WO2012172884A1 - 温度制御装置、及び温度素子 - Google Patents

温度制御装置、及び温度素子 Download PDF

Info

Publication number
WO2012172884A1
WO2012172884A1 PCT/JP2012/061747 JP2012061747W WO2012172884A1 WO 2012172884 A1 WO2012172884 A1 WO 2012172884A1 JP 2012061747 W JP2012061747 W JP 2012061747W WO 2012172884 A1 WO2012172884 A1 WO 2012172884A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
temperature
electrode
temperature control
metal well
Prior art date
Application number
PCT/JP2012/061747
Other languages
English (en)
French (fr)
Inventor
山口 栄雄
Original Assignee
学校法人神奈川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人神奈川大学 filed Critical 学校法人神奈川大学
Priority to US14/126,750 priority Critical patent/US9400128B2/en
Priority to JP2013520468A priority patent/JP5761767B2/ja
Publication of WO2012172884A1 publication Critical patent/WO2012172884A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements

Definitions

  • the present invention relates to a temperature control apparatus and a temperature element that can be applied to a method for controlling the temperature of a liquid such as a PCR method for amplifying a DNA sample, and in particular, has a high temperature control response to a liquid such as a DNA sample in a PCR method. And a temperature element.
  • a PCR method Polymerase chain Reaction, polymerase chain reaction method
  • the PCR method is a process of heating or cooling a reaction solution in which a primer, an enzyme, and deoxyribonucleoside triphosphate to be reacted with the DNA sample are added according to a predetermined pattern of a temperature target value over time. This is a technique for amplifying DNA by repeating.
  • Peltier element an element having a Peltier effect
  • reaction solution a DNA sample (reaction solution).
  • the Peltier effect is a phenomenon in which heat absorption occurs at a junction when a current is applied to a junction between different conductors, for example, a p-type semiconductor and an n-type semiconductor.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a conventional Peltier element 1.
  • the conventional Peltier element 1 is joined to the heat sink 21B, the electrode plates 23P and 23N to which a voltage is applied, the p-type semiconductor 24P and the electrode plate 23N joined to the electrode plate 23P in order from the lower side in FIG.
  • a set of n-type semiconductors 24N, an electrode plate 22A joined to the set, and a heat dissipation plate 21A are stacked.
  • Patent Document 2 a set of metal plates a11 and a12 corresponding to the electrode plates 23P and 23N, a set of p-type semiconductor a4 and n-type semiconductor a3 corresponding to a set of p-type semiconductor 24P and n-type semiconductor 24N, and What consists of metal plate a2 equivalent to electrode plate 22A is called the Peltier element (refer FIG. 6 of patent document 2).
  • the object to be controlled to be heated or cooled by the Peltier element referred to in Patent Document 2 is disposed with the heat conducting plates 12 and 22 interposed therebetween (see FIG. 1 of Patent Document 2). That is, in FIG.
  • the object to be controlled is a container 31, and the heat radiation plate 21A is interposed between the container 31 and the electrode plate 22A. It is equivalent that the heat conductive plates 12, 22 and the like are interposed between the metal plate a2 and the metal plate a2.
  • the heat conductive plates 12, 22 and the like in Patent Document 2 correspond to the heat radiating plate 21A in FIG.
  • the lower surface portions of the radiation fins 51 and 52 in Patent Document 2 correspond to the radiation plate 21B of FIG.
  • Patent Document 2 merely discloses that the temperature control for the temperature-controlled object is executed using the conventional Peltier element 1 of FIG. 1 as it is.
  • the portion of the conventional Peltier element 1 on the upper surface side in FIG. 1, that is, the heat radiating plate 21A and the electrode plate 22A are collectively referred to as “A surface portion”.
  • the part on the lower surface side in FIG. 1 of the Peltier element 1, that is, the heat radiation plate 21B and the electrode plates 23P and 23N are collectively referred to as “B surface part”.
  • the voltage applied so that the electrode plate 23N becomes a high potential and the electrode plate 23P becomes a low potential with reference to the electrode plate 23N is hereinafter referred to as “a positive voltage is applied to the conventional Peltier element 1”.
  • a positive voltage is applied to the conventional Peltier element 1”.
  • a container 31 containing a DNA sample (reaction solution) is disposed on the side of the A surface of the conventional Peltier element 1, more specifically, on the surface of the heat sink 21A.
