WO2020067335A1 - 酸化物超電導コイルおよびその製造方法 - Google Patents

酸化物超電導コイルおよびその製造方法 Download PDF

Info

Publication number
WO2020067335A1
WO2020067335A1 PCT/JP2019/037951 JP2019037951W WO2020067335A1 WO 2020067335 A1 WO2020067335 A1 WO 2020067335A1 JP 2019037951 W JP2019037951 W JP 2019037951W WO 2020067335 A1 WO2020067335 A1 WO 2020067335A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide superconducting
wire
reinforcing wire
layer
reinforcing
Prior art date
Application number
PCT/JP2019/037951
Other languages
English (en)
French (fr)
Inventor
翔吾 武藤
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2020549379A priority Critical patent/JPWO2020067335A1/ja
Publication of WO2020067335A1 publication Critical patent/WO2020067335A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to an oxide superconducting coil and a method for manufacturing the same.
  • Priority is claimed on Japanese Patent Application No. 2018-184171 filed on Sep. 28, 2018, the content of which is incorporated herein by reference.
  • an oxide superconducting wire such as a Bi-based superconducting wire such as Bi-Sr-Ca-Cu-O, a Y-based superconducting wire such as RE-Ba-Cu-O (RE is a rare earth element), and an oxide superconducting wire using the same.
  • Coil development is underway.
  • the oxide superconducting coil is excited in a magnetic field, the wire receives tensile stress (tensile load) in the longitudinal direction due to electromagnetic force.
  • Patent Document 1 discloses a superconducting coil provided with a reinforcing wire in order to suppress deterioration due to electromagnetic force.
  • Patent Document 2 discloses a superconducting coil in which the adhesive force at a boundary portion is set low in order to suppress deterioration due to thermal stress.
  • Patent Literature 3 discloses a superconducting wire including an insulating tape that surrounds and restrains a superconducting member and a reinforcing plate so as to be slidable with each other in a longitudinal direction.
  • the present invention has been made in view of the above circumstances, and while avoiding local quenching, an oxide superconducting coil that can suppress deterioration of current-carrying characteristics even when thermal stress or electromagnetic force acts on a superconducting wire and It is an object to provide a manufacturing method thereof.
  • the oxide superconducting coil according to the first aspect of the present invention includes at least one or more tape-shaped oxide superconducting wires, and a reinforcing wire having electrical insulation and release properties on the outer periphery, and the oxide superconducting wires are provided. And the reinforcing wire are co-wound, and a resin is filled between the oxide superconducting wire and the reinforcing wire.
  • a laminated structure including an electric insulating layer and a release layer, or a layer having both electric insulation and release properties may be provided on the outer periphery of the reinforcing wire.
  • the reinforcing wire may be made of a conductive metal.
  • the reinforcing wire may be made of a material having electrical insulation and release properties.
  • the oxide superconducting wire and the reinforcing wire may be electrically connected.
  • a tensile stress of 5 MPa or more and 0.2% proof stress or less may be applied in the longitudinal direction of the reinforcing wire.
  • the method for manufacturing an oxide superconducting coil according to the second aspect of the present invention includes a step of co-winding at least one or more tape-shaped oxide superconducting wires and a reinforcing wire having electrical insulation and release properties on the outer periphery. And supplying an impregnated resin between the oxide superconducting wire and the reinforcing wire.
  • the reinforcing wire may be disposed around the oxide superconducting wire and co-wound.
  • the reinforcing wire may be co-wound while applying a tensile stress in the longitudinal direction.
  • a resin is filled between the oxide superconducting wire and the reinforcing wire in a state where the reinforcing wire having electrical insulation and release properties on the outer periphery is co-wound with the oxide superconducting wire. Therefore, it is possible to prevent the local quench by ensuring thermal contact, and to suppress the deterioration of the current-carrying characteristics even if a thermal stress or an electromagnetic force acts on the superconducting wire.
  • FIG. 2 is a cross-sectional view illustrating a structure in which a part of an oxide superconducting wire is electrically connected to a reinforcing wire. It is a voltage detection circuit used for an oxide superconducting coil.
  • FIG. 1 is a sectional view of the oxide superconducting coil of the first embodiment.
  • FIG. 2 is a sectional view of the oxide superconducting coil of the second embodiment.
  • These cross-sectional views show cross sections perpendicular to the longitudinal direction of the oxide superconducting wire. 1 and 2 corresponds to the width direction of the oxide superconducting wires 1, 1A, 1B. 1 and 2 corresponds to the radial direction of the oxide superconducting coil 5. Either left or right may be outside or inside. A similar cross-sectional structure may continue in the left-right direction of FIGS. 1 and 2, but is not shown.
  • the oxide superconducting wires 1, 1A, 1B are in a tape shape and are co-wound with the reinforcing wire 2.
  • the oxide superconducting wires 1, 1A, 1B and the reinforcing wire 2 constitute a winding unit 3.
  • the oxide superconducting wires 1, 1A, 1B and the reinforcing wire 2 included in the winding unit 3 appear in the same order, and the winding unit 3 is repeated.
  • one oxide superconducting wire 1 and one reinforcing wire 2 constitute a winding unit 3.
  • a winding unit 3 is constituted by two oxide superconducting wires 1A, 1B and one reinforcing wire 2.
  • the reinforcing wire 2 is preferably in the form of a tape having the same width as the oxide superconducting wires 1, 1A, 1B.
  • the width of the reinforcing wire 2 and the width of the oxide superconducting wires 1, 1 ⁇ / b> A, and 1 ⁇ / b> B are substantially the same, but are not limited thereto.
  • the number of the oxide superconducting wires 1, 1A, 1B and the reinforcing wires 2 in the winding unit 3 is not particularly limited, and may be at least one or more each. In the following description, the oxide superconducting wire 1 and the reinforcing wire 2 may be referred to without distinguishing the number included in the winding unit 3.
  • the impregnated resin 4 is filled between the oxide superconducting wire 1 and the reinforcing wire 2 in the radial direction of the oxide superconducting coil 5. Further, the impregnated resin 4 is provided so as to cover both ends of the oxide superconducting wire 1 and both ends of the reinforcing wire 2 in the width direction of the oxide superconducting coil 5. Since the reinforcing wire 2 can be bonded between the oxide superconducting wire 1 and the impregnated resin 4 without intervening, the oxide superconducting wire 1 has sufficient heat with the outside of the oxide superconducting coil 5 via the impregnating resin 4. Contact can be obtained. Thereby, even if the temperature of the oxide superconducting wire 1 rises sharply, local burning can be suppressed, and quenching of the oxide superconducting coil 5 can be prevented.
  • the reinforcing wire 2 has an electric insulation property and a releasing property on the outer periphery. Thereby, when the reinforcing wire 2 and the oxide superconducting wire 1 are co-wound, a larger winding tension than that of the oxide superconducting wire 1 is applied, and a tensile stress (preload) is applied in the longitudinal direction of the reinforcing wire 2. ) Can be applied. Thereby, the reinforcing wire 2 has a tensile stress along the longitudinal direction of the reinforcing wire 2 as a residual stress inside the reinforcing wire 2.
  • the reinforcing wire 2 can sufficiently bear the strength without increasing the overall strength to the strength of the oxide superconducting wire 1, and the reinforcing effect on the electromagnetic force can be enhanced.
  • the magnitude of the tensile stress is preferably, for example, 5 MPa or more and 0.2% proof stress or less.
