WO2020067275A1 - 安定性に優れた還元型補酵素q10結晶の製造方法 - Google Patents
安定性に優れた還元型補酵素q10結晶の製造方法 Download PDFInfo
- Publication number
- WO2020067275A1 WO2020067275A1 PCT/JP2019/037827 JP2019037827W WO2020067275A1 WO 2020067275 A1 WO2020067275 A1 WO 2020067275A1 JP 2019037827 W JP2019037827 W JP 2019037827W WO 2020067275 A1 WO2020067275 A1 WO 2020067275A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reduced coenzyme
- crystals
- crystal
- weight
- parts
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C46/00—Preparation of quinones
- C07C46/10—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/34—Separation; Purification; Stabilisation; Use of additives
- C07C41/40—Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/13—Crystalline forms, e.g. polymorphs
Definitions
- the present invention relates to a method for producing reduced coenzyme Q10 crystals having excellent stability.
- Coenzyme Q is an essential component widely distributed in living organisms from bacteria to mammals, and is known as a component of the electron transport system of mitochondria in cells in the living organism. It is known that coenzyme Q functions as a transfer component in the electron transfer system by repeating oxidation and reduction in mitochondria, and that reduced coenzyme Q has an antioxidant effect. In humans, the main component is coenzyme Q10, in which the side chain of coenzyme Q has 10 repeating structures, and in vivo, about 40 to 90% usually exists in a reduced form.
- the physiological effects of coenzyme Q include activation of energy production by mitochondrial activation, activation of cardiac function, stabilization of cell membrane, protection of cells by antioxidation, and the like.
- Patent Document 1 A general method for obtaining reduced coenzyme Q10 has already been disclosed (Patent Document 1). Further, several methods are also known for obtaining reduced coenzyme Q10 as crystals. For example, a method of crystallizing reduced coenzyme Q10 in an alcohol solution and / or ketone solution to produce crystals (Patent Document 2), or adding a high-concentration liquid phase of reduced coenzyme Q10 to a poor solvent For example, a method of performing crystallization by performing the method (Patent Document 3) has been reported.
- Patent Document 4 describes that reduced coenzyme Q10 exhibits a crystal polymorphism, and a new crystal form different from the above-mentioned document can be obtained. It has been reported that the newly appearing crystalline form is much more stable than the conventional reduced coenzyme Q10, and has excellent other physical properties, and its production method is also disclosed.
- Patent Document 5 describes a polymorphic change of a carboxylic acid derivative completely different from coenzyme Q using solvent-mediated transfer.
- Patent Literature 4 describes a method for obtaining a new reduced coenzyme Q10 crystal form Form II crystal by crystallization or the like. As a result of actual studies by the present inventors, Patent Literature 4 In the method described, depending on the conditions, it may take a long time even if Form II crystals can be obtained, the recovery amount is small, or the content of Form II crystals in the obtained reduced coenzyme Q10 may be small. I understood that. Patent Document 4 also describes, as a method other than the crystallization method, a crystal transition method in which a shearing force and heat are applied, but this method requires special equipment dedicated for actual production. . In particular, since reduced coenzyme Q10 has a relatively low melting point (about 50 ° C.), unless the shearing force and heat are strictly controlled, the crystals will melt. I can't say.
- an object is to provide a production method for efficiently obtaining a stable Form II crystal in a short time.
- the present inventors have conducted intensive studies to solve the above-described problems, and as a result, only maintaining a mixture of Form I and Form II crystals of reduced coenzyme Q10 at a certain temperature or higher in the presence of a small amount of a solvent, The inventors have found that the ratio of reduced coenzyme Q10 @ FormII type crystals increases, and have completed the present invention.
- the present invention relates to a method in which a mixture of reduced coenzyme Q10 @ FormI crystal and reduced coenzyme Q10 @ FormII crystal is heated to 32 ° C. or more in the presence of 0.001 to 50 parts by weight of a solvent based on 100 parts by weight of the total amount of crystals.
- a method for producing a reduced coenzyme Q10 @ Form II crystal which comprises heating to increase the ratio of reduced coenzyme Q10 @@ Form II crystal.
- the heating time is 1 hour or more and less than 14 hours.
- the amount of reduced coenzyme Q10 Form II type crystal relative to reduced coenzyme Q10 Form I type crystal in the mixture at the start of heating is 1.5 parts by weight or more and 100 parts by weight relative to 100 parts by weight of Form I type crystal. Parts or less.
- the above-mentioned production method further comprising: after heating in the presence of a solvent, further performing a drying treatment at 45 ° C. or higher to remove the solvent.
- the solvent may contain at least one organic solvent selected from the group consisting of hydrocarbons, fatty acid esters, ethers, alcohols, ketones, nitrogen compounds, and sulfur compounds.
- the method for producing reduced coenzyme Q10 crystals of the present invention can form Form II crystals, which are more stable than conventionally known reduced coenzyme Q10 Form I crystals, without the need for complicated operations in a short time and is simple. It is excellent in that it can be implemented in equipment.
- reduced coenzyme Q10 in the present specification may include an oxidized coenzyme Q10 as a part as long as it contains reduced coenzyme Q10 as a main component.
- the main component means, for example, 50% by weight or more, usually 60% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more, further preferably 90% by weight or more, and particularly preferably 95% by weight or more. It means that it is contained at least 98% by weight.
- the reduced coenzyme Q10 crystal has two types of crystal polymorphs, a conventionally known Form I type and a form II type newly discovered recently. Specifically, the melting point is around 48 ° C., and the diffraction angles (2 ⁇ ⁇ 0.2 °) are 3.1 °, 18.7 °, 19.0 °, 20 ° in powder X-ray (Cu-K ⁇ ) diffraction.
- the crystal form of reduced coenzyme Q10 exhibiting characteristic peaks at .2 ° and 23.0 ° is Form I, and its melting point is around 52 ° C., and the diffraction angle in powder X-ray (Cu-K ⁇ ) diffraction (2 ⁇ ⁇ 0.2 °) of reduced coenzyme Q10 showing characteristic peaks at 11.5 °, 18.2 °, 19.3 °, 22.3 °, 23.0 ° and 33.3 °
- the crystal form is Form II. In the present specification, it has an endothermic peak at 50 ⁇ 1 ° C. when the temperature is increased at a rate of 5 ° C./min by differential scanning calorimetry (DSC), or similarly at a rate of 0.5 ° C./min.
- crystals of reduced coenzyme Q10 When measured, it has an endothermic peak at 48 ⁇ 1 ° C., or has a diffraction angle (2 ⁇ ⁇ 0.2 °) of 3.1 °, 18.7 °, 19.0 in powder X-ray (Cu-K ⁇ ) diffraction.
- the crystals of reduced coenzyme Q10 that show characteristic peaks at 0 °, 20.2 °, and 23.0 ° or satisfy at least one of them are referred to as “crystals of Form I reduced coenzyme Q10”. Of course, all the conditions may be satisfied.
- Crystals of reduced coenzyme Q10 that show characteristic peaks at 22.3 °, 23.0 °, and 33.3 ° or satisfy at least one of them are referred to as “crystals of FormII-type reduced coenzyme Q10”.
- crystalline solid in the present specification means a solid containing, in addition to a portion having a crystal structure, an amorphous component having no crystal structure.
- the method for producing reduced coenzyme Q10 crystals of the present invention comprises the steps of: mixing a mixture of reduced coenzyme Q10 Form I crystals and reduced coenzyme Q10 Form II crystals with 0.001 to 50 parts by weight based on 100 parts by weight of the total amount of crystals.
- This is a method for producing reduced coenzyme Q10 crystals, wherein the ratio of reduced coenzyme Q10 @ Form II type crystals is increased by heating to 32 ° C. or higher in the presence of a solvent.
- the "wet crystal preparation step" in which a mixture of reduced coenzyme Q10 FormI type crystals and reduced coenzyme Q10 FormII type crystals coexist with a solvent in an amount of 0.001 to 50 parts by weight based on 100 parts by weight of the total amount of crystals will be described. I do.
- a reduced coenzyme Q10 FormII crystal is coexisted with a reduced coenzyme Q10 FormI crystal as a seed crystal for transfer.
- the ratio of the reduced coenzyme Q10 FormII type crystals in the mixture is not particularly limited, but is, for example, 1.5% by weight or more, preferably 2% by weight, based on the content of the reduced coenzyme Q10 FormI type crystals in the mixture. It is at least 0.5% by weight, more preferably at least 5% by weight, especially at least 10% by weight. Although the upper limit is not particularly limited, it is usually about 100% by weight or less, preferably 50% by weight or less, more preferably 30% by weight or less, more preferably 20% by weight or less.
- the ratio of the reduced coenzyme Q10 FormII type crystals in the mixture is, for example, 1.5% by volume or more, preferably 2.5% by volume, based on the content of the reduced coenzyme Q10 FormI type crystals in the mixture. %, More preferably at least 5% by volume, especially at least 10% by volume.
- the upper limit is not particularly limited, it is usually about 100% by volume or less, preferably 50% by volume or less, more preferably 30% by volume or less, more preferably 20% by volume or less.
- the amount of reduced coenzyme Q10 FormII type crystals in the mixture at the start of heating is, for example, 1.5 parts by weight or more, preferably 100 parts by weight of reduced coenzyme Q10 FormI type crystals in the mixture.
- the upper limit is not particularly limited, it is usually about 100 parts by weight or less, preferably 50 parts by weight or less, more preferably 30 parts by weight or less, more preferably 20 parts by weight or less.
- the reduced coenzyme Q10 used here may partially include an amorphous reduced coenzyme Q10 as long as the mixture is mainly composed of a mixture of Form I crystals and Form II crystals. .
- a substance having impurities or an unpurified or crudely purified reduced coenzyme Q10 crystal may be used.
- the solvent used is not particularly limited, and includes at least one organic solvent selected from the group consisting of hydrocarbons, fatty acid esters, ethers, alcohols, ketones, nitrogen compounds, and sulfur compounds. It is preferred to use one.
- the hydrocarbon is not particularly limited, and examples thereof include aliphatic hydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons.
- the aliphatic hydrocarbon may be cyclic or non-cyclic, saturated or unsaturated, and is not particularly limited, but usually has 3 to 20 carbon atoms, preferably 5 to 12 carbon atoms.
