WO2020071473A1 - 積層体及びその製造方法 - Google Patents

積層体及びその製造方法

Info

Publication number
WO2020071473A1
WO2020071473A1 PCT/JP2019/039075 JP2019039075W WO2020071473A1 WO 2020071473 A1 WO2020071473 A1 WO 2020071473A1 JP 2019039075 W JP2019039075 W JP 2019039075W WO 2020071473 A1 WO2020071473 A1 WO 2020071473A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
conductor pattern
layer
conductor
laminate
Prior art date
Application number
PCT/JP2019/039075
Other languages
English (en)
French (fr)
Inventor
祐介 上坪
毅 勝部
亮介 ▲高▲田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201990001051.2U priority Critical patent/CN216531943U/zh
Priority to JP2020550532A priority patent/JP7283481B2/ja
Publication of WO2020071473A1 publication Critical patent/WO2020071473A1/ja
Priority to US17/206,303 priority patent/US11445606B2/en
Priority to US17/881,702 priority patent/US11558958B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0284Details of three-dimensional rigid printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0064Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a polymeric substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4632Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating thermoplastic or uncured resin sheets comprising printed circuits without added adhesive materials between the sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/041Stacked PCBs, i.e. having neither an empty space nor mounted components in between
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive

Definitions

  • the present invention relates to a laminate used for a cable, a circuit board, and the like, and a method for manufacturing the same.
  • a multilayer cable or circuit board is formed by laminating and integrating an insulating base material on which a conductor pattern is formed.
  • the material of the conductor pattern and the insulating base material is selected according to the electrical and mechanical properties required for the circuit board.
  • the insulating substrate preferably has a low dielectric constant. Further, in order to increase the speed and the frequency of the transmission line, it is desired that the dielectric tangent of the insulating base material is small. Furthermore, in order to accommodate cables and circuit boards in a limited space, it is preferable that the insulating base material has flexibility.
  • Patent Document 1 discloses a laminate using a fluororesin as an insulating base material.
  • Patent Document 1 is a laminate in which a thermoplastic resin layer containing a liquid crystal polymer is laminated on a fluororesin layer.
  • a laminate having such a structure the entire shape can be easily maintained as compared with a substrate made of a soft fluororesin alone.
  • the conductor pattern has a structure in which the conductor pattern is in contact with a resin layer having a relatively high dielectric constant and a high dielectric loss tangent, such as a liquid crystal polymer.
  • an object of the present invention is to provide a laminate which can easily maintain the entire shape and has excellent high-frequency characteristics and a method for producing the same.
  • a laminate as an example of the present disclosure includes: A laminate comprising a thermoplastic first resin layer, a conductor pattern formed on one main surface of the first resin layer, and a thermoplastic second resin layer, The first resin layer is softer than the second resin layer, The first resin layer has a lower dielectric constant than the second resin layer, The conductor pattern includes a portion in contact with the first resin layer along a layer direction of the first resin layer, and a first portion along a lamination direction of the first resin layer, the second resin layer, and the conductor pattern. A portion in contact with the resin layer.
  • the first resin is a fluororesin
  • the second resin is a liquid crystal polymer.
  • the main resin layer in contact with the conductor pattern is a resin layer having a relatively small dielectric constant, and thus can be used as a cable or a circuit board having excellent high-frequency characteristics.
  • a method for manufacturing a laminate as an example of the present disclosure includes: A conductive foil is bonded to a first resin layer, which is a layer mainly composed of the first resin, By laminating a second resin layer that is a layer mainly composed of a second resin to the first resin layer, a laminated sheet including the first resin layer, the second resin layer, and the conductor foil is formed. , Patterning the conductive foil, By laminating a plurality of the laminated sheets and hot pressing, at least a part of the conductor foil is submerged in the first resin layer.
  • a structure in which the conductor pattern in the laminate is positively submerged in the first resin layer can easily obtain a laminate having excellent high-frequency characteristics.
  • Another method for producing a laminate of the present disclosure includes: A second resin layer which is a layer mainly composed of the second resin is bonded to a first resin layer which is a layer mainly composed of the first resin, Forming a conductor film on the first resin layer, Paste a mask film on the conductor film, Patterning the mask film by photolithography, Plating a conductive film in the opening of the conductive film, Peeling off the mask film, By removing the conductive film by etching, a laminated sheet including the first resin layer, the second resin layer, and the conductive film is formed, By laminating a plurality of the laminated sheets and hot pressing, at least a part of the conductor film is submerged in the first resin layer.
  • the conductor pattern in the laminate is also positively sunk into the first resin layer, so that the laminate having excellent high-frequency characteristics can be easily obtained.
  • FIG. 1 is a longitudinal sectional view of the laminated body 101 according to the first embodiment.
  • FIG. 2A is a longitudinal sectional view of the laminated body 101 according to the first embodiment.
  • FIG. 2B is an enlarged cross-sectional view near the signal conductor pattern S1.
  • FIG. 3 is a vertical cross-sectional view of the laminated body 101 during the manufacturing process.
  • FIG. 4 is a perspective view of the laminate 101 in the process of being manufactured.
  • FIG. 5 is a diagram illustrating a method of manufacturing the laminated body 101.
  • FIG. 6 is a longitudinal sectional view of the laminated body 102 according to the second embodiment.
  • FIG. 7A is a vertical cross-sectional view of the laminate according to the third embodiment during manufacturing.
  • FIG. 7B is a longitudinal sectional view of the stacked body 103 according to the third embodiment.
  • FIG. 8 is a diagram illustrating a method for manufacturing a laminated body according to the fourth embodiment.
  • FIG. 9A is a vertical cross-sectional view of the laminate according to the fifth embodiment in the process of being manufactured.
  • FIG. 9B is a longitudinal sectional view of the laminated body 105 according to the fifth embodiment.
  • FIG. 10 is a sectional view of an electronic apparatus according to the fifth embodiment.
  • the laminate according to the first aspect of the present invention includes a first resin layer that is a layer mainly composed of a thermoplastic first resin, a conductor pattern formed on one main surface of the first resin layer, A second resin layer that is a layer mainly composed of a thermoplastic second resin.
  • the first resin layer is softer than the second resin layer, the first resin layer has a lower dielectric constant than the second resin layer, and the conductor pattern is at least partially formed on the first resin layer. And a portion in contact with the first resin layer along the layer direction of the first resin layer, and the first resin layer along a lamination direction of the first resin layer, the second resin layer, and the conductor pattern. And a portion in contact with.
  • the main resin layer in contact with the conductor pattern is a resin layer having a relatively small dielectric constant, and thus can be used as a cable or a circuit board having excellent high-frequency characteristics.
  • a length of a portion of the conductor pattern in contact with the first resin layer is equal to a peripheral length of the conductor pattern. , Longer than the length of the portion in contact with the second resin layer.
  • the thickness of the second resin layer is larger than the thickness of the first resin layer.
  • the main material of the first resin layer is a fluororesin
  • the main material of the second resin layer is a liquid crystal polymer
  • a cross-sectional shape of the conductor pattern in the lamination direction of the laminate has a corner portion buried in the first resin layer.
  • the first resin layer may be formed on the surface on the side opposite to the conductor pattern so as to protrude along the corner of the conductor pattern buried in the first resin layer. Portion (first convex portion). According to this structure, since the periphery of the corner having a high electric field strength is more thickly covered with the first resin layer having a low dielectric constant, the effect of improving the high frequency characteristics is large.
  • the laminated body according to a seventh aspect of the present invention has an inclined portion at an edge of the conductor pattern in the sectional shape, and a corner buried in the first resin layer is an acute angle. With this structure, a portion having a higher electric field strength can be covered with the first resin layer, and the high-frequency characteristics are effectively improved.
  • the surface roughness of one main surface of the conductor pattern in contact with the first resin layer is larger than the surface roughness of the other main surface. According to this structure, since the surface of the conductor pattern having a rough surface is in contact with the resin layer having a low dielectric constant, transmission loss in a high frequency range can be effectively reduced.
  • the second resin layer is located at a position sandwiching the first resin layer from both sides in the laminating direction. According to this structure, the shape stability of the entire laminate is effectively increased.
  • the first resin layer is located at a position sandwiching the conductor pattern from both sides in the laminating direction. According to this structure, the entire region where the electric field strength is high is covered with the first resin layer having a low dielectric constant, so that the effect of improving the high frequency characteristics is large.
  • the laminate of an eleventh aspect according to the present invention includes a plurality of laminated sheets each including a single first resin layer, a single second resin layer, and a single layer of the conductor pattern.
  • the conductor pattern of one of the laminated sheets adjacent in the direction contacts the second resin layer of the other laminated sheet.
  • a laminated body includes a plurality of laminated sheets each including a single first resin layer, a single second resin layer, and a single layer of the conductor pattern.
  • Two laminated sheets adjacent to each other in the direction have an interlayer connection conductor that penetrates the first resin layer and the second resin layer and has an opposite surface wider than a surface in contact with the conductor pattern; Are opposite to each other, and the interlayer connection conductors are directly joined.
  • the interlayer connection conductors are joined to each other on a wide surface, even if the first resin layer and the second resin layer flow at the time of heating / pressing such as a laminating press, the interlayer connection conductors are displaced by the displacement. Poor joining between the connection conductors can be reduced.
  • the plurality of laminated sheets include a first laminated sheet, a second laminated sheet, and a third laminated sheet sequentially arranged in the laminating direction.
  • the provided conductor pattern is a signal conductor pattern
  • the conductor pattern provided on the first laminated sheet is a first ground conductor pattern
  • the conductor pattern provided on the third laminated sheet is This is a second ground conductor pattern
  • the signal conductor pattern, the first ground conductor pattern, and the second ground conductor pattern constitute a main part of a transmission line. According to this structure, a signal transmission line with low transmission loss can be configured.
  • the first laminated sheet includes a first interlayer connection conductor that is electrically connected to the first ground conductor pattern
  • the second laminated sheet includes a second ground conductor.
  • a conductive foil is bonded to a first resin layer, which is a layer mainly composed of a first resin, and a second resin is mainly laminated to the first resin layer.