  • the outer periphery of the reinforcing wire 2 has releasability, so that the reinforcing wire 2 and the impregnated resin 4 peel off preferentially. Therefore, thermal stress is not transmitted to the oxide superconducting wire 1, and deterioration of the oxide superconducting wire 1 can be suppressed.
  • the number of wires to be bundled into the winding unit 3 during co-winding does not increase more than necessary. This can contribute to improvement in dimensional accuracy and productivity of the oxide superconducting coil 5.
  • FIG. 3 shows an example of the oxide superconducting wire.
  • This sectional view shows a section perpendicular to the longitudinal direction of the oxide superconducting wire.
  • 3 corresponds to the thickness direction of the oxide superconducting wire 10.
  • 3 corresponds to the width direction of the oxide superconducting wire 10. Any of the thickness directions may be outside or inside the coil radial direction.
  • the oxide superconducting wire 10 has a laminated structure in which a superconducting layer 13 is formed on one main surface in the thickness direction of a substrate 11 via an intermediate layer 12.
  • a protective layer 14 made of metal is formed on the superconducting layer 13.
  • a substrate 11, an intermediate layer 12, a superconducting layer 13, and a protective layer 14 are laminated in this order.
  • the substrate 11 is a tape-shaped metal substrate.
  • the substrate 11 has main surfaces on both sides in the thickness direction.
  • Specific examples of the metal constituting the substrate 11 include a nickel alloy represented by Hastelloy (registered trademark), stainless steel, and an oriented Ni-W alloy in which a texture is introduced into a nickel alloy.
  • the thickness of the substrate 11 may be appropriately adjusted depending on the purpose, and is, for example, in the range of 10 to 500 ⁇ m.
  • Superconducting layer 13 is composed of an oxide superconductor.
  • the oxide superconductor for example, a RE-Ba-Cu-O-based oxide superconductor represented by a general formula REBa 2 Cu 3 O 7- ⁇ (RE123) is given.
  • the rare earth element RE include one or more of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the thickness of the oxide superconducting layer 13 is, for example, about 0.5 to 5 ⁇ m.
  • the intermediate layer 12 may be provided between the substrate 11 and the superconducting layer 13.
  • the intermediate layer 12 may have a multilayer structure, and may have a diffusion prevention layer, a bed layer, an orientation layer, a cap layer, and the like in the order from the substrate 11 side to the superconducting layer 13 side. These layers are not always provided one by one, and some layers may be omitted, or two or more layers of the same type may be repeatedly laminated.
  • the protective layer 14 bypasses an overcurrent generated at the time of an accident, suppresses a chemical reaction occurring between the superconducting layer 13 and a layer provided on the protective layer 14, and prevents moisture from entering the superconducting layer 13. It has functions such as prevention.
  • Examples of the material of the protective layer 14 include silver (Ag), copper (Cu), gold (Au), an alloy of gold and silver, other silver alloys, copper alloys, and gold alloys.
  • the protective layer 14 may include two or more layers made of the same or different metals.
  • the protective layer 14 covers at least the surface of the superconducting layer 13, that is, the surface on the side opposite to the substrate 11 in the thickness direction.
  • the protective layer 14 may cover another surface of the outer periphery of the oxide superconducting wire 10. That is, the protective layer 14 may cover the end faces in the width direction of the substrate 11, the intermediate layer 12, and the superconducting layer 13, or may cover the main surface of the substrate 11 where the intermediate layer 12 is not formed.
  • the stabilizing layer may cover at least the surface of the protective layer 14, that is, the surface on the side opposite to the substrate 11 in the thickness direction.
  • the stabilizing layer has a function as a bypass part that commutates an overcurrent generated when the oxide superconducting layer changes to a normal conducting state.
  • a metal such as copper (Cu), nickel (Ni), tin (Sn), chromium (Cr), silver (Ag), gold (Au), or an alloy containing at least one of these metals Is mentioned. From the viewpoints of conductivity, economy, and the like, it is preferable that the stabilizing layer be made of copper plating, copper foil, or the like.
  • the reinforcing wire 20 shown in FIG. 4 has a laminated structure including an electric insulating layer 22 and a release layer 23 on the outer periphery of a reinforcing wire main body 21.
  • the reinforcing wire 20A shown in FIG. 5 has an electrically insulating release layer 24 having both electrical insulation and release properties on the outer periphery of the reinforcing wire main body 21.
  • the reinforcing wire main body 25 is made of a material having electrical insulation and release properties.
  • the reinforcing wire main body 21 is preferably made of a metal such as a metal tape.
  • the metal constituting the reinforcing wire main body 21 include an iron (Fe) alloy, a nickel (Ni) alloy, a titanium (Ti) alloy, a copper (Cu) alloy, an aluminum (Al) alloy, and a tungsten (W) alloy.
  • the reinforcing wire main bodies 21 and 25 may be made of a non-metallic conductor such as carbon fiber or an electrical insulator such as glass fiber.
  • the reinforcing wire main body 25 is made of a material having electric insulation and release properties, the electric insulation layer 22, the release layer 23, and the electric insulation release layer 24 may be omitted.
  • a fiber material such as carbon fiber or glass fiber is used for the tape-shaped wire, a plurality of fibers may be formed in a braid or the like.
  • the electric insulating layer 22 can be formed by selecting an electric insulator that can be integrated with the reinforcing wire main body 21 from inorganic substances such as metal oxides and organic substances such as resins.
  • the release layer 23 include an aliphatic compound such as a fluororesin, a silicone resin, and paraffin.
  • FIG. 4 shows a configuration in which the electric insulating layer 22 is inside (the release layer 23 is outside) on the outer periphery of the reinforcing wire main body 21, but the electric insulation layer 22 is outside (the release layer 23 is inside). May be adopted.
  • an electrically insulating release layer 24 having both electrical insulation and release properties.
  • the material forming the electrically insulating release layer 24 include a fluorine resin, a polyethylene (PE) resin, a polypropylene (PP) resin, and a polyimide (PI) resin.
  • the electric insulating layer 22, the release layer 23 or the electric insulating release layer 24 may be formed over the entire circumference of the reinforcing wire main body 21, It may be configured as a part having a sexual effect.
  • As a region where the electric insulating layer 22 is provided so as to exhibit the effect of electric insulation for example, the surface on the side where the reinforcing wire 2 faces the oxide superconducting wire 1 can be mentioned.
  • the electric insulating layer 22 may be provided in a predetermined region in a solid shape, and may have a distribution such as a dot shape, a band shape, a net shape, and a lattice shape.
  • the electric insulating layer 22 may be omitted in the width direction of the reinforcing wire 2.
  • the release layer 23 may be provided in a predetermined region in a solid shape, or may have a distribution such as a dot shape, a band shape, a net shape, and a lattice shape.
  • the release layer 23 may be provided continuously or intermittently in the longitudinal direction of the reinforcing wire 2.
  • the electric insulating release layer 24 may be provided in a region where the effects of the electric insulating layer 22 and the release layer 23 are exhibited.
  • the method for forming the electric insulating layer 22, the release layer 23, or the electric insulating release layer 24 is not particularly limited, and examples thereof include winding a tape material, applying a material, and coating.
