WO2020066247A1 - マグネトロンスパッタリング装置用の磁石ユニット - Google Patents

マグネトロンスパッタリング装置用の磁石ユニット Download PDF

Info

Publication number
WO2020066247A1
WO2020066247A1 PCT/JP2019/028787 JP2019028787W WO2020066247A1 WO 2020066247 A1 WO2020066247 A1 WO 2020066247A1 JP 2019028787 W JP2019028787 W JP 2019028787W WO 2020066247 A1 WO2020066247 A1 WO 2020066247A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
yoke
magnet unit
substrate
film thickness
Prior art date
Application number
PCT/JP2019/028787
Other languages
English (en)
French (fr)
Inventor
藤井 佳詞
中村 真也
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020217012717A priority Critical patent/KR102672094B1/ko
Priority to CN201980062242.4A priority patent/CN112739848B/zh
Priority to JP2020548049A priority patent/JP7057430B2/ja
Priority to US16/973,277 priority patent/US11239064B2/en
Publication of WO2020066247A1 publication Critical patent/WO2020066247A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Definitions

  • the present invention relates to a magnet unit for a magnetron sputtering device.
  • a magnetron sputtering apparatus may be used in order to form a predetermined thin film on a surface of a substrate to be processed such as a semiconductor wafer with good productivity.
  • a magnet unit is arranged above a target, with the sputtering surface of the target being a sputtering surface and the sputtering surface side of the target being downward.
  • the magnet unit has, for example, a yoke made of a magnetic material opposed to the target and a plurality of magnets provided on the lower surface of the yoke in order to extend the life of the target by substantially uniformly eroding the target. Then, a line passing through a position where the vertical component of the magnetic field is zero is endlessly closed in a space below the target located between the center of the target and its peripheral portion. What is rotationally driven is generally known.
  • a method of adjusting the change in the circumferential film thickness distribution when it changes as described above is known, for example, from Japanese Patent Application Laid-Open No. H11-163,873.
  • a cycle in which a region where a magnetic field locally acts on a target moves from the starting point on the same orbit to return to the starting point is defined as one cycle, and the orbit of the magnet unit in one cycle is divided into a plurality of zones.
  • At least one of the plurality of zones is set as a reference zone that moves at a predetermined reference speed, and for each zone other than the reference zone, the rotation speed (the amount of acceleration or deceleration from the reference speed) is determined based on the film thickness distribution. Amount).
  • the thickness distribution in the circumferential direction at the outer peripheral portion of the substrate is adjusted, the film in the circumferential direction at the inner peripheral portion (particularly, near the center of the substrate) inside the substrate is adjusted.
  • the thickness distribution is locally deteriorated, and the thickness distribution in the substrate surface is rather deteriorated.
  • the present invention provides a magnet unit for a magnetron sputtering apparatus capable of obtaining a more uniform film thickness distribution over the entire surface when a predetermined thin film is formed on a substrate. That is the subject.
  • the magnet unit for the magnetron sputtering apparatus of the present invention which is disposed above the target, with the surface to be sputtered on the target being a sputtered surface and the sputtered surface side of the target facing downward, is disposed facing the target. And a plurality of magnets provided on the lower surface of the yoke, so that the vertical component of the magnetic field becomes zero in the space below the target located between the center of the target and the periphery thereof.
  • a line passing through the position causes the stray magnetic field that closes endlessly to act locally, is rotationally driven around the center of the target, and extends at a predetermined position of the yoke in the circumferential direction on a virtual circumference, and is depressed downward from the upper surface of the yoke.
  • a penetrating groove is formed, and an auxiliary yoke is provided so as to be able to be fitted and detached from the groove.
  • the magnetic field intensity locally increases or decreases in the region where the concave groove is formed. I do.
  • the film thickness of the inner peripheral portion of the substrate inside the substrate is locally thinned by adjusting the peripheral film thickness distribution at the outer peripheral portion of the substrate, If the auxiliary yoke is fitted in the concave groove formed in the inner peripheral portion, the strength of the magnetic field increases, and the sputtering rate in the region can be increased.
  • the film thickness at the portion where the film thickness has changed can be readjusted, and a more uniform film thickness distribution can be obtained over the entire surface.
  • the formation position of the concave groove is appropriately set in consideration of the sputtering conditions, the strength of the leakage magnetic field and the distribution thereof.
  • the auxiliary yoke is set to be shorter than the peripheral length of the concave groove, and that the auxiliary yoke includes a first drive unit that moves the auxiliary yoke along the virtual circumference. According to this, the auxiliary yoke can be moved and fitted to the predetermined portion of the concave groove. Further, in the present invention, it is preferable that a second driving unit for moving the auxiliary yoke in the direction of approaching and separating from the groove is provided.
  • FIG. 1 is a schematic diagram illustrating a configuration of a sputtering apparatus to which a magnet unit for a magnetron sputtering apparatus according to an embodiment of the present invention is applied.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. 1. The schematic diagram explaining the structure of the sputtering device to which the magnet unit for magnetron sputtering devices concerning the modification of the present invention was applied.
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3. Sectional drawing which shows the principal part of the magnet unit which concerns on the modification of this invention. Sectional drawing which shows the principal part of the magnet unit which concerns on the modification of this invention.
  • FIG. 1 a schematic diagram illustrating a configuration of a sputtering apparatus to which a magnet unit for a magnetron sputtering apparatus according to an embodiment of the present invention is applied.
  • terms indicating directions such as “up” and “down” are based on FIG.
  • SM is a sputtering device
  • the sputtering device SM includes a vacuum chamber 1 that can be evacuated to a predetermined pressure by a vacuum exhaust unit P such as a rotary pump or a turbo molecular pump.
  • a gas pipe 11 provided with a mass flow controller 10 is connected to the side wall of the vacuum chamber 1 so that a sputter gas can be introduced into the vacuum chamber 1 at a predetermined flow rate from a gas source (not shown).
