulating layer 13, as shown in FIG. 2A.
  • a via 20 is formed in the first insulating layer 13 at the edge of the overlapping area of the repair line 14 and the signal trace 12.
  • the S20 further includes:
  • the first insulating layer 13 at the edge of the overlapping area of the repair line 14 and the signal trace 12 is burned through using a laser to form a via 20, the via 20 penetrates the second insulating layer 14 and the first insulating layer 13 and stops at the signal trace 12, and the via 20 exposes the signal trace 12, as shown in FIG. 2B.
  • Ink is printed on the via 20 by an inkjet printing method, the ink completely covers the via 20, and the ink contains metal nanoparticles.
  • the S30 further includes:
  • An inkjet printing method is used to print ink on the via 20 so that the ink completely fills the via 20.
  • the ink contains metal nano particles with good conductivity, and the material of the metal nano particles is silver, as shown in FIG. 2C.
  • S40 Perform curing treatment on the ink to connect the repair line to the signal trace.
  • the S40 further includes:
  • the ink filled on the via 20 is heat-treated to cure the metal nanoparticles. Due to the good electrical conductivity of the solidified metal nanoparticles, the repair line 14 and the The signal trace 12 is connected.
  • the beneficial effects of the present application are as follows:
  • the present application provides a method for repairing a broken wire of a TFT array substrate, which burns through the insulating layer at the edge of the broken area and fills the solidified metal nanoparticles to realize a broken signal trace and repair line Connection further improves the repair effect at the broken line and further improves the repair yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种TFT阵列基板的断线修复方法,包括:提供一具有断裂信号走线的TFT阵列基板;在位于所述TFT阵列基板上的修复线和信号走线重叠区域的边缘处的第一绝缘层上开设一过孔;在所述过孔上打印墨水,所述墨水完全覆盖所述过孔,所述墨水包含金属纳米颗粒;对所述墨水进行固化处理,使所述修复线与所述信号走线相连。