  • a current flows from the electrode plate 23N toward the electrode plate 23P. Specifically, the current flows in the order of the electrode plate 23N, the n-type semiconductor 24N, the electrode plate 22A, the p-type semiconductor 24P, and the electrode plate 23P. As a result, the A surface portion becomes a heat absorbing portion, and the B surface portion becomes a heat generating portion. Specifically, according to the value of the current flowing from the electrode plate 23N toward the electrode plate 23P due to the positive voltage applied to the conventional Peltier element 1, the A surface portion becomes low temperature and the B surface portion becomes high temperature. Temperature difference ⁇ T occurs. Thereby, the heat of the container 31 is absorbed by the A surface portion, and the container 31 is cooled.
  • the temperature control for the DNA specimen in the PCR method can be realized by variably controlling the value of the current flowing between the electrode plate 23N and the electrode plate 23P so as to correspond to the predetermined pattern of the time transition of the temperature target value. become.
  • the temperature of the DNA sample (reaction solution) sufficiently follows the predetermined pattern of the time transition of the temperature target value in the PCR method. do not do. That is, the conventional DNA amplification apparatus including Patent Documents 1 and 2 cannot sufficiently obtain the temperature control responsiveness to the DNA specimen (reaction solution) in the PCR method. The point that sufficient responsiveness cannot be obtained in this way is the same in conventional temperature control for other liquids.
  • the present invention has been made in view of such a situation, and an object of the present invention is to realize high responsiveness of temperature control for a liquid such as a DNA specimen in a method for controlling the temperature of the liquid such as a PCR method.
  • the term “high responsiveness” is used to mean that the response speed is high.
  • the temperature control device of the present invention (for example, the DNA amplification device 51 in the embodiment)
  • a temperature control device that heats or cools an object (for example, the plastic tube 91 in the embodiment), A temperature element for heating or cooling the object by the Peltier effect (for example, the temperature element 61 in the embodiment); A control unit (for example, the temperature control unit 62 in the embodiment) that performs energization control on the temperature element,
  • the temperature element is A set of a p-type semiconductor (for example, the p-type semiconductor 72P in the embodiment) and an n-type semiconductor (for example, the n-type semiconductor 72N in the embodiment) that are spaced apart from each other; It has a mounting part (for example, mounting part 81 in the embodiment) for mounting the object, the p-type semiconductor is the first or second surface, and the n-type semiconductor is the first or second surface.
  • a bonding portion (for example, the metal well 71 in the embodiment) that is bonded to each other on the second or first surface opposite to each other;
  • a first electrode portion (for example, an electrode and heat dissipation plate 73P in the embodiment) that is joined to the p-type semiconductor and to which a voltage is applied by the control unit;
  • a second electrode portion (for example, an electrode and heat dissipation plate 73N in the embodiment) that is joined to the n-type semiconductor and to which a voltage is applied by the control unit;
  • the shape of the joint part is formed in substantially the same shape as the outer shape of the object, When a different voltage is applied to each of the first electrode part and the second electrode part by the control unit to cause a potential difference between the p-type semiconductor and the n-type semiconductor, the junction part Is a temperature control device that causes the Peltier effect by flowing current from one of the p-type semiconductor and the n-type semiconductor to the other and propagating heat.
  • the object is closely bonded to the p-type semiconductor and the n-type semiconductor via the bonding portion provided in the temperature element, and a current flows from one of the p-type semiconductor and the n-type semiconductor to the other. It has a function of causing the Peltier effect by propagating heat.
  • a mounting portion is provided at the bonding site, and a predetermined container containing a DNA sample can be directly mounted on the mounting portion. Therefore, the DNA specimen is directly heated or cooled by the p-type semiconductor and the n-type semiconductor without any intervening elements (for example, the thickness of an extra junction site) being a delay factor for the temperature control system. As a result, high responsiveness of temperature control is realized as compared with the case where a conventional bonding portion is employed.
  • the object is a predetermined container used for accommodating a DNA (Deoxyribonucleic acid) specimen, and the container is mounted on the mounting portion.
  • a DNA Deoxyribonucleic acid
  • a cooling unit (for example, the water cooling unit 63 in the embodiment) that cools at least one of the first electrode portion and the second electrode portion of the temperature element may be further provided.
  • the temperature control device may be a portable device.
  • a portable device refers to a device that can be freely carried by a human.