  • the sputtering gas includes not only a rare gas such as an argon gas, but also a reactive gas such as an oxygen-containing gas when performing reactive sputtering.
  • stage 2 via an insulator I 1 is arranged.
  • the stage 2 has a known electrostatic chuck (not shown), and a chuck voltage is applied to the electrodes of the electrostatic chuck from a chuck power supply, so that the substrate W is suction-held on the stage 2 with its film-forming surface facing up. I can do it.
  • the cathode unit C is disposed in the opening formed in the upper wall of the vacuum chamber 1.
  • the cathode unit C is disposed so as to face the inside of the vacuum chamber 1, and includes a target 3 having an outer shape slightly larger than the outer shape of the substrate W, and a magnet unit 4 according to the present embodiment disposed above the target 3.
  • the target 3 is opposed to the stage 2 and thus the substrate W such that the target center is located on a center line extending in the vertical direction passing through the center of the substrate W.
  • the target 3 is appropriately selected depending on the composition of the thin film to be formed on the surface of the substrate W, and is a single metal of Cu, Ti, Co, Ni, Al, W or Ta, or a metal selected from these. It can be composed of more than one kind of alloy or an insulator made of aluminum oxide, magnesium oxide or the like.
  • the target 3 is mounted on the upper wall of the vacuum chamber 1 in a state where the bonding material is bonded through, an indium or tin copper backing plate 31 to cool the target 3 during film formation through an insulating plate I 2 Is done.
  • An output from a DC power supply or an AC power supply having a known structure as a sputtering power supply E is connected to the target 3 so that DC power or AC power (for example, high-frequency power) having a negative potential is supplied during sputtering. I have to.
  • the magnet unit 4 includes a yoke 41 made of a magnetic material and opposed to the target 3 and a plurality of magnets 42 provided on the lower surface of the yoke 41.
  • a line L0 passing through a position where the vertical component of the magnetic field becomes zero is endlessly applied to the space below the target 3 located between the peripheral edge 3e and the target 3 so as to act locally.
  • a rotating shaft 43 is connected to the upper surface of the yoke 41. The rotating shaft 43 is rotated by the motor 5, so that the yoke 41 and the magnet 42 can be driven to rotate around the target center.
  • the circumferential film thickness distribution in the outer peripheral portion of the substrate may change.
  • the film thickness distribution in the circumferential direction may be locally deteriorated, and the film thickness distribution in the substrate surface may be worsened.
  • a concave groove 41a that extends in the circumferential direction on the virtual circumference LC centered on the target center 3c and that is depressed downward from the upper surface of the yoke 41 is formed at a predetermined position of the yoke 41.
  • the formation position of the concave groove 41a is appropriately set in consideration of the sputtering conditions, the strength of the leakage magnetic field, and its distribution.
  • the auxiliary yoke 44 is provided so as to be able to be freely fitted and detached from the thus formed concave groove 41a.
  • the auxiliary yoke 44 is set shorter than the circumference of the concave groove 41a.
  • a lower end of a rod-shaped member 45 is connected to the upper surface of the auxiliary yoke 44, and a gear 46 provided in mesh with a flange portion 45a provided at an upper end of the rod-shaped member 45 is rotated by a motor 6 serving as a first driving means.
  • the auxiliary yoke 44 can be moved along the virtual circumference LC, and the auxiliary yoke 44 can be rotated about the target center in synchronization with the yoke 41 during film formation.
  • a piston rod of the air cylinder 7 as a second driving means is connected to the flange portion 45a, so that the auxiliary yoke 44 can be moved in a direction close to and away from the concave groove 41a (up and down direction).
  • the auxiliary yoke 44 is detached from the concave groove 41a, and after the detached auxiliary yoke 44 is rotated, the auxiliary yoke 44 is fitted into the concave groove 41a.
  • the auxiliary yoke 44 can be arranged at a desired position of 41a.
  • Rotating plates 47a and 47b are extrapolated to the rotating shaft 43 and the rod-like member 45, respectively, and projecting pieces 48a and 48b projecting radially outward are attached to the rotating plates 47a and 47b, respectively.
  • Optical sensors 49a and 49b are provided corresponding to the protruding pieces 48a and 48b, respectively. When the optical sensors 49a and 49b detect the protruding pieces 48a and 48b, it is determined that the magnet unit 4 is at the starting position. I can do it. In this case, the start position and the position of the notch of the substrate W are correlated to acquire information about a film thickness distribution described later.
  • the sputtering apparatus SM has a control unit 8 including a known microcomputer, a sequencer, and the like, and operates the sputtering power source E, operates the mass flow controller 10, operates the motors 5 and 6, operates the air cylinders 7, and evacuates. The operation and the like of the means P are totally controlled.
  • the control unit 8 includes an information acquisition unit 81 and a speed determination unit 82.
  • the information acquisition unit 81 is configured to be able to communicate with a film thickness meter provided in an unillustrated EFEM (Equipment ⁇ Front ⁇ End ⁇ Module) for loading / unloading the substrate W in the sputtering apparatus SM, for example. It is possible to acquire information on the film thickness distribution in the substrate surface measured in the above.
  • the speed determining unit 82 determines the amount of acceleration and deceleration of the magnet unit 4 from the reference speed based on the acquired information, and the yoke 41 and the auxiliary yoke 44 of the magnet unit 4 rotate synchronously at the determined speed. Motors 5 and 6 are driven as described above.
  • a film having a known structure can be used.
  • an eddy current film thickness is used.
  • a spectroscopic ellipsometer can be used.
  • a laser displacement meter can be used.
  • the inside of the vacuum chamber 1 is evacuated to a predetermined pressure (for example, 1 ⁇ 10 ⁇ 5 Pa) by the vacuum exhaust means P, and the substrate W is transferred into the vacuum chamber 1 by a transfer robot (not shown).
  • the substrate W is sucked and held by applying a voltage to the electrodes of the chuck plate of the stage 2.
  • an argon gas as a sputtering gas is introduced at a predetermined flow rate (for example, 12 sccm) by the mass flow controller 10 (at this time, the pressure is 0.1 Pa), and a DC power of, for example, 30 kW is supplied from the sputtering power source E to the aluminum target 3.
  • a predetermined pressure for example, 1 ⁇ 10 ⁇ 5 Pa
  • the auxiliary yoke 44 is detached from the groove 41a.
