WO2016135798A1 - 核酸分析装置 - Google Patents

核酸分析装置 Download PDF

Info

Publication number
WO2016135798A1
WO2016135798A1 PCT/JP2015/054905 JP2015054905W WO2016135798A1 WO 2016135798 A1 WO2016135798 A1 WO 2016135798A1 JP 2015054905 W JP2015054905 W JP 2015054905W WO 2016135798 A1 WO2016135798 A1 WO 2016135798A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
overshoot
nucleic acid
temperature control
acid analyzer
Prior art date
Application number
PCT/JP2015/054905
Other languages
English (en)
French (fr)
Inventor
麻奈美 南木
輝美 田村
耕史 前田
大輔 森島
智也 桜井
航 佐藤
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US15/548,574 priority Critical patent/US10815524B2/en
Priority to JP2017501554A priority patent/JP6479956B2/ja
Priority to PCT/JP2015/054905 priority patent/WO2016135798A1/ja
Priority to DE112015005925.3T priority patent/DE112015005925B4/de
Priority to GB1711955.3A priority patent/GB2553907B/en
Publication of WO2016135798A1 publication Critical patent/WO2016135798A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements

Definitions

  • the present invention relates to a nucleic acid analyzer for analyzing a biological sample by amplifying a nucleic acid contained in the biological sample.
  • PCR Polymerase Chain Reaction
  • the temperature of the reaction solution to be analyzed changes with a delay with respect to the temperature change of the temperature control block. Therefore, in many nucleic acid analyzers, for the purpose of accelerating the reaching of the reaction solution to the target temperature, for example, at the time of temperature increase, the temperature of the temperature control block is raised to the target temperature of the reaction solution temperature or overshooting. Has been done.
  • Patent Document 1 describes that the best advantage can be obtained by using a temperature control block in combination with an optimized overshoot that is symmetric in both up and down ramps.
  • Patent Document 2 describes a nucleic acid analyzer capable of random access that employs a configuration in which a reaction vessel is not covered and oil or the like is layered on a reaction solution to prevent evaporation.
  • reaction vessel since water boils at 99.97 ° C. or higher under 1 atmosphere, the reaction vessel is not covered and the reaction solution is overlaid with oil or the like to prevent evaporation. There is a possibility that bubbles are generated during heating to the denaturation step and the analytical performance is lowered.
  • the current nucleic acid analyzer cannot change the temperature range of the overshoot and the setting of the maintenance time, the analysis is always performed with the same setting at any step in a PCR temperature cycle. For the same reason, analysis is always performed with the same overshoot setting for any analysis item.
  • the purpose of the present invention is to improve the temperature change rate of the reaction solution and shorten the analysis time while preventing the analysis performance from being deteriorated due to local overheating of the reaction solution.
  • An object of the present invention is to provide a nucleic acid analyzer that sets and executes temperature control by an easy operation.
  • An apparatus for realizing the present invention is a nucleic acid analyzer having a temperature adjustment unit that adjusts the temperature of a sample containing nucleic acid, and a temperature control unit that controls the temperature adjustment unit.
  • a holding member that holds the container, a temperature control element that controls the temperature of the sample provided on the holding member, and a temperature sensor that measures the temperature of the holding member, and the temperature control unit includes the temperature sensor The temperature control unit is controlled so that the temperature measurement value with the passage of time to be measured becomes a trapezoid.
  • the nucleic acid denaturation step carried out at high temperature, it is possible to prevent inactivation of the nucleic acid amplification enzyme and maintain analytical performance by suppressing excessive heating of the reaction solution due to overshoot.
  • the nucleic acid denaturation step suppresses overheating of the reaction solution due to overshoot. Therefore, the generation of bubbles can be prevented and the analysis performance can be maintained.
  • the temperature change rate of the reaction solution can be improved and the analysis time can be shortened.
  • FIG. 3 is a cross-sectional view illustrating a configuration example between A-A ′ in FIG. 2.
  • FIG. 3 is a cross-sectional view illustrating a configuration example between A-A ′ in FIG. 2.
  • FIG. 4 is a schematic block diagram illustrating an example of a main configuration in terms of functions in the nucleic acid analyzer of FIGS. 2 and 3. It is the table
  • FIG. 2 is a top view showing a configuration example of the main part of the nucleic acid analyzer according to Embodiment 1 of the present embodiment.
  • FIG. 3 is a cross-sectional view illustrating a configuration example between AA ′ in FIG.
  • 2 and 3 includes a temperature control unit, a carousel 2, a photometer 6, and a shielding plate 7.
  • the temperature adjustment unit includes a temperature control block (holding member) 1 for holding a tube (reaction vessel) containing a reaction solution containing nucleic acid, and a Peltier element (temperature control element) 4 for adjusting the temperature of the temperature control block 1.
  • the temperature sensor 5 monitors the temperature of the temperature control block 1.
  • a plurality (12 in this example) of temperature control blocks 1 are arranged around the center axis of the carousel 2 along the outer periphery, and are driven to rotate about the rotation shaft 3.
  • a Peltier element 4 is arranged between each of the temperature control blocks 1 and the carousel 2, and the temperature of the temperature control block 1 is monitored by a temperature sensor 5 mounted in the temperature control block 1 while monitoring the temperature. It is adjusted by controlling 4.
  • the temperature of the plurality of temperature control blocks 1 can be adjusted independently. is there.
  • Any other temperature control method may be used as long as temperature control for performing PCR is possible.
  • an air incubator system in which temperature control is performed by changing the temperature of air can be used.
  • a photometer 6 is disposed on the outer periphery of the carousel 2.
  • two photometers 6 using light of different wavelengths are shown.
  • one photometer 6 can be detected.
  • three or more photometers 6 may be arranged. Since all the temperature control blocks 1 move on the same circumference by rotational drive, the relative positions of the photometer 6 and the temperature control block 1 when passing in front of the photometer 6 are the same in all the temperature control blocks 1. become.
  • the plurality of temperature control blocks 1 are covered with a shielding plate 7 including the carousel 2 in order to reduce optical disturbance when analyzed by the photometer 6.
  • a tube (reaction vessel) 10 containing a reaction solution (sample) in which a reagent or the like is mixed with nucleic acid is held by a temperature control block (holding member) 1.
  • All temperature control blocks 1 are provided with an excitation light irradiation window 8 for receiving excitation light from the photometer 6 and a fluorescence detection window 9 for the photometer 1 to take in fluorescence.
  • the excitation light irradiation window 8 is arranged on the lower surface side of the temperature control block 1 and the fluorescence detection window 9 is arranged on the side surface side of the temperature control block 1, the arrangement of the windows can be freely set according to the structure of the photometer. It is possible to set.
  • the temperature rise is continued until the overshoot target temperature is reached.
  • the overshoot target temperature is maintained for a predetermined time until the overshoot maintenance time is reached.
  • the third treatment the temperature is continuously lowered until the target temperature of the reaction solution is reached.
  • the overshoot setting that is, the overshoot target temperature and the maintenance time may be changed. Also, different overshoot setting patterns may be executed for two or more different analysis items. Further, it is desirable that the overshoot setting is directly input or externally input via USB, barcode, network or the like.