  • the temperature element of the present invention (for example, the temperature element 61 in the embodiment) In a temperature element that heats or cools an object (for example, the plastic tube 82 in the embodiment) by the Peltier effect, A set of a p-type semiconductor (for example, the p-type semiconductor 72P in the embodiment) and an n-type semiconductor (for example, the n-type semiconductor 72N in the embodiment) that are spaced apart from each other; A mounting portion (for example, the mounting portion 81 in the embodiment) for mounting the object, and a bonding portion (for example, a metal well 71 in the embodiment) that is bonded to each of the p-type semiconductor and the n-type semiconductor; A first electrode portion joined to the p-type semiconductor and applied with a voltage from the outside (for example, the electrode and heat dissipation plate 73P in the embodiment); A second electrode portion (for example, an electrode and heat dissipation plate 73N in the embodiment) that is joined to the n-type semiconductor and to which a
  • the shape of the joint part is formed in substantially the same shape as the outer shape of the object,
  • the junction part is: It is a temperature element that causes the Peltier effect by flowing a current from one of the p-type semiconductor and the n-type semiconductor to the other and propagating heat.
  • the object is closely bonded to the p-type semiconductor and the n-type semiconductor via the bonding portion provided in the temperature element, and a current flows from one of the p-type semiconductor and the n-type semiconductor to the other. It has a function of causing the Peltier effect by propagating heat.
  • a mounting portion is provided at the bonding site, and a predetermined container containing a DNA sample can be directly mounted on the mounting portion. Therefore, the DNA specimen is directly heated or cooled by the p-type semiconductor and the n-type semiconductor without any intervening elements (for example, the thickness of an extra junction site) being a delay factor for the temperature control system.
  • the temperature element according to the present invention to the PCR method, that is, by adopting a predetermined container that can contain a DNA sample as the object, a predetermined pattern of the time transition of the temperature target value in the PCR method
  • the temperature of the DNA sample can be made to follow the temperature. That is, high responsiveness of temperature control for a DNA sample in the PCR method can be realized.
  • the mounting portion may be formed in the joint portion by being processed according to the shape of the object.
  • the thickness dimension of the joining portion can be formed substantially uniformly and along the shape of the mounting portion.
  • the temperature control device of the present invention (for example, the DNA amplification device 151 or 251 in the embodiment)
  • a temperature control apparatus for heating or cooling an object for example, a liquid containing a DNA specimen in the embodiment
  • a temperature element for heating or cooling the object by the Peltier effect for example, the temperature element 61 in the embodiment
  • a control unit for example, the temperature control unit 62 in the embodiment
  • the temperature element is A set of a p-type semiconductor (for example, the p-type semiconductor 72P in the embodiment) and an n-type semiconductor (for example, the n-type semiconductor 72N in the embodiment) that are spaced apart from each other; It has a mounting part (for example, mounting part 111 in the embodiment) for mounting the object, the p-type semiconductor is the first or second part, and the n-type semiconductor is the first or second.
  • a bonding portion (for example, the metal well 171 in the embodiment) that is bonded to each other at the second or first portion opposite to the two portions;
  • a first electrode portion (for example, an electrode and heat dissipation plate 73P in the embodiment) that is joined to the p-type semiconductor and to which a voltage is applied by the control unit;
  • a second electrode portion (for example, an electrode and heat dissipation plate 73N in the embodiment) that is joined to the n-type semiconductor and to which a voltage is applied by the control unit;
  • the shape of the joining portion is formed in substantially the same shape as the outer shape of the mounting portion, When a different voltage is applied to each of the first electrode part and the second electrode part by the control unit to cause a potential difference between the p-type semiconductor and the n-type semiconductor, the junction part Is a temperature control device that causes the Peltier effect by flowing current from one of the p-type semiconductor and the n-type semiconductor to the other and propagating heat.
  • the object is closely bonded to the p-type semiconductor and the n-type semiconductor via the bonding portion provided in the temperature element, and a current flows from one of the p-type semiconductor and the n-type semiconductor to the other. It has a function of causing the Peltier effect by propagating heat.
  • a mounting portion is provided at the bonding site, and a liquid containing a DNA sample can be directly mounted on the mounting portion. Therefore, the DNA specimen is directly heated or cooled by the p-type semiconductor and the n-type semiconductor without any intervening elements (for example, the thickness of an extra junction site) being a delay factor for the temperature control system. As a result, high responsiveness of temperature control is realized as compared with the case where a conventional bonding portion is employed.