- Specific examples include, for example, propane, butane, isobutane, pentane, 2-methylbutane, cyclopentane, 2-pentene, hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, methylcyclopentane , Cyclohexane, 1-hexene, cyclohexene, heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 2,4-dimethylpentane, methylcyclohexane, 1-heptene, octane, 2,2,3- Examples include trimethylpentane, isooctane, ethylcyclohexane,
- the aliphatic hydrocarbon is preferably pentane, 2-methylbutane, hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, 2-methylhexane, 3-methylhexane, 2, 3-dimethylpentane, 2,4-dimethylpentane, octane, 2,2,3-trimethylpentane, isooctane, nonane, 2,2,5-trimethylhexane, decane, dodecane, cyclopentane, methylcyclopentane, cyclohexane, methyl Cyclohexane, ethylcyclohexane, p-menthane and the like.
- Aliphatic hydrocarbons are more preferably pentane, 2-methylbutane, hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, 2-methylhexane, 3-methylhexane, , 3-dimethylpentane, 2,4-dimethylpentane, octane, 2,2,3-trimethylpentane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane and the like, more preferably pentane, Hexane, cyclohexane, methylcyclohexane and the like, particularly preferably heptane, hexane and methylcyclohexane, most preferably heptane and hexane.
- the aromatic hydrocarbon is not particularly limited, but usually has 6 to 20 carbon atoms, preferably 6 to 12 carbon atoms, and more preferably 7 to 10 carbon atoms.
- Specific examples include, for example, benzene, toluene, xylene, o-xylene, m-xylene, p-xylene, ethylbenzene, cumene, mesitylene, tetralin, butylbenzene, p-cymene, cyclohexylbenzene, diethylbenzene, pentylbenzene, dipentylbenzene , Dodecylbenzene, styrene and the like.
- the halogenated hydrocarbon is not particularly limited, irrespective of cyclic or non-cyclic, saturated or unsaturated, but non-cyclic one is preferably used.
- chlorinated hydrocarbons and fluorinated hydrocarbons are more preferred, and chlorinated hydrocarbons are even more preferred.
- halogenated hydrocarbon one having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms is used.
- Specific examples include, for example, dichloromethane, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,1,2.
- hydrocarbons having 5 to 12 carbon atoms are preferred, heptane and hexane are more preferred, and hexane is most preferred.
- the fatty acid ester is not particularly limited, but includes, for example, propionate, acetate, formate and the like.
- an acetate ester and a formate ester are preferred, and an acetate ester is more preferred.
- the ester group of the above fatty acid ester is not particularly limited, and examples thereof include an alkyl ester having 1 to 8 carbon atoms, an aralkyl ester having 1 to 8 carbon atoms, and the like, preferably an alkyl ester having 1 to 6 carbon atoms, more preferably It is an alkyl ester having 1 to 4 carbon atoms.
- propionate examples include methyl propionate, ethyl propionate, butyl propionate, isopentyl propionate and the like.
- Examples of the acetate include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, pentyl acetate, isopentyl acetate, sec-hexyl acetate, cyclohexyl acetate, and benzyl acetate.
- the acetate is preferably methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate and the like, most preferably ethyl acetate.
- formate examples include methyl formate, ethyl formate, propyl formate, isopropyl formate, butyl formate, isobutyl formate, sec-butyl formate, pentyl formate and the like.
- the ether is not particularly limited, whether cyclic or non-cyclic, saturated or unsaturated, and saturated ethers are preferably used.
- saturated ethers those having 3 to 20 carbon atoms, preferably 4 to 12 carbon atoms, more preferably 4 to 8 carbon atoms are used.
- ethers include, for example, diethyl ether, methyl tert-butyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, anisole, phenetole, butyl phenyl ether, methoxytoluene, dioxane, and furan.
- 2-methylfuran, tetrahydrofuran, tetrahydropyran ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and the like.
- the alcohol is not limited to cyclic or non-cyclic, saturated or unsaturated, and is not particularly limited, but a saturated alcohol is preferably used.
- the alcohol include, for example, monohydric alcohols having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 5 carbon atoms. Particularly preferred are those having 1 to 4 carbon atoms, and particularly preferred are those having 1 to 3 carbon atoms.
- the alcohol is most preferably a monohydric alcohol having 2 to 3 carbon atoms.
- dihydric alcohols having 2 to 5 carbon atoms, preferably 2 to 3 carbon atoms, and trihydric alcohols having 3 carbon atoms are also suitably used.
- monohydric alcohols having 1 to 5 carbon atoms are alcohols having high compatibility with water, and are also suitably used when used as a mixed solvent with water.
- Examples of the monohydric alcohol include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, and 3-pentanol.
- 2-methyl-1-butanol isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2-pen Tanol, 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, 1-nonanol, 1-decanol, 1-undecanol, 1-dodecanol, allyl Alcohol, propargyl alcohol, benzyl alcohol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, may be mentioned 4-methyl-cyclohexanol.
- dihydric alcohol examples include 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, Examples thereof include 2,3-butanediol and 1,5-pentanediol.
- trihydric alcohol examples include glycerin.
- ⁇ ⁇ Among the above alcohols, monohydric alcohols having 1 to 5 carbon atoms are preferred, ethanol and propanol are more preferred, and ethanol is most preferred.
- the ketone is not particularly limited, and those having 3 to 6 carbon atoms are preferably used. Specific examples include acetone, methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, and the like.
- ketones having 3 to 6 carbon atoms are preferable, and acetone is more preferable.
- nitriles can be used.
- the nitriles may be cyclic or non-cyclic, saturated or unsaturated, and are not particularly limited, but saturated nitriles are preferably used.
- saturated nitriles those having 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms, more preferably 2 to 8 carbon atoms are used.
- nitriles include, for example, acetonitrile, propionitrile, malononitrile, butyronitrile, isobutyronitrile, succinonitrile, valeronitrile, glutaronitrile, hexanenitrile, heptylcyanide, octylcyanide, undecanitrile, dodecanenitrile , Tridecanenitrile, pentadecanenitrile, stearonitrile, chloroacetonitrile, bromoacetonitrile, chloropropionitrile, bromopropionitrile, methoxyacetonitrile, methyl cyanoacetate, ethyl cyanoacetate, tolunitrile, benzonitrile, chlorobenzonitrile, bromobenzoyl Nitrile, cyanobenzoic acid, nitrobenzonitrile, anisonitrile, phthalonitrile, bromotolunitrile, methyl cyanobenzoate ,
- Nitriles are preferably acetonitrile, propionitrile, succinonitrile, butyronitrile, isobutyronitrile, valeronitrile, methyl cyanoacetate, ethyl cyanoacetate, benzonitrile, tolunitrile, chloropropionitrile, more preferably , Acetonitrile, propionitrile, butyronitrile, isobutyronitrile, and most preferably acetonitrile.
- nitrogen compounds other than the above nitriles include nitromethane, triethylamine, pyridine, formamide, N-methylformamide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
- Examples of the sulfur compound include dimethyl sulfoxide and sulfolane.
- alcohols or fatty acid esters are preferable, and ethanol is most preferable.
- the solvent for coexisting with reduced coenzyme Q10 crystals those exemplified above may be used alone, and the solubility, transfer rate, transfer rate of reduced coenzyme Q10, In order to improve the conditions that affect the transition conditions such as crystal properties, two or more kinds can be mixed and used in a preferable ratio according to the characteristics of each solvent.
- the organic solvent exemplified above can be used in combination with another organic solvent or water. When water is used in combination, the ratio of the organic solvent is preferably higher to some extent.
- the ratio of water is preferably 40% by volume or less, more preferably 30% by volume or less, and most preferably 10% by volume or less based on the whole solvent used.
- the organic solvent used in combination with water is not particularly limited, but ethanol or ethyl acetate is preferred, and ethanol is most preferred.
- the solvent content in the wet crystals in the wet crystal preparation step of the present invention must be 0.001 to 50 parts by weight based on 100 parts by weight of the total amount of crystals.
- the solvent content is not particularly limited within this range, but the lower limit is preferably at least 0.01 part by weight, more preferably at least 0.1 part by weight, even more preferably at least 1 part by weight.
- the upper limit of the solvent content in the wet crystals depends on the type of the solvent to be used, for example, it is preferably 45 parts by weight or less, more preferably 40 parts by weight or less.
- the method for preparing wet crystals is not particularly limited, and a predetermined amount of a solvent is simply added to a mixture of reduced coenzyme Q10 Form I crystals and reduced coenzyme Q10 Form II crystals. Thereafter, a mixing operation such as stirring or flowing may be performed, and the reduced coenzyme Q10 @ Form II crystal may be added to a mixture of a reduced amount of the reduced coenzyme Q10 @ Form I crystal and a solvent in a predetermined amount.
- a slurry containing a mixture of reduced coenzyme Q10 @ Form I crystal and reduced coenzyme Q10 @ Form II crystal was separately prepared, and the slurry was filtered and subjected to excess so that the solvent content in the wet crystals was in the above range.
- the solvent may be removed.
- vacuum filtration or pressure filtration can be used. In any case, it is preferable that the adjustment is performed so that the solvent used is in contact with the whole reduced coenzyme Q10 crystal.
- the reduced coenzyme Q10 FormII is subjected to a heating step of heating the wet crystal of reduced coenzyme Q10 obtained in the above wet crystal preparation step to 32 ° C. or higher. Increase the proportion of type crystals.
- the heating time in the heating step is not particularly limited, and may be appropriately selected such that the ratio of reduced coenzyme Q10 Form II type crystals has a desired value. For example, 1 hour or more, preferably 2 hours or more, More preferably, it is 4 hours or more, more preferably, 6 hours or more.
- the upper limit is not particularly limited, either. However, from the viewpoint of productivity, it is better not to be too long, especially when it is carried out on an industrial scale, for example, preferably less than 14 hours, more preferably 12 hours or less.
- the wet crystals of reduced coenzyme Q10 may be heated in a mixed state by stirring or in a stationary state, but preferably in a stationary state.
- the heating temperature in the heating step of the present invention is not particularly limited as long as it is 32 ° C. or higher, and the optimum temperature condition differs depending on the type of the used solvent and whether or not the solvent contains water.
- the reaction is preferably performed at 41 ° C. or lower, more preferably at 40 ° C. or lower. If the heating temperature is too high, the crystals may be dissolved.