  • FIG. 4 is a schematic block diagram showing an example of the main configuration in terms of the functions of the nucleic acid analyzer of FIGS. 2 and 3.
  • a nucleic acid analyzer 31 shown in FIG. 4 includes a temperature control unit 32 that controls these temperatures in addition to the plurality of temperature control blocks 1 described above.
  • the temperature control unit 32 is a part of the device control unit 33 that controls the nucleic acid analyzer.
  • the temperature control unit 32 is mainly configured by a computer system or the like, and adjusts the temperature of each temperature control block 1 based on a predetermined processing sequence.
  • the input unit 34 receives input of information from the outside to the nucleic acid analyzer.
  • the information input method may be input in a file format via a barcode or USB, or may be input via a network.
  • the storage / calculation unit 35 records the information input via the input unit 34 and transmits the information to the device control unit 33 as necessary. As for temperature control, recording of PCR temperature cycle parameters and overshoot settings, and calculations necessary for temperature control are performed.
  • the display unit 36 displays information such as an apparatus state including an alarm, an analysis result, and a variable input screen necessary for control. [Temperature control method] Next, parameters for carrying out the PCR temperature cycle in the nucleic acid analyzer of this example will be described.
  • FIG. 5 shows an example of PCR temperature cycle parameters.
  • the parameters of the temperature cycle are roughly divided into stages. In this example, there are two stages, but it may be one or three or more. For each stage, the number of repetitions of that stage is set.
  • Each stage is composed of one or more steps. A combination of temperature and maintenance time is set for each step.
  • the temperature of the temperature control block 1 is controlled by the temperature control unit 32 so as to sequentially change from step 1 of the stage 1.
  • the target temperature of the reaction solution and the target temperature of the temperature control block 1 for setting the reaction solution to the target temperature may not be the same. Therefore, the temperature of the temperature control block 1 may be controlled to a temperature calculated from the target temperature of the reaction solution using a predetermined correction formula.
  • the overshoot control method described in this embodiment is a method in which the temperature control unit 32 controls the Peltier element (temperature control element) 4 that adjusts the temperature of the temperature control block 1.
  • FIG. 6 is a diagram showing parameters necessary for setting the overshoot.
  • the setting of overshooting is composed of two ranges: the overshooting temperature range and the overshooting maintaining time for maintaining the overshooting target temperature.
  • the target temperature of overshoot is obtained by the sum of the target temperature of the reaction solution in the next step and the temperature range of overshoot.
  • overshoot is defined as controlling the temperature of the temperature control block 1 to be higher than the original target temperature in order to accelerate the reaction solution to reach the target temperature in the next step.
  • FIG. 7 shows the tube when the temperature of the temperature control block 1 is controlled by the temperature controller 32 so that the temperature of the reaction solution in the tube 1 reaches a preset target temperature of the reaction solution. It is a figure which shows an example of the temperature change of the reaction liquid in 10 and the temperature control block 1.
  • FIG. 7 shows the tube when the temperature of the temperature control block 1 is controlled by the temperature controller 32 so that the temperature of the reaction solution in the tube 1 reaches a preset target temperature of the reaction solution.
  • FIG. 7 shows an example of the temperature change of the reaction liquid in 10 and the temperature control block 1.
  • FIG. 7 shows the tube when the temperature of the reaction solution reaches the set target temperature or the target temperature range set with reference to the target temperature, the control at that time is not overshoot control, but the PCR temperature cycle is not performed.
  • the target temperature range is assumed to be the same as the temperature range used for the determination of reaching the target temperature in normal temperature control.
  • FIG. 8 is a flowchart showing an example of processing contents when the overshoot control of the temperature control unit 32 shown in FIG. 4 is performed.
  • the temperature of the temperature control unit holding the reaction solution is overshot as shown in FIG. 1C.
  • step S101 the temperature rise is continued until the overshoot target temperature is reached (step S101).
  • step S102 the overshoot target temperature is held for a predetermined time until the overshoot maintenance time is reached (step S102).
  • step S103 the temperature lowering is continued until the target temperature of the reaction solution is reached (step S103).
  • the temperature measurement value is controlled to take a trapezoidal waveform. At this time, it is desirable that the temperature gradients in the temperature increase in the first process and the temperature decrease in the third process are always constant.
  • the nucleic acid denaturation step performed at a high temperature, by suppressing excessive heating of the reaction solution due to overshoot, the inactivation of the nucleic acid amplification enzyme can be prevented and the analytical performance can be maintained. If the reaction vessel is not provided with a lid, and the reaction solution is overlaid with oil, etc., to prevent evaporation, the nucleic acid denaturation step prevents overheating of the reaction solution due to overshoot, thus preventing bubbles. Analysis performance can be maintained.
  • the overshoot including the process of maintaining the overshoot target temperature is referred to as a trapezoidal overshoot.
  • Other general overshoots in which the temperature lowering is started without performing the temperature maintaining process after reaching the target temperature are referred to as saddle type overshoots. That is, the saddle type overshoot is also performed when the maintenance time at the overshoot target temperature is 0 in step S102 in the flowchart shown in FIG.
  • FIG. 9 is a diagram showing an example of a temperature cycle for PCR when trapezoidal overshoot and saddle type overshoot are used in combination.
  • the overshoot setting that is, the overshoot temperature and the overshoot maintenance time may be different.
  • a trapezoidal overshoot setting with a small temperature range is applied, while the effect on them is not affected.
  • a general vertical overshoot setting may be applied in order to improve the temperature change rate of the reaction solution.
  • the reaction solution is changed when the temperature changes to a step where the influence of overheating is small. This can improve the temperature change rate and shorten the analysis time.
  • FIG. 10 is a diagram showing an example of a temperature cycle for PCR in the case where the overshoot setting switching threshold is provided and the overshoot setting is changed.
  • a threshold for switching overshoot setting is provided, and different overshoot settings may be applied depending on whether the target temperature is equal to or higher than the threshold and lower than the threshold.
  • the temperature control unit 32 controls so as to execute saddle type overshoot when it is less than the threshold value, and execute trapezoidal overshoot when it is equal to or greater than the threshold value.
  • FIG. 11 is a flowchart showing an example of processing contents when a threshold for switching overshoot setting is provided.
  • a PCR temperature cycle, an overshoot setting, and a setting switching threshold are set in advance.
  • the temperature control unit 32 confirms the target temperature Temp i and the maintenance time Time i of the next step. If this Temp i is lower than the current temperature, the temperature lowering is started. The temperature control method during the temperature drop will be described later. When Temp i is higher than the current temperature, Temp i is further compared with the overshoot setting switching threshold.
  • the overshoot setting of the temperature range TempO 1 and the maintenance time TimeO 1 corresponding thereto is applied and executed.