  • the placement section is An inlet for injecting the object (the inlet 121 in the embodiment); It is formed so as to include a capillary (capillary 122 in the embodiment) that moves the object injected from the injection port by capillary action.
  • the above-mentioned mounting part is It is formed so as to include a plurality of recesses (recesses 221 in the embodiment) for receiving the object.
  • the present invention it is possible to realize a high temperature control responsiveness to a liquid such as a DNA specimen in a method for controlling the temperature of the liquid such as a PCR method.
  • FIG. 1 It is sectional drawing which shows schematic structure of the conventional Peltier device. It is a top view which shows schematic structure of the DNA amplification apparatus which concerns on 1st Embodiment of this invention. It is a perspective view which shows schematic structure of the metal well of the temperature element of the DNA amplification apparatus of FIG. It is a side view which shows schematic structure of the plastic tube which is an example of the target object directly mounted
  • a conventional DNA amplification apparatus provided with a temperature element having a metal well is subjected to a PCR test under the same conditions, and a DNA amplification apparatus provided with a temperature element having a metal well according to the present invention.
  • FIG. 2 is a top view showing a schematic configuration of the DNA amplification device 51 according to the first embodiment of the present invention.
  • the DNA amplification device 51 includes a temperature element 61, a temperature control unit 62, and a water cooling unit 63.
  • the temperature element 61 includes a metal well 71, a set of a p-type semiconductor 72P and an n-type semiconductor 72N, electrode and heat dissipation plates 73P and 73N, and water pipes 74P and 74N, in order to cool or heat the object by the Peltier effect. Is provided.
  • a water pipe 74P is connected to the electrode / heat radiating plate 73P, and a water pipe 74N is connected to the electrode / heat radiating plate 73N.
  • the water cooling section 63 cools each of the electrode / heat radiating plates 73P and 73N by keeping water flowing through each of the water pipes 74P and 74N, and keeps the temperature constant. That is, the electrode / heat radiating plates 73P and 73N have the same function as the heat radiating plate 21B of the conventional Peltier element 1 shown in FIG.
  • each of the electrode and heat radiating plates 73P and 73N is electrically connected to the temperature control unit 62, and a voltage is applied by the temperature control unit 62. That is, the electrode / heat radiating plate 73P has the same function as the electrode plate 23P of the conventional Peltier element 1 of FIG. 1, and the electrode / heat radiating plate 73N is the same as the electrode plate 23N of the conventional Peltier element 1 of FIG. It has the function of Hereinafter, these functions are referred to as “voltage applied functions”.
  • the temperature control using the temperature element 61 is performed by controlling the polarity (current polarity) and the current value of the voltage applied to the electrode / heat dissipation plates 73P and 73N by the temperature control unit 62. Realized.
  • the electrode / heat dissipating plates 73P and 73N have a heat dissipating plate function and a voltage applied function
  • their materials and structures may be arbitrary.
  • a material having high thermal conductivity and low electrical resistance is suitable as a material for the electrode and heat sinks 73P and 73N in order to further exhibit the heat sink function and the voltage application function.
  • copper (Cu) is employed as such a material.
  • a p-type semiconductor 72P is bonded to the electrode / heat radiating plate 73P, while one end of an n-type semiconductor 72N is bonded to the electrode / heat radiating plate 73N. That is, the p-type semiconductor 72P has the same function as the p-type semiconductor 24P of the conventional Peltier element 1 of FIG. 1, and the n-type semiconductor 72N is the same as the n-type semiconductor 24N of the conventional Peltier element 1 of FIG. It has the function of
  • the material, structure, etc. of the pair of the p-type semiconductor 72P and the n-type semiconductor 72N may be arbitrary as long as the Peltier effect is achieved.
  • bismuth tellurium which can obtain a larger Peltier effect, is employed as the material of the set of the p-type semiconductor 72P and the n-type semiconductor 72N.
  • the other end of the p-type semiconductor 72P is directly joined to the side surface 71a of the metal well 71, while the other end of the n-type semiconductor 72N is directly joined to the side surface 71b facing the side surface 71a of the metal well 71. ing.
  • the term “direct bonding” or “direct mounting” in this specification refers to bonding or mounting that does not intervene what is a delay factor for the temperature control system (for example, the heat dissipation plate 21A of the conventional Peltier element 1 in FIG. 1). Means. Therefore, of course, there may be a case where a target material for joining the p-type semiconductor 72P and the n-type semiconductor 72N and the metal well 71 are interposed. Specifically, for example, in this embodiment, the surface of the set of the p-type semiconductor 72P and the n-type semiconductor 72N is plated with nickel, and further joined to the metal well 71 with a low melting point alloy such as GaIn. .
