WO2020065917A1 - サーマルサイクラーおよびそれを備えたリアルタイムpcr装置 - Google Patents

サーマルサイクラーおよびそれを備えたリアルタイムpcr装置 Download PDF

Info

Publication number
WO2020065917A1
WO2020065917A1 PCT/JP2018/036250 JP2018036250W WO2020065917A1 WO 2020065917 A1 WO2020065917 A1 WO 2020065917A1 JP 2018036250 W JP2018036250 W JP 2018036250W WO 2020065917 A1 WO2020065917 A1 WO 2020065917A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
support block
thermal cycler
heat
peltier element
Prior art date
Application number
PCT/JP2018/036250
Other languages
English (en)
French (fr)
Inventor
勇人 清水
俊樹 山形
瑶子 牧野
修孝 隈崎
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to PCT/JP2018/036250 priority Critical patent/WO2020065917A1/ja
Priority to JP2020547794A priority patent/JP7038221B2/ja
Priority to CN201880095847.9A priority patent/CN112469809B/zh
Priority to DE112018007855.8T priority patent/DE112018007855B4/de
Priority to KR1020217003206A priority patent/KR102518245B1/ko
Priority to US17/269,677 priority patent/US12036560B2/en
Priority to GB2101843.7A priority patent/GB2590312B/en
Publication of WO2020065917A1 publication Critical patent/WO2020065917A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2561/00Nucleic acid detection characterised by assay method
    • C12Q2561/113Real time assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence

