WO2020066408A1 - Method of severing substrate provided with metal film - Google Patents

Method of severing substrate provided with metal film Download PDF

Info

Publication number
WO2020066408A1
WO2020066408A1 PCT/JP2019/033240 JP2019033240W WO2020066408A1 WO 2020066408 A1 WO2020066408 A1 WO 2020066408A1 JP 2019033240 W JP2019033240 W JP 2019033240W WO 2020066408 A1 WO2020066408 A1 WO 2020066408A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
metal film
break
cutting
dicing
Prior art date
Application number
PCT/JP2019/033240
Other languages
French (fr)
Japanese (ja)
Inventor
村上 健二
武田 真和
健太 田村
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to CN201980062177.5A priority Critical patent/CN112740365B/en
Priority to KR1020217008964A priority patent/KR102557292B1/en
Priority to JP2020548196A priority patent/JP7418013B2/en
Publication of WO2020066408A1 publication Critical patent/WO2020066408A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/225Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising for scoring or breaking, e.g. tiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/24Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising with cutting discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding

Definitions

  • the present invention relates to the division of a semiconductor device substrate, and more particularly to the division of a substrate having a device pattern formed on one main surface and a metal film formed on the other main surface.
  • a scribe line is formed on one main surface of the semiconductor device substrate, and a scribe step of extending a vertical crack from the scribe line is performed.
  • a method of performing a break step of breaking a semiconductor device substrate by further extending the crack in the thickness direction of the substrate by applying an external force is already known (for example, see Patent Document 1).
  • the scribe line is formed by rolling a scribing wheel (cutter wheel) along a scheduled cutting position.
  • the break is performed by bringing the blade edge of a break blade (break bar) into contact with the semiconductor device substrate along the planned cutting position on the other main surface side of the semiconductor device substrate, and then further pushing the blade edge. .
  • the formation and break of the scribe lines are performed with an adhesive dicing tape adhered to the other main surface, and the facing cross sections are separated by an expanding step of extending the dicing tape after the break.
  • a device pattern in which a unit pattern of a semiconductor device including a semiconductor layer, an electrode, and the like is two-dimensionally repeated is formed on one main surface, and a metal film is formed on the other main surface.
  • a mother substrate is divided (individualized) into individual device units.
  • the metal film in the portion can be cut (ruptured) in the subsequent expanding step, but even if the cut is made, the metal film is peeled off at the cut portion. Is liable to occur.
  • Some of the above-described semiconductor device substrates have a TEG pattern including a metal film formed at a position to be divided at the time of singulation on one main surface side. From the viewpoint of division, it can be considered that such a substrate for semiconductor device has a metal film provided on both surfaces. There is also a need to suitably divide such a semiconductor device substrate.
  • the present invention has been made in view of the above problems, and has as its object to provide a method for suitably dividing a substrate with a metal film.
  • a first aspect of the present invention provides a base material, a thin film layer provided on a first main surface side of the base material, and a thin film layer provided on a second main surface of the base material.
  • the depth of the dicing groove to be formed is A
  • the width of the dicing groove is B
  • the dicing groove is formed so as to satisfy a relational expression of B> 2Atan ( ⁇ / 2) + C, thereby exposing the base material. Let me do it.
  • a metal pattern is provided at the position where the thin film layer is to be divided.
  • a radius of curvature of a tip end of the blade of the break bar is 5 ⁇ m to 30 ⁇ m. .
  • a plurality of the predetermined scheduled cutting positions are determined at a predetermined interval d1, and the first break step and the The second breaking step is performed at an equivalent position from each of the pair of holding portions in a state where the substrate with the metal film is supported from below by a pair of holding portions separated in the horizontal direction.
  • the dicing step, the scribe step, the first break step, and the second break step Is performed in a state in which an adhesive tape is stuck to the metal film, and in the first break step, a portion other than the metal film is divided and corresponds to the planned dividing position of the metal film and the adhesive tape. A fold is formed at the position.
  • the first breaking step includes changing a posture of the substrate with a metal film to the scribing step. Is performed upside down, and the second break step is performed by inverting the posture of the substrate with a metal film from the first break step.
  • the substrate with the metal film can be satisfactorily divided without causing the metal film to peel off.
  • a substrate with a metal film, in which a metal pattern is provided at a position where the thin film layer is to be divided is more preferably and reliably provided than a case where the thin film layer is directly scribed. Can be divided.
  • FIG. 2 is a side view schematically showing a configuration of a substrate (mother substrate) 10 to be divided in the method according to the embodiment. It is a figure which shows the mode before execution of a dicing process typically. It is a figure which shows the mode after execution of a dicing process typically. It is a figure showing typically a situation before execution of scribe processing.
  • FIG. 3 is a diagram for explaining a relationship between a shape of a dicing groove formed by a dicing process and a size of a scribing wheel used in a scribe process.
  • FIG. 9 is a diagram schematically illustrating a state during execution of a scribe process.
  • FIG. 9 is a diagram schematically illustrating a state before execution of a first break process.
  • FIG. 9 is a diagram schematically illustrating a state during execution of a first break process.
  • FIG. 9 is a diagram schematically illustrating a state after execution of a first break process. It is a figure showing typically a situation before execution of the 2nd break processing.
  • FIG. 14 is a diagram schematically illustrating a state during execution of a second break process.
  • FIG. 4 is a diagram schematically illustrating the substrate after performing a second break process.
  • FIG. 1 is a side view schematically illustrating a configuration of a substrate (mother substrate) 10 to be divided in the method according to the present embodiment.
  • substrate 10 is a board
  • the substrate 10 is formed on the base material 1 and on one main surface side of the base material 1, and a unit pattern of a semiconductor device including a semiconductor layer, an electrode, and the like is repeated two-dimensionally.
  • the substrate 10 can be said to be a substrate with a metal film.
  • the substrate 1 is a single crystal substrate such as SiC or Si or a polycrystalline substrate such as ceramics.
  • the material, thickness, plane size, and the like are appropriately selected and set according to the type, application, function, and the like of the semiconductor device to be manufactured.
  • Examples of such a substrate 1 include a SiC substrate having a thickness of about 100 ⁇ m to 600 ⁇ m and a diameter of 2 to 6 inches.
  • the device pattern 2 is a portion including a semiconductor layer, an insulating layer, an electrode, and the like, which is mainly involved in expressing functions and characteristics of a semiconductor device to be manufactured.
  • the specific configuration varies depending on the type of the semiconductor device, in the present embodiment, the thin film layer 2a formed on the entire one main surface of the base material 1 and the thin film layer 2a partially formed on the upper surface of the thin film layer 2a
  • the device pattern 2 is constituted by the electrodes 2b formed on the substrate 2 and a part of the thin film layer 2a is a TEG pattern 2t as one mode of a metal pattern (a pattern including a metal thin film). .
  • the thin film layer 2a may be a single layer or a multilayer
  • the electrode 2b may be a single layer electrode or a multilayer electrode.
  • a wiring or electrode pattern may be provided inside the thin film layer 2a.
  • a mode in which a part of the substrate 1 is exposed may be adopted.
  • a plurality of electrodes 2b may be provided in one unit pattern.
  • the material and size of the thin film layer 2a and the electrode 2b are appropriately selected and set according to the type, application, function, and the like of the semiconductor device to be manufactured.
  • the material of the thin film layer 2a excluding the metal part of the TEG pattern 2t includes a nitride (for example, GaN, AlN), an oxide (for example, Al 2 O 3 , SiO 2 ), for example, an intermetallic compound (for example, GaAs), An organic compound (for example, polyimide) is exemplified.
  • the material of the metal portion of the TEG pattern 2t and the material of the electrode 2b may be appropriately selected from general metal materials.
  • the thicknesses of the thin film layer 2a and the electrode 2b are generally smaller than the thickness of the substrate 1.
  • the TEG pattern 2t is formed so as to be used for evaluation (characteristic evaluation, failure analysis, etc.) of the semiconductor device at a stage before the substrate 10 is divided. In other words, it is an unnecessary pattern in the finally obtained semiconductor device.
  • the metal film 3 is assumed to be used mainly as a back electrode. However, in the present embodiment, it is assumed that such a metal film 3 is formed on the entire surface of the other main surface of the base material 1 (more specifically, at least straddling the planned dividing position). Like the electrode 2b, the metal film 3 may be a single layer or a multilayer.
  • the material of the metal film 3 is also a metal such as Ti, Ni, Al, Cu, Ag, Pd, Au, Pt or the like, like the electrode 2b. It may be appropriately selected from common electrode materials such as alloys. Further, the thickness of the metal film 3 is usually smaller than the thickness of the substrate 1.
  • the substrate 10 having the above-described configuration is cut in the thickness direction at the planned cutting position P set at a predetermined interval in at least a predetermined direction in the plane.
  • the planned dividing position P is considered as a virtual plane along the thickness direction of the substrate 10.
  • the planned division position P is determined such that the planned division position P is located at the position of the TEG pattern 2t on the one main surface side. More specifically, at the time of designing the substrate 10, the arrangement position of the TEG pattern 2 t on the one main surface side is determined in advance within a range of a predetermined width (street width) centering on the planned division position P.
  • the dividing positions may be determined at appropriate intervals in a direction perpendicular to the direction.
  • d1 is, for example, about 1.5 mm to 5 mm, and is at least 0.5 mm or more.
  • a dicing process (grooving process) is performed on the substrate 10.
  • the dicing process is a process of exposing the substrate 1 by partially removing the thin film layer 2a in order to use the substrate 1 as a scribing target in a subsequent scribe process. That is, the dicing process is positioned as a pre-process of the scribe process.
  • FIG. 2 is a diagram schematically showing a state before execution of the dicing process.
  • FIG. 3 is a diagram schematically illustrating a state after execution of the dicing process.
  • the dicing process is performed using a dicing device (dicer) 50.
  • the dicing device 50 includes a stage 51 on which a dicing target is placed, and a dicing blade 52 for dicing the dicing target from above.
  • the stage 51 has a horizontal upper surface as a mounting surface, and is configured such that a dicing object mounted on the mounting surface can be suction-fixed by suction means (not shown).
  • the stage 51 is capable of biaxial movement and rotation in a horizontal plane by a drive mechanism (not shown).
  • the dicing blade 52 is an annular member having a cutting edge 52e on the outer peripheral surface. At least the cutting edge 52e is formed of diamond. Although the cutting edge 52e can take various cross-sectional shapes according to the dicing target, FIG. 2 illustrates a cutting edge 52e having a predetermined cutting edge angle ⁇ and an isosceles triangular shape in cross section.
  • the dicing blade 52 is held above a stage 51 by a drive mechanism (not shown) provided to be able to move up and down in the vertical direction, and the drive mechanism allows the dicing blade 52 to move in a vertical plane parallel to one horizontal movement direction of the stage 51. And can be rotated.
  • the dicing process is performed after an adhesive dicing tape (expanded tape) 4 having a plane size larger than the plane size of the substrate 10 is attached to the metal film 3 side of the substrate 10 as shown in FIG.
  • an adhesive dicing tape (expanded tape) 4 having a plane size larger than the plane size of the substrate 10 is attached to the metal film 3 side of the substrate 10 as shown in FIG.
  • the state in which the dicing tape 4 is attached may be simply referred to as the substrate 10.
  • the dicing tape 4 a known tape having a thickness of about 80 ⁇ m to 150 ⁇ m (for example, 100 ⁇ m) can be applied.
  • the substrate 10 is placed on the stage 101 in such a manner that the dicing tape 4 is brought into contact with the placement surface of the stage 101, and is fixed by suction. That is, the substrate 10 is mounted and fixed on the stage 101 in a posture in which the device pattern 2 side faces upward. At this time, the dicing blade 52 is arranged at a height that does not make contact with the substrate 10.
  • the stage 51 is appropriately operated so that the scheduled cutting position P and the rotation surface including the cutting edge 52e of the dicing blade 52 are located in the same vertical plane. Positioning is performed. By performing such positioning, the cutting edge 52e of the dicing blade 52 is located above the device pattern side end Pa of the scheduled cutting position P as shown in FIG. More specifically, the device pattern side end Pa of the scheduled cutting position P is linear, and the positioning is performed such that the dicing blade 52 is positioned above one end side thereof.
  • the dicing blade 52 When the positioning is performed, the dicing blade 52 is rotated by a driving mechanism (not shown) at a predetermined rotational speed in a vertical plane, and the cutting edge 52e is scheduled to be divided as shown by an arrow AR0 in FIG. It is lowered vertically downward toward the device pattern side end Pa at the position P.
  • the dicing blade 52 comes into contact with the substrate 10, but after the contact, the dicing blade 52 is lowered by a predetermined distance while maintaining the rotating state.
  • the descending distance is set to be equal to or longer than the thickness of the thin film layer 2a.
  • the rotation speed of the dicing blade 52 and the moving speed (dicing speed) of the stage 101 in the dicing process may be appropriately determined as long as the above-described processing can be suitably performed.
  • the rotation speed of the dicing blade 52 may be about 30000 rpm to 40000 rpm (for example, 36000 rpm), and the dicing speed may be 5 mm / s to 60 mm / s (for example, 40 mm / s).
  • the specific size of the dicing groove dg formed in the dicing process needs to be in accordance with the size of the scribing wheel 102 used in the scribing process for the base material 1 which is a subsequent process. This will be described later.
  • FIG. 4 is a diagram schematically illustrating a state before execution of the scribe process.
  • FIG. 5 is a diagram for explaining the relationship between the shape of the dicing groove dg formed by the dicing process and the size of the scribing wheel 102 used in the scribe process.
  • FIG. 6 is a diagram schematically illustrating a state during execution of the scribe process.
  • the scribe process is performed using a scribe device 100 as shown in FIG.
  • the scribing apparatus 100 includes a stage 101 on which a scribing target is placed, and a scribing wheel 102 for scribing the scribing target from above.
  • the stage 101 has a horizontal upper surface as a placement surface, and is configured such that a scribing target placed on the placement surface can be suction-fixed by suction means (not shown).
  • the stage 101 is capable of biaxial movement and rotation in a horizontal plane by a drive mechanism (not shown).
  • the scribing wheel 102 is a disc-shaped member (scribing tool) having a diameter of 2 mm to 3 mm and having a cutting edge 102 e having an isosceles triangular cross section on the outer peripheral surface. At least the cutting edge 102e is formed of diamond. It is preferable that the angle (edge angle) ⁇ of the blade edge 102e is 100 ° to 150 ° (for example, 110 °).