- ethanol containing water is used as the solvent, for example, when the ratio of the ethanol / water solution is larger than 0/1 (volume ratio) and equal to or less than 1/1 (volume ratio), the upper limit of the heating temperature is set. Is preferably 47 ° C.
- the ratio of the ethanol / water solution is greater than 1/1 (volume ratio) and not more than 3/1 (volume ratio), it is preferably 46 ° C. or less. Is preferably 43 ° C. or less when the ratio is larger than 3/1 (volume ratio) and 9/1 (volume ratio) or less, and preferably when the ratio of the ethanol / water solution is larger than 9/1 (volume ratio). It is preferably carried out at 41 ° C. or lower, more preferably at 40 ° C. or lower.
- the lower limit of the heating temperature in the heating step of the present invention is 32 ° C. or more, but from the viewpoint of the transition time, it is preferably 35 ° C. or more, more preferably 37 ° C. or more.
- the apparatus used for heating in the heating step of the present invention is not particularly limited, and examples thereof include a water bath, a Nauter dryer, a conical dryer, and a tray dryer. From the viewpoint of preventing evaporation of the solvent in the heating step, an apparatus capable of heating in a sealed state is preferable.
- the purpose can be achieved by performing the heating step after the wet crystal preparation step as described above. However, after the heating step, further, a drying treatment is performed at 45 ° C. or more. By performing the step of removing the solvent (drying step), the ratio of reduced coenzyme Q10 @ FormII type crystals can be further increased.
- the crystals of reduced coenzyme Q10 may be dried in a mixed state by stirring or dried in a stationary state, but preferably in a stationary state.
- the proportion of reduced coenzyme Q10 @ FormII type crystals in the crystal mixture is preferably at least 50%, more preferably at least 70%, even more preferably at least 80%, particularly preferably What has been raised in the heating step to 90% or more is preferably subjected to the main drying step.
- This ratio can be determined by the DSC measurement described in the examples.
- the ratio of the reduced coenzyme Q10 @ Form II type crystals in the above-mentioned crystal mixture may be weight% or volume%.
- the upper limit of the heating temperature is usually a temperature at which the crystals do not melt, and is preferably 51 ° C. or lower, more preferably 50 ° C. or lower.
- the lower limit is 45 ° C. or higher, preferably 47 ° C. or higher, more preferably 49 ° C. or higher, from the viewpoint of the transition time.
- the specific surface area is not particularly limited, but is preferably somewhat higher. Considering the heating time from the viewpoint of productivity, the above value of the specific surface area is preferably 0.47 or more, more preferably 1.5 or more.
- the specific surface area value refers to the surface area per unit volume of the reduced coenzyme Q10 crystal mixture to be subjected to the drying step, and is expressed as surface area value / volume value.
- the content of the target Form II-type reduced coenzyme Q10 crystal has already been attained, not limited to the above.
- the content of the target Form II-type reduced coenzyme Q10 crystal has already been attained, not limited to the above.
- 25 ° C. or higher preferably 30 ° C. or higher, more preferably 35 ° C. or higher.
- Drying may be performed at a temperature of not less than °C. Normal drying can be performed to remove the solvent.
- each step in the production method of the present invention are each performed in a deoxygenated atmosphere to prevent the oxidation. It can be enhanced and is preferred.
- the deoxidized atmosphere can be achieved by replacement with an inert gas, reduced pressure, boiling, or a combination thereof. It is preferable to use at least replacement with an inert gas, that is, an inert gas atmosphere.
- the inert gas include a nitrogen gas, a helium gas, an argon gas, a hydrogen gas, a carbon dioxide gas, and the like, and a nitrogen gas is preferable.
- the wet crystals (combination of a mixture of reduced coenzyme Q10 @ Form I crystals and reduced coenzyme Q10 @ Form II crystals and a solvent) prepared in the wet crystal preparation step are housed in a vessel, and the gas phase in the vessel is Performing the heating step by replacing the inert gas, sealing the container, and heating the wet crystals in the container is an example of performing the heating step in a deoxygenated atmosphere.
- the percentage of the reduced coenzyme Q10 @ Form II type crystal contained in the crystal or crystalline solid of reduced coenzyme Q10 obtained after each step or finally obtained is determined, for example, by differential scanning calorimetry. It can be determined by measuring with a DSC (DSC).
- DSC DSC
- the reduced coenzyme Q10 @ Form II type crystal shows an endothermic peak around 52 ⁇ 2 ° C. when measured at a heating rate of 0.5 ° C./min by DSC, and shows that the conventional reduced coenzyme Q10 Form I crystal shows an endothermic peak at around 48 ⁇ 1 ° C. under the same conditions.
- the reduced coenzyme Q10 crystal depends on the height of the endothermic peak and the ratio of the endothermic amount. The content ratio of the coenzyme Q10 @ Form II type crystal can be measured.
- DSC measurement conditions Apparatus: DSC6220 manufactured by SII Nanotechnology
- Sample container Aluminum pan & cover (SSC000C008) Heating rate: 0.5 ° C./min
- Sample amount 5 ⁇ 2 mg
- IY difference the height of the endothermic peak of reduced coenzyme Q10 Form I crystal obtained by DSC analysis
- IY difference the height of the endothermic peak of reduced coenzyme Q10 Form II crystal
- II-Y difference From the Y difference (hereinafter, II-Y difference), the ratio of reduced coenzyme Q10 FormII type crystals (FormII ratio) was calculated as follows.
- Example 1 A slurry was prepared by mixing 5.0 g of reduced coenzyme Q10 Form I crystals, 49 mL of ethanol and 16 mL of distilled water. 0.125 g of reduced coenzyme Q10 FormII crystal, equivalent to 2.5 parts by weight, per 100 parts by weight of reduced coenzyme Q10 FormI crystal was added to the slurry and stirred. The slurry was filtered under reduced pressure to make the ratio of the solvent to 27 parts by weight based on 100 parts by weight of the total amount of crystals, and the obtained wet crystals were charged into a vial and sealed by blowing nitrogen. The wet crystals were placed in a water bath heated to 44 ° C. and heated for 8 hours. After heating, the crystals were dried under reduced pressure (35 ° C.) to obtain dried crystals. The ratio of reduced coenzyme Q10 FormII type crystals in the obtained dried crystals was 63.7%.
- Example 2 A slurry was prepared by mixing 5.0 g of reduced coenzyme Q10 Form I crystal, 33 mL of ethanol and 33 mL of distilled water. 0.125 g of reduced coenzyme Q10 FormII crystal, equivalent to 2.5 parts by weight, per 100 parts by weight of reduced coenzyme Q10 FormI crystal was added to the slurry and stirred. The slurry was filtered under reduced pressure to make the ratio of the solvent to 27 parts by weight based on 100 parts by weight of the total amount of crystals, and the obtained wet crystals were charged into a vial and sealed by blowing nitrogen. The wet crystals were placed in a water bath heated to 45.5 ° C. and heated for 8 hours. After heating, the crystals were dried under reduced pressure (35 ° C.) to obtain dried crystals. The reduced coenzyme Q10 FormII type crystal ratio in the obtained dried crystals was 24.1%.
- Example 3 A slurry was prepared by mixing 2.0 g of reduced coenzyme Q10 Form I crystal and 26 mL of ethanol. 0.03 g of reduced coenzyme Q10 Form II crystal, which is equivalent to 1.5 parts by weight per 100 parts by weight of reduced coenzyme Q10 Form I crystal, was added to the slurry and stirred. The slurry was filtered under reduced pressure to about the same level as in Example 1 (the ratio of the solvent to 100 parts by weight of the total amount of crystals was about 30 parts by weight), and the obtained wet crystals were charged into a vial and sealed by blowing nitrogen. The wet crystals were placed in a water bath heated to 37 ° C. and heated for 10 hours. After heating, the crystals were dried under reduced pressure (35 ° C.) to obtain dried crystals. The reduced coenzyme Q10 FormII type crystal ratio in the obtained dried crystals was 80.3%.
- Example 4 A slurry was prepared by mixing 2.0 g of reduced coenzyme Q10 Form I crystal and 26 mL of ethanol. 0.02 g of reduced coenzyme Q10 FormII crystal, equivalent to 1 part by weight, per 100 parts by weight of reduced coenzyme Q10 FormI crystal was added to the slurry and stirred. The slurry was filtered under reduced pressure to about the same level as in Example 1 (the ratio of the solvent to 100 parts by weight of the total amount of crystals was about 30 parts by weight), and the obtained wet crystals were charged into a vial and sealed by blowing nitrogen. The wet crystals were placed in a water bath heated to 37 ° C. and heated for 10 hours. After heating, the crystals were dried under reduced pressure (35 ° C.) to obtain dried crystals. The reduced coenzyme Q10 FormII type crystal ratio in the obtained dried crystals was 34.6%.
- Example 5 A slurry was obtained by mixing 5.0 g of reduced coenzyme Q10 Form I crystals with 65 mL of ethanol. 0.25 g of reduced coenzyme Q10 Form II crystal, which is equivalent to 5 parts by weight with respect to 100 parts by weight of reduced coenzyme Q10 Form I crystal, was added to the slurry and stirred. The slurry was filtered under reduced pressure to make the ratio of the solvent to 34 parts by weight based on 100 parts by weight of the total amount of crystals, and the obtained wet crystals were charged into a vial and sealed by blowing nitrogen. The wet crystals were placed in a water bath heated to 40 ° C. and heated for 6 hours. After heating, the crystals were dried under reduced pressure (35 ° C.) to obtain dried crystals. The reduced coenzyme Q10 FormII type crystal ratio in the obtained dried crystals was 100%.
- Example 6 A slurry was prepared by mixing 1.0 g of reduced coenzyme Q10 Form I crystals and 20 mL of ethanol. 1.0 g of reduced coenzyme Q10 FormII crystal, which is equivalent to 100 parts by weight per 100 parts by weight of reduced coenzyme Q10 FormI crystal, was added to the slurry and stirred. The slurry was filtered under reduced pressure to about the same level as in Example 1 (the ratio of the solvent to 100 parts by weight of the total amount of crystals was about 30 parts by weight), and the obtained wet crystals were charged into a vial and sealed by blowing nitrogen. The wet crystals were placed in a water bath heated to 32 ° C. and heated for 14 hours. After heating, the crystals were dried under reduced pressure (35 ° C.) to obtain dried crystals. The reduced coenzyme Q10 FormII type crystal ratio in the obtained dried crystals was 90.9%.