  • the electric insulation layer 22, the release layer 23 or the electric insulation release layer 24 may be integrated with the reinforcing wire main body 21 by the impregnating resin 4.
  • the electric insulating layer 22, the release layer 23 or the electric insulating release layer 24 may be fixed to the reinforcing wire main body 21.
  • only one of the electrical insulating layer 22 and the release layer 23 may be provided on the outer periphery of the reinforcing wire main body 21.
  • Two or more or two or more types of electric insulating layers 22, two or more or two or more types of release layers 23, two or more or two or more types of electric insulating release layers 24 are provided on the outer periphery of the reinforcing wire main body 21. It may be provided.
  • the impregnated resin 4 examples include a thermosetting resin such as an epoxy resin, a thermoplastic resin, and an ultraviolet curable resin.
  • the impregnation operation includes vacuum impregnation, coating impregnation, semi-cured resin co-impregnation, and the like. That is, the resin impregnating step may be a method of supplying an impregnated resin between the oxide superconducting wire 1 and the reinforcing wire 2 after the co-winding step, and before or during the co-winding step, A method of supplying an impregnated resin to the wire 2 may be used.
  • the reinforcing wire 2 is disposed around the oxide superconducting wire 1 and co-wound, and It is preferable to produce the superconducting coil 6.
  • the oxide superconducting coil 6 produced by co-winding may be in a stage before supplying the impregnated resin, or an uncured or semi-cured impregnated resin may be supplied to the wire.
  • the oxide superconducting coil having the impregnated resin 4 has a conductive structure in which the oxide superconducting wire 1 and the reinforcing wire 2 are electrically connected to each other in at least a part of the oxide superconducting wire 1.
  • at least a part of the outer periphery of the reinforcing wire 2 is provided with a region not having the electric insulating layer 22, the release layer 23 or the electric insulating release layer 24 shown in FIG. 4 or 5, and is made of a conductive metal such as solder.
  • the oxide superconducting wire 1 and the reinforcing wire 2 may be electrically connected via the conducting portion 26.
  • the conductive portion 26 is electrically connected to the reinforcing wire main body 21 of the reinforcing wire 2 and the protective layer 14 of the oxide superconducting wire 1 or the above-described stabilizing layer.
  • Conduction between the oxide superconducting wire 1 and the reinforcing wire 2 may be performed by using a conductor wire instead of the conduction portion 26, or by using both the conduction portion 26 and the conductor wire.
  • the conduction structure can be a part of a circuit such as a voltage detection circuit and a coil heating circuit.
  • a voltage detection circuit 40 can be used as shown in FIG.
  • the voltage detection circuit 40 is provided in the oxide superconducting coil 30.
  • the oxide superconducting coil 30 can use the oxide superconducting coil 5 of the first embodiment or the second embodiment. For this reason, the same components are denoted by the same reference numerals, and the description thereof will be omitted. Only different points will be described.
  • the voltage detection circuit 40 includes a voltmeter 41, a control unit 42, a diode 43, a resistor 44, a current source 45, and a switch 46, as shown in FIG.
  • the oxide superconducting coil 30 has a configuration in which the oxide superconducting wire 1 and the reinforcing wire 2 are co-wound, and a superconducting wire coil 31 made of the oxide superconducting wire 1 and a reinforcing wire coil 32 made of the reinforcing wire 2 And The superconducting wire coil 31 and the reinforcing wire coil 32 are electrically connected by the conducting portion 26 provided on the first end 30 a side of the oxide superconducting coil 30.
  • a voltmeter 41 is connected to the second end 30 b side of the oxide superconducting coil 30, and a control unit 42 is connected to the voltmeter 41.
  • the voltmeter 41 measures a terminal voltage between the superconducting wire coil 31 and the reinforcing wire coil 32, and detects a resistance voltage generated in the oxide superconducting coil 30.
  • the control unit 42 determines whether or not quench has occurred in the oxide superconducting coil 30 according to the resistance voltage detected by the voltmeter 41.
  • the algorithm for determining whether or not quench has occurred can be set, for example, based on a research paper (Improvement of Sensitivity of HTS Coil Quench Detection Using Co-Wound Coil, Low Temperature Engineering, Vol. 52, No. 1, 2017).
  • the control unit 42 shifts the current supplied from the current source 45 to the attenuation mode.
  • the oxide superconducting coil 30 of the present embodiment is provided with the voltage detection circuit 40, the current is attenuated in accordance with the resistance voltage detected by the voltmeter 41, thereby avoiding local quench. Even if thermal stress or electromagnetic force acts on the superconducting wire, it is possible to suppress the deterioration of the conduction characteristics.
  • Example 1 A semi-finished single pancake, with one rare-earth oxide superconducting wire (4 mm wide, 0.13 mm thick) and an insulated SUS tape (4 mm wide, 0.1 mm thick) co-wound A coil (inner diameter 30 mm, outer diameter 60 mm) was produced. At the time of co-winding, the winding tension of the SUS tape was 300 MPa, and the winding tension of the oxide superconducting wire was 25 MPa. The outer periphery of the SUS tape was insulated by a double wrap winding of a polyimide tape.
  • a fluororesin coat was provided on one side of the outer polyimide tape so that a release layer was formed on the outermost periphery of the SUS tape reinforcing wire.
  • the semi-finished product coil was impregnated with epoxy resin by vacuum impregnation using epoxy resin.
  • the coil after the resin impregnation was subjected to a heat treatment to complete the oxide superconducting coil.
  • the oxide superconducting coil was cooled down to 77 K using liquid nitrogen, and a conduction test of the superconducting coil was performed. The n value as a deterioration criterion showed a high value of 25, which was confirmed to be sound.
  • Example 1 In order to confirm the effects of Example 1, an oxide superconducting coil was manufactured under the same conditions as in Example 1 except that the fluororesin coating of the release layer was not provided. The oxide superconducting coil was cooled to 77 K using liquid nitrogen, and an energization test of the superconducting coil was performed. As a result, the n value was as low as 5, indicating deterioration.
  • Example 2 Two oxide superconducting wires were bundled and co-wound with an insulated Ni alloy tape made of Hastelloy (registered trademark) to produce a double pancake coil. Varnish insulation was applied to the Ni alloy tape, and silicone grease was applied to one side to form a release layer. The winding tension of the Ni alloy tape was 400 MPa, and the winding tension of the oxide superconducting wire was 25 MPa.
  • An oxide superconducting coil was completed by applying and impregnating with an epoxy resin. The oxide superconducting coil was cooled to 77 K using liquid nitrogen, and an energization test of the superconducting coil was performed. As a result, the n value was as high as 20, indicating that the coil was sound. When the oxide superconducting coil was energized at 500 A in a magnetic field of 5 T, the n value at 77 K did not decrease, and it was confirmed that the oxide superconducting coil had strong resistance even in a high electromagnetic force environment.
  • a resin is filled between the oxide superconducting wire and the reinforcing wire in a state where the reinforcing wire having electrical insulation and mold release properties on the outer periphery is co-wound with the oxide superconducting wire. Therefore, it is possible to prevent the local quench by ensuring thermal contact, and to suppress the deterioration of the current-carrying characteristics even if a thermal stress or an electromagnetic force acts on the superconducting wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

