WO2020066486A1 - 走行システム、及び、走行システムの制御方法 - Google Patents

走行システム、及び、走行システムの制御方法 Download PDF

Info

Publication number
WO2020066486A1
WO2020066486A1 PCT/JP2019/034505 JP2019034505W WO2020066486A1 WO 2020066486 A1 WO2020066486 A1 WO 2020066486A1 JP 2019034505 W JP2019034505 W JP 2019034505W WO 2020066486 A1 WO2020066486 A1 WO 2020066486A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
wireless interface
traveling
traveling vehicle
wireless
Prior art date
Application number
PCT/JP2019/034505
Other languages
English (en)
French (fr)
Inventor
亘 北村
桑原 哲也
Original Assignee
村田機械株式会社
サイレックス・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社, サイレックス・テクノロジー株式会社 filed Critical 村田機械株式会社
Priority to JP2020548263A priority Critical patent/JP7079945B2/ja
Priority to SG11202103056WA priority patent/SG11202103056WA/en
Priority to KR1020217007659A priority patent/KR102422532B1/ko
Priority to CN201980060908.2A priority patent/CN112740756B/zh
Priority to EP19864539.2A priority patent/EP3860220A4/en
Priority to US17/278,688 priority patent/US11930417B2/en
Publication of WO2020066486A1 publication Critical patent/WO2020066486A1/ja
Priority to IL281750A priority patent/IL281750A/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • G05D1/0282Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal generated in a local control room
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/221Remote-control arrangements
    • G05D1/222Remote-control arrangements operated by humans
    • G05D1/223Command input arrangements on the remote controller, e.g. joysticks or touch screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/249Reselection being triggered by specific parameters according to timing information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/35Services specially adapted for particular environments, situations or purposes for the management of goods or merchandise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present invention relates to a traveling system and a method for controlling the traveling system.
  • Patent Document 1 discloses a portable terminal that selectively communicates with any of a plurality of access points.
  • the portable terminal disclosed in Patent Literature 1 detects radio wave intensity during wireless connection, that is, radio communication with an access point that has established a communication link, and performs communication link at a destination based on the detected radio wave intensity. Predict the signal strength with the access point that has established Further, the mobile terminal disclosed in Patent Literature 1 performs a roaming process based on the predicted radio wave intensity.
  • the present invention provides a traveling system and the like in which the reliability of communication is improved compared to the related art.
  • a traveling system includes a traveling vehicle traveling on a predetermined track, a plurality of first access points wirelessly communicating with the traveling vehicle, and the first vehicle.
  • a plurality of access points including a plurality of second access points that wirelessly communicate with the traveling vehicle in a communication slot different from the access point, and from the traveling vehicle to the traveling vehicle via one of the plurality of access points.
  • each of the plurality of first access points includes: An adjacent first access point and a part of the communication area are arranged so as to overlap with each other, and each of the plurality of second access points is adjacent to each other.
  • the matching second access point and a part of the communication area are arranged so as to overlap with each other, and each of the plurality of first access points has at least a part of the communication area with any of the plurality of second access points.
  • the traveling vehicle is disposed so as to overlap, and the traveling vehicle is a wireless interface that wirelessly communicates with the first access point, and when the wireless communication with the first access point is not possible, the second access point The wireless interface that wirelessly communicates with the device.
  • the traveling vehicle can wirelessly communicate with any one of the two access points in the same communication area, for example. Therefore, for example, even when one of the access points fails, the traveling vehicle can communicate with the controller because it can wirelessly communicate with the other access point.
  • the traveling system the reliability of the communication is improved as compared with the related art.
  • the traveling vehicle further includes a setting unit that sets a communication slot different from a currently set communication slot in the wireless interface when wireless communication via the wireless interface cannot be performed.
  • the traveling vehicle has one wireless interface
  • communication with the controller 400 can be prevented from being interrupted. Therefore, the reliability of the communication of the traveling system is further improved.
  • the traveling vehicle further transmits, via the wireless interface, position information indicating a current position of the traveling vehicle to the controller, and the second access at the current position from the controller.
  • An acquisition unit that acquires communication information indicating a communication slot for communicating with a point, wherein the setting unit is configured to communicate with the wireless interface when wireless communication with the first access point cannot be performed via the wireless interface.
  • the currently set communication slot is changed to the communication slot indicated by the communication information acquired by the acquisition unit.
  • the setting unit can set an appropriate communication slot for the communication slot used by the wireless interface based on the position of the traveling vehicle. Therefore, the reliability of the communication of the traveling system is further improved.
  • the traveling vehicle further stores correspondence information indicating a correspondence relationship between a current position of the traveling vehicle and a communication slot capable of communicating with any of the plurality of access points at the current position.
  • correspondence information indicating a correspondence relationship between a current position of the traveling vehicle and a communication slot capable of communicating with any of the plurality of access points at the current position.
  • the acquisition unit before the wireless interface can not wirelessly communicate with the first access point, if the communication information could not be acquired from the controller, based on the correspondence information, A communication slot capable of communicating with the second access point at the current position of the traveling vehicle is acquired.
  • the traveling vehicle can maintain communication with the controller based on the correspondence information. Therefore, the reliability of the communication of the traveling system is further improved.
  • the wireless interface includes a first wireless interface wirelessly communicating with the first access point, and a second wireless interface wirelessly communicating with the second access point.
  • the traveling vehicle can perform wireless communication simultaneously with the two access points having different communication slots via the first wireless interface and the second wireless interface. Therefore, for example, even when one of the access points fails, the traveling vehicle can communicate with the controller because it can wirelessly communicate with the other access point.
  • the traveling system the reliability of the communication is improved as compared with the related art.
  • the traveling vehicle when the traveling vehicle cannot perform wireless communication via at least one of the first wireless interface and the second wireless interface, the traveling vehicle further includes the first wireless interface and the second wireless interface.
  • a setting unit that sets a communication slot different from the currently set communication slot in at least one of the wireless interfaces.
  • the traveling vehicle can keep the number of available communication slots for wireless communication from decreasing. Therefore, the reliability of the communication of the traveling system is further improved.
  • the traveling vehicle further transmits position information indicating a current position of the traveling vehicle to the controller via at least one of the first wireless interface and the second wireless interface, and An acquisition unit that acquires, from the controller, communication information indicating a communication slot for communicating with any of the plurality of access points at the current position, wherein the setting unit is configured to communicate via at least the first wireless interface. If the wireless communication cannot be performed, the communication slot currently set in the first wireless interface is changed to the communication slot indicated by the communication information acquired by the acquiring unit.
  • the setting unit can set an appropriate communication slot for the communication slot used by the first wireless interface based on the position of the traveling vehicle. Therefore, the reliability of the communication of the traveling system is further improved.
  • the acquisition unit transmits the position information to the controller via the second wireless interface, and the controller performs the communication. Get information.
  • the traveling vehicle can reliably acquire the communication information. Therefore, the reliability of the communication of the traveling system is further improved.
  • the position information is transmitted to the controller, and the communication information is obtained from the controller, and the setting unit is configured to perform the first communication after the first wireless interface and the second wireless interface cannot perform wireless communication.
  • the communication slot currently set for one wireless interface is changed to the communication slot indicated by the communication information.
  • the traveling vehicle can more reliably acquire the communication information. Therefore, the reliability of the communication of the traveling system is further improved.
  • the traveling vehicle further stores correspondence information indicating a correspondence relationship between a current position of the traveling vehicle and a communication slot capable of communicating with any of the plurality of access points at the current position.
  • a storage unit wherein the acquisition unit is configured to perform, based on the correspondence information, when the communication information cannot be acquired from the controller before the first wireless interface and the second wireless interface cannot perform wireless communication.
  • a communication slot capable of communicating with any of the plurality of access points at the current position of the traveling vehicle is acquired.
  • the traveling vehicle cannot wirelessly communicate with both the first access point and the second access point
  • the first carriage for communicating with the first access point and the second access point can be used.
  • the communication slots set for the wireless interface and the second wireless interface can be reliably acquired. Therefore, the reliability of the communication of the traveling system is further improved.
  • the acquisition unit from the controller, the communication slot set to the first access point and the communication slot set to the second access point that can communicate at the current position, Acquired as communication information
  • the setting unit changes communication slots set in the first wireless interface and the second wireless interface based on the communication information acquired by the acquiring unit.
  • the setting unit sets the first wireless interface and the second wireless interface based on the communication information.
  • An appropriate communication slot can be set as each communication slot to be used. Therefore, the reliability of the communication of the traveling system is further improved.
  • the setting unit may set a communication slot set in the first wireless interface to the second wireless interface. Change to a communication slot that has
  • the first wireless interface can also communicate with the communication slot used by the second wireless interface.
  • the traveling vehicle can continue communication using the first wireless interface. Therefore, the reliability of the communication of the traveling system is further improved.
  • the setting unit when wireless communication via the first wireless interface is not possible, the second wireless interface, the communication slot currently set to the second wireless interface, The first wireless interface is set to be able to communicate with the communication slot currently set.
  • the setting unit may be configured to perform a wireless communication between the first wireless interface and the first access point and a wireless communication between the second wireless interface and the second access point. Then, the communication slot currently set for the second wireless interface is changed to the communication slot set for the first wireless interface.
  • the traveling vehicle can continue wireless communication with the controller by the second wireless interface and the first access point. it can. Therefore, the reliability of the communication of the traveling system is further improved.
  • each of the plurality of first access points is arranged such that at least a part of the communication area overlaps with any of the plurality of second access points and other parts do not overlap.
  • Each of the plurality of second access points is arranged such that at least a part of the communication area overlaps with any of the plurality of first access points and other parts do not overlap.
  • the traveling vehicle switches the wireless communication destination between the plurality of first access points while continuing the wireless communication with at least one of the first access point and the second access point, and
  • the wireless communication destination can be switched between the plurality of second access points. Therefore, the reliability of the communication of the traveling system is further improved.
  • each of the plurality of first access points partially overlaps a communication area with an adjacent first access point.
  • Each of the plurality of second access points is arranged such that a part of the communication area overlaps with the adjacent second access point, and each of the plurality of first access points is Traveling having a wireless interface arranged so that at least a part of a communication area overlaps with any of the plurality of second access points and wirelessly communicates with at least one of the first access point and the second access point;
  • a method of controlling a traveling system including a truck, wherein the plurality of first access points wirelessly communicate with the traveling truck.
  • a communication step of causing a plurality of access points including the plurality of second access points wirelessly communicating with the traveling vehicle in a communication slot different from the first access point to wirelessly communicate with the traveling vehicle The controller receives position information indicating the position of the traveling vehicle from the traveling vehicle via any of the plurality of access points, and transmits a traveling instruction to control traveling of the traveling vehicle to the traveling vehicle. And the traveling step of causing the traveling vehicle to travel on a predetermined track based on the traveling instruction.
  • the traveling vehicle performs the first access via the wireless interface. Wireless communication with the first access point, and when the wireless communication with the first access point is not possible, Wireless communication with the second access point through the face.
  • the traveling vehicle can wirelessly communicate with any one of the two access points in the same communication area, for example. Therefore, for example, even when one of the access points fails, the traveling vehicle can communicate with the controller because it can wirelessly communicate with the other access point.
  • the reliability of communication is improved as compared with the related art.
  • the reliability of communication is improved as compared with the related art.
  • FIG. 1 is a schematic diagram illustrating a network configuration of a traveling system including the traveling vehicle according to the first embodiment.
  • FIG. 2 is a diagram for explaining a communication area of a first access point and a second access point according to the first embodiment.
  • FIG. 3 is a block diagram illustrating a functional configuration of the traveling system according to the first embodiment.
  • FIG. 4 is an explanatory diagram illustrating communication information according to the first embodiment.
  • FIG. 5 is an explanatory diagram illustrating a first example of the control method of the traveling system according to the first embodiment.
  • FIG. 6 is a flowchart illustrating a first example of a processing procedure of the traveling system according to the first embodiment.
  • FIG. 7 is an explanatory diagram illustrating a second example of the control method for the traveling system according to the first embodiment.
  • FIG. 8 is a flowchart illustrating a second example of the processing procedure of the traveling system according to the first embodiment.
  • FIG. 9 is an explanatory diagram illustrating a third example of the control method for the traveling system according to the first embodiment.
  • FIG. 10 is a flowchart illustrating a third example of the processing procedure of the traveling system according to the first embodiment.
  • FIG. 11 is an explanatory diagram illustrating a fourth example of the control method of the traveling system according to the first embodiment.
  • FIG. 12 is a flowchart illustrating a fourth example of the processing procedure of the traveling system according to the first embodiment.
  • FIG. 13 is an explanatory diagram illustrating a fifth example of the control method for the traveling system according to the first embodiment.
  • FIG. 14 is a flowchart illustrating a fifth example of the processing procedure of the traveling system according to the first embodiment.
  • FIG. 15 is a block diagram illustrating a functional configuration of the traveling system according to the second embodiment.
  • FIG. 16 is an explanatory diagram illustrating a first example of the control method of the traveling system according to the second embodiment.
  • FIG. 17 is a flowchart illustrating a first example of a processing procedure of the traveling system according to the second embodiment.
  • FIG. 18 is an explanatory diagram illustrating a second example of the control method for the traveling system according to the second embodiment.
  • FIG. 19 is a flowchart illustrating a second example of the processing procedure of the traveling system according to the second embodiment.
  • the traveling vehicle described below can be realized as, for example, a traveling vehicle that communicates with the controller by wireless communication using a plurality of access points (APs) that are arranged so as to cover the inside of the facility.
  • APs access points
  • FIG. 1 is a schematic diagram showing a network configuration of a traveling system 1 including a traveling vehicle 100 according to the first embodiment.
  • FIG. 1 is a diagram showing a top view of a facility in which the traveling system 1 is provided and a network configuration diagram.
  • the traveling system 1 is a tracked traveling system that causes the traveling vehicle 100 to travel on a track 5, which is a traveling route provided in advance on a ceiling or a floor in a facility, by computer control by a controller 400. Under the control of the controller 400, the traveling vehicle 100 moves to a designated point or conveys an article.
  • the traveling system 1 is a tracked traveling system will be described as an example, but the following description may be similarly applied to a trackless traveling system.
  • the traveling system 1 may include a plurality of traveling vehicles 100.
  • the traveling system 1 includes a traveling vehicle 100, a plurality of first access points (first APs) 200, 210, 220, and 230, and a plurality of second access points (second APs). 2) APs 300, 310, 320, and 330, and a controller 400.
  • first APs first access points
  • second APs second access points
  • the traveling vehicle 100 is an unmanned traveling vehicle that travels on the predetermined track 5 without a person getting on the vehicle and that travels under the control of the controller 400.
  • the traveling vehicle 100 travels freely on the track 5 under the control of the controller 400, and conveys articles.
  • the traveling vehicle 100 has a first wireless interface (first IF) 110 (see FIG. 3) and a second wireless interface (second IF) 120 (see FIG. 3), and includes a plurality of access points.
  • a wireless communication link (hereinafter, also simply referred to as a communication link), and communicate with the controller 400 by wireless communication using the communication link.
  • the traveling vehicle 100 switches (ie, roams) an access point with which a communication link is established.
  • the traveling vehicle 100 includes a first AP (for example, any one of the first APs 200, 210, 220, and 230) and a second AP (for example, the second AP) that are appropriate for the block to which the own device belongs. Communication link with any one of the APs 300, 310, 320, and 330). That is, the traveling vehicle 100 autonomously selects an AP for establishing a communication link based on the position of its own device. For example, the traveling vehicle 100 wirelessly communicates with the first AP 200 and wirelessly communicates with the second AP 300 when wireless communication with the first AP 200 is not possible.
  • a first AP for example, any one of the first APs 200, 210, 220, and 230
  • a second AP for example, the second AP
  • the traveling vehicle 100 has established a communication link with the first AP 200 and the second AP 300.
  • the position on the track 5 is divided into a plurality of blocks, and the position of the traveling vehicle 100 is specified using these blocks.
  • the blocks are indicated by broken lines in FIG. 1, and the upper block on the paper is referred to as blocks R1, S1, T1, and U1 from left to right, and the lower block on the paper is referred to as a block R2 from left to right. , S2, T2, and U2.
  • each block in FIG. 1 is divided into rectangles, it is not limited to this, and may be divided into an arbitrary shape.
  • a first AP and a second AP are arranged in the blocks R2, S2, T2, and U2, respectively, as in the blocks R1, S1, T1, and U1, but are not shown in FIG. ing.
  • the communication area between adjacent blocks such as the block R1 and the block S1 is simply illustrated, but the communication area between the adjacent blocks is such that the traveling vehicle 100
  • the first APs 200, 210, 220, and 230 are access point devices that establish a communication link with the traveling vehicle 100 and perform wireless communication.
  • the second APs 300, 310, 320, and 330 are each an access point device that establishes a communication link with the traveling vehicle 100 and performs wireless communication.
  • the first AP 200 and the like and the second AP 300 and the like communicate with the traveling vehicle 100 using mutually different wireless communication slots.
  • the plurality of APs (the first AP 200 and the second AP 300 and the like) included in the traveling system 1 are different from the plurality of the first AP 200 and the like that wirelessly communicate with the traveling vehicle 100 and the first AP.
  • a plurality of second APs 300 and the like that wirelessly communicate with the traveling vehicle 100 in the communication slot are included.
  • the communication slot includes at least one of a channel (in other words, a frequency slot) and a time slot.
  • “different communication slots” means channels used for communication, that is, different frequencies, as well as different timings for communication at the same frequency, that is, different time slots. means.
  • first AP 200 wirelessly communicates with traveling vehicle 100 on channel 1 at a first timing
  • first AP 210 wirelessly communicates with traveling vehicle 100 on channel 1 at a second timing different from the first timing. Is the case.
  • a case where the first AP 200 and the like and the second AP 300 and the like have different channels will be described as an example.
  • FIG. 2 is a diagram for explaining a communication area of the first AP 200 and the like and the second AP 300 and the like according to the first embodiment.
  • FIG. 2 schematically shows, as an example, respective communication areas of the first APs 200 and 210 and the second APs 300 and 310.
  • the solid circles shown in FIG. 2 schematically show communication areas of the first APs 200 and 210, and the broken circles shown in FIG. 2 schematically show communication areas of the second APs 300 and 310.
  • the first AP 200 and the like and the second AP 300 and the like perform wireless communication through a communication interface such as a wireless LAN (Local Area Network) conforming to the IEEE 802.11a, b, g, n standard or the like.
  • a communication interface such as a wireless LAN (Local Area Network) conforming to the IEEE 802.11a, b, g, n standard or the like.
  • Each of the first AP 200 and the like and the second AP 300 and the like are arranged at positions where the track 5 is covered by the wireless communication area.
  • each of the plurality of first APs 200 and the like is arranged such that a part of the communication area overlaps with an adjacent first AP (for example, the first AP 200 and the first AP 210).
  • each of the plurality of second APs 300 and the like is arranged such that a part of the communication area overlaps with an adjacent second AP (for example, the second AP 300 and the second AP 310).
  • each of the plurality of first APs 200 and the like is arranged such that at least a part of the communication area overlaps with any of the plurality of second APs 300 and the like.
  • the communication areas of the first AP and the second AP may not be completely overlapped but may be slightly shifted. That is, each of the plurality of first APs 200 and the like may be arranged such that at least a part of the communication area overlaps with any of the plurality of second APs 300 and the other part does not overlap. Further, each of the plurality of second APs 300 and the like may be arranged so that at least a part of the communication area overlaps with any of the plurality of first APs 200 and the other part does not overlap.
  • the traveling vehicle 100 continues the wireless communication with at least one of the first AP 200 or the like and the second AP 300 or the like, and furthermore, the wireless communication destination between the plurality of the first AP 200 or the like. , And the switching of the wireless communication destination between the plurality of second APs 300 and the like. Therefore, the reliability of the communication of the traveling system 1 is further improved.
  • first AP 200 and the like and second AP 300 and the like for wireless communication are predetermined.
  • the first AP 200 or the like uses a 2.4 GHz band channel (for example, channels 1, 6, and 11)
  • the second AP 300 or the like uses a 5.2 GHz band channel (for example, channel 36, 40, 44, and 48) are used.
  • the first AP 200 and the like use channels in the 5.2 GHz band (for example, channels 36, 40, 44, and 48)
  • the second AP 300 and the like use 5.3 GHz.
  • Band channels eg, channels 52, 56, 60, and 64
  • channels of different frequency bands may be used.
  • the adjacent first APs and the adjacent second APs use different communication slots for wireless signals from each other.
  • the first AP 200 uses the channel 1 of the 2.4 GHz band as a communication slot
  • the first AP 210 uses the channel 6 of the 2.4 GHz band as a communication slot.
  • the first AP 220 may use channels other than channel 6 in the 2.4 GHz band as communication slots, and may use channel 1 in the 2.4 GHz band as communication slots, or may use the channel 1 in the 2.4 GHz band. May be used as a communication slot.
  • the first AP 200 uses the 2.4 GHz band channel 1 as a communication slot at the first timing
  • the first AP 210 uses the 2.4 GHz band channel 1 and uses the first AP 200
  • a time slot using a second timing different from the first timing for communication may be used as a communication slot.
  • the relationship between communication slots used by adjacent second APs is the same as the relationship between communication slots used by adjacent first APs.
  • the adjacent AP means, for example, an AP in which at least a part of the communication area overlaps.
  • controller 400 is a control device for controlling the operation of traveling vehicle 100 by a computer.
  • the controller 400 is a traveling signal which is a control signal including a movement command for moving the traveling vehicle 100 to a predetermined position, a transportation command for causing the traveling vehicle 100 to transport an article, and the like.
  • Send instructions More specifically, the controller 400 receives position information indicating the current position of the traveling vehicle 100 from the traveling vehicle 100 via any of the plurality of APs, and controls the traveling of the traveling vehicle 100.
  • a traveling instruction is transmitted to traveling vehicle 100. That is, the controller 400 receives position information indicating the current position of the traveling vehicle 100 from the traveling vehicle 100 via any of the plurality of APs.
  • the controller 400 transmits to the traveling vehicle 100 a traveling instruction for controlling traveling of the traveling vehicle 100 via any of the plurality of APs.
  • FIG. 3 is a block diagram showing a functional configuration of the traveling system 1 according to the first embodiment.
  • the traveling vehicle 100 includes a first IF 110, a second IF 120, a setting unit 130, an acquisition unit 140, a control unit 150, and a storage unit 160.
  • Each of the first IF 110 and the second IF 120 is a communication interface such as a wireless LAN that conforms to, for example, the IEEE 802.11a, b, g, and n standards.
  • Each of the first IF 110 and the second IF 120 performs transmission / reception of data, establishment and disconnection of a communication link, etc. under the control of the control unit 150.
  • the first IF 110 is a communication interface for performing wireless communication with the first AP 200 and the like.
  • the first IF 110 wirelessly communicates with the first AP 200 and the like in a communication band of the 2.4 GHz band.
  • the second IF 120 is a communication interface that performs wireless communication with the second AP 300 and the like.
  • the second IF 120 wirelessly communicates with the second AP 300 and the like in a communication band of a 5 GHz band.
  • traveling vehicle 100 includes two wireless interfaces.
  • the traveling vehicle 100 may use the second AP 300 or the like via the first IF 110. It is also possible to wirelessly communicate with the device.
  • the traveling vehicle 100 can wirelessly communicate with the first AP 200 via the second IF 120, for example. is there.
  • Each of the first IF 110 and the second IF 120 performs wireless communication using the communication slot set by the setting unit 130.
  • the channel 1 of the 2.4 GHz band is set in the setting unit 130 as a communication slot used by the first IF 110 for wireless communication
  • the channel 36 of the 5 GHz band is used as a communication slot used by the second IF 120 for wireless communication.
  • the first IF 110 connects to the first AP 200 through the channel 1 of the 2.4 GHz band
  • the second IF 120 connects to the second AP 300 through the channel 36 of the 5 GHz band.
  • the traveling vehicle 100 is predetermined to wirelessly communicate with the first AP 200 and the like at the first IF 110 and wirelessly communicate with the second AP 300 and the like at the second IF 120.
  • the first IF 110 and the second IF 120 are connected to the first AP 200 or the like or the second AP 300 or the like.
  • the setting unit 130 sets the current setting to at least one of the first IF 110 and the second IF 120 when wireless communication via at least one of the first IF 110 and the second IF 120 is not possible.
  • This is a processing unit for setting a communication slot different from the present communication slot.
  • the setting unit 130 changes the communication slot used for the first IF 110 from channel 1 to channel 6.