- Example 1 A slurry was prepared by mixing 1.0 g of reduced coenzyme Q10 Form I crystals and 30 mL of ethanol. 1.0 g of reduced coenzyme Q10 FormII crystal, which is equivalent to 100 parts by weight per 100 parts by weight of reduced coenzyme Q10 FormI crystal, was added to the slurry and stirred. The slurry was filtered under reduced pressure to about the same level as in Example 1 (the ratio of the solvent to 100 parts by weight of the total amount of crystals was about 30 parts by weight), and the obtained wet crystals were charged into a vial and sealed by blowing nitrogen. The wet crystals were placed in a water bath heated to 30 ° C. and heated for 14 hours.
- the reduced coenzyme Q10 FormII type crystal ratio in the obtained dried crystals was 59.2%, and almost no increase in the FormII type crystal ratio was observed.
- Example 7 A slurry was prepared by mixing 1.4 g of reduced coenzyme Q10 Form I crystal and 29 mL of ethanol. 0.1 g of reduced coenzyme Q10 Form II type crystals were added to the slurry, and the mixture was filtered under reduced pressure to make the ratio of the solvent to 46 parts by weight based on 100 parts by weight of the total amount of crystals to obtain wet crystals. The obtained wet crystals were charged into a vial bottle, and sealed by blowing nitrogen. The wet crystals were placed in a water bath heated to 37 ° C. and heated for 4 hours. After drying under reduced pressure (35 ° C.), it was dried for 8 hours with a vacuum dryer at 45 ° C.
- the reduced coenzyme Q10 FormII type crystal ratio in the obtained dried crystals was 94.6%. After the heating step, the wet crystals before drying were sampled, and the ratio of reduced coenzyme Q10 FormII type crystals was measured. The result was 60.2%.
- Example 8 1.6 g of reduced coenzyme Q10 Form I crystals and 13 mL of ethanol were mixed to form a slurry. 0.16 g of reduced coenzyme Q10 Form II crystal, which is equivalent to 10 parts by weight with respect to 100 parts by weight of reduced coenzyme Q10 Form I crystal, was added to the slurry and stirred. The slurry was filtrated under reduced pressure to make the ratio of the solvent to 38 parts by weight based on 100 parts by weight of the total amount of crystals, and the obtained wet crystals were charged into a vial and sealed by blowing nitrogen. The wet crystals were placed in a water bath heated to 37 ° C. and heated for 6 hours.
- the resultant was dried under reduced pressure (35 ° C.), and further heated by a 45 ° C. vacuum dryer for 8 hours.
- the reduced coenzyme Q10 FormII type crystal ratio in the obtained dried crystals was 100%.
- the wet crystals before drying were sampled, and the ratio of reduced coenzyme Q10 FormII type crystals was measured. The result was 89.9%.
- Example 9 A slurry was prepared by mixing 2 g of reduced coenzyme Q10 Form I type crystals and acetonitrile. 0.25 g of reduced coenzyme Q10 FormII crystal, equivalent to 12.5 parts by weight, per 100 parts by weight of reduced coenzyme Q10 FormI crystal was added to the slurry and stirred. The slurry was filtered under reduced pressure to about the same level as in Example 1 (the ratio of the solvent to 100 parts by weight of the total amount of crystals was about 30 parts by weight), and the obtained wet crystals were charged into a vial and sealed by blowing nitrogen. The wet crystals were placed in a water bath heated to 37 ° C. and heated for 5 hours. After heating, the crystals were dried under reduced pressure (35 ° C.) to obtain dried crystals. The reduced coenzyme Q10 FormII type crystal ratio in the obtained dried crystals was 52.5%.
- Example 10 A slurry was prepared by mixing 2 g of reduced coenzyme Q10 Form I crystals and ethyl acetate containing 2-3% of water. 0.25 g of reduced coenzyme Q10 FormII crystal, equivalent to 12.5 parts by weight, per 100 parts by weight of reduced coenzyme Q10 FormI crystal was added to the slurry and stirred. The slurry was filtered under reduced pressure to about the same level as in Example 1 (the ratio of the solvent to 100 parts by weight of the total amount of crystals was about 30 parts by weight), and the obtained wet crystals were charged into a vial and sealed by blowing nitrogen. The wet crystals were placed in a water bath heated to 36 ° C. and heated for 5 hours. After heating, the crystals were dried under reduced pressure (35 ° C.) to obtain dried crystals. The reduced coenzyme Q10 FormII type crystal ratio in the obtained dried crystals was 87.6%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
還元型補酵素Q10 FormII型結晶を効率よく生産することが可能な製造方法を提供する。 還元型補酵素Q10 FormI型結晶と還元型補酵素Q10 FormII型結晶の混合物を、結晶総量100重量部に対し0.001~50重量部の溶媒存在下、32℃以上に加温し、還元型補酵素Q10 FormII型結晶の比率を増加させることを含む、還元型補酵素Q10結晶の製造方法。加温時間は1時間以上14時間未満であるのが好ましく、溶媒存在下に加温した後に、さらに45℃以上で乾燥処理を行って溶媒を除去することを含むことが好ましい。
Description
本発明は、安定性に優れた還元型補酵素Q10結晶の製造方法に関する。
補酵素Qは、細菌から哺乳動物まで広く生体に分布する必須成分であり、生体内の細胞中におけるミトコンドリアの電子伝達系構成成分として知られている。補酵素Qは、ミトコンドリア内で酸化と還元を繰り返すことで、電子伝達系における伝達成分としての機能を担っているほか、還元型補酵素Qは抗酸化作用を持つことが知られている。ヒトでは、補酵素Qの側鎖が、繰り返し構造を10個持つ補酵素Q10が主成分であり、生体内においては、通常、40~90%程度が還元型として存在している。補酵素Qの生理的作用としては、ミトコンドリア賦活作用によるエネルギー生産の活性化、心機能の活性化、細胞膜の安定化効果、抗酸化作用による細胞の保護効果等が挙げられている。
現在製造・販売されている補酵素Q10の多くは酸化型であるが、近年では、酸化型補酵素Q10に比べて高い経口吸収性を示す還元型補酵素Q10も市場に登場し、用いられるようになってきている。
還元型補酵素Q10を得る一般的な方法は既に開示されている(特許文献1)。さらに、還元型補酵素Q10を結晶として得る方法についても、いくつかの方法が知られている。例えば、還元型補酵素Q10を、アルコール溶液及び/又はケトン溶液中において晶出させ、結晶を製造する方法(特許文献2)や、還元型補酵素Q10の高濃度液相を貧溶媒中に添加することで結晶化を行う方法(特許文献3)などが報告されている。
一方、特許文献4には、還元型補酵素Q10に結晶多形現象が見られ、上記文献とは異なる新たな結晶形が得られることが記載されている。新たに出現した結晶形は従来の還元型補酵素Q10より非常に安定で、その他の物理特性にも優れていると報告されており、その製造方法についても開示されている。
また、特許文献5には、補酵素Qとは全く別のカルボン酸誘導体についての溶媒媒介転移を用いた多形変化について記載されている。
特許文献4には、新たな還元型補酵素Q10結晶形であるFormII型結晶の晶析などによる取得方法が記載されているが、本発明者らが実際に検討を実施した結果、特許文献4記載の方法では、その条件により、FormII型結晶を取得できても長時間を要したり、回収量が少ない、あるいは取得した還元型補酵素Q10中のFormII型結晶の含有量が少ない場合がある事がわかった。また、特許文献4には、晶析法以外の方法として、せん断力と熱を加える結晶転移法も記載されているが、この方法は実生産で行うためには専用の特殊設備が必要となる。特に、還元型補酵素Q10は融点が比較的低い(約50℃)事から、せん断力や熱の制御を厳密に行わないと、結晶が融解してしまうため、汎用性の高い簡便な製法とは言えない。
このような状況下、安定なFormII型結晶を、短時間で効率よく得る製造方法の提供を目的とする。
本発明者らが、前記課題解決のために鋭意研究した結果、還元型補酵素Q10のFormI型結晶とFormII型結晶の混合物を微量の溶媒存在下で、一定以上の温度で保持するだけで、還元型補酵素Q10 FormII型結晶の割合が増加することを見出し、本発明を完成するに至った。
即ち、本発明は、還元型補酵素Q10 FormI型結晶と還元型補酵素Q10 FormII型結晶の混合物を、結晶総量100重量部に対し0.001~50重量部の溶媒存在下、32℃以上に加温し、還元型補酵素Q10 FormII型結晶の比率を増加させることを含む、還元型補酵素Q10 FormII型結晶の製造方法である。好ましくは、加温時間が1時間以上14時間未満である、前記製造方法である。また好ましくは、加温開始時の混合物中の還元型補酵素Q10 FormI型結晶に対する還元型補酵素Q10 FormII型結晶の量が、FormI型結晶100重量部に対して1.5重量部以上100重量部以下である、前記製造方法である。さらに好ましくは、溶媒存在下に加温した後に、さらに45℃以上で乾燥処理を行って溶媒を除去することを含む、前記製造方法である。また、溶媒が、炭化水素、脂肪酸エステル、エーテル、アルコール、ケトン、窒素化合物、及び、硫黄化合物からなる群より選択される少なくとも1つの有機溶媒を含むものである、前記製造方法である。