  • the overshoot setting of the temperature width TempO 2 and the maintenance time TimeO 2 corresponding thereto is applied and executed.
  • the maintenance time TimeO2 is zero.
  • the temperature is lowered to the target temperature Temp i determined by the PCR temperature cycle, and the temperature is maintained for the maintenance time Time i .
  • the above processing is repeated until the temperature control determined by the PCR temperature cycle is completed. At this time, all the overshoot settings may be trapezoidal overshoots.
  • Such a process of determining the setting of the overshoot applied for each step may be performed at the stage where the PCR temperature cycle is set before the analysis is started.
  • two or more thresholds for overshoot setting switching may be set according to the number of overshoot settings.
  • an overshoot setting pattern a combination of a plurality of different overshoot settings and an overshoot setting switching threshold is referred to as an overshoot setting pattern.
  • the overshoot setting pattern may include at least one overshoot setting. In this case, the overshoot setting switching threshold value may not be included.
  • FIG. 12 is a diagram showing an example of a temperature cycle for PCR when different overshoot setting patterns are applied to different analysis items.
  • FIG. 12A is a diagram showing an example of a temperature cycle for PCR when the same saddle-type overshoot setting is applied in all steps.
  • the temperature change rate of the reaction solution can be improved by applying such a setting.
  • FIG. 12B is a diagram showing an example of a temperature cycle for PCR when different overshoot settings are applied at each step.
  • the trapezoidal overshoot setting is applied when the temperature rises to the nucleic acid denaturation step
  • the trapezoidal overshoot setting is applied when the temperature rises to the nucleic acid extension step.
  • the trapezoidal overshoot setting is applied when the temperature rises to the nucleic acid extension step.
  • FIG. 13 is a diagram showing an example of a temperature cycle for PCR when an overshoot limit temperature range or an upper limit value is provided.
  • an overshoot limit temperature range is provided. For example, it may be determined based on the limit temperature at which the nucleic acid amplifying enzyme is deactivated in the nucleic acid denaturation step.
  • the overshoot limit temperature range or the upper limit value may be determined based on the limit temperature at which the reaction proceeds normally in steps other than the nucleic acid denaturation step.
  • FIG. 14 is a flowchart showing an example of processing contents when overshooting is performed when an overshooting limit temperature range or an upper limit value is provided.
  • overshooting first, the overshoot target temperature of the next step is calculated and compared with the overshoot limit temperature range or the upper limit value.
  • the overshoot target temperature is within the overshoot limit temperature range or below the upper limit value, the overshoot setting of the preset temperature width and maintenance time is applied and executed.
  • the overshoot target temperature is outside the overshoot limit temperature range or above the upper limit value
  • the overshoot target temperature is changed to be within the overshoot limit temperature, and at that time, the amount of heat equivalent to that before the change is changed. Calculate the resulting retention time and perform overshoot.
  • an error may be displayed on the display unit 36. By displaying an error on the display unit 36, the user can be informed of the current overshoot setting.
  • Such a process of determining the setting of the overshoot applied for each step may be performed at the stage where the PCR temperature cycle is set before the analysis is started.
  • the overshoot setting temperature range or the upper limit value may be included as a constituent element of the above-described overshoot setting pattern in addition to the overshoot setting and the overshoot setting switching threshold.
  • overshoot setting patterns are input by the user via the input unit 34.
  • the overshoot setting pattern input via the input unit 34 is recorded in the storage / calculation unit 35.
  • the user may select an overshoot setting pattern recorded in the storage / calculation unit 35 in advance. As described above, the user can freely change the overshoot setting pattern according to the analysis item.
  • FIG. 15 is a flowchart showing an example of processing contents when the overshoot setting is automatically selected by the apparatus control unit 33.
  • the overshoot setting pattern is input to the storage / calculation unit 35 in advance, and a different variable is given to each pattern.
  • the analysis item name is input by the user via the input unit 34 in the preparation stage of analysis, if a variable corresponding to the analysis item is recorded, the corresponding variable is selected accordingly, and overshoot A setting pattern is selected.
  • an input screen for an overshoot setting pattern is displayed and input by the user is requested.
  • the analysis item name embedded in a barcode or the like attached to the bottle when the bottle containing the analysis reagent is installed on the nucleic acid analyzer 31 is input unit 34.
  • the overshoot setting pattern may be automatically selected.
  • the information input via the input unit 34 may be a variable other than the analysis item name.
  • the overshoot setting pattern can be automatically changed according to the analysis item.
  • Control method of undershoot The method of changing the overshoot setting has been described above. Similarly, when undershooting is performed when the temperature is lowered, two parameters, the undershoot temperature range and the undershoot maintenance time, are set as the undershoot setting. Provide. The target temperature of the undershoot is obtained by the difference between the target temperature of the reaction liquid in the next step and the temperature range of the undershoot.
  • FIG. 16 is a flowchart showing an example of processing contents when the temperature control unit 32 shown in FIG. 4 performs undershoot control.
  • step S104 the temperature lowering is continued until the undershoot target temperature is reached.
  • the undershoot target temperature is held for a predetermined time until the undershoot maintenance time is reached (step S105).
  • the temperature is increased until the target temperature of the reaction solution is reached (step S106).
  • the temperature measurement value is controlled to take a trapezoidal waveform. At this time, it is desirable that the temperature gradients in the temperature decrease in the first process and the temperature increase in the third process are always constant.
  • undershoot settings may be switched for each analysis item in the same manner as overshoot settings.
  • a general saddle-shaped undershoot can be adopted for analysis items with high reaction specificity, and the temperature change rate of the reaction solution can be improved.
  • the temperature change rate of the reaction solution can be improved.
  • by reducing the temperature range of the undershoot excessive cooling of the reaction solution is suppressed, and non-specific reaction progresses. Can be prevented.
  • the undershoot setting may be handled in combination with the above-described overshoot setting pattern.
  • each of the nucleic acid analyzers having a plurality of temperature control blocks 1 has been described above.
  • each of the nucleic acid analyzers having a plurality of temperature control blocks 1 has been described above.
  • different temperature overshoot and undershoot can be applied to each temperature control block 1. That is, when testing different analysis items in each temperature control block, it is possible to apply optimal overshoot and undershoot settings to each analysis item.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive).
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Clinical Laboratory Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明の目的は、反応液の局所的な過剰加熱による分析性能の低下を防ぎながら、反応液の温度変化速度を向上させて分析時間を短縮させるため、分析項目や装置構成の特性に合わせた温度制御を、容易な操作により設定し実行する核酸分析装置を提供することである。 上記目的を達成する方法として、オーバーシュート実施時に、第1処理として、オーバーシュート目標温度に到達するまで昇温を続ける。第2処理として、当該温度に到達したら、オーバーシュートの維持時間に達するまでオーバーシュート目標温度で所定の時間保持する。第3処理として、反応液の目標温度に到達するまで降温を続ける。この第1処理~第3処理を実施することによって、温度測定値が台形の波形をとるように制御する。