Definitions

  • the present invention relates to a thermal cycler suitable for a real-time PCR device for analyzing nucleic acids contained in a biological sample such as blood or urine, a so-called biological sample, and a real-time PCR device provided with the same.
  • Patent Literature 1 discloses that, when overshoot is performed, as a first process, the temperature is continuously increased until an overshoot target temperature is reached. When the temperature reaches the overshoot maintenance time, the overshoot target temperature is maintained at the overshoot target temperature for a predetermined time, and as a third process, the temperature is lowered until the reaction solution reaches the target temperature. It describes that the measured value is controlled so as to take a trapezoidal waveform.
  • Literature 2 discloses that a reaction vessel containing a reaction solution and a part for directly or indirectly controlling the temperature of the reaction vessel are covered with a cover and a fin cover having a heat insulating structure, and further, the inside temperature of the inside of the chamber covered with the cover is controlled. It is described that the temperature in the refrigerator is kept constant and the influence of the environmental temperature on the control of the temperature of the reaction vessel is minimized by using a configuration having a heat source.
  • PCR polymerase chain reaction
  • a constant temperature amplification method for controlling nucleic acid amplification by controlling the temperature of a reaction solution to a constant value such as a NASBA (Nucleic Acid Sequence-Based Amplification) method or a LAMP (Loop-Medified Isothermal Amplification) method. Is being developed.
  • Such a nucleic acid amplification method is also actively used in the clinical test field, for example, in the diagnosis of viral infection, and the efficiency, labor saving, and high precision of the test by automation are required.
  • Patent Literature 1 discloses a technique adapted to the characteristics of an analysis item and an apparatus configuration in order to increase the rate of temperature change of a reaction solution and shorten the analysis time while preventing a decrease in analysis performance due to local overheating of the reaction solution. A temperature control method is described.
  • Patent Document 2 discloses that even if the environmental temperature of the place where the apparatus is installed is different within a certain range, a plurality of reaction vessels containing reaction liquids maintain stable temperature control performance and minimize temperature variations. It describes a nucleic acid amplification detection device that can be suppressed to a minimum.
  • a temperature control block supporting a reaction vessel is provided along a circular outer edge of a carousel rotatable around a rotation axis, and the temperature control block is provided between the carousel and the temperature control block.
  • a Peltier element is arranged for each temperature control block.
  • the real-time PCR device described in Patent Literature 1 is configured to irradiate a test solution with excitation light from below a reaction vessel for fluorescence analysis, and to detect fluorescence with a light receiving device provided outside a circular direction of a carousel in a radial direction. ing.
  • the real-time PCR devices described in Patent Literatures 1 and 2 have a configuration in which a lower portion of a reaction container protrudes downward from a temperature control block, and a fluorescence analyzer positioned below the reaction container via the protruded bottom portion of the reaction container. Is configured to perform fluorescence analysis.
  • Patent Literatures 1 and 2 in which a plurality of temperature control blocks are suspended on a carousel, a part of the reaction vessel in which a reagent solution is contained is largely exposed to air in order to observe the fluorescence analyzer. There are exposed parts. This is because the fluorescence analyzer is fixed and the photometry of the fluorescence is performed from the side or below the reaction vessel.
  • the real-time PCR devices described in Patent Documents 1 and 2 are designed to secure the volume of each temperature control block as much as possible.
  • individual temperature control blocks are arranged in the carousel in the circumferential direction. This is because the temperature control block is considered as an incubator.
  • the time for keeping the temperature constant is determined by the protocol. Therefore, in order to obtain the test result quickly, it is necessary to quickly change between the constant temperature and the next constant temperature. For this purpose, it is necessary to improve the ramp rate, which is the rate of change of the temperature of the temperature control block.
  • Patent Documents 1 and 2 instead of a configuration in which a specimen is held in a carousel and rotated and moved above a measurement system, a method in which a fluorescence measurement system is moved using a fixed temperature control block is used.
  • the fluorescence intensity can be measured from above, eliminating the need to use a transparent reaction vessel.
  • a material having good heat conductivity can be used for the reaction vessel, and a rapid temperature change can be achieved.
  • the control of the Peltier device can be optimized.
  • the temperature of the test solution is predicted from the temperature of the temperature control block obtained from the temperature sensor.
  • the temperature difference between locations in the temperature control block is not large when the temperature is changing.
  • thermal stress can be distributed.
  • an object of the present invention is to provide a real-time PCR device for measuring fluorescence from above, in which the reaction vessel has a tapered conical shape in the lower part and which improves the ramp rate of the support block and reduces the temperature in time.
  • An object of the present invention is to provide a thermal cycler capable of reducing a temperature difference in a support block during a change, and a real-time PCR device including the same.
  • the present invention includes a plurality of means for solving the above-mentioned problems.
  • a support block for supporting a reaction vessel and a support block which is thermally connected to the support block and heat the support block A Peltier element that adjusts the temperature of the test solution held in the reaction vessel by cooling, a temperature sensor that measures the temperature of the support block, and the Peltier based on the temperature of the support block measured by the temperature sensor.
  • a heat input amount adjustment unit that controls current and voltage supplied to the element, and a reaction container having a conical portion that is open at the top and tapers toward the bottom is used as the reaction container.
  • the Peltier device is characterized in that the Peltier device is arranged to be parallel to a conical generatrix portion of the reaction vessel.
  • the reaction vessel is formed into a conical shape tapered downward, and even when the fluorescence is measured from above, the ramp rate of the support block is improved and the support when the temperature is temporally changed is improved.
  • the temperature difference in the block can be reduced.
  • FIG. 1 is a diagram illustrating a schematic configuration of a real-time PCR device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a cross section for explaining a basic structure of a thermal cycler of the real-time PCR device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an appearance of an example of a reaction container used in a thermal cycler of the real-time PCR device according to the first embodiment of the present invention.
  • FIG. 2 is an external view illustrating an example of a support block used in a thermal cycler of the real-time PCR device according to the first embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a schematic configuration of a real-time PCR device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a cross section for explaining a basic structure of a thermal cycler of the real-time PCR device according to the first embodiment of the present invention.
  • FIG. 2 is
  • FIG. 2 is an assembled external view illustrating an example of a thermal cycler of the real-time PCR device according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing an example of a support block of a thermal cycler of a conventional real-time PCR device for comparison.
  • FIG. 4 is a cross-sectional view showing an example of a support block of a thermal cycler of a conventional real-time PCR device for comparison. It is a sectional view showing an example of a support block of a thermal cycler of a real-time PCR device of Example 1 of the present invention.
  • FIG. 4 is a diagram showing simulation results of a ramp plate and a maximum temperature difference depending on the shape of the support block of the thermal cycler of the real-time PCR device according to the first embodiment of the present invention and the conventional thermal cycler. It is a block diagram explaining the temperature control system of the thermal cycler of the real-time PCR device of Example 2 of this invention.
  • FIG. 1 is an overall view showing a schematic configuration of the real-time PCR device according to the first embodiment of the present invention.
  • the real-time PCR device 1000 shown in FIG. 1 includes a rack mounting unit 110, a transport mechanism 120, a liquid dispensing mechanism 130, a lid unit 140, a stirring unit 150, a control device 200, a thermal cycler 160, and a measuring unit 165.
  • the liquid preparation unit for preparing the test solution 1 includes a rack mounting unit 110, a transport mechanism 120, a liquid dispensing mechanism 130, and a lid unit 140.
  • the rack mounting section 110 is an area where a sample, a reagent, a dispensing tip, and the reaction container 2 used for the test are provided.
  • the rack mounting unit 110 is provided at a predetermined position on the worktable 102 of the real-time PCR device 1000, and mounts a sample container rack 112, a reagent container rack 114, a reaction container rack 116, and a nozzle chip rack 118, respectively.
  • the sample container rack 112 has a plurality of sample containers 113 each containing a sample containing a nucleic acid to be subjected to amplification processing.
  • a plurality of reagent containers 115 containing reagents to be added to the sample are arranged and stored in the reagent container rack 114.
  • the reaction container rack 116 a plurality of unused empty reaction containers 2 used for mixing the sample and the reagent are arranged and stored.
  • nozzle tip rack 118 a plurality of unused nozzle tips 119 used for dispensing samples and reagents are arranged and stored.
  • the transport mechanism 120 is a mechanism that moves each part in the real-time PCR device 1000 while holding the reaction container 2 and the like, and includes an X-axis direction guide 121, an X-axis direction movable element 122, a Y-axis direction guide 123, A Y-axis direction movable element 124 is provided, and the Y-axis direction movable element 124 is two-dimensionally moved on the work table based on a control signal, and can be arranged at a desired position on the work table.
  • the X-axis direction guide 121 is a guide that is arranged on the work table 102 of the real-time PCR apparatus 1000 so as to extend in the X-axis direction in FIG.
  • the X-axis direction mover 122 is a mover provided movably on the X-axis direction guide 121.
  • the Y-axis direction guide 123 is a guide that is integrally attached to the X-axis direction mover 122 and is arranged to extend in the Y-axis direction in FIG.
  • the Y-axis direction mover 124 is a mover provided movably on the Y-axis direction guide 123.
  • the Y-axis direction mover 124 is provided with a bar code reader 125, a gripper unit 126, and a dispensing unit 127, and moves on the work table integrally with the Y-axis direction mover 124, It is arranged at a desired position on 102.
  • the barcode reader 125 reads the identification information attached to each of the sample container 113, the reagent container 115, and the reaction container 2, and acquires the identification information.
  • the gripper unit 126 grips or releases the reaction container 2 in response to the operation of the gripper based on the control signal, and moves the reaction container 2 along with the movement of the Y-axis direction movable element 124 between the units on the worktable 102. Transport.
  • the dispensing unit 127 has a configuration in which the nozzle tip 119 can be attached and detached.
  • the nozzle tip 119 is mounted from the nozzle tip rack 118 based on a control signal, and is attached to the sample in the sample container 113 or the reagent in the reagent container 115.
  • the nozzle tip 119 is immersed, and a sample or a reagent is sucked into the nozzle tip 119 and collected. Further, the dispensing unit 127 discharges and dispenses the sample and the reagent stored in the nozzle tip 119 to the reaction container 2 based on the control signal.
  • This dispensing unit 127 forms a main part of a liquid dispensing mechanism 130 which is a mechanism for dispensing a sample and a reagent into a selected one reaction vessel 2 using a dispensing tip to prepare a test solution.
  • an unused reaction vessel 2 taken out of the reaction vessel rack 116 for preparing a test solution is placed on the worktable 102 between the rack mounting section 110 and the thermal cycler 160.
  • a test solution preparation position 170 is formed.
  • a container mounting portion 172 for holding the reaction container 2 is provided at the test liquid preparation position 170.
  • the unused reaction container 2 transferred from the reaction container rack 116 to the sample solution preparation position 170 using the gripper unit 126 is used to transfer the sample from the sample container 113 and the reagent container 115 using the dispensing unit 127.
  • a reagent solution is dispensed to prepare a test solution in which the specimen and the reagent are mixed in the reaction container 2.
  • a plurality of container mounting portions 172 are provided. Thereby, for example, the same sample or the same reagent can be dispensed to a plurality of reaction vessels 2 at the same time, and a batch process for preparing a plurality of test solutions at a time can be performed.
  • the lid unit 140 is a mechanism for covering the reaction vessel 2 containing the reagent, and covers the opening of the reaction vessel 2 containing the reagent transferred from the reagent preparation position 170 using the gripper unit 126. Thus, evaporation of the test solution and entry of foreign matter from the outside are prevented.
  • the stirring unit 150 is a mechanism for uniformly mixing the sample and the reagent of the reagent solution contained in the reaction container 2, and is contained in the sealed reaction container 2 transferred from the lid unit 140 using the gripper unit 126. Mix the test solution and mix the sample and reagent.
  • the used table mounted on the dispensing unit 127 and used for dispensing the sample or the reagent is provided on the worktable 102 between the reagent solution preparation position 170 and the rack mounting unit 110.
  • a disposal box 180 for disposing of the tested reaction container 2 after the nucleic acid amplification processing by the thermal cycler 160 is completed.
  • the thermal cycler 160 is a mechanism in which the reaction vessel 2 after stirring is mounted and amplifies the nucleic acid of the test solution 1 according to a predetermined protocol, the details of which will be described later.
  • the measuring unit 165 is disposed above the reaction vessel 2 holding the reagent 1, and measures the fluorescence characteristics of the reagent 1 whose temperature has been adjusted by the thermal cycler 160 in accordance with a predetermined protocol. This is a mechanism that performs measurement.
  • the measurement unit 165 includes an excitation light source that irradiates the exposed bottom container portion of the reaction container 2 with the excitation light, and a detection element that detects fluorescence from the test solution based on the irradiation of the excitation light.
  • an excitation light source for example, a light emitting diode (LED), a semiconductor laser, a xenon lamp, a halogen lamp, or the like is used.
  • a photodiode, a photomultiplier, a CCD, or the like is used.
  • the measuring unit 165 detects and measures the fluorescence generated from the reagent 1 by the irradiation of the excitation light from the excitation light source with the detection element, and thereby the base sequence of the amplification target in the reagent 1 which is fluorescently labeled with the reagent. Can be determined in parallel over time.
  • the components of the real-time PCR device 1000 including the thermal cycler 160 are controlled by a control device 200 having an input device 210 such as a keyboard and a mouse and a display device 220 such as a liquid crystal monitor, as shown in FIG. , The operation of which is controlled.