  • a second resin layer is a laminated sheet composed of the first resin layer, the second resin layer and the conductor foil is formed, and a plurality of the laminated sheets are laminated and hot-pressed.
  • the conductor pattern in the laminate has a structure in which it is positively submerged in the first resin layer, and a laminate having excellent high-frequency characteristics can be easily obtained.
  • a second resin layer which is a layer mainly composed of a second resin is attached to a first resin layer which is a layer mainly composed of a first resin.
  • a first conductor layer is formed on the first resin layer, a dry film resist is adhered on the first conductor film, an opening is formed in the dry film resist by photolithography, and a second film is formed on the opening.
  • a conductor layer is formed by plating, the dry film resist is peeled off, and the first conductor layer and the second conductor layer are removed by etching, thereby comprising the first resin layer, the second resin layer, and a conductor pattern.
  • a method in which a laminated sheet is formed, a plurality of the laminated sheets are laminated, and at least a part of the conductor pattern is sunk into the first resin layer by hot pressing.
  • the conductor pattern in the laminate has a structure in which it is positively submerged in the first resin layer, and a laminate having excellent high-frequency characteristics can be easily obtained.
  • FIGS. 1, 2A, and 2B are vertical cross-sectional views of the laminated body 101 according to the first embodiment.
  • This laminated body 101 is used as a cable having two transmission lines.
  • a laminate 101 includes a first resin layer 1, which is a layer mainly composed of a thermoplastic first resin, and a conductor layer 3 formed on one main surface of the first resin layer 1.
  • a second resin layer 2 which is a layer mainly composed of a thermoplastic second resin.
  • the first resin which is a main material of the first resin layer 1
  • the second resin which is a main material of the second resin layer 2 is, for example, LPC ⁇ liquid crystal polymer >>.
  • the first resin layer 1 is softer than the second resin layer 2, and the first resin layer 1 has a lower dielectric constant than the second resin layer 2.
  • the first resin layer 1 has a smaller dielectric loss tangent than the second resin layer 2.
  • the first resin layer 1 has a lower elastic modulus than the second resin layer 2.
  • the conductor layer 3 forms the signal conductor patterns S1, S2 and the ground conductor patterns G1, G2, G3, G4.
  • the first ground layer is formed by the signal conductor pattern S1, the ground conductor patterns G1, G2, and G3, and the first resin layer 1 and the second resin layer 2 interposed between the ground conductor pattern G1 and the ground conductor pattern G3.
  • a coplanar line is configured.
  • a second grounded coplanar structure is formed by the signal conductor pattern S2, the ground conductor patterns G2, G3, G4, and the first resin layer 1 and the second resin layer 2 interposed between the ground conductor pattern G2 and the ground conductor pattern G4. Lines are configured.
  • the laminated body 101 includes an interlayer connection conductor 41 for conducting between the ground conductor patterns G1 and G2, an interlayer connection conductor for conducting between the ground conductor patterns G2 and G3, and an interlayer connection conductor for conducting between the ground conductor patterns G3 and G4. 43, respectively.
  • the conductor layer 3 is in contact with the first resin layer 1 having a relatively small dielectric constant, and thus can be used as a cable or a circuit board having excellent high-frequency characteristics. That is, for example, when a transmission line having a predetermined characteristic impedance such as 50 ⁇ is configured, the line width of the signal conductor pattern can be increased in accordance with the low dielectric constant of the dielectric layer, thereby reducing conductor loss. .
  • the dielectric layer composed of the first resin layer 1 and the second resin layer 2 can be made thinner, whereby the laminated body 101 can be made thinner.
  • the first resin layer 1 has a smaller dielectric loss tangent than the second resin layer 2, the dielectric loss is also reduced. Thereby, the laminated body 101 can be used as a cable or a circuit board having excellent high-frequency characteristics.
  • FIGS. 2 (A) and 2 (B) are diagrams for explaining the pattern of the conductor layer 3 and the detailed structure of the first resin layer 1 and the second resin layer 2 in particular. Hereinafter, the structure of each part will be described with reference to FIGS. 2 (A) and 2 (B).
  • the pattern of the conductor layer 3 corresponds to the “conductor pattern” according to the present invention.
  • the signal conductor patterns S 1 and S 2 and the ground conductor patterns G 2 and G 3 are partially (partially) submerged in the first resin layer 1.
  • each of the signal conductor patterns S1 and S2 and the ground conductor patterns G2 and G3 is in contact with the first resin layer 1 along the layer direction of the first resin layer 1, that is, the first conductor layer along the XY plane.
  • the portion in contact with the resin layer 1 but also the portion along the laminating direction (Z-axis direction) of the first resin layer 1, the second resin layer 2, and the conductor layer 3, that is, the first resin layer along the XZ plane. It has a portion in contact with 1.
  • the main resin layer in contact with the conductor layer 3 is the first resin layer 1 having a relatively small dielectric constant, the above-described effect by using a low dielectric constant resin layer for the dielectric layer is obtained. Increase.
  • FIG. 2B is an enlarged cross-sectional view near the signal conductor pattern S1.
  • the length of the portion of the conductor layer 3 where the pattern of the conductor layer 3 sinks in the first resin layer 1 is as follows. Is longer than the length of the portion that does not sink into the first resin layer 1.
  • the length of a portion in contact with the first resin layer 1 corresponding to the length of a portion sinking in the first resin layer 1).
  • the length of the portion in contact with the second resin layer 2 (corresponding to the length of the portion that does not sink into the first resin layer 1) is represented by L2, respectively, and the relationship is L1> L2.
  • the depth D31 buried in the first resin layer 1 is deeper than the depth D32 buried in the second resin layer 2 in the thickness of the pattern of the conductor layer 3.
  • the upper side is a trapezoid shorter than the lower side is shown as the cross-sectional shape of the pattern formed by the conductor layer 3, but the upper side may be a trapezoid longer than the lower side. Even in such a case, if the above relationship is satisfied, the high-frequency characteristics are effectively improved.
  • a trapezoidal pattern having an upper side longer than a lower side can be realized by plating on a resin layer.
  • the thickness T2 of the second resin layer 2 is larger than the thickness T1 of the first resin layer 1. With this structure, the shape stability of the entire laminate 101 is improved.
  • the cross-sectional shape of the pattern formed by the conductor layer 3 in the stacking direction (Z-axis direction) of the stacked body 101 has a corner portion buried in the first resin layer 1.
  • the periphery of the corner having a high electric field strength is covered with the first resin layer 1 having a low dielectric constant, so that the effect of improving the high-frequency characteristics is large.
  • the pattern formed by the conductor layer 3 has an inclined portion at an edge in a cross section of the laminated body 101 in the laminating direction (Z-axis direction), and a corner buried in the first resin layer 1 is an acute angle. That is, as shown in FIGS. 2A and 2B, the cross-sectional shape of the pattern formed by the conductor layer 3 is trapezoidal. With this structure, a portion having a higher electric field strength can be covered with the first resin layer 1, and the high-frequency characteristics are effectively improved.
  • the first resin layer 1 has a projection (first projection) CP1 on a surface opposite to the pattern of the conductor layer 3 along a corner of the pattern of the conductor layer 3 buried in the first resin layer 1. Having. In other words, in plan view, the first resin layer 1 protrudes from the corner of the pattern formed by the conductor layer 3 by the protrusion width PW. According to such a structure, the periphery of the corner having a high electric field strength is more thickly covered with the first resin layer having a low dielectric constant, so that the effect of improving the high-frequency characteristics is large.
  • FIG. 3 is a longitudinal sectional view of the laminated body 101 of the present embodiment in the course of manufacturing.
  • FIG. 4 is a perspective view of the laminate 101 in the course of manufacturing.
  • FIG. 3 is a vertical sectional view taken along the line YY in FIG.
  • Laminated body 101 is composed of first laminated sheet 11, second laminated sheet 12, third laminated sheet 13 and fourth laminated sheet 14 before the lamination.
  • Each of the laminated sheets 11, 12, 13, and 14 has a single first resin layer 1, a single conductor layer 3 formed on one surface of the first resin layer 1, and a first resin layer 1.
  • the second resin layer 2 is bonded to the other surface.
  • the first laminated sheet 11 has the first resin layer 1 and the second resin layer 2 on which the interlayer connection conductors 41 ⁇ / b> P in a pre-heating state that are electrically connected to the conductor layer 3 are formed.
  • the conductor layer 3 of the first laminated sheet 11 is formed as a ground conductor pattern G1.
  • an interlayer connection conductor 42 ⁇ / b> P in a pre-heating state that is electrically connected to the conductor layer 3 is formed on the first resin layer 1 and the second resin layer 2.
  • the conductor layer 3 of the second laminated sheet 12 is formed as a ground conductor pattern G2 and a signal conductor pattern S1.
  • the third laminated sheet 13 has the first resin layer 1 and the second resin layer 2 in which the interlayer connection conductor 43P in a pre-heating state that is electrically connected to the conductor layer 3 is formed.
  • the conductor layer 3 of the third laminated sheet 13 is formed as a ground conductor pattern G3 and a signal conductor pattern S2.
  • the conductor layer 3 of the fourth laminated sheet 14 is formed as a ground conductor pattern G4.
  • the laminated body 101 shown in FIG. 1 is constructed by laminating the laminated sheets 11 to 14, heating and pressing.
  • FIG. 5 is a diagram showing a method of manufacturing the laminated body 101.
  • the second laminated sheet 12 shown in FIGS. 3 and 4 is taken as an example.
  • ST1 to ST5 represent the numbers of the respective steps.
  • step ST1 a conductor layer 3 made of Cu foil is bonded (laminated) to one surface of the first resin layer 1.
  • step ST2 a laminated sheet is formed by bonding the second resin layer 2 to the other surface of the first resin layer 1.
  • the second resin layer 2 is a resin layer mainly composed of LCP, it is harder than the first resin layer 1 mainly composed of fluororesin. Therefore, this laminated sheet has high shape retention.
  • step ST3 the conductor layer 3 is patterned by photolithography to form, for example, the signal conductor pattern S1 and the ground conductor pattern G2.
  • step ST4 an opening extending from the second resin layer 2 side to the conductor layer 3 is formed by laser processing, and the opening is filled with a conductive paste containing Cu, Sn, a flux, and a solvent. Is dried to form an interlayer connection conductor 42P before heating.
  • the laminated sheets 11, 13, and 14 shown in FIGS. 3 and 4 are manufactured in the same steps as above.
  • the interlayer connection conductors 42P and the like in a state before heating are solidified to become interlayer connection conductors.
  • the conductor layer 3 sinks into the first resin layer 1 by a certain amount.
  • the corners of the pattern formed by the conductor layer are buried in the first resin layer 1 to form the protrusions (first protrusions) CP1 along the corners of the pattern formed by the conductor layer 3 (FIG. 2 ( A), FIG. 2 (B)).
  • the first laminated sheet 11 has an interlayer conductive to the ground conductor pattern G1 (corresponding to the “first ground conductor pattern” according to the present invention).
  • the second laminated sheet 12 has a connection conductor 41 (corresponding to the “first interlayer connection conductor” of the present invention), and is electrically connected to the ground conductor pattern G3 (corresponding to the “second ground conductor pattern” of the present invention).
  • the first and second interlayer connection conductors 42 overlap each other in the stacking direction (Z-axis direction).