  • the setting unit 130 changes the channel used for the first IF 110 from the channel of the 2.4 GHz band to the second. The channel is changed to the channel of the 5 GHz band which is the frequency band of the channel used for the second IF 120.
  • the setting unit 130 is realized by, for example, a microcontroller or the like. Specifically, the setting unit 130 is realized by a nonvolatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like. . The setting unit 130 may be realized by a dedicated electronic circuit that executes each operation.
  • the acquisition unit 140 transmits the position information 50 indicating the current position of the traveling vehicle 100 to the controller 400 via at least one of the first IF 110 and the second IF 120, and transmits the current information of the traveling vehicle 100 from the controller 400.
  • the communication information 60 indicating a communication slot for communicating with any of the plurality of APs at the position is acquired.
  • the acquisition unit 140 is, for example, a processing unit that executes transmission of the position information 50 and reception of the communication information 60 by controlling one of the first IF 110 and the second IF 120.
  • the acquisition unit 140 is realized by, for example, a microcontroller or the like. Specifically, the acquiring unit 140 is realized by a nonvolatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like. . The acquisition unit 140 may be realized by a dedicated electronic circuit that performs each operation.
  • the setting unit 130 and the acquisition unit 140 may be realized by, for example, one CPU or may be realized by different CPUs.
  • the setting unit 130 changes the communication slot currently set in the first IF 110 to the communication slot indicated by the communication information 60 acquired by the acquiring unit 140 when at least wireless communication via the first IF 110 is not possible. I do.
  • the position information 50 is information that uniquely indicates the position of the block.
  • the position information 50 includes, for example, information for associating the blocks R1, S1 and the like set on the track 5 with the position of the traveling vehicle 100 on the track 5 included in the block.
  • the position information 50 can also be said to be information for associating a position or the like defined on the trajectory 5 with a block to which the position belongs.
  • the position information 50 is not limited to the above-described form.
  • the position information 50 may adopt a method based on a position in a facility instead of using the track as a reference.
  • FIG. 4 is an explanatory diagram showing communication information 60 according to the first embodiment.
  • the communication information 60 is information in which each block indicated in the position information 50 is associated with a communication slot that can be used inside the block.
  • Each entry (each row) of the communication information 60 shown in FIG. 4 includes a block and a communication slot that can be used inside the block.
  • the entry at the top of the communication information 60 indicates that the channel 1 of the 2.4 GHz band and the channel 36 of the 5 GHz band are available inside the block R1.
  • the second entry from the top of the communication information 60 indicates that the channel 6 of the 2.4 GHz band and the channel 40 of the 5 GHz band can be used inside the block S1.
  • the traveling vehicle 100 includes, for example, a sensor that detects a radio wave, light, or the like in order to acquire the current position of the own device.
  • the acquisition unit 140 acquires the current position of the traveling vehicle 100 by, for example, light received from a plurality of optical transmitters arranged along the track 5 and transmits the position information 50 indicating the acquired current position to the controller 400. I do.
  • FIG. 4 shows an example in which the position information 50 is stored in the storage unit 160
  • the acquisition unit 140 stores the acquired position information 50 indicating the current position of the own device in the storage unit 160. Instead, it may be transmitted to the controller 400.
  • the method of acquiring the current position is not limited to the method using the optical transceiver.
  • the method of acquiring the current position may be a method of optically reading and converting marking information such as a barcode attached to the vicinity of the orbit 5, or an IMES (Indoor @ Messaging @ System) (so-called indoor GPS ( Global ⁇ Position ⁇ System)
  • the current position may be obtained by information from a travel control unit that manages feedback information (motor rotation speed) from a drive motor mounted on the traveling wheels.
  • a method of acquiring based on information from an acceleration sensor, a direction sensor, or the like provided in the traveling vehicle 100 may be used, or a combination of the above acquisition methods may be used.
  • control unit 150 is a processing unit that controls the traveling of traveling vehicle 100 and the like.
  • the control unit 150 receives a traveling instruction such as a movement instruction from the controller 400 by controlling the first IF 110 and the second IF 120, for example, and controls the traveling of the traveling vehicle 100 based on the received traveling instruction. .
  • the control unit 150 is realized by, for example, a microcontroller or the like. Specifically, the control unit 150 is realized by a nonvolatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like. . The control unit 150 may be realized by a dedicated electronic circuit that performs each operation.
  • the control unit 150 may be realized by a single CPU with the setting unit 130 and the acquisition unit 140, or may be realized by a different CPU.
  • the storage unit 160 is a storage such as an HDD (Hard Disk Drive), an SSD (Solid State Drive), and an eMMC (embedded Multi Media Card) for storing data received from the controller 400.
  • the storage unit 160 stores, for example, control programs executed by the setting unit 130, the acquisition unit 140, and the control unit 150, respectively.
  • the storage unit 160 stores the correspondence information 70 indicating the correspondence between the current position of the traveling vehicle 100 and a communication slot that can communicate with any one of the plurality of APs at the current position.
  • the acquisition unit 140 can acquire the communication information 60 from the controller 400 using at least one of the first IF 110 and the second IF 120
  • the setting unit 130 transmits the communication information 60 acquired by the acquisition unit 140
  • the communication slot of at least one of the first IF 110 and the second IF 120 can be changed based on this.
  • the traveling vehicle 100 may not be able to communicate with both the first AP 200 and the second AP 300 due to the failure of the first AP 200 and the second IF 120, for example.
  • the communication information 60 cannot be acquired from the controller 400 before the first IF 110 and the second IF 120 cannot perform wireless communication
  • the acquiring unit 140 A communication slot that can communicate with any of the plurality of APs at the current position is acquired.
  • the controller 400 includes a communication interface (communication IF) 410, a control unit 420, and a storage unit 430.
  • the communication IF 410 is a communication interface that communicates with the first AP 200 and the like and the second AP 300 and the like.
  • the control unit 420 controls the communication IF 410 and the like to transmit the communication information 60 and a traveling instruction which is a control signal such as a movement command for controlling traveling of the traveling vehicle 100 to the traveling vehicle 100,
  • the processing unit receives the position information 50 indicating the current position of the traveling vehicle 100 from the vehicle 100 and stores the position information 50 in the storage unit 430.
  • the control unit 420 is realized by, for example, a microcontroller or the like. Specifically, the control unit 420 is realized by a nonvolatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like. . The control unit 420 may be realized by a dedicated electronic circuit that performs each operation.
  • the storage unit 430 is a storage such as an HDD or an SSD that stores information such as the communication information 60.
  • the storage unit 160 stores, for example, a control program executed by the control unit 420.
  • FIGS. 5, 7, 9, 11, and 13 some of the components of the traveling system 1 such as the traveling vehicle 100 and the controller 400 are not shown.
  • the first IF 110 wirelessly communicates with the first AP 200 in advance
  • the second IF 120 wirelessly communicates with the second AP 300 in advance. The case where communication is performed is shown.
  • FIG. 5 is an explanatory diagram illustrating a first example of a control method of the traveling system 1 according to the first embodiment.
  • FIG. 6 is a flowchart illustrating a first example of a processing procedure of traveling system 1 according to Embodiment 1.
  • the traveling vehicle 100 communicates with the first AP 200 using the first IF 110 and communicates with the second AP 300 using the second IF 120 (step S101).
  • the control unit 150 receives a traveling instruction such as a traveling instruction from the controller 400 via the first IF 110 or the second IF 120, and performs control based on the received traveling instruction (for example, traveling (Running control of the bogie 100).
  • step S102 when traveling between the blocks, the traveling vehicle 100 determines whether communication with the first AP 200 or the second AP 300 has been interrupted, that is, whether or not wireless communication is not possible (step S102). For example, in step S102, as shown in FIG. 5A, the traveling vehicle 100 moves from the block R1 to the block S1.
  • the traveling vehicle 100 determines that communication with the first AP 200 or the second AP 300 is not interrupted when the traveling vehicle 100 moves between blocks (No in step S102), the process is performed. Is returned to step S101.
  • the traveling vehicle 100 determines that communication with the first AP 200 or the second AP 300 has been interrupted when the traveling vehicle 100 moves between blocks (Yes in step S102), the traveling vehicle 100 transmits the position information 50 to the controller 400.
  • Step S103 the acquisition unit 140 transmits the position information 50 indicating the current position of the traveling vehicle 100 acquired by the above-described method to the controller 400 via the first IF 110 or the second IF 120. More specifically, in step S103, the acquisition unit 140 transmits the position information 50 indicating the current position of the traveling vehicle 100 acquired by the above-described method to the communicable IF among the first IF 110 and the second IF 120. To the controller 400 via the. Note that when both the first IF 110 and the second IF 120 can communicate, the acquisition unit 140 may transmit the position information 50 to the controller 400 via any of the IFs.
  • the acquiring unit 140 acquires the communication information 60 for communicating with the AP (here, for example, the first AP 210) of the next block (here, block S1) from the controller 400 (step S104).
  • the setting unit 130 based on the communication information 60 acquired by the acquisition unit 140, the IF of at least one of the first IF 110 and the second IF 120, specifically, the IF that cannot communicate with the AP, that is, the AP
  • the communication slot used by the IF (here, for example, the first IF 110) in which communication with the communication is interrupted is changed to the communication slot indicated by the communication information 60 (step S105).
  • the setting unit 130 changes the channel used by the first IF 110 from the channel 1 of the 2.4 GHz band that can communicate with the first AP 200 to the channel of the 2.4 GHz band that can communicate with the first AP 210. Change to 6.
  • control unit 150 uses the communication slot changed by the setting unit 130 to transmit the controller through the first IF 110 and the first AP 210. Communicate with 400 (step S106).
  • the setting unit 130 communicates the communication slot set in the second IF 120 as illustrated in (c) and (d) of FIG.
  • the second IF 120 and the second AP 310 can communicate.
  • the traveling system 1 includes the traveling vehicle 100 traveling on the predetermined track 5, the plurality of first APs 200 and the like that wirelessly communicate with the traveling vehicle 100, and the first AP 200. And a plurality of APs including a plurality of second APs 300 and the like that wirelessly communicate with the traveling vehicle 100 in a communication slot different from that of the traveling vehicle 100, and indicate the current position of the traveling vehicle 100 from the traveling vehicle 100 via any of the plurality of APs.
  • a controller 400 that receives the position information 50 and transmits a traveling instruction to the traveling vehicle 100 for controlling traveling of the traveling vehicle 100.
  • the plurality of first APs 200 and the like are arranged such that a part of the communication area overlaps with the adjacent first AP.
  • the traveling vehicle 100 includes an IF that wirelessly communicates with the first AP 200 and the like, and an IF that wirelessly communicates with the second AP 300 and the like when wireless communication with the first AP 200 and the like is not possible.
  • Traveling vehicle 100 according to Embodiment 1 includes, as wireless interfaces, first IF 110 that wirelessly communicates with first AP 200 and the like, and second IF 120 that wirelessly communicates with second AP 300 and the like.
  • the plurality of first APs 200 and the like are arranged so that a part of the communication area overlaps with the adjacent first AP, and the plurality of second APs 300 are arranged.
  • the traveling vehicle 100 that is arranged to partially overlap and has a wireless interface that wirelessly communicates with at least one of the first AP 200 and the like and the second AP 300 and the like.
  • the control method of the traveling system 1 includes a plurality of first APs 200 and the like wirelessly communicating with the traveling vehicle 100 and a plurality of second APs 300 and the like wirelessly communicating with the traveling vehicle 100 in communication slots different from the first AP 200 and the like. And a communication step of causing a plurality of APs including the vehicle to wirelessly communicate with the traveling vehicle 100, and receiving position information 50 indicating the current position of the traveling vehicle 100 from the traveling vehicle 100 via any of the plurality of APs, and It includes a control step in which the controller 400 transmits a traveling instruction for controlling traveling of the vehicle 100 to the traveling vehicle 100, and a traveling step in which the traveling vehicle 100 travels on a predetermined track 5 based on the traveling instruction.
  • the traveling vehicle 100 can perform wireless communication simultaneously with two APs (the first AP 200 and the like and the second AP 300 and the like) having different communication slots via the first IF 110 and the second IF 120. . Therefore, for example, even when one of the APs fails, the traveling vehicle 100 can perform wireless communication with the other AP, and thus can continue to communicate with the controller 400. Thereby, according to the traveling system 1, the reliability of communication is improved as compared with the related art.
  • the traveling vehicle 100 can perform wireless communication using two or more different communication standards in combination with two or more IFs. In general, different communication standards differ in the presence or absence or magnitude of the influence of external noise. Therefore, even if communication by one communication standard becomes impossible due to external noise or the like, communication with the other communication standard is more likely to be possible, and the reliability of communication of the traveling system 1 is improved. Can be improved.
  • the setting unit 130 sets the at least one of the first IF 110 and the second IF 120 , A communication slot different from the currently set communication slot is set.
  • control method of the traveling system 1 further includes a method for controlling the traveling vehicle 100 when the traveling vehicle 100 cannot perform wireless communication via at least one of the first IF 110 and the second IF 120.
  • a setting step of setting a communication slot different from the currently set communication slot in at least one of the first IF 110 and the second IF 120 is included.
  • the traveling vehicle 100 can prevent the setting unit 130 from reducing the number of communication slots for wireless communication that the traveling vehicle 100 can use. Therefore, the reliability of the communication of the traveling system 1 is further improved.
  • the acquiring unit 140 transmits the position information 50 indicating the current position of the traveling vehicle 100 to the controller 400 via at least one of the first IF 110 and the second IF 120, and At the current position of the cart 100, communication information 60 indicating a communication slot for communicating with any of the plurality of APs is acquired.
  • the setting unit 130 determines the communication slot currently set in the first IF 110 by the communication information 60 acquired by the acquisition unit 140. Change to the indicated communication slot.
  • the traveling vehicle 100 further includes a position information indicating the current position of the traveling vehicle 100 via at least one of the first IF 110 and the second IF 120. And transmitting from the controller 400 communication information 60 indicating a communication slot for communicating with any of the plurality of APs at the current position. If wireless communication via the first IF 110 is not possible, the communication slot currently set in the first IF 110 is changed to the communication slot indicated by the communication information 60 acquired in the acquiring step.
  • the setting unit 130 can set an appropriate communication slot as the communication slot used by the first IF 110 based on the position of the traveling vehicle 100. Therefore, the reliability of the communication of the traveling system 1 is further improved.
  • the acquisition unit 140 transmits the position information 50 to the controller 400 via the second IF 120, and the communication information 60 To get.
  • step S103 and step S104 shown in FIG. 6 wireless communication via the first IF 110 is performed.
  • the position information 50 is transmitted to the controller 400 via the second IF 120, and the communication information 60 is obtained from the controller 400.
  • the traveling vehicle 100 can reliably acquire the communication information 60. Therefore, the reliability of the communication of the traveling system 1 is further improved.
  • FIG. 7 is an explanatory diagram illustrating a second example of the control method of the traveling system 1 according to the first embodiment.
  • FIG. 8 is a flowchart illustrating a second example of the processing procedure of the traveling system 1 according to the first embodiment.
  • the traveling vehicle 100 communicates with the first AP 200 using the first IF 110 and communicates with the second AP 300 using the second IF 120 (step S201).
  • the control unit 150 executes control based on the traveling instruction received from the controller 400.
  • traveling vehicle 100 determines whether first AP 200 or second AP 300 has failed, that is, whether communication with traveling vehicle 100 is not possible (step S202). ). For example, the traveling vehicle 100 transmits and receives a control signal for confirming whether or not communication is possible with each of the first AP 200 and the like and the second AP 300 and the like at a predetermined cycle. As a result, the traveling vehicle 100 determines whether the first AP 200 and the like and the second AP 300 and the like are out of order, that is, whether or not communication is not possible.
  • step S202 If the traveling vehicle 100 determines that the first AP 200 or the second AP 300 has not failed (No in step S202), the traveling vehicle 100 continues the process of step S201.
  • step S202 when the traveling vehicle 100 determines that the first AP 200 or the second AP 300 has failed (Yes in step S202), the traveling vehicle 100 has failed the IF that was communicating with the failed AP.
  • the communication slot is changed to a communication slot that can communicate with a non-AP (step S203).
  • the setting unit 130 changes the communication slot of the first IF 110 to a communication slot that can communicate with the second AP 300, as shown in FIG. Specifically, for example, the setting unit 130 changes the channel of the 2.4 GHz band used by the first IF 110 to a channel of the 5 GHz band that can communicate with the second AP 300. By doing so, the setting unit 130 changes the communication slot setting so that the first IF 110 can also communicate with the second AP 300, like the second IF 120, and as a backup for the second IF 120 , And makes the first IF 110 stand by.
  • step S202 the traveling vehicle 100 determines whether the first AP 200 or the second AP 300 has failed, that is, whether the traveling vehicle 100 cannot communicate with the traveling vehicle 100.
  • the controller 400 may make this determination. .
  • the controller 400 transmits and receives a control signal for checking whether communication is possible with each of the first AP 200 and the like and the second AP 300 and the like at a predetermined cycle. Accordingly, the controller 400 determines whether the first AP 200 and the like and the second AP 300 and the like have failed, that is, whether or not the communication is not possible.
  • the controller 400 transmits the determination result to the traveling vehicle 100.
  • the setting unit 130 changes the communication slot of the first IF 110 or the second IF 120 based on the determination result received from the controller 400.
  • the setting unit 130 sets the communication slot set in the first IF 110 to the second IF 120. Change to the communication slot that is used.
  • the setting unit 130 may change the communication slot set in the second IF 120 to the communication slot set in the first IF 110. Good.
  • the communication slot set in the first IF 110 is changed. , To the communication slot set in the second IF 120.
  • the first IF 110 can also communicate with the communication slot used by the second IF 120. Thereby, for example, even when the second IF 120 has failed, the traveling vehicle 100 can continue communication using the first IF 110. Therefore, the reliability of the communication of the traveling system 1 is further improved.
  • FIG. 9 is an explanatory diagram illustrating a third example of the control method of the traveling system 1 according to the first embodiment.
  • FIG. 10 is a flowchart illustrating a third example of the processing procedure of the traveling system according to the first embodiment.
  • the traveling vehicle 100 communicates with the first AP 200 using the first IF 110 and communicates with the second AP 300 using the second IF 120 (step S301).
  • the control unit 150 executes control based on the traveling instruction received from the controller 400.
  • traveling vehicle 100 determines whether first IF 110 or second IF 120 has failed, that is, whether communication with traveling vehicle 100 is not possible (step S302). ).
  • step S302 If the traveling vehicle 100 determines that the first IF 110 or the second IF 120 has not failed (No in step S302), the traveling vehicle 100 continues the processing in step S301.
  • the traveling vehicle 100 determines that the first IF 110 or the second IF 120 has failed (Yes in step S302), the traveling vehicle 100 communicates with the AP currently communicating using the non-failed IF. During the gap time, the failed IF that cannot communicate communicates with the AP that was communicating (step S303).
  • the setting unit 130 repeatedly changes the communication slot of the second IF 120 so that the communication slot can communicate with the first AP 200 as shown in FIG. 9B.
  • the control unit 150 communicates with the first AP 200 using the second IF 120 during a gap time of communication with the second AP 300 that is currently communicating.
  • the first IF 110 and the first AP 200 and the second IF 120 and the second AP 300 transmit and receive signals at predetermined time intervals.
  • the setting unit 130 communicates with the first AP 200 using the second IF 120 during the gap time of the communication with the second AP 300 that is currently communicating, thereby setting the communication slot of the second IF 120. , A communication slot in which communication with the first AP 200 is possible.
  • the determination of the failure of the first IF 110 and the second IF 120 performed in step S302 may be performed by the controller 400 instead of the traveling vehicle 100.
  • the controller 400 transmits and receives a control signal for confirming whether or not communication is possible with each of the first AP 200 and the like and the second AP 300 and the like at a predetermined cycle.
  • the controller 400 determines, for example, whether communication with the first AP 200 and the like and the second AP 300 and the like is possible, but there is a reply from the traveling vehicle 100 to the control signal.
  • the controller 400 determines whether the first IF 110 and the like and the second IF 120 and the like have failed, that is, whether or not the communication is not possible.
  • the controller 400 transmits the determination result to the traveling vehicle 100.
  • the setting unit 130 changes the communication slot of the first IF 110 or the second IF 120 based on the determination result received from the controller 400.
  • the setting unit 130 sets the second IF 120 to the communication slot currently set to the second IF 120, The setting is made so that communication can be performed with the communication slot currently set in the first IF 110.
  • the setting unit 130 determines whether the first IF 110 is currently set to the communication slot currently set to the first IF 110 and the second IF 120. Set to enable communication with the existing communication slot.
  • step S303 shown in FIG. 10 when wireless communication via first IF 110 is not possible, , The second IF 120 is set to be able to communicate with the communication slot currently set in the second IF 120 and the communication slot currently set in the first IF 110.
  • the second IF 120 can communicate with both the first AP 200 and the like and the second AP 300 and the like. Therefore, the reliability of the communication of the traveling system 1 is further improved.
  • FIG. 11 is an explanatory diagram illustrating a fourth example of the control method of the traveling system 1 according to the first embodiment.
  • FIG. 12 is a flowchart illustrating a fourth example of the processing procedure of the traveling system 1 according to the first embodiment.
  • the traveling vehicle 100 communicates with the first AP 200 using the first IF 110 and communicates with the second AP 300 using the second IF 120.
  • the acquisition unit 140 acquires the communication information 60 from the controller 400 (Step S401). For example, in step S401, the acquisition unit 140 transmits the position information 50 of the traveling vehicle 100.
  • the controller 400 transmits to the traveling vehicle 100 communication information 60 indicating a communication slot for communicating with the first AP and the second AP of the block to which the traveling vehicle 100 moves next. I do.
  • step S401 the acquisition unit 140 acquires the communication information 60 in block S1 from the controller 400. Specifically, the acquisition unit 140 transmits the position information 50 of the traveling vehicle 100.
  • the controller 400 receives the position information 50, the controller 400 sends the communication information 60 indicating a communication slot for communicating with the first AP 210 and the second AP 310 of the block S1 to which the traveling vehicle 100 moves next to the traveling vehicle 100. Send.
  • the acquisition unit 140 causes the storage unit 160 to store the communication information 60 acquired in step S401 (step S402).
  • control unit 150 receives a control signal from the controller 400 by communicating with the first AP 200 using the first IF 110 and communicating with the second AP 300 using the second IF 120. Then, control is performed based on the received control signal (step S403).
  • the traveling vehicle 100 determines whether communication with both the first AP 200 and the second AP 300 has been interrupted, that is, whether communication is not possible (step S404).
  • the traveling vehicle 100 determines that communication with the first AP 200 and the second AP 300 is not interrupted when the traveling vehicle 100 moves between blocks (No in step S404), the process is performed. Is returned to step S401.
  • the setting unit 130 acquires in step S402.
  • the communication slot used by the first IF 110 and the second IF 120 is changed to the communication slot indicated by the communication information 60 based on the communication information 60 stored in the storage unit 160 by the unit 140 (step S405).
  • the setting unit 130 changes the channel used by the first IF 110 to the channel 6 of the 2.4 GHz band that can communicate with the first AP 210, and sets the channel used by the second IF 120 to: The channel is changed to the channel 40 of the 5 GHz band that can communicate with the second AP 310.
  • control unit 150 uses the communication slot changed by the setting unit 130 to transmit the controller via the first IF 110 and the first AP 210. It communicates with the server 400 (step S406).
  • the acquisition unit 140 transmits the position information via at least one of the first IF 110 and the second IF 120.
  • 50 is transmitted to the controller 400 and the communication information 60 is obtained from the controller 400, and the setting unit 130 sets the current setting to the first IF 110 after the first IF 110 and the second IF 120 cannot perform wireless communication.
  • the communication slot in question is changed to the communication slot indicated by the communication information 60.
  • the setting unit 130 may change the communication slot currently set in the second IF 120 to the communication slot indicated by the communication information 60 after the first IF 110 and the second IF 120 cannot perform wireless communication. Good.
  • the first IF 110 and the second IF 120 are not connected before the first IF 110 and the second IF cannot perform wireless communication.
  • the position information 50 is transmitted to the controller 400, and the communication information 60 is obtained from the controller 400.
  • the setting step after the first IF 110 and the second IF 120 cannot perform wireless communication, The communication slot currently set in the first IF 110 is changed to the communication slot indicated by the communication information 60.
  • the traveling vehicle 100 can acquire the communication information 60 more reliably. Therefore, the reliability of the communication of the traveling system 1 is further improved.
  • the acquisition unit 140 uses the communication slot set in the first AP 200 or the like that can communicate at the current position and the communication slot set in the second AP 300 or the like as the communication information 60 from the controller 400. Acquiring, the setting unit 130 changes the communication slots set in the first IF 110 and the second IF 120 based on the communication information 60 acquired by the acquiring unit 140.
  • the controller 400 sends the communication slot set to the first AP 200 or the like that can communicate at the current position and the second AP 300 or the like.
  • the set communication slot is obtained as communication information 60
  • the communication slots set in the first IF 110 and the second IF 120 are respectively set based on the communication information 60 obtained in the obtaining step. change.
  • the setting unit 130 sets the first IF 110 and the second IF 120 based on the communication information 60.
  • An appropriate communication slot can be set for each communication slot to be used. Therefore, the reliability of the communication of the traveling system 1 is further improved.
  • the acquisition unit 140 acquires the communication information 60 and stores the acquired communication information 60 in the storage unit 160 in step S401 and step S402.
  • the storage unit 160 stores the current position of the traveling vehicle 100 in the storage unit 160.
  • Correspondence information 70 indicating a correspondence between the communication position and a communication slot capable of communicating with any of the plurality of APs at the current position may be stored.