  • a control device 200 having an input device 210 such as a keyboard and a mouse and a display device 220 such as a liquid crystal monitor, as shown in FIG. , The operation of which is controlled.
  • the control device 200 controls each unit of the above-described device including the thermal cycler 160 of the real-time PCR device 1000, and based on a protocol set by the input device 210, using various kinds of software or the like stored in advance in the storage unit 201, A nucleic acid test process including a test solution preparation process and a nucleic acid amplification process is performed.
  • the control device 200 stores, in the storage unit 201, the operating state and the like of each unit of the device during the nucleic acid test process, and stores the analysis result such as the fluorescence detection result obtained by the thermal cycler 160 in the storage unit 201. , On the display device 220.
  • the control device 200 of this embodiment is configured so that the temperature of the plurality of thermal cyclers 160 can be controlled independently and in parallel.
  • the test solution preparation process refers to a process of preparing a test solution 1 in which a sample and a reagent are dispensed into the reaction container 2 in the nucleic acid testing process performed by the control device 200 of the real-time PCR device 1000.
  • the nucleic acid amplification treatment means that the temperature of the test solution 1 prepared in the reaction vessel 2 by this test solution preparation process is adjusted by the thermal cycler 160 according to a protocol corresponding to the type of the base sequence to be amplified. Is performed while confirming by the measurement unit 165 the fluorescence measurement of the test solution 1.
  • control device 200 When starting the reagent preparation process, the control device 200 first initializes various work areas provided in the storage unit 201 for the reagent preparation process.
  • control device 200 After the initialization related to the preparation process of the reagent 1 is completed, the control device 200 performs a process of reading the sample container rack information and the reagent container rack information set by the input device 210 and the execution content information of the nucleic acid test.
  • the control device 200 performs one or more individual nucleic acid processes for performing the test solution preparation process this time based on a preset procedure from one or more individual nucleic acid test processes included in the execution content information of the nucleic acid test. Select and extract.
  • the control device 200 selects the individually extracted individual containers that have been previously extracted from the reaction vessel rack 116 and unprocessed reaction containers 2 mounted on the container mounting portion 172 of the sample solution preparation position 170.
  • the operation of the liquid dispensing mechanism 130 is controlled based on the test solution preparation processing information for nucleic acid processing, and the test solution 1 is prepared.
  • FIG. 2 is a cross-sectional view illustrating the basic structure of the thermal cycler 160 according to the present embodiment.
  • the thermal cycler 160 of the present embodiment is a mechanism that adjusts the current applied to the Peltier element 5 by the temperature adjustment unit 230 while observing the temperature of the temperature sensor 4 and changes the temperature of the test solution 1 according to a target protocol.
  • the thermal cycler 160 shown in FIG. 2 includes a support block 3, a temperature sensor 4, a Peltier element 5, a heat sink 6, a heat insulating spacer 7, a block fixing member 8, a fastening screw 9, and a temperature adjusting section 230.
  • the sample solution 1 is prepared by dispensing and mixing liquids such as a sample sample, a diluting solution, and a reagent by the liquid preparation unit described with reference to FIG. 1 and stored in the reaction container 2.
  • the support block 3 is provided with a holder 32 (see FIG. 4) having a holder hole 3a (see FIG. 4) having the same shape as the outer shape of the reaction vessel 2, and is thermally connected to the holder 32.
  • a heat receiving plate 31 that forms a heat receiving surface 31b that transfers heat by being in close contact with the heat transfer surface 51 of the Peltier element 5, and a fillet 33 (see FIG. 4).
  • the reaction vessel 2 is supported by the holder hole 3a of the support block 3.
  • heat receiving surface 31b One surface (heat receiving surface 31b) of the heat receiving plate 31 is in contact with the Peltier element 5, and a holder portion 32 for supporting the reaction vessel 2 is formed on the other surface 31d.
  • the temperature of the test solution 1 is periodically changed according to the PCR protocol of each reaction by the Peltier element 5 capable of cooling and heating via the holder 32 and the heat receiving plate 31 supporting the reaction vessel 2.
  • the solution 1 is irradiated with light to measure the fluorescence intensity.
  • the portion relating to the preparation, transport, and measurement of the fluorescence intensity does not greatly contribute to the improvement of the ramp rate, and thus the configuration thereof is not particularly limited. However, as described with reference to FIG. It is desirable to carry out from above the reaction vessel 2.
  • the PCR protocol is not limited because it may be arbitrary.
  • two or three target temperatures are set in the temperature range of about 50 ° C. to about 100 ° C. higher than the ambient temperature or the room temperature where the real-time PCR device is installed.
  • the temperature change pattern held for a certain time is repeated a specified number of times.
  • the temperature sensor 4 is attached to the support block 3, and the temperature of the test solution 1 is indirectly measured by measuring the temperature of the support block 3.
  • the temperature sensor 4 includes, for example, a thermocouple, a semiconductor thermometer, or the like, but is not particularly limited thereto.
  • the temperature adjustment unit 230 controls the current and the voltage supplied to the Peltier element 5 so that the temperature of the support block 3 measured by the temperature sensor 4 matches the temperature set in advance by the PCR protocol. Although a case has been described where the control device 200 and the temperature adjustment unit 230 are separate bodies, they may be integrated.
  • a combination of the support block 3 and the Peltier element 5 is called a temperature control block.
  • FIG. 3 is an explanatory view of the reaction vessel 2 used in the thermal cycler 160 of the present embodiment.
  • the reaction vessel 2 used in the thermal cycler 160 is a disposable type that is discarded at the end of the test, and is usually made of plastic. As shown in FIG. 3, the shape of the reaction vessel 2 is such that the upper part 21 is open and the part accommodated in the support block 3 is lower so that it can be thermally adhered to the support block 3 and can be easily attached and detached. It has a conical portion that tapers off.
  • the reaction vessel 2 is supported by the support block 3 such that the conical central axis 24 is substantially vertical.
  • the conical tapered tip 22 is rounded to a substantially spherical shape for thermal adhesion and ease of attachment and detachment.
  • the tip 22 is vertically downward, and the upper portion 21 of the reaction vessel 2 on the opposite side is open, so that the reagent 1 can be introduced and the fluorescence intensity of light emitted from above can be measured.
  • a transparent lid can be used for the upper portion 21 of the reaction vessel 2 to prevent the reagent 1 from evaporating and disappearing during the PCR reaction.
  • any shape other than the portion in contact with the support block 3 may be used.
  • an additional support member or a flange for aligning with the above-described heater for preventing dew condensation on the lid for preventing disappearance is further provided. be able to.
  • Patent Literatures 1 and 2 described above since the configuration of the optical system is configured to observe fluorescence from the side, it is not possible to use a conical surface that complicates light scattering in the reaction vessel, Must be in the shape of a straight cylinder or prism.
  • FIG. 4 is an external view showing an example of a support block used in the thermal cycler 160 of this embodiment.
  • the support block 3 is a component in which the holder portion 32 and the heat receiving plate 31 are integrally formed on the surface of the heat receiving plate 31 opposite to the surface where the Peltier element 5 is in contact. It is.
  • the support block 3 is a permanent component, and it is desired that the support block 3 has sufficient strength and thermal conductivity to withstand the attachment and detachment of the reaction vessel 2. Therefore, the support block 3 is generally entirely made of a heat-conductive metal material such as aluminum. It is composed of a metal with good conductivity.
  • the method of manufacturing the support block 3 is not particularly limited, and the holder 32 and the heat receiving plate 31 may be separately processed so as to be integrated with each other by welding or diffusion bonding so that the holder 32 and the heat receiving plate 31 are integrated. Then, pressure casting may be performed using a mold. Alternatively, it may be cut out from one metal piece by cutting or electric discharge machining.
  • the holder 32 that covers the conical reaction vessel 2 with a constant thickness 32a is replaced by a Peltier element of the heat receiving plate 31 that covers the flat Peltier element 5 with a constant thickness 31a.
  • the bus bar portion of the holder 32 and the heat receiving plate 31 are arranged so as to overlap.
  • the cross-sectional area of the support block 3 at an equal distance from the heat receiving plate 31 or the heat transfer surface of the Peltier element 5 is reduced as the distance increases. It is desirable.
  • the thickness 32a from the holder hole 3a to the outer shape of the holder portion 32 and the thickness 31a of the heat receiving plate 31 are defined as dimensions representative of each portion.
  • the reaction vessel 2 is inserted into the holder 32 along the center axis 24 of the holder by an insertion depth 32b from the upper end of the holder 32.
  • the shape of the inside of the holder 32 is substantially the same as the shape of the reaction vessel 2, but a small hole through which air or spilled liquid drops can be provided.
  • the performance of the Peltier device 5 can be maximized on the heat receiving surface 31b side. Further, by reducing the temperature distribution of the holder portion 32, it is possible to reduce the deviation in the liquid temperature of the test solution 1, and to obtain an effect that the reaction in the test solution 1 can be made uniform.
  • the amount of heat transmitted to the reagent solution 1 via the reaction vessel 2 is usually 1/10 or less of the amount of heat input or removed from the Peltier device 5.
  • the other heat quantity there is a slight heat quantity transmitted to other components in contact with the support block 3 and the surrounding atmosphere, but most of them are used to change the temperature of the support block 3 itself.
  • the ramp rate can be improved by reducing the heat capacity of the support block 3.
  • the thermal conductivity of the test solution 1 and the reaction vessel 2 is about 1/100 compared with the material of the support block 3 due to its configuration.
  • the thickness 32a of the holder 32 should be about 1/100 of the thickness of the reaction vessel 2 and a constant thickness around the holder hole 3a.
  • the thickness 31 a of the heat receiving plate 31 in the direction perpendicular to the heat receiving surface 31 b is sufficient if it is about 1/10 of the thickness of the reaction vessel 2.
  • the contact thermal resistance with the Peltier element 5 and the support block 3 are increased.
  • the heat receiving surface 31 b of the heat receiving plate 31 has the same shape and the same area as the heat transfer surface 51 of the Peltier device 5.
  • the Peltier element 5 is a member that is thermally connected to the support block 3 and that adjusts the temperature of the reagent solution 1 held in the reaction vessel 2 by heating and cooling the support block 3. , Are arranged in parallel with the conical generatrix 23. It is not necessary to be strictly parallel to the portion of the conical bus 23, and a deviation of about ⁇ 5 degrees is allowed.
  • the Peltier element 5 an element having a small thickness in the heat transfer direction and having the heat transfer surfaces 51 and 52 having a rectangular or square shape is used.
  • the other properties, composition, and the like are not particularly limited, and an appropriate material according to the required ramp rate can be used.
  • a bismuth telluride (Bi 2 Te 3 ) -based compound is used.
  • the heat transfer surface 51 of the Peltier element 5 is in contact with the support block 3, and the heat transfer surface 52 is in contact with the heat sink 6. It is desirable that heat transfer grease or heat conductive grease is applied to these heat transfer surfaces 51 and 52 for the purpose of improving thermal coupling.
  • the details of the heat transfer grease and the heat conduction grease are not particularly limited, either, and it is preferable to use an appropriate one according to the characteristics of the Peltier element 5 and the support block 3 to be used.
  • the maximum output of the heat transfer (unit watt) between the heat transfer surfaces 51 and 52 is determined.
  • the temperature change at the time of the maximum output is determined by the ramp rate and the ramp rate. Become.
  • the heat sink 6 is placed for the purpose of keeping the temperature of the heat transfer surface 52 substantially constant irrespective of the operation of the Peltier element 5 in order to facilitate the control of the Peltier element 5. Therefore, it is desirable that the heat capacity is large enough that the temperature does not change due to the transfer of heat from the Peltier element 5. It is desirable to make it larger.
  • heat radiation fins can be provided on the surface of the heat sink 6 other than in contact with the Peltier element 5.
  • one large heat sink 6 can be shared by a plurality of thermal cyclers 160.
  • the heat insulating spacer 7 has a role of a fixed frame for blocking the heat radiation and heat input from surfaces other than the heat transfer surfaces 51 and 52 of the Peltier element 5 and determining the positions of the Peltier element 5 and the support block 3. Therefore, the heat receiving plate 31 and the Peltier element 5 of the support block 3 are accommodated by a plate having a thickness equal to the thickness of the Peltier element 5 and the heat receiving plate 31 of the support block 3, and the position of the plate in the planar direction can be determined. It is desirable that such a hole is opened.
  • the heat insulating spacer 7 is fixed to the heat sink 6 by the fastening screw 9 shown in FIG. Further, the heat insulating spacer 7 serves as a base for fixing the block fixing member 8 in order to press the support block 3 and the Peltier element 5 against the heat sink 6 with the block fixing member 8.
  • the heat insulating spacer 7 is made of a material having a lower thermal conductivity than the support block 3, the heat sink 6, and the like, such as heat-resistant plastic and ceramics.
  • the fixing screw 8a for fixing the block fixing member 8 and the fastening screw 9 are separated from each other in order to secure heat insulation. It is desirable.
  • FIG. 5 is an external view showing an assembled state showing an example of the thermal cycler 160 of this embodiment.
  • the number of the block fixing members 8 is three in FIG. 5, it is sufficient to provide the necessary number of the block fixing members 8 so that the support blocks 3 and the Peltier elements 5 do not fall off.
  • FIG. 8 an example of the support block of the present invention (FIG. 8) will be described using an example of the support block of the prior art (FIGS. 6 and 7).
  • FIG. 6 is a cross-sectional view showing an example of a support block of a conventional thermal cycler for comparison.
  • the heat receiving plate 1031 of the support block 1003 shown in FIG. 6 is also a horizontal flat plate so as to be in contact with the Peltier element 1005 installed horizontally.
  • the holder 1302 is a column or a polygonal column, and its center axis 1010 is located at the center of the heat transfer surface of the Peltier element 1005 in the vertical direction.
  • the reaction container 1002 is inserted into the holder portion 1302 by an insertion depth 1302b.
  • the heat insulating spacer, the block fixing member, the fastening screw, and the heat sink are assumed to be the same as in the present invention shown in FIG.