  • the second laminated sheet 12 is an interlayer connection conductor 42 (corresponding to the “first interlayer connection conductor” according to the present invention) that is electrically connected to the ground conductor pattern G2 (corresponding to the “first ground conductor pattern” according to the present invention).
  • the third laminated sheet 13 includes an interlayer connection conductor 43 (the “second interlayer connection conductor” according to the present invention) that is electrically connected to the ground conductor pattern G4 (corresponding to the “second ground conductor pattern” according to the present invention).
  • the interlayer connection conductor 42 and the interlayer connection conductor 43 overlap in the stacking direction (Z-axis direction).
  • the laminate described in the first embodiment refers to a laminate including a conductor layer having different surface properties of the conductor layer.
  • FIG. 6 is a longitudinal sectional view of the laminate 102 according to the second embodiment.
  • the surface properties and cross-sectional shape of the conductor layer 3 are different from those of the laminate 101 shown in FIG.
  • the upper surface of the conductor layer 3 is a smooth surface (shiny side) and the lower surface is a rough surface (matte side) in the direction shown in FIG.
  • the first conductor layer 3 is formed such that the rough surface contacts the first resin layer 1 side and the smooth surface contacts the second resin layer 2 side. Affixed to the resin layer 1.
  • the surface roughness of one main surface of the pattern formed by the conductor layer 3 that is in contact with the first resin layer 1 is larger than the surface roughness of the other main surface.
  • the edge of the pattern formed by the conductor layer 3 has no inclined portion.
  • Other structures are as shown in the first embodiment.
  • the conductor surface of the pattern formed by the conductor layer 3 having a coarse surface roughness is in contact with the first resin layer 1 having a low dielectric constant, the conductor surface of the pattern formed by the conductor layer 3 is formed by the skin effect. Is covered with a resin layer having a low dielectric constant.
  • the resin layer having a high dielectric constant is in contact with the rough surface of the conductor layer 3, the electric field is concentrated on the sharp portion of the surface of the conductor layer 3, and between adjacent sharp portions or adjacent sharp portions.
  • the potential difference between the sharp part and the valley part becomes large, and the displacement current flowing in the dielectric part interposed at the place where the potential difference is high becomes large.
  • the actual current flowing near the surface of the conductor pattern also increases. Since this actual current flows on the rough surface of the conductor pattern, the current path length is long and the conductor loss is large.
  • the structure in which the rough surface of the conductor layer 3 is in contact with the first resin layer (low dielectric constant resin layer) is not in contact with the second resin layer (high dielectric constant resin layer).
  • the conductor loss of the conductor layer can be effectively reduced.
  • the signal conductor pattern S1 and the signal conductor pattern S2 are sandwiched between the two second protrusions CP2 in the second resin layer 2, respectively.
  • the signal conductor pattern S1 and the signal conductor pattern S2 are sandwiched between the second resin layers 2 in a plane direction perpendicular to the lamination direction. Since the second resin layer 2 is harder than the first resin layer 1, by sandwiching the signal conductor pattern S1 or S2 between the second resin layer 2, the position of the signal conductor pattern S1 or S2 at the time of lamination is determined. Displacement can be prevented. Further, the holding power of the signal conductor pattern S1 and the signal conductor pattern S2 on the second resin layer 2 can be increased.
  • the surface roughness of the signal conductor pattern S1 or the signal conductor pattern S2 is reduced by the ground conductor patterns G1 to G1. It may be smaller than the surface roughness of G4. Thus, the conductor loss of the signal conductor pattern S1 and the signal conductor pattern S2 can be reduced.
  • FIG. 7A is a vertical cross-sectional view of the laminate according to the third embodiment in the process of being manufactured.
  • FIG. 7B is a longitudinal sectional view of the stacked body 103 according to the third embodiment.
  • the laminated body 103 is formed by laminating the laminated sheets 11 to 14, heating and pressing.
  • the laminate 103 includes a first resin layer 1, a conductor layer 3 formed on one main surface of the first resin layer 1, a second resin layer 2, and a protective layer 8. Further, the laminate 103 includes interlayer connection conductors 41, 42, 43, and 44 that penetrate the first resin layer 1 and the second resin layer 2, respectively.
  • the protective layer 8 is formed on both sides of the laminated body 103 in the laminating direction.
  • the protective layer 8 is formed by, for example, applying an epoxy resin or attaching a polyimide film.
  • the laminated sheets 11 to 14 are provided with the interlayer connection conductors 41P, 42P, 43P, and 44P, respectively, in a state before heating.
  • the opposite surfaces of the interlayer connection conductors 41P, 42P, 43P, and 44P in the pre-heating state penetrate the first resin layer 1 and the second resin layer 2 and are wider than the surface in contact with the conductor layer 3.
  • the interlayer connecting conductors 43P in the pre-heating state formed on the third laminated sheet 13 and the interlayer connecting conductors 44P in the pre-heating state formed on the fourth laminated sheet 14 have the opposite surfaces facing each other and have an interlayer connecting conductor. Are directly joined.
  • the interlayer connection conductors 43 and 44 are joined to each other on a wide surface, even if the first resin layer 1 and the second resin layer 2 flow at the time of heating and pressurizing such as a lamination press, the interlayer connecting conductors 43 and 44 are not bonded. It is possible to reduce the bonding failure between the interlayer connection conductors due to the displacement of the connection conductors 43 and 44.
  • FIG. 8 is a diagram showing a method for manufacturing a laminate according to the fourth embodiment.
  • ST1 to ST7 represent the numbers of the respective steps.
  • the first resin layer is bonded to the second resin layer 2.
  • a first conductor layer 3P as a seed layer is formed on the surface of the first resin layer 1 by electroless Cu plating or the like.
  • step ST3 a dry film resist DFR is attached.
  • step ST4 the mask pattern MP is overlaid and exposed.
  • step ST5 the dry film resist DFR is developed.
  • step ST6 the opening of the dry film resist DFR is filled with the second conductor layer 3G, which is a Cu film, by plating the Cu film.
  • step ST7 the dry film resist DFR is peeled off, and the first conductor layer 3P and the second conductor layer 3G are etched to form the conductor pattern 3PA.
  • the cross-sectional shape of the conductor pattern 3PA is reversely tapered. Even when the conductor pattern 3PA having such a cross-sectional shape is formed, a structure in which the conductor pattern 3PA partially sinks in the first resin layer 1 can be obtained by heating and pressing after lamination of the laminated sheet.
  • the laminate shown in the first embodiment is different from the laminate of the conductor layer in the relation between the pattern of the conductor layer and the resin layer adjacent thereto.
  • FIG. 9A is a vertical cross-sectional view of the laminate according to the fifth embodiment in the process of being manufactured.
  • FIG. 9B is a longitudinal sectional view of the laminated body 105 according to the fifth embodiment.
  • Laminated body 105 is composed of first laminated sheet 11, second laminated sheet 12, third laminated sheet 13 and fourth laminated sheet 14 before the lamination.
  • the laminated sheet 11 includes a first resin layer 1, a second resin layer 2 joined to one surface of the first resin layer 1, and a conductor layer 3 formed on the second resin layer 2. .
  • the laminated sheet 12 includes a second resin layer 2, a first resin layer 1 bonded to both surfaces of the second resin layer, and a conductor layer 3 formed on the first resin layer 1 on one surface. .
  • the laminated sheet 13 includes a first resin layer 1, a conductor layer 3 formed on one surface of the first resin layer 1, and a second resin layer 2 joined to the other surface of the first resin layer 1. Is done.
  • the laminated sheet 14 includes the second resin layer 2 and the conductor layer 3 formed on one surface of the second resin layer 2.
  • the first resin layer 1 and the second resin layer 2 are formed with an interlayer connection conductor 41P in a pre-heating state, which is electrically connected to the conductor layer 3. .
  • the conductor layer 3 of the first laminated sheet 11 is formed as a ground conductor pattern G1.
  • an interlayer connection conductor 42 ⁇ / b> P in a pre-heating state that is electrically connected to the conductor layer 3 is formed on the two first resin layers 1 and the second resin layer 2.
  • the conductor layer 3 of the second laminated sheet 12 is formed as a ground conductor pattern G2 and a signal conductor pattern S1.
  • an interlayer connection conductor 43 ⁇ / b> P in a pre-heating state that is electrically connected to the conductor layer 3 is formed on the first resin layer 1 and the second resin layer 2.
  • the conductor layer 3 of the third laminated sheet 13 is formed as a ground conductor pattern G3 and a signal conductor pattern S2.
  • the conductor layer 3 of the fourth laminated sheet 14 is formed as a ground conductor pattern G4.
  • Laminated body 105 shown in FIG. 9 (B) is formed by laminating laminated sheets 11 to 14, heating and pressing.
  • the signal conductor patterns S1 and S2 have a structure buried in the first resin layer 1, and the first resin layer 1 has protrusions along the corners of the signal conductor patterns S1 and S2.
  • the part CP is formed. According to this structure, the periphery of the corner of the signal conductor pattern having a high electric field strength is more thickly covered with the first resin layer having a low dielectric constant.
  • both layers sandwiching the signal conductor patterns S1 and S2 are the first resin layers 1, higher high-frequency characteristics can be obtained.
  • the second resin layer 2 is in contact with the ground conductor patterns G1 and G4.
  • the electric field intensity on the surface of the ground conductor patterns G1 and G4 and the current density of the ground conductor patterns G1 and G4 are different from those of the signal conductor patterns S1 and G4. Since it is smaller than S2, the high-frequency characteristics are not easily reduced.
  • FIG. 10 is a cross-sectional view of the electronic device of the present embodiment.
  • the electronic apparatus includes components 9 such as substrates 61 and 62, a laminate 106, and a battery.
  • the component 9 is mounted on the upper surface of the substrate 62.
  • the electrode 51 is formed on the upper surface of the laminate 106, and the electrode 52 is formed on the lower surface.
  • the stacked body 106 is obtained by forming the electrodes 51 and 52 on the stacked body 101 described in the first embodiment.
  • the laminate 106 connects the electrode 72 formed on the upper surface of the substrate 62 and the electrode 71 formed on the lower surface of the substrate 61. That is, the electrodes 51 and 52 of the laminate 106 are soldered to the electrodes 71 and 72 of the substrates 61 and 62.
  • the laminate 106 can be used as a flexible multi-core high-frequency signal cable.
  • the laminate 106 since the laminate 106 has a shape retaining property, it can be formed in advance as shown in FIG. 10 before mounting the laminate 106 on the substrate 62. Can be implemented. Thereafter, the electrode 71 of the substrate 61 can be easily connected to the electrode 51 of the stacked body 106.
  • the laminate 106 is a multilayer substrate including the first resin layer 1 which is relatively soft, the laminate 106 is easily bent as a whole and can be easily arranged in a limited space.
  • the first resin layer 1 may be a resin layer mainly composed of LCP, and the second resin layer 2 may be a glass epoxy substrate (FR4 substrate). Also in this case, the first resin layer 1 is softer than the second resin layer 2, and the first resin layer 1 has a lower dielectric constant than the second resin layer 2. The first resin layer 1 has a smaller dielectric loss tangent than the second resin layer 2. Further, for example, a polyimide sheet may be used as the second resin layer 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)