  • the scribing wheel 102 is rotatably held in a vertical plane parallel to one of the horizontal movement directions of the stage 101 by holding means (not shown) provided above the stage 101 so as to be vertically movable.
  • a known device can be applied as the scribe device 100.
  • the scribing process is also performed after the dicing process, with the adhesive dicing tape (expanded tape) 4 having a plane size larger than the plane size of the substrate 10 attached to the metal film 3 side of the substrate 10.
  • the dicing tape 4 is placed on the stage 101 in such a manner that the dicing tape 4 is brought into contact with the placement surface of the stage 101, and is suction-fixed. I do. That is, the substrate 10 is mounted and fixed on the stage 101 in a posture in which the device pattern 2 side faces upward, as in the dicing process. At this time, the scribing wheel 102 is arranged at a height that does not make contact with the substrate 10.
  • the stage 101 is appropriately operated, so that the positioning is performed such that the scheduled cutting position P and the rotation surface of the scribing wheel 102 are located in the same vertical plane. .
  • the cutting edge 102 e of the scribing wheel 102 is positioned above the device pattern side end Pa ′ of the scheduled cutting position P. More specifically, the device pattern side end Pa ′ of the planned dividing position P is linear in the dicing groove dg, and the positioning is performed such that the scribing wheel 102 is positioned above one end side thereof. .
  • the scribing wheel 102 When the positioning is performed, the scribing wheel 102 is vertically moved by holding means (not shown) until the cutting edge 102e is pressed against the device pattern side end Pa ′ of the planned cutting position P as indicated by an arrow AR1 in FIG. It is lowered downward.
  • the dicing groove dg is formed in the dicing process prior to the scribe process so that such interference does not occur.
  • the depth of the dicing groove dg (distance from the upper surface of the thin film layer 2a of the dicing blade 52) is A, and the width of the dicing groove dg (the direction perpendicular to the dicing direction in a horizontal plane).
  • B) the scribe error (scribe accuracy) of the scribing wheel 102 is C, and the width of the scribing wheel 102 at a distance A from the cutting edge 102e of the scribing wheel 102 is w.
  • the value of B should be at most about 50 ⁇ m to 70 ⁇ m. According to the equation (3), it is not necessary to excessively increase the value of B. In the first place, the larger the value of B, the smaller the size of the individual piece obtained by the division. Therefore, it is not realistic to increase the value of B excessively.
  • the load (scribe load) applied by the cutting edge 102e to the substrate 10 at the time of press contact in the scribing process, and the moving speed (scribe speed) of the stage 101 are different from those of the constituent materials of the substrate 10, especially of the base material 1. It may be appropriately determined depending on the material, thickness, and the like. For example, if the substrate 1 is made of SiC, the scribe load may be about 1 N to 10 N (for example, 3.5 N), and the scribe speed may be 100 mm / s to 300 mm / s (for example, 100 mm / s). I just need.
  • the scribing wheel 102 When such pressure contact is performed, the scribing wheel 102 is moved in the direction in which the device pattern side end Pa ′ at the scheduled cutting position P extends (the direction perpendicular to the drawing in FIG. 4) while maintaining the pressure contact state. . Thus, the scribing wheel 102 is relatively rolled in the direction (toward the other end of the device pattern side end Pa ').
  • a scribe line SL is formed at a position where the scribing wheel 102 is pressed.
  • the vertical cracks VC extend (penetrate) vertically downward from the scribe line SL along the planned dividing position P. It is preferable that the vertical crack VC extends at least to the middle of the substrate 1 from the viewpoint that the division is finally performed well.
  • the formation of the vertical cracks VC by the scribing process is performed at all the scheduled cutting positions P.
  • scribing is performed by bringing the scribing wheel 102 into contact with the thin film layer 2a.
  • a metal pattern such as the TEG pattern 2t is formed at the planned dividing position P
  • the penetration amount of the vertical cracks VC extending (penetrating) from the thin film layer 2a toward the substrate 1 becomes unstable. Occurs.
  • a defect may occur during a break process in a subsequent process.
  • the substrate 1 is exposed by removing the metal pattern such as the TEG pattern 2t by the dicing process, and the scribing process is performed on the substrate 1.
  • the permeation amount of the vertical cracks VC in the base material 1 is stabilized as compared with the case where the scribe processing is performed while the thin film layer 2a is left.
  • the effect of suppressing the occurrence of defects in the break processing can be obtained. That is, it is possible to divide the substrate 10 better and more reliably than when the thin film layer 2a is directly scribed.
  • FIG. 7 is a diagram schematically illustrating a state before execution of the first break processing.
  • FIG. 8 is a diagram schematically illustrating a state during execution of the first break processing.
  • FIG. 9 is a diagram schematically illustrating a state after the execution of the first break processing.
  • the break device 200 includes a holding unit 201 on which a break target is placed, and a break bar 202 for performing a break process.
  • the holding unit 201 includes a pair of unit holding units 201a and 201b.
  • the unit holding parts 201a and 201b are provided to be separated from each other by a predetermined distance (separation distance) d2 in the horizontal direction, and the horizontal upper surfaces of the two at the same height position constitute one break target as a whole. Used as a mounting surface for In other words, the break target is placed on the holding unit 201 with a part thereof being exposed downward.
  • the holding unit 201 is made of, for example, metal.
  • the holding unit 201 is configured so that a pair of unit holding units 201a and 201b can approach and separate from each other in one predetermined direction (holding unit moving direction) in a horizontal plane. That is, in the break device 200, the separation distance d2 is variable.
  • the left-right direction in the drawing is the holding unit advance / retreat direction.
  • a drive mechanism (not shown) enables an alignment operation of a break target placed on the placement surface in a horizontal plane.
  • the break bar 202 is a plate-shaped metal (for example, a cemented carbide) member provided with a cutting edge 202e having an isosceles triangular cross section in a cross-sectional view and extending in a cutting direction.
  • FIG. 7 shows the break bar 202 so that the blade length direction is perpendicular to the drawing.
  • the angle ⁇ of the blade edge 202e (blade angle) is 5 ° to 90 °, and preferably 5 ° to 30 ° (for example, 15 °).
  • Such a preferable cutting edge angle ⁇ is smaller than 60 ° to 90 ° which is the cutting angle of the break bar used in the conventional general break processing.
  • the tip end of the cutting edge 202e is a minute curved surface having a radius of curvature of about 5 ⁇ m to 30 ⁇ m (for example, 15 ⁇ m). Such a radius of curvature is also smaller than the radius of curvature of a break bar used in conventional general break processing, which is 50 ⁇ m to 100 ⁇ m.
  • the break bar 202 is held by a holding means (not shown) above a middle position (an equivalent position) between the pair of unit holding portions 201a and 201b in the holding portion moving direction and in a vertical plane perpendicular to the holding portion moving direction. It is provided to be able to move up and down in the vertical direction.
  • the first break process using the break device 200 having the above-described configuration includes the surface on the device pattern 2 side of the substrate 10 after the scribe process with the dicing tape 4 attached. This is performed after attaching the protective film 5 in a mode of covering the side portions.
  • the substrate having the protective film 5 attached thereto may be simply referred to as the substrate 10.
  • the protective film 5 a known film having a thickness of about 10 ⁇ m to 75 ⁇ m (for example, 25 ⁇ m) can be applied.
  • the substrate 10 is placed on the holding unit 201 in such a manner that the protective film 5 is brought into contact with the mounting surface of the holding unit 201. That is, the substrate 10 is placed on the holding unit 201 in a posture in which the device pattern 2 side is downward and the metal film 3 side is upward, that is, in a posture that is upside down from the time of the scribe processing. At this time, the break bar 202 is arranged at a height that does not make contact with the substrate 10.
  • the separation distance d2 is equal to the spacing (pitch) d1 of the scheduled cutting positions P of the substrate 10.
  • the substrate 10 is positioned by operating the drive mechanism appropriately. Specifically, in the scribing process, the extending direction of the scheduled cutting position P of the substrate 10 provided with the scribe line SL and the vertical crack VC is made to coincide with the blade extending direction of the break bar 202. By performing such positioning, the cutting edge 202e of the break bar 202 is positioned above the metal film side end Pb of the planned cutting position P, as shown in FIG.
  • the break bar 202 is directed toward the metal film side end portion Pb (more specifically, the upper surface of the dicing tape 4) at the cutting position P at which the cutting edge 202e is to be cut. Down vertically.
  • the break bar 202 is lowered by a predetermined distance even after the cutting edge 202e comes into contact with the metal film side end Pb of the planned cutting position P. That is, it is pushed into the substrate 10 by a predetermined pushing amount. It is preferable that the pushing amount is 0.05 mm to 0.2 mm (for example, 0.1 mm).
  • the cutting edge 202 e of the break bar 202 is used as a point of action with respect to the substrate 10, and the inner ends f (fa, fb) of the mounting surfaces of the pair of unit holders 201 a, 201 b.
  • a three-point bending situation with the fulcrum as a fulcrum occurs.
  • tensile stress acts on the substrate 10 in two opposite directions, and as a result, the vertical crack VC is further extended, and the substrate 1 and the device pattern 2 is once separated into two right and left portions, and a gap G is formed between the two portions.
  • the metal film 3 does not reach the separation at this point, but is merely bent by pushing the cutting edge 202e. That is, when the break bar 202 is pushed, the bent portion B is formed on the metal film 3 and the dicing tape 4 located between the cutting edge 202 e and the metal film 3.
  • the gap G is closed and the cross section D where the ends of the left and right portions abut is formed.
  • the bent portion B remains in the metal film 3 and the dicing tape 4.
  • the bent portion B is a portion where the material strength is weaker than the other flat metal film 3. Such a bent portion B is visually recognized as a fold.
  • the first break process performed in the above-described manner surely causes the substrate 1 and the device pattern 2 to be separated from each other, and also reliably forms a bent portion B that can be visually recognized as a fold in the metal film 3. It is intended to be As a condition for suitably realizing these, in the first break processing, unlike the general break processing, the separation distance d2 between the pair of unit holding units 201a and 201b is set to be equal to the distance d1 of the scheduled dividing position P.
  • the radius of curvature of the tip portion of the cutting edge 202e is 5 ⁇ m to 30 ⁇ m. Further, it is preferable that the edge angle ⁇ is 5 ° to 30 °.
  • FIG. 10 is a diagram schematically showing a state before execution of the second break processing.
  • FIG. 11 is a diagram schematically showing a state during execution of the second break processing.
  • FIG. 12 is a diagram schematically illustrating the substrate 10 after the second break processing is performed.
  • the substrate 10 is mounted on the holding unit 201 in a state where the dicing tape 4 is in contact with the mounting surface of the holding unit 201 with the 201a and 201b arranged. That is, the substrate 10 is placed on the holding unit 201 in a posture that is upside down from that in the first break processing.
  • d1 is, for example, about 2.11 mm to 2.36 mm
  • d2 is 3.165 mm to 3.54 mm.
  • it is sufficient that d2 1.0 d1 to 1.75 d1.
  • d2 in the second break processing is made larger than d2 in the first break processing.
  • the break bar 202 is arranged at a height that does not make contact with the substrate 10.
  • the substrate 10 is positioned by operating the drive mechanism appropriately. Specifically, the extending directions of the dividing plane D and the bent part B are made to coincide with the blade extending direction of the break bar 202. At this time, the visible bent portion B formed on the metal film 3 can be effectively used as an index for alignment.
  • the cutting edge 202 e of the break bar 202 is positioned above the upper end of the dividing section D, which was originally the device pattern side end Pa ′ of the planned cutting position P. Will do.
  • the break bar 202 is attached to the device pattern side end Pa ′ (more specifically, the upper surface of the protective film 5) at the position P at which the cutting edge 202e is to be divided. It is lowered vertically downward.
  • the lowering of the break bar 202 is performed until the cutting edge 202e pushes the substrate 1 exposed in the dicing groove dg through the protective film 5 by a predetermined pushing amount as shown in FIG.
  • the device pattern 2 and the substrate 1 are already divided into two, and a force is applied to the section D from above.
  • tensile stress acts on the metal film 3 in two opposite directions below the dividing plane D.
  • the bent portion B of the metal film 3 is weaker in material strength than other portions, finally, as shown in FIG. Then, a state in which the bent portion B remains only in the dicing tape 4 by being divided at the dicing tape D is easily and reliably realized.
  • the dicing tape 4 After the end of the second break processing, as shown by an arrow AR7 in FIG. 12, by applying a tensile stress to the dicing tape 4 in the in-plane direction, the dicing tape 4 is expanded, and the substrate 10 By the way, it is separated into two parts 10A and 10B. Thus, the substrate 10 is divided into two.
  • a semiconductor device substrate having a device pattern on one main surface of a base material and a metal film on the other main surface, which is to be divided on the device pattern side Even if a metal pattern such as a TEG pattern is formed at a position, the cutting can be performed satisfactorily and reliably.
  • the scribing process is performed by the scribing wheel. It may be a mode of forming.
  • the vertical crack VC has already been formed in the base material 1 and the bent portion B has been formed in the metal film 3, so that in the second break step, the same as the conventional cutting process is performed.
  • a break bar having a cutting edge angle ⁇ and a radius of curvature at the tip may be used.
  • the dicing process is performed using the dicing blade 52, but the dicing groove may be formed by laser irradiation or the like.
  • the break device used in the first break step and the second break step includes a holding unit 201 including a pair of unit holding units 201a and 201b separated by a predetermined distance in the horizontal direction.
  • a break device provided with a holding portion made of an elastic body that contacts and holds the entire surface of the substrate may be used.
  • the pushing amount in the first break process is 0.05 mm to 0.2 mm (for example, 0.1 mm), and the pushing amount in the second break process is 0, which is about half the pushing amount in the first break process. It is preferably between 0.02 mm and 0.1 mm (eg 0.05 mm).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Dicing (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Inorganic Insulating Materials (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

Provided is a method that is capable of suitably severing a substrate provided with a metal film. This method of severing a substrate provided with a metal film includes: a dicing step of dicing a first major surface side of a substrate having a thin film layer at a specific intended severing position to expose the substrate; a scribing step of forming a scribe line by scribing the exposed substrate and extending a vertical crack from the scribe line toward the inside of the substrate along the intended severing position; a first breaking step of further extending the vertical crack by abutting a breaking bar against the substrate from a second major surface side having a metal film to sever portions of the substrate other than the metal film at the intended severing position; and a second breaking step of severing the metal film at the intended severing position by abutting the breaking bar against the substrate from the first major surface side.