  • the support block 1003 shown in this example is used in a thermal cycler of an existing PCR device of a type that measures the fluorescence intensity of irradiation of light from above.
  • FIG. 7 is also a cross-sectional view showing an example of a support block of a conventional thermal cycler for comparison.
  • the support block 1003A shown in FIG. 7 has almost the same positional relationship of each element as the support block 1003 described in FIG. The difference is that the outer shape of the holder portion 1302A is not columnar but a conical shape in which the reaction vessel 1002 is covered with a constant thickness 1302a. With such a shape, since the volume of the support block 1003A can be minimized, the ramp rate should be maximized if the heat transfer amount of the Peltier element 1005 is the same.
  • FIG. 8 is a cross-sectional view showing an example of a support block of the thermal cycler 160 according to the present embodiment.
  • the difference between the form of the support block 1003A of the related art described with reference to FIG. 7 and the form of the support block 3 of the present invention will be described.
  • the holder 32 of the support block 3 of this embodiment has a conical shape that covers the reaction vessel 2 with a constant thickness 32a.
  • This conical shape is arranged such that the center line 5a of the Peltier element 5 and the center axis 24 of the reaction vessel 2 intersect at the center of gravity 1b of the test solution 1.
  • the center of gravity 1b of the sample solution 1 held in the reaction vessel 2 is disposed on the center line 5a of the plane area of the heat transfer surface 51 of the Peltier element 5 with respect to the heat receiving plate 31.
  • the reaction vessel 2 is supported as described above.
  • the holder portion 32 contacts the heat receiving plate 31 at a portion corresponding to the conical bus bar 23 of the reaction vessel 2, but the amount of the test solution 1 is not always the same. Therefore, as a rough guide, it is desirable that the center of gravity 1b of the test liquid 1 is a position of the center of gravity at a liquid amount corresponding to an intermediate liquid amount between the maximum amount and the minimum amount of the test liquid 1. That is, the center of gravity 1b of the test solution 1 does not need to be strictly placed on the center line 5a, and some error is allowed.
  • the Peltier element 5 obliquely to the vertical direction and along the conical bus bar 23 of the reaction vessel 2, the distance from the Peltier element 5 to the farthest part of the support block 3 is obtained.
  • the reaction vessel 2 can be supported so that 31c is minimized.
  • the instantaneous temperature difference in the support block 3 depending on the heat transfer speed is minimized, and the temperature measured in any place of the support block 3 is smaller than the temperature of the portion of the reaction vessel 2 in contact with the support block 3. Can be matched.
  • the Peltier element 5 and the heat receiving plate 31 that almost covers the Peltier element are square or rectangular. However, if the rectangular shape is used, the temperature inside the heat receiving plate 31 tends to be uniform if the short side is horizontal. Yes and desirable. However, since this does not make a significant difference, any arrangement may be used.
  • the above described positional relationship between the holder 32 of the support block 3 and the Peltier element 5 described with reference to FIG. could be.
  • the configuration shown in FIG. 7 is also possible.
  • the conical apex angle of the reaction Is preferably about 20 degrees.
  • FIG. 9 shows the results obtained by calculating the temperature difference between the ramp plate and the support block from the state of the temperature change by the numerical heat transfer simulation under the same heat transfer amount condition.
  • the conditions are such that the same amount of the test solution, the reaction vessel of the same shape, and the Peltier device of the same specification are used. Further, the conditions were such that the support block having the same insertion depth 32b and the shape shown in FIGS. 6 to 8 was used.
  • the actually measured block temperature can be predicted with an accuracy of plus or minus 0.2 degrees, and it is considered that there is sufficient prediction accuracy.
  • the ramp rate is obtained by dividing the temperature difference by the time required for the temperature measured by the temperature sensor installed on the support block to change to the set temperature difference, it can be obtained by an experiment.
  • the difference cannot be measured because it is the difference between the highest temperature and the lowest temperature in the block at the moment when the set temperature difference of the ramp rate is reached. Therefore, prediction was made using this simulation.
  • the horizontal axis indicates the volume of the support block
  • the left vertical axis in FIG. 9 indicates the ramp rate
  • the right vertical axis indicates the temperature difference in the block.
  • plot 81a shows the ramp rate of the support block 3 of the present invention shown in FIG. 8, and plot 82a shows the calculation result of the temperature difference in the support block 3 of the present invention.
  • plots 81b1, 81b2, and 81b3 are the results of the ramp rate in the prior art support block 1003 shown in FIG. 6, and plots 82b1, 82b2, and 82b3 are the blocks in the prior art support block 1003 shown in FIG. This is the result of the internal temperature difference.
  • Three blocks of the form shown in FIG. 6 were prototyped, and each had a different volume.
  • plots 81c and 82c are plots of the plate thickness 1301a of the heat receiving plate 1301A and the wall thickness 1302a of the holder portion 1302A in the support block 1003A of the related art shown in FIG. It is the result obtained with the block equal to the support block 3 which gave the result of 82a.
  • the plot 81c and the plot 82c have a slightly smaller volume than the plot 81a and the plot 82a because of the difference in the volume of the fillet at the joint between the heat receiving plate and the holder.
  • the smaller the block volume the larger the ramp rate.
  • the ramp rate of the plot 81a according to the arrangement of the present invention is larger than the ramp rate of the plot 81c having substantially the same volume.
  • the block volume decreases that is, as the ramp rate increases, the temperature difference in the block increases, and the temperature measurement value of the temperature sensor installed in the block has an error.
  • the plot 82b which is the result of the support block 3 of the present invention, has a significantly smaller temperature difference in the block than the plot 82c of substantially the same volume, and has a large temperature difference despite the large ramp rate. It can be seen that the error of the temperature measurement value of No. 4 can be reduced.
  • the real-time PCR device 1000 includes the thermal cycler 160 and the measuring unit 165 that measures the fluorescence characteristics of the test solution 1 whose temperature has been adjusted by the thermal cycler 160.
  • the thermal cycler 160 is thermally connected to the support block 3 that supports the reaction vessel 2 and the support block 3, and heats and cools the support block 3 for the sample solution 1 held in the reaction vessel 2.
  • an adjusting unit 230, and the reaction container 2 is a reaction container 2 having an opening at an upper part 21 and a conical part tapering toward a lower part. Among them, it is arranged so as to be parallel to the portion of the conical bus 23.
  • the ramp plate of the support block 3 is made larger than that of the related art for a certain Peltier element 5 ability. And a temperature difference in the support block 3 when the temperature is temporally changed can be reduced as compared with the related art.
  • the support block 3 supports the reaction vessel 2 so that the center of gravity 1b of the test solution 1 held in the reaction vessel 2 is arranged on the center line 5a of the plane area of the heat transfer surface 51 of the Peltier element 5, and Since the reaction vessel 2 is supported such that the distance 31c from the heat transfer surface 51 to the farthest part of the support block 3 is minimized, the volume of the support block 3 can be minimized. Therefore, the ramp rate of the support block 3 can be kept larger, and the inspection time can be more easily reduced.
  • the support block 3 is thermally connected to the holder 32, which forms a holder hole 3 a having the same shape as the outer shape of the reaction vessel 2, and is connected to the heat transfer surface 51 of the Peltier element 5.
  • the heat receiving surface 31b of the heat receiving plate 31 with the Peltier element 5 has the same shape and the same area as the Peltier element 5, so that the surface of the Peltier element 5 where the heat transfer surface 51 is exposed to air becomes large. Can be suppressed, and the temperature distribution in the plane of the Peltier element 5 can be prevented from being biased to generate thermal stress, and the durability of the Peltier element 5 can be ensured.
  • the thickness 31a of the heat receiving plate 31 in the direction perpendicular to the heat receiving surface 31b is a thickness equal to or greater than the thickness dimension which is the ratio of the thermal resistance of contact with the Peltier element 5 to the heat transfer coefficient of the material forming the support block 3. That is, the thickness 31 a of the heat receiving plate 31 in the direction perpendicular to the heat receiving surface is such that the maximum temperature difference in the surface of the heat receiving surface 31 b is different from the high temperature side heat transfer surfaces 51 and 52 of the Peltier element 5 and the low temperature side. And the thickness 31a of the heat receiving plate 31 in the direction perpendicular to the heat receiving surface 31b is the same as the shape of the heat receiving plate 31. Is greater than the minimum thickness that can be maintained, the durability of the Peltier element 5 and the support block 3 can be improved.
  • the support block 3 further has a fillet 33 for connecting the holder portion 32 and the heat receiving plate 31, an effect that a temperature difference in the support block 3 can be further reduced can be obtained.
  • the measuring unit 165 of the real-time PCR device 1000 is disposed above the reaction container 2 holding the test solution 1, the reaction container 2 having a tapered conical tip 22 can be more easily used. Becomes possible.
  • the real-time PCR device 1000 further includes a liquid preparation unit for preparing the test solution 1, the burden on the inspector can be reduced, and the labor required for outputting the test results can be reduced.
  • the thermal cycler 160 is mounted on the real-time PCR device 1000 .
  • the thermal cycler 160 of the present embodiment can be a single device by itself. In this case, the liquid preparation and measurement are performed by another device, an inspector, and a researcher himself.
  • the real-time PCR device includes the liquid preparation unit. However, only the liquid preparation is performed by the inspector or the researcher himself, and the real-time PCR device equipped with the thermal cycler 160 and the measurement unit 165 of the present embodiment is used. Nucleic acid analysis can be performed.
  • thermal cyclers 160 of this embodiment are mounted on the real-time PCR device 1000
  • the number of mounted thermal cyclers 160 is not particularly limited, and a required number can be mounted as appropriate.
  • the positional relationship between the thermal cycler 160 and the liquid preparation unit or the measurement unit 165 is not limited to the embodiment shown in FIG. 1 and can be changed as appropriate.
  • Example 2 Second Embodiment A thermal cycler according to a second embodiment of the present invention and a real-time PCR device including the same will be described with reference to FIG.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The same applies to the following embodiments.
  • FIG. 10 is a block diagram illustrating a temperature control system of the thermal cycler 160 according to the present embodiment.
  • the thermal cycler 160A shown in FIG. 10 is provided with the reagent 1, the reaction vessel 2, the support block 3, the temperature sensor 4, and the Peltier element 5, as in the first embodiment.
  • the temperature adjustment unit 230 differentiates / integrates the time change of the temperature of the support block 3 from the temperature of the support block 3 measured by the temperature sensor 4, and outputs the input current to the Peltier element 5.
  • a real-time PCR control system 231 a temperature data acquisition unit 232 for acquiring real-time block temperature information, a Peltier input current / voltage detection unit 233, and a time integration unit 234 , A time differentiator 235, a transport calorie calculator 236, a test solution heat capacity calculator 237, a test solution temperature calculator 239, a PCR cycle controller 240, and a driver power supply 241.
  • Each unit of the temperature adjustment unit 230 is executed based on various programs. These programs are stored in an internal recording medium, an external recording medium, or the like, and are read and executed by the CPU.
  • the operation control process may be integrated into one program, may be divided into a plurality of programs, or a combination thereof. Further, a part or all of the program may be realized by dedicated hardware, or may be modularized.
  • the temperature control unit 230 controls the temperature.
  • the PCR cycle controller 240 starts temperature control according to a command from the real-time PCR control system 231.
  • the PCR cycle controller 240 determines the current operating state of the Peltier element 5 by comparing the current temperature value of the reagent 1 with the time chart of the PCR cycle and the set temperature of the reagent 1, and The driver power supply 241 is operated.
  • the driver power supply 241 supplies a current voltage to the Peltier device 5 so that heat is transported to the support block 3 at the maximum capacity of the Peltier device 5.
  • the temperature change of the support block 3 at this time is sequentially measured by the temperature sensor 4 and becomes real-time block temperature information.
  • the temperature data of the support block 3 acquired by the temperature data acquisition unit 232 is sequentially time-integrated by the time integration unit 234, and sequentially time-differentiated by the time differentiation unit 235.
  • the reciprocal of the time derivative of the temperature when the Peltier element 5 operates at a constant heat transport amount is the ramp rate.
  • the test solution heat capacity calculation unit 237 divides the ramp rate obtained during the period in which the heat transfer amount of the Peltier element 5 obtained by the heat transfer amount calculation unit 236 is constant by the heat transfer amount of the Peltier element 5 obtained by 236. Find the heat capacity.
  • the required heat capacity indicates the total heat capacity of the support block 3, the reaction vessel 2, and the test solution 1.
  • the heat capacities of the support block 3 and the reaction vessel 2 can be determined in advance because their materials and volumes are known. That is, the heat capacity of the test solution 1 can be obtained by subtracting the heat capacity of the support block 3 and the reaction vessel 2 from the obtained heat capacity. This heat capacity is recorded as test solution heat capacity temporary storage data 238.
  • the value of the temperature time integration unit 234 represents the total amount of heat applied to the whole of the support block 3, the reaction vessel 2, and the test solution 1, and the heat amount added to the test solution 1 when divided by the heat capacity ratio. Therefore, by performing the calculation of these calories in the test solution temperature calculating section 239 using the test solution heat capacity temporary storage data 238, the real-time average temperature of the test solution 1 can be calculated.
  • the PCR cycle controller 240 can perform temperature control based on the accurate temperature of the test solution 1. Since the accuracy of the temperature of the test solution 1 obtained above is equal to the instantaneous temperature difference in the support block 3, the use of the support block 3 having a small temperature difference in the block described in the first embodiment is premised.
  • the thermal cycler according to the second embodiment of the present invention and the real-time PCR device including the same can also provide substantially the same effects as the thermal cycler according to the first embodiment and the real-time PCR device including the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Image Processing (AREA)
  • Image Generation (AREA)
  • Facsimile Image Signal Circuits (AREA)