酸化物超電導コイルは、少なくとも1枚以上のテープ状の酸化物超電導線材と、外周に電気絶縁性および離型性を有する補強線材とを備え、前記酸化物超電導線材と前記補強線材とが共巻きされ、前記酸化物超電導線材と前記補強線材との間に樹脂が充填されている。

Description

酸化物超電導コイルおよびその製造方法
 本発明は、酸化物超電導コイルおよびその製造方法に関する。
 本願は、2018年9月28日に日本に出願された特願2018-184171号について優先権を主張し、その内容をここに援用する。
 近年、Bi-Sr-Ca-Cu-O等のBi系超電導線材、RE-Ba-Cu-O等のY系超電導線材(REは希土類元素)といった酸化物超電導線材及びこれを用いた酸化物超電導コイルの開発が進んでいる。酸化物超電導コイルを磁場中で励磁すると、電磁力によって線材が長手方向に引張応力(引張負荷)を受ける。電磁力に起因する劣化を抑制するため、特許文献1には、補強線材を設けた超電導コイルが開示されている。
 一方で、超電導コイルを含浸樹脂で含浸した含浸コイルでは、コイル冷却の過程で熱応力が発生する。熱応力に起因する劣化を抑制するため、特許文献2には、境界部分の接着力が低く設定された超電導コイルが開示されている。特許文献3には、超電導部材と補強板とを長手方向に相互に摺動可能に包囲して拘束する絶縁テープを備えた超電導線材が開示されている。
日本国特開2009-188108号公報 日本国特開2010-267835号公報 日本国特開2011-113933号公報
 しかし、超電導線材と補強線材が一体になった構造では、全体の強度が超電導線材の強度に制限され、補強線材に十分な予備負荷を付与することができない。このため、電磁力等に対する補強効果は低減されると考えられる。また、特許文献3により超電導コイルを作製する場合は、絶縁テープで包囲した構造の周囲に含浸樹脂を設けるため、超電導線材と冷却部材との熱接触が十分に取れず、温度が上昇し、最終的に焼損に至る局所クエンチを誘発する可能性がある。
 本発明は、上記事情に鑑みてなされたものであり、局所クエンチを回避しつつ、熱応力や電磁力が超電導線材に作用しても通電特性の劣化を抑制することができる酸化物超電導コイルおよびその製造方法を提供することを課題とする。
 本発明の第一態様に係る酸化物超電導コイルは、少なくとも1枚以上のテープ状の酸化物超電導線材と、外周に電気絶縁性および離型性を有する補強線材とを備え、前記酸化物超電導線材と前記補強線材とが共巻きされ、前記酸化物超電導線材と前記補強線材との間に樹脂が充填されている。
 前記補強線材の外周に、電気絶縁層および離型層を含む積層構造、または電気絶縁性および離型性を兼ね備える層が設けられていてもよい。
 前記補強線材が導電性の金属から構成されていてもよい。
 前記補強線材が電気絶縁性及び離型性を有する材質から構成されていてもよい。
 前記酸化物超電導線材の少なくとも一部において、前記酸化物超電導線材と前記補強線材とが電気的に接続していてもよい。
 前記補強線材の長手方向に、5MPa以上、0.2%耐力以下の引張応力が印加されていてもよい。
 本発明の第二態様に係る酸化物超電導コイルの製造方法は、少なくとも1枚以上のテープ状の酸化物超電導線材と、外周に電気絶縁性および離型性を有する補強線材とを共巻きする工程と、前記酸化物超電導線材と前記補強線材との間に含浸樹脂を供給する工程と、を有する。
 前記補強線材を、前記酸化物超電導線材の外周側に配して共巻きしてもよい。
 前記補強線材の長手方向に、引張応力を印加しながら共巻きしてもよい。
 本発明の上記態様によれば、外周に電気絶縁性および離型性を有する補強線材が、酸化物超電導線材と共巻きされた状態で、酸化物超電導線材と補強線材との間に樹脂が充填されているため、熱接触を確保して局所クエンチを回避しつつ、熱応力や電磁力が超電導線材に作用しても通電特性の劣化を抑制することができる。
第1実施形態の酸化物超電導コイルの断面図である。 第2実施形態の酸化物超電導コイルの断面図である。 酸化物超電導線材の一例を示す断面図である。 補強線材の第1例を示す断面図である。 補強線材の第2例を示す断面図である。 補強線材の第3例を示す断面図である。 酸化物超電導線材と補強線材とを共巻きする工程を例示する正面図である。 酸化物超電導線材の一部を補強線材と電気的に接続させた構造を例示する断面図である。 酸化物超電導コイルに用いられる電圧検出回路である。
 以下、好適な実施形態に基づき、図面を参照して本発明を説明する。
 図1は、第1実施形態の酸化物超電導コイルの断面図である。図2は、第2実施形態の酸化物超電導コイルの断面図である。これらの断面図は、酸化物超電導線材の長手方向に垂直な断面を示す。図1、2における紙面上下方向は、酸化物超電導線材1,1A,1Bの幅方向に相当する。図1、2における紙面左右方向は、酸化物超電導コイル5の径方向に相当する。左右のいずれが外側または内側でもよい。図1、2の左右方向には同様の断面構造が続き得るが、図示を省略している。
 酸化物超電導線材1,1A,1Bはテープ状であり、補強線材2と共巻きにされている。酸化物超電導線材1,1A,1Bと、補強線材2とは巻回単位3を構成する。酸化物超電導コイル5の径方向に沿って、巻回単位3に含まれる酸化物超電導線材1,1A,1Bおよび補強線材2が同じ順序で現れ、巻回単位3が繰り返されている。第1実施形態の場合は、1本の酸化物超電導線材1と1本の補強線材2とにより巻回単位3を構成している。第2実施形態の場合は、2本の酸化物超電導線材1A,1Bと1本の補強線材2とにより巻回単位3を構成している。