Description

一种TFT阵列基板的断线修复方法 技术领域
本申请涉及显示技术领域,尤其涉及一种TFT阵列基板的断线修复方法。
背景技术
目前在AMOLED(有源矩阵有机发光二极体)显示中,信号走线主要是用来提供视频信号以驱动像素电路,但由于其制作过程中,基板表面的高低起伏,环境微粒、蚀刻工艺等影响,信号走线很容易发生断线,进而导致大量线缺的产生。并且,随着AMOLED面板尺寸的增大,分辨率的提高,需要制作数量更多的信号走线,使线宽更窄,工艺难度更大,断线更容易发生,最终影响产品的良率和生成成本。
现有的修复信号走线断线的方法通常是引入修复线,修复线讯号由驱动芯片电路提供,修复线与信号走线交错,中间隔有绝缘层,一旦信号走线出现断路,利用激光将信号走线与修复线相熔,实现由修复线提供讯号至断线处,消除断线带来的显示不良的影响;但是单纯使用激光烧熔信号走线与修复线之间的绝缘层,实现两者之间的连接,很难把握度的问题,烧熔过了,会把整个区域打穿,烧熔不足,不足以使得修复线和信号走线相连,影响修复效果。
综上所述,现有的TFT阵列基板的断线修复方法,利用激光将信号走线与修复线相熔时,烧熔过了会把整个走线区域打穿,烧熔不足会使修复线和信号走线相连,进一步影响了断线修复效果,更进一步影响了显示屏的显示效果。
技术问题
现有的TFT阵列基板的断线修复方法,利用激光将信号走线与修复线相熔时,烧熔过了会把整个走线区域打穿,烧熔不足会使修复线和信号走线相连,进一步影响了断线修复效果,更进一步影响了显示屏的显示效果。
技术解决方案
本申请提供一种TFT阵列基板的断线修复方法,能够改良大尺寸OLED显示面板信号走线的修复方式,以解决现有的TFT阵列基板的断线修复方法,使用激光将信号走线与修复线相熔时,烧熔过了会把整个走线区域打穿,烧熔不足会使修复线和信号走线相连,进一步影响了断线修复效果,更进一步影响了显示屏的显示效果的技术问题。
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种TFT阵列基板的断线修复方法,包括:
S10,提供一TFT阵列基板,所述TFT阵列基板上具有断裂的信号走线,所述TFT阵列基板包括衬底、设置于所述衬底上的所述信号走线、覆盖在所述衬底及所述信号走线上的第一绝缘层、设置在所述第一绝缘层上的修复线、覆盖在所述第一绝缘层及所述修复线上的第二绝缘层;
S20,在位于所述修复线和所述信号走线重叠区域的边缘处的所述第一绝缘层上开设一过孔;
S30,通过喷墨打印方式在所述过孔上打印墨水,所述墨水完全覆盖所述过孔,所述墨水包含金属纳米颗粒;
S40,对所述墨水进行固化处理,使所述修复线与所述信号走线相连。
在本申请实施例所提供的TFT阵列基板的断线修复方法中,所述步骤S20中,利用激光打孔形成所述过孔。
在本申请实施例所提供的TFT阵列基板的断线修复方法中,所述过孔贯穿所述第二绝缘层及所述第一绝缘层并止于所述信号走线。
在本申请实施例所提供的TFT阵列基板的断线修复方法中,所述步骤S30中,所述金属纳米颗粒的材质为银。
在本申请实施例所提供的TFT阵列基板的断线修复方法中,所述步骤S40中,所述固化处理是对所述金属纳米颗粒进行热处理。
在本申请实施例所提供的TFT阵列基板的断线修复方法中,所述步骤S10中,所述修复线的材质为钨或钼。
在本申请实施例所提供的TFT阵列基板的断线修复方法中,所述第一绝缘层的材质为氧化硅或氮化硅中的一种或二种的组合,所述第二绝缘层的材质与所述第一绝缘层的材质相同。
在本申请实施例所提供的TFT阵列基板的断线修复方法中,所述第二绝缘层的厚度大于所述第一绝缘层的厚度。
在本申请实施例所提供的TFT阵列基板的断线修复方法中,所述信号走线的材质为钼和铝中的一种或二者的组合。
在本申请实施例所提供的TFT阵列基板的断线修复方法中,所述信号走线包括数据线以及栅极线。
有益效果
本申请的有益效果为:本申请提供一种TFT阵列基板的断线修复方法,将断线区域边缘的绝缘层烧穿,并填充固化后的金属纳米颗粒来实现断裂的信号走线与修复线的连接,进一步提升了断线处的修复效果,更进一步提升了修复良率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请TFT阵列基板的断线修复方法流程图。
图2A-2D为图1所述TFT阵列基板的断线修复方法示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请针对现有的TFT阵列基板的断线修复方法,由于在使用激光将信号走线与修复线相熔时,烧熔过了会把整个走线区域打穿,烧熔不足会使修复线和信号走线相连,进一步影响了断线修复效果,更进一步影响了显示屏的显示效果的技术问题,本实施例能够解决该缺陷。
如图1所示,本申请提供一种TFT阵列基板的断线修复方法流程,所述方法包括:
S10,如图2A所示,提供一TFT阵列基板10,所述TFT阵列基板10上具有断裂的信号走线12,所述TFT阵列基板10包括衬底11、设置于所述衬底11上的所述信号走线12、覆盖在所述衬底11及所述信号走线12上的第一绝缘层13、设置在所述第一绝缘层13上的修复线14、覆盖在所述第一绝缘层13及所述修复线14上的第二绝缘层15。
具体的,所述S10还包括:
首先提供一衬底11,在所述衬底11上铺设所述信号走线12,所述信号走线12的材质为钼和铝中的一种或二者的组合。所述信号走线12包括数据线以及栅极线,多条所述数据线以及多条所述栅极线平行间隔排布,多条所述数据线以及多条所述栅极线在空间垂直交错形成若干阵列排布的子像素区域。
然后设置第一绝缘层13覆盖在所述衬底11及所述信号走线12上,所述第一绝缘层13的材质为氧化硅或氮化硅中的一种或二种的组合。之后,在所述第一绝缘层13的表面设置修复线14,所述修复线14的材质为钨或钼。最后设置第二绝缘层15覆盖在所述第一绝缘层13及所述修复线14上。所述第二绝缘层15的材质与所述第一绝缘层13的材质相同,所述第二绝缘层15的厚度大于所述第一绝缘层13的厚度,如图2A所示。
S20,在位于所述修复线14和所述信号走线12重叠区域的边缘处的所述第一绝缘层13上开设一过孔20。
具体的,所述S20还包括:
所述信号走线12发生断裂后,使用激光将所述修复线14和所述信号走线12重叠区域的边缘处的所述第一绝缘层13烧穿,形成过孔20,所述过孔20贯穿所述第二绝缘层14及所述第一绝缘层13并止于所述信号走线12,所述过孔20暴露出所述信号走线12,如图2B所示。
S30,通过喷墨打印方式在所述过孔20上打印墨水,所述墨水完全覆盖所述过孔20,所述墨水包含金属纳米颗粒。
具体的,所述S30还包括:
使用喷墨打印方式在所述过孔20上打印墨水,使所述墨水完全填满所述过孔20。其中,所述墨水包含有导电性较好的金属纳米颗粒,所述金属纳米颗粒的材质为银,如图2C所示。
S40,对所述墨水进行固化处理,使所述修复线与所述信号走线相连。
具体的,所述S40还包括:
将所述过孔20上填满的所述墨水进行热处理,使所述金属纳米颗粒固化,由于固化后的所述金属纳米颗粒良好的导电性,更好地实现了所述修复线14与所述信号走线12相连。
本申请的有益效果为:本申请提供一种TFT阵列基板的断线修复方法,将断线区域边缘的绝缘层烧穿,并填充固化后的金属纳米颗粒来实现断裂的信号走线与修复线的连接,进一步提升了断线处的修复效果,更进一步提升了修复良率。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (10)