Abstract

サーマルサイクラー160は、反応容器2を支持する支持ブロック3と、支持ブロック3に熱的に連結されており、支持ブロック3を加熱・冷却することにより反応容器2に保持された試液1の温度を調整するペルチェ素子5と、支持ブロック3の温度を計測する温度センサ4と、温度センサ4によって計測された支持ブロック3の温度に基づきペルチェ素子5へ供給する電流および電圧の制御を行う温度調整部230と、を備え、反応容器2として、上部21が開口し、下部へ向かって先細りになる円錐形部を有している反応容器2が使用され、ペルチェ素子5は、反応容器2のうち、円錐形の母線23の部分に平行になるように配置されている。

Description

サーマルサイクラーおよびそれを備えたリアルタイムPCR装置
 本発明は、血液や尿等の生体由来の検体、いわゆる生体試料中に含まれる核酸を分析するリアルタイムPCR装置に好適なサーマルサイクラーとそれを備えたリアルタイムPCR装置に関する。
 反応液の局所的な過剰加熱による分析性能の低下を防ぎながら、反応液の温度変化速度を向上させて分析時間を短縮させるため、分析項目や装置構成の特性に合わせた温度制御を、容易な操作により設定し実行するリアルタイムPCR装置の一例として、特許文献1には、オーバーシュート実施時に、第1処理として、オーバーシュート目標温度に到達するまで昇温を続け、第2処理として、当該温度に到達したら、オーバーシュートの維持時間に達するまでオーバーシュート目標温度で所定の時間保持し、第3処理として、反応液の目標温度に到達するまで降温を続ける、との各を実施することによって、温度測定値が台形の波形をとるように制御することが記載されている。
 装置を設置する場所の環境温度がある範囲で異なっても反応液の入った複数の反応容器に対し、それぞれ安定した温調性能を維持し温度のばらつきを最小限に抑えることを目的として、特許文献2には、反応液の入った反応容器とそれを直接的又は間接的に温度制御する箇所を断熱構造のカバーとフィンカバーで覆い、さらにそのカバーで覆った内側の庫内温度を制御するための熱源を有する構成により、庫内温度を一定にし、反応容器の温度制御に対する環境温度影響を最小化することが記載されている。
WO2016-135798号 WO2015-005078号
 従来、生体由来の検体中に含まれる核酸の検査を行う場合に用いられる核酸増幅技術としては、例えば、ポリメラーゼ連鎖反応(Polymerase Chain Reaction;以下、PCRと略称する)法を用いたものがある。PCR法では、検体と試薬とを混合した反応液の温度を予め定められた条件に従って制御することにより、反応液中の所望の塩基配列を選択的に増幅させることができる。
 また、その他の核酸増幅法として、NASBA(Nucleic Acid Sequence-Based Amplification)法やLAMP(Loop-Mediated Isothermal Amplification)法のように、反応液の温度を一定に制御し、核酸増幅を図る恒温増幅法が開発されている。
 このような核酸増幅法は、例えばウィルス性感染の診断等、臨床検査関連でも積極的に用いられており、自動化による検査の効率化・省力化・高精度化が求められている。
 特許文献1には、反応液の局所的な過剰加熱による分析性能の低下を防ぎながら、反応液の温度変化速度を向上させて分析時間を短縮させるため、分析項目や装置構成の特性に合わせた温度制御方法について記載されている。
 特許文献2には、装置を設置する場所の環境温度がある範囲で異なっても反応液の入った複数の反応容器に対し、それぞれ安定した温調性能を維持して、温度のばらつきを最小限に抑えることができる核酸増幅検出装置について記載されている。
 特許文献1,2に記載されたリアルタイムPCR装置では、回転軸廻りに回転可能なカローセルの円形状の外縁に沿って反応容器を支持した温調ブロックを設置し、カローセルと温調ブロックの間に温度調節装置としてペルチェ素子を温調ブロック毎に配置する構成になっている。
 このような構成では、蛍光分析装置や分注機構がカローセル周方向の一定の位置に固定されている場合に、個別の増幅対象のプロトコルに応じた調整温度・調整時間で独立に並行して温度調節できる。このため、多種類の検体に対して個別の核酸分析を同時に行う、複数のプロトコルに対応した処理が実現できる。
 特許文献1に記載されたリアルタイムPCR装置は、蛍光分析のため反応容器の下方より励起光を試液に照射し、カローセルの円形の半径方向外側に設けられた受光装置で蛍光を検出する構成になっている。
 特許文献1,2に記載されたリアルタイムPCR装置は、反応容器下部が温調ブロックから下方へ突き出した形態となっており、この突き出した反応容器底部を介して反応容器下方に位置する蛍光分析装置で蛍光分析を行う構成になっている。
 いずれにしても、カローセルに複数の温調ブロックが懸架される特許文献1,2の構成では、試液が入っている部分の反応容器の一部が蛍光分析装置の観測を行うために空気に大きく露出している部分が存在する。これは蛍光分析装置が固定されていて、蛍光の測光が反応容器の側方あるいは下方から行われるためである。
 また、特許文献1,2に記載の技術では、下方先端が細くなっているものの、ほとんどの部分が円形あるいは四角形の筒形をした反応容器を使用している。これは側方や下方からから反応容器を介して蛍光度を測定するために、光の複雑な散乱を防ぐ必要があるためである。
 更に、特許文献1,2に記載されたリアルタイムPCR装置は、限り個々の温調ブロックの体積を出来るだけ確保するように設計されている。このためにカローセルに個別の温調ブロックを周方向に配置する形態となっている。これは温調ブロックをインキュベーターとして考えているためである。このように温調ブロックの体積を大きくすることによって温調ブロックの熱容量が増し、試液を一定温度に保つ際に外部からの擾乱によって温度が変化しにくい、という特徴を持たせることができる。
 ここで、臨床検査では、検体の検査結果を迅速に得たいという要求がある。
 PCR法では、一定温度に保つ時間はプロトコルにより決められているので、検査結果を迅速に得るためには一定温度と次の一定温度への変化をすばやく行うことが必要である。このためには温調ブロックの温度の変化速度であるランプレートを向上することが必要である。
 特許文献1,2に記載されたように、検体をカローセルに保持して計測系の上方まで回転移動する構成の替わりに、固定した温調ブロックを用いて蛍光度の計測系が移動する方式を採用すると、上方から蛍光度を測定することができるようになり、透明な反応容器を用いる必要がなくなる。これにより熱伝導性の良い材料を反応容器に使うことができるようになり、速い温度変化が可能になる。
 また、特許文献1,2に記載されたような筒形である反応容器では、着脱を容易とするために反応容器と温調ブロックの間に隙間を設けなければならない。しかしながら、この隙間は伝熱抵抗となるため、素早い温度変化を行うためには不利である。これに対し、上方から蛍光度を測定する方式とすると、反応容器を下方先細りの円錐形にすることができ、温調ブロックに密着させても着脱が容易となる、との利点が得られる。
 更に、試液の温度の時間変化を知ることが出来ればペルチェ素子の制御を最適化することができる、との効果が得られる。ここで、試液の温度を反応中に計測することは困難であるので、温度センサから得られる温調ブロックの温度から試液の温度を予測することになる。このためには、温度変化をしているときに温調ブロックの中に場所による温度差が大きくないことが望まれる。また、ペルチェ素子は伝熱面内に大きな温度差ができると熱応力の分布ができるため、大きな温度差を設けないことが望ましい。
 従って、本発明が解決しようとする課題は、反応容器を下方先細りの円錐形とした、上方から蛍光度を測定するリアルタイムPCR装置において、支持ブロックのランプレートを向上させるとともに、温度を時間的に変化しているときの支持ブロック内の温度差を小さくすることが可能なサーマルサイクラーおよびそれを備えたリアルタイムPCR装置を提供することである。
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、反応容器を支持する支持ブロックと、前記支持ブロックに熱的に連結されており、前記支持ブロックを加熱・冷却することにより前記反応容器に保持された試液の温度を調整するペルチェ素子と、前記支持ブロックの温度を計測する温度センサと、前記温度センサによって計測された前記支持ブロックの温度に基づき前記ペルチェ素子へ供給する電流および電圧の制御を行う入熱量調整部と、を備え、前記反応容器として、上部が開口し、下部へ向かって先細りになる円錐形部を有している反応容器が使用され、前記ペルチェ素子は、前記反応容器のうち、円錐形の母線部分に平行になるように配置されていることを特徴とする。
 本発明によれば、反応容器を下方先細りの円錐形とした、上方から蛍光度を測定する場合にも、支持ブロックのランプレートを向上させるとともに、温度を時間的に変化しているときの支持ブロック内の温度差を小さくすることができる。上記した以外の課題、構成および効果は、以下の実施例の説明により明らかにされる。
本発明の実施例1のリアルタイムPCR装置の概略構成を示す図である。 本発明の実施例1のリアルタイムPCR装置のサーマルサイクラーの基本構造を説明する断面を示す図である。 本発明の実施例1のリアルタイムPCR装置のサーマルサイクラーで使用する反応容器の一例の外観を示す図である。 本発明の実施例1のリアルタイムPCR装置のサーマルサイクラーで使用する支持ブロックの一例を示す外観図。 本発明の実施例1のリアルタイムPCR装置のサーマルサイクラーの一例を示す組み上がり外観図である。 比較のための従来のリアルタイムPCR装置のサーマルサイクラーの支持ブロックの一例を示す断面図である。 比較のための従来のリアルタイムPCR装置のサーマルサイクラーの支持ブロックの一例を示す断面図である。 本発明の実施例1のリアルタイムPCR装置のサーマルサイクラーの支持ブロックの一例を示す断面図である。 本発明の実施例1のリアルタイムPCR装置のサーマルサイクラーと従来のサーマルサイクラーの支持ブロックの形状によるランプレートと最大温度差のシミュレーション結果を示す図である。 本発明の実施例2のリアルタイムPCR装置のサーマルサイクラーの温度制御システムを説明するブロック図である。
 以下に本発明のサーマルサイクラーおよびそれを備えたリアルタイムPCR装置の実施例について図面を用いて説明する。
 <実施例1> 
 本発明のサーマルサイクラーおよびそれを備えたリアルタイムPCR装置の実施例1について図1乃至図9を用いて説明する。
 図1は、本発明の実施例1に係るリアルタイムPCR装置の概略構成を示した全体図である。
 図1に示すリアルタイムPCR装置1000は、ラック搭載部110、搬送機構120、液体分注機構130、蓋ユニット140、攪拌ユニット150、制御装置200、サーマルサイクラー160、測定部165を備えている。
 リアルタイムPCR装置1000のうち、試液1(図2参照)を作成する調液部は、ラック搭載部110、搬送機構120、液体分注機構130、蓋ユニット140により構成される。
 ラック搭載部110は、検査に用いられる検体,試薬,分注チップ,反応容器2が配備される領域である。ラック搭載部110は、リアルタイムPCR装置1000の作業台102上の所定位置に設けられており、検体容器ラック112,試薬容器ラック114,反応容器ラック116,ノズルチップラック118がそれぞれ搭載される。
 検体容器ラック112には、増幅処理の対象となる核酸を含む検体が収容された複数の検体容器113が配列収納されている。試薬容器ラック114には、検体に加えるための試薬が収容された複数の試薬容器115が配列収納されている。反応容器ラック116には、検体と試薬とを混合するために用いられる複数の未使用の空の反応容器2が配列収納されている。ノズルチップラック118には、検体および試薬の分注に用いられる複数の未使用のノズルチップ119が配列収納されている。
 搬送機構120は、反応容器2等を保持しながらリアルタイムPCR装置1000内の各箇所を移動させる機構であり、X軸方向ガイド121と、X軸方向可動子122と、Y軸方向ガイド123と、Y軸方向可動子124とを備えており、制御信号に基づいてY軸方向可動子124を作業台上で2次元移動させて、作業台上の所望の位置に配置できる構成になっている。
 X軸方向ガイド121は、リアルタイムPCR装置1000の作業台102上に図1中X軸方向に延在させて配置されたガイドである。X軸方向可動子122は、X軸方向ガイド121上を移動可能に設けられている可動子である。
 Y軸方向ガイド123は、X軸方向可動子122に一体的に取り付けられ、図1中Y軸方向に延在させて配置されたガイドである。Y軸方向可動子124は、Y軸方向ガイド123上を移動可能に設けられている可動子である。
 Y軸方向可動子124には、バーコードリーダ125と、グリッパユニット126と、分注ユニット127とが設けられており、Y軸方向可動子124と一体的に作業台上を移動し、作業台102上の所望位置に配置される。
 バーコードリーダ125は、検体容器113,試薬容器115,反応容器2それぞれに付されている識別情報を読み取り、これらの識別情報を取得する。
 グリッパユニット126は、制御信号に基づくグリッパの作動に応動して反応容器2を把持または解放し、作業台102上の装置各部間でのY軸方向可動子124の移動に伴って反応容器2を搬送する。
 分注ユニット127は、ノズルチップ119を着脱可能な構成になっており、制御信号に基づいてノズルチップラック118からノズルチップ119を装着し、検体容器113内の検体または試薬容器115内の試薬にノズルチップ119を浸漬し、検体または試薬をノズルチップ119内に吸引して採取する。また、分注ユニット127は、制御信号に基づいてこのノズルチップ119内に貯留された検体や試薬を反応容器2に吐出して分注する。
 この分注ユニット127は、選択された1つの反応容器2内に分注チップを用いて検体と試薬とを分注して試液を調製する機構である液体分注機構130の主部をなす。
 また、リアルタイムPCR装置1000では、ラック搭載部110とサーマルサイクラー160との間の作業台102上には、試液を調製するために反応容器ラック116から取り出した未使用の反応容器2が載置される試液調製ポジション170が形成されている。
 試液調製ポジション170には、反応容器2を保持するための容器搭載部172が設けられている。リアルタイムPCR装置1000では、反応容器ラック116からこの試液調製ポジション170にグリッパユニット126を用いて移した未使用の反応容器2に対し、分注ユニット127を用いて検体容器113および試薬容器115から検体および試薬の分注を行って、反応容器2内に検体および試薬を混合した試液を調製する。複数の容器搭載部172を備える。これにより、例えば、同じ検体または同じ試薬の分注を複数の反応容器2に対し一緒に行うこともでき、複数の試液の調製を纏めて行うバッチ処理ができるようになっている。
 蓋ユニット140は、試液を収容した反応容器2に蓋をする機構であり、試液調製ポジション170からグリッパユニット126を用いて移された、試液が収容されている反応容器2の開口に蓋をして、試液の蒸発や外部からの異物の進入等を防ぐ。
 攪拌ユニット150は、反応容器2に収容された試液の検体および試薬を均一に混合する機構であり、蓋ユニット140からグリッパユニット126を用いて移された、密閉された反応容器2に収容されている試液を攪拌し、検体および試薬の混合を行う。
 さらに、図示のリアルタイムPCR装置1000では、試液調製ポジション170とラック搭載部110との間の作業台102上には、分注ユニット127に装着されて検体または試薬の分注に使用された使用済みのノズルチップ119や、サーマルサイクラー160による核酸増幅処理が終わった検査済みの反応容器2を廃棄する廃棄ボックス180が設けられている。
 サーマルサイクラー160は、攪拌が終わった反応容器2が搭載され、試液1の核酸を予め定められているプロトコルに従って増幅させる機構であり、その詳細は後述する。
 測定部165は、試液1を保持する反応容器2の上方側に配置されており、サーマルサイクラー160によって予め定められているプロトコルに従って温度が調整された試液1の蛍光特性を測定することで核酸濃度測定を行う機構である。
 測定部165は、対向した反応容器2の露出した底部側の容器部分に励起光を照射する励起光源と、この励起光の照射に基づいた試液からの蛍光を検出する検出素子とを含む。励起光源としては、例えば、発光ダイオード(LED),半導体レーザー,キセノンランプ,ハロゲンランプ等が用いられる。検出素子としては、フォトダイオード、フォトマルチプライヤー、CCD等が用いられる。