Description

メタル膜付き基板の分断方法Cutting method of substrate with metal film
 本発明は、半導体デバイス用基板の分断に関し、特に、一方主面にデバイスパターンが形成され、他方主面にメタル膜が形成された基板の分断に関する。 The present invention relates to the division of a semiconductor device substrate, and more particularly to the division of a substrate having a device pattern formed on one main surface and a metal film formed on the other main surface.
 例えばSiC(炭化硅素)基板などの半導体デバイス用基板を分断する手法として、半導体デバイス用基板の一方主面にスクライブラインを形成し、該スクライブラインから垂直クラックを伸展させるスクライブ工程を行った後、外力の印加によって係るクラックを基板厚み方向にさらに伸展させることにより半導体デバイス用基板をブレークするブレーク工程を行う、という手法がすでに公知である(例えば、特許文献1参照)。 As a method of dividing a semiconductor device substrate such as a SiC (silicon carbide) substrate, for example, a scribe line is formed on one main surface of the semiconductor device substrate, and a scribe step of extending a vertical crack from the scribe line is performed. A method of performing a break step of breaking a semiconductor device substrate by further extending the crack in the thickness direction of the substrate by applying an external force is already known (for example, see Patent Document 1).
 スクライブラインの形成は、スクライビングホイール(カッターホイール)を分断予定位置に沿って圧接転動させることにより行われる。 The scribe line is formed by rolling a scribing wheel (cutter wheel) along a scheduled cutting position.
 ブレークは、半導体デバイス用基板の他方主面側において、ブレーク刃(ブレークバー)の刃先を分断予定位置に沿って半導体デバイス用基板に当接させたうえで、該刃先をさらに押し込むことによって行われる。 The break is performed by bringing the blade edge of a break blade (break bar) into contact with the semiconductor device substrate along the planned cutting position on the other main surface side of the semiconductor device substrate, and then further pushing the blade edge. .
 また、これらスクライブラインの形成およびブレークは、他方主面に粘着性を有するダイシングテープを貼り付けた状態で行われ、ブレーク後に係るダイシングテープを伸張させるエキスパンド工程によって対向する分断面が離隔させられる。 The formation and break of the scribe lines are performed with an adhesive dicing tape adhered to the other main surface, and the facing cross sections are separated by an expanding step of extending the dicing tape after the break.
 半導体デバイス用基板の分断の一態様として、一方主面に半導体層や電極などを含む半導体デバイスの単位パターンが2次元的に繰り返されたデバイスパターンが形成され、他方主面にメタル膜が形成された母基板を、個々のデバイス単位に分断する(個片化する)というものがある。 As one mode of dividing the semiconductor device substrate, a device pattern in which a unit pattern of a semiconductor device including a semiconductor layer, an electrode, and the like is two-dimensionally repeated is formed on one main surface, and a metal film is formed on the other main surface. There is a method in which a mother substrate is divided (individualized) into individual device units.
 係る分断を、特許文献1に開示されているような従来の手法で行う場合、ブレーク工程後に、メタル膜が分断されるべき箇所において完全に分断されず連続したままとなっている、いわば薄皮残りともいえるような状態が発生することがある。 When such cutting is performed by a conventional method as disclosed in Patent Literature 1, after the break step, the metal film remains continuous without being completely cut at a place where the metal film is to be cut, so-called thin skin residue Such a situation may occur.
 なお、このような薄皮残りの部分が生じたとしても、その後のエキスパンド工程によって当該部分のメタル膜は分断(破断)され得るが、仮に分断がなされたとしても、係る分断箇所においてメタル膜の剥がれが発生しやすいという問題がある。 In addition, even if such a thin-skin remaining portion occurs, the metal film in the portion can be cut (ruptured) in the subsequent expanding step, but even if the cut is made, the metal film is peeled off at the cut portion. Is liable to occur.
 また、上述のような半導体デバイス用基板のなかには、一方主面側における個片化時の分断予定位置に、メタル膜を含むTEGパターンが形成されているものがある。係る半導体デバイス用基板は、分断という観点からみれば、両面にメタル膜が設けられたものと捉えることが出来る。そして、このような半導体用デバイス基板についても、好適に分断を行いたいというニーズがある。 が あ る Some of the above-described semiconductor device substrates have a TEG pattern including a metal film formed at a position to be divided at the time of singulation on one main surface side. From the viewpoint of division, it can be considered that such a substrate for semiconductor device has a metal film provided on both surfaces. There is also a need to suitably divide such a semiconductor device substrate.
特開2012-146879号公報JP 2012-146879 A
 本発明は上記課題に鑑みてなされたものであり、メタル膜付き基板を好適に分断できる方法を提供することを目的とする。 The present invention has been made in view of the above problems, and has as its object to provide a method for suitably dividing a substrate with a metal film.
 上記課題を解決するため、本発明の第1の態様は、基材と、前記基材の第1の主面側に設けられた薄膜層と、前記基材の第2の主面に設けられたメタル膜とを備える、メタル膜付き基板を分断する方法が、前記第1の主面側を所定の分断予定位置においてダイシングすることにより、前記基材を露出させるダイシング工程と、前記ダイシング工程によって露出した前記基材をスクライビングツールによってスクライブすることによりスクライブラインを形成し、前記スクライブラインから前記分断予定位置に沿って前記基材の内部に対し垂直クラックを伸展させるスクライブ工程と、前記第2の主面側から前記メタル膜付き基板に対しブレークバーを当接させることによって前記垂直クラックをさらに伸展させることで、前記メタル膜付き基板の前記メタル膜以外の部分を前記分断予定位置において分断する第1ブレーク工程と、前記第1の主面側から前記メタル膜付き基板に対し前記ブレークバーを当接させることによって前記メタル膜を前記分断予定位置において分断する第2ブレーク工程と、を備えるようにした。 In order to solve the above problems, a first aspect of the present invention provides a base material, a thin film layer provided on a first main surface side of the base material, and a thin film layer provided on a second main surface of the base material. A dicing step of exposing the base material by dicing the first main surface side at a predetermined dividing scheduled position, the dicing step comprising: Forming a scribe line by scribing the exposed base material with a scribing tool, and extending a vertical crack from the scribe line to the inside of the base material along the scheduled cutting position; and The vertical cracks are further extended by bringing a break bar into contact with the substrate with the metal film from the main surface side, so that the metal film is attached. A first break step of cutting a portion of the plate other than the metal film at the expected cutting position; and contacting the break bar with the metal film-attached substrate from the first main surface side to thereby form the metal film. And a second break step of dividing at the planned dividing position.
 本発明の第2の態様は、第1の態様に係るメタル膜付き基板の分断方法において、前記ダイシング工程においては、形成されるダイシング溝の深さをA、前記ダイシング溝の幅をB、前記スクライビングツールのスクライブ誤差をC、前記スクライビングツールの刃先角をδとするとき、B>2Atan(δ/2)+Cなる関係式をみたすように前記ダイシング溝を形成することによって、前記基材を露出させる、ようにした。 According to a second aspect of the present invention, in the method for dividing a substrate with a metal film according to the first aspect, in the dicing step, the depth of the dicing groove to be formed is A, the width of the dicing groove is B, When the scribing error of the scribing tool is C and the edge angle of the scribing tool is δ, the dicing groove is formed so as to satisfy a relational expression of B> 2Atan (δ / 2) + C, thereby exposing the base material. Let me do it.
 本発明の第3の態様は、第1または第2の態様に係るメタル膜付き基板の分断方法において、前記薄膜層の前記分断予定位置に金属パターンが設けられてなる、ようにした。 According to a third aspect of the present invention, in the method for dividing a substrate provided with a metal film according to the first or second aspect, a metal pattern is provided at the position where the thin film layer is to be divided.
 本発明の第4の態様は、第1ないし第3の態様のいずれかに係るメタル膜付き基板の分断方法において、前記ブレークバーの刃先先端部の曲率半径が5μm~30μmである、ようにした。 According to a fourth aspect of the present invention, in the cutting method of a substrate with a metal film according to any one of the first to third aspects, a radius of curvature of a tip end of the blade of the break bar is 5 μm to 30 μm. .
 本発明の第5の態様は、第4の態様に係るメタル膜付き基板の分断方法において、前記所定の分断予定位置が所定の間隔d1にて複数定められており、前記第1ブレーク工程および前記第2ブレーク工程は、水平方向において離隔する一対の保持部によって前記メタル膜付き基板を下方から支持した状態で、前記一対の保持部のそれぞれから等価な位置において行うようにし、前記一対の保持部の離隔距離d2を、前記第1ブレーク工程においてはd2=0.5d1~1.25d1とし、前記第2ブレーク工程においてはd2=1.0d1~1.75d1とする、ようにした。 According to a fifth aspect of the present invention, in the method for dividing a substrate with a metal film according to the fourth aspect, a plurality of the predetermined scheduled cutting positions are determined at a predetermined interval d1, and the first break step and the The second breaking step is performed at an equivalent position from each of the pair of holding portions in a state where the substrate with the metal film is supported from below by a pair of holding portions separated in the horizontal direction. Is set to d2 = 0.5d1 to 1.25d1 in the first break step, and d2 = 1.0d1 to 1.75d1 in the second break step.
 本発明の第6の態様は、第1ないし第5の態様のいずれかに係るメタル膜付き基板の分断方法において、前記ダイシング工程、前記スクライブ工程、前記第1ブレーク工程、および前記第2ブレーク工程を、前記メタル膜に粘着性テープを貼付した状態で行い、前記第1ブレーク工程においては、前記メタル膜以外の部分を分断するとともに前記メタル膜および前記粘着性テープの前記分断予定位置に相当する位置に折り目を形成する、ようにした。 According to a sixth aspect of the present invention, in the method for cutting a substrate with a metal film according to any one of the first to fifth aspects, the dicing step, the scribe step, the first break step, and the second break step Is performed in a state in which an adhesive tape is stuck to the metal film, and in the first break step, a portion other than the metal film is divided and corresponds to the planned dividing position of the metal film and the adhesive tape. A fold is formed at the position.
 本発明の第7の態様は、第1ないし第6の態様のいずれかに係るメタル膜付き基板の分断方法において、前記第1ブレーク工程は、前記メタル膜付き基板の姿勢を前記スクライブ工程のときとは上下反転させて行い、前記第2ブレーク工程は、前記メタル膜付き基板の姿勢を前記第1ブレーク工程のときとは上下反転させて行う、ようにした。 According to a seventh aspect of the present invention, in the method for dividing a substrate with a metal film according to any one of the first to sixth aspects, the first breaking step includes changing a posture of the substrate with a metal film to the scribing step. Is performed upside down, and the second break step is performed by inverting the posture of the substrate with a metal film from the first break step.
 本発明の第1ないし第7の態様によれば、メタル膜に剥がれを生じさせることなく、メタル膜付き基板を良好に分断することができる。 According to the first to seventh aspects of the present invention, the substrate with the metal film can be satisfactorily divided without causing the metal film to peel off.
 特に、第3の態様によれば、薄膜層の分断予定位置に金属パターンが設けられてなるメタル膜付き基板について、薄膜層を直接にスクライブする場合よりも良好にかつ確実に、メタル膜付き基板を分断することができる。 In particular, according to the third aspect, a substrate with a metal film, in which a metal pattern is provided at a position where the thin film layer is to be divided, is more preferably and reliably provided than a case where the thin film layer is directly scribed. Can be divided.
実施の形態に係る方法における分断の対象である基板(母基板)10の構成を模式的に示す側面図である。FIG. 2 is a side view schematically showing a configuration of a substrate (mother substrate) 10 to be divided in the method according to the embodiment. ダイシング処理の実行前の様子を模式的に示す図である。It is a figure which shows the mode before execution of a dicing process typically. ダイシング処理の実行後の様子を模式的に示す図である。It is a figure which shows the mode after execution of a dicing process typically. スクライブ処理の実行前の様子を模式的に示す図である。It is a figure showing typically a situation before execution of scribe processing. ダイシング処理によって形成されるダイシング溝の形状と、スクライブ処理において用いるスクライビングホイールのサイズとの関係を説明するための図である。FIG. 3 is a diagram for explaining a relationship between a shape of a dicing groove formed by a dicing process and a size of a scribing wheel used in a scribe process. スクライブ処理の実行中の様子を模式的に示す図である。FIG. 9 is a diagram schematically illustrating a state during execution of a scribe process. 第1ブレーク処理の実行前の様子を模式的に示す図である。FIG. 9 is a diagram schematically illustrating a state before execution of a first break process. 第1ブレーク処理の実行中の様子を模式的に示す図である。FIG. 9 is a diagram schematically illustrating a state during execution of a first break process. 第1ブレーク処理の実行後の様子を模式的に示す図である。FIG. 9 is a diagram schematically illustrating a state after execution of a first break process. 第2ブレーク処理の実行前の様子を模式的に示す図である。It is a figure showing typically a situation before execution of the 2nd break processing. 第2ブレーク処理の実行中の様子を模式的に示す図である。FIG. 14 is a diagram schematically illustrating a state during execution of a second break process. 第2ブレーク処理を実行後の基板10を模式的に示す図である。FIG. 4 is a diagram schematically illustrating the substrate after performing a second break process.
  <半導体用デバイス基板>
 図1は、本実施の形態に係る方法における分断の対象である基板(母基板)10の構成を模式的に示す側面図である。基板10は、その分断により得られる個片がそれぞれに半導体デバイスをなすことが予定されている半導体デバイス用基板である。本実施の形態においては、係る基板10が、基材1と、該基材1の一方主面側に形成されてなり、半導体層や電極などを含む半導体デバイスの単位パターンが2次元的に繰り返されたデバイスパターン2と、基材1の他方主面側に形成されてなるメタル膜3とを有するものとする。換言すれば、基板10は、メタル膜付き基板といえる。
<Semiconductor device substrate>
FIG. 1 is a side view schematically illustrating a configuration of a substrate (mother substrate) 10 to be divided in the method according to the present embodiment. The board | substrate 10 is a board | substrate for semiconductor devices in which the piece obtained by the division | segmentation is going to form a semiconductor device each. In the present embodiment, the substrate 10 is formed on the base material 1 and on one main surface side of the base material 1, and a unit pattern of a semiconductor device including a semiconductor layer, an electrode, and the like is repeated two-dimensionally. Device pattern 2 and a metal film 3 formed on the other main surface side of the substrate 1. In other words, the substrate 10 can be said to be a substrate with a metal film.
 基材1は、SiCやSiなどの単結晶またはセラミックスなどの多結晶の基板である。その材質や、厚みおよび平面サイズなどは、作製しようとする半導体デバイスの種類、用途、機能等に応じて適宜に選択・設定される。係る基材1としては、例えば、厚みが100μm~600μm程度の、2~6インチ径のSiC基板などが例示される。 The substrate 1 is a single crystal substrate such as SiC or Si or a polycrystalline substrate such as ceramics. The material, thickness, plane size, and the like are appropriately selected and set according to the type, application, function, and the like of the semiconductor device to be manufactured. Examples of such a substrate 1 include a SiC substrate having a thickness of about 100 μm to 600 μm and a diameter of 2 to 6 inches.
 デバイスパターン2は、作製対象たる半導体デバイスにおいてその機能や特性の発現に主に関わる、半導体層、絶縁層、電極などを含む部位である。その具体的構成は、半導体デバイスの種類によって様々であるが、本実施の形態においては、基材1の一方主面の全面に形成された薄膜層2aと、該薄膜層2aの上面に部分的に形成された電極2bとによってデバイスパターン2が構成されており、かつ、薄膜層2aの一部が、金属パターン(金属薄膜を含むパターン)の一態様としてのTEGパターン2tである場合を想定する。ここで、薄膜層2aは単層であっても多層であってもよく、電極2bについても単層電極であっても多層電極であってもよい。また、薄膜層2aの内部に配線や電極のパターンが設けられていてもよい。さらには、薄膜層2aが基材1の全面を覆う代わりに、基材1の一部が露出する態様であってもよい。あるいはまた、1つの単位パターンに電極2bが複数設けられていてもよい。 (4) The device pattern 2 is a portion including a semiconductor layer, an insulating layer, an electrode, and the like, which is mainly involved in expressing functions and characteristics of a semiconductor device to be manufactured. Although the specific configuration varies depending on the type of the semiconductor device, in the present embodiment, the thin film layer 2a formed on the entire one main surface of the base material 1 and the thin film layer 2a partially formed on the upper surface of the thin film layer 2a It is assumed that the device pattern 2 is constituted by the electrodes 2b formed on the substrate 2 and a part of the thin film layer 2a is a TEG pattern 2t as one mode of a metal pattern (a pattern including a metal thin film). . Here, the thin film layer 2a may be a single layer or a multilayer, and the electrode 2b may be a single layer electrode or a multilayer electrode. Further, a wiring or electrode pattern may be provided inside the thin film layer 2a. Further, instead of the thin film layer 2a covering the entire surface of the substrate 1, a mode in which a part of the substrate 1 is exposed may be adopted. Alternatively, a plurality of electrodes 2b may be provided in one unit pattern.