本明細書は本願の優先権の基礎となる日本国特許出願番号2018-184620号の開示内容を包含する。
本発明の還元型補酵素Q10結晶の製造方法は、従来公知の還元型補酵素Q10のFormI型結晶に比べて安定なFormII型結晶を、短時間で複雑な操作の必要がなく、また簡便な設備で実施できるという点で優れている。
以下、本発明を詳細に説明する。本明細書における「還元型補酵素Q10」とは、還元型補酵素Q10を主成分とする限り、その一部に酸化型補酵素Q10を含んでいてもよい。なお、ここで主成分とは、例えば50重量%以上、通常60重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上、特に好ましくは95重量%以上、とりわけ98重量%以上含まれていることを意味する。
なお、上述したように、還元型補酵素Q10結晶には、従来から知られているFormI型と、最近になって新たに見出されたFormII型の2種の結晶多形が存在する。具体的には、融点が48℃付近で、粉末エックス線(Cu-Kα)回析において、回析角(2θ±0.2°)3.1°、18.7°、19.0°、20.2°、23.0°に特徴的なピークを示す還元型補酵素Q10の結晶形がFormI型であり、融点が52℃付近で、粉末エックス線(Cu-Kα)回析において、回析角(2θ±0.2°)11.5°、18.2°、19.3°、22.3°、23.0°、33.3°に特徴的なピークを示す還元型補酵素Q10の結晶形がFormII型である。本明細書においては、示差走査熱量測定(DSC)により、5℃/分の速度で昇温した場合において50±1℃に吸熱ピークを有するか、昇温速度0.5℃/分において同様に測定をおこなった場合、48±1℃に吸熱ピークを有するか、粉末エックス線(Cu-Kα)回折において、回折角(2θ±0.2°)3.1°、18.7°、19.0°、20.2°、23.0°に特徴的なピークを示すか、そのうち1つでも満たす還元型補酵素Q10の結晶を「FormI型の還元型補酵素Q10の結晶」という。もちろん、全ての条件を満たすものであってもかまわない。一方、同じく、示差走査熱量測定(DSC)により、5℃/分の速度で昇温した場合において54±2℃に吸熱ピークを有するか、昇温速度0.5℃/分において同様に測定をおこなった場合、52±2℃に吸熱ピークを有するか、粉末エックス線(Cu-Kα)回折において、回折角(2θ±0.2°)11.5°、18.2°、19.3°、22.3°、23.0°及び33.3°に特徴的なピークを示すか、そのうち1つでも満たす還元型補酵素Q10の結晶を「FormII型の還元型補酵素Q10の結晶」という。
また、本明細書における「結晶性固体」とは、結晶構造を有する部分とともに、結晶構造を有さない非晶質成分をその中に含んだ固体を意味する。
本発明の還元型補酵素Q10結晶の製造方法は、還元型補酵素Q10 FormI型結晶と還元型補酵素Q10 FormII型結晶の混合物を、結晶総量100重量部に対し0.001~50重量部の溶媒存在下、32℃以上に加温し、還元型補酵素Q10 FormII型結晶の比率を増加させる、還元型補酵素Q10結晶の製造方法である。
まず、還元型補酵素Q10 FormI型結晶と還元型補酵素Q10 FormII型結晶の混合物を、結晶総量100重量部に対し0.001~50重量部の溶媒と共存させる「湿結晶調製工程」について説明する。
本発明の湿結晶調製工程においては、還元型補酵素Q10 FormI型結晶に対して、転移のための種晶として還元型補酵素Q10 FormII型結晶を共存させる。混合物中の還元型補酵素Q10 FormII型結晶の割合は、特に限定されないが、例えば、混合物中の還元型補酵素Q10 FormI型結晶の含有量に対して、1.5重量%以上、好ましくは2.5重量%以上、より好ましくは5重量%以上、とりわけ10重量%以上である。上限は特に制限されないが、普通約100重量%以下、好ましくは50重量%以下、さらに好ましくは30重量%以下、より好ましくは20重量%以下である。また、混合物中の還元型補酵素Q10 FormII型結晶の割合は、例えば、混合物中の還元型補酵素Q10 FormI型結晶の含有量に対して、1.5体積%以上、好ましくは2.5体積%以上、より好ましくは5体積%以上、とりわけ10体積%以上である。上限は特に制限されないが、普通約100体積%以下、好ましくは50体積%以下、さらに好ましくは30体積%以下、より好ましくは20体積%以下である。また、加温開始時の混合物中の還元型補酵素Q10 FormII型結晶の量は、例えば、混合物中の還元型補酵素Q10 FormI型結晶100重量部に対して、1.5重量部以上、好ましくは2.5重量部以上、より好ましくは5重量部以上、とりわけ10重量部以上である。上限は特に制限されないが、普通約100重量部以下、好ましくは50重量部以下、さらに好ましくは30重量部以下、より好ましくは20重量部以下である。
本発明の湿結晶調製工程においては、還元型補酵素Q10 FormI型結晶に対して、転移のための種晶として還元型補酵素Q10 FormII型結晶を共存させる。混合物中の還元型補酵素Q10 FormII型結晶の割合は、特に限定されないが、例えば、混合物中の還元型補酵素Q10 FormI型結晶の含有量に対して、1.5重量%以上、好ましくは2.5重量%以上、より好ましくは5重量%以上、とりわけ10重量%以上である。上限は特に制限されないが、普通約100重量%以下、好ましくは50重量%以下、さらに好ましくは30重量%以下、より好ましくは20重量%以下である。また、混合物中の還元型補酵素Q10 FormII型結晶の割合は、例えば、混合物中の還元型補酵素Q10 FormI型結晶の含有量に対して、1.5体積%以上、好ましくは2.5体積%以上、より好ましくは5体積%以上、とりわけ10体積%以上である。上限は特に制限されないが、普通約100体積%以下、好ましくは50体積%以下、さらに好ましくは30体積%以下、より好ましくは20体積%以下である。また、加温開始時の混合物中の還元型補酵素Q10 FormII型結晶の量は、例えば、混合物中の還元型補酵素Q10 FormI型結晶100重量部に対して、1.5重量部以上、好ましくは2.5重量部以上、より好ましくは5重量部以上、とりわけ10重量部以上である。上限は特に制限されないが、普通約100重量部以下、好ましくは50重量部以下、さらに好ましくは30重量部以下、より好ましくは20重量部以下である。
なおここで使用される還元型補酵素Q10としては、FormI型結晶とFormII型結晶の混合物を主成分とするものであれば、非晶状態の還元型補酵素Q10を一部含んでいてもよい。また、後述する加温工程においてその純度を高めることが可能なため、不純物を有するものや、未精製・粗精製の還元型補酵素Q10結晶であってもよい。
本発明の湿結晶調製工程において、使用する溶媒は、特に限定されないが、炭化水素、脂肪酸エステル、エーテル、アルコール、ケトン、窒素化合物、硫黄化合物からなる群より選択される少なくとも一つの有機溶媒を含むものを使用するのが好ましい。
上記炭化水素としては、特に制限されないが、例えば、脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭化水素等を挙げることができる。
脂肪族炭化水素としては、環状、非環状を問わず、また、飽和、不飽和を問わず、特に制限されないが、通常、炭素数3~20、好ましくは炭素数5~12のものが用いられる。具体例としては、例えば、プロパン、ブタン、イソブタン、ペンタン、2-メチルブタン、シクロペンタン、2-ペンテン、ヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、メチルシクロペンタン、シクロヘキサン、1-ヘキセン、シクロヘキセン、ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、メチルシクロヘキサン、1-ヘプテン、オクタン、2,2,3-トリメチルペンタン、イソオクタン、エチルシクロヘキサン、1-オクテン、ノナン、2,2,5-トリメチルヘキサン、1-ノネン、デカン、1-デセン、p-メンタン、ウンデカン、ドデカン等を挙げることができる。脂肪族炭化水素は、好ましくは、ペンタン、2-メチルブタン、ヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、オクタン、2,2,3-トリメチルペンタン、イソオクタン、ノナン、2,2,5-トリメチルヘキサン、デカン、ドデカン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、p-メンタン等である。脂肪族炭化水素は、より好ましくは、ペンタン、2-メチルブタン、ヘキサン、2-メチルペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、オクタン、2,2,3-トリメチルペンタン、イソオクタン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等であり、さらに好ましくは、ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン等であり、特に好ましくは、ヘプタン、ヘキサン、メチルシクロヘキサンであり、最も好ましくはヘプタン、ヘキサンである。
芳香族炭化水素としては、特に制限されないが、通常、炭素数6~20、好ましくは炭素数6~12、より好ましくは炭素数7~10のものが用いられる。具体例としては、例えば、ベンゼン、トルエン、キシレン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、クメン、メシチレン、テトラリン、ブチルベンゼン、p-シメン、シクロヘキシルベンゼン、ジエチルベンゼン、ペンチルベンゼン、ジペンチルベンゼン、ドデシルベンゼン、スチレン等を挙げることができる。
ハロゲン化炭化水素としては、環状、非環状を問わず、また、飽和、不飽和を問わず、特に制限されないが、非環状のものが好ましく用いられる。ハロゲン化炭化水素として、塩素化炭化水素、フッ素化炭化水素がより好ましく、塩素化炭化水素がさらに好ましい。
また、ハロゲン化炭化水素として、炭素数1~6、好ましくは炭素数1~4、より好ましくは炭素数1~2のものが用いられる。具体例としては、例えば、ジクロロメタン、クロロホルム、四塩化炭素、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、1,1-ジクロロエチレン、1,2-ジクロロエチレン、トリクロロエチレン、テトラクロロエチレン、1,2-ジクロロプロパン、1,2,3-トリクロロプロパン、クロロベンゼン、1,1,1,2-テトラフルオロエタン等を挙げることができる。
上記炭化水素の中でも、炭素数5~12の炭化水素が好ましく、ヘプタン、ヘキサンがより好ましく、ヘキサンが最も好ましい。
上記脂肪酸エステルとしては、特に制限されないが、例えば、プロピオン酸エステル、酢酸エステル、ギ酸エステル等を挙げることができる。脂肪酸エステルとして、酢酸エステル、ギ酸エステルが好ましく、酢酸エステルがより好ましい。
上記脂肪酸エステルのエステル基としては、特に制限されないが、炭素数1~8のアルキルエステル、炭素数1~8のアラルキルエステル等が挙げられ、好ましくは炭素数1~6のアルキルエステル、より好ましくは炭素数1~4のアルキルエステルである。
プロピオン酸エステルとしては、例えば、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、プロピオン酸イソペンチル等を挙げることができる。
酢酸エステルとしては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸ペンチル、酢酸イソペンチル、酢酸sec-ヘキシル、酢酸シクロヘキシル、酢酸ベンジル等を挙げることができる。酢酸エステルは、好ましくは、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル等であり、最も好ましくは、酢酸エチルである。
ギ酸エステルとしては、例えば、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソプロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸sec-ブチル、ギ酸ペンチル等を挙げることができる。
上記エーテルとしては、環状、非環状を問わず、又、飽和、不飽和を問わず、特に制限されないが、飽和のものが好ましく用いられる。エーテルとしては、通常、炭素数3~20、好ましくは炭素数4~12、より好ましくは炭素数4~8のものが用いられる。
エーテルの具体例としては、例えば、ジエチルエーテル、メチルtert-ブチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、アニソール、フェネトール、ブチルフェニルエーテル、メトキシトルエン、ジオキサン、フラン、2-メチルフラン、テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等を挙げることができる。
上記アルコールとしては、環状、非環状を問わず、又、飽和、不飽和を問わず、特に制限されないが、飽和のものが好ましく用いられる。アルコールとしては、例えば、1価アルコールとしては炭素数1~20のものが一例として挙げられ、好ましくは炭素数1~12、より好ましくは炭素数1~6、さらに好ましくは炭素数1~5、特に好ましくは炭素数1~4、とりわけ好ましくは炭素数1~3のものである。アルコールは、最も好ましくは炭素数2~3の1価アルコールである。また、炭素数2~5、好ましくは炭素数2~3の2価アルコール、炭素数3の3価アルコール等も好適に用いられる。上記のなかでも、炭素数1~5の1価アルコールは、水と相溶性の高いアルコールであり、水との混合溶媒として使用する場合にも好適に用いられる。
1価アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、1-ノナノール、1-デカノール、1-ウンデカノール、1-ドデカノール、アリルアルコール、プロパルギルアルコール、ベンジルアルコール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、4-メチルシクロヘキサノール等を挙げることができる。