  • the magnet unit 4 is rotated around the center of the target at a predetermined reference speed (for example, 40 rpm) at least one cycle (one rotation) from the starting position where the optical sensor 49a detects the projecting piece 48a.
  • a predetermined reference speed for example, 40 rpm
  • the target 3 is sputtered, and the sputtered particles scattered from the target 3 adhere to and deposit on the surface of the substrate W to form an aluminum film.
  • a film thickness meter not shown
  • the obtained information is transmitted to the information obtaining unit 81 of the control unit 8, and the information obtaining unit 81 obtains the information (information obtaining step).
  • the speed of the magnet unit 4 is determined based on the information on the film thickness distribution obtained in the information obtaining step (speed determining step).
  • the trajectory (circumference) of the magnet unit 4 in one cycle is equally divided in the circumferential direction (for example, a 360 ° rotational movement is divided into 24 pieces every 15 °), and each of the divided sections is divided.
  • the starting position is a reference zone.
  • the speed in the reference zone is set as the reference speed, and the speed increase amount or the deceleration amount from the reference speed is determined for each zone other than the reference zone based on the acquired information.
  • the amount of sputtering of the target 3 is reduced by a predetermined value from the reference speed (sputter rate), while in a zone where the film thickness is thicker than the reference zone, By reducing the sputtering rate by increasing the reference speed by a predetermined value, the circumferential film thickness distribution in the outer peripheral portion of the substrate is adjusted (film thickness distribution adjusting step).
  • the auxiliary yoke 44 is fitted to a locally thin portion in the inner peripheral portion of the substrate in which the concave groove 41a is formed, so that the magnetic field strength of the portion is increased.
  • the film thickness can be readjusted at the portion where the film thickness changes in the inner peripheral portion of the substrate (readjustment step).
  • the substrate W is transported into the vacuum chamber 1 and held on the stage 2 by suction, and the magnet unit 4 is rotated and driven at the determined speed. Under conditions, an aluminum film is formed on the surface of the substrate W (film formation step). At this time, the auxiliary yoke 44 rotates in synchronization with the yoke 41.
  • the concave groove 41a formed in the yoke 41 or the auxiliary yoke 44 is detached from the concave groove 41a based on the information obtained in the information obtaining step, the concave groove is formed.
  • the magnetic field intensity locally increases or decreases in the region where 41a is formed. For this reason, by adjusting the circumferential film thickness distribution in the outer peripheral portion of the substrate as described above, when the film thickness of the inner peripheral portion of the substrate inside the substrate is locally thinned, the inner peripheral portion of the substrate may be adjusted.
  • the auxiliary yoke 44 When the auxiliary yoke 44 is fitted in the concave groove 41a formed in the above, the magnetic field intensity increases, and the sputtering rate in the region can be increased. As a result, the film thickness at the portion where the film thickness has changed can be readjusted, and a more uniform film thickness distribution can be obtained over the entire surface.
  • the substrate W was a silicon wafer of ⁇ 300 mm
  • an argon gas was introduced into the vacuum chamber 1 at 12 sccm (at this time, the pressure was 0.1 Pa), and a DC power of 30 kW was applied to the aluminum target 3 to form a plasma atmosphere.
  • the target 3 was sputtered while rotating the magnet unit 4 at a constant speed of 40 rpm to form an aluminum film on the surface of the substrate W.
  • the auxiliary yoke 44 was detached from the concave groove 41a.
  • the maximum value of the circumferential film thickness at the outer peripheral portion of the substrate is 40.79 nm
  • the minimum value is 38.90 nm
  • the difference between the maximum value and the minimum value hereinafter, referred to as “range”.
  • the maximum value of the circumferential film thickness at the inner peripheral portion of the substrate is 42.56 nm and the minimum value is 39.73 nm. 73 nm, and the range deteriorated to 2.83 nm. Therefore, when the auxiliary yoke 44 was fitted into the concave groove 41a at the portion where the film thickness of the substrate inner peripheral portion was the minimum value, and the film thickness distribution of the substrate inner peripheral portion was readjusted, the maximum value was 40.02 nm and the minimum value was 40. The value was 39.66 nm, and the range was reduced to 0.36 nm.
  • the concave groove 41a formed at the inner peripheral portion of the substrate can be formed. It has been confirmed that, when the auxiliary yoke 44 is fitted, the magnetic field intensity increases, the sputter rate in the region can be increased, and the film thickness can be readjusted at the portion where the film thickness changes.
  • the present invention is not limited to the above.
  • the auxiliary yoke 44 may be fitted manually. Also in this case, the auxiliary yoke 44 may rotate in synchronization with the yoke 41.
  • the concave groove 41a was formed so as to be depressed downward from the upper surface of the yoke 41.
  • the concave groove 41b was formed so as to penetrate the yoke 41. It may be formed.
  • the speed of the magnet unit 4 may be determined based on information correlated with the film thickness.
  • the target voltage applied to the target 3 when a constant input power is applied to the target 3 may be measured for each zone, and the speed of the magnet unit 4 may be determined based on the measured target voltage.
  • the target voltage corresponding to each zone is acquired, the average value (average voltage) of the target voltages of all the zones including the reference zone is determined, and the ratio of the target voltage associated with each zone to the average voltage is determined.
  • the target 3 is circular in plan view and the magnet unit 4 is rotated is described.
  • the target is rectangular in plan view, and the directions along the sputtering surface of the target are defined in the X direction and the Y direction.
  • the present invention can be applied to a case where the magnet unit is moved in parallel in at least one of the X direction and the Y direction.
  • a plurality of (two in the example shown in FIG. 5) concave grooves 41a may be provided in the radial direction. As a result, the film thickness can be readjusted at each location where the concave groove 41a is provided, so that a more favorable film thickness distribution can be obtained.
  • the auxiliary yoke 44 is divided into a plurality of parts, and the plurality of auxiliary yokes 44 are individually provided. May be configured to be operable. According to this, the magnetic field coupling can be appropriately adjusted by operating the plurality of auxiliary yokes 44 individually, and as a result, a more favorable film thickness distribution can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