  • nickel for plating and a low-melting-point alloy are employed as materials for joining the two.
  • the bonding method of the present embodiment is merely an example, and for example, a bonding method of plating with a metal other than nickel, a bonding method of double plating, a bonding method of using other materials as a low melting point alloy, a low melting point
  • Various joining methods such as a joining method by soldering instead of an alloy can be employed.
  • the metal well 71 has a function of directly joining a set of the p-type semiconductor 72P and the n-type semiconductor 72N, that is, a function similar to that of the electrode plate 22A of the conventional Peltier element 1 of FIG. That is, the function is a function that causes a Peltier effect by flowing current and propagating heat from one of the p-type semiconductor 72P and the n-type semiconductor 72N to the other.
  • this effect is referred to as “bridge and electrode function”.
  • the metal well 71 may have any material as long as it has a bridge and electrode function. However, it is preferable that the metal well 71 is made of a material having a low electric resistance in order to further exhibit the bridge and electrode function. For example, copper (Cu) or aluminum (Al) is preferably used. is there. In addition, the aluminum here includes not only pure aluminum but also an aluminum alloy. In the present embodiment, a predetermined aluminum alloy is employed.
  • a mounting portion 81 for directly mounting an object to be heated or cooled is provided on the upper surface 71u of the metal well 71.
  • the outer shape of the metal well 71 is substantially the same as the inner shape of the metal well 71. That is, the metal well 71 is formed thin so that the distance between the p-type semiconductor 72P and the n-type semiconductor 72N and the plastic tube 91 (more precisely, the DNA specimen) is closer.
  • FIG. 3 to 5 are diagrams showing a schematic configuration of a metal well 71 having such a mounting portion 81.
  • FIG. 3A is a perspective view showing a schematic configuration of a metal well 71 having a mounting portion 81 to which a plastic tube 91 (an example of an object) can be directly mounted.
  • FIG. 3B is a bottom view of the metal well 71 as viewed from below. Note that the various dimensions shown in FIG. 3 (locations where mm is described) are dimensions employed in the present embodiment and are merely examples.
  • FIG. 4 is a side view showing a schematic configuration of a plastic tube 91 that is an example of an object directly attached to the attachment portion 81.
  • the object heated or cooled by the temperature element 61 is precisely a DNA specimen (reaction solution).
  • the object to be heated or cooled is the plastic tube 91 used for housing the DNA specimen (reaction solution).
  • the mounting portion 81 of the metal well 71 is formed as a recess that matches the shape of the lower portion of the plastic tube 91 (the portion having a dimension of 12 mm in FIG. 4).
  • the mounting portion 81 is processed to mount the plastic tube 91.
  • the thickness dimension of this recessed part provided in the mounting part 81 is thin along the external shape of the plastic tube 91 so that heat transfer from the p-type semiconductor 72P and the n-type semiconductor 72N can be easily performed. It is formed uniformly. This thickness can be made as thin as possible within the strength range that can maintain the shape of the metal well 71 depending on the material.
  • the plastic tube 91 used for housing the DNA specimen (reaction solution) is directly attached to the attachment portion 81.
  • the container 31 corresponds to the plastic tube 91 and the electrode plate 22A has a bridge and electrode function. 31 is equivalent to being directly mounted inside the electrode plate 22A without the heat sink 21A interposed.
  • the container 31 when the container 31 is heated or cooled using the conventional Peltier device 1 of FIG. 1, the container 31 performs heat transfer with the electrode plate 22A having a bridge and electrode function through the heat radiating plate 21A. become. Therefore, in the temperature control system for heating or cooling the container 31 using the conventional Peltier element 1, the heat radiating plate 21A formed of ceramic or the like becomes a delay element. The responsiveness of temperature control using the conventional Peltier device 1 of FIG. 1 is deteriorated by this delay factor. Furthermore, as shown in FIG. 5, the plastic tube 91 transfers heat from the p-type semiconductor 72P and the n-type semiconductor 72N through the metal well 71. Therefore, the metal well 71 having a large thickness dimension is a delay element. The responsiveness of the temperature control is deteriorated by this delay element.