  • the setting unit 130 sets the first IF 110 and the second IF 120 based on the correspondence information 70 stored in the storage unit 160.
  • the communication slots set in each of the IF 110 and the second IF 120 can be suitably changed. In this case, the traveling vehicle 100 and the controller 400 need not execute Step S401 and Step S402.
  • the traveling system 1 further stores the correspondence information 70 indicating the correspondence between the current position of the traveling vehicle 100 and a communication slot that can communicate with any of the plurality of APs at the current position.
  • the communication unit 60 is provided based on the correspondence information 70 when the communication information 60 cannot be obtained from the controller 400 before the first IF 110 and the second IF 120 cannot perform wireless communication.
  • a communication slot capable of communicating with any of the plurality of APs at the current position of the traveling vehicle 100 is acquired.
  • control method of the traveling system 1 further includes a communication slot in which the traveling vehicle 100 can communicate with the current position of the traveling vehicle 100 and any one of a plurality of APs at the current position. And a storage step of storing correspondence information 70 indicating a correspondence relationship between the first IF 110 and the second IF 120 in the acquisition step. In this case, based on the correspondence information 70, a communication slot that can communicate with any of the plurality of APs at the current position of the traveling vehicle 100 is acquired.
  • the traveling vehicle 100 can communicate with the first AP 200 and the like and the second AP 300 and the like.
  • the communication slots set in the first IF 110 and the second IF 120 can be reliably acquired. Therefore, the reliability of the communication of the traveling system 1 is further improved.
  • FIG. 13 is an explanatory diagram illustrating a fifth example of the control method for the traveling system 1 according to the first embodiment.
  • FIG. 14 is a flowchart illustrating a fifth example of the processing procedure of the traveling system 1 according to the first embodiment.
  • control unit 150 receives a control signal from the controller 400 by communicating with the first AP 200 using the first IF 110 and communicating with the second AP 300 using the second IF 120. Then, control is performed based on the received traveling instruction (step S501).
  • the traveling vehicle 100 (for example, the control unit 150) is disconnected from communication with both the first AP 200 and the second AP 300. That is, it is determined whether communication is not possible (step S502).
  • control unit 150 When only one of the first IF 110 and the second IF 120 has failed, the control unit 150 repeatedly executes Step S502 until it determines that communication with both the first AP 200 and the second AP 300 has been interrupted. I do.
  • the setting unit 130 changes the communication slot used by the non-failed IF among the first IF 110 and the second IF 120 to the communication slot used by the failed IF (step S503).
  • control unit 150 communicates with the controller 400 using the non-failed IF whose communication slot has been changed by the setting unit 130 (step S504).
  • step S503 suppose that the first IF 110 and the second AP 300 simultaneously fail in step S503, as shown in FIG. In this case, the traveling vehicle 100 cannot communicate with the first AP 200 because the first IF 110 has failed, but communicates with the non-failed AP because the second IF 120 has not failed. be able to. Therefore, in the fifth example, as shown in FIG. 13B, under the condition of Yes in step S502, the communication destination of the first IF 110 that cannot communicate due to a failure is that the communication is possible without failure. The first AP 200 and the second IF 120 communicate with each other.
  • the setting unit 130 determines that the first IF 110 and the first AP 200 and the like cannot wirelessly communicate with each other, and the second IF 120 and the second AP 300 and the like cannot wirelessly communicate with each other. Then, the communication slot currently set in the second IF 120 is changed to the communication slot set in the first IF 110. Of course, when the second IF 120 has failed, the setting unit 130 may change the communication slot currently set in the first IF 110 to the communication slot set in the second IF 120.
  • the first IF 110 and the first AP 200 and the like cannot perform wireless communication and the first IF 110 and the second
  • the communication slot currently set in the second IF 120 is changed to the communication slot set in the first IF 110.
  • the traveling vehicle 100 can continue wireless communication with the controller 400 by the second IF 120 and the first AP 200 and the like. it can. Therefore, the reliability of the communication of the traveling system 1 is further improved.
  • Embodiment 2 Next, a traveling system according to Embodiment 2 will be described.
  • the same components as those of the traveling system 1 according to the first embodiment are denoted by the same reference numerals, and the description may be partially simplified or omitted.
  • FIG. 15 is a block diagram showing a functional configuration of the traveling system 2 according to the second embodiment.
  • the traveling system 2 is controlled by a controller 400 on a track 5 (see FIG. 1) which is a traveling route provided in advance on a ceiling or a floor in a facility.
  • This is a tracked traveling system that causes the traveling carriage 101 to travel.
  • the traveling vehicle 101 moves to a designated point or conveys an article.
  • the traveling system 2 includes a plurality of first access points (first APs) 200, 210, 220, and 230 and a plurality of second access points (second APs), similarly to the traveling system 1 shown in FIG. AP) 300, 310, 320, and 330, and a controller 400.
  • the traveling system 2 differs from the traveling system 1 according to the first embodiment in the configuration of the traveling vehicle 100.
  • the traveling vehicle 101 is an unmanned traveling vehicle that travels on a predetermined track 5 (see FIG. 1) without a person getting on the vehicle and that travels based on control by the controller 400.
  • Traveling vehicle 101 is different from traveling vehicle 100 according to the first embodiment in that it has one wireless interface (IF 170).
  • the traveling vehicle 101 establishes a communication link with a plurality of access points, and communicates with the controller 400 by wireless communication using the communication link.
  • an area where the traveling vehicle 101 can travel that is, a position on the track 5 is divided into a plurality of blocks.
  • the traveling vehicle 101 establishes an appropriate communication link with the first AP 200 and the like and the second AP 300 and the like according to the block to which the own device belongs. That is, the traveling vehicle 101 autonomously selects an AP for establishing a communication link based on the position of its own device. For example, the traveling vehicle 101 wirelessly communicates with the first AP 200 or the like, and wirelessly communicates with the second AP 300 or the like when wireless communication with the first AP 200 or the like is not possible.
  • the traveling system 2 like the traveling system 1 according to the first embodiment, communicates with the traveling vehicle 101 in a plurality of first APs 200 and the like that wirelessly communicate with the traveling vehicle 101 and communication slots different from the first AP 200 and the like.
  • a plurality of access points including a plurality of second APs 300 for wireless communication are provided.
  • the controller 400 receives the position information 50 indicating the current position of the traveling vehicle 101 from the traveling vehicle 101 via any of the plurality of APs, and issues a traveling instruction for controlling traveling of the traveling vehicle 101. This is transmitted to the traveling vehicle 101.
  • each of the plurality of first APs 200 and the like is arranged so that a part of the communication area overlaps with the adjacent first AP.
  • each of the plurality of second APs 300 and the like is arranged so that a part of the communication area overlaps with the adjacent second AP.
  • each of the plurality of first APs 200 and the like is arranged such that at least a part of the communication area overlaps with any of the plurality of second APs 300 and the like.
  • the traveling vehicle 101 includes an IF 170, a setting unit 131, an acquisition unit 141, a control unit 151, and a storage unit 160.
  • the IF 170 is, for example, a communication interface such as a wireless LAN that conforms to the IEEE 802.11a, b, g, and n standards.
  • the IF 170 performs transmission and reception of data, establishment and disconnection of a communication link, and the like under the control of the control unit 151.
  • the IF 170 is a communication interface that can wirelessly communicate with the first AP 200 and the like and the second AP 300 and the like.
  • the IF 170 first wirelessly communicates with the first AP 200 and the like in the 2.4 GHz communication band.
  • the IF 170 wirelessly communicates with the second AP 300 or the like in the communication band of the 5 GHz band.
  • traveling cart 101 is first determined to perform wireless communication with first AP 200 and the like by IF 170, but first, it is assumed that traveling cart 101 wirelessly communicates with second AP 300 and the like. May be predetermined.
  • the setting unit 131 sets a communication slot different from the communication slot currently set in the IF 170 when wireless communication via the IF 170 is not possible. For example, when wireless communication with the first AP 200 is interrupted, the setting unit 131 changes the communication slot used for the IF 170 from channel 1 to channel 6.
  • the setting unit 131 is realized by, for example, a microcontroller or the like. Specifically, the setting unit 131 is realized by a non-volatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like. . The setting unit 131 may be realized by a dedicated electronic circuit that performs each operation.
  • the acquisition unit 141 transmits the position information 50 indicating the current position of the traveling vehicle 101 to the controller 400 via the IF 170, and sets a communication slot for communicating with the second AP 300 or the like at the current position from the controller 400.
  • the acquisition unit 141 is a processing unit that controls the IF 170 to execute transmission of the position information 50 and reception of the communication information 60, for example.
  • the acquisition unit 141 is realized by, for example, a microcontroller or the like. Specifically, the acquiring unit 141 is realized by a nonvolatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like. . The acquisition unit 141 may be realized by a dedicated electronic circuit that executes each operation.
  • the setting unit 131 and the acquisition unit 141 may be realized by, for example, one CPU or may be realized by different CPUs.
  • the setting unit 131 changes the communication slot currently set in the IF 170 to the communication slot indicated by the communication information 60 acquired by the acquiring unit 141, for example, when wireless communication via the IF 170 cannot be performed.
  • the traveling vehicle 101 includes, for example, a sensor that detects a radio wave, light, or the like to acquire the current position of the own device.
  • the acquiring unit 141 acquires the current position of the traveling vehicle 101 by, for example, light received from a plurality of optical transmitters arranged along the track 5 (see FIG. 1), and obtains the position information 50 indicating the acquired current position. Is transmitted to the controller 400.
  • the control unit 151 is a processing unit that controls the traveling of the traveling vehicle 100 and the like.
  • the control unit 151 receives, for example, a traveling instruction such as a movement instruction from the controller 400 by controlling the IF 170, and controls the traveling of the traveling vehicle 101 based on the received traveling instruction.
  • the control unit 151 is realized by, for example, a microcontroller or the like. Specifically, the control unit 151 is realized by a non-volatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like. . The control unit 151 may be realized by a dedicated electronic circuit that executes each operation.
  • the control unit 151 may be realized by one CPU with the setting unit 131 and the acquisition unit 141, or may be realized by different CPUs.
  • the storage unit 161 is a storage such as an HDD, an SSD, or an eMMC that stores data received from the controller 400.
  • the storage unit 161 stores, for example, control programs executed by the setting unit 131, the acquisition unit 141, and the control unit 151, respectively.
  • the storage unit 161 communicates with the current position of the traveling vehicle 101 and any one of a plurality of APs (specifically, the first AP 200 and the like and the second AP 300 and the like) at the current position.
  • Correspondence information 70 indicating the correspondence between slots is stored.
  • the acquisition unit 141 can acquire the communication information 60 from the controller 400 using the IF 170
  • the setting unit 131 can change the communication slot of the IF 170 based on the communication information 60 acquired by the acquisition unit 141.
  • the traveling vehicle 101 may not be able to communicate with the first AP 200 due to a failure of the first AP 200, for example.
  • the acquisition unit 141 determines the current position of the traveling vehicle 100 based on the correspondence information 70.
  • a communication slot that can communicate with any of the plurality of APs is obtained. That is, when the communication unit 60 cannot acquire the communication information 60 from the controller 400 before the wireless communication with the first AP 200 via the IF 170 becomes impossible, the control unit 151 performs the processing based on the correspondence information 70 stored in the storage unit 161. , The communication slot set in the IF 170 is changed to a communication slot that can communicate with the second AP 300 and the like. By doing so, the control unit 151 continues to communicate with the controller 400 via the IF 170, the second AP 300, and the like.
  • FIGS. 16 and 18 show a case where the IF 170 is performing wireless communication with the first AP 200 in advance.
  • FIG. 16 is an explanatory diagram illustrating a first example of a control method of the traveling system 2 according to the second embodiment.
  • FIG. 17 is a flowchart illustrating a first example of a processing procedure of the traveling system 2 according to the second embodiment.
  • the traveling vehicle 101 is communicating with the first AP 200 (step S601).
  • the control unit 151 receives a traveling instruction such as a traveling instruction from the controller 400 via the IF 170, and performs control based on the received traveling instruction (for example, traveling control of the traveling vehicle 101). Execute.
  • the traveling vehicle 101 transmits the position information 50 indicating the current position of its own device to the controller 400 (step S602). Specifically, in step S602, the acquiring unit 141 transmits the position information 50 indicating the current position of the traveling vehicle 101 acquired by the above-described method to the controller 400 via the IF 170.
  • the acquisition unit 141 acquires the communication information 60 for communicating with the AP (here, for example, the first AP 210 or the second AP 310) of the next block (here, block S1) from the controller 400. It is determined whether or not (step S603).
  • the obtaining unit 141 obtains the communication information.
  • the communication information 60 is stored in the storage unit 161 (step S604).
  • step S605 when traveling between the blocks, the traveling vehicle 101 determines whether or not communication with the first AP 200 has been interrupted, that is, whether or not wireless communication is not possible (step S605). For example, in step S605, as shown in FIG. 16A, the traveling vehicle 101 moves from the block R1 to the block S1.
  • step S605 the traveling vehicle 101 (for example, the control unit 151) determines that communication with the first AP 200 is not interrupted when the traveling vehicle 101 moves between blocks (No in step S605), the process proceeds to step S602.
  • step S605 when it is determined that communication with the first AP 200 has been interrupted when the traveling vehicle 101 moves between blocks (Yes in step S605), the setting unit 131 sets Based on the communication information 60 stored in the storage unit 161 by the acquisition unit 141 in step S604, the communication information 60 is transmitted to the IF 170 so that the communication information 60 can communicate with the AP (the first AP 210 or the second AP 310) located in the block S1.
  • the communication slot is changed to the indicated communication slot (step S606).
  • step S606 the setting unit 131 changes the channel used by the IF 170 from channel 1 of the 2.4 GHz band that can communicate with the first AP 200 to channel 6 of the 2.4 GHz band that can communicate with the first AP 210. I do.
  • control unit 151 communicates with the controller 400 via the IF 170 using the communication slot changed by the setting unit 131 (step S607). By doing so, communication between the traveling vehicle 101 and the controller 400 is maintained.
  • step S603 when the acquiring unit 141 determines that the communication information 60 for communicating with the AP of the next block has not been acquired from the controller 400 (that is, the communication information 60 has not been acquired) (step S603). No), the traveling vehicle 101 determines whether communication with the first AP 200 is interrupted when moving between blocks, that is, whether or not wireless communication is not possible (step S608).
  • step S608 the traveling vehicle 101 (for example, the control unit 151) determines that communication with the first AP 200 is not interrupted when the traveling vehicle 100 moves between blocks (No in step S608), the process proceeds to step S602.
  • the setting unit 131 determines in advance Based on the correspondence information 70 stored in the storage unit 161, the IF 170 is changed to a communication slot indicated by the correspondence information 70 so as to communicate with the AP (first AP 210 or second AP 310) located in the block S1. (Step S609).
  • the traveling vehicle 101 changes the communication slot used by the IF 170 based on the communication information 60 that is the latest information for communicating with a plurality of APs. I do.
  • the traveling vehicle 101 changes to the communication slot used by the IF 170 based on the correspondence information 70 stored in the storage unit 161 in advance.
  • traveling vehicle 101 may update the correspondence information 70 when the communication information 60 is acquired.
  • FIG. 18 is an explanatory diagram illustrating a second example of the control method for the traveling system 2 according to the second embodiment.
  • FIG. 19 is a flowchart illustrating a second example of the processing procedure of the traveling system 2 according to the second embodiment.
  • step S601 it is assumed that the traveling vehicle 101 is communicating with the first AP 200 (step S601).
  • the traveling vehicle 101 transmits the position information 50 indicating the current position of its own device to the controller 400 (step S602). Specifically, in step S602, the acquiring unit 141 transmits the position information 50 indicating the current position of the traveling vehicle 101 acquired by the above-described method to the controller 400 via the IF 170.
  • the acquisition unit 141 determines whether or not the communication information 60 for communicating with the second AP 300 in the block (here, block R1) in which the own device is located has been acquired from the controller 400 (step S603a). ).
  • the acquiring unit 141 determines that the communication information 60 for communicating with the second AP 300 of the block in which the own device is located has been acquired from the controller 400 in step S603a (that is, the communication information 60 has been acquired) (step S603a). Is Yes), and stores the acquired communication information 60 in the storage unit 161 (step S604).
  • step S605a when the traveling vehicle 101 does not move between the blocks, whether the communication with the first AP 200 has been interrupted due to a failure of the first AP 200 or a communication failure, that is, whether or not wireless communication cannot be performed Is determined (step S605a). For example, in step S605a, as shown in FIG. 18B, it is assumed that the traveling vehicle 101 is located in the block R1.
  • step S605a If the traveling vehicle 101 (for example, the control unit 151) does not move between the blocks and determines that the communication with the first AP 200 is not interrupted (No in step S605a), the process returns to step S601.
  • step S605a when the traveling vehicle 101 does not move between the blocks and when it is determined that the communication with the first AP 200 is interrupted (Yes in step S605a), the setting unit 131 Based on the communication information 60 stored in the storage unit 161 by the acquisition unit 141 in step S604, the IF 170 is changed to the communication slot indicated by the communication information 60 so as to communicate with the second AP 300 located in the block S1 (step S604).
  • step S606 changes the channel used by the IF 170 from a 2.4 GHz band channel that can communicate with the first AP 200 to a 5 GHz band channel that can communicate with the second AP 300.
  • control unit 151 communicates with the controller 400 via the IF 170 and the second AP 300 using the communication slot changed by the setting unit 131. (Step S607). By doing so, communication between the traveling vehicle 101 and the controller 400 is maintained.
  • step S603a the obtaining unit 141 determines that the communication information 60 for communicating with the second AP 300 of the block in which the own device is located has not been obtained from the controller 400 (that is, the obtaining unit 141 has obtained the communication information 60). If not (No in Step S603a), when the traveling vehicle 101 does not move between the blocks, it is determined whether the communication with the first AP 200 has been interrupted, that is, whether the wireless communication cannot be performed (Step S608a). .
  • the traveling trolley 101 (for example, the control unit 151) returns the process to step S601 if it is determined that the communication with the first AP 200 is not interrupted when not moving between the blocks (No in step S608a).
  • the setting unit 131 determines in advance Based on the correspondence information 70 stored in the storage unit 161, the IF 170 is changed to the communication slot indicated by the correspondence information 70 so as to communicate with the second AP 300 located in the block S1 (step S609).
  • control unit 151 communicates with the controller 400 via the IF 170 and the second AP 300 using the communication slot changed by the setting unit 131 (Step S607).
  • the traveling system 2 includes the traveling vehicle 101 traveling on the predetermined track 5, the plurality of first APs 200 and the like that wirelessly communicate with the traveling vehicle 101, and the first AP 200. And a plurality of APs including a plurality of second APs 300 and the like that wirelessly communicate with the traveling vehicle 101 in a communication slot different from that of the traveling vehicle 101, and the current position of the traveling vehicle 101 from the traveling vehicle 101 via any of the plurality of APs.
  • a controller 400 for receiving the position information 50 and transmitting a traveling instruction for controlling traveling of the traveling vehicle 101 to the traveling vehicle 101.
  • the traveling vehicle 101 also includes an IF 170 that wirelessly communicates with the first AP 200 and the like, and an IF 170 that wirelessly communicates with the second AP 300 and the like when wireless communication with the first AP 200 and the like is not possible.
  • the traveling vehicle 101 according to the second embodiment has one wireless interface, unlike the traveling vehicle 100 according to the first embodiment.
  • the traveling vehicle 101 wirelessly communicates with the second AP 300 or the like via the IF 170, and when wireless communication with the second AP 300 or the like is not possible, the traveling vehicle 101 may wirelessly communicate with the first AP 200 or the like via the IF 170. Good.
  • the control method of the traveling system 2 includes a plurality of first APs 200 and the like that wirelessly communicate with the traveling vehicle 101 and a wireless communication with the traveling vehicle 101 in a communication slot different from the first AP 200 and the like.
  • the traveling vehicle 101 wirelessly communicates with the first AP 200 or the like via the IF 170, and wirelessly communicates with the second AP 300 or the like via the IF 170 if wireless communication with the first AP 200 or the like is not possible. connect.
  • the traveling vehicle 101 can autonomously select and wirelessly communicate with one of the two access points in the same communication area. Therefore, for example, even when one of the access points fails, the traveling vehicle 101 can perform wireless communication with the other access point, and thus can communicate with the controller 400.
  • the traveling system 2 the reliability of communication is improved as compared with the related art.
  • the traveling vehicle 101 further includes a setting unit 131 that sets a communication slot different from a currently set communication slot in the IF 170 when wireless communication via the IF 170 cannot be performed.
  • control method of the traveling system 2 according to the second embodiment further includes a communication slot different from the communication slot currently set in the IF 170 when the traveling vehicle 101 cannot perform wireless communication via the IF 170. And a setting step of setting
  • the traveling vehicle 101 includes one wireless interface, it is possible to prevent the communication with the controller 400 from being interrupted. Therefore, the reliability of the communication of the traveling system 2 is further improved.
  • the traveling vehicle 101 further transmits the position information 50 indicating the current position of the traveling vehicle 101 to the controller 400 via the IF 170, and the controller 400 transmits the second AP 300 at the current position of the own device.
  • the setting unit 131 sets the communication slot currently set in the IF 170 to the communication information 60 acquired by the acquisition unit 141. Change to the indicated communication slot.
  • the traveling vehicle 101 further transmits the position information 50 indicating the current position of the traveling vehicle 101 to the controller 400 via the IF 170, and
  • the method includes an acquisition step of acquiring, from 400, communication information 60 indicating a communication slot for communicating with the second AP 300 or the like at the current position of the own device.
  • the setting step if wireless communication via the IF 170 is not possible, the communication slot currently set in the IF 170 is changed to the communication slot indicated by the communication information 60 acquired in the acquiring step.
  • the setting unit 130 can set an appropriate communication slot to the communication slot used by the IF 170 based on the position of the traveling vehicle 101. Therefore, the reliability of the communication of the traveling system 2 is further improved.
  • the traveling vehicle 101 further stores correspondence information 70 indicating the correspondence between the current position of the traveling vehicle 101 and a communication slot capable of communicating with any of the plurality of APs at the current position.
  • a section 161 is provided.
  • the obtaining unit 141 At the current position, a communication slot capable of communicating with the second AP 300 or the like is acquired.
  • the traveling vehicle 101 can further communicate with the current position of the traveling vehicle 101 and any one of the plurality of APs at the current position. And a storage step of storing correspondence information 70 indicating the correspondence between the communication slot and the communication slot.
  • the obtaining step if the communication information 60 cannot be obtained from the controller 400 before the IF 170 becomes unable to perform wireless communication with the first AP 200 or the like, based on the correspondence information 70, the current position of the traveling vehicle 101 is determined.
  • a communication slot capable of communicating with the second AP 300 or the like is acquired.
  • the traveling vehicle 101 can continue to maintain communication with the controller 400. Therefore, the reliability of the communication of the traveling system 2 is further improved.
  • the communication band used by the first IF 110 for wireless communication is set to the 5 GHz band
  • the communication band used by the second IF 120 for wireless communication is set to the 2.4 GHz band.
  • the communication bands used for the wireless communication by the first IF 110 and the second IF 120 may be different from each other, and are not limited thereto.
  • the correspondence information 70 is stored in the storage unit before the traveling vehicle starts traveling, that is, the storage step is executed before the traveling vehicle starts traveling. It was explained as.
  • the timing at which the correspondence information 70 is stored in the storage unit, that is, the timing at which the storage step is executed may be arbitrary as long as, for example, before the traveling vehicle is disconnected from the first AP.
  • the storage step may be executed before the traveling vehicle starts traveling, or the correspondence information 70 transmitted from the controller 400 immediately after the traveling vehicle starts traveling may be stored in the storage unit, for example. May be.
  • all or some of the components of the processing unit such as the control unit of the traveling vehicle and the controller may be configured by dedicated hardware, or may be suitable for each component. It may be realized by executing a software program. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory.
  • a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory.
  • the components of the processing unit such as the traveling vehicle and the controller of the controller may be configured by one or more electronic circuits.
  • Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit.
  • the one or more electronic circuits may include, for example, a semiconductor device, an integrated circuit (IC), or a large scale integration (LSI).
  • the IC or LSI may be integrated on one chip, or may be integrated on a plurality of chips.
  • the term “IC” or “LSI” is used.
  • the term “IC” or “LSI” changes depending on the degree of integration, and may be called a system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration).
  • An FPGA Field Programmable Gate Array programmed after manufacturing the LSI can also be used for the same purpose.
  • the general or specific aspects of the present invention may be realized by a system, an apparatus, a method, an integrated circuit, or a computer program. Alternatively, it may be realized by a non-transitory computer-readable recording medium such as an optical disk, an HDD, or a semiconductor memory in which the computer program is stored. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • the present invention is applicable to a traveling system that performs wireless communication using a plurality of access points. Specifically, the present invention is applicable to a traveling system including a traveling vehicle that dynamically establishes a communication link and communicates with one of the plurality of access points while moving in an area covered by the plurality of access points.
  • 1, 2 traveling system 5 track 50 position information 60 communication information 70 correspondence information 100, 101 traveling vehicle 110 first wireless interface (first IF) 120 second wireless interface (second IF) 130, 131 setting section 140, 141 acquisition section 150, 151, 420 control section 160, 161, 430 storage section 170 wireless interface (IF) 200, 210, 220, 230 First access point (first AP) 300, 310, 320, 330 Second access point (second AP) 400 Controller 410 Communication interface (communication IF) R1, R2, S1, S2, T1, T2, U1, U2 blocks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Vehicle Body Suspensions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