 薄膜層2aと電極2bの材質やサイズは、作製しようとする半導体デバイスの種類、用途、機能等に応じて適宜に選択・設定される。例えば、TEGパターン2tの金属部分を除く薄膜層2aの材質としては、窒化物(例えばGaN、AlN)、酸化物(例えばAl、SiO)、例えば、金属間化合物(例えばGaAs)、有機化合物(例えばポリイミド)などが例示される。TEGパターン2tの金属部分および電極2bの材質は、一般的な金属材料から適宜に選択されてよい。例えば、Ti、Ni、Al、Cu、Ag、Pd、Au、Ptなどの金属や、それらの合金などが例示される。また、薄膜層2aおよび電極2bの厚みは通常、基材1の厚みに比して小さい。 The material and size of the thin film layer 2a and the electrode 2b are appropriately selected and set according to the type, application, function, and the like of the semiconductor device to be manufactured. For example, the material of the thin film layer 2a excluding the metal part of the TEG pattern 2t includes a nitride (for example, GaN, AlN), an oxide (for example, Al 2 O 3 , SiO 2 ), for example, an intermetallic compound (for example, GaAs), An organic compound (for example, polyimide) is exemplified. The material of the metal portion of the TEG pattern 2t and the material of the electrode 2b may be appropriately selected from general metal materials. For example, metals such as Ti, Ni, Al, Cu, Ag, Pd, Au, and Pt, and alloys thereof are exemplified. Further, the thicknesses of the thin film layer 2a and the electrode 2b are generally smaller than the thickness of the substrate 1.
 TEGパターン2tは、基板10の分断前の段階における半導体デバイスの評価(特性評価、不良解析等)に使用するべく、形成されてなるものである。換言すれば、最終的に得られる半導体デバイスにおいては不要なパターンである。 The TEG pattern 2t is formed so as to be used for evaluation (characteristic evaluation, failure analysis, etc.) of the semiconductor device at a stage before the substrate 10 is divided. In other words, it is an unnecessary pattern in the finally obtained semiconductor device.
 メタル膜3は、主として裏面電極としての使用が想定されるものである。ただし、本実施の形態では、係るメタル膜3が、基材1の他方主面の全面に(より詳細には、少なくとも分断予定位置を跨がって)形成されてなるものとする。メタル膜3も、電極2bと同様、単層でも多層であってもよく、その材質も電極2bと同様、Ti、Ni、Al、Cu、Ag、Pd、Au、Ptなどの金属や、それらの合金など、一般的な電極材料から適宜に選択されてよい。また、メタル膜3の厚みも通常、基材1の厚みに比して小さい。 (4) The metal film 3 is assumed to be used mainly as a back electrode. However, in the present embodiment, it is assumed that such a metal film 3 is formed on the entire surface of the other main surface of the base material 1 (more specifically, at least straddling the planned dividing position). Like the electrode 2b, the metal film 3 may be a single layer or a multilayer. The material of the metal film 3 is also a metal such as Ti, Ni, Al, Cu, Ag, Pd, Au, Pt or the like, like the electrode 2b. It may be appropriately selected from common electrode materials such as alloys. Further, the thickness of the metal film 3 is usually smaller than the thickness of the substrate 1.
 本実施の形態においては、以上のような構成の基板10が、少なくとも面内の所定の方向において所定の間隔にて定められた分断予定位置Pにおいて厚み方向に分断されるものとする。分断予定位置Pは、基板10の厚み方向に沿った仮想面として観念される。ただし、本実施の形態に係る基板10においては、一方主面側におけるTEGパターン2tの配置位置に分断予定位置Pが位置するように、分断予定位置Pが定められるものとする。より詳細には、基板10の設計時点であらかじめ、一方主面側におけるTEGパターン2tの配置位置が、分断予定位置Pを中心とする所定幅(ストリート幅)の範囲内に定められる。 In the present embodiment, it is assumed that the substrate 10 having the above-described configuration is cut in the thickness direction at the planned cutting position P set at a predetermined interval in at least a predetermined direction in the plane. The planned dividing position P is considered as a virtual plane along the thickness direction of the substrate 10. However, in the substrate 10 according to the present embodiment, the planned division position P is determined such that the planned division position P is located at the position of the TEG pattern 2t on the one main surface side. More specifically, at the time of designing the substrate 10, the arrangement position of the TEG pattern 2 t on the one main surface side is determined in advance within a range of a predetermined width (street width) centering on the planned division position P.
 これに加えて、平面視矩形状の半導体デバイスを得るべく、当該方向に直交する方向においても適宜の間隔にて分断予定位置が定められてよい。 に In addition, in order to obtain a semiconductor device having a rectangular shape in a plan view, the dividing positions may be determined at appropriate intervals in a direction perpendicular to the direction.
 なお、図1には、図面視左右方向において間隔(ピッチ)d1で互いに離隔する3つの分断予定位置Pを、基板10を超えて延在する一点鎖線として示しているが、実際には、一方向についてさらに多くの分断予定位置Pが規定されてよい。d1は例えば1.5mm~5mm程度であり、少なくとも0.5mm以上である。 In FIG. 1, three planned dividing positions P separated from each other at a distance (pitch) d1 in the horizontal direction in the drawing are shown as dashed lines extending beyond the substrate 10, but actually, More scheduled dividing positions P may be defined for the direction. d1 is, for example, about 1.5 mm to 5 mm, and is at least 0.5 mm or more.
  <ダイシング処理>
 以降、本実施の形態に係る分断方法において基板10に対して実施する分断処理の具体的内容につき、順次に説明する。
<Dicing process>
Hereinafter, specific contents of the dividing process performed on the substrate 10 in the dividing method according to the present embodiment will be sequentially described.
 まずは、基板10に対しダイシング処理(溝入れ処理)を行う。ダイシング処理は、後工程であるスクライブ処理におけるスクライブ対象を基材1とするために、薄膜層2aを部分的に除去して基材1を露出させる処理である。すなわち、ダイシング処理は、スクライブ処理の前処理として位置付けられる。 First, a dicing process (grooving process) is performed on the substrate 10. The dicing process is a process of exposing the substrate 1 by partially removing the thin film layer 2a in order to use the substrate 1 as a scribing target in a subsequent scribe process. That is, the dicing process is positioned as a pre-process of the scribe process.
 図2は、ダイシング処理の実行前の様子を模式的に示す図である。図3は、ダイシング処理の実行後の様子を模式的に示す図である。 FIG. 2 is a diagram schematically showing a state before execution of the dicing process. FIG. 3 is a diagram schematically illustrating a state after execution of the dicing process.
 図2に示すように、本実施の形態において、ダイシング処理は、ダイシング装置(ダイサー)50を用いて行う。ダイシング装置50は、ダイシング対象物が載置されるステージ51と、ダイシング対象物を上方からダイシングするダイシングブレード52とを備える。 As shown in FIG. 2, in the present embodiment, the dicing process is performed using a dicing device (dicer) 50. The dicing device 50 includes a stage 51 on which a dicing target is placed, and a dicing blade 52 for dicing the dicing target from above.
 ステージ51は、水平な上面を被載置面として有し、係る被載置面に載置されたダイシング対象物を図示しない吸引手段によって吸引固定できるように構成されている。また、ステージ51は、図示しない駆動機構によって水平面内における二軸移動動作や回転動作が可能とされている。 The stage 51 has a horizontal upper surface as a mounting surface, and is configured such that a dicing object mounted on the mounting surface can be suction-fixed by suction means (not shown). The stage 51 is capable of biaxial movement and rotation in a horizontal plane by a drive mechanism (not shown).
 一方、ダイシングブレード52は、外周面に刃先52eを有する円環状の部材である。少なくとも刃先52eはダイヤモンドにて形成されてなる。刃先52eはダイシング対象物に応じて種々の断面形状を取り得るが、図2においては、所定の刃先角αを有する断面視二等辺三角形状の刃先52eを例示している。係るダイシングブレード52は、ステージ51の上方において、鉛直方向に昇降可能に設けられた図示しない駆動機構により保持され、かつ、係る駆動機構によって、ステージ51の一方の水平移動方向と平行な鉛直面内において回転可能とされてなる。 On the other hand, the dicing blade 52 is an annular member having a cutting edge 52e on the outer peripheral surface. At least the cutting edge 52e is formed of diamond. Although the cutting edge 52e can take various cross-sectional shapes according to the dicing target, FIG. 2 illustrates a cutting edge 52e having a predetermined cutting edge angle α and an isosceles triangular shape in cross section. The dicing blade 52 is held above a stage 51 by a drive mechanism (not shown) provided to be able to move up and down in the vertical direction, and the drive mechanism allows the dicing blade 52 to move in a vertical plane parallel to one horizontal movement direction of the stage 51. And can be rotated.
 以上のような機能を有するのであれば、ダイシング装置50としては、公知のものを適用可能である。 公 知 A known device can be applied as the dicing device 50 as long as it has the functions described above.
 ダイシング処理は、図2に示すように、基板10のメタル膜3側に、基板10の平面サイズよりも大きな平面サイズを有する粘着性のダイシングテープ(エキスパンドテープ)4を貼付したうえで行う。なお、以降の説明においては、係るダイシングテープ4を貼付した状態のものについても、単に基板10と称することがある。ダイシングテープ4には、厚みが80μm~150μm程度(例えば100μm)の公知のものを適用可能である。 (2) The dicing process is performed after an adhesive dicing tape (expanded tape) 4 having a plane size larger than the plane size of the substrate 10 is attached to the metal film 3 side of the substrate 10 as shown in FIG. In the following description, the state in which the dicing tape 4 is attached may be simply referred to as the substrate 10. As the dicing tape 4, a known tape having a thickness of about 80 μm to 150 μm (for example, 100 μm) can be applied.
 具体的には、まず、図2に示すように、係るダイシングテープ4をステージ101の被載置面と接触させる態様にて基板10をステージ101上に載置し、吸引固定する。すなわち、基板10は、デバイスパターン2の側が上方を向く姿勢にて、ステージ101に載置固定される。このとき、ダイシングブレード52は、基板10とは接触しない高さに配置されている。 (2) Specifically, first, as shown in FIG. 2, the substrate 10 is placed on the stage 101 in such a manner that the dicing tape 4 is brought into contact with the placement surface of the stage 101, and is fixed by suction. That is, the substrate 10 is mounted and fixed on the stage 101 in a posture in which the device pattern 2 side faces upward. At this time, the dicing blade 52 is arranged at a height that does not make contact with the substrate 10.
 基板10の固定がなされると、続いて、ステージ51を適宜に動作させることにより、分断予定位置Pとダイシングブレード52の刃先52eを含む回転面とが同一の鉛直面内に位置するように、位置決めがなされる。係る位置決めを行うことにより、図2に示すように、ダイシングブレード52の刃先52eが、分断予定位置Pのデバイスパターン側端部Paの上方に位置することになる。より詳細には、分断予定位置Pのデバイスパターン側端部Paは直線状となっており、位置決めは、その一方端部側の上方にダイシングブレード52が位置するように行われる。 When the substrate 10 is fixed, subsequently, the stage 51 is appropriately operated so that the scheduled cutting position P and the rotation surface including the cutting edge 52e of the dicing blade 52 are located in the same vertical plane. Positioning is performed. By performing such positioning, the cutting edge 52e of the dicing blade 52 is located above the device pattern side end Pa of the scheduled cutting position P as shown in FIG. More specifically, the device pattern side end Pa of the scheduled cutting position P is linear, and the positioning is performed such that the dicing blade 52 is positioned above one end side thereof.
 係る位置決めがなされると、ダイシングブレード52は、図示しない駆動機構によって、鉛直面内にて所定の回転数にて回転させられながら、図2において矢印AR0にて示すように、刃先52eが分断予定位置Pのデバイスパターン側端部Paに向けて鉛直下方に下降させられる。 When the positioning is performed, the dicing blade 52 is rotated by a driving mechanism (not shown) at a predetermined rotational speed in a vertical plane, and the cutting edge 52e is scheduled to be divided as shown by an arrow AR0 in FIG. It is lowered vertically downward toward the device pattern side end Pa at the position P.
 やがて、ダイシングブレード52は基板10と接触するが、係る接触の後も引き続き、回転状態を保ちつつ所定距離だけ下降させられる。係る下降の距離は、薄膜層2aの厚みと同一あるいはそれ以上に設定される。そして、係る下降がなされると、ステージ51が水平移動することにより、ダイシングブレード52は、分断予定位置Pのデバイスパターン側端部Paの延在方向(図2においては図面に垂直な方向)において、相対的に移動させられる。より詳細には、デバイスパターン側端部Paの他方端部に向けて相対移動させられる。 Then, the dicing blade 52 comes into contact with the substrate 10, but after the contact, the dicing blade 52 is lowered by a predetermined distance while maintaining the rotating state. The descending distance is set to be equal to or longer than the thickness of the thin film layer 2a. When the lowering is performed, the stage 51 moves horizontally, so that the dicing blade 52 moves in the direction in which the device pattern side end Pa of the planned cutting position P extends (the direction perpendicular to the drawing in FIG. 2). , Are relatively moved. More specifically, it is relatively moved toward the other end of the device pattern side end Pa.
 すると、回転するダイシングブレード52の(相対)移動に伴い、薄膜層2aのうち、TEGパターン2tを含む、分断予定位置Pに沿った所定幅の部分が、所定の深さにて切削除去される。これにより、図3に示すような、分断予定位置Pに関して対称な形状のダイシング溝dgが、順次に形成される。換言すれば、係るダイシング処理によって、薄膜層2aに被覆されていた基材1の一部が露出することになる。なお、ダイシングブレード52の下降距離によっては、基材1の一部についても除去されることもある。図3においては、そのような場合を例示している。 Then, along with the (relative) movement of the rotating dicing blade 52, a portion of the thin film layer 2a having a predetermined width including the TEG pattern 2t along the planned cutting position P is cut and removed at a predetermined depth. . As a result, dicing grooves dg having a symmetrical shape with respect to the planned dividing position P as shown in FIG. 3 are sequentially formed. In other words, by the dicing process, a part of the base material 1 covered with the thin film layer 2a is exposed. Note that, depending on the descending distance of the dicing blade 52, a part of the substrate 1 may be removed. FIG. 3 illustrates such a case.
 ダイシング処理におけるダイシングブレード52の回転速度や、ステージ101の移動速度(ダイシング速度)は、上述した加工が好適に行える範囲で、適宜に定められてよい。例えば、ダイシングブレード52の回転速度は30000rpm~40000rpm程度(例えば36000rpm)であればよく、ダイシング速度は5mm/s~60mm/s(例えば40mm/s)であればよい。 The rotation speed of the dicing blade 52 and the moving speed (dicing speed) of the stage 101 in the dicing process may be appropriately determined as long as the above-described processing can be suitably performed. For example, the rotation speed of the dicing blade 52 may be about 30000 rpm to 40000 rpm (for example, 36000 rpm), and the dicing speed may be 5 mm / s to 60 mm / s (for example, 40 mm / s).
 ただし、ダイシング処理にて形成するダイシング溝dgの具体的なサイズは、後工程である、基材1を対象としたスクライブ処理に用いるスクライビングホイール102のサイズに応じたものとする必要がある。この点については後述する。 However, the specific size of the dicing groove dg formed in the dicing process needs to be in accordance with the size of the scribing wheel 102 used in the scribing process for the base material 1 which is a subsequent process. This will be described later.
 ダイシング処理によるダイシング溝dgの形成は、全ての分断予定位置Pについて行われる。 形成 The formation of the dicing groove dg by the dicing process is performed at all the planned cutting positions P.
  <スクライブ処理>
 以上のような態様にてダイシング処理がなされると、続いて、ダイシング溝dgにおいて露出している基材1の分断予定位置Pを対象に、スクライブ処理が実行される。図4は、スクライブ処理の実行前の様子を模式的に示す図である。図5は、ダイシング処理によって形成されるダイシング溝dgの形状と、スクライブ処理において用いるスクライビングホイール102のサイズとの関係を説明するための図である。図6は、スクライブ処理の実行中の様子を模式的に示す図である。
<Scribe processing>
When the dicing process is performed in the manner described above, subsequently, the scribing process is performed on the scheduled cutting position P of the base material 1 exposed in the dicing groove dg. FIG. 4 is a diagram schematically illustrating a state before execution of the scribe process. FIG. 5 is a diagram for explaining the relationship between the shape of the dicing groove dg formed by the dicing process and the size of the scribing wheel 102 used in the scribe process. FIG. 6 is a diagram schematically illustrating a state during execution of the scribe process.
 本実施の形態において、スクライブ処理は、図4に示すようなスクライブ装置100を用いて行う。スクライブ装置100は、スクライブ対象物が載置されるステージ101と、スクライブ対象物を上方からスクライブするスクライビングホイール102とを備える。 に お い て In the present embodiment, the scribe process is performed using a scribe device 100 as shown in FIG. The scribing apparatus 100 includes a stage 101 on which a scribing target is placed, and a scribing wheel 102 for scribing the scribing target from above.
 ステージ101は、水平な上面を被載置面として有し、係る被載置面に載置されたスクライブ対象物を図示しない吸引手段によって吸引固定できるように構成されている。また、ステージ101は、図示しない駆動機構によって水平面内における二軸移動動作や回転動作が可能とされている。 The stage 101 has a horizontal upper surface as a placement surface, and is configured such that a scribing target placed on the placement surface can be suction-fixed by suction means (not shown). The stage 101 is capable of biaxial movement and rotation in a horizontal plane by a drive mechanism (not shown).