  1. 一种TFT阵列基板的断线修复方法,其中,包括:
    S10,提供一TFT阵列基板,所述TFT阵列基板上具有断裂的信号走线,所述TFT阵列基板包括衬底、设置于所述衬底上的所述信号走线、覆盖在所述衬底及所述信号走线上的第一绝缘层、设置在所述第一绝缘层上的修复线、覆盖在所述第一绝缘层及所述修复线上的第二绝缘层;
    S20,在位于所述修复线和所述信号走线重叠区域的边缘处的所述第一绝缘层上开设一过孔;
    S30,通过喷墨打印方式在所述过孔上打印墨水,所述墨水完全覆盖所述过孔,所述墨水包含金属纳米颗粒;
    S40,对所述墨水进行固化处理,使所述修复线与所述信号走线相连。
  2. 根据权利要求1所述的TFT阵列基板的断线修复方法,其中,所述步骤S20中,利用激光打孔形成所述过孔。
  3. 根据权利要求2所述的TFT阵列基板的断线修复方法,其中,所述过孔贯穿所述第二绝缘层及所述第一绝缘层并止于所述信号走线。
  4. 根据权利要求1所述的TFT阵列基板的断线修复方法,其中,所述步骤S30中,所述金属纳米颗粒的材质为银。
  5. 根据权利要求1所述的TFT阵列基板的断线修复方法,其中,所述步骤S40中,所述固化处理是对所述金属纳米颗粒进行热处理。
  6. 根据权利要求1所述的TFT阵列基板的断线修复方法,其中,所述步骤S10中,所述修复线的材质为钨或钼。
  7. 根据权利要求1所述的TFT阵列基板的断线修复方法,其中,所述第一绝缘层的材质为氧化硅或氮化硅中的一种或二种的组合,所述第二绝缘层的材质与所述第一绝缘层的材质相同。
  8. 根据权利要求7所述的TFT阵列基板的断线修复方法,其中,所述第二绝缘层的厚度大于所述第一绝缘层的厚度。
  9. 根据权利要求1所述的TFT阵列基板的断线修复方法,其中,所述信号走线的材质为钼和铝中的一种或二者的组合。
  10. 根据权利要求1所述的TFT阵列基板的断线修复方法,其中,所述信号走线包括数据线以及栅极线。
PCT/CN2018/117577 2018-10-15 2018-11-27 一种tft阵列基板的断线修复方法 WO2020077742A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/331,157 US10686029B1 (en) 2018-10-15 2018-11-27 Method for repairing disconnecting signal line of thin film transistor (TFT) array substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811193754.8A CN109192700A (zh) 2018-10-15 2018-10-15 一种tft阵列基板的断线修复方法
CN201811193754.8 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020077742A1 true WO2020077742A1 (zh) 2020-04-23

Family

ID=64944804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117577 WO2020077742A1 (zh) 2018-10-15 2018-11-27 一种tft阵列基板的断线修复方法

Country Status (3)