Abstract

積層体(101)は、熱可塑性の第1樹脂を主材料とする層である第1樹脂層(1)と、当該第1樹脂層(1)の一方主面に形成された導体層(3)によるパターンと、熱可塑性の第2樹脂を主材料とする層である第2樹脂層(2)と、を備える。第1樹脂層(1)は第2樹脂層(2)に比べて柔らかく、第1樹脂層(1)は第2樹脂層(2)に比べて誘電率が低く、導体層(3)によるパターンは第1樹脂層(1)に少なくとも部分的に沈み、第1樹脂層(1)の層方向(X-Y面)に沿って第1樹脂層(1)に接する部分と、第1樹脂層(1)、第2樹脂層(2)及び導体層(3)によるパターンの積層方向(X-Z面)に沿って第1樹脂層(1)に接する部分とを有する。

Description

積層体及びその製造方法
 本発明は、ケーブルや回路基板等に用いられる積層体及びその製造方法に関する。
 一般に、多層構造のケーブルや回路基板は、導体パターンが形成された絶縁性基材が積層一体化されることで構成される。そして、上記導体パターンや絶縁性基材の材料は、回路基板に要求される電気的機械的特性に応じて選定される。
 ケーブルや回路基板に形成される伝送線路部分を薄型化するためには、絶縁性基材の誘電率が低いことが好ましい。また、伝送線路の高速化高周波数化のためには、絶縁性基材の誘電正接が小さいことが望まれる。さらに、限られたスペースにケーブルや回路基板を納めるためには、絶縁性基材に柔軟性があることが好ましい。
 特許文献1には、絶縁性基材にフッ素樹脂を用いた積層体が示されている。
国際公開第2017/179542号
 特許文献1に記載の積層体は、液晶ポリマーを含む熱可塑性樹脂層がフッ素樹脂層に積層された積層体である。このような構造の積層体であれば、柔らかいフッ素樹脂単体で構成された基板に比べて全体の形状保持が容易となる。
 しかし、上記積層体による回路基板では、導体パターンが液晶ポリマー等の、比較的高誘電率、高誘電正接、の樹脂層に接する構造となるので、高周波特性の向上効果が少ない。
 そこで、本発明の目的は、全体の形状保持が容易でかつ高周波特性に優れた積層体及びその製造方法を提供することにある。
(A)本開示の一例としての積層体は、
 熱可塑性の第1樹脂層と、当該第1樹脂層の一方主面に形成された導体パターンと、熱可塑性の第2樹脂層と、を備える積層体であって、
 前記第1樹脂層は前記第2樹脂層に比べて柔らかく、
 前記第1樹脂層は前記第2樹脂層に比べて誘電率が低く、
 前記導体パターンは、前記第1樹脂層の層方向に沿って前記第1樹脂層に接する部分と、前記第1樹脂層、前記第2樹脂層及び前記導体パターンの積層方向に沿って前記第1樹脂層に接する部分とを有する。
 例えば第1樹脂はフッ素樹脂であり、第2樹脂は液晶ポリマーである。上記構成によれば、導体パターンに接する主たる樹脂層は、誘電率が相対的に小さな樹脂層であるので、高周波特性に優れたケーブルや回路基板として用いることができる。
(B)本開示の一例としての積層体の製造方法は、
 第1樹脂を主材料とする層である第1樹脂層に導体箔を貼り合わせ、
 前記第1樹脂層に、第2樹脂を主材料とする層である第2樹脂層を貼り合わせることにより、前記第1樹脂層、前記第2樹脂層及び前記導体箔から成る積層シートを構成し、
 前記導体箔をパターンニングし、
 前記積層シートを複数積層し、加熱プレスすることにより、前記導体箔の少なくとも一部を前記第1樹脂層に沈み込ませる。
 上記製造方法によれば、積層体内の導体パターンを第1樹脂層に積極的に沈み込ませた構造となって、高周波特性に優れた積層体が容易に得られる。
(C)もう一つの本開示の積層体の製造方法は、
 第1樹脂を主材料とする層である第1樹脂層に、第2樹脂を主材料とする層である第2樹脂層を貼り合わせ、
 前記第1樹脂層に導体膜を形成し、
 前記導体膜上にマスクフィルムを貼付し、
 前記マスクフィルムをフォトリソグラフィでパターンニングし、
 前記導体膜の開口部に導体膜をめっき形成し、
 前記マスクフィルムを剥離し、
 前記導体膜をエッチング除去することにより、前記第1樹脂層、前記第2樹脂層及び前記導体膜から成る積層シートを構成し、
 前記積層シートを複数積層し、加熱プレスすることにより、前記導体膜の少なくとも一部を前記第1樹脂層に沈み込ませる。
 上記製造方法によっても、積層体内の導体パターンを、第1樹脂層に積極的に沈み込ませた構造となって、高周波特性に優れた積層体が容易に得られる。
 本発明によれば、全体の形状保持が容易でかつ高周波特性に優れた積層体が得られる。
図1は第1の実施形態に係る積層体101の縦断面図である。 図2(A)は第1の実施形態に係る積層体101の縦断面図である。図2(B)は信号導体パターンS1付近の拡大断面図である。 図3は積層体101の製造途中での縦断面図である。 図4は積層体101の製造途中での斜視図である。 図5は積層体101の製造方法を示す図である。 図6は第2の実施形態に係る積層体102の縦断面図である。 図7(A)は第3の実施形態に係る積層体の製造途中での縦断面図である。図7(B)は第3の実施形態に係る積層体103の縦断面図である。 図8は第4の実施形態に係る積層体の製造方法を示す図である。 図9(A)は第5の実施形態に係る積層体の製造途中での縦断面図である。図9(B)は第5の実施形態に係る積層体105の縦断面図である。 図10は第5の実施形態に係る電子機器の断面図である。
 まず、本発明に係る積層体及びその製造方法の幾つかの態様について記載する。
 本発明に係る第1の態様の積層体は、熱可塑性の第1樹脂を主材料とする層である第1樹脂層と、当該第1樹脂層の一方主面に形成された導体パターンと、熱可塑性の第2樹脂を主材料とする層である第2樹脂層と、を備える。そして、前記第1樹脂層は前記第2樹脂層に比べて柔らかく、前記第1樹脂層は前記第2樹脂層に比べて誘電率が低く、前記導体パターンは前記第1樹脂層に少なくとも部分的に沈み、前記第1樹脂層の層方向に沿って前記第1樹脂層に接する部分と、前記第1樹脂層、前記第2樹脂層及び前記導体パターンの積層方向に沿って前記第1樹脂層に接する部分とを有する。この構成によれば、導体パターンに接する主たる樹脂層は、誘電率が相対的に小さな樹脂層であるので、高周波特性に優れたケーブルや回路基板として用いることができる。
 本発明に係る第2の態様の積層体は、前記積層体の前記積層方向での断面において、前記導体パターンの周長のうち、前記導体パターンが前記第1樹脂層に接する部分の長さは、前記第2樹脂層に接する部分の長さより長い。この構造により、導体パターンの大部分が第1樹脂層に接することとなって、高周波特性が効果的に向上する。
 本発明に係る第3の態様の積層体は、前記第2樹脂層の厚みが前記第1樹脂層の厚みよりも厚い。この構造により、積層体全体の形状安定性が高まる。
 本発明に係る第4の態様の積層体は、前記第1樹脂層の主材料がフッ素樹脂であり、前記第2樹脂層の主材料は液晶ポリマーである。
 本発明に係る第5の態様の積層体は、前記積層体の前記積層方向での前記導体パターンの断面形状が、前記第1樹脂層に埋没する角部を有する。この構造により、電界強度の高い角部の周囲が低誘電率の第1樹脂層で覆われるので、高周波特性の改善効果が大きい。
 本発明に係る第6の態様の積層体は、前記第1樹脂層が、前記導体パターンとは反対側の面に、当該第1樹脂層に埋没する前記導体パターンの前記角部に沿った凸部(第1凸部)を有する。この構造によれば、電界強度の高い角部の周囲が低誘電率の第1樹脂層でより厚く覆われるので、高周波特性の改善効果が大きい。
 本発明に係る第7の態様の積層体は、前記断面形状における前記導体パターンの縁に傾斜部を有し、前記第1樹脂層に埋没する角部は鋭角である。この構造により、電界強度のより高い部分を第1樹脂層で覆うことができ、高周波特性が効果的に向上する。
 本発明に係る第8の態様の積層体は、前記導体パターンの前記第1樹脂層に接する一方主面の表面粗さが他方主面の表面粗さよりも大きい。この構造によれば、導体パターンの表面粗さの粗い面が誘電率の低い樹脂層に接する構造になるので、高周波域での伝送損失を効果的に低減できる。
 本発明に係る第9の態様の積層体は、前記第2樹脂層が前記第1樹脂層を前記積層方向の両側から挟み込む位置にある。この構造によれば、積層体全体の形状安定性が効果的に高まる。
 本発明に係る第10の態様の積層体は、前記第1樹脂層が前記導体パターンを前記積層方向の両側から挟み込む位置にある。この構造によれば、電界強度の高い領域全体が低誘電率の第1樹脂層で覆われるので、高周波特性の改善効果が大きい。
 本発明に係る第11の態様の積層体は、単一の前記第1樹脂層、単一の前記第2樹脂層、及び単一層の前記導体パターンにより構成される積層シートを複数備え、前記積層方向に隣接する積層シートの一方の積層シートの前記導体パターンと他方の積層シートの前記第2樹脂層とが接する。この構造によれば、上記積層シート単体で形状変形し難いので、製造工程でのハンドリングが容易となる。また、落下や部品実装などの際に外力が掛かった場合でも基板が変形し難い。
 本発明に係る第12の態様の積層体は、単一の前記第1樹脂層、単一の前記第2樹脂層、及び単一層の前記導体パターンにより構成される積層シートを複数備え、前記積層方向に隣接する二つの積層シートは、前記第1樹脂層及び前記第2樹脂層を貫通し、前記導体パターンに接する面に比べて反対面が広い層間接続導体をそれぞれ有し、前記層間接続導体の前記反対面同士が対向して前記層間接続導体が直接接合される。この構造によれば、層間接続導体が広い面同士で接合されるので、積層プレスなどの加熱・加圧時に第1樹脂層及び第2樹脂層が流動しても、層間接続導体のずれによる層間接続導体同士の接合不良を低減できる。
 本発明に係る第13の態様の積層体は、前記複数の積層シートは前記積層方向に順次配置される第1積層シート、第2積層シート及び第3積層シートを備え、前記第2積層シートに設けられている前記導体パターンは信号導体パターンであり、前記第1積層シートに設けられている前記導体パターンは第1グランド導体パターンであり、前記第3積層シートに設けられている前記導体パターンは第2グランド導体パターンであり、前記信号導体パターン、前記第1グランド導体パターン及び前記第2グランド導体パターンで伝送線路の主要部が構成される。この構造によれば、低伝送損失の信号伝送線路を構成できる。
 本発明に係る第14の態様の積層体では、前記第1積層シートは、前記第1グランド導体パターンに導通する第1層間接続導体を有し、前記第2積層シートは、前記第2グランド導体パターンに導通する第2層間接続導体を有し、前記第1層間接続導体と前記第2層間接続導体とは、前記積層方向に重なる。この構造によれば、積層体の屈曲に対する、信号導体パターンと第1グランド導体パターン及び第2のグランド導体パターンとの間隔の安定性が高いので、信号伝送線路の電気的特性が保たれる。
 本発明に係る第15の態様の積層体の製造方法は、第1樹脂を主材料とする層である第1樹脂層に導体箔を貼り合わせ、前記第1樹脂層に、第2樹脂を主材料とする層である第2樹脂層を貼り合わせることにより、前記第1樹脂層、前記第2樹脂層及び前記導体箔から成る積層シートを構成し、前記積層シートを複数積層し、加熱プレスすることにより、前記導体箔の少なくとも一部を前記第1樹脂層に沈み込ませる、という方法で構成される。この方法によれば、積層体内の導体パターンを、第1樹脂層に積極的に沈み込ませた構造となって、高周波特性に優れた積層体が容易に得られる。