 一方、スクライビングホイール102は、外周面に断面視二等辺三角形状の刃先102eを有する、直径が2mm~3mmの円板状の部材(スクライビングツール)である。少なくとも刃先102eはダイヤモンドにて形成されてなる。また、刃先102eの角度(刃先角)δは100°~150°(例えば110°)であるのが好適である。係るスクライビングホイール102は、ステージ101の上方に、鉛直方向に昇降可能に設けられた図示しない保持手段により、ステージ101の一方の水平移動方向と平行な鉛直面内において回転自在に保持されてなる。 On the other hand, the scribing wheel 102 is a disc-shaped member (scribing tool) having a diameter of 2 mm to 3 mm and having a cutting edge 102 e having an isosceles triangular cross section on the outer peripheral surface. At least the cutting edge 102e is formed of diamond. It is preferable that the angle (edge angle) δ of the blade edge 102e is 100 ° to 150 ° (for example, 110 °). The scribing wheel 102 is rotatably held in a vertical plane parallel to one of the horizontal movement directions of the stage 101 by holding means (not shown) provided above the stage 101 so as to be vertically movable.
 以上のような機能を有するのであれば、スクライブ装置100としては、公知のものを適用可能である。 As long as it has the functions described above, a known device can be applied as the scribe device 100.
 スクライブ処理も、ダイシング処理に引き続き、基板10のメタル膜3側に、基板10の平面サイズよりも大きな平面サイズを有する粘着性のダイシングテープ(エキスパンドテープ)4を貼付した状態で行う。 The scribing process is also performed after the dicing process, with the adhesive dicing tape (expanded tape) 4 having a plane size larger than the plane size of the substrate 10 attached to the metal film 3 side of the substrate 10.
 具体的には、まず、図4に示すように、係るダイシングテープ4をステージ101の被載置面と接触させる態様にて、ダイシング処理後の基板10をステージ101上に載置し、吸引固定する。すなわち、基板10は、ダイシング処理のときと同様、デバイスパターン2の側が上方を向く姿勢にて、ステージ101に載置固定される。このとき、スクライビングホイール102は、基板10とは接触しない高さに配置されている。 More specifically, first, as shown in FIG. 4, the dicing tape 4 is placed on the stage 101 in such a manner that the dicing tape 4 is brought into contact with the placement surface of the stage 101, and is suction-fixed. I do. That is, the substrate 10 is mounted and fixed on the stage 101 in a posture in which the device pattern 2 side faces upward, as in the dicing process. At this time, the scribing wheel 102 is arranged at a height that does not make contact with the substrate 10.
 基板10の固定がなされると、続いて、ステージ101を適宜に動作させることにより、分断予定位置Pとスクライビングホイール102の回転面とが同一の鉛直面内に位置するように、位置決めがなされる。係る位置決めを行うことにより、図4に示すように、スクライビングホイール102の刃先102eが、分断予定位置Pのデバイスパターン側端部Pa’の上方に位置することになる。より詳細には、分断予定位置Pのデバイスパターン側端部Pa’はダイシング溝dgにおいて直線状となっており、位置決めは、その一方端部側の上方にスクライビングホイール102が位置するように行われる。 When the substrate 10 is fixed, subsequently, the stage 101 is appropriately operated, so that the positioning is performed such that the scheduled cutting position P and the rotation surface of the scribing wheel 102 are located in the same vertical plane. . By performing such positioning, as shown in FIG. 4, the cutting edge 102 e of the scribing wheel 102 is positioned above the device pattern side end Pa ′ of the scheduled cutting position P. More specifically, the device pattern side end Pa ′ of the planned dividing position P is linear in the dicing groove dg, and the positioning is performed such that the scribing wheel 102 is positioned above one end side thereof. .
 係る位置決めがなされると、スクライビングホイール102は、図示しない保持手段によって、図4において矢印AR1にて示すように、刃先102eが分断予定位置Pのデバイスパターン側端部Pa’に圧接されるまで鉛直下方に下降させられる。 When the positioning is performed, the scribing wheel 102 is vertically moved by holding means (not shown) until the cutting edge 102e is pressed against the device pattern side end Pa ′ of the planned cutting position P as indicated by an arrow AR1 in FIG. It is lowered downward.
 このとき、ダイシング溝dgのサイズが小さすぎると、スクライビングホイール102の側面がダイシング溝dgの端部と干渉し、刃先102eの先端がデバイスパターン側端部Pa’に到達しなくなってしまう。それゆえ、本実施の形態においては、係る干渉が生じることのないように、スクライブ処理に先立つダイシング処理において、ダイシング溝dgを形成する。 At this time, if the size of the dicing groove dg is too small, the side surface of the scribing wheel 102 interferes with the end of the dicing groove dg, and the tip of the cutting edge 102e does not reach the device pattern side end Pa ′. Therefore, in the present embodiment, the dicing groove dg is formed in the dicing process prior to the scribe process so that such interference does not occur.
 具体的には、図5に示すように、ダイシング溝dgの深さ(ダイシングブレード52の薄膜層2a上面からの下降距離)をA、ダイシング溝dgの幅(水平面内においてダイシング方向に垂直な方向のサイズ)をB、スクライビングホイール102のスクライブ誤差(スクライブ精度)をC、スクライビングホイール102の刃先102eから距離Aの位置におけるスクライビングホイール102の幅をwとするとき、スクライビングホイール102とダイシング溝dgとが干渉しないためには、
   B>w+C   ・・・・・(1)
であることが必要である。
Specifically, as shown in FIG. 5, the depth of the dicing groove dg (distance from the upper surface of the thin film layer 2a of the dicing blade 52) is A, and the width of the dicing groove dg (the direction perpendicular to the dicing direction in a horizontal plane). B), the scribe error (scribe accuracy) of the scribing wheel 102 is C, and the width of the scribing wheel 102 at a distance A from the cutting edge 102e of the scribing wheel 102 is w. To avoid interference,
B> w + C (1)
It is necessary to be.
 ここで、刃先角δを用いると、
   w=2Atan(δ/2)   ・・・・・(2)
と表される。(2)式を(1)式に代入すると、
   B>2Atan(δ/2)+C   ・・・・・(3)
 係る(3)式をみたすように、ダイシング溝dgを設けた場合には、スクライビングホイール102とダイシング溝dgとの干渉を生じさせることなく、スクライブ処理を行うことが出来る。
Here, using the edge angle δ,
w = 2Atan (δ / 2) (2)
It is expressed as Substituting equation (2) into equation (1) gives
B> 2Atan (δ / 2) + C (3)
When the dicing groove dg is provided so as to satisfy the expression (3), the scribe processing can be performed without causing interference between the scribing wheel 102 and the dicing groove dg.
 なお、スクライビングホイール102の刃先角δが110°である場合において、Aの値を5μm~10μm程度とする場合、Bの値はせいぜい50μm~70μm程度であれば十分である。(3)式に照らせば、Bの値を過度に大きくする必要はない。そもそも、Bの値を大きくするほど、分断によって得られる個片のサイズが小さくなってしまうため、Bの値を過度に大きくすることは現実的ではない。 In the case where the cutting edge angle δ of the scribing wheel 102 is 110 °, if the value of A is about 5 μm to 10 μm, the value of B should be at most about 50 μm to 70 μm. According to the equation (3), it is not necessary to excessively increase the value of B. In the first place, the larger the value of B, the smaller the size of the individual piece obtained by the division. Therefore, it is not realistic to increase the value of B excessively.
 スクライブ処理における圧接の際に刃先102eが基板10に対して印加する荷重(スクライブ荷重)や、ステージ101の移動速度(スクライブ速度)は、基板10の構成材料の、なかでも特に基材1の、材質や厚みなどによって適宜に定められてよい。例えば、基材1がSiCからなる場合であれば、スクライブ荷重は1N~10N程度(例えば3.5N)であればよく、スクライブ速度は100mm/s~300mm/s(例えば100mm/s)であればよい。 The load (scribe load) applied by the cutting edge 102e to the substrate 10 at the time of press contact in the scribing process, and the moving speed (scribe speed) of the stage 101 are different from those of the constituent materials of the substrate 10, especially of the base material 1. It may be appropriately determined depending on the material, thickness, and the like. For example, if the substrate 1 is made of SiC, the scribe load may be about 1 N to 10 N (for example, 3.5 N), and the scribe speed may be 100 mm / s to 300 mm / s (for example, 100 mm / s). I just need.
 係る圧接がなされると、この圧接状態を維持したまま、スクライビングホイール102が分断予定位置Pのデバイスパターン側端部Pa’の延在方向(図4においては図面に垂直な方向)に移動される。これにより、スクライビングホイール102は相対的に、当該方向に(デバイスパターン側端部Pa’の他方端部に向けて)転動させられる。 When such pressure contact is performed, the scribing wheel 102 is moved in the direction in which the device pattern side end Pa ′ at the scheduled cutting position P extends (the direction perpendicular to the drawing in FIG. 4) while maintaining the pressure contact state. . Thus, the scribing wheel 102 is relatively rolled in the direction (toward the other end of the device pattern side end Pa ').
 そして、係る態様にてデバイスパターン側端部Pa’に沿ったスクライビングホイール102の圧接転動が進行すると、図6に示すように、スクライビングホイール102が圧接された箇所においてスクライブラインSLが形成されていくとともに、係るスクライブラインSLから分断予定位置Pに沿って鉛直下方に、垂直クラックVCが伸展(浸透)する。最終的に分断が良好になされるという点からは、垂直クラックVCは少なくとも基材1の中ほどにまで伸展するのが好ましい。 When the rolling of the scribing wheel 102 along the device pattern side end Pa ′ proceeds in such a manner, as shown in FIG. 6, a scribe line SL is formed at a position where the scribing wheel 102 is pressed. At the same time, the vertical cracks VC extend (penetrate) vertically downward from the scribe line SL along the planned dividing position P. It is preferable that the vertical crack VC extends at least to the middle of the substrate 1 from the viewpoint that the division is finally performed well.
 係るスクライブ処理による垂直クラックVCの形成は、全ての分断予定位置Pにおいて行われる。 The formation of the vertical cracks VC by the scribing process is performed at all the scheduled cutting positions P.
 なお、ダイシング処理を行わず、薄膜層2aを残したままスクライブ処理を行うことも可能ではある。係る場合、薄膜層2aにスクライビングホイール102を当接させてスクライブを行うことになる。しかしながら、TEGパターン2tのような金属パターンが分断予定位置Pに形成されてなる場合、薄膜層2aから基材1に向けて伸展(浸透)する垂直クラックVCの浸透量が不安定となるという問題が生じる。基材1において垂直クラックVCが十分に伸展(浸透)しない箇所が生じた結果として、後工程であるブレーク処理に際して不良が発生することがある。 In addition, it is also possible to perform the scribe processing without leaving the thin film layer 2a without performing the dicing processing. In such a case, scribing is performed by bringing the scribing wheel 102 into contact with the thin film layer 2a. However, when a metal pattern such as the TEG pattern 2t is formed at the planned dividing position P, the penetration amount of the vertical cracks VC extending (penetrating) from the thin film layer 2a toward the substrate 1 becomes unstable. Occurs. As a result of a portion of the base material 1 where the vertical crack VC does not sufficiently extend (penetrate), a defect may occur during a break process in a subsequent process.
 これに対し、本実施の形態においては、ダイシング処理によってTEGパターン2tのような金属パターンを除去して基材1を露出させ、係る基材1を対象にスクライブ処理を行うようにしているので、薄膜層2aを残したままスクライブ処理を行う場合に比して、基材1における垂直クラックVCの浸透量が安定する。結果として、ブレーク処理における不良の発生が抑制されるという効果が得られる。すなわち、薄膜層2aを直接にスクライブする場合よりも良好かつ確実に、基板10を分断することが可能となっている。 On the other hand, in the present embodiment, the substrate 1 is exposed by removing the metal pattern such as the TEG pattern 2t by the dicing process, and the scribing process is performed on the substrate 1. The permeation amount of the vertical cracks VC in the base material 1 is stabilized as compared with the case where the scribe processing is performed while the thin film layer 2a is left. As a result, the effect of suppressing the occurrence of defects in the break processing can be obtained. That is, it is possible to divide the substrate 10 better and more reliably than when the thin film layer 2a is directly scribed.
  <第1ブレーク処理>
 上述のように垂直クラックVCが形成された基板10は、続いて、第1ブレーク処理に供される。図7は、第1ブレーク処理の実行前の様子を模式的に示す図である。図8は、第1ブレーク処理の実行中の様子を模式的に示す図である。図9は、第1ブレーク処理の実行後の様子を模式的に示す図である。
<First break processing>
The substrate 10 on which the vertical crack VC has been formed as described above is subsequently subjected to a first break process. FIG. 7 is a diagram schematically illustrating a state before execution of the first break processing. FIG. 8 is a diagram schematically illustrating a state during execution of the first break processing. FIG. 9 is a diagram schematically illustrating a state after the execution of the first break processing.
 本実施の形態において、第1ブレーク処理は、ブレーク装置200を用いて行う。ブレーク装置200は、ブレーク対象物が載置される保持部201と、ブレーク処理を担うブレークバー202とを備える。 に お い て In the present embodiment, the first break processing is performed using the break device 200. The break device 200 includes a holding unit 201 on which a break target is placed, and a break bar 202 for performing a break process.
 保持部201は、一対の単位保持部201aと201bとからなる。単位保持部201aと201bは、水平方向において所定の距離(離隔距離)d2にて互いに離隔させて設けられてなり、同じ高さ位置とされた両者の水平な上面が全体として一のブレーク対象物の被載置面として用いられる。換言すれば、ブレーク対象物は、一部を下方に露出させた状態で、保持部201上に載置される。保持部201は例えば金属にて構成される。 (4) The holding unit 201 includes a pair of unit holding units 201a and 201b. The unit holding parts 201a and 201b are provided to be separated from each other by a predetermined distance (separation distance) d2 in the horizontal direction, and the horizontal upper surfaces of the two at the same height position constitute one break target as a whole. Used as a mounting surface for In other words, the break target is placed on the holding unit 201 with a part thereof being exposed downward. The holding unit 201 is made of, for example, metal.
 また、保持部201は、水平面内のあらかじめ定められた一の方向(保持部進退方向)における一対の単位保持部201aと201bの近接および離隔動作が可能とされてなる。すなわち、ブレーク装置200においては、離隔距離d2は可変とされてなる。図7においては、図面視左右方向が保持部進退方向となる。 保持 In addition, the holding unit 201 is configured so that a pair of unit holding units 201a and 201b can approach and separate from each other in one predetermined direction (holding unit moving direction) in a horizontal plane. That is, in the break device 200, the separation distance d2 is variable. In FIG. 7, the left-right direction in the drawing is the holding unit advance / retreat direction.
 さらに保持部201においては、図示しない駆動機構により、被載置面に載置されたブレーク対象物の水平面内におけるアライメント動作が可能とされている。 {Circle around (4)} In the holding section 201, a drive mechanism (not shown) enables an alignment operation of a break target placed on the placement surface in a horizontal plane.
 ブレークバー202は、断面視二等辺三角形状の刃先202eが刃渡り方向に延在するように設けられてなる板状の金属製(例えば超硬合金製)部材である。図7においては、刃渡り方向が図面に垂直な方向となるように、ブレークバー202を示している。刃先202eの角度(刃先角)θは5°~90°であり、5~30°(例えば15°)であるのが好適である。係る好適な刃先角θは、従来の一般的なブレーク処理において用いられていたブレークバーの刃先角である60°~90°に比して小さい。 The break bar 202 is a plate-shaped metal (for example, a cemented carbide) member provided with a cutting edge 202e having an isosceles triangular cross section in a cross-sectional view and extending in a cutting direction. FIG. 7 shows the break bar 202 so that the blade length direction is perpendicular to the drawing. The angle θ of the blade edge 202e (blade angle) is 5 ° to 90 °, and preferably 5 ° to 30 ° (for example, 15 °). Such a preferable cutting edge angle θ is smaller than 60 ° to 90 ° which is the cutting angle of the break bar used in the conventional general break processing.
 なお、より詳細には、刃先202eの最先端部分は曲率半径が5μmから30μm程度(例えば15μm)の微小な曲面となっている。係る曲率半径も、従来の一般的なブレーク処理において用いられていたブレークバーの曲率半径である50μm~100μmに比して小さい。 More specifically, the tip end of the cutting edge 202e is a minute curved surface having a radius of curvature of about 5 μm to 30 μm (for example, 15 μm). Such a radius of curvature is also smaller than the radius of curvature of a break bar used in conventional general break processing, which is 50 μm to 100 μm.
 係るブレークバー202は、保持部進退方向における一対の単位保持部201aと201bの中間位置(それぞれから等価な位置)の上方において、図示しない保持手段により、保持部進退方向に垂直な鉛直面内において鉛直方向に昇降可能に設けられてなる。 The break bar 202 is held by a holding means (not shown) above a middle position (an equivalent position) between the pair of unit holding portions 201a and 201b in the holding portion moving direction and in a vertical plane perpendicular to the holding portion moving direction. It is provided to be able to move up and down in the vertical direction.
 以上のような構成を有するブレーク装置200を用いた第1ブレーク処理は、図7に示すように、ダイシングテープ4が貼付された状態のスクライブ処理後の基板10の、デバイスパターン2側の面および側部を覆う態様にて、保護フィルム5を貼付したうえで行う。以降の説明においては、係る保護フィルム5を貼付した状態のものについても、単に基板10と称することがある。保護フィルム5には、厚みが10μm~75μm程度(例えば25μm)の公知のものを適用可能である。 As shown in FIG. 7, the first break process using the break device 200 having the above-described configuration includes the surface on the device pattern 2 side of the substrate 10 after the scribe process with the dicing tape 4 attached. This is performed after attaching the protective film 5 in a mode of covering the side portions. In the following description, the substrate having the protective film 5 attached thereto may be simply referred to as the substrate 10. As the protective film 5, a known film having a thickness of about 10 μm to 75 μm (for example, 25 μm) can be applied.