走行システム(1)は、所定の軌道(5)上を走行する走行台車(100)と、走行台車(100)と無線通信する複数の第1のAP(200)、及び、第1のAP(200)とは異なる通信スロットで走行台車(100)と無線通信する複数の第2のAP(300)を含む複数のアクセスポイントと、複数のアクセスポイントのいずれかを介して、走行台車(100)から走行台車(100)の現在位置を示す位置情報(50)を受信し、且つ、走行台車(100)の走行を制御するための走行指示を走行台車(100)に送信するコントローラ(400)と、を備える。走行台車(100)は、第1のAP(200)と無線通信し、且つ、第1のAP(200)と無線通信できない場合に第2のAP(300)と無線通信するIF(170)を備える。

Description

走行システム、及び、走行システムの制御方法
 本発明は、走行システム、及び、走行システムの制御方法に関する。
 従来、複数のアクセスポイントのいずれかと選択的に通信する通信装置がある(例えば、特許文献1参照)。
 特許文献1には、複数のアクセスポイントのいずれかと選択的に通信する携帯端末が開示されている。特許文献1に開示されている携帯端末は、無線接続中、つまり、通信リンクを確立しているアクセスポイントとの無線通信における電波強度を検出し、検出した電波強度に基づいて移動先において通信リンクを確立しているアクセスポイントとの電波強度を予測する。また、特許文献1に開示されている携帯端末は、予測した電波強度に基づいて、ローミング処理を実行する。
特開2014-192577号公報
 従来、複数の装置が通信するシステムにおいては、冗長化を図り通信の確実性を増すことが望まれている。
 本発明は、従来より通信の確実性が向上された走行システム等を提供する。
 上記課題を解決するために、本発明の一態様に係る走行システムは、所定の軌道上を走行する走行台車と、前記走行台車と無線通信する複数の第1のアクセスポイント、及び、前記第1のアクセスポイントとは異なる通信スロットで前記走行台車と無線通信する複数の第2のアクセスポイントを含む複数のアクセスポイントと、前記複数のアクセスポイントのいずれかを介して、前記走行台車から前記走行台車の現在位置を示す位置情報を受信し、且つ、前記走行台車の走行を制御するための走行指示を前記走行台車に送信するコントローラと、を備え、前記複数の第1のアクセスポイントのそれぞれは、隣り合う第1のアクセスポイントと通信エリアの一部が重なるように配置され、前記複数の第2のアクセスポイントのそれぞれは、隣り合う第2のアクセスポイントと通信エリアの一部が重なるように配置され、前記複数の第1のアクセスポイントのそれぞれは、前記複数の第2のアクセスポイントのいずれかと、通信エリアの少なくとも一部が重なるように配置され、前記走行台車は、前記第1のアクセスポイントと無線通信する無線インターフェースであって、且つ、前記第1のアクセスポイントとの無線通信ができない場合に、前記第2のアクセスポイントと無線通信する前記無線インターフェースを備える。
 これによれば、走行台車は、例えば、同じ通信エリアにおいて2つのアクセスポイントのうちのいずれかと無線通信することができる。そのため、例えば、一方のアクセスポイントが故障した場合においても、走行台車は、他方のアクセスポイントと無線通信することができるため、コントローラと通信することができる。これにより、走行システムによれば、従来より通信の確実性が向上される。
 また、例えば、前記走行台車は、さらに、前記無線インターフェースを介した無線通信ができない場合に、前記無線インターフェースに、現在設定されている通信スロットとは異なる通信スロットを設定する設定部を備える。
 これによれば、走行台車は、例えば、無線インターフェースを1つ備える場合においても、コントローラ400との通信を遮断しないようにすることができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記走行台車は、さらに、前記無線インターフェースを介して、前記走行台車の現在位置を示す位置情報を前記コントローラに送信し、且つ、前記コントローラから、前記現在位置において前記第2のアクセスポイントと通信するための通信スロットを示す通信情報を取得する取得部を備え、前記設定部は、前記無線インターフェースを介した前記第1のアクセスポイントとの無線通信ができない場合に、前記無線インターフェースに現在設定されている通信スロットを、前記取得部によって取得された前記通信情報が示す通信スロットに変更する。
 これによれば、設定部は、走行台車の位置に基づいて、無線インターフェースが用いる通信スロットに適切な通信スロットを設定することができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記走行台車は、さらに、前記走行台車の現在位置と、当該現在位置において前記複数のアクセスポイントのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報を記憶する記憶部を備え、前記取得部は、前記無線インターフェースが前記第1のアクセスポイントと無線通信できなくなる前に、前記コントローラから前記通信情報を取得できなかった場合に、前記対応情報に基づいて、前記走行台車の現在位置において前記第2のアクセスポイントと通信可能な通信スロットを取得する。
 これによれば、走行台車は、対応情報に基づいて、コントローラとの通信を維持し続けることができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記無線インターフェースは、前記第1のアクセスポイントと無線通信する第1の無線インターフェースと、前記第2のアクセスポイントと無線通信する第2の無線インターフェースと、を含む。
 これによれば、走行台車は、第1の無線インターフェース及び第2の無線インターフェースを介して通信スロットの異なる2つのアクセスポイントと同時に無線通信することができる。そのため、例えば、一方のアクセスポイントが故障した場合においても、走行台車は、他方のアクセスポイントと無線通信することができるため、コントローラと通信することができる。これにより、走行システムによれば、従来より通信の確実性が向上される。
 また、例えば、前記走行台車は、さらに、前記第1の無線インターフェース及び前記第2の無線インターフェースのうちの少なくとも1つを介した無線通信ができない場合に、前記第1の無線インターフェース及び前記第2の無線インターフェースのうちの少なくとも1つに、現在設定されている通信スロットとは異なる通信スロットを設定する設定部を備える。
 これによれば、走行台車は、利用できる無線通信の通信スロットの数を減らないようにすることができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記走行台車は、さらに、前記第1の無線インターフェース及び前記第2の無線インターフェースの少なくとも一方を介して、前記走行台車の現在位置を示す位置情報を前記コントローラに送信し、且つ、前記コントローラから、前記現在位置において前記複数のアクセスポイントのうちのいずれかと通信するための通信スロットを示す通信情報を取得する取得部を備え、前記設定部は、少なくとも前記第1の無線インターフェースを介した無線通信ができない場合に、前記第1の無線インターフェースに現在設定されている通信スロットを、前記取得部によって取得された前記通信情報が示す通信スロットに変更する。
 これによれば、設定部は、走行台車の位置に基づいて、第1の無線インターフェースが用いる通信スロットに適切な通信スロットを設定することができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記取得部は、前記第1の無線インターフェースを介した無線通信ができない場合に、前記第2の無線インターフェースを介して、前記位置情報を前記コントローラに送信し、前記コントローラから前記通信情報を取得する。
 これによれば、走行台車は、確実に通信情報を取得することができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記取得部は、前記第1の無線インターフェース及び前記第2の無線インターフェースが無線通信できなくなる前に、前記第1の無線インターフェース及び前記第2の無線インターフェースの少なくとも一方を介して、前記位置情報を前記コントローラに送信し、且つ、前記コントローラから前記通信情報を取得し、前記設定部は、前記第1の無線インターフェース及び前記第2の無線インターフェースが無線通信できなくなった後に、前記第1の無線インターフェースに現在設定されている通信スロットを、前記通信情報が示す通信スロットに変更する。
 これによれば、走行台車は、より確実に通信情報を取得することができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記走行台車は、さらに、前記走行台車の現在位置と、当該現在位置において前記複数のアクセスポイントのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報を記憶する記憶部を備え、前記取得部は、前記第1の無線インターフェース及び前記第2の無線インターフェースが無線通信できなくなる前に、前記コントローラから前記通信情報を取得できなかった場合に、前記対応情報に基づいて、前記走行台車の現在の位置において前記複数のアクセスポイントのうちのいずれかと通信可能な通信スロットを取得する。
 これによれば、走行台車は、例えば、第1のアクセスポイント及び第2のアクセスポイントの両方と無線通信できない場合においても、第1のアクセスポイント及び第2のアクセスポイントと通信するための第1の無線インターフェース及び第2の無線インターフェースに設定するそれぞれの通信スロットを確実に取得することができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記取得部は、前記コントローラから、前記現在位置において通信可能な前記第1のアクセスポイントに設定されている通信スロットと前記第2のアクセスポイントに設定されている通信スロットとを前記通信情報として取得し、前記設定部は、前記取得部によって取得された前記通信情報に基づいて、前記第1の無線インターフェース及び前記第2の無線インターフェースに設定されている通信スロットをそれぞれ変更する。
 これによれば、設定部は、例えば、第1のアクセスポイント及び第2のアクセスポイントの両方と無線通信できない場合においても、通信情報に基づいて、第1の無線インターフェース及び第2の無線インターフェースが用いるそれぞれの通信スロットとしてそれぞれ適切な通信スロットを設定することができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記設定部は、前記第1の無線インターフェースを介した無線通信ができない場合に、前記第1の無線インターフェースに設定されている通信スロットを、前記第2の無線インターフェースに設定されている通信スロットに変更する。
 これによれば、第2の無線インターフェースが用いている通信スロットで、第1の無線インターフェースもまた、通信することができる。これにより、例えば、第2の無線インターフェースが故障した場合においても、走行台車は、第1の無線インターフェースで通信を続けることができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記設定部は、前記第1の無線インターフェースを介した無線通信ができない場合に、前記第2の無線インターフェースが、前記第2の無線インターフェースに現在設定されている通信スロットと、前記第1の無線インターフェースに現在設定されている通信スロットとで通信できるように設定する。
 これによれば、第2の無線インターフェースによって、第1のアクセスポイント及び第2のアクセスポイントの両方と通信することができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記設定部は、前記第1の無線インターフェースと前記第1のアクセスポイントとが無線通信できず、且つ、前記第2の無線インターフェースと前記第2のアクセスポイントとが無線通信できない場合に、前記第2の無線インターフェースに現在設定されている通信スロットを、前記第1の無線インターフェースに設定されている通信スロットに変更する。
 これによれば、例えば、第1の無線インターフェース及び第2のアクセスポイントが故障した場合においても、走行台車は、第2の無線インターフェース及び第1のアクセスポイントによって、コントローラと無線通信を続けることができる。そのため、走行システムの通信の確実性は、より向上される。
 また、例えば、前記複数の第1のアクセスポイントのそれぞれは、前記複数の第2のアクセスポイントのいずれかと、通信エリアの少なくとも一部が重なり、且つ、他の一部が重ならないように配置され、前記複数の第2のアクセスポイントのそれぞれは、前記複数の第1のアクセスポイントのいずれかと、通信エリアの少なくとも一部が重なり、且つ、他の一部が重ならないように配置される。
 これによれば、走行台車は、第1のアクセスポイント及び第2のアクセスポイントの少なくとも一方との無線通信を続けつつ、且つ、複数の第1のアクセスポイント間での無線通信先の切り替え、及び、複数の第2のアクセスポイント間での無線通信先の切り替えを行うことができる。そのため、走行システムの通信の確実性は、より向上される。
 また、上記課題を解決するために、本発明の一態様に係る走行台車の制御方法は、複数の第1のアクセスポイントのそれぞれが、隣り合う第1のアクセスポイントと通信エリアの一部が重なるように配置され、複数の第2のアクセスポイントのそれぞれが、隣り合う第2のアクセスポイントと通信エリアの一部が重なるように配置され、且つ、前記複数の第1のアクセスポイントのそれぞれは、前記複数の第2のアクセスポイントのいずれかと、通信エリアの少なくとも一部が重なるように配置され、前記第1のアクセスポイント及び前記第2のアクセスポイントの少なくとも一方と無線通信する無線インターフェースを有する走行台車を備える走行システムの制御方法であって、前記走行台車と無線通信する前記複数の第1のアクセスポイント、及び、前記第1のアクセスポイントとは異なる通信スロットで前記走行台車と無線通信する前記複数の第2のアクセスポイントを含む複数のアクセスポイントに前記走行台車と無線通信させる通信ステップと、前記複数のアクセスポイントのいずれかを介して、前記走行台車から前記走行台車の位置を示す位置情報を受信し、且つ、前記走行台車の走行を制御するための走行指示を前記走行台車にコントローラが送信する制御ステップと、前記走行指示に基づいて所定の軌道上を前記走行台車に走行させる走行ステップと、を含み、前記通信ステップでは、前記走行台車は、前記無線インターフェースを介して前記第1のアクセスポイントと無線通信し、前記第1のアクセスポイントとの無線通信ができない場合に、前記無線インターフェースを介して前記第2のアクセスポイントと無線通信する。
 これによれば、走行台車は、例えば、同じ通信エリアにおいて2つのアクセスポイントのうちのいずれかと無線通信することができる。そのため、例えば、一方のアクセスポイントが故障した場合においても、走行台車は、他方のアクセスポイントと無線通信することができるため、コントローラと通信することができる。これにより、走行システムの制御方法によれば、従来より通信の確実性が向上される。
 なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROM等の記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 本発明の一態様に係る走行システム等によれば、従来より通信の確実性が向上される。
図1は、実施の形態1に係る走行台車を含む走行システムのネットワーク構成を示す模式図である。 図2は、実施の形態1に係る第1のアクセスポイント及び第2のアクセスポイントの通信エリアを説明するための図である。 図3は、実施の形態1に係る走行システムの機能構成を示すブロック図である。 図4は、実施の形態1に係る通信情報を示す説明図である。 図5は、実施の形態1に係る走行システムの制御方法の第1例を示す説明図である。 図6は、実施の形態1に係る走行システムの処理手順の第1例を示すフローチャートである。 図7は、実施の形態1に係る走行システムの制御方法の第2例を示す説明図である。 図8は、実施の形態1に係る走行システムの処理手順の第2例を示すフローチャートである。 図9は、実施の形態1に係る走行システムの制御方法の第3例を示す説明図である。 図10は、実施の形態1に係る走行システムの処理手順の第3例を示すフローチャートである。 図11は、実施の形態1に係る走行システムの制御方法の第4例を示す説明図である。 図12は、実施の形態1に係る走行システムの処理手順の第4例を示すフローチャートである。 図13は、実施の形態1に係る走行システムの制御方法の第5例を示す説明図である。 図14は、実施の形態1に係る走行システムの処理手順の第5例を示すフローチャートである。 図15は、実施の形態2に係る走行システムの機能構成を示すブロック図である。 図16は、実施の形態2に係る走行システムの制御方法の第1例を示す説明図である。 図17は、実施の形態2に係る走行システムの処理手順の第1例を示すフローチャートである。 図18は、実施の形態2に係る走行システムの制御方法の第2例を示す説明図である。 図19は、実施の形態2に係る走行システムの処理手順の第2例を示すフローチャートである。
 以下、各実施の形態について、図面を参照しながら具体的に説明する。
 以下で説明する各実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明される。なお、同一の構成要素には同一の符号を付し、説明を省略する場合がある。
 (実施の形態1)
 [概要]
 以下、実施の形態1に係る走行システムについて説明する。
 なお、以下で説明する走行台車は、例えば、施設内をカバーするように複数配置されたアクセスポイント(AP)を順次に利用した無線通信により、コントローラと通信する走行台車として実現され得る。
 図1は、実施の形態1に係る走行台車100を含む走行システム1のネットワーク構成を示す模式図である。図1は、走行システム1が配備された施設を上面視した図と、ネットワーク構成図とを合わせて示すものである。
 走行システム1は、施設内の天井又は床面等に予め設けられた走行経路である軌道5に、コントローラ400によるコンピュータ制御によって走行台車100を走行させる、有軌道式の走行システムである。走行台車100は、コントローラ400による制御に従って、指示された地点に移動したり、物品の搬送を行ったりする。
 なお、走行システム1は、有軌道式の走行システムである場合を例として説明するが、以下の説明は、無軌道式の走行システムにも同様に適用されてもよい。また、図1には、走行台車100を1台のみ図示しているが、走行システム1は、複数の走行台車100を備えてもよい。
 図1に示すように、走行システム1は、走行台車100と、複数の第1のアクセスポイント(第1のAP)200、210、220、及び、230と、複数の第2のアクセスポイント(第2のAP)300、310、320、及び、330と、コントローラ400と、を備える。
 走行台車100は、人が乗車することなく所定の軌道5上を走行し、また、コントローラ400による制御に基づいて走行する無人走行車である。
 走行台車100は、コントローラ400による制御に基づいて軌道5上を自在に走行し、物品の搬送などを行う。また、走行台車100は、第1の無線インターフェース(第1のIF)110(図3参照)及び第2の無線インターフェース(第2のIF)120(図3参照)を有し、複数のアクセスポイントと無線通信リンク(以降、単に通信リンクともいう)を確立し、この通信リンクを用いた無線通信によりコントローラ400と通信する。
 また、走行台車100は、通信リンクを確立する相手となるアクセスポイントの切り替え(つまり、ローミング)を行う。
 走行システム1において、走行台車100が走行し得る領域、つまり、軌道5上の位置は、複数のブロックに区切られている。走行台車100は、自装置が属しているブロックに応じて適切な第1のAP(例えば、第1のAP200、210、220、及び、230のいずれか)及び第2のAP(例えば、第2のAP300、310、320、及び、330のいずれか)との通信リンクを確立する。つまり、走行台車100は、自装置の位置に基づいて、通信リンクを確立するAPを自律的に選択する。例えば、走行台車100は、第1のAP200と無線通信し、且つ、第1のAP200との無線通信ができない場合に、第2のAP300と無線通信する。
 例えば、図1において、走行台車100は、第1のAP200及び第2のAP300と通信リンクを確立している。軌道5上の位置は、複数のブロックに区切られており、このブロックを利用して走行台車100の位置が特定される。なお、上記ブロックは、図1において破線で示されており、紙面上の上段のブロックを左から右へブロックR1、S1、T1、U1とし、紙面上の下段のブロックを左から右へブロックR2、S2、T2、U2とする。なお、図1における各ブロックは矩形に区切られているが、これに限られず、任意の形状に区切られていてよい。また、ブロックR2、S2、T2、U2には、ブロックR1、S1、T1、U1と同様に、第1のAP及び第2のAPがそれぞれ配置されているが、図1においては図示を省略している。また、図1においては、例えば、ブロックR1及びブロックS1等、隣り合うブロックの通信エリアを仕切るように簡略して図示しているが、隣り合うブロック間の通信エリアは、走行台車100がブロック間を移動する際に複数のAPと通信が途切れないようにするために、一部が重なり合っているとよい。
 第1のAP200、210、220、及び、230(以降、第1のAP200等ともいう)は、それぞれ、走行台車100と通信リンクを確立して無線通信を行うアクセスポイント装置である。
 第2のAP300、310、320、及び、330(以降、第2のAP300等ともいう)は、それぞれ、走行台車100と通信リンクを確立して無線通信を行うアクセスポイント装置である。また、第1のAP200等と第2のAP300等とは、互いに異なる無線通信スロットを用いて走行台車100と通信する。
 このように、走行システム1が備える複数のAP(第1のAP200及び第2のAP300等)は、走行台車100と無線通信する複数の第1のAP200等、及び、第1のAPとは異なる通信スロットで走行台車100と無線通信する複数の第2のAP300等を含む。
 なお、通信スロットとは、チャネル(言い換えると、周波数スロット)及びタイムスロットの少なくとも一方を含むことを意味する。例えば、「通信スロットが異なる」とは、通信に用いるチャネル、つまり、周波数が異なることを意味するのはもちろん、同一の周波数であって通信するタイミングが異なる場合、つまり、タイムスロットが異なる場合も意味する。例えば、第1のAP200が第1のタイミングにおいてチャネル1で走行台車100と無線通信し、第1のAP210が第1のタイミングとは異なる第2のタイミングにおいてチャネル1で走行台車100と無線通信する場合である。以下の説明においては、第1のAP200等及び第2のAP300等が互いにチャネルが異なる場合を例示して説明する。
 図2は、実施の形態1に係る第1のAP200等及び第2のAP300等の通信エリアを説明するための図である。なお、図2には、一例として、第1のAP200及び210と、第2のAP300及び310とのそれぞれの通信エリアを模式的に示している。図2に示す実線の丸は第1のAP200及び210通信エリアを模式的に示すものであり、図2に示す破線の丸は第2のAP300及び310通信エリアを模式的に示すものである。
 第1のAP200等及び第2のAP300等は、例えば、IEEE802.11a、b、g、n規格等に適合する無線LAN(Local Area Network)等の通信インターフェースにより無線通信を行う。第1のAP200等及び第2のAP300等のそれぞれは、無線通信エリアによって軌道5をカバーする位置に配置される。