基板に所定の薄膜を形成する場合に、その全面に亘ってより一層均一な膜厚分布を得ることができるマグネトロンスパッタリング装置用の磁石ユニットを提供する。 ターゲット3のスパッタリングされるスパッタ面側を下として、ターゲットの上方に配置されるマグネトロンスパッタリング装置用の磁石ユニット4は、ターゲットに対向配置される磁性材料製のヨーク41とヨークの下面に設けられる複数個の磁石42とを有して、ターゲット中心とその周縁部との間に位置するターゲットの下方空間に磁場の垂直成分がゼロとなる位置を通る線が無端状に閉じる漏洩磁場を局所的に作用させ、ターゲット中心回りに回転駆動され、ヨークの所定位置に、ターゲット中心を中心とする仮想円周上で周方向にのびる、ヨークの上面から下方に窪む又は貫通する凹溝41aが形成され、この凹溝に対して嵌脱自在に補助ヨーク44が設けられる。

Description

マグネトロンスパッタリング装置用の磁石ユニット
 本発明は、マグネトロンスパッタリング装置用の磁石ユニットに関する。
 例えば、半導体デバイスの製造工程においては、半導体ウエハなどの処理すべき基板の表面に所定の薄膜を量産性良く成膜するために、マグネトロンスパッタリング装置が用いられることがある。マグネトロンスパッタリング装置では、ターゲットのスパッタリングされる面をスパッタ面、ターゲットのスパッタ面側を下として、ターゲットの上方に磁石ユニットが配置されている。磁石ユニットとしては、ターゲットを略均一に侵食して高寿命化を図る等のため、例えば、ターゲットに対向配置される磁性材料製のヨークとこのヨークの下面に設けられる複数個の磁石とを有して、ターゲット中心とその周縁部との間に位置するターゲットの下方空間に磁場の垂直成分がゼロとなる位置を通る線が無端状に閉じる漏洩磁場を局所的に作用させ、ターゲット中心回りに回転駆動されるものが一般に知られている。
 ところで、ターゲットの材料や真空チャンバ内の圧力等のスパッタリング条件が異なると、スパッタ粒子の飛散分布が変化し、それに起因して、例えば基板外周部における周方向の膜厚分布が変化する場合がある。このように周方向の膜厚分布が変化したときにこれを調整する方法は、例えば、特許文献1で知られている。このものでは、ターゲットに対して磁場が局所的に作用する領域が起点から同一軌道上を移動して当該起点に戻るまでを1サイクルとし、1サイクルにおける磁石ユニットの軌道を複数のゾーンに区画し、これら複数のゾーンのうちの少なくとも1つのゾーンを所定の基準速度で移動する基準ゾーンとし、基準ゾーン以外のゾーン毎に、膜厚分布に基づいて回転速度(基準速度からの増速量又は減速量)を決定している。
 然しながら、上記従来例のものでは、例えば、基板外周部における周方向の膜厚分布を調整すると、これより内側の基板内周部(特に、基板中央に近い領域)にて、その周方向の膜厚分布が局所的に悪化して、基板面内の膜厚分布が却って悪化する場合がある。
特開2016-011445号公報
 本発明は、以上の点に鑑み、基板に所定の薄膜を形成する場合に、その全面に亘ってより一層均一な膜厚分布を得ることができるマグネトロンスパッタリング装置用の磁石ユニットを提供することをその課題とするものである。
 上記課題を解決するために、ターゲットのスパッタリングされる面をスパッタ面、ターゲットのスパッタ面側を下として、ターゲットの上方に配置される本発明のマグネトロンスパッタリング装置用の磁石ユニットは、ターゲットに対向配置される磁性材料製のヨークとこのヨークの下面に設けられる複数個の磁石とを有して、ターゲット中心とその周縁部との間に位置するターゲットの下方空間に磁場の垂直成分がゼロとなる位置を通る線が無端状に閉じる漏洩磁場を局所的に作用させ、ターゲット中心回りに回転駆動され、ヨークの所定位置に、仮想円周上で周方向にのびる、ヨークの上面から下方に窪む又は貫通する凹溝が形成され、この凹溝に対して嵌脱自在に補助ヨークが設けられることを特徴とする。
 本発明によれば、ヨークに形成した凹溝に補助ヨークを嵌合、または、当該凹溝から補助ヨークを脱離させると、凹溝を形成した領域にて磁場強度が局所的に増加または減少する。このため、上記従来例の如く、基板外周部における周方向の膜厚分布を調整することで、これより内側の基板内周部の膜厚が局所的に薄くなったような場合には、基板内周部に形成した凹溝に補助ヨークを嵌合させれば、磁場強度が増加して当該領域でのスパッタレートを増加させることができる。その結果、膜厚が変化した箇所における膜厚を再調整して、その全面に亘ってより一層均一な膜厚分布を得ることができる。なお、凹溝の形成位置は、スパッタリング条件、漏洩磁場の強度やその分布を考慮して適宜設定される。
 本発明においては、前記補助ヨークが前記凹溝の周長より短く設定され、この補助ヨークを前記仮想円周に沿って移動させる第1の駆動手段を備えることが好ましい。これによれば、凹溝の所定部分に補助ヨークを移動させて嵌合することができる。また、本発明においては、前記補助ヨークを前記凹溝に対して近接離間方向に移動させる第2駆動手段を備えることが好ましい。
本発明の実施形態に係るマグネトロンスパッタリング装置用の磁石ユニットが適用されたスパッタリング装置の構成を説明する模式図。 図1のII-II線に沿う断面図。 本発明の変形例に係るマグネトロンスパッタリング装置用の磁石ユニットが適用されたスパッタリング装置の構成を説明する模式図。 図3のIV-IV線に沿う断面図。 本発明の変形例に係る磁石ユニットの要部を示す断面図。 本発明の変形例に係る磁石ユニットの要部を示す断面図。
 以下、図面を参照して、本発明の実施形態に係るマグネトロンスパッタリング装置用の磁石ユニットが適用されたスパッタリング装置の構成を説明する模式図。以下においては、「上」「下」といった方向を示す用語は、図1を基準とする。
 図1を参照して、SMは、スパッタリング装置であり、スパッタリング装置SMは、ロータリーポンプやターボ分子ポンプなどの真空排気手段Pにより所定圧力まで真空引き可能な真空チャンバ1を備える。真空チャンバ1の側壁には、マスフローコントローラ10を介設したガス管11が接続され、図示省略するガス源からスパッタガスを所定の流量で真空チャンバ1内に導入できるようになっている。スパッタガスには、アルゴンガス等の希ガスだけでなく、反応性スパッタリングを行う場合には酸素含有ガス等の反応性ガスが含まれるものとする。
 真空チャンバ1の底部には、絶縁体Iを介してステージ2が配置されている。ステージ2は、図示省略する公知の静電チャックを有し、静電チャックの電極にチャック電源からチャック電圧を印加することで、ステージ2上に基板Wをその成膜面を上にして吸着保持できるようになっている。