2価アルコールとしては、例えば、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール等を挙げることができる。
3価アルコールとしては、例えばグリセリン等を挙げることができる。
上記アルコールのなかでも炭素数1~5の1価アルコールが好ましく、エタノール、プロパノールがより好ましく、エタノールが最も好ましい。
上記ケトンとしては、特に制限されず、炭素数3~6のものが好適に用いられる。具体例としては、例えば、アセトン、メチルエチルケトン、メチルブチルケトン、メチルイソブチルケトン等を挙げることができる。
上記ケトンの中で炭素数3~6のケトンが好ましく、アセトンがより好ましい。
上記窒素化合物としては、例えばニトリル類が使用できる。当該ニトリル類としては、環状、非環状を問わず、又、飽和、不飽和を問わず、特に制限されないが、飽和のものが好ましく用いられる。ニトリル類としては通常、炭素数2~20、好ましくは炭素数2~12、より好ましくは炭素数2~8のものが用いられる。
ニトリル類の具体例としては、例えば、アセトニトリル、プロピオニトリル、マロノニトリル、ブチロニトリル、イソブチロニトリル、スクシノニトリル、バレロニトリル、グルタロニトリル、ヘキサンニトリル、ヘプチルシアニド、オクチルシアニド、ウンデカンニトリル、ドデカンニトリル、トリデカンニトリル、ペンタデカンニトリル、ステアロニトリル、クロロアセトニトリル、ブロモアセトニトリル、クロロプロピオニトリル、ブロモプロピオニトリル、メトキシアセトニトリル、シアノ酢酸メチル、シアノ酢酸エチル、トルニトリル、ベンゾニトリル、クロロベンゾニトリル、ブロモベンゾニトリル、シアノ安息香酸、ニトロベンゾニトリル、アニソニトリル、フタロニトリル、ブロモトルニトリル、メチルシアノベンゾエート、メトキシベンゾニトリル、アセチルベンゾニトリル、ナフトニトリル、ビフェニルカルボニトリル、フェニルプロピオニトリル、フェニルブチロニトリル、メチルフェニルアセトニトリル、ジフェニルアセトニトリル、ナフチルアセトニトリル、ニトロフェニルアセトニトリル、クロロベンジルシアニド、シクロプロパンカルボニトリル、シクロヘキサンカルボニトリル、シクロヘプタンカルボニトリル、フェニルシクロヘキサンカルボニトリル、トリルシクロヘキサンカルボニトリル等を挙げることができる。ニトリル類は、好ましくは、アセトニトリル、プロピオニトリル、スクシノニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、シアノ酢酸メチル、シアノ酢酸エチル、ベンゾニトリル、トルニトリル、クロロプロピオニトリルであり、より好ましくは、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリルであり、最も好ましくは、アセトニトリルである。
上記ニトリル以外の窒素化合物としては、例えば、ニトロメタン、トリエチルアミン、ピリジン、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等を挙げることができる。
上記硫黄化合物としては、例えば、ジメチルスルホキシド、スルホラン等を挙げることができる。
上記有機溶媒の中でも、アルコールまたは脂肪酸エステルが好ましく、エタノールが最も好ましい。
本発明の湿結晶調製工程において、還元型補酵素Q10結晶と共存させるための溶媒としては、上記例示したものを単独で用いても良く、還元型補酵素Q10の溶解度、転移速度、転移率、結晶性状等の転移条件を左右する条件を改善するために、それぞれの溶媒の特性に従って、2種以上を好ましい割合で混合して用いることもできる。また、上記例示した有機溶媒と、他の有機溶媒や水を併用することもできる。水を併用する場合、有機溶媒の比率はある程度高いほうが好適に実施できる。水の比率は使用する溶媒全体に対して40体積%以下が好ましく、30体積%以下がより好ましく、10体積%以下が最も好ましい。水と併用する有機溶媒は特に制限されないが、エタノールまたは酢酸エチルが好ましく、エタノールが最も好ましい。
湿結晶中の溶媒含量は、本発明の湿結晶調製工程において、結晶総量100重量部に対し、0.001~50重量部である必要がある。その範囲内であれば溶媒含量は特に限定されないが、下限値としては、0.01重量部以上が好ましく、0.1重量部以上がより好ましく、1重量部以上がさらに好ましい。湿結晶中の溶媒含量の上限としては使用する溶媒の種類にもよるが、例えば、45重量部以下が好ましく、40重量部以下がより好ましい。なお、本発明の湿結晶調製工程においては、使用する還元型補酵素Q10結晶のすべてが溶媒に溶解されることなく、使用する還元型補酵素Q10結晶の大部分が固形状態のまま維持されているか、スラリー状態など固液2相系となるように調整される必要があることから、還元型補酵素Q10に対する溶解性が高い溶媒を使用する場合は、還元型補酵素Q10結晶が完全に溶解されないよう、溶媒の使用量を抑えるのがよい。もちろん、還元型補酵素Q10結晶の一部は溶媒に溶解された状態であってもかまわない。
本発明の湿結晶調製工程において、湿結晶を調製する方法は特に限定されず、単に、還元型補酵素Q10 FormI型結晶と還元型補酵素Q10 FormII型結晶の混合物に、溶媒を所定量添加した後、攪拌や流動などの混合操作を行ってよく、還元型補酵素Q10 FormI型結晶と溶媒を所定量混合したものに、還元型補酵素Q10 FormII型結晶を添加混合してもよい。また、還元型補酵素Q10 FormI型結晶と還元型補酵素Q10 FormII型結晶の混合物を含むスラリーを別途調製し、湿結晶中の溶媒含量が上記範囲となるよう、当該スラリーを濾過して過剰な溶媒を除去してもよい。スラリーを濾過する場合、例えば、減圧濾過や加圧濾過などが使用できる。いずれの場合においても、還元型補酵素Q10結晶全体に、使用する溶媒が接触している状態となるよう調整されるのが好ましい。
次に、本発明の製造方法では、上記湿結晶調製工程において得られた還元型補酵素Q10の湿結晶を、32℃以上に加温する加温工程を行うことで、還元型補酵素Q10 FormII型結晶の比率を増加させる。
上記加温工程における、加温時間は特に限定されず、還元型補酵素Q10 FormII型結晶の比率が所望する数値となるように適宜選択しうるが、例えば1時間以上、好ましくは2時間以上、さらに好ましくは4時間以降、より好ましくは6時間以上である。上限についても特に限定されないが生産性の観点から、特に工業的規模で実施する場合には、あまり長すぎない方がよく、例えば14時間未満であることが好ましく、12時間以下がより好ましい。
本発明の加温工程において、還元型補酵素Q10の湿結晶は、攪拌により混合された状態で加温されても静置状態で加温されてもよいが、静置状態が好ましい。
本発明の加温工程における加熱温度は、32℃以上であれば特に限定されず、使用した溶媒の種類や、溶媒に水を含むかどうかによっても最適な温度条件は異なり、一律に規定できないが、例えば、溶媒としてエタノールのみを用いた場合は、好ましくは41℃以下、より好ましくは40℃以下で実施される。加温温度が高すぎると結晶が溶解することがある。一方溶媒として、水を含むエタノールを使用した場合、例えば、エタノール/水の溶液の割合が0/1(体積比)よりも大きく1/1(体積比)以下であれば、加温温度の上限は、47℃以下が好ましく、エタノール/水の溶液の割合が1/1(体積比)よりも大きく3/1(体積比)以下であれば46℃以下が好ましく、エタノール/水の溶液の割合が3/1(体積比)よりも大きく9/1(体積比)以下であれば43℃以下が好ましく、エタノール/水の溶液の割合が9/1(体積比)よりも大きい場合は好ましくは41℃以下、より好ましくは40℃以下で実施するのが好ましい。
本発明の加温工程における加温温度の下限は32℃以上であるが、転移時間の観点から、好ましくは35℃以上、より好ましくは37℃以上で好適に実施できる。
本発明の加温工程において加温のための使用する装置としては、特に限定されないが、例えば、ウォーターバスやナウター乾燥機、コニカル乾燥機、棚段乾燥機等が挙げられる。なお、加温工程において溶媒の蒸発を防ぐ観点からは密閉状態で加温できる装置が好ましい。
本発明の製造方法においては、上記のように湿結晶調製工程の後に加温工程を実施することで、目的を達成しうるが、加温工程後、さらに、45℃以上で乾燥処理を行って溶媒を除去する工程(乾燥処理工程)を実施することで、還元型補酵素Q10 FormII型結晶の比率をさらに高めることができる。
上記乾燥処理工程において、還元型補酵素Q10の結晶は、攪拌により混合された状態で乾燥されても、静置状態で乾燥されてもよいが、静置状態が好ましい。
乾燥処理工程開始時において、結晶混合物中の還元型補酵素Q10 FormII型結晶の割合は、50%以上であることが好ましく、さらに好ましくは70%以上、さらにより好ましくは80%以上、特に好ましくは90%以上まで加温工程で高められたものを、本乾燥処理工程に供するのがよい。この割合は、実施例に記載のDSC測定により求めることができる。なお、上記結晶混合物中の還元型補酵素Q10 FormII型結晶の割合は、重量%であっても良いし、体積%であってもよい。
本発明の乾燥処理工程において、加熱温度の上限は、通常、結晶が融解しない温度であり、51℃以下が好ましく、50℃以下がより好ましい。下限は、転移時間の観点から、45℃以上、好ましくは47℃以上、より好ましくは49℃以上で実施される。
本発明の乾燥処理工程において、比表面積値は特に限定されないがある程度高い方が好ましい。生産性の観点から加熱時間を考えると、比表面積値の上記値は0.47以上が好ましく、1.5以上がより好ましい。ここで、比表面積値とは、乾燥工程に供される還元型補酵素Q10結晶混合物の単位体積あたりの表面積のことであり、表面積値/体積値で表される。
なお、加温工程において既に目的とするFormII型の還元型補酵素Q10結晶の含有割合に達成している場合は上記の限りではなく、例えば25℃以上、好ましくは30℃以上、より好ましくは35℃以上で乾燥を実施すれば良い。通常の乾燥を実施し、溶媒を除去することができる。
本発明の製造方法における各工程、具体的には、湿結晶調製工程、加温工程、乾燥処理工程やその後の後処理工程などは、それぞれ脱酸素雰囲気下で実施することにより、酸化防止効果を高めることができ、好ましい。脱酸素雰囲気は、不活性ガスによる置換、減圧、沸騰やこれらを組み合わせることにより達成できる。少なくとも、不活性ガスによる置換、即ち、不活性ガス雰囲気を用いるのが好適である。上記の不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、アルゴンガス、水素ガス、炭酸ガス等を挙げることができ、好ましくは窒素ガスである。本発明により、高品質の還元型補酵素Q10結晶を作業性、経済性良く得ることができる。例えば、湿結晶調製工程において調製した湿結晶(還元型補酵素Q10 FormI型結晶と還元型補酵素Q10 FormII型結晶の混合物と、溶媒との組み合わせ)を容器に収容し、容器内の気相を不活性ガスで置換し、容器を密閉したうえで、容器内の湿結晶を加温して加温工程を実施することが、脱酸素雰囲気下で加温工程を実施することの一例である。
各工程終了後や最終的に得られた還元型補酵素Q10の結晶あるいは結晶性固体中に、還元型補酵素Q10 FormII型結晶がどの程度の割合で含まれているかは、例えば示差走査型熱量計(DSC)で測定することにより判別が可能である。
前述したとおり、還元型補酵素Q10 FormII型結晶は、DSCにより昇温速度0.5℃/分において測定を行った場合、52±2℃付近に吸熱ピークを示し、従来の還元型補酵素Q10 FormI型結晶は、同条件において、48±1℃付近に吸熱ピークを示す。FormII型の還元型補酵素Q10結晶が、従来のFormI型の還元型補酵素Q10結晶あるいはその結晶性固体と混合された状態であっても、前記吸熱ピークの高さや吸熱量の比により還元型補酵素Q10 FormII型結晶の含有割合を測定することができる。
以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。なお、実施例および比較例中のDSC測定条件は下記の通りである。
(DSC測定条件)
装置:SIIナノテクノロジー製 DSC6220
サンプル容器:アルミ製パン&カバー(SSC000C008)
昇温速度:0.5℃/分
サンプル量:5±2mg
また、DSC分析で得られた還元型補酵素Q10 FormI型結晶の吸熱ピークの高さ(Y差)(以下、I-Y差)および還元型補酵素Q10 FormII型結晶の吸熱ピークの高さ(Y差)(以下、II-Y差)より、還元型補酵素Q10 FormII型結晶の比率(FormII比率)を以下のように計算した。
(DSC測定条件)
装置:SIIナノテクノロジー製 DSC6220
サンプル容器:アルミ製パン&カバー(SSC000C008)
昇温速度:0.5℃/分
サンプル量:5±2mg
また、DSC分析で得られた還元型補酵素Q10 FormI型結晶の吸熱ピークの高さ(Y差)(以下、I-Y差)および還元型補酵素Q10 FormII型結晶の吸熱ピークの高さ(Y差)(以下、II-Y差)より、還元型補酵素Q10 FormII型結晶の比率(FormII比率)を以下のように計算した。
(実施例1)
還元型補酵素Q10 FormI型結晶5.0gと49mLのエタノール、16mLの蒸留水を混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して2.5重量部相当である0.125gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを減圧濾過して結晶総量100重量部に対する溶媒の割合を27重量部とし、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を44℃に加熱したウォーターバスに入れ、8時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶の比率は、63.7%であった。
還元型補酵素Q10 FormI型結晶5.0gと49mLのエタノール、16mLの蒸留水を混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して2.5重量部相当である0.125gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを減圧濾過して結晶総量100重量部に対する溶媒の割合を27重量部とし、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を44℃に加熱したウォーターバスに入れ、8時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶の比率は、63.7%であった。