 複数の第1のAP200等のそれぞれは、隣り合う第1のAP(例えば、第1のAP200及び第1のAP210)と通信エリアの一部が重なるように配置されている。また、複数の第2のAP300等のそれぞれは、隣り合う第2のAP(例えば、第2のAP300及び第2のAP310)と通信エリアの一部が重なるように配置されている。また、複数の第1のAP200等のそれぞれは、複数の第2のAP300等のいずれかと、通信エリアの少なくとも一部が重なるように配置されている。
 また、図2に示すように、例えば、第1のAPと第2のAPとの通信エリアは、完全に重なるのではなく、少しずれているとよい。つまり、複数の第1のAP200等のそれぞれは、複数の第2のAP300等のいずれかと、通信エリアの少なくとも一部が重なり、且つ、他の一部が重ならないように配置されるとよい。また、複数の第2のAP300等のそれぞれは、複数の第1のAP200等のいずれかと、通信エリアの少なくとも一部が重なり、且つ、他の一部が重ならないように配置されるとよい。
 このような構成によれば、走行台車100は、第1のAP200等及び第2のAP300等の少なくとも一方との無線通信を続けつつ、且つ、複数の第1のAP200等間での無線通信先の切り替え、及び、複数の第2のAP300等間での無線通信先の切り替えを行うことができる。そのため、走行システム1の通信の確実性は、より向上される。
 また、第1のAP200等及び第2のAP300等が無線通信に利用する通信スロットは予め定められているとする。例えば、第1のAP200等は、2.4GHz帯のチャネル(例えば、チャネル1、6、及び、11)を利用し、第2のAP300等は、5.2GHz帯のチャネル(例えば、チャネル36、40、44、及び、48)を利用する。なお、これらは1例であり、第1のAP200等は、5.2GHz帯のチャンネル(例えば、チャネル36、40、44、及び、48)を利用し、第2のAP300等は、5.3GHz帯のチャネル(例えば、チャネル52、56、60、及び、64)を利用してもよく、異なった周波数帯のチャンネルを利用すればよい。
 また、隣り合う第1のAP同士、及び、隣り合う第2のAP同士が無線信号に利用する通信スロットは、互いに異なっている。例えば、第1のAP200が2.4GHz帯のチャネル1を通信スロットとして利用する場合、第1のAP210は、2.4GHz帯のチャネル6を通信スロットとして利用する。また、この場合、第1のAP220は、2.4GHz帯のチャネル6以外を通信スロットとして利用すればよく、2.4GHz帯のチャネル1を通信スロットとして利用してもよいし、2.4GHz帯のチャネル11を通信スロットとして利用してもよい。もちろん、第1のAP200が2.4GHz帯のチャネル1を第1のタイミングで通信スロットとして利用する場合、第1のAP210は、2.4GHz帯のチャネル1を利用し、且つ、第1のAP200が通信する第1のタイミングとは異なる第2のタイミングを利用するタイムスロットを通信スロットとして利用してもよい。隣り合う第2のAP同士が利用する通信スロットの関係についても、隣り合う第1のAP同士が利用する通信スロットの関係と同様である。なお、隣り合うAPとは、例えば、通信エリアの少なくとも一部が重なり合うAPを意味する。
 再び図1を参照し、コントローラ400は、走行台車100の動作をコンピュータにより制御する制御装置である。コントローラ400は、具体的には、走行台車100に対して、走行台車100を所定の位置に移動させる移動指令、及び、走行台車100に物品の搬送をさせる搬送指令等を含む制御信号である走行指示を送信する。より具体的には、コントローラ400は、複数のAPのいずれかを介して、走行台車100から走行台車100の現在位置を示す位置情報を受信し、且つ、走行台車100の走行を制御するための走行指示を走行台車100に送信する。つまり、コントローラ400は、複数のAPのいずれかを介して走行台車100から走行台車100の現在位置を示す位置情報を受信する。また、コントローラ400は、複数のAPのいずれかを介して走行台車100の走行を制御するための走行指示を走行台車100に送信する。
 [構成]
 続いて、走行システム1の具体的な構成について説明する。
 図3は、実施の形態1に係る走行システム1の機能構成を示すブロック図である。
 <走行台車>
 走行台車100は、第1のIF110と、第2のIF120と、設定部130と、取得部140と、制御部150と、記憶部160と、を備える。
 第1のIF110及び第2のIF120のそれぞれは、例えば、IEEE802.11a、b、g、n規格等に適合する無線LAN等の通信インターフェースである。第1のIF110及び第2のIF120は、それぞれが制御部150による制御を受けて、データの送受信、通信リンクの確立、切断等を行う。
 第1のIF110は、第1のAP200等と無線通信する通信インターフェースである。例えば、第1のIF110は、2.4GHz帯の通信帯域で、第1のAP200等と無線通信する。
 第2のIF120は、第2のAP300等と無線通信する通信インターフェースである。例えば、第2のIF120は、5GHz帯の通信帯域で、第2のAP300等と無線通信する。
 このように、実施の形態1に係る走行台車100は、2つの無線インターフェースを備える。走行台車100は、以下第2例で説明するように、例えば、第1のIF110を介して第1のAP200等との無線通信ができない場合に、第1のIF110を介して第2のAP300等と無線通信することも可能である。また、走行台車100は、例えば、同じく第2のIF120を介して第2のAP300等との無線通信ができない場合に、第2のIF120を介して第1のAP200と無線通信することも可能である。
 第1のIF110及び第2のIF120のそれぞれは、設定部130が設定した通信スロットを用いて無線通信を行う。例えば、第1のIF110が無線通信に利用する通信スロットとして2.4GHz帯のチャネル1が設定部130に設定され、且つ、第2のIF120が無線通信に利用する通信スロットとして5GHz帯のチャネル36が設定部130に設定された場合、第1のIF110により2.4GHz帯のチャネル1で第1のAP200に接続するとともに、第2のIF120により5GHz帯のチャネル36で第2のAP300と接続する。なお、本実施の形態では、走行台車100は、第1のIF110で第1のAP200等と無線通信し、第2のIF120で第2のAP300等と無線通信するように予め定められているとして説明するが、第1のIF110及び第2のIF120が、第1のAP200等及び第2のAP300等のいずれと接続するかは任意である。
 設定部130は、第1のIF110及び第2のIF120のうちの少なくとも1つを介した無線通信ができない場合に、第1のIF110及び第2のIF120のうちの少なくとも1つに、現在設定されている通信スロットとは異なる通信スロットを設定する処理部である。設定部130は、例えば、第1のIF110を用いて第1のAP200と無線通信が遮断した場合に、第1のIF110に用いている通信スロットを、チャネル1からチャネル6へと変更する。また、例えば、設定部130は、例えば、第1のIF110を用いて第1のAP200と無線通信が遮断した場合に、第1のIF110に用いているチャネルを、2.4GHz帯のチャネルから第2のIF120に用いられているチャネルの周波数帯である5GHz帯のチャネルへと変更する。
 設定部130は、例えば、マイクロコントローラ等で実現される。具体的には、設定部130は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサ等で実現される。設定部130は、各動作を実行する専用の電子回路で実現されてもよい。
 取得部140は、第1のIF110及び第2のIF120の少なくとも一方を介して、走行台車100の現在位置を示す位置情報50をコントローラ400に送信し、且つ、コントローラ400から、走行台車100の現在位置において複数のAPのうちのいずれかと通信するための通信スロットを示す通信情報60を取得する。取得部140は、例えば、位置情報50の送信及び通信情報60の受信を、第1のIF110及び第2のIF120の一方を制御して実行する処理部である。
 取得部140は、例えば、マイクロコントローラ等で実現される。具体的には、取得部140は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサ等で実現される。取得部140は、各動作を実行する専用の電子回路で実現されてもよい。
 また、設定部130及び取得部140は、例えば、1つのCPUで実現されてもよいし、それぞれ異なるCPUで実現されてもよい。
 設定部130は、少なくとも第1のIF110を介した無線通信ができない場合に、第1のIF110に現在設定されている通信スロットを、取得部140によって取得された通信情報60が示す通信スロットに変更する。
 なお、位置情報50は、ブロックの位置を一意に示す情報である。位置情報50には、例えば、軌道5上に設定されるブロックR1、S1等と、当該ブロックに含まれる軌道5上の走行台車100の位置等とを対応付ける情報が含まれる。位置情報50は、軌道5上に定められた位置等と、当該位置が属するブロックとを対応付ける情報であるとも言える。
 なお、位置情報50は、上記の形態だけに限定されない。位置情報50は、例えば、無軌道式の走行システムでは、軌道を基準とするのではなく、施設における位置を基準とした方法を採用してもよい。
 図4は、実施の形態1に係る通信情報60を示す説明図である。
 通信情報60は、位置情報50に示される各ブロックと、当該ブロックの内部で利用可能な通信スロットとを対応付けた情報である。
 図4に示される通信情報60の各エントリ(各行)は、ブロックと、当該ブロックの内部で利用可能な通信スロットとを含む。例えば、通信情報60の最上段のエントリは、ブロックR1の内部で2.4GHz帯のチャネル1及び5GHz帯のチャネル36が利用可能であることを示している。また、通信情報60の上から2番目のエントリは、ブロックS1の内部で2.4GHz帯のチャネル6及び5GHz帯のチャネル40が利用可能であることを示している。
 なお、走行台車100は、例えば、自装置の現在位置を取得するために、電波又は光等を検知するセンサを備える。取得部140は、例えば、軌道5に沿って配置された複数の光送信器から受光する光によって、走行台車100の現在位置を取得し、取得した現在位置を示す位置情報50をコントローラ400に送信する。
 なお、図4には、記憶部160に位置情報50を記憶している例を示しているが、取得部140は、取得した自装置の現在位置を示す位置情報50を記憶部160に記憶させずに、コントローラ400へ送信してもよい。
 また、現在位置の取得方法は光送受信器による方法に限定されない。例えば、現在位置の取得方法は、軌道5の近傍に取り付けられたバーコード等のマーキング情報を光学的に読み取り変換することで取得する方法でもよいし、IMES(Indoor MEssaging System)(いわゆる屋内GPS(Global Position System)により取得する方法でもよい。或いは、現在位置の取得方法は、走行輪に搭載されている駆動モータからのフィードバック情報(モータ回転数)を管理している走行制御部からの情報、又は、走行台車100に備わる加速度センサ又は方位センサ等からの情報に基づいて取得する方法でもよく、さらに、上記の取得方法の組み合わせでもよい。
 再び図3を参照し、制御部150は、走行台車100の走行等を制御する処理部である。制御部150は、例えば、第1のIF110及び第2のIF120を制御することで、コントローラ400から移動指令等の走行指示を受信し、受信した走行指示に基づいて走行台車100の走行を制御する。
 制御部150は、例えば、マイクロコントローラ等で実現される。具体的には、制御部150は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサ等で実現される。制御部150は、各動作を実行する専用の電子回路で実現されてもよい。
 また、制御部150は、設定部130及び取得部140と1つのCPUで実現されてもよいし、それぞれとは異なるCPUで実現されてもよい。
 記憶部160は、コントローラ400から受信したデータを記憶するHDD(Hard Disk Drive)、SSD(Solid State Drive)、eMMC(embedded Multi Media Card)等のストレージである。記憶部160は、例えば、設定部130、取得部140、及び、制御部150がそれぞれ実行する制御プログラムを格納する。
 また、例えば、記憶部160は、走行台車100の現在位置と、当該現在位置において複数のAPのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報70を記憶する。上述したように、取得部140が第1のIF110及び第2のIF120の少なくとも一方を用いて、コントローラ400から通信情報60を取得できれば、設定部130は、取得部140が取得した通信情報60に基づいて第1のIF110及び第2のIF120の少なくとも一方の通信スロットを変更できる。ここで、走行台車100は、例えば、第1のAP200及び第2のIF120の故障により、第1のAP200及び第2のAP300の両方と通信できなくなる場合がある。この場合、取得部140は、第1のIF110及び第2のIF120が無線通信できなくなる前に、コントローラ400から通信情報60を取得できなかった場合に、対応情報70に基づいて、走行台車100の現在の位置において複数のAPのうちのいずれかと通信可能な通信スロットを取得する。
 なお、走行システム1の具体的な制御方法は、後述する。
 <コントローラ>
 コントローラ400は、通信インターフェース(通信IF)410と、制御部420と、記憶部430と、を備える。
 通信IF410は、第1のAP200等及び第2のAP300等と通信する通信インターフェースである。
 制御部420は、通信IF410等を制御して、走行台車100に、通信情報60、及び、走行台車100の走行を制御するための移動指令等の制御信号である走行指示を送信したり、走行台車100から走行台車100の現在位置を示す位置情報50を受信して記憶部430に記憶させたりする処理部である。
 制御部420は、例えば、マイクロコントローラ等で実現される。具体的には、制御部420は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサ等で実現される。制御部420は、各動作を実行する専用の電子回路で実現されてもよい。
 記憶部430は、通信情報60等の情報を記憶するHDD、SSD等のストレージである。記憶部160は、例えば、制御部420が実行する制御プログラムを格納する。
 [処理手順]
 続いて、図3、及び、図5~図14を参照しながら、実施の形態1に係る走行台車100の走行手順について説明する。なお、図5、図7、図9、図11、及び、図13においては、走行台車100の構成要素、コントローラ400等の走行システム1の構成要素の一部の図示を省略している。また、図5、図7、図9、図11、及び、図13においては、第1のIF110は、第1のAP200と予め無線通信し、第2のIF120は、第2のAP300と予め無線通信している場合について示している。
 <第1例>
 図5は、実施の形態1に係る走行システム1の制御方法の第1例を示す説明図である。図6は、実施の形態1に係る走行システム1の処理手順の第1例を示すフローチャートである。
 まず、走行台車100は、第1のIF110を用いて第1のAP200と通信し、且つ、第2のIF120を用いて第2のAP300と通信しているとする(ステップS101)。このように通信することで、制御部150は、コントローラ400から走行指令等の走行指示を第1のIF110又は第2のIF120を介して受信して、受信した走行指示に基づく制御(例えば、走行台車100の走行制御)を実行する。
 次に、走行台車100は、ブロック間を移動する際に、第1のAP200又は第2のAP300と通信が遮断されたか、つまり、無線通信ができないか否かを判定する(ステップS102)。例えば、ステップS102において、図5の(a)に示すように、走行台車100は、ブロックR1からブロックS1へ移動するとする。
 走行台車100(例えば、制御部150)は、走行台車100がブロック間を移動する際に、第1のAP200又は第2のAP300と通信が遮断されないと判定した場合(ステップS102でNo)、処理をステップS101に戻す。
 一方、走行台車100は、走行台車100がブロック間を移動する際に、第1のAP200又は第2のAP300と通信が遮断されたと判定した場合(ステップS102でYes)、位置情報50をコントローラ400に送信する(ステップS103)。具体的には、ステップS103では、取得部140は、上記した方法によって取得した走行台車100の現在位置を示す位置情報50を第1のIF110又は第2のIF120を介してコントローラ400へ送信する。より具体的には、ステップS103では、取得部140は、上記した方法によって取得した走行台車100の現在位置を示す位置情報50を、第1のIF110及び第2のIF120のうち、通信可能なIFを介してコントローラ400へ送信する。なお、取得部140は、第1のIF110及び第2のIF120のいずれもが通信可能である場合、いずれのIFを介してコントローラ400へ位置情報50を送信してもよい。
 次に、取得部140は、コントローラ400から次のブロック(ここでは、ブロックS1)のAP(ここでは、例えば、第1のAP210)と通信するための通信情報60を取得する(ステップS104)。
 次に、設定部130は、取得部140が取得した通信情報60に基づいて、第1のIF110及び第2のIF120の少なくとも一方のIF、具体的には、APと通信できないIF、つまり、APとの通信が途切れたIF(ここでは、例えば、第1のIF110)が用いる通信スロットを、通信情報60が示す通信スロットに変更する(ステップS105)。例えば、設定部130は、ステップS105では、第1のIF110が用いるチャネルを、第1のAP200と通信可能な2.4GHz帯のチャネル1から第1のAP210と通信可能な2.4GHz帯のチャネル6に変更する。
 次に、例えば、図5の(b)及び図6に示すように、制御部150は、設定部130が変更した通信スロットを用いて、第1のIF110及び第1のAP210を介して、コントローラ400と通信する(ステップS106)。
 ステップS104及びステップS105と同様の処理を実行して、図5の(c)及び図5の(d)に示すように、設定部130は、第2のIF120に設定されている通信スロットを通信情報60に基づいて通信情報60が示す通信スロットに変更することで、第2のIF120と第2のAP310とを通信できるようにする。
 以上のように、実施の形態1に係る走行システム1は、所定の軌道5上を走行する走行台車100と、走行台車100と無線通信する複数の第1のAP200等、及び、第1のAP200等とは異なる通信スロットで走行台車100と無線通信する複数の第2のAP300等を含む複数のAPと、複数のAPのいずれかを介して、走行台車100から走行台車100の現在位置を示す位置情報50を受信し、且つ、走行台車100の走行を制御するための走行指示を走行台車100に送信するコントローラ400と、を備える。複数の第1のAP200等は、隣り合う第1のAPと通信エリアの一部が重なるように配置される。また、複数の第2のAP300等は、隣り合う第2のAPと通信エリアの一部が重なるように配置される。また、複数の第1のAP200等のそれぞれは、複数の第2のAP300等のいずれかと、通信エリアの少なくとも一部が重なるように配置される。また、走行台車100は、第1のAP200等と無線通信するIFであって、且つ、第1のAP200等との無線通信ができない場合に、第2のAP300等と無線通信するIFを備える。実施の形態1に係る走行台車100は、第1のAP200等と無線通信する第1のIF110と、第2のAP300等と無線通信する第2のIF120と、を無線インターフェースとして備える。
 また、実施の形態1に係る走行システム1の制御方法は、複数の第1のAP200等が、隣り合う第1のAPと通信エリアの一部が重なるように配置され、複数の第2のAP300等が、隣り合う第2のAPと通信エリアの一部が重なるように配置され、且つ、複数の第1のAP200等のそれぞれは、複数の第2のAP300等のいずれかと、通信エリアの少なくとも一部が重なるように配置され、第1のAP200等及び第2のAP300等の少なくとも一方と無線通信する無線インターフェースを有する走行台車100を備える走行システム1の制御方法である。走行システム1の制御方法は、走行台車100と無線通信する複数の第1のAP200等、及び、第1のAP200等とは異なる通信スロットで走行台車100と無線通信する複数の第2のAP300等を含む複数のAPに走行台車100と無線通信させる通信ステップと、複数のAPのいずれかを介して、走行台車100から走行台車100の現在位置を示す位置情報50を受信し、且つ、走行台車100の走行を制御するための走行指示を走行台車100にコントローラ400が送信する制御ステップと、走行指示に基づいて所定の軌道5上を走行台車100に走行させる走行ステップと、を含む。
 これによれば、走行台車100は、第1のIF110及び第2のIF120を介して通信スロットの異なる2つのAP(第1のAP200等及び第2のAP300等)と同時に無線通信することができる。そのため、例えば、一方のAPが故障した場合においても、走行台車100は、他方のAPと無線通信することができるため、コントローラ400と通信し続けることができる。これにより、走行システム1によれば、従来より通信の確実性が向上される。また、走行台車100は、2つ以上のIFにより2つ以上の異なる通信規格を併用して無線通信を行うことができる。一般に、通信規格が異なると、外来ノイズにより受ける影響の有無又は大小が異なる。よって、たとえ一方の通信規格による通信が外来ノイズなどの影響で通信できない状態になっても、他方の通信規格による通信が可能である可能性が高くなり、走行システム1の通信の確実性をより向上させることができる。
 また、例えば、設定部130は、第1のIF110及び第2のIF120のうちの少なくとも1つを介した無線通信ができない場合に、第1のIF110及び第2のIF120のうちの少なくとも1つに、現在設定されている通信スロットとは異なる通信スロットを設定する。
 また、例えば、実施の形態1に係る走行システム1の制御方法は、さらに、走行台車100が第1のIF110及び第2のIF120のうちの少なくとも1つを介した無線通信ができない場合に、第1のIF110及び第2のIF120のうちの少なくとも1つに、現在設定されている通信スロットとは異なる通信スロットを設定する設定ステップを含む。
 これによれば、走行台車100は、設定部130によって走行台車100が利用できる無線通信の通信スロットの数を減らないようにすることができる。そのため、走行システム1の通信の確実性は、より向上される。
 また、例えば、取得部140は、第1のIF110及び第2のIF120の少なくとも一方を介して、走行台車100の現在位置を示す位置情報50をコントローラ400に送信し、且つ、コントローラ400から、走行台車100の現在位置において複数のAPのうちのいずれかと通信するための通信スロットを示す通信情報60を取得する。この場合、例えば、設定部130は、少なくとも第1のIF110を介した無線通信ができない場合に、第1のIF110に現在設定されている通信スロットを、取得部140によって取得された通信情報60が示す通信スロットに変更する。
 また、例えば、実施の形態1に係る走行システム1の制御方法は、さらに、走行台車100が第1のIF110及び第2のIF120の少なくとも一方を介して、走行台車100の現在位置を示す位置情報50をコントローラ400に送信し、且つ、コントローラ400から、現在位置において複数のAPのうちのいずれかと通信するための通信スロットを示す通信情報60を取得する取得ステップを含み、設定ステップでは、少なくとも第1のIF110を介した無線通信ができない場合に、第1のIF110に現在設定されている通信スロットを、取得ステップで取得した通信情報60が示す通信スロットに変更する。