 具体的には、まず、図7に示すように、保護フィルム5を保持部201の被載置面と接触させる態様にて基板10を保持部201上に載置する。すなわち、基板10は、デバイスパターン2側が下方となりメタル膜3側が上方となる姿勢で、つまりはスクライブ処理のときとは上下反転した姿勢で、保持部201上に載置される。このとき、ブレークバー202は、基板10とは接触しない高さに配置されている。 Specifically, first, as shown in FIG. 7, the substrate 10 is placed on the holding unit 201 in such a manner that the protective film 5 is brought into contact with the mounting surface of the holding unit 201. That is, the substrate 10 is placed on the holding unit 201 in a posture in which the device pattern 2 side is downward and the metal film 3 side is upward, that is, in a posture that is upside down from the time of the scribe processing. At this time, the break bar 202 is arranged at a height that does not make contact with the substrate 10.
 なお、本実施の形態のように、所定の間隔(ピッチ)d1で複数の分断予定位置Pが定められているときは、離隔距離d2が基板10の分断予定位置Pの間隔(ピッチ)d1と等しくなるように一対の単位保持部201aと201bを配置した状態で、基板10を保持部201上に載置する。これは一般的なブレーク処理の際に採用されるd2=1.5d1(d2はd1の(3/2)倍)なる条件に比して、一対の単位保持部201aと201bの間隔を狭めた条件となっている。なお、実際の処理においては、d2=0.5d1~1.25d1となる範囲であればよい。 When a plurality of scheduled cutting positions P are defined at a predetermined interval (pitch) d1 as in the present embodiment, the separation distance d2 is equal to the spacing (pitch) d1 of the scheduled cutting positions P of the substrate 10. The substrate 10 is placed on the holding unit 201 with the pair of unit holding units 201a and 201b arranged so as to be equal. This is because the distance between the pair of unit holding units 201a and 201b is narrowed as compared with the condition of d2 = 1.5d1 (d2 is (3/2) times d1) employed in the general break processing. It is a condition. In the actual processing, it is sufficient that d2 is in the range of 0.5d1 to 1.25d1.
 基板10の載置がなされると、続いて、駆動機構を適宜に動作させることにより、基板10の位置決めがなされる。具体的には、スクライブ処理においてスクライブラインSLさらには垂直クラックVCを設けた基板10の分断予定位置Pの延在方向が、ブレークバー202の刃渡り方向に一致させられる。係る位置決めを行うことにより、図7に示すように、ブレークバー202の刃先202eが、分断予定位置Pのメタル膜側端部Pbの上方に位置することになる。 After the substrate 10 is placed, the substrate 10 is positioned by operating the drive mechanism appropriately. Specifically, in the scribing process, the extending direction of the scheduled cutting position P of the substrate 10 provided with the scribe line SL and the vertical crack VC is made to coincide with the blade extending direction of the break bar 202. By performing such positioning, the cutting edge 202e of the break bar 202 is positioned above the metal film side end Pb of the planned cutting position P, as shown in FIG.
 係る位置決めがなされると、図7において矢印AR2にて示すように、ブレークバー202は、刃先202eが分断予定位置Pのメタル膜側端部Pb(より詳細にはダイシングテープ4の上面)に向けて鉛直下方に下降させられる。 When such positioning is performed, as shown by an arrow AR2 in FIG. 7, the break bar 202 is directed toward the metal film side end portion Pb (more specifically, the upper surface of the dicing tape 4) at the cutting position P at which the cutting edge 202e is to be cut. Down vertically.
 ブレークバー202は、その刃先202eが分断予定位置Pのメタル膜側端部Pbに当接した後も所定距離だけ下降させられる。すなわち、基板10に対して所定の押し込み量にて押し込まれる。係る押し込み量は0.05mm~0.2mm(例えば0.1mm)であるのが好適である。 The break bar 202 is lowered by a predetermined distance even after the cutting edge 202e comes into contact with the metal film side end Pb of the planned cutting position P. That is, it is pushed into the substrate 10 by a predetermined pushing amount. It is preferable that the pushing amount is 0.05 mm to 0.2 mm (for example, 0.1 mm).
 すると、図8に示すように、基板10に対してブレークバー202の刃先202eを作用点とし、一対の単位保持部201a、201bのそれぞれの被載置面の内側端部f(fa、fb)を支点とする三点曲げの状況が生じる。これにより、図8において矢印AR3にて示すように、基板10には、相反する2つの向きに引張応力が作用し、その結果、垂直クラックVCはさらに伸展させられるとともに、基材1およびデバイスパターン2は左右2つの部分にいったん離隔し、両部分の間には間隙Gが形成される。 Then, as shown in FIG. 8, the cutting edge 202 e of the break bar 202 is used as a point of action with respect to the substrate 10, and the inner ends f (fa, fb) of the mounting surfaces of the pair of unit holders 201 a, 201 b. A three-point bending situation with the fulcrum as a fulcrum occurs. As a result, as shown by an arrow AR3 in FIG. 8, tensile stress acts on the substrate 10 in two opposite directions, and as a result, the vertical crack VC is further extended, and the substrate 1 and the device pattern 2 is once separated into two right and left portions, and a gap G is formed between the two portions.
 ただし、メタル膜3は、この時点では離隔には至らず、単に刃先202eの押し込みによって折り曲げられるに留まる。すなわち、ブレークバー202の押し込みの際、メタル膜3、および、刃先202eとメタル膜3との間に位置するダイシングテープ4には、折曲部Bが形成される。 However, the metal film 3 does not reach the separation at this point, but is merely bent by pushing the cutting edge 202e. That is, when the break bar 202 is pushed, the bent portion B is formed on the metal film 3 and the dicing tape 4 located between the cutting edge 202 e and the metal film 3.
 その後、図9にAR4にて示すように、ブレークバー202が上昇させられて基板10の押し込みが解除されると、間隙Gは閉じて左右2つの部分の端部が当接した分断面Dとなる。一方、メタル膜3とダイシングテープ4には、折曲部Bが残存する。メタル膜3においては、折曲部Bが、他の平坦なメタル膜3の部分に比して材料強度的に弱い部分となっている。係る折曲部Bは、折り目として視認される。 Thereafter, as indicated by AR4 in FIG. 9, when the break bar 202 is lifted and the pushing of the substrate 10 is released, the gap G is closed and the cross section D where the ends of the left and right portions abut is formed. Become. On the other hand, the bent portion B remains in the metal film 3 and the dicing tape 4. In the metal film 3, the bent portion B is a portion where the material strength is weaker than the other flat metal film 3. Such a bent portion B is visually recognized as a fold.
 以上のような態様にて行う、第1ブレーク処理は、基材1およびデバイスパターン2における分断を確実に生じさせるとともに、メタル膜3においては、折り目として視認可能な折曲部Bが確実に形成されるようにすることを意図したものである。そして、これらを好適に実現するための条件として、第1ブレーク処理においては、一般的なブレーク処理とは異なり、一対の単位保持部201aと201bの離隔距離d2を分断予定位置Pの間隔d1と等しくし、刃先202eの最先端部分の曲率半径を5μm~30μmとしている。また、刃先角θは5°~30°とすることが好適である。 The first break process performed in the above-described manner surely causes the substrate 1 and the device pattern 2 to be separated from each other, and also reliably forms a bent portion B that can be visually recognized as a fold in the metal film 3. It is intended to be As a condition for suitably realizing these, in the first break processing, unlike the general break processing, the separation distance d2 between the pair of unit holding units 201a and 201b is set to be equal to the distance d1 of the scheduled dividing position P. The radius of curvature of the tip portion of the cutting edge 202e is 5 μm to 30 μm. Further, it is preferable that the edge angle θ is 5 ° to 30 °.
  <第2ブレーク処理>
 第1ブレーク処理による基材1とデバイスパターン2の分断とメタル膜3とダイシングテープ4に対する折曲部Bの形成とがなされると、続いて、第2ブレーク処理が行われる。第2ブレーク処理は、第1ブレーク処理と同様、ブレーク装置200を用いて行う。
<Second break processing>
After the separation of the base material 1 and the device pattern 2 by the first break processing and the formation of the bent portion B on the metal film 3 and the dicing tape 4, the second break processing is subsequently performed. The second break processing is performed using the break device 200, as in the first break processing.
 図10は、第2ブレーク処理の実行前の様子を模式的に示す図である。図11は、第2ブレーク処理の実行中の様子を模式的に示す図である。図12は、第2ブレーク処理を実行後の基板10を模式的に示す図である。 FIG. 10 is a diagram schematically showing a state before execution of the second break processing. FIG. 11 is a diagram schematically showing a state during execution of the second break processing. FIG. 12 is a diagram schematically illustrating the substrate 10 after the second break processing is performed.
 第2ブレーク処理に際しては、まず、図10に示すように、一般的なブレーク処理と同様、d2=1.5d1(d2はd1の(3/2)倍)となるように一対の単位保持部201aと201bを配置した状態で、ダイシングテープ4を保持部201の被載置面と接触させる態様にて基板10を保持部201上に載置する。すなわち、基板10は、第1ブレーク処理のときとは上下反転した姿勢で、保持部201上に載置される。d1が例えば2.11mm~2.36mm程度である場合には、d2は3.165mm~3.54mmとなる。なお、実際の処理においては、d2=1.0d1~1.75d1となる範囲であればよい。また、第1ブレーク処理におけるd2より第2ブレーク処理におけるd2が大きくされることが好ましい。このとき、ブレークバー202は、基板10とは接触しない高さに配置されている。 At the time of the second break processing, first, as shown in FIG. 10, a pair of unit holding units are set so that d2 = 1.5d1 (d2 is (3/2) times d1), as in the general break processing. The substrate 10 is mounted on the holding unit 201 in a state where the dicing tape 4 is in contact with the mounting surface of the holding unit 201 with the 201a and 201b arranged. That is, the substrate 10 is placed on the holding unit 201 in a posture that is upside down from that in the first break processing. When d1 is, for example, about 2.11 mm to 2.36 mm, d2 is 3.165 mm to 3.54 mm. In the actual processing, it is sufficient that d2 = 1.0 d1 to 1.75 d1. Further, it is preferable that d2 in the second break processing is made larger than d2 in the first break processing. At this time, the break bar 202 is arranged at a height that does not make contact with the substrate 10.
 基板10の載置がなされると、続いて、駆動機構を適宜に動作させることにより、基板10の位置決めがなされる。具体的には、分断面Dおよび折曲部Bの延在方向が、ブレークバー202の刃渡り方向に一致させられる。このとき、メタル膜3に形成されている視認可能な折曲部Bを、アライメントの指標として有効に利用することができる。係る位置決めを行うことにより、図10に示すように、ブレークバー202の刃先202eが、もともとは分断予定位置Pのデバイスパターン側端部Pa’であった、分断面Dの上端部の上方に位置することになる。 After the substrate 10 is placed, the substrate 10 is positioned by operating the drive mechanism appropriately. Specifically, the extending directions of the dividing plane D and the bent part B are made to coincide with the blade extending direction of the break bar 202. At this time, the visible bent portion B formed on the metal film 3 can be effectively used as an index for alignment. By performing such positioning, as shown in FIG. 10, the cutting edge 202 e of the break bar 202 is positioned above the upper end of the dividing section D, which was originally the device pattern side end Pa ′ of the planned cutting position P. Will do.
 係る位置決めがなされると、図10において矢印AR5にて示すように、ブレークバー202は、刃先202eが分断予定位置Pのデバイスパターン側端部Pa’(より詳細には保護フィルム5の上面)に向けて鉛直下方に下降させられる。 When such positioning is performed, as shown by an arrow AR5 in FIG. 10, the break bar 202 is attached to the device pattern side end Pa ′ (more specifically, the upper surface of the protective film 5) at the position P at which the cutting edge 202e is to be divided. It is lowered vertically downward.
 係るブレークバー202の下降は、図11に示すように、刃先202eが保護フィルム5を介してダイシング溝dgにおいて露出している基材1を所定の押し込み量にて押し込むまで行われる。このとき、デバイスパターン2および基材1はすでに2つに分断されており、その分断面Dに対して上方から力が加わる。その結果、矢印AR6にて示すように、メタル膜3には、分断面Dの下方において相反する2つの向きに引張応力が作用する。上述したように、メタル膜3の折曲部Bは他の部分に比して材料強度的に弱いので、最終的には、図12に示すように、メタル膜3までもが折曲部Bのところで分断されて分断面Dをなし、ダイシングテープ4のみに折曲部Bが残存した状態が容易かつ確実に実現される。 The lowering of the break bar 202 is performed until the cutting edge 202e pushes the substrate 1 exposed in the dicing groove dg through the protective film 5 by a predetermined pushing amount as shown in FIG. At this time, the device pattern 2 and the substrate 1 are already divided into two, and a force is applied to the section D from above. As a result, as shown by the arrow AR6, tensile stress acts on the metal film 3 in two opposite directions below the dividing plane D. As described above, since the bent portion B of the metal film 3 is weaker in material strength than other portions, finally, as shown in FIG. Then, a state in which the bent portion B remains only in the dicing tape 4 by being divided at the dicing tape D is easily and reliably realized.
 係る第2ブレーク処理における係る押し込み量は、第1ブレーク処理における押し込み量の半分程度の0.02mm~0.1mm(例えば0.05mm)であるのが好適である。これは、分断された2つの部分の接触により破損が生じることを防ぐためである。なお、d2=1.5d1としているが、これは、このような小さい押し込み量でもメタル膜3が折曲部Bのところで好適に分断されるようにすることを意図したものである。 The pushing amount in the second break processing is preferably about 0.02 mm to 0.1 mm (for example, 0.05 mm), which is about half the pushing amount in the first break processing. This is to prevent the breakage due to the contact between the two divided parts. Note that d2 = 1.5d1 is intended to allow the metal film 3 to be appropriately divided at the bent portion B even with such a small pushing amount.
 第2ブレーク処理の終了後、図12に矢印AR7にて示すように、ダイシングテープ4に対し面内方向に引張応力を作用させることで、ダイシングテープ4は伸張し、基板10は分断面Dのところで2つの部分10A、10Bに離隔させられる。これにより、基板10が2つに分断されたことになる。 After the end of the second break processing, as shown by an arrow AR7 in FIG. 12, by applying a tensile stress to the dicing tape 4 in the in-plane direction, the dicing tape 4 is expanded, and the substrate 10 By the way, it is separated into two parts 10A and 10B. Thus, the substrate 10 is divided into two.
 以上、説明したように、本実施の形態によれば、基材の一方主面にデバイスパターンを有し、他方主面にメタル膜を有する半導体デバイス用基板であって、デバイスパターン側の分断予定位置にTEGパターンのような金属パターンが形成されているものの分断を、良好かつ確実に、行うことができる。 As described above, according to the present embodiment, a semiconductor device substrate having a device pattern on one main surface of a base material and a metal film on the other main surface, which is to be divided on the device pattern side Even if a metal pattern such as a TEG pattern is formed at a position, the cutting can be performed satisfactorily and reliably.
  <変形例>
 上述の実施の形態においては、スクライビングホイールによりスクライブ処理を行っているが、スクライブラインの形成およびクラックの伸展が好適に実現されるのであれば、ダイヤモンドポイント等、スクライビングホイール以外のツールによってスクライブラインを形成する態様であってもよい。
<Modification>
In the above-described embodiment, the scribing process is performed by the scribing wheel. It may be a mode of forming.
 また、第1のブレーク工程においてすでに基材1に垂直クラックVCが形成され、メタル膜3に折曲部Bが形成されているため、第2のブレーク工程においては、従来の分断処理と同様の刃先角θと先端における曲率半径とを有するブレークバーを用いてもよい。 Further, in the first break step, the vertical crack VC has already been formed in the base material 1 and the bent portion B has been formed in the metal film 3, so that in the second break step, the same as the conventional cutting process is performed. A break bar having a cutting edge angle θ and a radius of curvature at the tip may be used.
 上述の実施の形態においては、ダイシングブレード52を用いてダイシング処理を行っているが、レーザーの照射等によりダイシング溝を形成する態様であってもよい。 In the above-described embodiment, the dicing process is performed using the dicing blade 52, but the dicing groove may be formed by laser irradiation or the like.
 また、第1ブレーク工程、第2ブレーク工程において用いられたブレーク装置は、水平方向において所定の距離離隔された一対の単位保持部201aと201bとからなる保持部201を備えているが、これに代えて、基板の全面に接触して保持する弾性体からなる保持部を備えるブレーク装置を用いてもよい。この場合にも、第1ブレーク処理における押し込み量は0.05mm~0.2mm(例えば0.1mm)であり、第2ブレーク処理における押し込み量は、第1ブレーク処理における押し込み量の半分程度の0.02mm~0.1mm(例えば0.05mm)であるのが好適である。 In addition, the break device used in the first break step and the second break step includes a holding unit 201 including a pair of unit holding units 201a and 201b separated by a predetermined distance in the horizontal direction. Alternatively, a break device provided with a holding portion made of an elastic body that contacts and holds the entire surface of the substrate may be used. Also in this case, the pushing amount in the first break process is 0.05 mm to 0.2 mm (for example, 0.1 mm), and the pushing amount in the second break process is 0, which is about half the pushing amount in the first break process. It is preferably between 0.02 mm and 0.1 mm (eg 0.05 mm).