 真空チャンバ1の上壁に開設された開口には、カソードユニットCが配置されている。カソードユニットCは、真空チャンバ1内を臨むように配置され、基板Wの外形より一回り大きい外形を持つターゲット3と、このターゲット3の上方に配置された本実施形態に係る磁石ユニット4とを有する。ターゲット3は、基板Wの中心を通り上下方向にのびる中心線上にターゲット中心が位置するように、ステージ2ひいては基板Wと対向配置されている。
 ターゲット3としては、基板W表面に成膜しようとする薄膜の組成に応じて適宜選択され、Cu、Ti、Co、Ni、Al、WまたはTaの単体金属、またはこれらの中から選択された二種以上の合金、または、酸化アルミニウムや酸化マグネシウム等の絶縁物製のもので構成することができる。そして、ターゲット3は、成膜時にターゲット3を冷却する銅製のバッキングプレート31にインジウムやスズなどのボンディング材を介して接合された状態で絶縁板Iを介して真空チャンバ1の上壁に装着される。ターゲット3には、スパッタ電源Eとしての公知の構造を持つ直流電源や交流電源からの出力が接続され、スパッタリング時、負の電位を持つ直流電力や交流電力(例えば高周波電力)が投入されるようにしている。
 磁石ユニット4としては、図2も参照して、ターゲット3に対向配置される磁性材料製のヨーク41とこのヨーク41の下面に設けられる複数個の磁石42とを有して、ターゲット中心3cとその周縁部3eとの間に位置するターゲット3の下方空間に磁場の垂直成分がゼロとなる位置を通る線L0が無端状に閉じる漏洩磁場を局所的に作用させている。ヨーク41の上面には回転軸43が連結され、この回転軸43をモータ5で回転することで、ターゲット中心回りにヨーク41及び磁石42を回転駆動できるようになっている。 
 ところで、基板外周部における周方向の膜厚分布が変化する場合があり、このような場合に上記従来例の如く磁石ユニットを加減速して基板外周部における周方向の膜厚分布を調整すると、基板内周部にて、その周方向の膜厚分布が局所的に悪化して、基板面内の膜厚分布が却って悪化する場合がある。
 そこで、本実施形態では、ヨーク41の所定位置に、ターゲット中心3cを中心とする仮想円周LC上で周方向にのびる、ヨーク41の上面から下方に窪む凹溝41aを形成した。凹溝41aの形成位置は、スパッタリング条件、漏洩磁場の強度やその分布を考慮して適宜設定される。そして、このように形成される凹溝41aに対して嵌脱自在に補助ヨーク44を設けた。補助ヨーク44は、凹溝41aの周長より短く設定されている。補助ヨーク44の上面には棒状部材45の下端が連結され、この棒状部材45の上端に設けたフランジ部45aと噛み合わせて設けたギア46を第1駆動手段たるモータ6で回転することで、補助ヨーク44を仮想円周LCに沿って移動させることができ、また、成膜中、補助ヨーク44をヨーク41と同期させてターゲット中心回りに回転させることができるようになっている。また、フランジ部45aには第2駆動手段たるエアシリンダー7のピストンロッドが連結されており、補助ヨーク44を凹溝41aに対して近接離間方向(上下方向)に移動できるようになっている。このような構成によれば、例えば、補助ヨーク44を凹溝41aから脱離させ、脱離した補助ヨーク44を回転させた後、補助ヨーク44を凹溝41aに嵌合させることで、凹溝41aの所望の位置に補助ヨーク44を配置することができる。
 また、回転軸43及び棒状部材45には、回転板47a,47bが夫々外挿され、これらの回転板47a,47bには、径方向外方に突出する突片48a,48bが夫々取り付けられている。そして、突片48a,48bに対応させて光学式センサ49a,49bが夫々設けられ、光学式センサ49a,49bが突片48a,48bを検出するときに、磁石ユニット4が起点位置にあると判断できるようにしている。この場合、起点位置と基板Wのノッチの位置とを相関させて後述する膜厚分布に関する情報を取得するようにしている。
 上記スパッタリング装置SMは、公知のマイクロコンピュータやシーケンサ等を備えた制御手段8を有し、スパッタ電源Eの稼働、マスフローコントローラ10の稼働、モータ5,6の稼働、エアシリンダー7の稼働、真空排気手段Pの稼働等を統括制御するようにしている。
 制御手段8は、情報取得部81と、速度決定部82とを備える。情報取得部81は、例えば、スパッタリング装置SMに基板Wをロード/アンロードするための図外のEFEM(Equipment Front End Module)に設けられた膜厚計と通信可能に構成され、この膜厚計で測定した基板面内における膜厚分布に関する情報を取得できるようにしている。速度決定部82は、取得情報に基づいて磁石ユニット4の基準速度からの増速量及び減速量を決定し、その決定した速度で磁石ユニット4のヨーク41と補助ヨーク44が同期して回転するようにモータ5,6が駆動される。
 なお、膜厚計としては、公知の構造を有するものを用いることができ、例えば、抵抗値の低い金属膜を比較的厚い膜厚で成膜する場合には、渦電流式の膜厚を用いることができ、また、絶縁膜を比較的薄い膜厚で成膜する場合には、分光エリプソメータを用いることができる。他の膜厚計として、レーザ変位計を用いることができる。以下、上記スパッタリング装置SMを用いて、基板W表面にアルミニウム膜を成膜する成膜方法について説明する。
 先ず、真空排気手段Pにより真空チャンバ1内を所定圧力(例えば1×10-5Pa)まで真空引きし、図外の搬送ロボットにより真空チャンバ1内に基板Wを搬送し、ステージ2に基板Wを受け渡し、ステージ2のチャックプレートの電極に電圧印加して基板Wを吸着保持する。次いで、マスフローコントローラ10によりスパッタガスたるアルゴンガスを所定流量(例えば、12sccm)で導入して(このときの圧力は0.1Pa)、スパッタ電源Eからアルミニウム製のターゲット3に例えば、30kWの直流電力を投入することにより、真空チャンバ1内にプラズマ雰囲気を形成する。このとき、補助ヨーク44は凹溝41aから脱離させておく。そして、光学式センサ49aが突片48aを検出した起点位置から磁石ユニット4をターゲット中心回りに所定の基準速度(例えば、40rpm)で少なくとも1サイクル(1回転)回転させる。これにより、ターゲット3がスパッタリングされ、ターゲット3から飛散したスパッタ粒子が基板W表面に付着、堆積してアルミニウム膜が成膜される。成膜済みの基板Wを真空チャンバ1から搬出し、図外の膜厚計により基板W面内の複数箇所におけるアルミニウム膜の膜厚を測定することで、基板面内における膜厚分布に関する情報が得られる。得られた情報は制御手段8の情報取得部81に送信され、情報取得部81は当該情報を取得する(情報取得工程)。