  • the plastic tube 91 has a delay element such as the conventional heat sink 21A. Heat can be directly exchanged with the metal well 71 having the function of a bridge and an electrode, without intervening. Therefore, the responsiveness of the temperature control of the present embodiment is higher than the case of using the conventional Peltier element 1 of FIG. Furthermore, since the thickness dimension of the metal well 71 of this embodiment is very thin, the plastic tube 91 does not require extra heat for heating or absorbing the metal well 71 itself, and the p-type semiconductor 72P and The n-type semiconductor 72N can directly transfer heat to the metal well 71. Accordingly, although not shown, the responsiveness of the temperature control system of the present embodiment is much higher than when a metal well 71 having an extra thickness is used. Details of such an effect will be described later with reference to FIGS.
  • the electrode and heat dissipation plates 73P and 73N of the present embodiment have a heat dissipation plate function and a voltage applied function, so that the heat dissipation plate 21B and the electrode plate of the conventional Peltier element 1 of FIG. It corresponds to 23P and 23N. Therefore, the electrode and heat dissipation plates 73P and 73N behave the same as the B surface portion of the conventional Peltier element 1. Therefore, hereinafter, the electrode / heat dissipating plates 73P and 73N are appropriately referred to as “B surface portions” in the temperature element 61 of the present embodiment.
  • the metal well 71 has a bridge and electrode function, and thus corresponds to the electrode plate 22A of the conventional Peltier element 1 shown in FIG. Therefore, the metal well 71 behaves the same as the A-plane portion of the conventional Peltier element 1. Therefore, hereinafter, the metal well 71 is appropriately referred to as an “A surface portion” in the temperature element 61 of the present embodiment.
  • the A surface portion of the temperature element 61 of the present embodiment is a delay element for the temperature control system, such as the heat sink 21A of the A surface portion of the conventional Peltier element 1. It is a point that does not exist.
  • the voltage is applied by the temperature control unit 62 so that the electrode / heat dissipation plate 73N is at a high potential and the electrode / heat dissipation plate 73P is at a low potential with reference to the electrode / heat dissipation plate 73N side.
  • this is expressed as “a positive voltage is applied to the temperature element 61”.
  • the voltage is applied by the temperature control unit 62 so that the electrode / heat sink 73N is at a low potential and the electrode / heat sink 73P is at a high potential. "Applied".
  • the metal well 71 that is the A-surface part becomes a low temperature
  • the electrode and heat dissipation plate 73P that is the B-surface part A temperature difference ⁇ T is generated such that 73N becomes high temperature.
  • the low temperature of the A-plane part does not mean a low temperature in an absolute sense, but means a relatively low temperature relative to the temperature of the B-plane part. That is, as described above, the electrode / radiation plates 73P and 73N which are the B surface portions are water-cooled by the water-cooling unit 63 and maintained at a constant temperature.
  • a constant temperature on the side of the electrodes and heat radiation plates 73P and 73N which is the B surface portion is referred to as a “reference temperature”. Therefore, the metal well 71 which is the A-plane portion is cooled to a temperature lower than the reference temperature by a temperature difference ⁇ T.
  • the temperature difference ⁇ T increases as the current value (absolute value) flowing due to the positive voltage applied to the temperature element 61 increases, although a certain limit exists. Accordingly, the temperature control unit 62 gradually increases the temperature difference ⁇ T by gradually increasing the value (absolute value) of such current, that is, the metal well 71 that is the A surface portion. The temperature can be lowered gradually. In this case, since the plastic tube 91 is directly cooled by the metal well 71, the responsiveness of the temperature control is high as compared with the case where the plastic tube 91 is cooled via a delay element such as the conventional heat sink 21A of FIG. Become a thing.
  • the metal well 71 for cooling the plastic tube 91 is very thin, it is not necessary to perform extra cooling on the metal well 71. Therefore, the responsiveness of temperature control is higher than when cooling through a delay element such as a thick metal well 71 (not shown) that requires extra heat conduction. That is, in the present embodiment, the target value for temperature control is given as a current value by the temperature control unit 62, so that the follow-up of the temperature drop of the object (plastic tube 91) with respect to the target value for temperature control is high.
  • the current is the left in FIG. 2 in the direction opposite to the case where the positive voltage is applied. Flows from one side to the right. Specifically, the current flows in the order of the electrode / heat sink 73P, the p-type semiconductor 72P, the metal well 71, the n-type semiconductor 72N, and the electrode / heat sink 73N. As a result, the metal well 71, which is the A-surface portion, is now a heat generating portion. That is, the heat generated from the metal well 71 that is the A-surface portion is directly propagated to the plastic tube 91, whereby the plastic tube 91 is heated.