 これにより、測定部165は、励起光源からの励起光の照射によって試液1から生じる蛍光を検出素子により検出して測定することによって、試液1中の、試薬により蛍光標識された増幅対象の塩基配列の定量を経時的に並行して行うことができる。
 このように構成されたリアルタイムPCR装置1000のサーマルサイクラー160を含む装置各部は、図2に示すように、キーボード,マウス等の入力装置210や液晶モニタ等の表示装置220を備えた制御装置200により、その作動が制御される。
 制御装置200は、リアルタイムPCR装置1000のサーマルサイクラー160を含む上述した装置各部を制御し、入力装置210により設定されたプロトコルに基づいて、予め記憶部201に記憶された各種ソフトウェア等を用いて、試液調製処理および核酸増幅処理を含む核酸検査処理を実行する。また、制御装置200は、この核酸検査処理の際の装置各部の可動状況等を記憶部201に記憶するとともに、サーマルサイクラー160によって得られた蛍光検出結果等の分析結果を記憶部201に記憶し、表示装置220に表示する。
 本実施例の制御装置200は、複数のサーマルサイクラー160を独立して並行して温度の制御が可能に構成されている。
 次に、この制御装置200が行う核酸検査処理に係り、上述した試液調製処理および核酸増幅処理について詳細に説明する。
 ここで、試液調製処理とは、リアルタイムPCR装置1000の制御装置200によって行われる核酸検査処理の中、反応容器2内に検体および試薬を分注した試液1を調製する処理を指す。また、核酸増幅処理とは、この試液調製処理によって反応容器2内に調製された試液1を、サーマルサイクラー160によって増幅対象の塩基配列の種類に応じたプロトコルに従って温度調節し、塩基配列の核酸増幅を測定部165による試液1の蛍光測定によって確認しながら行う処理を指す。
 制御装置200は、試液調製処理を開始するに当たって、まず記憶部201に設けられている試液調製処理のための各種作業エリアをイニシャライズする。
 制御装置200は、試液1の調製処理に係るイニシャライズが済むと、入力装置210によって設定された、検体容器ラック情報および試薬容器ラック情報や、核酸検査の実行内容情報の読み込み処理を行う。
 制御装置200は、核酸検査の実行内容情報に含まれた1または複数の個別核酸検査処理の中から予め設定された手順に基づいて、今回、試液作製処理を行う1または複数の個別核酸処理を選択抽出する。
 次に、制御装置200は、試液調製ポジション170で、反応容器ラック116から事前に搬送し試液調製ポジション170の容器搭載部172に搭載した未処理の反応容器2に対して、選択抽出された個別核酸処理の試液調製処理情報に基づいて液体分注機構130を作動制御して、試液1の調製を行う。
 次に、上述したように構成された本実施例に係るリアルタイムPCR装置1000において、異なる分析項目を効率的に、短時間で処理するための主要部を構成するサーマルサイクラー160の構成および作用について図2乃至図9を用いて詳述する。
 図2は本実施例のサーマルサイクラー160の基本構造を説明する断面図である。
 本実施例のサーマルサイクラー160は、温度センサ4の温度を観察しながらペルチェ素子5への印加電流を温度調整部230により調整して、目的のプロトコルに従い試液1の温度を変化させる機構である。図2に示すサーマルサイクラー160は、支持ブロック3、温度センサ4、ペルチェ素子5、ヒートシンク6、断熱スペーサ7、ブロック固定部材8、締結ネジ9、温度調整部230を備えている。
 図1を用いて説明した調液部によって、検体試料や希釈液や試薬などの液体を分注混合することで試液1が調製され、反応容器2に収納される。
 支持ブロック3は、反応容器2の外形と同一の形状のホルダ穴3a(図4参照)があけられているホルダ部32(図4参照)と、このホルダ部32と熱的に連結されており、ペルチェ素子5の伝熱面51と密着することで熱の授受を行う受熱面31bを形成する受熱板31と、フィレット33(図4参照)と、から構成される。
 反応容器2は、支持ブロック3のホルダ穴3aで支持される。
 受熱板31は、一方の面(受熱面31b)がペルチェ素子5と接しており、もう一方の面31dには、反応容器2を支持するホルダ部32が形成されている。
 支持ブロック3では、冷却と加熱が行えるペルチェ素子5により、反応容器2を支持するホルダ部32や受熱板31を介して、試液1の温度をそれぞれの反応のPCRプロトコルに従って周期変化させる。
 この間に試液1に光を照射して蛍光度の計測を行う。このうち試液調製や搬送や蛍光度計測に関する部分は、ランプレート向上には大きくは寄与しないので、特にその構成は限定されないが、図1で説明したように試液1の導入や蛍光度の測定は反応容器2の上方から行うことが望ましい。
 またPCRプロトコルも任意の場合があるので限定されないが、通常、リアルタイムPCR装置が設置される環境温度または室温よりも高い50℃程度から100℃程度の温度範囲で、2ないし3つの目標温度をそれぞれ一定の時間保持する温度変化パターンを指定された回数繰り返す。
 支持ブロック3には温度センサ4が取り付けられており、支持ブロック3の温度を計測することによって間接的に試液1の温度を計測する。温度センサ4は、例えば熱電対や半導体温度計等で構成されるが、特にこれらに限定されるものではない。
 温度調整部230は、温度センサ4により計測される支持ブロック3の温度があらかじめPCRプロトコルで設定されている温度と一致するようにペルチェ素子5へ供給する電流と電圧を制御する。なお、制御装置200と温度調整部230とが別体の場合について説明しているが、これらは一体であってもよい。
 なお前述の特許文献では支持ブロック3とペルチェ素子5とを組み合わせたものを温調ブロックと呼んでいる。
 図3は本実施例のサーマルサイクラー160で使用される反応容器2の説明図である。
 サーマルサイクラー160で用いられる反応容器2は検査終了時に廃棄される使い捨てタイプであり、通常はプラスティック製である。図3に示すように、反応容器2の形状は、支持ブロック3と熱的に密着できて、着脱が容易にできるように、上部21が開口し、支持ブロック3に収納される部分は下部へ向かって先細りになる円錐形部を有している。
 反応容器2は、円錐形の中心軸24がほぼ鉛直方向になるように支持ブロック3により支持される。円錐形の先細りの先端22は熱的密着性と着脱の容易さの為にほぼ球形な形状に丸められている。この先端22が鉛直下方になり、反対側の反応容器2の上部21は開口し、試液1の導入や上方からの光の照射蛍光度の計測ができるようになっている。
 本実施例では図示していないが、上述したように、反応容器2の上部21にはPCR反応中に試液1が蒸発消失することを防ぐために透明な蓋を使用することができる。
 また、支持ブロック3と接する部分以外はどのような形状をしていてもよく、例えば、追加の支持部材や上述した消失防止蓋の結露防止のヒータ等と位置合わせをするためのフランジを更に設けることができる。
 上述した特許文献1,2では、光学系の構成が側方から蛍光を観測する構成となっているため、反応容器に光の散乱が複雑となる円錐面を使用することが出来ず、鉛直方向に直線状の円筒や角柱の形状をしている必要がある。
 このため、反応容器の脱着を容易とするためには支持ブロックと反応容器との間に隙間を設けなければいけない、との制約があった。また、側方の光路を確保するために支持ブロックと反応容器とが密着しない領域を設ける必要がある、との制約があった。このため、熱的な密着性が得られない箇所が残っており、ランプレートの向上を図る余地が残されていることになる。
 また、特許文献2では、試液が主に入っている反応容器の先端が支持ブロックから突き出している必要があるため、同様に、ランプレートの向上を図る余地があることになる。
 図4は本実施例のサーマルサイクラー160で使用する支持ブロックの一例を示す外観図である。
 図4に示し、また上述したように、支持ブロック3は、ホルダ部32と受熱板31とが受熱板31のペルチェ素子5と接しているのとは反対側の面で一体に整形された部品である。
 支持ブロック3は、恒久的な部品であり、反応容器2の脱着に耐える強度と熱伝導性がよいことが望まれるため、通常はその全体が熱伝導性の良い金属材料、例えばアルミニュウムなどの熱伝導性の良い金属で構成される。
 支持ブロック3の製造方法は特に限定されず、ホルダ部32と受熱板31が一体となるよう、ホルダ部32と受熱板31とを別個に加工して、溶接や拡散接合で接合しても良いし、金型を使って加圧鋳造しても良い。あるいは一個の金属片から切削加工や放電加工で切り出しても良い。
 支持ブロック3の体積を最小とするために、円錐形の反応容器2を一定の厚さ32aで覆うホルダ部32を、平板のペルチェ素子5を一定の厚さ31aで覆う受熱板31のペルチェ素子5と接触する受熱面31bと反対側に、ホルダ部32の母線部分と受熱板31とが重なり合うように配置する。これにより、ペルチェ素子5の伝熱面51や反応容器2に接している面の温度分布を均一にするには一定の厚みの熱伝導性の材料で覆うことができる。
 なお、加工上、図4に示すようなフィレット33などの付加体積がつく場合は、受熱板31あるいはペルチェ素子5の伝熱面から等距離における支持ブロック3の断面積を距離が増すに従って減少させることが望ましい。
 それぞれの部分を代表する寸法として、ホルダ穴3aからホルダ部32外形までの厚さ32aと、受熱板31の厚さ31aと、を規定する。
 反応容器2は、ホルダの中心軸24に沿ってホルダ部32上端からの挿入深さ32bだけホルダ部32に挿入される。
 ホルダ部32の内側の形状は反応容器2の形状とほぼ同一とするが、空気やこぼれた液滴が抜けるための小さな穴を設けることができる。
 ここで、支持ブロック3内の温度分布を小さくすることで、受熱面31b側ではペルチェ素子5の性能を最大限に発揮させることができる。また、ホルダ部32の温度分布を小さくすることで試液1の液温の偏りを小さくすることができ、試液1内での反応を均一にすることができる、との効果が得られる。
 支持ブロック3の温度調整時の熱の収支を調べてみると、反応容器2を介して試液1に伝わる熱量は、通常、ペルチェ素子5からの入熱量または除熱量のうち10分の1以下となっている。その他の熱量としては、支持ブロック3に接触している他の構成要素や周りの雰囲気に伝わる熱量が若干あるが、支持ブロック3自体の温度を変化させるために用いられるのがほとんどである。
 したがって、ペルチェ素子5による加熱および吸熱する熱量が一定ならば、支持ブロック3の熱容量を小さくすることによりランプレートを向上することが出来ることが分かる。また、同じ材質の支持ブロック3自体の熱容量を小さくするためには、その体積を小さくすれば良いことが分かる。
 試液1や反応容器2の熱伝導度は、その構成上、支持ブロック3の材質に比べると100分の1程度である。
 したがって、ホルダ部32の厚さ32aは、反応容器2の肉厚の100分の1程度で、またホルダ穴3aの周りに一定の厚さであればよい、と思われる。
 また、受熱板31の受熱面31bに垂直な方向の厚さ31aも、反応容器2の肉厚の10分の1程度であれば十分である、と思われる。
 ただし、実際には、ペルチェ素子5の耐久性の向上、および、加工できて強度上形状を保持して耐久性を向上させることを目的として、ペルチェ素子5との接触熱抵抗と支持ブロック3を構成する材質の熱伝達率との比である厚さ寸法以上の厚さ(接触熱抵抗(mK/W))×材質の熱伝導率(W/mK))>厚さ)であるか、受熱面31bの面内での最大温度差が、ペルチェ素子5の高温側の伝熱面51,52と低温側の伝熱面51,52との温度差よりも大きくなる最小限の肉厚以上の厚さであるか、受熱板31の形状が維持できる最小の肉厚以上の厚さであることが望ましい。
 ペルチェ素子5と受熱板31とは密着することから、受熱板31の受熱面31bはペルチェ素子5の伝熱面51と同形状、同面積とすることが望ましい。
 このように、受熱板31の面積をペルチェ素子5の伝熱面51に比べて極端に小さくしないことで、ペルチェ素子5の伝熱面51が空気に露出している面が大きくなることを抑制することができる。このため、ペルチェ素子5面内の温度分布が偏って熱応力が発生することを防止し、ペルチェ素子5の耐久性を確保することができる。また、受熱板31の面積をペルチェ素子5の伝熱面51に比べて極端に大きくしないことで、支持ブロック3以外の物体を加熱、冷却することを抑制することができる。
 ペルチェ素子5は、支持ブロック3に熱的に連結されており、支持ブロック3を加熱・冷却することにより反応容器2に保持された試液1の温度を調整する部材であり、反応容器2のうち、円錐形の母線23の部分に平行になるように配置されている。なお、厳密に円錐形の母線23の部分に平行である必要はなく、±5度程度のずれは許容される。
 ペルチェ素子5としては、伝熱方向の厚さが薄く、伝熱面51,52が長方形または正方形の形状であるものを用いる。なお、その他の特性、組成などは特に限定されず、求められるランプレートに応じた適切なものを用いることができ、例えばビスマステルル(BiTe)系化合物などが用いられる。
 ペルチェ素子5の伝熱面51は支持ブロック3と接しており、伝熱面52はヒートシンク6と接している。これらの伝熱面51,52には、熱的結合を良好にすることを目的として、伝熱グリースや熱伝導グリースが塗布されていることが望ましい。伝熱グリースや熱伝導グリースの詳細も特に限定されず、用いるペルチェ素子5と支持ブロック3の特性に応じて適切なものを用いることが望ましい。
 ペルチェ素子5には伝熱面51,52の間の輸送熱量(単位ワット)の最大の出力が決まっており、本実施例のサーマルサイクラー160では、この最大出力の時の温度変化がランプレートとなる。
 図2に戻り、ヒートシンク6は、ペルチェ素子5の制御を容易にするために、ペルチェ素子5の動作にかかわらず伝熱面52の温度をほぼ一定に保つ目的で置かれる。そのため、ペルチェ素子5からの熱量の授受により温度が変化しない程度に熱容量が大きいことが望ましく、熱伝導率、比熱、密度のそれぞれが大きな金属を用いるとともに、その体積をペルチェ素子5などに比べて大きくすることが望ましい。
 また、ヒートシンク6の温度を室温などの環境温度に近く保つために、ヒートシンク6のペルチェ素子5と接する以外の面に放熱フィンを設けることができる。また、ファンなどを設けて、室温の空気をあてるなどの方法を講じて、より室温に保つことができる。
 更に、本実施例のサーマルサイクラー160が複数ある装置においては、一つの大きなヒートシンク6を複数のサーマルサイクラー160で兼用することができる。
 断熱スペーサ7は、ペルチェ素子5の伝熱面51,52以外の面からの放熱・入熱を遮断するとともに、ペルチェ素子5および支持ブロック3の位置を決定するための固定枠の役割を持つ。このため、ペルチェ素子5と支持ブロック3の受熱板31の厚さをあわせた厚さを有する板で、支持ブロック3の受熱板31やペルチェ素子5が収まり、板の平面方向の位置を決定できるような穴が開いていることが望ましい。
 断熱スペーサ7は、図2に示す締結ネジ9によりヒートシンク6に対して固定される。更に、断熱スペーサ7は、支持ブロック3とペルチェ素子5をブロック固定部材8でヒートシンク6へ押し付けるために、ブロック固定部材8を固定する基盤となる。
 断熱スペーサ7は、例えば耐熱性プラスティックやセラミックスなどの、支持ブロック3やヒートシンク6等に比べて熱伝導率が低い材料を用いる。
 図2に示すように、ブロック固定部材8を固定ネジ8aで締結する際には、断熱性を確保するために、ブロック固定部材8を固定する固定ネジ8aと締結ネジ9とを別体とすることが望ましい。
 図5は本実施例のサーマルサイクラー160の一例を示す組み上がりの状態を示す外観図である。図5においてブロック固定部材8は3つとしているが、支持ブロック3とペルチェ素子5が脱落しないように必要な個数だけ設ければよい。
 さらに、従来技術の支持ブロックの一例(図6、および図7)を用いて、本発明の支持ブロックの一例(図8)を説明する。
 図6は、比較のために、従来技術のサーマルサイクラーの支持ブロックの一例を示す断面図である。
 図6に示す支持ブロック1003の受熱板1031は、水平に設置されたペルチェ素子1005と接するように、同じく水平な平板となっている。ホルダ部1302は円柱または多角形の柱であり、その中心軸1010は鉛直方向でペルチェ素子1005の伝熱面の中央に位置している。反応容器1002は挿入深さ1302bだけホルダ部1302に挿入されている。