(実施例2)
還元型補酵素Q10 FormI型結晶5.0gと33mLのエタノール、33mLの蒸留水を混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して2.5重量部相当である0.125gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを減圧濾過して結晶総量100重量部に対する溶媒の割合を27重量部とし、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を45.5℃に加熱したウォーターバスに入れ、8時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、24.1%であった。
還元型補酵素Q10 FormI型結晶5.0gと33mLのエタノール、33mLの蒸留水を混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して2.5重量部相当である0.125gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを減圧濾過して結晶総量100重量部に対する溶媒の割合を27重量部とし、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を45.5℃に加熱したウォーターバスに入れ、8時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、24.1%であった。
(実施例3)
還元型補酵素Q10 FormI型結晶2.0gと26mLのエタノールを混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して1.5重量部相当である0.03gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過し、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を37℃に加熱したウォーターバスに入れ、10時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、80.3%であった。
還元型補酵素Q10 FormI型結晶2.0gと26mLのエタノールを混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して1.5重量部相当である0.03gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過し、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を37℃に加熱したウォーターバスに入れ、10時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、80.3%であった。
(実施例4)
還元型補酵素Q10 FormI型結晶2.0gと26mLのエタノールを混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して1重量部相当である0.02gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過し、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を37℃に加熱したウォーターバスに入れ、10時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、34.6%であった。
還元型補酵素Q10 FormI型結晶2.0gと26mLのエタノールを混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して1重量部相当である0.02gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過し、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を37℃に加熱したウォーターバスに入れ、10時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、34.6%であった。
(実施例5)
還元型補酵素Q10 FormI型結晶5.0gと65mLのエタノールを混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して5重量部相当である0.25gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを減圧濾過して結晶総量100重量部に対する溶媒の割合を34重量部とし、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を40℃に加熱したウォーターバスに入れ、6時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、100%であった。
還元型補酵素Q10 FormI型結晶5.0gと65mLのエタノールを混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して5重量部相当である0.25gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを減圧濾過して結晶総量100重量部に対する溶媒の割合を34重量部とし、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を40℃に加熱したウォーターバスに入れ、6時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、100%であった。
(実施例6)
還元型補酵素Q10 FormI型結晶1.0gと20mLのエタノールを混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して100重量部相当である1.0gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過し、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を32℃に加熱したウォーターバスに入れ、14時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、90.9%であった。
還元型補酵素Q10 FormI型結晶1.0gと20mLのエタノールを混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して100重量部相当である1.0gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過し、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を32℃に加熱したウォーターバスに入れ、14時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、90.9%であった。
(比較例1)
還元型補酵素Q10 FormI型結晶1.0gと30mLのエタノールを混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して100重量部相当である1.0gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過し、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を30℃に加熱したウォーターバスに入れ、14時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は59.2%と、ほとんどFormII型結晶比率の増加は認められなかった。
還元型補酵素Q10 FormI型結晶1.0gと30mLのエタノールを混合し、スラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して100重量部相当である1.0gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過し、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を30℃に加熱したウォーターバスに入れ、14時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は59.2%と、ほとんどFormII型結晶比率の増加は認められなかった。
(実施例7)
還元型補酵素Q10 FormI型結晶1.4gと29mLのエタノールを混合し、スラリーとした。0.1gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、減圧濾過して結晶総量100重量部に対する溶媒の割合を46重量部とし、湿結晶を得た。得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を37℃に加熱したウォーターバスに入れ、4時間加温した。減圧乾燥(35℃)後、45℃の真空乾燥機で8時間乾燥した。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、94.6%であった。また加温工程後、乾燥前の湿結晶をサンプリングして還元型補酵素Q10 FormII型結晶比率を測定した結果は60.2%であった。
還元型補酵素Q10 FormI型結晶1.4gと29mLのエタノールを混合し、スラリーとした。0.1gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、減圧濾過して結晶総量100重量部に対する溶媒の割合を46重量部とし、湿結晶を得た。得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を37℃に加熱したウォーターバスに入れ、4時間加温した。減圧乾燥(35℃)後、45℃の真空乾燥機で8時間乾燥した。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は、94.6%であった。また加温工程後、乾燥前の湿結晶をサンプリングして還元型補酵素Q10 FormII型結晶比率を測定した結果は60.2%であった。
(実施例8)
還元型補酵素Q10 FormI型結晶1.6gと13mLのエタノールを混合しスラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して10重量部相当である0.16gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを減圧濾過して結晶総量100重量部に対する溶媒の割合を38重量部とし、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を37℃に加熱したウォーターバスに入れ、6時間加温した。加温後、減圧乾燥(35℃)し、さらに、45℃の真空乾燥機で8時間加温した。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は100%であった。また加温工程後、乾燥前の湿結晶をサンプリングして還元型補酵素Q10 FormII型結晶比率を測定した結果は89.9%であった。
還元型補酵素Q10 FormI型結晶1.6gと13mLのエタノールを混合しスラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して10重量部相当である0.16gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを減圧濾過して結晶総量100重量部に対する溶媒の割合を38重量部とし、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を37℃に加熱したウォーターバスに入れ、6時間加温した。加温後、減圧乾燥(35℃)し、さらに、45℃の真空乾燥機で8時間加温した。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は100%であった。また加温工程後、乾燥前の湿結晶をサンプリングして還元型補酵素Q10 FormII型結晶比率を測定した結果は89.9%であった。
(実施例9)
還元型補酵素Q10 FormI型結晶2gとアセトニトリルを混合しスラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して12.5重量部相当である0.25gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過して、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を37℃に加熱したウォーターバスに入れ、5時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は52.5%であった。
還元型補酵素Q10 FormI型結晶2gとアセトニトリルを混合しスラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して12.5重量部相当である0.25gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過して、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を37℃に加熱したウォーターバスに入れ、5時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は52.5%であった。
(実施例10)
還元型補酵素Q10 FormI型結晶2gと2~3%の水を含む酢酸エチルを混合しスラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して12.5重量部相当である0.25gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過して、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を36℃に加熱したウォーターバスに入れ、5時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は87.6%であった。