 次に、情報取得工程で取得した膜厚分布に関する情報に基づいて、磁石ユニット4の速度を決定する(速度決定工程)。この速度決定工程では、1サイクルにおける磁石ユニット4の軌道(円周)を周方向に均等に区画し(例えば、360°の回転運動を15°毎に24個に区画し)、区画された夫々をゾーンとすると共に、上記起点位置を基準ゾーンとする。そして、この基準ゾーンでの速度を基準速度とし、基準ゾーン以外のゾーン毎に、上記取得情報に基づいて基準速度からの増速量または減速量を決定する。ここで、基準ゾーンより膜厚が薄いゾーンでは、基準速度から所定値だけ減速してターゲット3がスパッタリングされる量(スパッタレート)を増加させ、他方で、基準ゾーンより膜厚が厚いゾーンでは、基準速度から所定値だけ増速してスパッタレートを減少させることで、基板外周部における周方向の膜厚分布を調整する(膜厚分布調整工程)。
 次に、上記取得情報に基づいて、凹溝41aを形成した基板内周部にて、膜厚が局所的に薄い部分に補助ヨーク44を嵌合させることで、当該部分の磁場強度が増加してスパッタレートを増加させることで、基板内周部で膜厚が変化した箇所における膜厚を再調整することができる(再調整工程)。
 上記再調整工程にて膜厚を再調整した後、基板Wを真空チャンバ1内に搬送してステージ2上に吸着保持し、決定した速度で磁石ユニット4を回転駆動させながら、上記と同様の条件で、基板W表面にアルミニウム膜を成膜する(成膜工程)。このとき、補助ヨーク44はヨーク41と同期して回転する。
 以上によれば、情報取得工程で取得した情報を基に、ヨーク41に形成した凹溝41aに補助ヨーク44を嵌合、または、当該凹溝41aから補助ヨーク44を脱離させると、凹溝41aを形成した領域にて磁場強度が局所的に増加または減少する。このため、上記の如く基板外周部における周方向の膜厚分布を調整することで、これより内側の基板内周部の膜厚が局所的に薄くなったような場合には、基板内周部に形成した凹溝41aに補助ヨーク44を嵌合させれば、磁場強度が増加して当該領域でのスパッタレートを増加させることができる。その結果、膜厚が変化した箇所における膜厚を再調整して、その全面に亘ってより一層均一な膜厚分布を得ることができる。
 次に、上記スパッタリング装置SMを用い、本発明の効果を確認するために実験を行った。基板Wをφ300mmのシリコンウエハとし、真空チャンバ1内にアルゴンガスを12sccm導入し(このときの圧力は0.1Pa)、アルミニウム製のターゲット3に対し直流電力を30kW投入してプラズマ雰囲気を形成し、磁石ユニット4を40rpmの等速で回転させながらターゲット3をスパッタリングして基板W表面にアルミニウム膜を成膜した。このとき、補助ヨーク44は凹溝41aから脱離させておいた。膜厚計により基板W面内の複数箇所におけるアルミニウム膜の膜厚を測定することで、基板面内における膜厚分布に関する情報を得た。これによれば、基板外周部(半径147mmの仮想円)における周方向の膜厚の最大値が40.79nm、最小値が38.90nm、最大値と最小値の差(以下「レンジ」という)が1.89nmであり、他方で、基板内周部(半径98mmの仮想円)における周方向の膜厚の最大値が40.65nm、最小値が39.10nm、レンジが1.55nmであった。基板外周部の膜厚分布に基づいて磁石ユニット4の速度を24個のゾーン毎に決定し、基板外周部における周方向の膜厚分布を調整したところ、基板外周部における周方向の膜厚の最大値が40.96nm、最小値が39.73nmであり、レンジが1.23nmと小さくなったが、基板内周部における周方向の膜厚の最大値が42.56nm、最小値が39.73nmであり、レンジが2.83nmと悪化した。そこで、基板内周部の膜厚が最小値である部分の凹溝41aに補助ヨーク44を嵌合し、基板内周部の膜厚分布を再調整したところ、最大値が40.02nm、最小値が39.66nmであり、レンジが0.36nmと小さくなった。このように、基板外周部における周方向の膜厚分布を調整することで、基板内周部の膜厚が局所的に薄くなったような場合でも、基板内周部に形成した凹溝41aに補助ヨーク44を嵌合させれば、磁場強度が増加して当該領域でのスパッタレートを増加させることができ、膜厚が変化した箇所における膜厚を再調整できることが確認された。
 以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記実施形態では、凹溝41aに補助ヨーク44を自動で嵌合するものを例に説明したが、手動で嵌合してもよい。この場合も、補助ヨーク44はヨーク41と同期して回転してよい。
 上記実施形態では、凹溝41aとしてヨーク41の上面から下方に窪むように形成されたものを例に説明したが、図3及び図4に示すように、ヨーク41を貫通するように凹溝41bを形成してもよい。
 上記実施形態では、膜厚に基づいて磁石ユニット4の速度を決定する場合を例に説明したが、膜厚と相関のある情報に基づいて磁石ユニット4の速度を決定してもよい。例えば、ターゲット3へ一定の投入電力を投入したときにターゲット3に印加されるターゲット電圧をゾーン毎に測定し、測定したターゲット電圧に基づいて磁石ユニット4の速度を決定してもよい。この場合、ゾーン毎に対応するターゲット電圧を取得し、基準ゾーンを含む全ゾーンのターゲット電圧の平均値(平均電圧)を求め、各ゾーンに対応付けたターゲット電圧の平均電圧に対する比率を求めるように構成することができる。比率が高いゾーンでは、磁石ユニット4の速度が遅くなるように、また、求めた比率が低いゾーンでは、磁石ユニット4の速度の速度が速くなるように、基準速度からの増速量または減速量を決定すればよい。
 また、上記実施形態では、ターゲット3が平面視円形であり、磁石ユニット4を回転移動させる場合について説明したが、ターゲットが平面視矩形であり、ターゲットのスパッタ面に沿う方向をX方向及びY方向とし、磁石ユニットをX方向及びY方向の少なくとも一方に平行移動させる場合にも本発明を適用することができる。さらに、図5に示すように、凹溝41aは径方向に複数(図5に示す例では2つ)設けられていてもよい。これによって凹溝41aが設けられた場所毎に膜厚を再調整することができるため、さらに良好な膜厚分布を得ることができる。
 また、上記実施形態では、1つの補助ヨーク44を設ける場合を例に説明しているが、図6に示すように、補助ヨーク44を複数個に分割して設け、複数の補助ヨーク44を個別に動作可能に構成してもよい。これによれば、複数の補助ヨーク44を個別に動作させて磁場カップリングを適宜調整することができ、その結果として、更に良好な膜厚分布を得ることができる。
 3…ターゲット、4…磁石ユニット、41…ヨーク、41a,41b…凹溝、42…磁石、44…補助ヨーク。