Country Link
US (1) US10686029B1 (zh)
CN (1) CN109192700A (zh)
WO (1) WO2020077742A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854127A (zh) * 2019-10-16 2020-02-28 深圳市华星光电技术有限公司 显示面板
CN110972406B (zh) * 2019-12-04 2020-07-28 广东工业大学 一种用于精细线路的修复方法
CN116652372B (zh) * 2023-07-28 2024-03-22 苏州科韵激光科技有限公司 一种叠层线路激光修复方法及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142669A1 (en) * 2003-07-01 2005-06-30 Au Optronics Corp. Method for patching up thin-film transistor circuits on a display panel by local thin-film deposition
CN101216644A (zh) * 2007-12-28 2008-07-09 昆山龙腾光电有限公司 液晶显示装置阵列基板及其缺陷修补方法
CN101441373A (zh) * 2007-11-23 2009-05-27 上海广电Nec液晶显示器有限公司 液晶显示装置的断线的修复方法
CN201886251U (zh) * 2010-12-24 2011-06-29 京东方科技集团股份有限公司 薄膜晶体管阵列基板及已修复的薄膜晶体管阵列基板
KR20110101000A (ko) * 2010-03-05 2011-09-15 엘지디스플레이 주식회사 액정표시장치의 레이저 리페어방법
CN107589603A (zh) * 2017-08-25 2018-01-16 惠科股份有限公司 一种有源矩阵衬底及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054069A (ja) * 2002-07-23 2004-02-19 Advanced Display Inc 表示装置及び表示装置の断線修復方法
CN102431289B (zh) * 2010-08-09 2015-05-06 Ntn株式会社 图案修正装置及图案修正方法
CN201845156U (zh) * 2010-10-15 2011-05-25 北京京东方光电科技有限公司 一种阵列基板和液晶显示面板
KR20140057794A (ko) * 2012-11-05 2014-05-14 삼성디스플레이 주식회사 게이트 구동 회로, 이를 이용한 표시 패널 구동 방법 및 이를 포함하는 표시 장치
CN104503176B (zh) * 2014-12-25 2017-03-22 合肥鑫晟光电科技有限公司 阵列基板、显示面板及显示装置
WO2018068183A1 (en) * 2016-10-10 2018-04-19 Boe Technology Group Co., Ltd. Display panel, display apparatus, and method of repairing a signal line thereof
WO2018068298A1 (en) * 2016-10-14 2018-04-19 Boe Technology Group Co., Ltd. Array substrate and repairing method thereof
CN107145019A (zh) * 2017-07-03 2017-09-08 京东方科技集团股份有限公司 显示基板的修复方法、修复系统、显示基板及显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142669A1 (en) * 2003-07-01 2005-06-30 Au Optronics Corp. Method for patching up thin-film transistor circuits on a display panel by local thin-film deposition
CN101441373A (zh) * 2007-11-23 2009-05-27 上海广电Nec液晶显示器有限公司 液晶显示装置的断线的修复方法
CN101216644A (zh) * 2007-12-28 2008-07-09 昆山龙腾光电有限公司 液晶显示装置阵列基板及其缺陷修补方法
KR20110101000A (ko) * 2010-03-05 2011-09-15 엘지디스플레이 주식회사 액정표시장치의 레이저 리페어방법
CN201886251U (zh) * 2010-12-24 2011-06-29 京东方科技集团股份有限公司 薄膜晶体管阵列基板及已修复的薄膜晶体管阵列基板
CN107589603A (zh) * 2017-08-25 2018-01-16 惠科股份有限公司 一种有源矩阵衬底及显示装置

Also Published As

Publication number Publication date
CN109192700A (zh) 2019-01-11
US10686029B1 (en) 2020-06-16
US20200168690A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
KR102373441B1 (ko) 디스플레이 장치
WO2018223493A1 (zh) Amoled显示面板结构
US11215893B2 (en) Array substrate, method for manufacturing the same, and display apparatus
WO2020077742A1 (zh) 一种tft阵列基板的断线修复方法
WO2020118823A1 (zh) 显示面板及具有该显示面板的显示装置
US11282786B2 (en) Laser-formed interconnects for redundant devices
WO2018112996A1 (zh) 显示装置
WO2020181634A1 (zh) Oled 显示装置及制备方法
JP2013235148A (ja) 表示装置
JP2007086792A (ja) ディスプレイ装置
US9767722B2 (en) Display device
WO2022047907A1 (zh) 微发光二极管显示基板及其制作方法
US9564483B2 (en) Display device and manufacturing method thereof
WO2021248563A1 (zh) 显示面板及其制备方法、显示装置
TWI673864B (zh) 有機發光二極體結構、顯示器及移動通信設備
KR20080102669A (ko) 표시장치
CN107123384B (zh) 一种显示基板的测试方法及应用于显示设备的基板
WO2020073439A1 (zh) 一种柔性显示面板
US20030127972A1 (en) Dual-panel active matrix organic electroluminscent display
WO2022142119A1 (zh) 显示面板及其制备方法
WO2020215871A1 (zh) 柔性基板及显示装置
WO2018205524A1 (zh) 一种阵列基板及其制作方法、显示装置
WO2021042625A1 (zh) 阵列基板、及其数据线断点修补方法和显示装置
WO2020073419A1 (zh) 折叠显示屏及其制作方法
JP2000200051A (ja) 配線の断線修復方法及び多層配線構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937006

Country of ref document: EP

Kind code of ref document: A1