 補強線材2は、酸化物超電導線材1,1A,1Bと同程度の幅を有するテープ状であることが好ましい。図1及び図2では、補強線材2の幅と酸化物超電導線材1,1A,1Bの幅とが同程度としているがこれに限らない。
 巻回単位3における酸化物超電導線材1,1A,1Bおよび補強線材2の本数は特に限定されず、それぞれ少なくとも1枚以上であればよい。以下の説明では、巻回単位3に含まれる本数を区別せず、酸化物超電導線材1および補強線材2という場合がある。
 酸化物超電導コイル5の径方向における酸化物超電導線材1と補強線材2との間には、含浸樹脂4が充填されている。さらに、酸化物超電導コイル5の幅方向における酸化物超電導線材1の両端部及び補強線材2の両端部を覆うように、含浸樹脂4が設けられている。
 酸化物超電導線材1と含浸樹脂4との間は、補強線材2が介在せずに接着できるので、酸化物超電導線材1は、含浸樹脂4を介して酸化物超電導コイル5の外部と十分な熱接触を得ることができる。これにより、酸化物超電導線材1の急激な温度上昇に対しても、局所的な焼損が抑制され、酸化物超電導コイル5のクエンチを防ぐことができる。
 補強線材2は、外周に電気絶縁性および離型性を有する。これにより、補強線材2と、酸化物超電導線材1とを共巻きする際に、酸化物超電導線材1よりも大きな巻線張力を付加して、補強線材2の長手方向に、引張応力(予備負荷)を印加することができる。これにより、補強線材2は、その内部の残留応力として、補強線材2の長手方向に沿う引張応力を有する。このため、酸化物超電導コイル5では、全体の強度が酸化物超電導線材1の強度に制限されることなく、補強線材2が十分に強度を負担することができ、電磁力に対する補強効果を高めることができる。引張応力の大きさは、例えば5MPa以上、0.2%耐力以下が好ましい。また、冷却による熱応力が印加された際に、補強線材2の外周に離型性を有するので、補強線材2と含浸樹脂4との間が優先的に剥離する。したがって、酸化物超電導線材1には熱応力が伝わらず、酸化物超電導線材1の劣化を抑制することができる。
 電気絶縁性および離型性を有する材料が、補強線材2に兼ね備えられているので、共巻き時に巻回単位3にまとめる線材の本数が必要以上に増加することがない。これにより、酸化物超電導コイル5の寸法精度および生産性の向上に寄与することができる。
 図3に、酸化物超電導線材の一例を示す。この断面図は、酸化物超電導線材の長手方向に垂直な断面を示す。図3における紙面上下方向は、酸化物超電導線材10の厚さ方向に相当する。
 図3における紙面左右方向は、酸化物超電導線材10の幅方向に相当する。厚さ方向のいずれがコイル径方向の外側または内側でもよい。
 この酸化物超電導線材10は、基板11の厚さ方向の一方の主面上に、中間層12を介して超電導層13が形成された積層構造を有する。本実施形態の場合、超電導層13の上には金属からなる保護層14が形成されている。酸化物超電導線材10の厚さ方向には、基板11、中間層12、超電導層13、保護層14が、この順に積層されている。
 基板11は、テープ状の金属基板である。基板11は、厚さ方向の両面に、それぞれ主面を有する。
 基板11を構成する金属の具体例として、ハステロイ(登録商標)に代表されるニッケル合金、ステンレス鋼、ニッケル合金に集合組織を導入した配向Ni-W合金などが挙げられる。基板11の厚さは、目的に応じて適宜調整すれば良く、例えば10~500μmの範囲である。
 超電導層13は、酸化物超電導体から構成される。酸化物超電導体としては、例えば一般式REBaCu7-δ(RE123)で表されるRE-Ba-Cu-O系酸化物超電導体が挙げられる。希土類元素REとしては、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうちの1種又は2種以上が挙げられる。酸化物超電導層13の厚さは、例えば0.5~5μm程度である。
 基板11と超電導層13との間に中間層12が設けられていてもよい。中間層12は、多層構成でもよく、例えば基板11側から超電導層13側に向かう順で、拡散防止層、ベッド層、配向層、キャップ層等を有してもよい。これらの層は必ずしも1層ずつ設けられるとは限らず、一部の層を省略する場合や、同種の層を2以上繰り返し積層する場合もある。
 保護層14は、事故時に発生する過電流をバイパスしたり、超電導層13と保護層14の上に設けられる層との間で起こる化学反応を抑制したり、超電導層13への水分の浸入を防止したりする等の機能を有する。保護層14の材質としては、例えば銀(Ag)、銅(Cu)、金(Au)、金と銀との合金、その他の銀合金、銅合金、金合金などが挙げられる。保護層14が同種または異種の金属からなる2層以上を含んでもよい。保護層14は、少なくとも超電導層13の表面、すなわち厚さ方向において、基板11側に対する反対側の面を覆っている。保護層14が、酸化物超電導線材10の外周の他の面を覆ってもよい。すなわち、保護層14が基板11、中間層12、超電導層13の幅方向の端面を覆ったり、基板11の、中間層12が形成されていない主面を覆ってもよい。
 なお、安定化層(図示略)が、少なくとも保護層14の表面、すなわち厚さ方向において、基板11側に対する反対側の面を覆っていてもよい。安定化層は、酸化物超電導層が常電導状態に転移した時に発生する過電流を転流させるバイパス部としての機能を有する。安定化層の構成材料としては、銅(Cu)、ニッケル(Ni)、スズ(Sn)、クロム(Cr)、銀(Ag)、金(Au)等の金属又はこれらの1種以上を含む合金が挙げられる。導電性、経済性等の観点からは、安定化層が銅めっき、銅箔等から構成されることが好ましい。