Description

核酸分析装置
 本発明は、生物学的試料に含まれる核酸を増幅することによって生物学的試料を分析するための核酸分析装置に関する。
 血液、血漿、組織片などの生物学的試料に含まれる核酸の分析は、生物学、生化学、医学などの学術研究ばかりでなく、診断、農作物の品種改良、食品検査といった産業など多岐の分野で行われている。核酸の分析方法としてもっとも広く普及している方法はPCR(Polymerase Chain Reaction)と呼ばれる、分析したい領域の核酸を塩基配列特異的に増幅させる技術である。PCRでは、核酸とそれを増幅させるための試薬を含む反応液を、95℃程度に加熱して核酸を熱変性させ、その後60℃程度まで冷却して核酸のアニーリングと伸長反応を進めるというサイクルが30~40回繰り返される。反応の進行に伴う核酸の増幅を検出する手段としては、多くの場合、PCR生成物量に依存して蛍光強度が変化する蛍光標識を反応液に混合し、励起光を照射して、蛍光標識から放射される蛍光強度を測定することで行われる。
 一般に、温度調節ブロックの温度変化に対して、分析対象である反応液の温度は遅れて温度変化する。そのため、多くの核酸分析装置では、反応液の目標温度への到達を早めることを目的として、例えば昇温時に、温度調節ブロックの温度を反応液温度の目標温度以上に上げて、オーバーシュートさせる制御が行われている。
 特許文献1には、温度調節ブロックを、アップランプおよびダウンランプの両方で対称である最適化されたオーバーシュートと組み合わせて使用することによって、最良の利点が得られることが記載されている。
 また、特許文献2では、反応容器に蓋をせず、反応液にオイル等を重層して蒸発を防止する構成を採用した、ランダムアクセスが可能な核酸分析装置について記載されている。
特表2001-521379号公報 特表2002-513936号公報
 しかしながら、特許文献1の方法では、常に同じオーバーシュートを実施するため、分析項目ごとの試薬、特に核酸増幅酵素の特性の違いに対応できない場合がある。
 実際に、発明者らがある分析項目の試薬を使用した場合に、図1Aに示した一般的な槍型のオーバーシュートを採用したところ、分析性能が低下する事例が確認された。原因究明のためシミュレーションを行ったところ、核酸変性ステップ(一般に95℃設定)で10℃の槍型のオーバーシュートを実施すると、反応液のうち最大2.9%が97℃を超えることが判明した。熱に弱い核酸増幅酵素の場合、サイクルを重ねるうちに大部分が失活する恐れがある。
 一方で、図1Bに示すように、オーバーシュートを実施しない場合は、温度調節ブロックに対して反応液の温度変化が遅れるため、反応液温度が目標温度に到達しないという問題があった。
 また、1気圧下では水は99.97℃以上で沸騰するため、反応容器に蓋をせず、反応液にオイル等を重層して蒸発を防止する特許文献2のような構成の場合、核酸変性ステップへの加熱時に気泡が生じて分析性能が低下する可能性がある。
 さらに、現行の核酸分析装置では、オーバーシュートの温度幅や維持時間の設定を変更できないため、あるPCR温度サイクル中のどのステップでも、常に同じ設定で分析を実施している。また、同様の理由により、どの分析項目でも、常に同じオーバーシュートの設定で分析を実施している。
 本発明の目的は、反応液の局所的な過剰加熱による分析性能の低下を防ぎながら、反応液の温度変化速度を向上させて分析時間を短縮させるため、分析項目や装置構成の特性に合わせた温度制御を、容易な操作により設定し実行する核酸分析装置を提供することである。
 本発明を実現する装置として、核酸を含む試料を温度調節する温度調節ユニットと、前記温度調節ユニットを制御する温度制御部と、を有する核酸分析装置であって、当該温度調節ユニットは、試料を含む容器を保持する保持部材と、前記保持部材に設けられた試料を温調する温調素子と、前記保持部材の温度を測定する温度センサを備え、前記温度制御部は、前記温度センサにて測定される時間経過に伴う温度測定値が台形になるように、前記温度調節ユニットを制御していることを特徴とする
 本発明を用いることで、高温で実施される核酸変性ステップでは、オーバーシュートによる反応液の過剰加熱を抑制することで、核酸増幅酵素の失活を防止して分析性能を維持できる。また、反応容器に蓋を設けず、反応液にオイル等を重層して蒸発を防止する特許文献2のような構成の場合、核酸変性ステップでは、オーバーシュートによる反応液の過剰加熱を抑制することで、気泡発生を防止して分析性能を維持できる。
 さらに、ひとつのPCR温度サイクル中でオーバーシュートの設定を変化させることにより、反応液の温度変化速度を向上させ、分析時間を短縮できる。
 同様に、異なる2つ以上の分析項目に対して、試薬の特性、特に核酸分析酵素の熱耐性に合わせて異なるオーバーシュートの設定を入力し、実施することが可能となる。
一般的な槍型オーバーシュートを実施した場合の、温調ブロック温度と、反応液温度の一例を示す図である。 オーバーシュートを実施しなかった場合の、温調ブロック温度と、反応液温度の一例を示す図である。 オーバーシュート目標温度で所定の時間維持する台形オーバーシュートを実施した場合の、温調ブロック温度と、反応液温度の一例を示す図である。 本実施例の形態1による核酸分析装置において、その主要部の構成例を示す上面図である。 図2のA-A’間の構成例を示す断面図である。 図2および図3の核酸分析装置において、その機能面での主な構成例を示す概略ブロック図である。 PCR用温度サイクルのパラメータの例を示した表である。 オーバーシュートの設定に必要なパラメータを示す図である。 反応液温度が設定された目標温度に到達するように、温調ブロック温度が制御されている場合の、反応液と温調ブロックの温度変化の一例を示す図である。 図4に示した温度制御部の、オーバーシュート制御を行う場合の処理内容の一例を示すフロー図である。 台形オーバーシュートと槍型オーバーシュートを併用した場合の、PCR用温度サイクルの一例を示す図である。 オーバーシュートの設定切り替えの閾値を設けて、オーバーシュートの設定を変化させる場合の、PCR用温度サイクルの一例を示す図である。 オーバーシュートの設定切り替えの閾値を設けた場合の、処理内容の一例を示すフロー図である。 全てのステップで同じ槍型オーバーシュートの設定を適用した場合の、PCR用温度サイクルの一例を示す図である。 各ステップで異なる設定のオーバーシュートの設定を適用した場合の、PCR用温度サイクルの一例を示す図である。 オーバーシュート制限温度を設けた場合のPCR用温度サイクルの一例を示す図である。 オーバーシュート制限温度を設けた場合のオーバーシュート実施時の処理内容の一例を示すフロー図である。 オーバーシュートの設定が装置制御部によって自動選択される場合の、処理内容の一例を示すフロー図である。 図4に示した温度制御部32の、アンダーシュート制御を行う場合の処理内容の一例を示すフロー図である。
 以下、本実施例に係る核酸分析装置について、図面を参照して詳細に説明する。なお、実施例においては、PCR法を中心に説明するが、LAMP法、NASBA法、TRC法等の恒温増幅法等、様々な方法において本実施例は可能であり、検査法の違いが本明細書で提案する発明を限定するものではない。
(実施の形態1)〔核酸分析装置の主要部の構成〕
 図2は、本実施例の形態1による核酸分析装置において、その主要部の構成例を示す上面図である。図3は、図2のA-A’間の構成例を示す断面図である。
 図2および図3の核酸分析装置31は、温度調節ユニットと、カローセル2と、光度計6と、遮蔽板7から構成される。
 温度調節ユニットは、核酸を含む反応液が入ったチューブ(反応容器)を保持するための温調ブロック(保持部材)1と、温調ブロック1の温度を調節するペルチェ素子(温調素子)4、温調ブロック1の温度をモニタする温度センサ5によって構成される。温調ブロック1は、カローセル2の中心軸周りで外周に沿って複数個(この例では12個)配置されており、回転軸3を中心に回転駆動される。複数の温調ブロック1とカローセル2との間にはそれぞれペルチェ素子4が配置され、温調ブロック1の温度は、温調ブロック1内に搭載された温度センサ5で温度をモニタしながらペルチェ素子4を制御することで調節される。複数の温調ブロック1のそれぞれに対応してペルチェ素子4及び温度センサ5を一組ずつ配置することで、複数の温調ブロック1の温度は、それぞれ独立に温度が調節されることも可能である。
 他にもPCRを行うための温度制御が可能であれば、どのような温度制御方法でもよく、例えば、空気の温度を変えて温度制御するエアーインキュベーター方式を用いることも可能である。
 カローセル2の外周には、光度計6が配置される。ここでは、一例として、それぞれ異なる波長の光を用いる2個の光度計6は示しているが、カローセル2の外周や内周等反応容器内の反応液からの波長を検出するこができれば1個あるいは3個以上の光度計6を配置しても構わない。全ての温調ブロック1は回転駆動により同一円周上を動くため、光度計6の前を通過する際の光度計6と温調ブロック1との相対位置は、全ての温調ブロック1で同じになる。