Claims (3)

  1.  ターゲットのスパッタリングされる面をスパッタ面、ターゲットのスパッタ面側を下として、ターゲットの上方に配置されるマグネトロンスパッタリング装置用の磁石ユニットであって、
     ターゲットに対向配置される磁性材料製のヨークとこのヨークの下面に設けられる複数個の磁石とを有して、ターゲット中心とその周縁部との間に位置するターゲットの下方空間に磁場の垂直成分がゼロとなる位置を通る線が無端状に閉じる漏洩磁場を局所的に作用させ、ターゲット中心回りに回転駆動されるものにおいて、
     ヨークの所定位置に、仮想円周上で周方向にのびる、ヨークの上面から下方に窪む又は貫通する凹溝が形成され、この凹溝に対して嵌脱自在に補助ヨークが設けられることを特徴とするマグネトロンスパッタリング装置用の磁石ユニット。
  2.  前記補助ヨークが前記凹溝の周長より短く設定され、この補助ヨークを前記仮想円周に沿って移動させる第1の駆動手段を備えることを特徴とする請求項1記載のマグネトロンスパッタリング装置用の磁石ユニット。
  3.  前記補助ヨークを前記凹溝に対して近接離間方向に移動させる第2駆動手段を備えることを特徴とする請求項1または請求項2に記載のマグネトロンスパッタリング装置用の磁石ユニット。
PCT/JP2019/028787 2018-09-27 2019-07-23 マグネトロンスパッタリング装置用の磁石ユニット WO2020066247A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217012717A KR102672094B1 (ko) 2018-09-27 2019-07-23 마그네트론 스퍼터링 장치용 자석 유닛
CN201980062242.4A CN112739848B (zh) 2018-09-27 2019-07-23 磁控管溅射装置用磁铁单元
JP2020548049A JP7057430B2 (ja) 2018-09-27 2019-07-23 マグネトロンスパッタリング装置用の磁石ユニット
US16/973,277 US11239064B2 (en) 2018-09-27 2019-07-23 Magnet unit for magnetron sputtering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-181910 2018-09-27
JP2018181910 2018-09-27

Publications (1)

Publication Number Publication Date
WO2020066247A1 true WO2020066247A1 (ja) 2020-04-02

Family

ID=69949894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028787 WO2020066247A1 (ja) 2018-09-27 2019-07-23 マグネトロンスパッタリング装置用の磁石ユニット

Country Status (5)