 本発明に係る第16の態様の積層体の製造方法は、第1樹脂を主材料とする層である第1樹脂層に、第2樹脂を主材料とする層である第2樹脂層を貼り合わせ、前記第1樹脂層に第1導体層を形成し、前記第1導体膜上にドライフィルムレジストを貼付し、フォトリソグラフィで前記ドライフィルムレジストに開口部を形成し、前記開口部に第2導体層をめっき形成し、前記ドライフィルムレジストを剥離し、前記第1導体層及び前記第2導体層をエッチング除去することにより、前記第1樹脂層、前記第2樹脂層、及び導体パターンから成る積層シートを構成し、前記積層シートを複数積層し、加熱プレスすることにより、前記導体パターンの少なくとも一部を前記第1樹脂層に沈み込ませる、という方法で構成される。この方法によれば、積層体内の導体パターンを、第1樹脂層に積極的に沈み込ませた構造となって、高周波特性に優れた積層体が容易に得られる。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1、図2(A)、図2(B)は第1の実施形態に係る積層体101の縦断面図である。この積層体101は二つの伝送線路を備えるケーブルとして用いられる。図1に示すように、積層体101は、熱可塑性の第1樹脂を主材料とする層である第1樹脂層1と、当該第1樹脂層1の一方主面に形成された導体層3と、熱可塑性の第2樹脂を主材料とする層である第2樹脂層2と、を備える。
 第1樹脂層1の主材料である第1樹脂は、例えばPTFE《ポリテトラフルオロエチレン》、PFA《パーフルオロアルコキシアルカン》等のフッ素樹脂である。また、第2樹脂層2の主材料である第2樹脂は、例えばLPC《液晶ポリマー》である。第1樹脂層1は第2樹脂層2に比べて柔らかく、第1樹脂層1は第2樹脂層2に比べて誘電率が低い。また、第1樹脂層1は第2樹脂層2に比べて誘電正接が小さい。ここで、樹脂層の硬さ(硬度)を表すパラメータとしては、ビッカース硬さ、ヌープ硬さ、デュロメーター硬さ、バーコル硬さ、超微小硬さ(JIS 2255)等を用いることができる。また、弾性率で比較すれば、第1樹脂層1は第2樹脂層2よりも弾性率が低いといえる。
 導体層3は、信号導体パターンS1,S2、グランド導体パターンG1,G2,G3,G4を構成する。この例では、信号導体パターンS1、グランド導体パターンG1,G2,G3、並びにグランド導体パターンG1とグランド導体パターンG3との間に介在する第1樹脂層1及び第2樹脂層2によって第1のグラウンデッドコプレーナラインが構成されている。同様に、信号導体パターンS2、グランド導体パターンG2,G3,G4、並びにグランド導体パターンG2とグランド導体パターンG4との間に介在する第1樹脂層1及び第2樹脂層2によって第2のグラウンデッドコプレーナラインが構成されている。
 また、積層体101は、グランド導体パターンG1-G2間を導通させる層間接続導体41、グランド導体パターンG2-G3間を導通させる層間接続導体42、グランド導体パターンG3-G4間を導通させる層間接続導体43、をそれぞれ備える。
 本実施形態の積層体101の構成によれば、導体層3は誘電率が相対的に小さな第1樹脂層1に接するので、高周波特性に優れたケーブルや回路基板として用いることができる。つまり、例えば50Ω等の所定の特性インピーダンスを有する伝送線路を構成する場合に、誘電体層の誘電率が低いことに応じて信号導体パターンの線幅を広くでき、そのことで導体損失を低減できる。また、信号導体パターンの線幅を拡げる代わりに第1樹脂層1及び第2樹脂層2で構成される誘電体層を薄くでき、そのことで積層体101を薄型化できる。さらに、第1樹脂層1は第2樹脂層2に比べて誘電正接が小さいので、誘電損失も低減される。これにより、積層体101を、高周波特性に優れたケーブルや回路基板として用いることができる。
 図2(A)、図2(B)は、特に導体層3によるパターンと第1樹脂層1及び第2樹脂層2の細部の構造について説明するための図である。以下、図2(A)、図2(B)を参照して各部の構造について説明する。
 上記導体層3によるパターンは本発明に係る「導体パターン」に相当する。導体層3によるパターンのうち、特に信号導体パターンS1,S2及びグランド導体パターンG2,G3それぞれは第1樹脂層1に部分的に(一部が)沈んでいる。このことにより、信号導体パターンS1,S2及びグランド導体パターンG2,G3それぞれは、第1樹脂層1の層方向に沿って第1樹脂層1に接する部分、つまりX-Y面に沿って第1樹脂層1に接する部分だけでなく、第1樹脂層1、第2樹脂層2及び導体層3の積層方向(Z軸方向)に沿った部分、つまりX-Z面に沿って第1樹脂層1に接する部分を有する。この構成によれば、導体層3に接する主たる樹脂層は、誘電率が相対的に小さな第1樹脂層1であるので、誘電体層に低誘電率の樹脂層を用いることによる上述の効果が高まる。
 図2(B)は信号導体パターンS1付近の拡大断面図である。上記導体層3によるパターンは、積層体101の積層方向(Z軸方向)での断面において、導体パターンの周長のうち、導体層3によるパターンが第1樹脂層1に沈む部分の長さは、第1樹脂層1に沈まない部分の長さより長い。図2(B)に示した例では、信号導体パターンS1の断面形における周長のうち、第1樹脂層1に接する部分の長さ(第1樹脂層1に沈む部分の長さに相当)をL1、第2樹脂層2に接する部分の長さ(第1樹脂層1に沈まない部分の長さに相当)をL2、でそれぞれ表すと、L1>L2の関係にある。また、図2(A)に示すように、導体層3によるパターンの厚みのうち、第1樹脂層1に埋まる深さD31は第2樹脂層2に埋まる深さD32よりも深い。この構造により、導体層3によるパターンの大部分が第1樹脂層1に接することとなって、高周波特性が効果的に向上する。
 なお、本実施形態において、導体層3によるパターンの断面形状として、上辺が下辺よりも短い台形状である例を示したが、上辺が下辺よりも長い台形状であってもよい。このような場合であっても、上記関係を満たしていれば高周波特性が効果的に向上する。上辺が下辺よりも長い台形状のパターンは樹脂層上にめっき形成することによって実現できる。
 また、第2樹脂層2の厚みT2は第1樹脂層1の厚みT1よりも厚い。この構造により、積層体101全体の形状安定性が高まる。
 さらに、積層体101の積層方向(Z軸方向)での導体層3によるパターンの断面形状は、第1樹脂層1に埋没する角部を有する。この構造により、電界強度の高い角部の周囲が低誘電率の第1樹脂層1で覆われるので、高周波特性の改善効果が大きい。
 上記導体層3によるパターンは、積層体101の積層方向(Z軸方向)での断面において、縁に傾斜部を有し、第1樹脂層1に埋没する角部は鋭角である。つまり、図2(A)、図2(B)に表れているように、導体層3によるパターンの断面形状は台形状である。この構造により、電界強度のより高い部分を第1樹脂層1で覆うことができ、高周波特性が効果的に向上する。
 また、第1樹脂層1は、導体層3によるパターンとは反対側の面に、第1樹脂層1に埋没する導体層3によるパターンの角部に沿った凸部(第1凸部)CP1を有する。換言すると、平面視で、導体層3によるパターンの角部から突出幅PWだけ第1樹脂層1が突出している。このような構造によれば、電界強度の高い角部の周囲が低誘電率の第1樹脂層でより厚く覆われるので、高周波特性の改善効果が大きい。
 図3は本実施形態の積層体101の製造途中での縦断面図である。また、図4は積層体101の製造途中での斜視図である。図3は図4におけるY-Y部分での縦断面図である。
 積層体101は、その積層前の段階で、第1積層シート11、第2積層シート12、第3積層シート13及び第4積層シート14で構成される。いずれの積層シート11,12,13,14も、単一の第1樹脂層1と、この第1樹脂層1の一方面に形成された単一の導体層3と、第1樹脂層1の他方面に接合された第2樹脂層2とにより構成される。
 図3に示す例では、第1積層シート11は、第1樹脂層1及び第2樹脂層2に、導体層3と導通する、加熱前状態の層間接続導体41Pが形成されている。第1積層シート11の導体層3はグランド導体パターンG1として形成されている。第2積層シート12は、第1樹脂層1及び第2樹脂層2に、導体層3と導通する加熱前状態の層間接続導体42Pが形成されている。第2積層シート12の導体層3はグランド導体パターンG2及び信号導体パターンS1として形成されている。同様に、第3積層シート13は、第1樹脂層1及び第2樹脂層2に、導体層3と導通する加熱前状態の層間接続導体43Pが形成されている。第3積層シート13の導体層3はグランド導体パターンG3及び信号導体パターンS2として形成されている。第4積層シート14の導体層3はグランド導体パターンG4として形成されている。
 図1に示した積層体101は、上記積層シート11~14を積層し、加熱・プレスすることで構成される。
 図5は積層体101の製造方法を示す図である。ここでは、図3、図4に示した第2積層シート12を例に挙げている。図5において、ST1~ST5は各工程の番号を表している。工程ST1では、第1樹脂層1の一方面にCu箔から成る導体層3を貼り合わせる(ラミネートする)。工程ST2では、第1樹脂層1の他方面に第2樹脂層2を貼り合わせることで積層シートを構成する。既に述べたとおり、第2樹脂層2はLCPを主材料とする樹脂層であるので、フッ素樹脂を主材料とする第1樹脂層1より硬い。そのため、この積層シートは形状保持性が高い。
 工程ST3では、フォトリソグラフィによって導体層3をパターンニングして、例えば信号導体パターンS1やグランド導体パターンG2を形成する。
 工程ST4では、レーザー加工によって、第2樹脂層2側から導体層3にまで達する開口を形成し、その開口内にCu,Sn、フラックス、溶剤、を含む導電ペーストを充填し、その後、導電ペーストを乾燥させることによって、加熱前状態の層間接続導体42Pを形成する。
 図3、図4に示した積層シート11,13,14についても上記同様の工程で製造される。このようにして作成された積層シート11~14を積層し、300℃で加熱・プレスすることで、加熱前状態の層間接続導体42P等が固化されて層間接続導体になる。また、導体層3が第1樹脂層1に一定量沈み込む。さらに、そのことによって、導体層によるパターンの角部を第1樹脂層1に埋没させ、導体層3によるパターンの角部に沿った凸部(第1凸部)CP1を形成する(図2(A)、図2(B))。
 本実施形態の積層体101では、図1、図3に示したように、第1積層シート11は、グランド導体パターンG1(本発明に係る「第1グランド導体パターン」に相当)に導通する層間接続導体41(本発明に係る「第1層間接続導体」に相当)を有し、第2積層シート12は、グランド導体パターンG3(本発明に係る「第2グランド導体パターン」に相当)に導通する層間接続導体42(本発明に係る「第2層間接続導体」に相当)を有し、層間接続導体41と層間接続導体42とは、積層方向(Z軸方向)に重なる。このような構造であるため、積層体101の屈曲に対する、信号導体パターンS1とグランド導体パターンG1,G3との間隔の安定性が高いので、信号伝送線路の電気的特性が保たれる。
 同様に、第2積層シート12は、グランド導体パターンG2(本発明に係る「第1グランド導体パターン」に相当)に導通する層間接続導体42(本発明に係る「第1層間接続導体」に相当)を有し、第3積層シート13は、グランド導体パターンG4(本発明に係る「第2グランド導体パターン」に相当)に導通する層間接続導体43(本発明に係る「第2層間接続導体」に相当)を有し、層間接続導体42と層間接続導体43とは、積層方向(Z軸方向)に重なる。このような構造であるため、積層体101の屈曲に対する、信号導体パターンS2とグランド導体パターンG2,G4との間隔の安定性が高いので、信号伝送線路の電気的特性が保たれる。