 複数の温調ブロック1は、光度計6で分析する際に光学的な外乱を低減するため、カローセル2を含めて遮蔽板7で覆われている。分析が実施される際には、核酸に試薬などを混ぜた反応液(試料)を含むチューブ(反応容器)10が温調ブロック(保持部材)1で保持される。全ての温調ブロック1には、光度計6から励起光を受けるための励起光照射窓8と、光度計1が蛍光を取り込むための蛍光検出窓9とが設けられる。ここでは、励起光照射窓8を温調ブロック1の下面側に、蛍光検出窓9を温調ブロック1の側面側に配置しているが、光度計の構造に応じて窓の配置は自由に設定することが可能である。
 次に、以上のように構成した核酸分析装置において、台形オーバーシュートを実施するための装置制御方法について説明する。台形オーバーシュートを実施するための装置制御方法として、以下の3つの処理により、反応液を保持する温度調節ユニットの温度を図1Cに示すようにオーバーシュートさせる。
 第1処理として、オーバーシュート目標温度に到達するまで昇温を続ける。第2処理として、当該温度に到達したら、オーバーシュートの維持時間に達するまでオーバーシュート目標温度で所定の時間保持する。第3処理として、反応液の目標温度に到達するまで降温を続ける。この第1処理~第3処理を実施することによって、温度測定値が台形の波形をとるように制御する。このとき、第1処理の昇温、および第3処理の降温における温度勾配は、それぞれ一定であることが望ましい。
 PCR用温度サイクル中の各設定温度につき、オーバーシュート設定、すなわちオーバーシュートの目標温度と維持時間は変化されてもよい。また、異なる2つ以上の分析項目で、異なるオーバーシュートの設定のパターンが実行されてもよい。さらに、オーバーシュートの設定は、直接入力、またはUSB、バーコード、ネットワーク等を経由して、外部入力されることが望ましい。
 図4は、図2および図3の核酸分析装置において、その機能面での主な構成例を示す概略ブロック図である。図4に示す核酸分析装置31は、前述した複数の温調ブロック1に加えて、これらの温度制御を行う温度制御部32を備える。温度制御部32は、核酸分析装置の制御を担う装置制御部33の一部である。温度制御部32は、主にコンピュータシステム等によって構成され、所定の処理シーケンスに基づいて、各温調ブロック1の温度調節を行う。
 入力部34は、核酸分析装置に対する外部からの情報の入力を受け付ける。情報の入力方法は、キーボード等を介した直接入力以外に、バーコード、USBを介したファイル形式での入力でもよく、ネットワークを経由した入力でもよい。
 記憶・演算部35は、入力部34を介して入力された情報を記録し、必要に応じて、その情報を装置制御部33に伝達する。また、温度制御に関しては、PCR用温度サイクルのパラメータやオーバーシュートの設定の記録や、温度制御に必要な演算を行う。
 表示部36は、アラームを含む装置の状態、分析結果、制御に必要な変数の入力画面等の情報を表示する。
〔温度制御方法〕
 次に、本実施例の核酸分析装置で、PCR用温度サイクルを実施するためのパラメータについて説明する。
 図5は、PCR用温度サイクルのパラメータの一例を示している。温度サイクルのパラメータは、大きくステージに分けられる。この例ではステージは2つだが、1つでも、3つ以上でもよい。各ステージには、そのステージの繰り返し回数が設定される。
 各ステージは、1つまたは2つ以上のステップによって構成される。各ステップにつき、温度と維持時間の組み合わせがそれぞれ設定される。分析を開始すると、温調ブロック1の温度はステージ1のステップ1から順に変化するように、温度制御部32によって制御される。
 核酸分析装置の構成により、反応液の目標温度と、反応液を目標温度にするための温調ブロック1の目標温度は、同一でない場合がある。そのため、温調ブロック1の温度は、予め定められた補正式を用いて、反応液の目標温度から算出された温度に制御されてもよい。
〔オーバーシュート制御方法〕
 次に、本実施例の核酸分析装置で実施するオーバーシュートの制御方法と、オーバーシュートの設定について説明する。本実施例で説明するオーバーシュートの制御方法は、温度制御部32が温調ブロック1の温度を調節するペルチェ素子(温調素子)4に対して制御する方法である。
 図6は、オーバーシュートの設定に必要なパラメータを示す図である。本実施例においては、オーバーシュートの設定は、オーバーシュートの温度幅と、オーバーシュートの目標温度に維持するオーバーシュートの維持時間の2つから構成される。オーバーシュートの目標温度は、次ステップの反応液の目標温度と、オーバーシュートの温度幅の和で求められる。
 本実施例において、オーバーシュートは、反応液を次のステップでの目標温度への到達を早めることを目的として、温調ブロック1の温度を本来の目標温度以上に制御すること、と定義する。
 図7は、チューブ1内の反応液の温度が、予め設定された反応液の目標温度に到達するように、温調ブロック1の温度が温度制御部32により温度制御されている場合の、チューブ10内の反応液と温調ブロック1の温度変化の一例を示す図である。本実施例では、反応液の温度が設定された目標温度、または、目標温度を基準として設定した目標温度範囲に到達した場合は、その時の制御はオーバーシュート制御ではなく、PCR用温度サイクル中のひとつのステップであるとみなす。このとき目標温度範囲は、通常の温度制御で目標温度への到達判定に使用している温度範囲と同じとする。
 一方で、反応液温度が設定された目標温度に到達しないまま、次のステップの目標温度に向けた制御が開始される場合は、独立したPCR用温度サイクル中のひとつのステップではなく、オーバーシュートであると判断する。
 図8は、図4に示した温度制御部32の、オーバーシュート制御を行う場合の処理内容の一例を示すフロー図である。以下の3つの処理により、反応液を保持する温度調節ユニットの温度を図1Cに示すようにオーバーシュートさせる。
 第1処理として、オーバーシュート目標温度に到達するまで昇温を続ける(ステップS101)。第2処理として、当該温度に到達したら、オーバーシュートの維持時間に達するまでオーバーシュート目標温度で所定の時間保持する(ステップS102)。第3処理として、反応液の目標温度に到達するまで降温を続ける(ステップS103)。
 この第1処理~第3処理を実施することによって、温度測定値が台形の波形をとるように制御する。このとき、第1処理の昇温、および第3処理の降温における温度勾配は、それぞれ常に一定であることが望ましい。
 以上により、高温で実施される核酸変性ステップでは、オーバーシュートによる反応液の過剰加熱を抑制することで、核酸増幅酵素の失活を防止して分析性能を維持できる。また、反応容器に蓋を設けず、反応液にオイル等を重層して蒸発を防止する構成の場合、核酸変性ステップでは、オーバーシュートによる反応液の過剰加熱を抑制することで、気泡発生を防止して分析性能を維持できる。
 本実施例では、第2処理において、オーバーシュートの目標温度で維持する処理を含むオーバーシュートを、台形オーバーシュートと呼ぶこととする。その他の、目標温度到達後、温度維持する処理を行わずに降温を開始する一般的なオーバーシュートは、槍型オーバーシュートと呼ぶこととする。すなわち槍型オーバーシュートは、図8に示したフロー図のステップS102で、オーバーシュート目標温度での維持時間が0である場合にも実施される。
 図9は、台形オーバーシュートと槍型オーバーシュートを併用した場合の、PCR用温度サイクルの一例を示す図である。このように、各ステップで、オーバーシュートの設定、すなわちオーバーシュートの温度とオーバーシュートの維持時間は異なってもよい。例えば、核酸増幅酵素の失活や、反応液内の気泡発生への影響が大きい核酸変性ステップへのオーバーシュートは、温度幅の小さい台形オーバーシュートの設定を適用し、一方でそれらへの影響が小さい核酸伸長ステップへのオーバーシュートは、反応液の温度変化速度を向上するため一般的な槍型オーバーシュートの設定を適用してもよい。
 以上のように、ひとつのPCR温度サイクル中で異なる複数のオーバーシュートの設定を併用することにより、反応液の過剰加熱を防止しながら、過剰加熱の影響が小さいステップへの温度変化時は反応液の温度変化速度を向上させ、分析時間を短縮できる。
 図10は、オーバーシュートの設定切り替えの閾値を設けて、オーバーシュートの設定を変化させる場合の、PCR用温度サイクルの一例を示す図である。このように、オーバーシュートの設定切り替えの閾値を設け、目標温度が閾値以上の場合と閾値未満の場合で、異なるオーバーシュートの設定が適用されてもよい。図10においては、閾値未満の場合は槍型オーバーシュートを実行し、閾値以上の場合は台形オーバーシュートを実行するように温度制御部32が制御している。
 図11は、オーバーシュートの設定切り替えの閾値を設けた場合の、処理内容の一例を示すフロー図である。分析の準備段階で、予めPCR用温度サイクルと、オーバーシュートの設定と、設定切り替えの閾値が設定されている。分析を開始すると、温度制御部32は、次のステップの目標温度Tempと維持時間Timeを確認する。このTempが現在の温度より低温だった場合は、降温を開始する。降温時の温度制御方法については後述する。Tempが現在の温度より高温だった場合は、さらにTempと、オーバーシュートの設定切り替えの閾値との比較を行う。Tempが閾値以上であった場合は、それに対応する温度幅TempO、維持時間TimeOのオーバーシュート設定を適用し、実施する。Tempが閾値未満であった場合は、それに対応する温度幅TempO、維持時間TimeOのオーバーシュート設定を適用し、実施する。なお、槍型オーバーシュートの場合、維持時間TimeO2は0となる。その後、PCR用温度サイクルで定められた目標温度Tempまで降温し、維持時間Timeの間、温度を保持する。以上の処理を、PCR用温度サイクルで定められた温度制御が終了するまで繰り返す。このとき、複数のオーバーシュートの設定は全て台形オーバーシュートでもよい。