 図6では省略されているが、この例でも図2に示した本発明と同様に断熱スペーサ、ブロック固定部材、締結ネジ、ヒートシンクは同様にあるものとする。この例で示す支持ブロック1003は、上方からの光の照射蛍光度の計測を行うタイプの既存のPCR装置のサーマルサイクラーで用いられている。
 図7も、比較のために、従来技術のサーマルサイクラーの支持ブロックの一例を示す断面図である。
 図7に示す支持ブロック1003Aは、図6で説明した支持ブロック1003と各要素の位置関係はほぼ同じである。異なる点は、ホルダ部1302Aの外形が柱状ではなく、反応容器1002を一定の肉厚1302aで覆った円錐形である。このような形状にすると、支持ブロック1003Aの体積は最小に出来るので、ペルチェ素子1005の熱輸送量が同じならランプレートは最大になるはずである。
 図8は本実施例のサーマルサイクラー160の支持ブロックの一例を示す断面図である。以下、図7で説明した従来技術の支持ブロック1003Aの形態と本発明の支持ブロック3の形態との違いを説明する。
 図8に示すように、本実施例の支持ブロック3のホルダ部32は、反応容器2を一定の厚さ32aで覆った円錐形である。またこの円錐形は、ペルチェ素子5の中心線5aと反応容器2の中心軸24とが、試液1の重心1bで交わるように配置する。更に、支持ブロック3のうちホルダ部32は、受熱板31に対して、ペルチェ素子5の伝熱面51の平面領域の中心線5a上に反応容器2に保持された試液1の重心1bが配置されるように反応容器2を支持する。
 上述のように、ホルダ部32は、反応容器2の円錐形の母線23に相当する部分で受熱板31と接するが、試液1の量はいつも同じであるとは限らない。そこで、おおよその目安として、試液1の重心1bは、試液1の最大量と最小量との中間の液量に相当する液量の時の重心位置とすることが望ましい。すなわち、厳密に中心線5a上に試液1の重心1bが配置される必要はなく、多少の誤差は許容される。
 このようにして、ペルチェ素子5を鉛直方向に対して斜めに、かつ反応容器2の円錐形の母線23に沿うように配置することで、ペルチェ素子5から支持ブロック3の最も遠い部分までの距離31cが最小となるように反応容器2を支持することができる。
 従って、伝熱速度に依存した瞬時の支持ブロック3内の温度差が最小となり、支持ブロック3のいずれかの場所で計測した温度が反応容器2の支持ブロック3と接している部分の温度と最小の誤差で一致することができる。
 なお、ペルチェ素子5とそれをほぼ覆う受熱板31は正方形あるいは長方形であるが、長方形であるなら短辺が水平となるように設置した方が、受熱板31内の温度が均一になる傾向があり望ましい。ただしこれは大きな差とはならないので、どのように配置しても良い。
 上述した図8で説明した支持ブロック3のホルダ部32とペルチェ素子5の位置関係は、反応容器2の円錐形の頂角が90度よりも大きいときにはその効果を最大限に得ることが困難になる可能性がある。そのような場合には図7に示した形態とすることも可能であるが、上方から蛍光度を測定するために少ない試液でも深さが確保できるように、反応容器2の円錐形の頂角は20度前後とすることが望ましい。
 図9は、同一の熱輸送量の条件での数値伝熱シミュレーションによる温度変化の様子からランプレートと支持ブロック内温度差を計算により求めた結果である。図9では、同一等量の試液、同一形状の反応容器、および同一仕様のペルチェ素子を用いる条件とした。また、同一の挿入深さ32bとした図6乃至図8に示した形状の支持ブロックを用いる条件とした。
 この数値シミュレーションは、実測したブロック温度をプラス・マイナス0.2度の精度で予測できており、十分な予測精度があると考えられる。
 ランプレートは、支持ブロックに設置した温度センサが計測した温度が設定した温度差まで変化するのにかかった時間で温度差を除して求めるので、実験で得ることができるが、支持ブロック内温度差はランプレートの設定温度差に達した瞬間のブロック内の最高温度と最低温度の差であるので計測できない。したがってこのシミュレーションを用いて予測した。
 図9のグラフは、横軸に支持ブロックの体積、図9中左側の縦軸にランプレート、右側の縦軸にブロック内温度差を示している。
 図9中、プロット81aは図8に示す本発明の支持ブロック3のランプレート、プロット82aが同じく本発明の支持ブロック3でのブロック内温度差での計算結果を示している。
 図9中、プロット81b1,81b2,81b3は図6に示す従来技術の支持ブロック1003でのランプレートの結果であり、プロット82b1,82b2,82b3は図6に示す従来技術の支持ブロック1003でのブロック内温度差の結果である。図6に示す形態のブロックは3つ試作しており、それぞれ体積を異なるようにした。
 更に、図9中、プロット81cとプロット82cは、図7に示す従来技術の支持ブロック1003Aにおける受熱板1301Aの板厚1301aとホルダ部1302Aの肉厚1302aを、図8の形態のプロット81aとプロット82aの結果を与えた支持ブロック3と等しくしたブロックで得られた結果である。
 図9において、プロット81cやプロット82cがプロット81aやプロット82aに比べて体積が若干小さいのは、受熱板とホルダ部との接合部分のフィレットの分の体積の差である。
 図9に示すように、明らかにブロック体積が小さいほどランプレートが大きくなる。また、本発明の配置であるプロット81aのランプレートは、ほぼ体積が等しいプロット81cのランプレートよりも大きくなっている。さらに、プロット82bやプロット82cに示すように、ブロック体積の減少、つまりランプレートの上昇とともにブロック内温度差が大きくなり、ブロックに設置した温度センサの温度測定値が誤差を持つことになる。
 また、図9に示すように、本発明の支持ブロック3の結果であるプロット82bではほぼ同じ体積のプロット82cに比べてブロック内温度差が明らかに小さく、ランプレートが大きいにも関わらず温度センサ4の温度測定値の誤差を小さくできることが分かる。
 次に、本実施例の効果について説明する。
 上述した本発明の実施例1のリアルタイムPCR装置1000は、サーマルサイクラー160と、サーマルサイクラー160により温度が調整された試液1の蛍光特性を測定する測定部165と、を備えている。
 このうちサーマルサイクラー160は、反応容器2を支持する支持ブロック3と、支持ブロック3に熱的に連結されており、支持ブロック3を加熱・冷却することにより反応容器2に保持された試液1の温度を調整するペルチェ素子5と、支持ブロック3の温度を計測する温度センサ4と、温度センサ4によって計測された支持ブロック3の温度に基づきペルチェ素子5へ供給する電流および電圧の制御を行う温度調整部230と、を備え、反応容器2として、上部21が開口し、下部へ向かって先細りになる円錐形部を有している反応容器2が使用され、ペルチェ素子5は、反応容器2のうち、円錐形の母線23の部分に平行になるように配置されている。
 これによって、上方から蛍光度を測定する方式で反応容器2を下方先細りの円錐形としたときに、一定のペルチェ素子5の能力に対して支持ブロック3のランプレートを従来に比べて大きくすることができるとともに、温度を時間的に変化しているときの支持ブロック3内の温度差を従来に比べて小さくすることができる。支持ブロック3のランプレートを向上することにより、PCR装置自体の温調にかかわる時間を短縮することができ、臨床検査時間を短縮することが出来、装置全体の利便性を向上できる。
 また、支持ブロック3は、ペルチェ素子5の伝熱面51の平面領域の中心線5a上に反応容器2に保持された試液1の重心1bが配置されるように反応容器2を支持するとともに、伝熱面51から支持ブロック3の最も遠い部分までの距離31cが最小となるように反応容器2を支持するため、支持ブロック3の体積を最小にすることができる。よって支持ブロック3のランプレートをより大きく保つことができ、検査時間の短縮をより容易に図ることができる。
 更に、支持ブロック3は、反応容器2の外形と同一の形状のホルダ穴3aを形成するホルダ部32と、ホルダ部32と熱的に連結され、ペルチェ素子5の伝熱面51との熱の授受を行う受熱板31と、を有することで、ペルチェ素子5から支持ブロック3への熱の伝導を効率的に行うことができ、ランプレートの更なる向上を図ることができる。
 また、受熱板31のペルチェ素子5との受熱面31bは、ペルチェ素子5と同形状、同面積であることにより、ペルチェ素子5の伝熱面51が空気に露出している面が大きくなることを抑制することができ、ペルチェ素子5面内の温度分布が偏って熱応力が発生することを防止し、ペルチェ素子5の耐久性を確保することができる。
 更に、受熱板31の受熱面31bに垂直な方向の厚さ31aは、ペルチェ素子5との接触熱抵抗と支持ブロック3を構成する材質の熱伝達率との比である厚さ寸法以上の厚さであること、受熱板31の受熱面に垂直な方向の厚さ31aは、受熱面31bの面内での最大温度差が、ペルチェ素子5の高温側の伝熱面51,52と低温側の伝熱面51,52との温度差よりも大きくなる最小限の肉厚以上の厚さであること、受熱板31の受熱面31bに垂直な方向の厚さ31aは、受熱板31の形状が維持できる最小の肉厚以上の厚さであることで、ペルチェ素子5および支持ブロック3の耐久性を向上させることができる。
 更に、支持ブロック3は、ホルダ部32と受熱板31とを接続するフィレット33を更に有することで、支持ブロック3内の温度差をより小さくすることができる、との効果が得られる。
 また、リアルタイムPCR装置1000の測定部165が、試液1を保持する反応容器2の上方側に配置されたことにより、反応容器2として、先端22が先細りの円錐形状のものをより容易に用いることが可能となる。
 更に、リアルタイムPCR装置1000が試液1を作成する調液部を更に備えたことで、検査員の負担を軽減することができ、検査結果の出力までの労力を軽減することができる。
 なお、本実施例ではサーマルサイクラー160がリアルタイムPCR装置1000に搭載されている場合について説明したが、本実施例のサーマルサイクラー160はそれ自体で単独の装置とすることができる。この場合は、調液や測定を他の装置や検査員、研究員自身で行うことになる。
 また、リアルタイムPCR装置が調液部を備えている場合について説明したが、調液のみを検査員や研究員自身で行い、本実施例のサーマルサイクラー160と測定部165とを搭載したリアルタイムPCR装置により核酸分析を行うことができる。
 更に、本実施例のサーマルサイクラー160がリアルタイムPCR装置1000に9個搭載される場合について説明したが、サーマルサイクラー160の搭載数位は特に限定されず、適宜必要な数を搭載することができる。
 また、サーマルサイクラー160と調液部や測定部165との位置関係についても図1に示す形態に限定されず、適宜変更可能である。
 <実施例2> 
 本発明の実施例2のサーマルサイクラーおよびそれを備えたリアルタイムPCR装置について図10を用いて説明する。実施例1と同じ構成には同一の符号を示し、説明は省略する。以下の実施例においても同様とする。
 図10は本実施例のサーマルサイクラー160の温度制御システムを説明するブロック図である。
 図10に示したサーマルサイクラー160Aにおいては、実施例1と同様に、試液1、反応容器2、支持ブロック3、温度センサ4、ペルチェ素子5を備えている。
 また、図10に示すように、温度調整部230は、温度センサ4によって計測された支持ブロック3の温度から、支持ブロック3の温度の時間変化を微分/積分し、ペルチェ素子5への入力電流/電圧値から支持ブロック3への入熱量を計算するために、リアルタイムPCR制御系231、リアルタイムのブロック温度の情報を取得する温度データ取得部232、ペルチェ入力電流電圧検出部233、時間積分部234、時間微分部235、輸送熱量算出部236、試液熱容量算出部237、試液温度算出部239、PCRサイクルコントローラ240、ドライバー電源241を有している。
 温度調整部230の各ユニットは、様々なプログラムに基づいて実行される。これらのプログラムは内部記録媒体や外部記録媒体等に格納されており、CPUによって読み出され、実行される。
 なお、動作の制御処理は、1つのプログラムにまとめられていても、それぞれが複数のプログラムに別れていてもよく、それらの組み合わせでもよい。また、プログラムの一部または全ては専用ハードウェアで実現してもよく、モジュール化されていても良い。
 試液1が反応容器2に分注されてPCRサイクルが開始できるようになると、温度調整部230によって温度制御が実行される。
 最初に、リアルタイムPCR制御系231からの命令によりPCRサイクルコントローラ240が温度制御を開始する。
 PCRサイクルコントローラ240は、現状の試液1の温度の値とPCRサイクルのタイムチャート、試液1の設定温度とを比較することで現時点でのペルチェ素子5の動作状態を決定して、ペルチェ素子5のドライバー電源241を動作させる。
 試液1が分注された状態ではほぼ室温に近い温度であり、PCRサイクルで設定される温度はこれよりも高い。このため、最初は必ず温度上昇の動作が行われる。この時点で試液1の熱容量は分からない。そこで、ドライバー電源241はペルチェ素子5の最大能力で支持ブロック3へ熱輸送を行うように電流電圧をペルチェ素子5へ供給する。
 このときの支持ブロック3の温度変化の様子は温度センサ4で逐次計測され、リアルタイムのブロック温度情報となる。
 同時に、ドライバー電源241がペルチェ素子5に供給している電流電圧の情報はペルチェ入力電流電圧検出部233より検出され、輸送熱量算出部236で温度と同様にペルチェ素子の熱輸送量がリアルタイムデータ化される。
 温度データ取得部232で取得された支持ブロック3の温度データは、時間積分部234で逐次時間積分され、時間微分部235で逐次時間微分される。ペルチェ素子5が一定熱輸送量で動作しているときの温度の時間微分の逆数がランプレートである。
 試液熱容量算出部237では、輸送熱量算出部236で得られたペルチェ素子5の熱輸送量が一定である期間に取得したランプレートを236で得られたペルチェ素子5の熱輸送量で除して熱容量を求める。
 求める熱容量は、支持ブロック3、反応容器2、試液1の全熱容量を示している。このうち、支持ブロック3、反応容器2の熱容量は、それらの材質や体積が既知であるので、あらかじめ求めることができる。すなわち、これら支持ブロック3や反応容器2の熱容量を求められた熱容量から差し引くことで試液1の熱容量を求めることができる。この熱容量を試液熱容量一時記憶データ238として記録する。
 温度の時間積分部234の値は支持ブロック3、反応容器2、試液1の全体に加えられた熱量の総和を表しており、熱容量の比率で案分すると試液1に加えられた熱量となる。したがって、試液温度算出部239において、これらの熱量の計算を、試液熱容量一時記憶データ238を使用して行うことにより、リアルタイムの試液1の平均温度を算出することが出来る。
 以上により、PCRサイクルコントローラ240は試液1の正確な温度をもとに、温度制御を行うことが出来るようになる。以上で得られる試液1の温度の正確さは支持ブロック3内の瞬時の温度差と等しいので、上述した実施例1で述べたブロック内温度差の小さい支持ブロック3の使用が前提となる。
 その他の構成・動作は前述した実施例1のサーマルサイクラーおよびそれを備えたリアルタイムPCR装置と略同じ構成・動作であり、詳細は省略する。
 本発明の実施例2のサーマルサイクラーおよびそれを備えたリアルタイムPCR装置においても、前述した実施例1のサーマルサイクラーおよびそれを備えたリアルタイムPCR装置とほぼ同様な効果が得られる。
 <その他> 
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
1…試液
1b…重心
2…反応容器
3…支持ブロック
3a…ホルダ穴
4…温度センサ
5…ペルチェ素子
5a…中心線
6…ヒートシンク
7…断熱スペーサ
8…ブロック固定部材
8a…固定ネジ
9…締結ネジ
21…上部
22…先端
23…母線
24…中心軸
31…受熱板
31a…厚さ
31b…受熱面
31c…距離
32…ホルダ部
32a…厚さ
32b…挿入深さ
33…フィレット
51,52…伝熱面
81a…プロット
82a…プロット
160,160A…サーマルサイクラー
165…測定部
200…制御装置
230…温度調整部(入熱量調整部)
231…リアルタイムPCR制御系
232…温度データ取得部
233…ペルチェ入力電流電圧検出部
234…時間積分部
235…時間微分部
236…輸送熱量算出部
237…試液熱容量算出部
238…試液熱容量一時記憶データ
239…試液温度算出部
240…サイクルコントローラ
241…ドライバー電源
1000…リアルタイムPCR装置