 図4から図6に、補強線材の構成例を示す。図4に示す補強線材20は、補強線材本体21の外周に、電気絶縁層22および離型層23を含む積層構造を有する。図5に示す補強線材20Aは、補強線材本体21の外周に、電気絶縁性および離型性を兼ね備える電気絶縁性離型層24を有する。図6に示す補強線材20Bは、補強線材本体25が、電気絶縁性及び離型性を有する材質から構成されている。
 補強線材本体21は、金属テープなどの金属から構成されることが好ましい。補強線材本体21を構成する金属としては、鉄(Fe)系合金、ニッケル(Ni)合金、チタン(Ti)合金、銅(Cu)合金、アルミニウム(Al)合金、タングステン(W)合金などが挙げられる。補強線材本体21,25は、カーボンファイバー等の非金属導体、ガラス繊維等の電気絶縁体から構成することもできる。補強線材本体25が、電気絶縁性及び離型性を有する材質である場合、電気絶縁層22、離型層23、電気絶縁性離型層24を省略してもよい。カーボンファイバー、ガラス繊維などの繊維材料をテープ状の線材に用いる場合、複数の繊維を編組等に構成してもよい。
 電気絶縁層22としては、金属酸化物等の無機物、樹脂等の有機物の中から、補強線材本体21に一体化できる電気絶縁体を選択して構成することができる。離型層23としては、例えばフッ素樹脂、シリコーン樹脂、パラフィン等の脂肪族化合物などが挙げられる。図4では、補強線材本体21の外周上に、電気絶縁層22が内側(離型層23を外側)とした構成を示しているが、電気絶縁層22が外側(離型層23を内側)とした構成であってもよい。図5に示すように、電気絶縁性および離型性を兼ね備える電気絶縁性離型層24を採用することも可能である。電気絶縁性離型層24を構成する材料としては、フッ素樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリイミド(PI)樹脂などが挙げられる。
 図4及び図5に示すように、電気絶縁層22、離型層23または電気絶縁性離型層24は、補強線材本体21の全周にわたり構成されてもよいが、電気絶縁性または離型性の効果を奏する一部分に構成されてもよい。
 電気絶縁性の効果を奏するように電気絶縁層22を設ける領域としては、例えば、補強線材2が酸化物超電導線材1と対向する側の面が挙げられる。電気絶縁層22が、所定の領域にベタ状に設けられてもよく、点状、帯状、網状、格子状等の分布を有してもよい。例えば、補強線材2の幅方向において電気絶縁層22を省略してもよい。
 離型性の効果を奏するように離型層23を設ける領域は特に限定されず、補強線材2が酸化物超電導線材1または含浸樹脂4に対して長手方向に離型(分離)が可能であればよい。離型層23が、所定の領域にベタ状に設けられてもよく、点状、帯状、網状、格子状等の分布を有してもよい。補強線材2の長手方向において、離型層23が連続的に設けられてもよく、間欠的に設けられてもよい。
 電気絶縁性離型層24は、電気絶縁層22と離型層23の効果を奏する領域に設けられればよい。
 電気絶縁層22、離型層23または電気絶縁性離型層24の形成方法は、特に限定されず、テープ材料の巻き付け、材料の塗布、コーティング等が挙げられる。電気絶縁層22、離型層23または電気絶縁性離型層24が含浸樹脂4によって補強線材本体21と一体化されてもよい。樹脂を含浸させる前の補強線材単体において、電気絶縁層22、離型層23または電気絶縁性離型層24が補強線材本体21に固着されていてもよい。特に図示しないが、補強線材本体21の外周に、電気絶縁層22または離型層23の一方のみを設けてもよい。補強線材本体21の外周に、2層以上または2種以上の電気絶縁層22、2層以上または2種以上の離型層23、2層以上または2種以上の電気絶縁性離型層24を設けてもよい。
 含浸樹脂4としては、エポキシ樹脂などの熱硬化性樹脂、熱可塑性樹脂、紫外線硬化性樹脂などが挙げられる。含浸施工は、真空含浸、塗巻含浸、半硬化樹脂共巻き含浸などが挙げられる。すなわち、樹脂含浸工程が、共巻き工程の後で酸化物超電導線材1と補強線材2との間に含浸樹脂を供給する方法でもよく、共巻き工程の前または途中で酸化物超電導線材1または補強線材2に含浸樹脂を供給する方法でもよい。
 酸化物超電導線材1と補強線材2とを共巻きにする共巻き工程においては、図7に示すように、補強線材2を、酸化物超電導線材1の外周側に配して共巻きし、酸化物超電導コイル6を作製することが好ましい。共巻きにより作製される酸化物超電導コイル6は、上述したように、含浸樹脂を供給する前段階でもよく、未硬化または半硬化の含浸樹脂が線材に供給されていてもよい。
 含浸樹脂4を有する酸化物超電導コイルは、図8に示すように、酸化物超電導線材1の少なくとも一部において、酸化物超電導線材1と補強線材2とが電気的に接続した導通構造を有してもよい。例えば補強線材2の外周の少なくとも一部に、図4または図5に示す電気絶縁層22、離型層23または電気絶縁性離型層24を有しない領域を設け、半田等の導体金属からなる導通部26を介して酸化物超電導線材1と補強線材2とを電気的に接続させてもよい。具体的には、導通部26は、補強線材2の補強線材本体21と、酸化物超電導線材1の保護層14、または、上述した安定化層と電気的に接続されている。酸化物超電導線材1と補強線材2との導通は、導通部26に代えて導体線を用いてもよく、または、導通部26と導体線の両方を用いてもよい。導通構造は、例えば電圧検出回路、コイル昇温回路などの回路の一部とすることができる。