《第2の実施形態》
 第2の実施形態では、第1の実施形態で示した積層体とは、導体層の表面の性状が異なる導体層を有する積層体について示す。
 図6は第2の実施形態に係る積層体102の縦断面図である。図1に示した積層体101とは導体層3の表面の性状及び断面形状が異なる。積層体102において、図6に示す向きで導体層3の上面は平滑面(shiny side)であり、下面は粗面(matte side)である。このように、表裏面で性状が異なる導体層3を用いる場合に、第1樹脂層1側に粗面が接し、第2樹脂層2側に平滑面が接するように、導体層3は第1樹脂層1に貼り付けられる。つまり、導体層3によるパターンの第1樹脂層1に接する一方主面の表面粗さが他方主面の表面粗さよりも大きい。なお、この例では、導体層3によるパターンの縁に傾斜部を有しない。その他の構造は第1の実施形態で示したとおりである。
 本実施形態によれば、導体層3によるパターンの表面粗さの粗い面が、誘電率の低い第1樹脂層1に接する構造になるので、導体層3によるパターンのうち、表皮効果による導体表面の電界強度の高い部分が低誘電率の樹脂層で覆われることになる。
 ここで仮に、導体層3の表面粗さの粗い面に誘電率の高い樹脂層が接する場合を考えると、導体層3の表面の尖鋭部に電界が集中し、隣接する尖鋭部間や隣接する尖鋭部と谷部との間の電位差が大きくなって、この電位差の高い箇所に介在する誘電体部分に流れる変位電流が大きくなる。その結果、導体パターンの表面付近を流れる実電流も大きくなる。この実電流は導体パターンの粗面に流れるので、その電流経路長は長く、導体損失は大きい。つまり、導体層3の粗面が第2樹脂層(高誘電率樹脂層)に接するより、第1樹脂層(低誘電率樹脂層)に接する構造である方が好ましい。上記のとおり、導体層3によるパターンの表面粗さの粗い面が、誘電率の低い第1樹脂層1に接する構造によれば、導体層の導体損失を効果的に低減できる。
 また、第2樹脂層2における、2つの第2凸部CP2によって、信号導体パターンS1や信号導体パターンS2がそれぞれ挟まれている。換言すれば、信号導体パターンS1や信号導体パターンS2は積層方向に垂直な平面方向において第2樹脂層2にそれぞれ挟まれている。第2樹脂層2は第1樹脂層1よりも硬いので、第2樹脂層2で信号導体パターンS1や信号導体パターンS2を挟むことで、積層時の信号導体パターンS1や信号導体パターンS2の位置ずれを防止できる。また、信号導体パターンS1や信号導体パターンS2の第2樹脂層2への保持力を高めることができる。このような第2樹脂層2の挟み込みで、信号導体パターンS1や信号導体パターンS2の保持が十分である場合には、信号導体パターンS1や信号導体パターンS2の表面粗さをグランド導体パターンG1~G4の表面粗さよりも小さくしてもよい。そして、そのことによって、信号導体パターンS1や信号導体パターンS2の導体損失を低減することができる。
《第3の実施形態》
 第3の実施形態では、第1の実施形態で示した積層体とは、層間接続導体同士の接続構造及び積層シート同士の接続構造が異なる積層体について示す。
 図7(A)は第3の実施形態に係る積層体の製造途中での縦断面図である。図7(B)は第3の実施形態に係る積層体103の縦断面図である。
 積層体103は積層シート11~14を積層し、加熱・プレスすることで構成される。積層体103は、第1樹脂層1と、当該第1樹脂層1の一方主面に形成された導体層3と、第2樹脂層2と、保護層8とを備える。また、積層体103は、第1樹脂層1及び第2樹脂層2をそれぞれ貫通する層間接続導体41,42,43,44を備える。なお、積層体103は積層方向の両面に保護層8がそれぞれ形成されている。この保護層8は例えばエポキシ樹脂の塗布やポリイミドフィルムの貼付によって形成される。
 図7(A)に示すように、積層シート11~14の積層前の段階では、積層シート11~14は、加熱前状態の層間接続導体41P,42P,43P,44Pをそれぞれ備える。これら加熱前状態の層間接続導体41P,42P,43P,44Pは、第1樹脂層1及び第2樹脂層2を貫通し、導体層3に接する面に比べて、その反対面は広い。
 第3積層シート13に形成された加熱前状態の層間接続導体43Pと、第4積層シート14に形成された加熱前状態の層間接続導体44Pとは、上記反対面同士が対向して層間接続導体が直接接合される。
 本実施形態によれば、層間接続導体43,44が広い面同士で接合されるので、積層プレスなどの加熱・加圧時に第1樹脂層1及び第2樹脂層2が流動しても、層間接続導体43,44のずれによる層間接続導体同士の接合不良を低減できる。
《第4の実施形態》
 第4の実施形態では第1の実施形態で示した積層体の製造方法とは異なる製造方法の例を示す。
 図8は第4の実施形態に係る積層体の製造方法を示す図である。図8において、ST1~ST7は各工程の番号を表している。工程ST1では、第2樹脂層2に第1樹脂層を貼り合わせる。工程ST2では、第1樹脂層1の表面に無電解Cuめっき等によってシード層としての第1導体層3Pを形成する。
 工程ST3では、ドライフィルムレジストDFRを貼付する。工程ST4ではマスクパターンMPを重ね、露光する。
 工程ST5ではドライフィルムレジストDFRを現像する。工程ST6では、Cu膜をめっきすることで、ドライフィルムレジストDFRの開口を、Cu膜である第2導体層3Gで埋める。その後、工程ST7でドライフィルムレジストDFRを剥離し、第1導体層3P及び第2導体層3Gをエッチングすることによって、導体パターン3PAを形成する。
 本実施形態によれば、図5中の工程ST4における構造と比較すれば明らかなように、導体パターン3PAの断面形状が逆テーパ状となる。このような断面形状の導体パターン3PAを形成しても、積層シートの積層後、加熱・プレスすることで、導体パターン3PAが第1樹脂層1に部分的に沈む構造が得られる。
《第5の実施形態》
 第5の実施形態では、第1の実施形態で示した積層体とは、導体層によるパターンとそれに隣接する樹脂層との関係が異なる積層体について示す。
 図9(A)は第5の実施形態に係る積層体の製造途中での縦断面図である。図9(B)は第5の実施形態に係る積層体105の縦断面図である。
 積層体105は、その積層前の段階で、第1積層シート11、第2積層シート12、第3積層シート13及び第4積層シート14で構成される。
 積層シート11は、第1樹脂層1と、この第1樹脂層1の一方面に接合された第2樹脂層2と、この第2樹脂層2に形成された導体層3とにより構成される。
 積層シート12は、第2樹脂層2と、この第2樹脂層の両面に貼り合わされた第1樹脂層1と、一方面の第1樹脂層1に形成された導体層3とにより構成される。
 積層シート13は、第1樹脂層1と、この第1樹脂層1の一方面に形成された導体層3と、第1樹脂層1の他方面に接合された第2樹脂層2とにより構成される。
 積層シート14は、第2樹脂層2と、この第2樹脂層2の一方面に形成された導体層3とにより構成される。
 図9(A)に示す例では、第1積層シート11は、第1樹脂層1及び第2樹脂層2に、導体層3と導通する、加熱前状態の層間接続導体41Pが形成されている。第1積層シート11の導体層3はグランド導体パターンG1として形成されている。第2積層シート12は、二つの第1樹脂層1及び第2樹脂層2に、導体層3と導通する加熱前状態の層間接続導体42Pが形成されている。第2積層シート12の導体層3はグランド導体パターンG2及び信号導体パターンS1として形成されている。第3積層シート13は、第1樹脂層1及び第2樹脂層2に、導体層3と導通する加熱前状態の層間接続導体43Pが形成されている。第3積層シート13の導体層3はグランド導体パターンG3及び信号導体パターンS2として形成されている。第4積層シート14の導体層3はグランド導体パターンG4として形成されている。
 図9(B)に示す積層体105は、上記積層シート11~14を積層し、加熱・プレスすることで構成される。図9(B)に表れているように、信号導体パターンS1,S2は第1樹脂層1に埋没する構造となり、第1樹脂層1には信号導体パターンS1,S2の角部に沿った凸部CPが形成される。この構造によれば、電界強度の高い信号導体パターンの角部の周囲が低誘電率の第1樹脂層でより厚く覆われるので、高周波特性の改善効果が大きい。
 本実施形態によれば、信号導体パターンS1,S2を挟む両層はいずれも第1樹脂層1であるので、より高い高周波特性が得られる。なお、本実施形態では、グランド導体パターンG1,G4には第2樹脂層2が接するが、グランド導体パターンG1,G4表面の電界強度及びグランド導体パターンG1,G4の電流密度は信号導体パターンS1,S2に比べて小さいので、高周波特性が低下しにくい。
《第6の実施形態》
 第6の実施形態では、本発明の積層体を備える電子機器の例を示す。
 図10は本実施形態の電子機器の断面図である。この電子機器は、基板61,62、積層体106及び電池等の部品9を備える。部品9は基板62の上面に実装されている。積層体106の上面には電極51、下面には電極52がそれぞれ形成されている。積層体106は、第1の実施形態で示した積層体101に電極51,52を形成したものである。
 積層体106は、基板62の上面に形成されている電極72と、基板61の下面に形成されている電極71とを接続する。つまり、積層体106の電極51,52は基板61,62の電極71,72に対してはんだ付けされる。
 このように、積層体106をフレキシブルな多芯の高周波信号ケーブルとして用いることができる。ただし、積層体106は形状保持性があるので、積層体106を基板62に実装する前に、図10に示すとおり予めフォーミングしておくことができ、この形状のまま積層体106を基板62に実装できる。また、その後、積層体106の電極51に基板61の電極71を容易に接続できる。本実施形態によれば、積層体106は相対的に柔らかく第1樹脂層1を含む多層基板であるので、全体に曲げやすく、限られた空間に容易に配置できる。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
 例えば、第1樹脂層1がLCPを主材料とする樹脂層であり、第2樹脂層2がガラス・エポキシ基板(FR4基板)であってもよい。この場合も、第1樹脂層1は第2樹脂層2に比べて柔らかく、第1樹脂層1は第2樹脂層2に比べて誘電率が低い。また、第1樹脂層1は第2樹脂層2に比べて誘電正接が小さい。また、例えば第2樹脂層2としてポリイミドのシートを用いてもよい。
CP1…第1凸部
CP2…第2凸部
DFR…ドライフィルムレジスト
G1,G2,G3,G4…グランド導体パターン
MP…マスクパターン
S1,S2…信号導体パターン
1…第1樹脂層
2…第2樹脂層
3…導体層
3P…第1導体層
3G…第2導体層
3PA…導体パターン
8…保護層
9…部品
11…第1積層シート
12…第2積層シート
13…第3積層シート
14…第4積層シート
41,42,43,44…層間接続導体
41P,42P,43P,44P…加熱前状態の層間接続導体
51,52…電極
61,62…基板
71,72…電極
101,102,103,105,106…積層体