Country Link
US (1) US11239064B2 (ja)
JP (1) JP7057430B2 (ja)
KR (1) KR102672094B1 (ja)
CN (1) CN112739848B (ja)
WO (1) WO2020066247A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268075A (ja) * 1990-12-07 1992-09-24 Leybold Ag 真空蒸着装置用の定置のマグネトロン−スパッタリング陰極
JP2009516776A (ja) * 2005-11-17 2009-04-23 アプライド マテリアルズ インコーポレイテッド 部分回転支持体及びセンタリングピンを含む可撓性マグネトロン
JP2010222698A (ja) * 2009-02-26 2010-10-07 Canon Anelva Corp マグネトロンスパッタカソード、マグネトロンスパッタ装置及び磁性デバイスの製造方法
JP2016157820A (ja) * 2015-02-24 2016-09-01 株式会社アルバック マグネトロンスパッタリング装置用の磁石ユニット及びこの磁石ユニットを用いたスパッタリング方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401539A (en) * 1981-01-30 1983-08-30 Hitachi, Ltd. Sputtering cathode structure for sputtering apparatuses, method of controlling magnetic flux generated by said sputtering cathode structure, and method of forming films by use of said sputtering cathode structure
JPS6233765A (ja) * 1985-08-02 1987-02-13 Fujitsu Ltd マグネトロンスパツタ装置
DE3812379A1 (de) * 1988-04-14 1989-10-26 Leybold Ag Zerstaeubungskathode nach dem magnetron-prinzip
JPH0734923Y2 (ja) * 1989-03-09 1995-08-09 富士電機株式会社 マグネトロンスパッタ装置
JPH0445267A (ja) * 1990-06-12 1992-02-14 Matsushita Electric Ind Co Ltd スパッタリング装置
DE59106675D1 (de) * 1990-12-13 1995-11-16 Balzers Hochvakuum Verfahren zum Zentrieren eines Elektronenstrahles.
JP4161642B2 (ja) * 2002-08-26 2008-10-08 旭硝子株式会社 スパッタ成膜方法及びマグネトロンスパッタ装置
JP2006028559A (ja) * 2004-07-14 2006-02-02 Victor Co Of Japan Ltd マグネトロンスパッタリング装置
JP2006083458A (ja) * 2004-09-17 2006-03-30 Alps Electric Co Ltd スパッタリング装置
US20070051616A1 (en) * 2005-09-07 2007-03-08 Le Hienminh H Multizone magnetron assembly
US7879210B2 (en) 2006-02-03 2011-02-01 Applied Materials, Inc. Partially suspended rolling magnetron
JP5461264B2 (ja) * 2010-03-25 2014-04-02 キヤノンアネルバ株式会社 マグネトロンスパッタリング装置、及び、スパッタリング方法
US9209001B2 (en) * 2010-04-02 2015-12-08 Ulvac, Inc. Sputtering apparatus and sputtering method
CN202148349U (zh) * 2011-02-17 2012-02-22 上海德化机电科技有限公司 一种磁控溅射用阴极
JP2015017304A (ja) * 2013-07-11 2015-01-29 ソニー株式会社 磁界発生装置、及びスパッタリング装置
JP6425431B2 (ja) * 2014-06-30 2018-11-21 株式会社アルバック スパッタリング方法
KR101871900B1 (ko) * 2015-03-25 2018-06-27 가부시키가이샤 알박 고주파 스퍼터링 장치 및 스퍼터링 방법
CN107614748B (zh) * 2015-05-22 2019-09-10 株式会社爱发科 磁控溅射装置
WO2017203844A1 (ja) * 2016-05-23 2017-11-30 株式会社アルバック 成膜方法及びスパッタリング装置
JP6685956B2 (ja) 2017-03-08 2020-04-22 キオクシア株式会社 半導体製造装置
CN207062368U (zh) * 2017-06-07 2018-03-02 枣庄维信诺电子科技有限公司 一种磁控旋转靶磁场调节装置及应用其的磁控旋转靶装置
JP7326036B2 (ja) * 2019-06-13 2023-08-15 株式会社アルバック マグネトロンスパッタリング装置用のカソードユニット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268075A (ja) * 1990-12-07 1992-09-24 Leybold Ag 真空蒸着装置用の定置のマグネトロン−スパッタリング陰極
JP2009516776A (ja) * 2005-11-17 2009-04-23 アプライド マテリアルズ インコーポレイテッド 部分回転支持体及びセンタリングピンを含む可撓性マグネトロン
JP2010222698A (ja) * 2009-02-26 2010-10-07 Canon Anelva Corp マグネトロンスパッタカソード、マグネトロンスパッタ装置及び磁性デバイスの製造方法
JP2016157820A (ja) * 2015-02-24 2016-09-01 株式会社アルバック マグネトロンスパッタリング装置用の磁石ユニット及びこの磁石ユニットを用いたスパッタリング方法

Also Published As

Publication number Publication date
JPWO2020066247A1 (ja) 2021-08-30
JP7057430B2 (ja) 2022-04-19
CN112739848A (zh) 2021-04-30
US20210249241A1 (en) 2021-08-12
CN112739848B (zh) 2023-03-24
KR20210062073A (ko) 2021-05-28
US11239064B2 (en) 2022-02-01
KR102672094B1 (ko) 2024-06-05

Similar Documents

Publication Publication Date Title
US11056323B2 (en) Sputtering apparatus and method of forming film
CN111094618B (zh) 溅射装置
JP6641472B2 (ja) 成膜方法及びスパッタリング装置
JP6425431B2 (ja) スパッタリング方法
JP6588351B2 (ja) 成膜方法
WO2020066247A1 (ja) マグネトロンスパッタリング装置用の磁石ユニット
JP7326036B2 (ja) マグネトロンスパッタリング装置用のカソードユニット
US11286554B2 (en) Sputtering apparatus
JP6997877B2 (ja) スパッタリング装置及び成膜方法
US11384423B2 (en) Sputtering apparatus and sputtering method
JP2018104738A (ja) 成膜方法
JP2022172614A (ja) 半導体製造装置および半導体製造方法
US20180305807A1 (en) Method of forming carbon film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217012717

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19865853

Country of ref document: EP

Kind code of ref document: A1