 電圧検出回路としては、例えば、図9に示すように、電圧検出回路40を用いることができる。電圧検出回路40は、酸化物超電導コイル30に設けられている。なお、酸化物超電導コイル30は、第1実施形態または第2実施形態の酸化物超電導コイル5を用いることができる。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 電圧検出回路40は、図9に示すように、電圧計41と、制御部42と、ダイオード43と、抵抗44と、電流源45と、スイッチ46とを備えている。
 酸化物超電導コイル30は、酸化物超電導線材1と補強線材2とが共巻きされた構成となっており、酸化物超電導線材1からなる超電導線材コイル31と、補強線材2からなる補強線材コイル32とを含んでいる。超電導線材コイル31と補強線材コイル32とは、酸化物超電導コイル30の第一端30a側に設けられた導通部26によって導通されている。
 酸化物超電導コイル30の第二端30b側では、超電導線材コイル31と補強線材コイル32とは導通されていない。酸化物超電導コイル30の第二端30b側には、電圧計41が接続され、電圧計41に制御部42が接続されている。
 電圧計41は、超電導線材コイル31と補強線材コイル32との間の端子電圧を測定し、酸化物超電導コイル30に生じる抵抗電圧を検出する。
 制御部42は、電圧計41によって検出された抵抗電圧に応じて酸化物超電導コイル30にクエンチが発生したか否かを判断する。クエンチが発生したか否かを判定するアルゴリズムは、例えば、研究論文(共巻きコイルを用いたHTSコイルクエンチ検出の高感度化 低温工学 52巻1号 2017年)に基づいて設定可能である。
 制御部42は、クエンチが発生したと判断すると、電流源45から供給される電流を減衰モードへと移行させる。
 本実施形態の酸化物超電導コイル30には、電圧検出回路40が設けられているため、電圧計41によって検出された抵抗電圧に応じて、電流を減衰させることにより、局所クエンチを回避しつつ、熱応力や電磁力が超電導線材に作用しても通電特性の劣化を抑制することができる。
 以上、本発明を好適な実施形態に基づいて説明してきたが、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の改変が可能である。改変としては、各実施形態における構成要素の追加、置換、省略、その他の変更が挙げられる。また、2以上の実施形態に用いられた構成要素を適宜組み合わせることも可能である。
 以下、本発明の実施例を示す。
<実施例1>
 1枚の希土類系酸化物超電導線材(幅4mm、厚さ0.13mm)と、絶縁処理を施したSUSテープ(幅4mm、厚さ0.1mm)とを共巻きし、半製品のシングルパンケーキコイル(内径30mm、外径60mm)を作製した。共巻きの際、SUSテープの巻線張力は300MPaとし、酸化物超電導線材の巻線張力は25MPaとした。SUSテープの外周の絶縁は、ポリイミドテープの2重ラップ巻きによって施した。SUSテープからなる補強線材の最外周に離型層が構成されるように、外側のポリイミドテープの片側にフッ素樹脂コートを設けた。共巻き後にエポキシ樹脂を用いて真空含浸により半製品コイルに含浸樹脂を施した。樹脂が含浸された後のコイルに熱処理を施して、酸化物超電導コイルを完成させた。
 液体窒素を用いて酸化物超電導コイルを77Kまで冷却し、超電導コイルの通電試験を実施した。劣化基準となるn値が25と高い値を示し、健全であることが確認された。
<参考例1>
 実施例1の効果を確認するため、離型層のフッ素樹脂コートを設けないこと以外は実施例1と同じ条件で、酸化物超電導コイルを作製した。
 液体窒素を用いて酸化物超電導コイルを77Kまで冷却し、超電導コイルの通電試験を実施したところ、n値が5と低い値を示し、劣化していることが示された。
<実施例2>
 2枚の酸化物超電導線材をバンドルして、絶縁処理を施したハステロイ(登録商標)からなるNi合金テープと共巻きし、ダブルパンケーキコイルを作製した。Ni合金テープにはワニス絶縁を施し、片側にシリコーングリースを塗布して離型層を形成した。Ni合金テープの巻線張力は400MPaとし、酸化物超電導線材の巻線張力は25MPaとした。エポキシ樹脂を用いて塗巻含浸を施し、酸化物超電導コイルを完成させた。
 液体窒素を用いて酸化物超電導コイルを77Kまで冷却し、超電導コイルの通電試験を実施したところ、n値が20と高い値を示し、健全であることが確認された。また、この酸化物超電導コイルを5Tの磁場中で500A通電したところ、77Kにおけるn値が低下せず、高い電磁力環境においても強い耐性を有することが確認された。
 本発明によれば、外周に電気絶縁性および離型性を有する補強線材が、酸化物超電導線材と共巻きされた状態で、酸化物超電導線材と補強線材との間に樹脂が充填されているため、熱接触を確保して局所クエンチを回避しつつ、熱応力や電磁力が超電導線材に作用しても通電特性の劣化を抑制することができる。
1,1A,1B,10…酸化物超電導線材、2,20,20A,20B…補強線材、3…巻回単位、4…含浸樹脂、5,6…酸化物超電導コイル、11…基板、12…中間層、13…酸化物超電導層、14…保護層、21,25…補強線材本体、22…電気絶縁層、23…離型層、24…電気絶縁性離型層、26…導通部