 これによれば、設定部130は、走行台車100の位置に基づいて、第1のIF110が用いる通信スロットとして適切な通信スロットを設定することができる。そのため、走行システム1の通信の確実性は、より向上される。
 また、第1例では、取得部140は、第1のIF110を介した無線通信ができない場合に、第2のIF120を介して、位置情報50をコントローラ400に送信し、コントローラ400から通信情報60を取得する。
 また、第1例における、実施の形態1に係る走行システム1の制御方法の取得ステップ(具体的には、図6に示すステップS103及びステップS104)では、第1のIF110を介した無線通信ができない場合に、第2のIF120を介して、位置情報50をコントローラ400に送信し、コントローラ400から通信情報60を取得する。
 これによれば、走行台車100は、確実に通信情報60を取得することができる。そのため、走行システム1の通信の確実性は、より向上される。
 <第2例>
 図7は、実施の形態1に係る走行システム1の制御方法の第2例を示す説明図である。図8は、実施の形態1に係る走行システム1の処理手順の第2例を示すフローチャートである。
 まず、走行台車100は、第1のIF110を用いて第1のAP200と通信し、且つ、第2のIF120を用いて第2のAP300と通信しているとする(ステップS201)。このように通信することで、制御部150は、コントローラ400から受信した走行指示に基づく制御を実行する。
 次に、走行台車100(例えば、制御部150又は設定部130)は、第1のAP200又は第2のAP300が故障したか、つまり、走行台車100と通信できないか否かを判定する(ステップS202)。例えば、走行台車100は、第1のAP200等及び第2のAP300等のそれぞれとの間で、所定の周期で互いに通信が可能か否かを確認するための制御信号を送受信しあう。これにより、走行台車100は、第1のAP200等及び第2のAP300等が故障しているか否か、つまり、通信できない状態であるか否かを判定する。
 走行台車100が第1のAP200又は第2のAP300が故障していないと判定した場合(ステップS202でNo)、走行台車100は、ステップS201の処理を続ける。
 一方、走行台車100が第1のAP200又は第2のAP300が故障していると判定した場合(ステップS202でYes)、走行台車100は、故障したAPと通信していたIFを、故障していないAPと通信できる通信スロットに変更する(ステップS203)。
 例えば、ステップS202において、図7の(a)に示すように、第1のAP200が故障したとする。ここで、第1のIF110は、第1のAP200と通信できなくなったとする。
 この場合、設定部130は、図7の(b)に示すように、第1のIF110の通信スロットを、第2のAP300と通信できる通信スロットに変更する。具体的に例えば、設定部130は、第1のIF110が用いていた2.4GHz帯のチャネルを、第2のAP300と通信できる5GHz帯のチャネルに変更する。こうすることで、設定部130は、第1のIF110もまた、第2のIF120と同様に、第2のAP300と通信できるように通信スロットの設定を変更して、第2のIF120のバックアップとして、第1のIF110を待機させる。
 なお、ステップS202では、走行台車100が第1のAP200又は第2のAP300が故障されたか、つまり、走行台車100と通信できないか否かを判定したが、コントローラ400がこの判定を行ってもよい。例えば、コントローラ400は、第1のAP200等及び第2のAP300等のそれぞれとの間で、所定の周期で互いに通信が可能か否かを確認するための制御信号を送受信しあう。これにより、コントローラ400は、第1のAP200等及び第2のAP300等が故障しているか否か、つまり、通信できない状態であるか否かを判定する。この場合、コントローラ400は、例えば、第1のAP200又は第2のAP300が故障されていると判定した場合、判定結果を走行台車100に送信する。設定部130は、コントローラ400から受信した判定結果に基づいて、第1のIF110又は第2のIF120の通信スロットを変更する。
 以上のように、第2例では、設定部130は、第1のIF110を介した無線通信ができない場合に、第1のIF110に設定されている通信スロットを、第2のIF120に設定されている通信スロットに変更する。もちろん、設定部130は、第2のIF120を介した無線通信ができない場合に、第2のIF120に設定されている通信スロットを、第1のIF110に設定されている通信スロットに変更してもよい。
 また、第2例における、実施の形態1に係る走行システム1の制御方法の設定ステップでは、第1のIF110を介した無線通信ができない場合に、第1のIF110に設定されている通信スロットを、第2のIF120に設定されている通信スロットに変更する。
 これによれば、第2のIF120が用いている通信スロットで、第1のIF110もまた、通信することができる。これにより、例えば、第2のIF120が故障した場合においても、走行台車100は、第1のIF110で通信を続けることができる。そのため、走行システム1の通信の確実性は、より向上される。
 <第3例>
 図9は、実施の形態1に係る走行システム1の制御方法の第3例を示す説明図である。図10は、実施の形態1に係る走行システムの処理手順の第3例を示すフローチャートである。
 まず、走行台車100は、第1のIF110を用いて第1のAP200と通信し、且つ、第2のIF120を用いて第2のAP300と通信しているとする(ステップS301)。このように通信することで、制御部150は、コントローラ400から受信した走行指示に基づく制御を実行する。
 次に、走行台車100(例えば、制御部150又は設定部130)は、第1のIF110又は第2のIF120が故障されたか、つまり、走行台車100と通信できないか否かを判定する(ステップS302)。
 走行台車100は、第1のIF110又は第2のIF120が故障されていないと判定した場合(ステップS302でNo)、ステップS301の処理を続ける。
 一方、走行台車100は、第1のIF110又は第2のIF120が故障されていると判定した場合(ステップS302でYes)、故障していないIFを用いて、現在通信しているAPとの通信の隙間時間に、故障して通信できないIFが通信していたAPと通信する(ステップS303)。
 例えば、ステップS302において、図9の(a)に示すように、第1のIF110が故障したとする。ここで、第1のIF110は、第1のAP200と通信できなくなったとする。この場合、設定部130は、図9の(b)に示すように、第2のIF120の通信スロットを、第1のAP200とも通信できるように、繰り返し通信スロットを変更する。具体的に例えば、制御部150は、第2のIF120を用いて、現在通信している第2のAP300との通信の隙間時間に、第1のAP200と通信する。例えば、第1のIF110及び第1のAP200と、第2のIF120及び第2のAP300とは、所定の時間間隔で信号の送受信を行っている。そこで、設定部130は、第2のIF120を用いて、現在通信している第2のAP300との通信の隙間時間に、第1のAP200と通信することで、第2のIF120の通信スロットを、第1のAP200と通信可能な通信スロットの状態にしておく。
 なお、ステップS302で実行された第1のIF110及び第2のIF120の故障の判定は、走行台車100ではなく、コントローラ400が実行してもよい。
 例えば、コントローラ400は、第1のAP200等及び第2のAP300等のそれぞれとの間で、所定の周期で互いに通信が可能か否かを確認するための制御信号を送受信しあう。この場合、コントローラ400は、例えば、第1のAP200等及び第2のAP300等と通信可能な状態ではあるが、制御信号に対する走行台車100からの返信があるか否かを判定する。これにより、コントローラ400は、第1のIF110等及び第2のIF120等が故障しているか否か、つまり、通信できない状態であるか否かを判定する。この場合、コントローラ400は、例えば、第1のIF110又は第2のIF120が故障されていると判定した場合、判定結果を走行台車100に送信する。設定部130は、コントローラ400から受信した判定結果に基づいて、第1のIF110又は第2のIF120の通信スロットを変更する。
 以上のように、第3例では、設定部130は、第1のIF110を介した無線通信ができない場合に、第2のIF120が、第2のIF120に現在設定されている通信スロットと、第1のIF110に現在設定されている通信スロットとで通信できるように設定する。もちろん、設定部130は、第2のIF120を介した無線通信ができない場合に、第1のIF110が、第1のIF110に現在設定されている通信スロットと、第2のIF120に現在設定されている通信スロットとで通信できるように設定する。
 また、第3例における、実施の形態1に係る走行システム1の制御方法の設定ステップ(具体的には、図10に示すステップS303)では、第1のIF110を介した無線通信ができない場合に、第2のIF120が、第2のIF120に現在設定されている通信スロットと、第1のIF110に現在設定されている通信スロットとで通信できるように設定する。
 これによれば、第2のIF120によって、第1のAP200等及び第2のAP300等の両方と通信することができる。そのため、走行システム1の通信の確実性は、より向上される。
 <第4例>
 図11は、実施の形態1に係る走行システム1の制御方法の第4例を示す説明図である。図12は、実施の形態1に係る走行システム1の処理手順の第4例を示すフローチャートである。
 まず、走行台車100は、第1のIF110を用いて第1のAP200と通信し、且つ、第2のIF120を用いて第2のAP300と通信しているとする。取得部140は、コントローラ400から通信情報60を取得する(ステップS401)。取得部140は、例えば、ステップS401では、走行台車100の位置情報50を送信する。コントローラ400は、位置情報50を受信した場合に、走行台車100が次に移動するブロックの第1のAP及び第2のAPと通信するための通信スロットを示す通信情報60を走行台車100へ送信する。
 例えば、図11の(a)に示すように、走行台車100は、ブロックR1からブロックS1へ移動するとする。この場合、ステップS401では、取得部140は、コントローラ400からブロックS1における通信情報60を取得する。具体的には、取得部140は、走行台車100の位置情報50を送信する。コントローラ400は、位置情報50を受信した場合に、走行台車100が次に移動するブロックS1の第1のAP210及び第2のAP310と通信するための通信スロットを示す通信情報60を走行台車100へ送信する。
 次に、取得部140は、ステップS401で取得した通信情報60を記憶部160に記憶させる(ステップS402)。
 次に、制御部150は、第1のIF110を用いて第1のAP200と通信し、且つ、第2のIF120を用いて第2のAP300と通信することで、コントローラ400から制御信号を受信して、受信した制御信号に基づいた制御を行う(ステップS403)。
 次に、走行台車100は、ブロック間を移動する際に、第1のAP200及び第2のAP300の両方と通信が遮断されたか、つまり、通信ができないか否かを判定する(ステップS404)。
 走行台車100(例えば、制御部150)は、走行台車100がブロック間を移動する際に、第1のAP200及び第2のAP300と通信が遮断されないと判定した場合(ステップS404でNo)、処理をステップS401に戻す。
 一方、走行台車100がブロック間を移動する際に、第1のAP200及び第2のAP300の両方と通信が遮断されたと判定した場合(ステップS404でYes)、設定部130は、ステップS402で取得部140が記憶部160に記憶させた通信情報60に基づいて、第1のIF110及び第2のIF120が用いる通信スロットを通信情報60が示す通信スロットにそれぞれ変更する(ステップS405)。例えば、設定部130は、ステップS405では、第1のIF110が用いるチャネルを、第1のAP210と通信可能な2.4GHz帯のチャネル6に変更し、且つ、第2のIF120が用いるチャネルを、第2のAP310と通信可能な5GHz帯のチャネル40に変更する。
 次に、例えば、図11の(b)及び図12に示すように、制御部150は、設定部130が変更した通信スロットを用いて、第1のIF110及び第1のAP210を介して、コントローラ400と通信する(ステップS406)。
 以上のように、第4例では、取得部140は、第1のIF110及び第2のIF120が無線通信できなくなる前に、第1のIF110及び第2のIF120の少なくとも一方を介して、位置情報50をコントローラ400に送信し、且つ、コントローラ400から通信情報60を取得し、設定部130は、第1のIF110及び第2のIF120ともに無線通信できなくなった後に、第1のIF110に現在設定されている通信スロットを、通信情報60が示す通信スロットに変更する。もちろん、設定部130は、第1のIF110及び第2のIF120が無線通信できなくなった後に、第2のIF120に現在設定されている通信スロットを、通信情報60が示す通信スロットに変更してもよい。
 また、第4例における、実施の形態1に係る走行システム1の制御方法の取得ステップでは、第1のIF110及び第2のIFが無線通信できなくなる前に、第1のIF110及び第2のIF120の少なくとも一方を介して、位置情報50をコントローラ400に送信し、且つ、コントローラ400から通信情報60を取得し、設定ステップでは、第1のIF110及び第2のIF120が無線通信できなくなった後に、第1のIF110に現在設定されている通信スロットを、通信情報60が示す通信スロットに変更する。
 これによれば、走行台車100は、より確実に通信情報60を取得することができる。そのため、走行システム1の通信の確実性は、より向上される。
 また、例えば、取得部140は、コントローラ400から、現在位置において通信可能な第1のAP200等に設定されている通信スロットと第2のAP300等に設定されている通信スロットとを通信情報60として取得し、設定部130は、取得部140によって取得された通信情報60に基づいて、第1のIF110及び第2のIF120に設定されている通信スロットをそれぞれ変更する。
 また、例えば、実施の形態1に係る走行システム1の制御方法の取得ステップでは、コントローラ400から、現在位置において通信可能な第1のAP200等に設定されている通信スロットと第2のAP300等に設定されている通信スロットとを通信情報60として取得し、設定ステップでは、取得ステップによって取得された通信情報60に基づいて、第1のIF110及び第2のIF120に設定されている通信スロットをそれぞれ変更する。
 これによれば、設定部130は、例えば、第1のAP200等及び第2のAP300等の両方と無線通信できない場合においても、通信情報60に基づいて、第1のIF110及び第2のIF120が用いるそれぞれの通信スロットにそれぞれ適切な通信スロットを設定することができる。そのため、走行システム1の通信の確実性は、より向上される。
 なお、取得部140は、ステップS401及びステップS402において、通信情報60を取得して取得した通信情報60を記憶部160に記憶させたが、例えば、記憶部160には、走行台車100の現在位置と、当該現在位置において複数のAPのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報70が記憶されていてもよい。このような構成によれば、設定部130は、第1のIF110及び第2のIF120の両方が同時に通信できなくなった場合に、記憶部160に記憶されている対応情報70に基づいて、第1のIF110及び第2のIF120のそれぞれに設定されている通信スロットを、好適に変更できる。この場合、走行台車100及びコントローラ400は、ステップS401及びステップS402を実行しなくてもよい。
 このように、例えば、走行システム1は、さらに、走行台車100の現在位置と、当該現在位置において複数のAPのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報70を記憶する記憶部160を備え、取得部140は、第1のIF110及び第2のIF120が無線通信できなくなる前に、コントローラ400から通信情報60を取得できなかった場合に、対応情報70に基づいて、走行台車100の現在の位置において複数のAPのうちのいずれかと通信可能な通信スロットを取得する。
 また、例えば、実施の形態1に係る走行システム1の制御方法は、さらに、走行台車100が、走行台車100の現在位置と、当該現在位置において複数のAPのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報70を記憶する記憶ステップを含み、取得ステップでは、第1のIF110及び第2のIF120が無線通信できなくなる前に、コントローラ400から通信情報60を取得できなかった場合に、対応情報70に基づいて、走行台車100の現在の位置において複数のAPのうちのいずれかと通信可能な通信スロットを取得する。
 これによれば、走行台車100は、例えば、第1のAP200等及び第2のAP300等の両方と無線通信できない場合においても、第1のAP200等及び第2のAP300等と通信するための第1のIF110及び第2のIF120に設定するそれぞれの通信スロットを確実に取得することができる。そのため、走行システム1の通信の確実性は、より向上される。
 <第5例>
 図13は、実施の形態1に係る走行システム1の制御方法の第5例を示す説明図である。図14は、実施の形態1に係る走行システム1の処理手順の第5例を示すフローチャートである。
 まず、制御部150は、第1のIF110を用いて第1のAP200と通信し、且つ、第2のIF120を用いて第2のAP300と通信することで、コントローラ400から制御信号を受信して、受信した走行指示に基づいた制御を行う(ステップS501)。
 次に、走行台車100(例えば、制御部150)は、第1のIF110及び第2のIF120の一方が故障している状況において、第1のAP200及び第2のAP300の両方と通信が遮断されたか、つまり、通信ができないか否かを判定する(ステップS502)。
 制御部150は、第1のIF110及び第2のIF120の一方のみが故障している状況において、第1のAP200及び第2のAP300の両方と通信が遮断されたと判定するまでステップS502を繰り返し実行する。
 一方、制御部150が第1のIF110及び第2のIF120の一方のみが故障している状況において、第1のAP200及び第2のAP300の両方と通信が遮断されたと判定した場合(ステップS502でYes)、設定部130は、第1のIF110及び第2のIF120のうち、故障していないIFが用いる通信スロットを、故障したIFが用いていた通信スロットに変更する(ステップS503)。
 次に、制御部150は、設定部130によって通信スロットが変更された故障していないIFを用いて、コントローラ400と通信する(ステップS504)。
 ステップS503で、例えば、図13の(a)に示すように、第1のIF110及び第2のAP300が同時に故障したとする。この場合、走行台車100においては、第1のIF110が故障しているため、第1のAP200とは通信できないが、第2のIF120は故障していないため、故障していないAPとは通信することができる。そこで、第5例では、図13の(b)に示すように、ステップS502でYesとなる条件においては、故障して通信できない第1のIF110の通信先である、故障しておらず通信可能な第1のAP200と第2のIF120とが通信する。
 以上のように、第5例では、設定部130は、第1のIF110と第1のAP200等とが無線通信できず、且つ、第2のIF120と第2のAP300等とが無線通信できない場合に、第2のIF120に現在設定されている通信スロットを、第1のIF110に設定されている通信スロットに変更する。もちろん、設定部130は、第2のIF120が故障している場合、第1のIF110に現在設定されている通信スロットを、第2のIF120に設定されている通信スロットに変更してもよい。
 また、第5例における、実施の形態1に係る走行システム1の制御方法の設定ステップでは、第1のIF110と第1のAP200等とが無線通信できず、且つ、第1のIF110と第2のIF120とが無線通信できない場合に、第2のIF120に現在設定されている通信スロットを、第1のIF110に設定されている通信スロットに変更する。
 これによれば、例えば、第1のIF110及び第2のAP300等が故障した場合においても、走行台車100は、第2のIF120及び第1のAP200等によって、コントローラ400と無線通信を続けることができる。そのため、走行システム1の通信の確実性は、より向上される。
 (実施の形態2)
 続いて、実施の形態2に係る走行システムについて説明する。
 なお、実施の形態2に係る走行システムの説明においては、実施の形態1に係る走行システム1と同一の構成については同一の符号を付し、説明を一部簡略化又は省略する場合がある。
 [概要]
 図15は、実施の形態2に係る走行システム2の機能構成を示すブロック図である。
 走行システム2は、実施の形態1に係る走行システム1と同様に、施設内の天井又は床面等に予め設けられた走行経路である軌道5(図1参照)に、コントローラ400によるコンピュータ制御によって走行台車101を走行させる、有軌道式の走行システムである。走行台車101は、コントローラ400による制御に従って、指示された地点に移動したり、物品の搬送を行ったりする。走行システム2は、図1に示す走行システム1と同様に、複数の第1のアクセスポイント(第1のAP)200、210、220、及び、230と、複数の第2のアクセスポイント(第2のAP)300、310、320、及び、330と、コントローラ400と、を備える。走行システム2は、実施の形態1に係る走行システム1と、走行台車100の構成が異なる。
 走行台車101は、人が乗車することなく所定の軌道5(図1参照)上を走行し、また、コントローラ400による制御に基づいて走行する無人走行車である。
 走行台車101は、実施の形態1に係る走行台車100とは異なり、1つの無線インターフェース(IF170)を備える。走行台車101は、複数のアクセスポイントと通信リンクを確立し、この通信リンクを用いた無線通信によりコントローラ400と通信する。
 走行システム2において、図1に示す走行システム1と同様に、走行台車101が走行し得る領域、つまり、軌道5上の位置は、複数のブロックに区切られている。走行台車101は、自装置が属しているブロックに応じて適切な第1のAP200等及び第2のAP300等との通信リンクを確立する。つまり、走行台車101は、自装置の位置に基づいて、通信リンクを確立するAPを自律的に選択する。例えば、走行台車101は、第1のAP200等と無線通信し、且つ、第1のAP200等との無線通信ができない場合に、第2のAP300等と無線通信する。
 走行システム2は、実施の形態1に係る走行システム1と同様に、走行台車101と無線通信する複数の第1のAP200等、及び、第1のAP200等とは異なる通信スロットで走行台車101と無線通信する複数の第2のAP300を含む複数のアクセスポイントを備える。また、コントローラ400は、複数のAPのいずれかを介して、走行台車101から走行台車101の現在位置を示す位置情報50を受信し、且つ、走行台車101の走行を制御するための走行指示を走行台車101に送信する。
 また、複数の第1のAP200等のそれぞれは、隣り合う第1のAPと通信エリアの一部が重なるように配置されている。また、複数の第2のAP300等のそれぞれは、隣り合う第2のAPと通信エリアの一部が重なるように配置されている。また、複数の第1のAP200等のそれぞれは、複数の第2のAP300等のいずれかと、通信エリアの少なくとも一部が重なるように配置されている。
 [構成]