Claims (7)

  1.  基材と、前記基材の第1の主面側に設けられた薄膜層と、前記基材の第2の主面に設けられたメタル膜とを備える、メタル膜付き基板を分断する方法であって、
     前記第1の主面側を所定の分断予定位置においてダイシングすることにより、前記基材を露出させるダイシング工程と、
     前記ダイシング工程によって露出した前記基材をスクライビングツールによってスクライブすることによりスクライブラインを形成し、前記スクライブラインから前記分断予定位置に沿って前記基材の内部に対し垂直クラックを伸展させるスクライブ工程と、
     前記第2の主面側から前記メタル膜付き基板に対しブレークバーを当接させることによって前記垂直クラックをさらに伸展させることで、前記メタル膜付き基板の前記メタル膜以外の部分を前記分断予定位置において分断する第1ブレーク工程と、
     前記第1の主面側から前記メタル膜付き基板に対し前記ブレークバーを当接させることによって前記メタル膜を前記分断予定位置において分断する第2ブレーク工程と、
    を備えることを特徴とする、メタル膜付き基板の分断方法。
    A method for dividing a substrate with a metal film, comprising: a base material; a thin film layer provided on a first main surface side of the base material; and a metal film provided on a second main surface of the base material. So,
    A dicing step of exposing the base material by dicing the first main surface side at a predetermined dividing expected position;
    A scribing step of forming a scribe line by scribing the base material exposed by the dicing step with a scribing tool, and extending a vertical crack from the scribe line to the inside of the base material along the scheduled cutting position,
    The vertical cracks are further extended by bringing a break bar into contact with the substrate with the metal film from the second main surface side, so that the portion other than the metal film of the substrate with the metal film is divided at the predetermined dividing position. A first break step of dividing at
    A second breaking step of dividing the metal film at the planned dividing position by bringing the break bar into contact with the substrate with the metal film from the first main surface side;
    A method for cutting a substrate with a metal film, comprising:
  2.  請求項1に記載のメタル膜付き基板の分断方法であって、
     前記ダイシング工程においては、
      形成されるダイシング溝の深さをA、前記ダイシング溝の幅をB、前記スクライビングツールのスクライブ誤差をC、前記スクライビングツールの刃先角をδとするとき、
       B>2Atan(δ/2)+C
    なる関係式をみたすように前記ダイシング溝を形成することによって、前記基材を露出させる、
    ことを特徴とする、メタル膜付き基板の分断方法。
    A method for cutting a substrate with a metal film according to claim 1,
    In the dicing step,
    When the depth of the dicing groove to be formed is A, the width of the dicing groove is B, the scribe error of the scribing tool is C, and the edge angle of the scribing tool is δ,
    B> 2Atan (δ / 2) + C
    By forming the dicing groove so as to satisfy the following relationship, the base material is exposed,
    A method for cutting a substrate with a metal film, comprising:
  3.  請求項1または請求項2に記載のメタル膜付き基板の分断方法であって、
     前記薄膜層の前記分断予定位置に金属パターンが設けられてなる、
    ことを特徴とする、メタル膜付き基板の分断方法。
    A method for cutting a substrate with a metal film according to claim 1 or 2,
    A metal pattern is provided at the planned dividing position of the thin film layer,
    A method for cutting a substrate with a metal film, comprising:
  4.  請求項1ないし請求項3のいずれかに記載のメタル膜付き基板の分断方法であって、
     前記ブレークバーの刃先先端部の曲率半径が5μm~30μmである、
    ことを特徴とする、メタル膜付き基板の分断方法。
    A method for cutting a substrate with a metal film according to claim 1, wherein:
    The radius of curvature of the tip of the tip of the break bar is 5 μm to 30 μm.
    A method for cutting a substrate with a metal film, comprising:
  5.  請求項4に記載のメタル膜付き基板の分断方法であって、
     前記所定の分断予定位置が所定の間隔d1にて複数定められており、
     前記第1ブレーク工程および前記第2ブレーク工程は、水平方向において離隔する一対の保持部によって前記メタル膜付き基板を下方から支持した状態で、前記一対の保持部のそれぞれから等価な位置において行うようにし、
     前記一対の保持部の離隔距離d2を、
      前記第1ブレーク工程においてはd2=0.5d1~1.25d1とし、
      前記第2ブレーク工程においてはd2=1.0d1~1.75d1とする、
    ことを特徴とする、メタル膜付き基板の分断方法。
    A method for cutting a substrate with a metal film according to claim 4,
    A plurality of the predetermined scheduled dividing positions are determined at a predetermined interval d1,
    The first break step and the second break step may be performed at positions equivalent to each of the pair of holding units in a state where the substrate with a metal film is supported from below by a pair of holding units separated in a horizontal direction. West,
    The separation distance d2 between the pair of holding portions is
    In the first break step, d2 = 0.5d1 to 1.25d1,
    In the second break step, d2 = 1.0d1 to 1.75d1.
    A method for cutting a substrate with a metal film, comprising:
  6.  請求項1ないし請求項5のいずれかに記載のメタル膜付き基板の分断方法であって、
     前記ダイシング工程、前記スクライブ工程、前記第1ブレーク工程、および前記第2ブレーク工程を、前記メタル膜に粘着性テープを貼付した状態で行い、
     前記第1ブレーク工程においては、前記メタル膜以外の部分を分断するとともに前記メタル膜および前記粘着性テープの前記分断予定位置に相当する位置に折り目を形成する、
    ことを特徴とする、メタル膜付き基板の分断方法。
    A method for cutting a substrate with a metal film according to any one of claims 1 to 5,
    Performing the dicing step, the scribe step, the first break step, and the second break step in a state where an adhesive tape is stuck to the metal film;
    In the first break step, a fold is formed at a position corresponding to the planned dividing position of the metal film and the adhesive tape while dividing a portion other than the metal film,
    A method for cutting a substrate with a metal film, comprising:
  7.  請求項1ないし請求項6のいずれかに記載のメタル膜付き基板の分断方法であって、
     前記第1ブレーク工程は、前記メタル膜付き基板の姿勢を前記スクライブ工程のときとは上下反転させて行い、
     前記第2ブレーク工程は、前記メタル膜付き基板の姿勢を前記第1ブレーク工程のときとは上下反転させて行う、
    ことを特徴とする、メタル膜付き基板の分断方法。
    A method for cutting a substrate with a metal film according to any one of claims 1 to 6, wherein
    The first break step is performed by inverting the posture of the substrate with the metal film upside down in the scribing step,
    The second break step is performed by inverting the posture of the substrate with a metal film upside down as in the first break step.
    A method for cutting a substrate with a metal film, comprising:
PCT/JP2019/033240 2018-09-26 2019-08-26 Method of severing substrate provided with metal film WO2020066408A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980062177.5A CN112740365B (en) 2018-09-26 2019-08-26 Breaking method of substrate with metal film
KR1020217008964A KR102557292B1 (en) 2018-09-26 2019-08-26 Parting method of board with metal film
JP2020548196A JP7418013B2 (en) 2018-09-26 2019-08-26 How to divide a substrate with metal film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-180092 2018-09-26
JP2018180092 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020066408A1 true WO2020066408A1 (en) 2020-04-02