  • the temperature control unit 62 gradually increases the temperature difference ⁇ T by gradually increasing the value (absolute value) of such current, that is, the metal well 71 that is the A surface portion. The temperature can be increased gradually.
  • the responsiveness of the temperature control is high as compared with the case where the plastic tube 91 is heated via a delay element such as the conventional heat sink 21A of FIG. Become a thing. Furthermore, since the metal well 71 that heats the plastic tube 91 is very thin, it is not necessary to heat the metal well 71 excessively. Therefore, the responsiveness of temperature control is higher than that when heated through a delay element such as a thick metal well 71 (not shown) that requires extra heat conduction. That is, here, the target value of temperature control is given as the current value by the temperature control unit 62, so that the follow-up of the temperature rise of the object (plastic tube 91) with respect to the target value of temperature control is high.
  • the temperature control unit 62 can perform temperature control on the plastic tube 91 using the temperature element 61 by changing the polarity (current polarity) of the output voltage and the current value. Therefore, the PCR method can be easily realized by providing the temperature control unit 62 with a predetermined pattern of time transition of the output current as a predetermined pattern of time transition of the temperature target value. That is, the DNA specimen (reaction solution) stored in the plastic tube 91 is heated or cooled by the thermal cycle of the temperature element 61 that changes according to the predetermined pattern, and as a result, the DNA is amplified.
  • the number of pairs of p-type semiconductors and n-type semiconductors is only one pair such as the pair of p-type semiconductor 72P and n-type semiconductor 72n in the embodiment of FIG. It can be.
  • the cooling method of the electrode and heat radiating plate for maintaining the reference temperature of the temperature element 61 employs the water cooling method by the water cooling unit 63 in the embodiment of FIG.
  • a cooling method using a liquid other than water may be employed, or an air cooling method may be employed.
  • the object to be cooled or heated by the temperature element 61 is the plastic tube 91 in the embodiment of FIG. 2, more precisely the DNA specimen (reaction solution) stored therein, but the metal well 71
  • the object is not particularly limited as long as it is an object that can be directly mounted on the mounting portion 81.
  • the shape and the number of the mounting portions 81 of the metal well 71 are not particularly limited to the example of FIG. 3 and can be arbitrarily changed according to the object to be cooled or heated.
  • the mounting portion 81 is processed in accordance with the shape of the object and is formed in the metal well 71, the response of heating or cooling to the object is further enhanced, which is preferable. It is.
  • a plurality of metal wells 71 may be connected to heat or cool the plurality of plastic tubes 91, or the number of mounting portions 81 formed in the metal well 71 may be plural. . That is, in the embodiment of FIG. 2, the number of temperature elements 61 is one, but is not limited to this.
  • a plurality of temperature elements 61 including one or more metal wells 71 are prepared, and a plurality of temperature elements 61 are prepared. The element 61 can also be connected and used.
  • the DNA amplification device 51 including one temperature element 61 has been described with reference to FIG. 2, but the number of the temperature elements 61 included in the DNA amplification device 51 is not particularly limited to these examples.
  • M temperature elements 61 can be connected in series in a straight line.
  • temperature control (rough adjustment temperature control) of the entire M temperature elements 61 can be realized by adopting temperature control in which current flows in the direction connected in series as main temperature control.
  • the sub-temperature control by adopting a temperature control in which currents flow independently to each of the M temperature elements 61 in a direction substantially perpendicular to the series-connected direction, each of the M temperature elements 61 is provided.
  • Individual temperature control can be realized independently of and in parallel with the main control. If a predetermined one of the M temperature elements 61 is used as a reference element, sub-temperature control for the reference element can be omitted.
  • the unit of sub temperature control need not be one temperature element 61 but may be two or more temperature elements 61. In this way, by connecting the M temperature elements 61 in series and appropriately combining the main temperature control and the sub temperature control, the influence of variation among the M temperature elements is absorbed, and a plurality of temperature elements It becomes possible to make each temperature change substantially the same. By appropriately combining the main temperature control and the sub temperature control, on the contrary, it is also easy to set different temperature target values for each of the plurality of temperature elements 61 and individually control the temperature. It becomes possible.
  • the temperature control unit 62 can execute the main temperature control and the sub temperature control independently of other units, with each of the N series connections as a unit.