 このような、各ステップにつき適用するオーバーシュートの設定を決定する処理は、分析開始前に、PCR用温度サイクルの設定を行っている段階で実施されてもよい。
 これにより、PCR用温度サイクル中の各ステップの目標温度に応じて、オーバーシュートの設定を簡便に変更することができる。例えば、同じ核酸増幅酵素を用いているが、PCR用温度サイクルが異なる複数の分析項目がある場合、1組のオーバーシュートの設定と設定切り替えの閾値を設けることで、それぞれに対応したオーバーシュートの設定を適用できる。
 また、このとき、オーバーシュートの設定切り替えの閾値は、オーバーシュートの設定の数に応じて、2つ以上設定されてもよい。これにより、PCR用温度サイクル中の各ステップの目標温度に応じて、オーバーシュートの設定を細かく設定することができる。
 本実施例では、異なる複数のオーバーシュートの設定と、オーバーシュートの設定切り替えの閾値との組み合わせを、オーバーシュートの設定のパターンと呼ぶ。オーバーシュートの設定のパターンは、最低限オーバーシュートの設定を一つ含んでいればよい。この場合は、オーバーシュートの設定切り替えの閾値は含まなくても構わない。
 図12は、異なる分析項目で、異なるオーバーシュートの設定のパターンを適用した場合のPCR用温度サイクルの例を示す図である。図12Aは、全てのステップで同じ槍型オーバーシュートの設定を適用した場合のPCR用温度サイクルの一例を示す図である。例えば、熱耐性が高い核酸増幅酵素を含む分析試薬の場合は、このような設定を適用することにより、反応液の温度変化速度を向上させることができる。
 図12Bは、各ステップで異なる設定のオーバーシュートの設定を適用した場合のPCR用温度サイクルの一例を示す図である。例えば、熱耐性が低い核酸増幅酵素を含む分析試薬の場合は、核酸変性ステップへの昇温時は台形オーバーシュートの設定を、核酸伸長ステップへの昇温時は槍型オーバーシュートの設定を適用する。このような設定にすることにより、反応液の過度な加熱を抑制し、核酸変性ステップでの核酸増幅酵素の失活を防止することができる。
 図13は、オーバーシュート制限温度範囲または上限値を設けた場合のPCR用温度サイクルの一例を示す図である。オーバーシュートの温度幅と維持時間の設定の他に、オーバーシュート制限温度範囲を設ける。例えば、核酸変性ステップで核酸増幅酵素が失活する限界温度を基に定めてもよい。また、オーバーシュート制限温度範囲または上限値は、核酸変性ステップ以外のステップで、反応が正常に進行する限界温度を基に定めてもよい。
 図14は、オーバーシュート制限温度範囲または上限値を設けた場合のオーバーシュート実施時の処理内容の一例を示すフロー図である。オーバーシュートを実施する際、まず初めに次ステップのオーバーシュート目標温度を算出し、オーバーシュート制限温度範囲または上限値と比較する。オーバーシュート目標温度がオーバーシュート制限温度範囲内または上限値以下の場合は、予め設定された通りの温度幅、維持時間のオーバーシュート設定を適用し、実施する。一方で、オーバーシュート目標温度がオーバーシュート制限温度範囲外または上限値以上である場合は、オーバーシュート目標温度はオーバーシュート制限温度内となるように変更し、そのときに変更前と同等の熱量が得られる維持時間を算出し、オーバーシュートを実施する。また、オーバーシュート目標温度がオーバーシュート制限温度範囲外または上限値以上である場合は、表示部36にエラーの表示をしてもよい。この表示部36にエラーを表示することによって、ユーザに現在のオーバーシュートの設定を知らせることができる。
 このような、各ステップにつき適用するオーバーシュートの設定を決定する処理は、分析開始前に、PCR用温度サイクルの設定を行っている段階で実施されてもよい。
 以上より、反応液の過剰加熱が起こりうる場合において、過剰加熱を防止しながら、可能な限り反応液の温度変化速度を向上させるオーバーシュートの設定を適用することができる。
 前述のオーバーシュートの設定のパターンの構成要素として、オーバーシュートの設定、オーバーシュートの設定切り替えの閾値に加えて、オーバーシュート制限温度範囲または上限値が含まれてもよい。
 これらのオーバーシュートの設定のパターンは、入力部34を介して、ユーザによって入力される。変更方法としては、直接入力の他、USB、バーコード、またはネットワークを介した入力が可能であることが望ましい。入力部34を介して入力されたオーバーシュートの設定のパターンは、記憶・演算部35に記録される。また、予め記憶・演算部35に記録されたオーバーシュートの設定のパターンの中から、ユーザによって選択されてもよい。以上より、分析項目に合わせて、ユーザが自由にオーバーシュートの設定のパターンを変更できる。
 図15は、オーバーシュートの設定が装置制御部33によって自動選択される場合の、処理内容の一例を示すフロー図である。オーバーシュートの設定のパターンは、予め記憶・演算部35に入力され、それぞれに異なる変数が与えられる。分析の準備段階で、ユーザによって入力部34を介して分析項目名が入力されると、当該分析項目に対応する変数が記録されている場合は、それに伴い対応する変数が選択され、オーバーシュートの設定のパターンが選択される。一方で、当該分析項目に対応する変数が記録されていない場合は、オーバーシュートの設定のパターンの入力画面を表示し、ユーザによる入力を求める。
 また、核酸分析装置31が試薬混合部をもつ場合、分析試薬を含むボトルを核酸分析装置31に架設する際に、ボトルに貼り付けられたバーコードなどに埋め込まれた分析項目名が入力部34を介して読み取られ、自動的にオーバーシュートの設定のパターンが選択されてもよい。さらに、入力部34を介して入力される情報は、分析項目名以外の変数などでも構わない。
 以上より、分析項目に合わせて、オーバーシュートの設定のパターンが自動的に変更されることが可能になる。
〔アンダーシュートの制御方法〕
 以上、オーバーシュートの設定を変更する方法について述べたが、同様に、降温時にアンダーシュートを実施する場合、アンダーシュートの設定として、アンダーシュートの温度幅と、アンダーシュートの維持時間の2つのパラメータを設ける。アンダーシュートの目標温度は、次ステップの反応液の目標温度と、アンダーシュートの温度幅の差で求められる。
 図16は、図4に示した温度制御部32の、アンダーシュート制御を行う場合の処理内容の一例を示すフロー図である。
 第1処理として、アンダーシュート目標温度に到達するまで降温を続ける(ステップS104)。
 第2処理として、当該温度に到達したら、アンダーシュートの維持時間に達するまでアンダーシュート目標温度で所定の時間保持する(ステップS105)。
 第3処理として、反応液の目標温度に到達するまで昇温を続ける(ステップS106)。
 この第1処理~第3処理を実施することによって、温度測定値が台形の波形をとるように制御する。このとき、第1処理の降温、および第3処理の昇温における温度勾配は、それぞれ常に一定であることが望ましい。
 これらのアンダーシュートの設定は、オーバーシュートの設定と同様に、分析項目ごとに切り替えてもよい。例えば、プライマーを利用して標的配列を増幅する手法をとる場合、反応の特異性が高い分析項目では一般的な槍型のアンダーシュートを採用し、反応液の温度変化速度を向上させることができる。一方で、目標温度より低温になると非特異的な反応が起こりやすい分析項目では、アンダーシュートの温度幅を小さくすることにより、反応液の過度な冷却を抑制し、非特異的な反応の進行を防止できる。
 アンダーシュートの設定は、前述のオーバーシュートの設定のパターンと組み合わせて扱われても構わない。
 以上、核酸分析装置でのオーバーシュート、アンダーシュートの制御方法について述べたが、図2に示したように複数(本実施例では最大12個)の温度調節ブロック1をもつ核酸分析装置で、それぞれが独立に温度調節を行える場合、それぞれの温度調節ブロック1で、異なる設定のオーバーシュート、アンダーシュートを適用可能である。すなわち、それぞれの温調ブロックで異なる分析項目の検査を実施する場合、それぞれの分析項目に最適なオーバーシュート、アンダーシュートの設定を適用できる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 1 温調ブロック
 2 カローセル
 3 回転軸
 4 ペルチェ素子
 5 温度センサ
 6 光度計
 7 遮蔽板
 8 励起光照射窓
 9 蛍光検出窓
 10 チューブ
 31,核酸分析装置
 32 温度制御部
 33 装置制御部
 34 入力部
 35 記憶・演算部
 36 表示部