 続いて、走行システム2が備える走行台車101の具体的な構成について説明する。
 走行台車101は、IF170と、設定部131と、取得部141と、制御部151と、記憶部160と、を備える。
 IF170は、例えば、IEEE802.11a、b、g、n規格等に適合する無線LAN等の通信インターフェースである。IF170は、制御部151による制御を受けて、データの送受信、通信リンクの確立、切断等を行う。
 IF170は、第1のAP200等及び第2のAP300等と無線通信可能な通信インターフェースである。例えば、IF170は、まず、2.4GHz帯の通信帯域で、第1のAP200等と無線通信する。また、IF170は、第1のAP200等と無線通信できない場合に、5GHz帯の通信帯域で、第2のAP300等と無線通信する。
 なお、本実施の形態では、走行台車101は、まず、IF170で第1のAP200等と無線通信するように予め定められているとして説明するが、まず、第2のAP300等と無線通信するように予め定められていてもよい。
 設定部131は、IF170を介した無線通信ができない場合に、IF170に現在設定されている通信スロットとは異なる通信スロットを設定する。設定部131は、例えば、第1のAP200と無線通信が遮断した場合に、IF170に用いている通信スロットを、チャネル1からチャネル6へと変更する。
 設定部131は、例えば、マイクロコントローラ等で実現される。具体的には、設定部131は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサ等で実現される。設定部131は、各動作を実行する専用の電子回路で実現されてもよい。
 取得部141は、IF170を介して、走行台車101の現在位置を示す位置情報50をコントローラ400に送信し、且つ、コントローラ400から、現在位置において第2のAP300等と通信するための通信スロットを示す通信情報60(図3参照)を取得する。取得部141は、例えば、位置情報50の送信及び通信情報60の受信を、IF170を制御して実行する処理部である。
 取得部141は、例えば、マイクロコントローラ等で実現される。具体的には、取得部141は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサ等で実現される。取得部141は、各動作を実行する専用の電子回路で実現されてもよい。
 また、設定部131及び取得部141は、例えば、1つのCPUで実現されてもよいし、それぞれ異なるCPUで実現されてもよい。
 設定部131は、例えば、IF170を介した無線通信ができない場合に、IF170に現在設定されている通信スロットを、取得部141によって取得された通信情報60が示す通信スロットに変更する。
 なお、走行台車101は、実施の形態1に係る走行台車100と同様に、例えば、自装置の現在位置を取得するために、電波又は光等を検知するセンサを備える。取得部141は、例えば、軌道5(図1参照)に沿って配置された複数の光送信器から受光する光によって、走行台車101の現在位置を取得し、取得した現在位置を示す位置情報50をコントローラ400に送信する。
 制御部151は、走行台車100の走行等を制御する処理部である。制御部151は、例えば、IF170を制御することで、コントローラ400から移動指令等の走行指示を受信し、受信した走行指示に基づいて走行台車101の走行を制御する。
 制御部151は、例えば、マイクロコントローラ等で実現される。具体的には、制御部151は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサ等で実現される。制御部151は、各動作を実行する専用の電子回路で実現されてもよい。
 また、制御部151は、設定部131及び取得部141と1つのCPUで実現されてもよいし、それぞれとは異なるCPUで実現されてもよい。
 記憶部161は、コントローラ400から受信したデータを記憶するHDD、SSD、eMMC等のストレージである。記憶部161は、例えば、設定部131、取得部141、及び、制御部151がそれぞれ実行する制御プログラムを格納する。
 また、例えば、記憶部161は、走行台車101の現在位置と、当該現在位置において複数のAP(具体的には第1のAP200等及び第2のAP300等)のうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報70を記憶する。上述したように、取得部141がIF170を用いて、コントローラ400から通信情報60を取得できれば、設定部131は、取得部141が取得した通信情報60に基づいてIF170の通信スロットを変更できる。ここで、走行台車101は、例えば、第1のAP200の故障等により、第1のAP200と通信できなくなる場合がある。この場合、取得部141は、IF170が第1のAP200と無線通信できなくなる前にコントローラ400から通信情報60を取得できなかった場合に、対応情報70に基づいて、走行台車100の現在の位置において複数のAPのうちのいずれかと通信可能な通信スロットを取得する。つまり、制御部151は、IF170を介して第1のAP200と無線通信できなくなる前にコントローラ400から通信情報60を取得できなかった場合に、記憶部161に記憶されている対応情報70に基づいて、IF170に設定されている通信スロットを、第2のAP300等と通信可能な通信スロットに変更する。こうすることで、制御部151は、IF170及び第2のAP300等を介して、コントローラ400との通信を続ける。
 [処理手順]
 続いて、図16~図19を参照しながら、実施の形態2に係る走行台車101の走行手順について説明する。なお、図16及び図18においては、走行台車101の構成要素、コントローラ400等の走行システム2の構成要素の一部の図示を省略している。また、図16~図19においては、IF170は、第1のAP200と予め無線通信している場合について示している。
 <第1例>
 図16は、実施の形態2に係る走行システム2の制御方法の第1例を示す説明図である。図17は、実施の形態2に係る走行システム2の処理手順の第1例を示すフローチャートである。
 まず、図16の(a)及び図17に示すように、走行台車101は、第1のAP200と通信しているとする(ステップS601)。このように通信することで、制御部151は、コントローラ400から走行指令等の走行指示を、IF170を介して受信して、受信した走行指示に基づく制御(例えば、走行台車101の走行制御)を実行する。
 次に、走行台車101は、自装置の現在位置を示す位置情報50をコントローラ400に送信する(ステップS602)。具体的には、ステップS602では、取得部141は、上記した方法によって取得した走行台車101の現在位置を示す位置情報50を、IF170を介してコントローラ400へ送信する。
 次に、取得部141は、コントローラ400から次のブロック(ここでは、ブロックS1)のAP(ここでは、例えば、第1のAP210又は第2のAP310)と通信するための通信情報60を取得したか否かを判定する(ステップS603)。
 取得部141は、ステップS603でコントローラ400から次のブロックのAPと通信するための通信情報60を取得したと判定した(つまり、通信情報60を取得した)場合(ステップS603でYes)、取得した通信情報60を記憶部161に記憶させる(ステップS604)。
 次に、走行台車101は、ブロック間を移動する際に、第1のAP200と通信が遮断されたか、つまり、無線通信ができないか否かを判定する(ステップS605)。例えば、ステップS605において、図16の(a)に示すように、走行台車101は、ブロックR1からブロックS1へ移動するとする。
 走行台車101(例えば、制御部151)は、走行台車101がブロック間を移動する際に、第1のAP200と通信が遮断されていないと判定した場合(ステップS605でNo)、処理をステップS602に戻す。
 一方、図16の(b)に示すように、走行台車101がブロック間を移動する際に、第1のAP200と通信が遮断されたと判定した場合(ステップS605でYes)、設定部131は、ステップS604で取得部141が記憶部161に記憶させた通信情報60に基づいて、ブロックS1に位置するAP(第1のAP210又は第2のAP310)と通信できるように、IF170を通信情報60が示す通信スロットに変更する(ステップS606)。例えば、設定部131は、ステップS606では、IF170が用いるチャネルを、第1のAP200と通信可能な2.4GHz帯のチャネル1から第1のAP210と通信可能な2.4GHz帯のチャネル6に変更する。
 次に、例えば、図16の(c)及び図6に示すように、制御部151は、設定部131が変更した通信スロットを用いて、IF170を介して、コントローラ400と通信する(ステップS607)。こうすることで、走行台車101とコントローラ400との通信は維持される。
 また、ステップS603において、取得部141がコントローラ400から次のブロックのAPと通信するための通信情報60を取得していないと判定した(つまり、通信情報60を取得していない)場合(ステップS603でNo)、走行台車101は、ブロック間を移動する際に、第1のAP200と通信が遮断されたか、つまり、無線通信ができないか否かを判定する(ステップS608)。
 走行台車101(例えば、制御部151)は、走行台車100がブロック間を移動する際に、第1のAP200と通信が遮断されていないと判定した場合(ステップS608でNo)、処理をステップS602に戻す。
 一方、通信情報60を取得していない状態で走行台車101がブロック間を移動する際に、第1のAP200と通信が遮断されたと判定した場合(ステップS608でYes)、設定部131は、予め記憶部161に記憶されている対応情報70に基づいて、ブロックS1に位置するAP(第1のAP210又は第2のAP310)と通信できるように、IF170を対応情報70が示す通信スロットに変更する(ステップS609)。
 このように、走行台車101は、コントローラ400から通信情報60を取得できた場合には、複数のAPと通信するための最新の情報である通信情報60に基づいて、IF170が用いる通信スロットに変更する。一方、走行台車101は、コントローラ400から通信情報60を取得できていない場合には、予め記憶部161に記憶されている対応情報70に基づいて、IF170が用いる通信スロットに変更する。
 なお、走行台車101は、通信情報60を取得した場合に、対応情報70を更新してもよい。
 <第2例>
 図18は、実施の形態2に係る走行システム2の制御方法の第2例を示す説明図である。図19は、実施の形態2に係る走行システム2の処理手順の第2例を示すフローチャートである。
 まず、図18の(a)及び図19に示すように、走行台車101は、第1のAP200と通信しているとする(ステップS601)。
 次に、走行台車101は、自装置の現在位置を示す位置情報50をコントローラ400に送信する(ステップS602)。具体的には、ステップS602では、取得部141は、上記した方法によって取得した走行台車101の現在位置を示す位置情報50を、IF170を介してコントローラ400へ送信する。
 次に、取得部141は、コントローラ400から自装置が位置するブロック(ここでは、ブロックR1)における、第2のAP300と通信するための通信情報60を取得したか否かを判定する(ステップS603a)。
 取得部141は、ステップS603aでコントローラ400から自装置が位置するブロックの第2のAP300と通信するための通信情報60を取得したと判定した(つまり、通信情報60を取得した)場合(ステップS603aでYes)、取得した通信情報60を記憶部161に記憶させる(ステップS604)。
 次に、走行台車101は、ブロック間を移動しない場合に、第1のAP200の故障、又は、通信障害等によって、第1のAP200と通信が遮断されたか、つまり、無線通信ができないか否かを判定する(ステップS605a)。例えば、ステップS605aにおいて、図18の(b)に示すように、走行台車101は、ブロックR1に位置しているとする。
 走行台車101(例えば、制御部151)は、ブロック間を移動しない場合に、第1のAP200と通信が遮断されていないと判定した場合(ステップS605aでNo)、処理をステップS601に戻す。
 一方、図18の(b)に示すように、走行台車101がブロック間を移動しない場合に、第1のAP200と通信が遮断されたと判定した場合(ステップS605aでYes)、設定部131は、ステップS604で取得部141が記憶部161に記憶させた通信情報60に基づいて、ブロックS1に位置する第2のAP300と通信できるように、IF170を通信情報60が示す通信スロットに変更する(ステップS606)。例えば、設定部131は、ステップS606では、IF170が用いるチャネルを、第1のAP200と通信可能な2.4GHz帯のチャネルから第2のAP300と通信可能な5GHz帯のチャネルに変更する。
 次に、例えば、図18の(c)及び図19に示すように、制御部151は、設定部131が変更した通信スロットを用いて、IF170及び第2のAP300を介して、コントローラ400と通信する(ステップS607)。こうすることで、走行台車101とコントローラ400との通信は維持される。
 また、ステップS603aにおいて、取得部141がコントローラ400から自装置が位置するブロックの第2のAP300と通信するための通信情報60を取得していないと判定した(つまり、通信情報60を取得していない)場合(ステップS603aでNo)、走行台車101は、ブロック間を移動しない場合に、第1のAP200と通信が遮断されたか、つまり、無線通信ができないか否かを判定する(ステップS608a)。
 走行台車101(例えば、制御部151)は、ブロック間を移動しない場合に、第1のAP200と通信が遮断されないと判定した場合(ステップS608aでNo)、処理をステップS601に戻す。
 一方、通信情報60を取得していない状態で走行台車101がブロック間を移動しない場合に、第1のAP200と通信が遮断されたと判定した場合(ステップS608aでYes)、設定部131は、予め記憶部161に記憶されている対応情報70に基づいて、ブロックS1に位置する第2のAP300と通信できるように、IF170を対応情報70が示す通信スロットに変更する(ステップS609)。
 次に、制御部151は、設定部131が変更した通信スロットを用いて、IF170及び第2のAP300を介して、コントローラ400と通信する(ステップS607)。
 以上のように、実施の形態2に係る走行システム2は、所定の軌道5上を走行する走行台車101と、走行台車101と無線通信する複数の第1のAP200等、及び、第1のAP200等とは異なる通信スロットで走行台車101と無線通信する複数の第2のAP300等を含む複数のAPと、複数のAPのいずれかを介して、走行台車101から走行台車101の現在位置を示す位置情報50を受信し、且つ、走行台車101の走行を制御するための走行指示を走行台車101に送信するコントローラ400と、を備える。また、走行台車101は、第1のAP200等と無線通信するIF170であって、且つ、第1のAP200等との無線通信ができない場合に、第2のAP300等と無線通信するIF170を備える。実施の形態2に係る走行台車101は、実施の形態1に係る走行台車100と異なり、1つの無線インターフェースを備える。もちろん、走行台車101は、IF170を介して第2のAP300等と無線通信し、第2のAP300等との無線通信ができない場合に、IF170を介して第1のAP200等と無線通信してもよい。
 また、実施の形態2に係る走行システム2の制御方法は、走行台車101と無線通信する複数の第1のAP200等、及び、第1のAP200等とは異なる通信スロットで走行台車101と無線通信する複数の第2のAP300等を含む複数のAPに走行台車101と無線通信させる通信ステップと、複数のAPのいずれかを介して、走行台車101から走行台車101の現在位置を示す位置情報50を受信し、且つ、走行台車101の走行を制御するための走行指示を走行台車100にコントローラ400が送信する制御ステップと、走行指示に基づいて所定の軌道5上を走行台車100に走行させる走行ステップと、を含む。例えば、通信ステップでは、走行台車101は、IF170を介して第1のAP200等と無線通信し、第1のAP200等との無線通信ができない場合に、IF170を介して第2のAP300等と無線通信する。
 これによれば、走行台車101は、例えば、同じ通信エリアにおいて2つのアクセスポイントのうちのいずれかと、自律的に選択して無線通信することができる。そのため、例えば、一方のアクセスポイントが故障した場合においても、走行台車101は、他方のアクセスポイントと無線通信することができるため、コントローラ400と通信することができる。これにより、走行システム2によれば、従来より通信の確実性が向上される。
 また、例えば、走行台車101は、さらに、IF170を介した無線通信ができない場合に、IF170に、現在設定されている通信スロットとは異なる通信スロットを設定する設定部131を備える。
 また、例えば、実施の形態2に係る走行システム2の制御方法は、さらに、走行台車101がIF170を介した無線通信ができない場合に、IF170に、現在設定されている通信スロットとは異なる通信スロットを設定する設定ステップを含む。
 これによれば、走行台車101は、例えば、無線インターフェースを1つ備える場合においても、コントローラ400との通信を遮断しないようにすることができる。そのため、走行システム2の通信の確実性は、より向上される。
 また、例えば、走行台車101は、さらに、IF170を介して、走行台車101の現在位置を示す位置情報50をコントローラ400に送信し、且つ、コントローラ400から、自装置の現在位置において第2のAP300等と通信するための通信スロットを示す通信情報60を取得する取得部141を備える。この場合、例えば、設定部131は、IF170を介した第1のAP200等との無線通信ができない場合に、IF170に現在設定されている通信スロットを、取得部141によって取得された通信情報60が示す通信スロットに変更する。
 また、例えば、実施の形態2に係る走行システム2の制御方法は、さらに、走行台車101がIF170を介して、走行台車101の現在位置を示す位置情報50をコントローラ400に送信し、且つ、コントローラ400から、自装置の現在位置において第2のAP300等と通信するための通信スロットを示す通信情報60を取得する取得ステップを含む。この場合、例えば、設定ステップでは、IF170を介した無線通信ができない場合に、IF170に現在設定されている通信スロットを、取得ステップで取得した通信情報60が示す通信スロットに変更する。
 これによれば、設定部130は、走行台車101の位置に基づいて、IF170が用いる通信スロットに適切な通信スロットを設定することができる。そのため、走行システム2の通信の確実性は、より向上される。
 また、例えば、走行台車101は、さらに、走行台車101の現在位置と、当該現在位置において複数のAPのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報70を記憶する記憶部161を備える。この場合、例えば、取得部141は、IF170が第1のAP200等と無線通信できなくなる前に、コントローラ400から通信情報60を取得できなかった場合に、対応情報70に基づいて、走行台車101の現在位置において第2のAP300等と通信可能な通信スロットを取得する。
 また、例えば、実施の形態2に係る走行システム2の制御方法の取得ステップでは、さらに、走行台車101が、走行台車101の現在位置と、当該現在位置において複数のAPのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報70を記憶する記憶ステップを含む。この場合、取得ステップでは、IF170が第1のAP200等と無線通信できなくなる前に、コントローラ400から通信情報60を取得できなかった場合に、対応情報70に基づいて、走行台車101の現在位置において第2のAP300等と通信可能な通信スロットを取得する。
 これによれば、走行台車101は、対応情報70に基づいて、コントローラ400との通信を維持し続けることができる。そのため、走行システム2の通信の確実性は、より向上される。
 (その他の実施の形態)
 以上、本発明に係る走行システム等について、各実施の形態に基づいて説明したが、本発明は、これら実施の形態に限定されるものではない。
 例えば、上記実施の形態では、第1のIF110が無線通信に用いる通信帯域を5GHz帯とし、第2のIF120が無線通信に用いる通信帯域を2.4GHz帯として説明した。第1のIF110及び第2のIF120が無線通信に用いる通信帯域は、互いに異なればよく、これに限定されない。
 また、例えば、上記実施の形態では、対応情報70は走行台車が走行を開始する前に予め記憶部に記憶されている、つまり、走行台車が走行を開始する前に記憶ステップが実行されているとして説明した。対応情報70が記憶部に記憶される、つまり、記憶ステップが実行されるタイミングは、例えば、走行台車が第1のAPとの通信が遮断される前であれば、任意でよい。例えば、走行台車が走行を開始する前に記憶ステップが実行されてもよいし、走行台車が走行を開始した直後にコントローラ400から送信された対応情報70を、例えば、取得部が記憶部に記憶させてもよい。
 また、例えば、上記実施の形態において、走行台車及びコントローラの制御部等の処理部の構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、或いは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサ等のプログラム実行部が、HDD(Hard Disk Drive)又は半導体メモリ等の記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、例えば走行台車及びコントローラの制御部等の処理部の構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
 1つ又は複数の電子回路には、例えば、半導体装置、IC(Integrated Circuit)又はLSI(Large Scale Integration)等が含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も同じ目的で使うことができる。
 また、本発明の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。或いは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリ等のコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 その他、本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 本発明は、複数のアクセスポイントを用いて無線通信を行う走行システムに利用可能である。具体的には、複数のアクセスポイントによってカバーされる領域を移動しながら、上記複数のアクセスポイントのいずれかと動的に通信リンクを確立して通信する走行台車を備える走行システムに利用可能である。
 1、2 走行システム
 5 軌道
 50 位置情報
 60 通信情報
 70 対応情報
 100、101 走行台車
 110 第1の無線インターフェース(第1のIF)
 120 第2の無線インターフェース(第2のIF)
 130、131 設定部
 140、141 取得部
 150、151、420 制御部
 160、161、430 記憶部
 170 無線インターフェース(IF)
 200、210、220、230 第1のアクセスポイント(第1のAP)
 300、310、320、330 第2のアクセスポイント(第2のAP)
 400 コントローラ
 410 通信インターフェース(通信IF)
 R1、R2、S1、S2、T1、T2、U1、U2 ブロック