Claims (9)

  1.  少なくとも1枚以上のテープ状の酸化物超電導線材と、
     外周に電気絶縁性および離型性を有する補強線材とを備え、
     前記酸化物超電導線材と前記補強線材とが共巻きされ、
     前記酸化物超電導線材と前記補強線材との間に樹脂が充填されている
    酸化物超電導コイル。
  2.  前記補強線材の外周に、電気絶縁層および離型層を含む積層構造、または電気絶縁性および離型性を兼ね備える層が設けられている
    請求項1に記載の酸化物超電導コイル。
  3.  前記補強線材が導電性の金属から構成されている
    請求項1または2に記載の酸化物超電導コイル。
  4.  前記補強線材が電気絶縁性及び離型性を有する材質から構成されている
    請求項1または2に記載の酸化物超電導コイル。
  5.  前記酸化物超電導線材の少なくとも一部において、前記酸化物超電導線材と前記補強線材とが電気的に接続している
    請求項1~4のいずれか1項に記載の酸化物超電導コイル。
  6.  前記補強線材の長手方向に、5MPa以上、0.2%耐力以下の引張応力が印加されている
    請求項1~5のいずれか1項に記載の酸化物超電導コイル。
  7.  少なくとも1枚以上のテープ状の酸化物超電導線材と、外周に電気絶縁性および離型性を有する補強線材とを共巻きする工程と、
     前記酸化物超電導線材と前記補強線材との間に含浸樹脂を供給する工程と、を有する
    酸化物超電導コイルの製造方法。
  8.  前記補強線材を、前記酸化物超電導線材の外周側に配して共巻きする
    請求項7に記載の酸化物超電導コイルの製造方法。
  9.  前記補強線材の長手方向に、引張応力を印加しながら共巻きする
    請求項7または8に記載の酸化物超電導コイルの製造方法。
PCT/JP2019/037951 2018-09-28 2019-09-26 酸化物超電導コイルおよびその製造方法 WO2020067335A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549379A JPWO2020067335A1 (ja) 2018-09-28 2019-09-26 酸化物超電導コイルおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018184171 2018-09-28
JP2018-184171 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067335A1 true WO2020067335A1 (ja) 2020-04-02

Family

ID=69950716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037951 WO2020067335A1 (ja) 2018-09-28 2019-09-26 酸化物超電導コイルおよびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2020067335A1 (ja)
WO (1) WO2020067335A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471534B1 (ja) 2023-05-10 2024-04-19 三菱電機株式会社 高温超電導線及び超電導コイル

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188109A (ja) * 2008-02-05 2009-08-20 Chubu Electric Power Co Inc 超電導コイル及びその製造方法
JP2014022693A (ja) * 2012-07-23 2014-02-03 Toshiba Corp 超電導コイル及びその製造装置
JP2018117042A (ja) * 2017-01-18 2018-07-26 株式会社東芝 高温超電導永久電流スイッチ及び高温超電導磁石装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247011A (ja) * 2012-05-28 2013-12-09 Fujikura Ltd 酸化物超電導線材及びその製造方法
JP6522891B2 (ja) * 2014-05-23 2019-05-29 株式会社東芝 超電導テープ線および超電導コイル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188109A (ja) * 2008-02-05 2009-08-20 Chubu Electric Power Co Inc 超電導コイル及びその製造方法
JP2014022693A (ja) * 2012-07-23 2014-02-03 Toshiba Corp 超電導コイル及びその製造装置
JP2018117042A (ja) * 2017-01-18 2018-07-26 株式会社東芝 高温超電導永久電流スイッチ及び高温超電導磁石装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471534B1 (ja) 2023-05-10 2024-04-19 三菱電機株式会社 高温超電導線及び超電導コイル

Also Published As

Publication number Publication date
JPWO2020067335A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
US10115511B2 (en) Metal assembly comprising a superconductor
JP5823116B2 (ja) 超電導コイル
JP5259487B2 (ja) 超電導コイル
JP5342749B2 (ja) 高温超電導コイル
WO2017057064A1 (ja) 高温超電導導体、高温超電導コイル及び高温超電導コイルの接続構造
US20190259512A1 (en) Superconducting wire and superconducting coil
JP5921940B2 (ja) 超電導コイルの伝導冷却板及び超電導コイル装置
JP5416509B2 (ja) 超電導ケーブルの中間接続構造
JP7335886B2 (ja) 絶縁被覆化合物超電導線およびその巻替え方法
JP5771751B2 (ja) 高温超電導コイルおよび超電導機器
WO2020067335A1 (ja) 酸化物超電導コイルおよびその製造方法
WO2007122670A1 (ja) 超電導ケーブル
JP6035050B2 (ja) 超電導コイル装置及びその製造方法
US20230268108A1 (en) Aluminum-carbon nanotube metal matrix composite magnet wires
JP7123828B2 (ja) 超電導コイル導体および超電導コイル導体の製造方法
JP6069269B2 (ja) 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法
Osabe et al. Ni alloy laminated high strength Bi-2223 wire
JP2013246881A (ja) 超電導線材の絶縁被覆構造
JP6913570B2 (ja) 超電導テープ線、この超電導テープ線を用いた超電導電流リード、永久電流スイッチおよび超電導コイル
JP3272017B2 (ja) 交流用超電導線およびその製造方法
WO2018150470A1 (ja) 超電導線材および超電導コイル
JP2020013960A (ja) 超電導コイル及び超電導コイル装置
WO2021172276A1 (ja) 超電導コイル装置およびその製造方法
JP2018186037A (ja) 超電導ケーブル線路
JP6484658B2 (ja) 酸化物超電導線材及び超電導コイル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867653

Country of ref document: EP

Kind code of ref document: A1