Claims (13)

  1.  核酸を含む試料を温度調節する温度調節ユニットと、
     前記温度調節ユニットを制御する温度制御部と、を有する核酸分析装置であって、
     当該温度調節ユニットは、試料を含む容器を保持する保持部材と、前記保持部材に設けられた試料を温調する温調素子と、前記保持部材の温度を測定する温度センサを備え、
     前記温度制御部は、前記温度センサにて測定される時間経過に伴う温度測定値が台形になるように、前記温度調節ユニットを制御していることを特徴とする核酸分析装置。
  2.  請求項1記載の核酸分析装置において、
     前記温度制御部は、PCR用温度サイクル中の各設定温度におけるオーバーシュート制限温度範囲または上限値を備え、
     前記温度制御部は反応液の次ステップのオーバーシュート目標温度が、前記オーバーシュート制限温度範囲内または上限値以下である場合は、所定のオーバーシュート設定でオーバーシュートを実施し、前記オーバーシュート制限温度範囲外または上限値以上である場合には、制限温度範囲内または上限値以下となるように制御するプログラムを実行することを特徴とする核酸分析装置。
  3.  請求項2記載の核酸分析装置において、
     前記温度制御部は、PCR用温度サイクル中の各設定温度における前記オーバーシュート制限温度範囲または上限値を、予め入力する入力部を有することを特徴とする核酸分析装置。
  4.  請求項1記載の核酸分析装置において、
     前記温度制御部が、PCR用温度の1サイクル中の各ステップの設定温度につき、オーバーシュートの温度幅とオーバーシュートの維持時間の2つのパラメータから構成される、オーバーシュートの設定を適用することを特徴とする核酸分析装置。
  5.  請求項4記載の核酸分析装置において、
     さらに、複数の台形オーバーシュートの設定と、台形オーバーシュートのパラメータの切り替えの閾値が温度制御部に入力される入力部を有し、
     前記温度制御部は、前記温度センサで測定された温度が、前記閾値より高温である場合は一方の台形オーバーシュートの設定を適用し、前記温度センサで測定された温度が、前記閾値より低温である場合は他方の台形オーバーシュートの設定を適用するように構成されていることを特徴とする核酸分析装置。
  6.  請求項5記載の核酸分析装置において、
    さらに、オーバーシュートの設定を記録するための記憶・演算部を備え、
     前記オーバーシュートの設定が、前記入力部を介して外部から入力され、一旦記憶・演算部に記録された後、分析開始前に選択され温度制御部によって実行されることを特徴とする核酸分析装置。
  7.  請求項6記載の核酸分析装置において、
     記憶・演算部は、前記オーバーシュートの設定を、に予め異なる複数のパターンとして記録し、前記パターンにはそれぞれ異なる変数が与えられ、
     分析開始前に、前記変数が選択されることによって、それに対応するオーバーシュートの設定のパターンを温度制御部に伝達し、実行することを特徴とする核酸分析装置。
  8.  請求項4記載の核酸分析装置において、
     前記温度制御部は、アンダーシュートの温度幅と、維持時間の2つのパラメータから構成されるアンダーシュートの設定を行い、さらに異なる2つ以上の分析項目で、異なるアンダーシュートの設定のパターンを実行することを特徴とする核酸分析装置。
  9.  請求項4記載の核酸分析装置において、
     前記温度調節ユニットを複数有し、それぞれが独立に温度調節することを特徴とする核酸分析装置。
  10.  オーバーシュートの設定は、オーバーシュートの温度幅と、維持時間の2つのパラメータから構成されるものであって、
     温度調節ユニットの温度をオーバーシュートさせる場合、
     オーバーシュート目標温度に到達するまで昇温を続ける第1処理と、
     当該温度に到達したら、オーバーシュートの維持時間に達するまでオーバーシュート目標温度で所定の時間保持する第2処理と、
     反応液の目標温度に到達するまで降温を続ける第3処理と、
     を実行するものであって、
     温度測定値が台形の波形をとるように制御することを特徴とする温度制御方法。
  11.  請求項10記載の温度制御方法において、
     PCR用温度サイクル中の各設定温度につき、前記オーバーシュートの設定を変化させることを特徴とする温度制御方法。
  12.  請求項11記載の温度制御方法において、
     異なる2つ以上の分析項目で、異なるオーバーシュートの設定のパターンが実行されることを特徴とする温度制御方法。
  13.  請求項12記載の温度制御方法において、
     前記オーバーシュートの設定が、予め装置外部から入力され、分析開始前に選択され実行されることを特徴とする温度制御方法。
PCT/JP2015/054905 2015-02-23 2015-02-23 核酸分析装置 WO2016135798A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/548,574 US10815524B2 (en) 2015-02-23 2015-02-23 Nucleic acid analyzer
JP2017501554A JP6479956B2 (ja) 2015-02-23 2015-02-23 核酸分析装置
PCT/JP2015/054905 WO2016135798A1 (ja) 2015-02-23 2015-02-23 核酸分析装置
DE112015005925.3T DE112015005925B4 (de) 2015-02-23 2015-02-23 Nucleinsäure-Analysator
GB1711955.3A GB2553907B (en) 2015-02-23 2015-02-23 Nucleic acid analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054905 WO2016135798A1 (ja) 2015-02-23 2015-02-23 核酸分析装置