Family

ID=69951350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033240 WO2020066408A1 (en) 2018-09-26 2019-08-26 Method of severing substrate provided with metal film

Country Status (5)

Country Link
JP (1) JP7418013B2 (en)
KR (1) KR102557292B1 (en)
CN (1) CN112740365B (en)
TW (1) TWI820177B (en)
WO (1) WO2020066408A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022102918A (en) * 2020-12-25 2022-07-07 豊田合成株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2023058509A1 (en) * 2021-10-08 2023-04-13 三星ダイヤモンド工業株式会社 Sic semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315646A (en) * 1992-05-09 1993-11-26 Nichia Chem Ind Ltd Method of cutting gallium nitride compound semiconductor wafer
JP2001085736A (en) * 1999-09-10 2001-03-30 Sharp Corp Method for manufacturing nitride semiconductor chip
JP2001176823A (en) * 1999-12-17 2001-06-29 Sharp Corp Method for manufacturing nitride semiconductor chip
JP2002246337A (en) * 2001-02-20 2002-08-30 Nichia Chem Ind Ltd Manufacturing method of nitride semiconductor chip
JP2007220703A (en) * 2006-02-14 2007-08-30 Enzan Seisakusho Co Ltd Semiconductor chip separation apparatus
JP2016225586A (en) * 2015-05-29 2016-12-28 久元電子股▲ふん▼有限公司 Dicing process of wafer
JP2017041525A (en) * 2015-08-19 2017-02-23 株式会社ディスコ Wafer division method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284291A (en) 2000-03-31 2001-10-12 Toyoda Gosei Co Ltd Chip division method for semiconductor wafer
JP2001284292A (en) 2000-03-31 2001-10-12 Toyoda Gosei Co Ltd Chip division method for semiconductor wafer
JP4502964B2 (en) * 2001-04-02 2010-07-14 三星ダイヤモンド工業株式会社 Method for dividing bonded substrates
ATE458597T1 (en) * 2002-04-01 2010-03-15 Mitsuboshi Diamond Ind Co Ltd SUB-METHOD FOR FRAGILE MATERIAL SUBSTRATE AND SUB-DEVICE USING THE PROCESS
JP3772807B2 (en) 2002-08-26 2006-05-10 日亜化学工業株式会社 Gallium nitride compound semiconductor light emitting device
JP5122911B2 (en) * 2007-10-25 2013-01-16 株式会社ディスコ Manufacturing method of semiconductor device
JP5346171B2 (en) * 2008-03-28 2013-11-20 スタンレー電気株式会社 Manufacturing method of ZnO-based semiconductor device and ZnO-based semiconductor device
JP5395446B2 (en) * 2009-01-22 2014-01-22 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
JP5216040B2 (en) * 2010-03-31 2013-06-19 三星ダイヤモンド工業株式会社 Method for dividing brittle material substrate
JP5170195B2 (en) * 2010-09-24 2013-03-27 三星ダイヤモンド工業株式会社 Method for dividing brittle material substrate with resin
JP2012146879A (en) 2011-01-13 2012-08-02 Disco Abrasive Syst Ltd Scriber apparatus
JP6019999B2 (en) * 2012-09-26 2016-11-02 三星ダイヤモンド工業株式会社 Method for dividing laminated ceramic substrate
JP6268917B2 (en) 2013-10-25 2018-01-31 三星ダイヤモンド工業株式会社 Break device
JP2016112714A (en) * 2014-12-11 2016-06-23 三星ダイヤモンド工業株式会社 Dividing method and dividing device of substrate
JP6507866B2 (en) * 2015-06-09 2019-05-08 三星ダイヤモンド工業株式会社 Device and method for manufacturing semiconductor chip with solder ball
JP6696842B2 (en) * 2016-06-22 2020-05-20 株式会社ディスコ Wafer processing method
JP6739873B2 (en) * 2016-11-08 2020-08-12 株式会社ディスコ Wafer processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315646A (en) * 1992-05-09 1993-11-26 Nichia Chem Ind Ltd Method of cutting gallium nitride compound semiconductor wafer
JP2001085736A (en) * 1999-09-10 2001-03-30 Sharp Corp Method for manufacturing nitride semiconductor chip
JP2001176823A (en) * 1999-12-17 2001-06-29 Sharp Corp Method for manufacturing nitride semiconductor chip
JP2002246337A (en) * 2001-02-20 2002-08-30 Nichia Chem Ind Ltd Manufacturing method of nitride semiconductor chip
JP2007220703A (en) * 2006-02-14 2007-08-30 Enzan Seisakusho Co Ltd Semiconductor chip separation apparatus
JP2016225586A (en) * 2015-05-29 2016-12-28 久元電子股▲ふん▼有限公司 Dicing process of wafer
JP2017041525A (en) * 2015-08-19 2017-02-23 株式会社ディスコ Wafer division method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022102918A (en) * 2020-12-25 2022-07-07 豊田合成株式会社 Semiconductor device and method for manufacturing semiconductor device
JP7456376B2 (en) 2020-12-25 2024-03-27 豊田合成株式会社 Semiconductor device and semiconductor device manufacturing method
WO2023058509A1 (en) * 2021-10-08 2023-04-13 三星ダイヤモンド工業株式会社 Sic semiconductor device

Also Published As

Publication number Publication date
CN112740365A (en) 2021-04-30
KR102557292B1 (en) 2023-07-18
JP7418013B2 (en) 2024-01-19
CN112740365B (en) 2024-01-09
JPWO2020066408A1 (en) 2021-09-09
KR20210048530A (en) 2021-05-03
TWI820177B (en) 2023-11-01
TW202013477A (en) 2020-04-01

Similar Documents

Publication Publication Date Title
TWI574806B (en) Disassembly method of laminated ceramic substrate
WO2020066408A1 (en) Method of severing substrate provided with metal film
TW201515802A (en) Breaking device and splitting method
JP2023073306A (en) Dividing method for metal film attached substrate
CN111916356A (en) Breaking method of metal laminated ceramic substrate
TW201603980A (en) Method and device to break laminated substrate
TWI696228B (en) Substrate breaking method and breaking device
JP6898010B2 (en) How to divide a substrate with a metal film
TW201604156A (en) Laminate substrate dividing method and dividing device
JP6040705B2 (en) Method for dividing laminated ceramic substrate
JP7385908B2 (en) Method for dividing bonded substrates and method for dividing stressed substrates
CN112809947B (en) Method for dividing bonded substrate and method for dividing stress substrate
TW201637856A (en) Method for dividing bonded substrate and dividing apparatus thereof
TW201604158A (en) Laminate substrate dividing method and dividing cutter
JP2014065291A (en) Tool for processing groove of metal film laminated ceramic substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548196

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217008964

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866479

Country of ref document: EP

Kind code of ref document: A1