Claims (29)

  1.  所定の軌道上を走行する走行台車と、
     前記走行台車と無線通信する複数の第1のアクセスポイント、及び、前記第1のアクセスポイントとは異なる通信スロットで前記走行台車と無線通信する複数の第2のアクセスポイントを含む複数のアクセスポイントと、
     前記複数のアクセスポイントのいずれかを介して、前記走行台車から前記走行台車の現在位置を示す位置情報を受信し、且つ、前記走行台車の走行を制御するための走行指示を前記走行台車に送信するコントローラと、を備え、
     前記複数の第1のアクセスポイントのそれぞれは、隣り合う第1のアクセスポイントと通信エリアの一部が重なるように配置され、
     前記複数の第2のアクセスポイントのそれぞれは、隣り合う第2のアクセスポイントと通信エリアの一部が重なるように配置され、
     前記複数の第1のアクセスポイントのそれぞれは、前記複数の第2のアクセスポイントのいずれかと、通信エリアの少なくとも一部が重なるように配置され、
     前記走行台車は、前記第1のアクセスポイントと無線通信する無線インターフェースであって、且つ、前記第1のアクセスポイントとの無線通信ができない場合に、前記第2のアクセスポイントと無線通信する前記無線インターフェースを備える、
     走行システム。
  2.  前記走行台車は、さらに、前記無線インターフェースを介した無線通信ができない場合に、前記無線インターフェースに、現在設定されている通信スロットとは異なる通信スロットを設定する設定部を備える、
     請求項1に記載の走行システム。
  3.  前記走行台車は、さらに、前記無線インターフェースを介して、前記走行台車の現在位置を示す位置情報を前記コントローラに送信し、且つ、前記コントローラから、前記現在位置において前記第2のアクセスポイントと通信するための通信スロットを示す通信情報を取得する取得部を備え、
     前記設定部は、前記無線インターフェースを介した前記第1のアクセスポイントとの無線通信ができない場合に、前記無線インターフェースに現在設定されている通信スロットを、前記取得部によって取得された前記通信情報が示す通信スロットに変更する、
     請求項2に記載の走行システム。
  4.  前記走行台車は、さらに、前記走行台車の現在位置と、当該現在位置において前記複数のアクセスポイントのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報を記憶する記憶部を備え、
     前記取得部は、前記無線インターフェースが前記第1のアクセスポイントと無線通信できなくなる前に、前記コントローラから前記通信情報を取得できなかった場合に、前記対応情報に基づいて、前記走行台車の現在位置において前記第2のアクセスポイントと通信可能な通信スロットを取得する、
     請求項3に記載の走行システム。
  5.  前記無線インターフェースは、前記第1のアクセスポイントと無線通信する第1の無線インターフェースと、前記第2のアクセスポイントと無線通信する第2の無線インターフェースと、を含む、
     請求項1に記載の走行システム。
  6.  前記走行台車は、さらに、前記第1の無線インターフェース及び前記第2の無線インターフェースのうちの少なくとも1つを介した無線通信ができない場合に、前記第1の無線インターフェース及び前記第2の無線インターフェースのうちの少なくとも1つに、現在設定されている通信スロットとは異なる通信スロットを設定する設定部を備える、
     請求項5に記載の走行システム。
  7.  前記走行台車は、さらに、前記第1の無線インターフェース及び前記第2の無線インターフェースの少なくとも一方を介して、前記走行台車の現在位置を示す位置情報を前記コントローラに送信し、且つ、前記コントローラから、前記現在位置において前記複数のアクセスポイントのうちのいずれかと通信するための通信スロットを示す通信情報を取得する取得部を備え、
     前記設定部は、少なくとも前記第1の無線インターフェースを介した無線通信ができない場合に、前記第1の無線インターフェースに現在設定されている通信スロットを、前記取得部によって取得された前記通信情報が示す通信スロットに変更する、
     請求項6に記載の走行システム。
  8.  前記取得部は、前記第1の無線インターフェースを介した無線通信ができない場合に、前記第2の無線インターフェースを介して、前記位置情報を前記コントローラに送信し、前記コントローラから前記通信情報を取得する、
     請求項7に記載の走行システム。
  9.  前記取得部は、前記第1の無線インターフェース及び前記第2の無線インターフェースが無線通信できなくなる前に、前記第1の無線インターフェース及び前記第2の無線インターフェースの少なくとも一方を介して、前記位置情報を前記コントローラに送信し、且つ、前記コントローラから前記通信情報を取得し、
     前記設定部は、前記第1の無線インターフェース及び前記第2の無線インターフェースが無線通信できなくなった後に、前記第1の無線インターフェースに現在設定されている通信スロットを、前記通信情報が示す通信スロットに変更する、
     請求項7又は8に記載の走行システム。
  10.  前記走行台車は、さらに、前記走行台車の現在位置と、当該現在位置において前記複数のアクセスポイントのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報を記憶する記憶部を備え、
     前記取得部は、前記第1の無線インターフェース及び前記第2の無線インターフェースが無線通信できなくなる前に、前記コントローラから前記通信情報を取得できなかった場合に、前記対応情報に基づいて、前記走行台車の現在の位置において前記複数のアクセスポイントのうちのいずれかと通信可能な通信スロットを取得する、
     請求項9に記載の走行システム。
  11.  前記取得部は、前記コントローラから、前記現在位置において通信可能な前記第1のアクセスポイントに設定されている通信スロットと前記第2のアクセスポイントに設定されている通信スロットとを前記通信情報として取得し、
     前記設定部は、前記取得部によって取得された前記通信情報に基づいて、前記第1の無線インターフェース及び前記第2の無線インターフェースに設定されている通信スロットをそれぞれ変更する、
     請求項9に記載の走行システム。
  12.  前記設定部は、前記第1の無線インターフェースを介した無線通信ができない場合に、前記第1の無線インターフェースに設定されている通信スロットを、前記第2の無線インターフェースに設定されている通信スロットに変更する、
     請求項6~11のいずれか1項に記載の走行システム。
  13.  前記設定部は、前記第1の無線インターフェースを介した無線通信ができない場合に、前記第2の無線インターフェースが、前記第2の無線インターフェースに現在設定されている通信スロットと、前記第1の無線インターフェースに現在設定されている通信スロットとで通信できるように設定する、
     請求項6~12のいずれか1項に記載の走行システム。
  14.  前記設定部は、前記第1の無線インターフェースと前記第1のアクセスポイントとが無線通信できず、且つ、前記第2の無線インターフェースと前記第2のアクセスポイントとが無線通信できない場合に、前記第2の無線インターフェースに現在設定されている通信スロットを、前記第1の無線インターフェースに設定されている通信スロットに変更する、
     請求項6~13のいずれか1項に記載の走行システム。
  15.  前記複数の第1のアクセスポイントのそれぞれは、前記複数の第2のアクセスポイントのいずれかと、通信エリアの少なくとも一部が重なり、且つ、他の一部が重ならないように配置され、
     前記複数の第2のアクセスポイントのそれぞれは、前記複数の第1のアクセスポイントのいずれかと、通信エリアの少なくとも一部が重なり、且つ、他の一部が重ならないように配置される、
     請求項1~14のいずれか1項に記載の走行システム。
  16.  複数の第1のアクセスポイントのそれぞれが、隣り合う第1のアクセスポイントと通信エリアの一部が重なるように配置され、複数の第2のアクセスポイントのそれぞれが、隣り合う第2のアクセスポイントと通信エリアの一部が重なるように配置され、且つ、前記複数の第1のアクセスポイントのそれぞれは、前記複数の第2のアクセスポイントのいずれかと、通信エリアの少なくとも一部が重なるように配置され、前記第1のアクセスポイント及び前記第2のアクセスポイントの少なくとも一方と無線通信する無線インターフェースを有する走行台車を備える走行システムの制御方法であって、
     前記走行台車と無線通信する前記複数の第1のアクセスポイント、及び、前記第1のアクセスポイントとは異なる通信スロットで前記走行台車と無線通信する前記複数の第2のアクセスポイントを含む複数のアクセスポイントに前記走行台車と無線通信させる通信ステップと、
     前記複数のアクセスポイントのいずれかを介して、前記走行台車から前記走行台車の位置を示す位置情報を受信し、且つ、前記走行台車の走行を制御するための走行指示を前記走行台車にコントローラが送信する制御ステップと、
     前記走行指示に基づいて所定の軌道上を前記走行台車に走行させる走行ステップと、を含み、
     前記通信ステップでは、前記走行台車は、
      前記無線インターフェースを介して前記第1のアクセスポイントと無線通信し、
      前記第1のアクセスポイントとの無線通信ができない場合に、前記無線インターフェースを介して前記第2のアクセスポイントと無線通信する、
     走行システムの制御方法。
  17.  さらに、前記走行台車が前記無線インターフェースを介した無線通信ができない場合に、前記無線インターフェースに、現在設定されている通信スロットとは異なる通信スロットを設定する設定ステップを含む、
     請求項16に記載の走行システムの制御方法。
  18.  さらに、前記走行台車が前記無線インターフェースを介して、前記走行台車の現在位置を示す位置情報を前記コントローラに送信し、且つ、前記コントローラから、前記現在位置において前記第2のアクセスポイントと通信するための通信スロットを示す通信情報を取得する取得ステップを含み、
     前記設定ステップでは、前記無線インターフェースを介した無線通信ができない場合に、前記無線インターフェースに現在設定されている通信スロットを、前記取得ステップで取得した前記通信情報が示す通信スロットに変更する、
     請求項17に記載の走行システムの制御方法。
  19.  さらに、前記走行台車が、前記走行台車の現在位置と、当該現在位置において前記複数のアクセスポイントのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報を記憶する記憶ステップを含み、
     前記取得ステップでは、前記無線インターフェースが前記第1のアクセスポイントと無線通信できなくなる前に、前記コントローラから前記通信情報を取得できなかった場合に、前記対応情報に基づいて、前記走行台車の現在位置において前記第2のアクセスポイントと通信可能な通信スロットを取得する、
     請求項18に記載の走行システムの制御方法。
  20.  前記無線インターフェースは、前記第1のアクセスポイントと無線通信する第1の無線インターフェースと、前記第2のアクセスポイントと無線通信する第2の無線インターフェースと、を含む、
     請求項16に記載の走行システムの制御方法。
  21.  さらに、前記走行台車が前記第1の無線インターフェース及び前記第2の無線インターフェースのうちの少なくとも1つを介した無線通信ができない場合に、前記第1の無線インターフェース及び前記第2の無線インターフェースのうちの少なくとも1つに、現在設定されている通信スロットとは異なる通信スロットを設定する設定ステップを含む、
     請求項20に記載の走行システムの制御方法。
  22.  さらに、前記走行台車が前記第1の無線インターフェース及び前記第2の無線インターフェースの少なくとも一方を介して、前記走行台車の現在位置を示す位置情報を前記コントローラに送信し、且つ、前記コントローラから、前記現在位置において前記複数のアクセスポイントのうちのいずれかと通信するための通信スロットを示す通信情報を取得する取得ステップを含み、
     前記設定ステップでは、少なくとも前記第1の無線インターフェースを介した無線通信ができない場合に、前記第1の無線インターフェースに現在設定されている通信スロットを、前記取得ステップで取得した前記通信情報が示す通信スロットに変更する、
     請求項21に記載の走行システムの制御方法。
  23.  前記取得ステップでは、前記第1の無線インターフェースを介した無線通信ができない場合に、前記第2の無線インターフェースを介して、前記位置情報を前記コントローラに送信し、前記コントローラから前記通信情報を取得する、
     請求項22に記載の走行システムの制御方法。
  24.  前記取得ステップでは、前記第1の無線インターフェース及び前記第2の無線インターフェースが無線通信できなくなる前に、前記第1の無線インターフェース及び前記第2の無線インターフェースの少なくとも一方を介して、前記位置情報を前記コントローラに送信し、且つ、前記コントローラから前記通信情報を取得し、
     前記設定ステップでは、前記第1の無線インターフェース及び前記第2の無線インターフェースが無線通信できなくなった後に、前記第1の無線インターフェースに現在設定されている通信スロットを、前記通信情報が示す通信スロットに変更する、
     請求項22又は23に記載の走行システムの制御方法。
  25.  さらに、前記走行台車が、前記走行台車の現在位置と、当該現在位置において前記複数のアクセスポイントのうちのいずれかと通信可能な通信スロットと、の対応関係を示す対応情報を記憶する記憶ステップを含み、
     前記取得ステップでは、前記第1の無線インターフェース及び前記第2の無線インターフェースが無線通信できなくなる前に、前記コントローラから前記通信情報を取得できなかった場合に、前記対応情報に基づいて、前記走行台車の現在の位置において前記複数のアクセスポイントのうちのいずれかと通信可能な通信スロットを取得する、
     請求項22に記載の走行システムの制御方法。
  26.  前記取得ステップでは、前記コントローラから、前記現在位置において通信可能な前記第1のアクセスポイントに設定されている通信スロットと前記第2のアクセスポイントに設定されている通信スロットとを前記通信情報として取得し、
     前記設定ステップでは、前記取得ステップで取得された前記通信情報に基づいて、前記第1の無線インターフェース及び前記第2の無線インターフェースに設定されている通信スロットをそれぞれ変更する、
     請求項22に記載の走行システムの制御方法。
  27.  前記設定ステップでは、前記第1の無線インターフェースを介した無線通信ができない場合に、前記第1の無線インターフェースに設定されている通信スロットを、前記第2の無線インターフェースに設定されている通信スロットに変更する、
     請求項21~26のいずれか1項に記載の走行システムの制御方法。
  28.  前記設定ステップでは、前記第1の無線インターフェースを介した無線通信ができない場合に、前記第2の無線インターフェースが、前記第2の無線インターフェースに現在設定されている通信スロットと、前記第1の無線インターフェースに現在設定されている通信スロットとで通信できるように設定する、
     請求項21~27のいずれか1項に記載の走行システムの制御方法。
  29.  前記設定ステップでは、前記第1の無線インターフェースと前記第1のアクセスポイントとが無線通信できず、且つ、前記第2の無線インターフェースと前記第2のアクセスポイントとが無線通信できない場合に、前記第2の無線インターフェースに現在設定されている通信スロットを、前記第1の無線インターフェースに設定されている通信スロットに変更する、
     請求項21~26のいずれか1項に記載の走行システムの制御方法。
PCT/JP2019/034505 2018-09-27 2019-09-03 走行システム、及び、走行システムの制御方法 WO2020066486A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020548263A JP7079945B2 (ja) 2018-09-27 2019-09-03 走行システム、及び、走行システムの制御方法
SG11202103056WA SG11202103056WA (en) 2018-09-27 2019-09-03 Travel system and control method of travel system
KR1020217007659A KR102422532B1 (ko) 2018-09-27 2019-09-03 주행 시스템, 및 주행 시스템의 제어 방법
CN201980060908.2A CN112740756B (zh) 2018-09-27 2019-09-03 行驶系统和行驶系统的控制方法
EP19864539.2A EP3860220A4 (en) 2018-09-27 2019-09-03 Travel system and control method of travel system
US17/278,688 US11930417B2 (en) 2018-09-27 2019-09-03 Travel system and control method of travel system
IL281750A IL281750A (en) 2018-09-27 2021-03-23 Transportation system and control method for a transportation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018182354 2018-09-27
JP2018-182354 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066486A1 true WO2020066486A1 (ja) 2020-04-02

Family

ID=69950533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034505 WO2020066486A1 (ja) 2018-09-27 2019-09-03 走行システム、及び、走行システムの制御方法

Country Status (9)

Country Link
US (1) US11930417B2 (ja)
EP (1) EP3860220A4 (ja)
JP (1) JP7079945B2 (ja)
KR (1) KR102422532B1 (ja)
CN (1) CN112740756B (ja)
IL (1) IL281750A (ja)
SG (1) SG11202103056WA (ja)
TW (1) TWI785274B (ja)
WO (1) WO2020066486A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285665A (ja) * 1997-04-08 1998-10-23 Meidensha Corp 無人搬送車制御システム
WO2014125719A1 (ja) * 2013-02-15 2014-08-21 村田機械株式会社 搬送台車、搬送台車の駆動制御方法、及び搬送台車の駆動制御プログラム
JP2014192577A (ja) 2013-03-26 2014-10-06 Denso Wave Inc 携帯端末

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698908B2 (ja) * 1999-02-09 2005-09-21 三菱電機株式会社 列車無線システム
GB2352839B (en) * 1999-07-30 2002-10-16 Honda Motor Co Ltd Assembly line transporter control system
JP2001177864A (ja) * 1999-12-15 2001-06-29 Toshiba Corp 無線通信システム、無線通信方法、および無線制御局
US7283047B2 (en) * 2003-08-01 2007-10-16 Spectrum Tracking Systems, Inc. Method and system for providing tracking services to locate an asset
JP2008153735A (ja) 2006-12-14 2008-07-03 Fujitsu Ltd 故障被疑装置を特定する方法
JP2009225135A (ja) * 2008-03-17 2009-10-01 Hitachi Ltd 列車無線通信システムにおける周波数チャネルの選択方法および車上無線端末
KR101183513B1 (ko) * 2008-10-07 2012-09-20 무라다기카이가부시끼가이샤 주행차 시스템
JP2011166671A (ja) * 2010-02-15 2011-08-25 Murata Machinery Ltd 走行台車システム
JP5446055B2 (ja) * 2012-01-27 2014-03-19 村田機械株式会社 台車システム
US9001821B1 (en) * 2013-03-04 2015-04-07 Sprint Spectrum L.P. Pre-provisioning bearer connection with target base station in response to end of call served by nearby base station of other access network
FR3025480B1 (fr) * 2014-09-04 2016-12-23 Alstom Transp Tech Infrastructure de radiocommunication pour un systeme de signalisation ferroviaire du type cbtc
KR101550638B1 (ko) * 2014-09-22 2015-09-07 현대자동차 주식회사 차량 구동 제어 방법 및 시스템
CN105992256B (zh) * 2015-03-03 2019-08-27 华为技术有限公司 轨道交通中的无线局域网的信道管理方法,设备和系统
JP6490998B2 (ja) 2015-03-13 2019-03-27 Necプラットフォームズ株式会社 通信冗長化端末、通信冗長化システム、通信冗長化方法及び通信冗長化プログラム
US10349289B2 (en) * 2015-03-20 2019-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Determining radio channel metrics
CN107533331B (zh) * 2015-03-31 2022-07-12 深圳市大疆创新科技有限公司 具有动态特性的地理围栏设备
KR20170112945A (ko) * 2016-04-01 2017-10-12 삼성전자주식회사 이동통신 시스템에서 기기 간 통신과 셀룰라 통신의 공존 방법 및 장치
US10200945B2 (en) * 2016-04-22 2019-02-05 Veniam, Inc. Systems and methods for managing mobility of users in a network of moving things at the edge
CN107438278B (zh) * 2016-05-27 2020-06-02 华为技术有限公司 一种轨道交通中无线局域网的信道管理方法及相关设备
US10880030B2 (en) * 2016-06-15 2020-12-29 Lg Electronics Inc. Method for inter-cell interference coordination in wireless communication system, and apparatus therefor
JP2018056623A (ja) 2016-09-26 2018-04-05 村田機械株式会社 通信システム及び通信方法
JP7168211B2 (ja) * 2016-12-12 2022-11-09 日本電産シンポ株式会社 障害物の回避動作を行う移動体およびそのコンピュータプログラム
JP6895657B2 (ja) * 2017-01-31 2021-06-30 サイレックス・テクノロジー株式会社 無人走行車、走行システム、及び、無人走行車の制御方法
JP2018170596A (ja) * 2017-03-29 2018-11-01 サイレックス・テクノロジー株式会社 移動体、制御装置、移動体システム、及び、移動体の制御方法
WO2019138802A1 (ja) * 2018-01-10 2019-07-18 村田機械株式会社 搬送システムの制御方法、搬送システム及び管理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285665A (ja) * 1997-04-08 1998-10-23 Meidensha Corp 無人搬送車制御システム
WO2014125719A1 (ja) * 2013-02-15 2014-08-21 村田機械株式会社 搬送台車、搬送台車の駆動制御方法、及び搬送台車の駆動制御プログラム
JP2014192577A (ja) 2013-03-26 2014-10-06 Denso Wave Inc 携帯端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3860220A4

Also Published As

Publication number Publication date
KR20210043649A (ko) 2021-04-21
CN112740756B (zh) 2024-03-05
EP3860220A1 (en) 2021-08-04
TWI785274B (zh) 2022-12-01
US20220046509A1 (en) 2022-02-10
KR102422532B1 (ko) 2022-07-19
US11930417B2 (en) 2024-03-12
JP7079945B2 (ja) 2022-06-03
SG11202103056WA (en) 2021-04-29
EP3860220A4 (en) 2022-06-29
JPWO2020066486A1 (ja) 2021-09-09
CN112740756A (zh) 2021-04-30
IL281750A (en) 2021-05-31
TW202021382A (zh) 2020-06-01

Similar Documents

Publication Publication Date Title
JP5611489B2 (ja) 無線通信システムおよび無線通信装置
CN111108699B (zh) 空对地环境中多个网络集成的架构
US8190150B1 (en) Synchronization of mobile device information in a wireless communication network
US20100254345A1 (en) Methods for supporting mobile nodes in industrial control and automation systems and other systems and related apparatus
US10687259B2 (en) Communications with a mobile virtual base station
US9554320B2 (en) Mobile communication system, mobile communication method, mobile station, program, and recording medium
US11121016B2 (en) Method for controlling conveyance system, conveyance system, and management device
WO2018142781A1 (ja) 無人走行車、走行システム、及び、無人走行車の制御方法
WO2020066486A1 (ja) 走行システム、及び、走行システムの制御方法
WO2019054205A1 (ja) 移動ロボットシステム
US20170201918A1 (en) Method for reestablishing rrc connection in lte system and electronic device thereof
JP2018170596A (ja) 移動体、制御装置、移動体システム、及び、移動体の制御方法
US10904073B2 (en) Reassign standby user anchor controllers
WO2021049468A1 (ja) 無線通信システム、チャンネル変更方法、及び、検出器
US20190377058A1 (en) Wireless communication device
JPWO2020066458A1 (ja) 制御方法、搬送システム、及び通信デバイス
JP6480389B2 (ja) 無線通信装置、方法およびプログラム
JP6462639B2 (ja) 無線通信装置、方法およびプログラム
JP7012601B2 (ja) 無線通信システム
KR101199447B1 (ko) 망 가입 정보 변경 기능을 갖는 무선 통신 단말 및 위치 정보를 이용한 무선 통신 단말의 망 가입 정보 변경 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548263

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217007659

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019864539

Country of ref document: EP

Effective date: 20210428