Claims (18)

  1.  熱可塑性の第1樹脂層と、当該第1樹脂層の一方主面に形成された導体パターンと、熱可塑性の第2樹脂層と、を備える積層体であって、
     前記第1樹脂層は前記第2樹脂層に比べて柔らかく、
     前記第1樹脂層は前記第2樹脂層に比べて誘電率が低く、
     前記導体パターンは、前記第1樹脂層の層方向に沿って前記第1樹脂層に接する部分と、前記第1樹脂層、前記第2樹脂層及び前記導体パターンの積層方向に沿って前記第1樹脂層に接する部分とを有する、
     積層体。
  2.  前記積層体の前記積層方向での断面において、
     前記導体パターンの周長のうち、前記導体パターンが前記第1樹脂層に接する部分の長さは、前記第2樹脂層に接する部分の長さより長い、
     請求項1に記載の積層体。
  3.  前記第2樹脂層の厚みは前記第1樹脂層の厚みよりも厚い、
     請求項1又は2に記載の積層体。
  4.  前記第1樹脂層の主材料はフッ素樹脂であり、
     前記第2樹脂層の主材料は液晶ポリマーである、
     請求項1から3のいずれかに記載の積層体。
  5.  前記積層体の前記積層方向での前記導体パターンの断面形状は、前記第1樹脂層に埋没する角部を有する、
     請求項1から4のいずれかに記載の積層体。
  6.  前記第1樹脂層は、前記導体パターンとは反対側の面に、当該第1樹脂層に埋没する前記導体パターンの前記角部に沿った第1凸部を有する、
     請求項5に記載の積層体。
  7.  前記断面形状における前記導体パターンの縁に傾斜部を有し、前記第1樹脂層に埋没する前記角部は鋭角である、
     請求項5又は6に記載の積層体。
  8.  前記導体パターンの前記第1樹脂層に接する一方主面の表面粗さは他方主面の表面粗さよりも大きい、
     請求項1から7のいずれかに記載の積層体。
  9.  前記第2樹脂層は前記第1樹脂層を前記積層方向の両側から挟み込む位置にある、
     請求項1から8のいずれかに記載の積層体。
  10.  前記第1樹脂層は前記導体パターンを前記積層方向の両側から挟み込む位置にある、
     請求項1から9のいずれかに記載の積層体。
  11.  単一の前記第1樹脂層、単一の前記第2樹脂層、及び単一層の前記導体パターンにより構成される積層シートを複数備え、
     前記積層方向に隣接する積層シートの一方の積層シートの前記導体パターンと他方の積層シートの前記第2樹脂層とが接する、
     請求項1から10のいずれかに記載の積層体。
  12.  単一の前記第1樹脂層、単一の前記第2樹脂層、及び単一層の前記導体パターンにより構成される積層シートを複数備え、
     前記積層方向に隣接する二つの積層シートは、前記第1樹脂層及び前記第2樹脂層を貫通し、前記導体パターンに接する面に比べて反対面が広い層間接続導体をそれぞれ有し、
     前記層間接続導体の前記反対面同士が対向して前記層間接続導体が直接接合される、
     請求項1から10のいずれかに記載の積層体。
  13.  前記複数の積層シートは前記積層方向に順次配置される第1積層シート、第2積層シート及び第3積層シートを備え、
     前記第2積層シートに設けられている前記導体パターンは信号導体パターンであり、前記第1積層シートに設けられている前記導体パターンは第1グランド導体パターンであり、前記第3積層シートに設けられている前記導体パターンは第2グランド導体パターンであり、
     前記信号導体パターン、前記第1グランド導体パターン及び前記第2グランド導体パターンで伝送線路の主要部が構成された、
     請求項11又は12に記載の積層体。
  14.  前記信号導体パターンは、前記積層方向に対して垂直な平面方向において、前記第1積層シートの前記単一の第2樹脂層の第2凸部で挟まれている、請求項13に記載の積層体。
  15.  前記信号導体パターンの前記単一の第1樹脂層側の粗度は、前記第1グランド導体パターンの前記単一の第1樹脂層側の粗度よりも小さい、請求項14に記載の積層体。
  16.  前記第1積層シートは、前記第1グランド導体パターンに導通する第1層間接続導体を有し、前記第2積層シートは、前記第2グランド導体パターンに導通する第2層間接続導体を有し、
     前記第1層間接続導体と前記第2層間接続導体とは、前記積層方向に重なる、
     請求項13から15のいずれかに記載の積層体。
  17.  第1樹脂を主材料とする層である第1樹脂層に導体箔を貼り合わせ、
     前記第1樹脂層に、第2樹脂を主材料とする層である第2樹脂層を貼り合わせることにより、前記第1樹脂層、前記第2樹脂層及び前記導体箔から成る積層シートを構成し、
     前記導体箔をパターンニングし、
     前記積層シートを複数積層し、加熱プレスすることにより、前記導体箔の少なくとも一部を前記第1樹脂層に沈み込ませる、
     積層体の製造方法。
  18.  第1樹脂を主材料とする層である第1樹脂層に、第2樹脂を主材料とする層である第2樹脂層を貼り合わせ、
     前記第1樹脂層に第1導体層を形成し、
     前記第1導体膜上にドライフィルムレジストを貼付し、
     フォトリソグラフィで前記ドライフィルムレジストに開口部を形成し、
     前記開口部に第2導体層をめっき形成し、
     前記ドライフィルムレジストを剥離し、
     前記第1導体層及び前記第2導体層をエッチング除去することにより、前記第1樹脂層、前記第2樹脂層、及び導体パターンから成る積層シートを構成し、
     前記積層シートを複数積層し、加熱プレスすることにより、前記導体パターンの少なくとも一部を前記第1樹脂層に沈み込ませる、
     積層体の製造方法。
PCT/JP2019/039075 2018-10-04 2019-10-03 積層体及びその製造方法 WO2020071473A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201990001051.2U CN216531943U (zh) 2018-10-04 2019-10-03 层叠体
JP2020550532A JP7283481B2 (ja) 2018-10-04 2019-10-03 積層体及びその製造方法
US17/206,303 US11445606B2 (en) 2018-10-04 2021-03-19 Laminated body and method for manufacturing the same
US17/881,702 US11558958B2 (en) 2018-10-04 2022-08-05 Laminated body and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018189264 2018-10-04
JP2018-189264 2018-10-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/206,303 Continuation US11445606B2 (en) 2018-10-04 2021-03-19 Laminated body and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2020071473A1 true WO2020071473A1 (ja) 2020-04-09