Publications (1)

Publication Number Publication Date
WO2016135798A1 true WO2016135798A1 (ja) 2016-09-01

Family

ID=56787962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054905 WO2016135798A1 (ja) 2015-02-23 2015-02-23 核酸分析装置

Country Status (5)

Country Link
US (1) US10815524B2 (ja)
JP (1) JP6479956B2 (ja)
DE (1) DE112015005925B4 (ja)
GB (1) GB2553907B (ja)
WO (1) WO2016135798A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210028671A (ko) 2018-09-28 2021-03-12 주식회사 히타치하이테크 서멀 사이클러 및 그것을 구비한 리얼타임 pcr 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020106865A1 (de) 2020-03-12 2021-09-16 Analytik Jena Gmbh Anordnung und Verfahren zur PCR mit mehrkanaliger Fluoreszenzmessung für räumlich verteilte Proben

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520622A (ja) * 1998-07-14 2002-07-09 シュラムバーガー・テクノロジーズ・インコーポレイテッド 電子デバイスの速応温度反復制御を液体を利用して広範囲に行うための装置、方法及びシステム
JP2010523116A (ja) * 2007-04-04 2010-07-15 ネットワーク・バイオシステムズ・インコーポレーテッド ターゲット核酸を急速に多重増幅するための方法
JP2014131493A (ja) * 2013-01-07 2014-07-17 Hitachi High-Technologies Corp 核酸増幅装置、温度制御方法、及び温度制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117590A (ja) 1994-10-20 1996-05-14 Sanyo Electric Co Ltd 温度サイクル装置
WO1997044671A1 (en) * 1996-05-20 1997-11-27 Precision System Science Co., Ltd. Method and apparatus for controlling magnetic particles by pipetting machine
AU736484B2 (en) 1997-03-28 2001-07-26 Applied Biosystems, Llc Improvements in thermal cycler for PCR
ATE363339T1 (de) 1998-05-01 2007-06-15 Gen Probe Inc Rührvorrichtung für den fluiden inhalt eines behälters
EP1878503A1 (en) * 2006-07-14 2008-01-16 Roche Diagnostics GmbH Temperature sensor element for monitoring heating and cooling
JP5063623B2 (ja) * 2009-01-30 2012-10-31 株式会社日立ハイテクノロジーズ 分析装置、及び円盤ディスクの回転制御方法
CN102917796B (zh) * 2010-04-20 2015-04-01 科贝特研究私人有限公司 温度控制方法和设备
JP5593205B2 (ja) 2010-11-08 2014-09-17 株式会社日立ハイテクノロジーズ 核酸分析装置
JP5799030B2 (ja) * 2011-01-31 2015-10-21 株式会社日立ハイテクノロジーズ 核酸検査装置
JP5759818B2 (ja) * 2011-07-25 2015-08-05 株式会社日立ハイテクノロジーズ 核酸検査装置
CN202890392U (zh) * 2012-11-12 2013-04-24 漳州灿坤实业有限公司 一种食物处理机
CN105452435A (zh) * 2013-07-08 2016-03-30 株式会社日立高新技术 核酸扩增检测装置以及使用了该核酸扩增检测装置的核酸检查装置
WO2015029595A1 (ja) * 2013-08-27 2015-03-05 株式会社日立ハイテクノロジーズ 核酸分析装置およびその装置診断方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520622A (ja) * 1998-07-14 2002-07-09 シュラムバーガー・テクノロジーズ・インコーポレイテッド 電子デバイスの速応温度反復制御を液体を利用して広範囲に行うための装置、方法及びシステム
JP2010523116A (ja) * 2007-04-04 2010-07-15 ネットワーク・バイオシステムズ・インコーポレーテッド ターゲット核酸を急速に多重増幅するための方法
JP2014131493A (ja) * 2013-01-07 2014-07-17 Hitachi High-Technologies Corp 核酸増幅装置、温度制御方法、及び温度制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAHIKO HASHIMOTO ET AL.: "Instrumentation of a PLC-Regulated Temperature Cycler with a PID Control Unit and Its Use for Miniaturized PCR Systems with Reduced Volumes of Aqueous Sample Droplets Isolated in Oil Phase in a Microwell", ANALYTICAL SCIENCES, vol. 27, 2011, pages 1191 - 1196 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210028671A (ko) 2018-09-28 2021-03-12 주식회사 히타치하이테크 서멀 사이클러 및 그것을 구비한 리얼타임 pcr 장치
US12036560B2 (en) 2018-09-28 2024-07-16 Hitachi High-Tech Corporation Thermal cycler and real-time PCR device including same

Also Published As

Publication number Publication date
DE112015005925B4 (de) 2023-06-15
JP6479956B2 (ja) 2019-03-06
GB2553907A (en) 2018-03-21
US10815524B2 (en) 2020-10-27
US20180037930A1 (en) 2018-02-08
GB2553907B (en) 2021-06-02
DE112015005925T5 (de) 2017-10-19
JPWO2016135798A1 (ja) 2017-10-26
GB201711955D0 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
EP1992682B1 (en) Apparatus for real-time detection of nucleic acid amplification product
US5721123A (en) Methods and apparatus for direct heating of biological material
JP4681736B2 (ja) 遠心力および加熱による小体積混合物の均一化
WO2012176596A1 (ja) 核酸増幅装置及び核酸分析装置
JP5593205B2 (ja) 核酸分析装置
AU2009200693B2 (en) Improved DNA amplification apparatus and method
EP2809767B1 (en) Nucleic acid amplification and detection apparatus
JP5372418B2 (ja) 核酸分析装置,自動分析装置、及び分析方法
AU2009240461A1 (en) Analysis of nucleic acid amplification curves using wavelet transformation
US20050233324A1 (en) Device for the amplification of dna, comprising a microwave energy source
JP6479956B2 (ja) 核酸分析装置
KR20100008476A (ko) 실시간 모니터링이 가능한 pcr 장치 및 이를 이용한pcr 모니터링 방법
JP2009201444A (ja) 核酸分析装置
WO2012063736A1 (ja) 遺伝子検査方法及び検査装置
US20140193893A1 (en) Genetic test system
JP5799030B2 (ja) 核酸検査装置
JP6286539B2 (ja) 核酸分析装置、および核酸分析装置の装置診断方法
JP5950740B2 (ja) 核酸増幅分析装置及び核酸増幅分析方法
JP2012228212A (ja) 遺伝子検査装置
JP2006238759A (ja) Pcr反応液の温度制御装置
JP2015225032A (ja) 核酸増幅分析装置
JP6476275B2 (ja) 分析装置およびその分析方法
JP2011234693A (ja) 核酸検査装置
US20180264476A1 (en) Apparatus, systems and methods for dynamic flux amplification of samples
JP2019004814A (ja) 解析用プログラムおよび解析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501554

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201711955

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150223

WWE Wipo information: entry into national phase

Ref document number: 15548574

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005925

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883098

Country of ref document: EP

Kind code of ref document: A1