Claims (13)

  1.  反応容器を支持する支持ブロックと、
     前記支持ブロックに熱的に連結されており、前記支持ブロックを加熱・冷却することにより前記反応容器に保持された試液の温度を調整するペルチェ素子と、
     前記支持ブロックの温度を計測する温度センサと、
     前記温度センサによって計測された前記支持ブロックの温度に基づき前記ペルチェ素子へ供給する電流および電圧の制御を行う入熱量調整部と、を備え、
     前記反応容器として、上部が開口し、下部へ向かって先細りになる円錐形部を有している反応容器が使用され、
     前記ペルチェ素子は、前記反応容器のうち、円錐形の母線部分に平行になるように配置されている
     ことを特徴とするサーマルサイクラー。
  2.  請求項1に記載のサーマルサイクラーにおいて、
     前記支持ブロックは、前記ペルチェ素子の伝熱面の平面領域の中心線上に前記反応容器に保持された前記試液の重心が配置されるように前記反応容器を支持するとともに、前記伝熱面から前記支持ブロックの最も遠い部分までの距離が最小となるように反応容器を支持する
     ことを特徴とするサーマルサイクラー。
  3.  請求項1に記載のサーマルサイクラーにおいて、
     前記支持ブロックは、
      前記反応容器の外形と同一の形状のホルダ穴を形成するホルダ部と、
      前記ホルダ部と熱的に連結され、前記ペルチェ素子の伝熱面との熱の授受を行う受熱板と、を有する
     ことを特徴とするサーマルサイクラー。
  4.  請求項3に記載のサーマルサイクラーにおいて、
     前記受熱板の前記ペルチェ素子との受熱面は、前記ペルチェ素子と同形状、同面積である
     ことを特徴とするサーマルサイクラー。
  5.  請求項3に記載のサーマルサイクラーにおいて、
     前記受熱板の前記ペルチェ素子との受熱面に垂直な方向の厚さは、前記ペルチェ素子との接触熱抵抗と前記支持ブロックを構成する材質の熱伝達率との比である厚さ寸法以上の厚さである
     ことを特徴とするサーマルサイクラー。
  6.  請求項3に記載のサーマルサイクラーにおいて、
     前記受熱板の前記ペルチェ素子との受熱面に垂直な方向の厚さは、前記受熱面の面内での最大温度差が、前記ペルチェ素子の高温側の伝熱面と低温側の伝熱面との温度差よりも大きくなる最小限の肉厚以上の厚さである
     ことを特徴とするサーマルサイクラー。
  7.  請求項3に記載のサーマルサイクラーにおいて、
     前記受熱板の前記ペルチェ素子との受熱面に垂直な方向の厚さは、前記受熱板の形状が維持できる最小の肉厚以上の厚さである
     ことを特徴とするサーマルサイクラー。
  8.  請求項3に記載のサーマルサイクラーにおいて、
     前記ホルダ部は、前記ホルダ穴の周りに一定の肉厚を有している
     ことを特徴とするサーマルサイクラー。
  9.  請求項3に記載のサーマルサイクラーにおいて、
     前記支持ブロックは、前記ホルダ部と前記受熱板とを接続するフィレットを更に有する
     ことを特徴とするサーマルサイクラー。
  10.  請求項1に記載のサーマルサイクラーにおいて、
     前記入熱量調整部は、前記温度センサによって計測された前記支持ブロックの温度から、前記支持ブロックの温度の時間変化を微分/積分し、前記ペルチェ素子への入力電流/電圧値から前記支持ブロックへの入熱量を計算する
     ことを特徴とするサーマルサイクラー。
  11.  請求項1に記載のサーマルサイクラーと、
     前記サーマルサイクラーにより温度が調整された試液の蛍光特性を測定する測定部と、を備えた
     ことを特徴とするリアルタイムPCR装置。
  12.  請求項11に記載のリアルタイムPCR装置において、
     前記測定部は、前記試液を保持する前記反応容器の上方側に配置された
     ことを特徴とするリアルタイムPCR装置。
  13.  請求項11に記載のリアルタイムPCR装置において、
     前記試液を作成する調液部を更に備えた
     ことを特徴とするリアルタイムPCR装置。
PCT/JP2018/036250 2018-09-28 2018-09-28 サーマルサイクラーおよびそれを備えたリアルタイムpcr装置 WO2020065917A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2018/036250 WO2020065917A1 (ja) 2018-09-28 2018-09-28 サーマルサイクラーおよびそれを備えたリアルタイムpcr装置
JP2020547794A JP7038221B2 (ja) 2018-09-28 2018-09-28 サーマルサイクラーおよびそれを備えたリアルタイムpcr装置
CN201880095847.9A CN112469809B (zh) 2018-09-28 2018-09-28 热循环器以及具备该热循环器的实时pcr装置
DE112018007855.8T DE112018007855B4 (de) 2018-09-28 2018-09-28 Thermocycler und diesen enthaltendes echtzeit-pcr-gerät
KR1020217003206A KR102518245B1 (ko) 2018-09-28 2018-09-28 서멀 사이클러 및 그것을 구비한 리얼타임 pcr 장치
US17/269,677 US12036560B2 (en) 2018-09-28 2018-09-28 Thermal cycler and real-time PCR device including same
GB2101843.7A GB2590312B (en) 2018-09-28 2018-09-28 Thermal cycler and real-time PCR device including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036250 WO2020065917A1 (ja) 2018-09-28 2018-09-28 サーマルサイクラーおよびそれを備えたリアルタイムpcr装置

Publications (1)

Publication Number Publication Date
WO2020065917A1 true WO2020065917A1 (ja) 2020-04-02

Family

ID=69949810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036250 WO2020065917A1 (ja) 2018-09-28 2018-09-28 サーマルサイクラーおよびそれを備えたリアルタイムpcr装置

Country Status (7)

Country Link
US (1) US12036560B2 (ja)
JP (1) JP7038221B2 (ja)
KR (1) KR102518245B1 (ja)
CN (1) CN112469809B (ja)
DE (1) DE112018007855B4 (ja)
GB (1) GB2590312B (ja)
WO (1) WO2020065917A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117949103A (zh) * 2024-03-22 2024-04-30 金亿中天科技开发有限公司 一种配电柜人工智能电力部件监测设备
EP4265711A4 (en) * 2020-12-18 2024-09-04 Hitachi High Tech Corp THERMOCYCLER AND GENETIC TESTING EQUIPMENT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021112581B4 (de) * 2021-05-14 2023-11-30 3P Instruments GmbH & Co. KG Vorrichtung zum Temperieren einer Messzelle und Verfahren zum Betreiben der Vorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558947B1 (en) * 1997-09-26 2003-05-06 Applied Chemical & Engineering Systems, Inc. Thermal cycler
JP2010502228A (ja) * 2006-09-06 2010-01-28 アプライド バイオシステムズ, エルエルシー 化学的または生物学的反応を実行するためのデバイス
JP2011505011A (ja) * 2007-11-28 2011-02-17 スマート チューブ,インコーポレイテッド 生体試料の採取、刺激、安定化及び分析のためのデバイス、システム及び方法
WO2012172884A1 (ja) * 2011-06-16 2012-12-20 学校法人神奈川大学 温度制御装置、及び温度素子

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3207871B2 (ja) * 1991-07-09 2001-09-10 キヤノン株式会社 ウエハ支持装置
DE4035597A1 (de) * 1990-11-06 1992-05-07 Wladimir Dr Med Teterin If-zellkulturinkubationsplatte
JP2001332806A (ja) * 2000-03-16 2001-11-30 Konica Corp レーザ露光装置
US7727479B2 (en) * 2000-09-29 2010-06-01 Applied Biosystems, Llc Device for the carrying out of chemical or biological reactions
US20030072685A1 (en) * 2001-10-11 2003-04-17 Goldman Jeffrey A. Heat conducting sample block
US20070184548A1 (en) 2002-12-23 2007-08-09 Lim Hi Tan Device for carrying out chemical or biological reactions
US20080026483A1 (en) * 2006-06-14 2008-01-31 Oldenburg Kevin R Thermal-cycling devices and methods of using the same
US8962306B2 (en) * 2006-09-08 2015-02-24 Thermo Fisher Scientific Oy Instruments and method relating to thermal cycling
US8322918B2 (en) * 2008-08-01 2012-12-04 Eppendorf Ag Tempering apparatus with testing device and method for testing a tempering apparatus
WO2011086498A2 (en) * 2010-01-12 2011-07-21 Ahram Biosystems, Inc. Two-stage thermal convection apparatus and uses thereof
IT1400195B1 (it) * 2010-04-15 2013-05-24 Carpigiani Group Ali Spa Dispositivo di controllo della carica batterica di un prodotto alimentare liquido o semiliquido.
EP2752668A3 (en) * 2010-07-23 2014-10-15 Beckman Coulter, Inc. System Or Method Of Including Analytical Units
AU2015210344B2 (en) * 2011-04-15 2017-08-24 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US8968684B2 (en) * 2011-04-28 2015-03-03 Bin Lian Microplates, reaction modules and detection systems
EP2844392B1 (en) 2012-04-30 2023-08-30 Life Technologies Corporation Modules and calibration method for a robotic polynucleotide sample preparation system
AU2013202793B2 (en) * 2012-07-31 2014-09-18 Gen-Probe Incorporated System, method and apparatus for automated incubation
US20140273181A1 (en) * 2013-03-15 2014-09-18 Biofire Diagnostics, Inc. Compact optical system for substantially simultaneous monitoring of samples in a sample array
WO2014188817A1 (ja) * 2013-05-24 2014-11-27 日立金属株式会社 圧力センサ及びそれを用いたマスフローメータ並びにマスフローコントローラ
US9993822B2 (en) 2013-07-08 2018-06-12 Hitachi High-Technologies Corporation Nucleic acid amplification/detection device and nucleic acid inspection device using same
CN104263634B (zh) * 2014-09-24 2016-08-17 中国科学技术大学 一种基于毛细管的流式聚合酶链式反应循环加热仪及加热方法
WO2016135798A1 (ja) 2015-02-23 2016-09-01 株式会社 日立ハイテクノロジーズ 核酸分析装置
US20170219256A1 (en) * 2016-02-02 2017-08-03 Tokitae Llc Thermal transfer devices, temperature stabilized containers including the same, and related methods
CN207169780U (zh) * 2017-07-07 2018-04-03 嘉兴市科锋教学仪器有限公司 恒温水浴锅

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558947B1 (en) * 1997-09-26 2003-05-06 Applied Chemical & Engineering Systems, Inc. Thermal cycler
JP2010502228A (ja) * 2006-09-06 2010-01-28 アプライド バイオシステムズ, エルエルシー 化学的または生物学的反応を実行するためのデバイス
JP2011505011A (ja) * 2007-11-28 2011-02-17 スマート チューブ,インコーポレイテッド 生体試料の採取、刺激、安定化及び分析のためのデバイス、システム及び方法
WO2012172884A1 (ja) * 2011-06-16 2012-12-20 学校法人神奈川大学 温度制御装置、及び温度素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265711A4 (en) * 2020-12-18 2024-09-04 Hitachi High Tech Corp THERMOCYCLER AND GENETIC TESTING EQUIPMENT
CN117949103A (zh) * 2024-03-22 2024-04-30 金亿中天科技开发有限公司 一种配电柜人工智能电力部件监测设备
CN117949103B (zh) * 2024-03-22 2024-06-11 金亿中天科技开发有限公司 一种配电柜人工智能电力部件监测设备

Also Published As

Publication number Publication date
US20210237089A1 (en) 2021-08-05
GB2590312B (en) 2022-10-19
CN112469809B (zh) 2023-09-22
DE112018007855T5 (de) 2021-04-29
US12036560B2 (en) 2024-07-16
GB2590312A (en) 2021-06-23
JPWO2020065917A1 (ja) 2021-08-30
CN112469809A (zh) 2021-03-09
GB202101843D0 (en) 2021-03-24
KR102518245B1 (ko) 2023-04-06
DE112018007855B4 (de) 2024-10-31
KR20210028671A (ko) 2021-03-12
JP7038221B2 (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
JP5553367B2 (ja) インキュベータ及び遺伝子検出判定装置
WO2020065917A1 (ja) サーマルサイクラーおよびそれを備えたリアルタイムpcr装置
US10512915B2 (en) Nucleic acid amplifier and nucleic acid inspection device employing the same
US8895296B2 (en) Analyzer
EP2615462A1 (en) Instrument and method for the automated thermal treatment of liquid samples
JP2014143927A (ja) 核酸増幅装置および温度調節機能の異常検出方法
US20140093947A1 (en) Nucleic acid amplification apparatus and nucleic acid analysis apparatus
WO2006038643A1 (ja) 反応容器、および反応制御装置
CN105452435A (zh) 核酸扩增检测装置以及使用了该核酸扩增检测装置的核酸检查装置
JP2013021988A (ja) 核酸検査装置
US20230094049A1 (en) Method to Monitor and Control the Temperature of a Sample Holder of a Laboratory Instrument
JP6371101B2 (ja) 核酸分析装置
TW201339308A (zh) 核酸序列擴增檢測裝置
US11732973B2 (en) Device for the thermal treatment of test samples
JP2014147296A (ja) 核酸検査装置
WO2023195522A1 (ja) 自動分析装置
JP7526818B2 (ja) サーマルサイクラ、及び遺伝子検査装置
WO2022233783A1 (en) A temperature controller and a method for controlling a temperature of a sample, and an analysis instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020547794

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217003206

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202101843

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180928

122 Ep: pct application non-entry in european phase

Ref document number: 18935092

Country of ref document: EP

Kind code of ref document: A1