還元型補酵素Q10 FormI型結晶2gと2~3%の水を含む酢酸エチルを混合しスラリーとした。還元型補酵素Q10 FormI型結晶100重量部に対して12.5重量部相当である0.25gの還元型補酵素Q10 FormII型結晶を前記スラリーに添加し、攪拌した。スラリーを実施例1と同程度(結晶総量100重量部に対する溶媒の割合は約30重量部)まで減圧濾過して、得られた湿結晶をバイアル瓶に仕込み、窒素を吹き込んで密封した。この湿結晶を36℃に加熱したウォーターバスに入れ、5時間加温した。加温後、減圧乾燥(35℃)することにより、乾燥結晶を得た。得られた乾燥結晶中の還元型補酵素Q10 FormII型結晶比率は87.6%であった。
本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
Claims (14)
- 還元型補酵素Q10 FormI型結晶と還元型補酵素Q10 FormII型結晶の混合物を、結晶総量100重量部に対し0.001~50重量部の溶媒存在下、32℃以上に加温し、還元型補酵素Q10 FormII型結晶の比率を増加させることを含む、還元型補酵素Q10結晶の製造方法。
- 加温時間が1時間以上14時間未満である、請求項1に記載の製造方法。
- 加温開始時の混合物中の還元型補酵素Q10 FormII型結晶の量が、混合物中の還元型補酵素Q10 FormI型結晶100重量部に対して1.5重量部以上100重量部以下である、請求項1又は2に記載の製造方法。
- 溶媒存在下に加温した後に、さらに45℃以上で乾燥処理を行って溶媒を除去することを含む、請求項1~3いずれか1項に記載の製造方法。
- 乾燥処理開始時の混合物中の還元型補酵素Q10 FormII型結晶の割合が、50%以上である、請求項4に記載の製造方法。
- 静置状態で加温を行う、請求項1~5いずれか1項に記載の製造方法。
- 溶媒が、炭化水素、脂肪酸エステル、エーテル、アルコール、ケトン、窒素化合物及び、硫黄化合物からなる群より選択される少なくとも1つの有機溶媒を含むものである、請求項1~6いずれか1項に記載の製造方法。
- 炭化水素が炭素数5~12の炭化水素である請求項7に記載の製造方法。
- 炭素数5~12の炭化水素がヘキサンである請求項8に記載の製造方法。
- アルコールが、炭素数1~5の1価アルコールである請求項7記載の製造方法。
- 炭素数1~5の1価アルコールがエタノールである請求項10に記載の製造方法。
- ケトンが炭素数3~6のケトンである請求項7に記載の製造方法。
- 炭素数3~6のケトンがアセトンである請求項12に記載の製造方法。
- 脱酸素雰囲気下で実施する請求項1~13のいずれか1項に記載の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980077799.5A CN113166017B (zh) | 2018-09-28 | 2019-09-26 | 稳定性优异的还原型辅酶q10结晶的制造方法 |
US17/280,663 US11498893B2 (en) | 2018-09-28 | 2019-09-26 | Production method for crystal of reduced coenzyme Q10 having excellent stability |
JP2020549347A JP7389044B2 (ja) | 2018-09-28 | 2019-09-26 | 安定性に優れた還元型補酵素q10結晶の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-184620 | 2018-09-28 | ||
JP2018184620 | 2018-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020067275A1 true WO2020067275A1 (ja) | 2020-04-02 |
Family
ID=69951950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/037827 WO2020067275A1 (ja) | 2018-09-28 | 2019-09-26 | 安定性に優れた還元型補酵素q10結晶の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11498893B2 (ja) |
JP (1) | JP7389044B2 (ja) |
CN (1) | CN113166017B (ja) |
WO (1) | WO2020067275A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022202214A1 (ja) * | 2021-03-26 | 2022-09-29 | 株式会社カネカ | FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法 |
WO2022202213A1 (ja) * | 2021-03-26 | 2022-09-29 | 株式会社カネカ | FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法 |
WO2022202215A1 (ja) * | 2021-03-26 | 2022-09-29 | 株式会社カネカ | FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法及び晶析装置 |
WO2023120553A1 (ja) * | 2021-12-24 | 2023-06-29 | 株式会社カネカ | 還元型補酵素q10の保存方法 |
WO2023120557A1 (ja) * | 2021-12-24 | 2023-06-29 | 株式会社カネカ | 還元型補酵素q10の梱包体及び保存方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089669A (ja) * | 2001-07-13 | 2003-03-28 | Kanegafuchi Chem Ind Co Ltd | 還元型補酵素q10の結晶化法 |
JP2005112738A (ja) * | 2003-10-03 | 2005-04-28 | Nissan Chem Ind Ltd | 結晶多形インド−ル化合物およびその製造方法 |
JP2007526217A (ja) * | 2003-06-04 | 2007-09-13 | アルカーメス,インコーポレイテッド | ナルトレキソンの多型形態 |
WO2012176842A1 (ja) * | 2011-06-24 | 2012-12-27 | 株式会社カネカ | 安定性に優れた還元型補酵素q10結晶 |
JP2015131766A (ja) * | 2012-04-27 | 2015-07-23 | 株式会社カネカ | 還元型補酵素q10の製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3889481B2 (ja) * | 1996-08-16 | 2007-03-07 | 株式会社カネカ | 医薬組成物 |
SI1956014T1 (sl) | 1998-06-19 | 2019-02-28 | Teijin Pharma Limited | Polimorfi 2-(3-ciano-4-izobutiloksifenil)-4-metil-5-tiazolkarboksilne kisline in postopki njihove izdelave |
JP4577674B2 (ja) | 2000-03-03 | 2010-11-10 | リコーエレメックス株式会社 | 商品企画開発システム、商品企画開発方法および商品企画開発プログラムを記録したコンピュータ読み取り可能な記録媒体 |
TWI237018B (en) * | 2001-07-13 | 2005-08-01 | Kaneka Corp | Method of producing reduced coenzyme Q10 crystals |
TWI235146B (en) * | 2001-07-16 | 2005-07-01 | Kaneka Corp | Method of stabilizing reduced coenzyme q10 and method of acidic crystallization |
JP3867927B2 (ja) * | 2001-10-10 | 2007-01-17 | 株式会社カネカ | 還元型補酵素q10の安定化法 |
-
2019
- 2019-09-26 CN CN201980077799.5A patent/CN113166017B/zh active Active
- 2019-09-26 WO PCT/JP2019/037827 patent/WO2020067275A1/ja active Application Filing
- 2019-09-26 US US17/280,663 patent/US11498893B2/en active Active
- 2019-09-26 JP JP2020549347A patent/JP7389044B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003089669A (ja) * | 2001-07-13 | 2003-03-28 | Kanegafuchi Chem Ind Co Ltd | 還元型補酵素q10の結晶化法 |
JP2007526217A (ja) * | 2003-06-04 | 2007-09-13 | アルカーメス,インコーポレイテッド | ナルトレキソンの多型形態 |
JP2005112738A (ja) * | 2003-10-03 | 2005-04-28 | Nissan Chem Ind Ltd | 結晶多形インド−ル化合物およびその製造方法 |
WO2012176842A1 (ja) * | 2011-06-24 | 2012-12-27 | 株式会社カネカ | 安定性に優れた還元型補酵素q10結晶 |
JP2015131766A (ja) * | 2012-04-27 | 2015-07-23 | 株式会社カネカ | 還元型補酵素q10の製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022202214A1 (ja) * | 2021-03-26 | 2022-09-29 | 株式会社カネカ | FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法 |
WO2022202213A1 (ja) * | 2021-03-26 | 2022-09-29 | 株式会社カネカ | FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法 |
WO2022202215A1 (ja) * | 2021-03-26 | 2022-09-29 | 株式会社カネカ | FormII型の還元型補酵素Q10結晶又はその結晶性固体の製造方法及び晶析装置 |
WO2023120553A1 (ja) * | 2021-12-24 | 2023-06-29 | 株式会社カネカ | 還元型補酵素q10の保存方法 |
WO2023120557A1 (ja) * | 2021-12-24 | 2023-06-29 | 株式会社カネカ | 還元型補酵素q10の梱包体及び保存方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7389044B2 (ja) | 2023-11-29 |
CN113166017A (zh) | 2021-07-23 |
US11498893B2 (en) | 2022-11-15 |
JPWO2020067275A1 (ja) | 2021-08-30 |
US20210355059A1 (en) | 2021-11-18 |
CN113166017B (zh) | 2024-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7389044B2 (ja) | 安定性に優れた還元型補酵素q10結晶の製造方法 | |
JP4057523B2 (ja) | 酸化防護効果の高い溶媒を用いる還元型補酵素q10の製造方法 | |
JP7330987B2 (ja) | 安定性に優れた還元型補酵素q10結晶の製造方法 | |
US9388109B2 (en) | Reduced coenzyme Q10 crystal having excellent stability | |
JP4220381B2 (ja) | 操作性に優れた還元型補酵素q10結晶の製造法 | |
US9440901B2 (en) | Method for producing reduced coenzyme Q10 | |
JP4598873B2 (ja) | 含水有機溶媒を用いる還元型補酵素q10の製造方法 | |
JPWO2003008363A1 (ja) | 還元型補酵素q10の安定化方法並びに酸性結晶化方法 | |
JP4170657B2 (ja) | 還元型補酵素q10の結晶化法 | |
JP4116540B2 (ja) | 還元型補酵素q10を水溶液中から結晶化する方法 | |
JP4157032B2 (ja) | 還元型補酵素q10油状物の製造方法 | |
JP4579835B2 (ja) | 還元型補酵素q10の精製方法 | |
JP4170656B2 (ja) | 還元型補酵素q10結晶の製造方法 | |
JP4220565B2 (ja) | 酸化防護効果の高い溶媒を用いる還元型補酵素q10の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19865236 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020549347 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19865236 Country of ref document: EP Kind code of ref document: A1 |