Family

ID=70054552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039075 WO2020071473A1 (ja) 2018-10-04 2019-10-03 積層体及びその製造方法

Country Status (4)

Country Link
US (2) US11445606B2 (ja)
JP (1) JP7283481B2 (ja)
CN (2) CN216531943U (ja)
WO (1) WO2020071473A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021261416A1 (ja) * 2020-06-24 2021-12-30
JPWO2022004504A1 (ja) * 2020-06-30 2022-01-06
WO2022034791A1 (ja) * 2020-08-12 2022-02-17 株式会社村田製作所 配線基板及び多層配線基板
WO2022239572A1 (ja) * 2021-05-13 2022-11-17 株式会社村田製作所 積層基板及びアンテナ基板
WO2023171351A1 (ja) * 2022-03-07 2023-09-14 株式会社村田製作所 回路基板及び回路基板の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008225A (ja) * 2001-06-26 2003-01-10 Kyocera Corp 多層配線基板およびその製造方法
JP2005005684A (ja) * 2003-05-20 2005-01-06 Matsushita Electric Ind Co Ltd 多層基板及びその製造方法
WO2009065543A1 (de) * 2007-11-20 2009-05-28 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Flexibles schaltungssubstrat für elektrische schaltungen und verfahren zur herstellung desselben
WO2010084867A1 (ja) * 2009-01-20 2010-07-29 東洋紡績株式会社 多層フッ素樹脂フィルムおよびプリント配線板
JP2015056555A (ja) * 2013-09-12 2015-03-23 住友電工プリントサーキット株式会社 高速伝送基板及び電子部品
JP2016164882A (ja) * 2016-03-22 2016-09-08 株式会社村田製作所 積層型多芯ケーブル
JP2018006712A (ja) * 2016-07-08 2018-01-11 新光電気工業株式会社 配線基板及びその製造方法
WO2018155089A1 (ja) * 2017-02-23 2018-08-30 株式会社村田製作所 電子部品、電子機器および電子部品の実装方法
WO2018163859A1 (ja) * 2017-03-06 2018-09-13 株式会社村田製作所 多層基板、電子機器および多層基板の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200505304A (en) 2003-05-20 2005-02-01 Matsushita Electric Ind Co Ltd Multilayer circuit board and method for manufacturing the same
WO2017179542A1 (ja) 2016-04-11 2017-10-19 旭硝子株式会社 積層体、プリント基板、および積層体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008225A (ja) * 2001-06-26 2003-01-10 Kyocera Corp 多層配線基板およびその製造方法
JP2005005684A (ja) * 2003-05-20 2005-01-06 Matsushita Electric Ind Co Ltd 多層基板及びその製造方法
WO2009065543A1 (de) * 2007-11-20 2009-05-28 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Flexibles schaltungssubstrat für elektrische schaltungen und verfahren zur herstellung desselben
WO2010084867A1 (ja) * 2009-01-20 2010-07-29 東洋紡績株式会社 多層フッ素樹脂フィルムおよびプリント配線板
JP2015056555A (ja) * 2013-09-12 2015-03-23 住友電工プリントサーキット株式会社 高速伝送基板及び電子部品
JP2016164882A (ja) * 2016-03-22 2016-09-08 株式会社村田製作所 積層型多芯ケーブル
JP2018006712A (ja) * 2016-07-08 2018-01-11 新光電気工業株式会社 配線基板及びその製造方法
WO2018155089A1 (ja) * 2017-02-23 2018-08-30 株式会社村田製作所 電子部品、電子機器および電子部品の実装方法
WO2018163859A1 (ja) * 2017-03-06 2018-09-13 株式会社村田製作所 多層基板、電子機器および多層基板の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021261416A1 (ja) * 2020-06-24 2021-12-30
WO2021261416A1 (ja) * 2020-06-24 2021-12-30 株式会社村田製作所 樹脂多層基板及びその製造方法
JP7315102B2 (ja) 2020-06-24 2023-07-26 株式会社村田製作所 樹脂多層基板
JPWO2022004504A1 (ja) * 2020-06-30 2022-01-06
WO2022004504A1 (ja) * 2020-06-30 2022-01-06 株式会社村田製作所 積層基板
WO2022034791A1 (ja) * 2020-08-12 2022-02-17 株式会社村田製作所 配線基板及び多層配線基板
JP7409512B2 (ja) 2020-08-12 2024-01-09 株式会社村田製作所 配線基板及び多層配線基板
WO2022239572A1 (ja) * 2021-05-13 2022-11-17 株式会社村田製作所 積層基板及びアンテナ基板
WO2023171351A1 (ja) * 2022-03-07 2023-09-14 株式会社村田製作所 回路基板及び回路基板の製造方法

Also Published As

Publication number Publication date
CN216531943U (zh) 2022-05-13
JP7283481B2 (ja) 2023-05-30
US11558958B2 (en) 2023-01-17
CN217721588U (zh) 2022-11-01
US20210212203A1 (en) 2021-07-08
US20220377886A1 (en) 2022-11-24
US11445606B2 (en) 2022-09-13
JPWO2020071473A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2020071473A1 (ja) 積層体及びその製造方法
JP4971460B2 (ja) フレキシブル配線板及びその製造方法
JP5797309B1 (ja) プリント配線板
KR100656751B1 (ko) 전자소자 내장 인쇄회로기판 및 그 제조방법
JP2007110010A (ja) フレキシブルプリント配線板、フレキシブルプリント回路板、およびそれらの製造方法
JP4985894B2 (ja) 信号線路
KR20070073730A (ko) 배선 기판, 배선 재료 및 동장 적층판 및 배선 기판의 제조방법
CN108076584A (zh) 柔性电路板、电路板元件及柔性电路板的制作方法
US10051734B2 (en) Wiring board and method for manufacturing the same
JP2017208371A (ja) 回路基板、回路基板の製造方法及び電子装置
JP2011171579A (ja) プリント配線基板
JP2004063575A (ja) プリント基板
US11246214B2 (en) Resin multilayer board
CN107231757B (zh) 软性电路板及其制作方法
JP2007250609A (ja) 配線板
CN113423172A (zh) 软硬结合电路板及其制作方法
JP2020088197A (ja) 樹脂多層基板および電子機器
WO2017164267A1 (ja) 部品実装基板
JP2004134467A (ja) 多層配線基板、多層配線基板用基材およびその製造方法
WO2022113618A1 (ja) 伝送線路及び電子機器
JP3816038B2 (ja) 多層形フレキシブル配線板およびその製造方法
JP3859517B2 (ja) プリント配線基板とフレキシブルプリント配線板との接続方法
JP2008235346A (ja) フレキシブルプリント配線板
JP5008971B2 (ja) 配線板およびその製造方法
JP2005136339A (ja) 基板接合方法およびその接合構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868575

Country of ref document: EP

Kind code of ref document: A1