  • the temperature elements 61 can be arranged in a matrix of N rows and M columns.
  • the direction in which the current flows can be divided into a row direction and a column direction.
  • the temperature control unit 62 can perform main temperature control as control of current flowing in the row direction, and can also perform sub temperature control as control of current flowing in the column direction. In this way, individual temperature control for each of the row and column directions can be performed independently of each other.
  • the target to be subjected to the main temperature control and the sub temperature control which is arranged in a matrix of N rows and M columns, does not need to be the temperature element 61, and any temperature element capable of producing the Peltier effect is not required. Can be adopted.
  • the temperature element 61 having such various effects to the PCR method, that is, by adopting the plastic tube 91 used for accommodating the DNA sample as the object, the temperature target value in the PCR method can be obtained. It becomes possible to change the temperature of the DNA specimen by following the predetermined pattern of the time transition. That is, as shown in FIGS. 6 to 8, it is possible to realize high responsiveness of temperature control of the DNA specimen in the PCR method. As a result, the time required for one process is shortened, and it is possible to improve the processing efficiency and power saving.
  • FIGS. 6 to 8 show the case where the test of the PCR method under the same conditions is performed using a conventional DNA amplification apparatus including the conventional Peltier element 1 and the DNA amplification apparatus 51 including the temperature element 61 according to the present invention. It is a figure which shows the comparison with the case where it performs.
  • FIG. 6 shows the temperature of the DNA specimen (reaction solution) when the PCR method is tested using the DNA amplification apparatus 51 including the temperature element 61 having the metal well 71 having a small thickness according to the present invention. It is a figure which shows a series change.
  • FIG. 7 is a diagram showing time-series changes in the temperature of a DNA sample (reaction solution) when a PCR method test is performed using a conventional DNA amplification apparatus.
  • FIG. 8 shows the temperature of the DNA specimen (reaction solution) when 25 cycles of the PCR test are performed using the DNA amplification apparatus 51 including the temperature element 61 having the metal well 71 having a small thickness according to the present invention. It is a figure which shows a time-sequential change. 6 to 8, the vertical axis represents temperature (degrees) and the horizontal axis represents time (seconds).
  • the time transition pattern of the temperature target value in the PCR method in both tests is as follows (A) to (C).
  • the test conditions are as follows (a) to (c).
  • C In the PCR method test using the DNA amplification device 51 including the temperature element 61 according to the present invention, the output current of the temperature control unit 62 was as follows. That is, in the period 201a in FIG.
  • the heating period (period in which the temperature is raised to 94 degrees) is 19.6A
  • the temperature holding period (period in which the temperature is maintained at 94 degrees) is 10.4A. It was.
  • the cooling period (period in which the temperature was lowered to 60 degrees) was 18.1A
  • the temperature holding period (period in which the temperature was maintained at 60 degrees) was 5.4A
  • the heating period (period in which the temperature was raised to 72 degrees) was 18.5A
  • the temperature holding period (period in which the temperature was maintained at 72 degrees) was 7.3A.
  • the temperature of the DNA specimen cannot follow the temporal transition pattern of the temperature target value.
  • the reason for this is as follows. That is, as described above, the temperature change at the A surface portion of the conventional Peltier element 1 is transmitted to the plastic tube 91 mounted on the metal well through the metal well serving as a delay element. is there.
  • the waveform is in any of the periods 201a to 201c in FIG.
  • the temperature of the DNA sample (reaction solution) changes substantially following the temporal transition pattern of the temperature target value. That is, there is almost no delay until the temperature of the DNA sample (reaction solution) reaches the temperature target value (94 degrees in the period 201a, 60 degrees in the period 201b, 72 degrees in the period 201c).
  • the target of “holding at 94 degrees for 240 seconds” in (A) of the time transition pattern of the temperature target value in the period 201a of FIG.
  • the time within 60 ° ⁇ 0.5 ° is set for the target of “holding at 60 ° C. for 20 seconds” in the time transition pattern of the temperature target value (B).
  • the target has been achieved for 20 seconds.
  • the time within 72 degrees ⁇ 0.5 degrees is 60 seconds.
  • the goal has been achieved.
  • the temperature of the DNA sample (reaction solution) can follow the temporal transition pattern of the temperature target value. .
  • the reason for this is as follows. That is, as described above, since the heat that is more than necessary is not taken away by the very thin metal well 71, it is directly transmitted to the plastic tube 91 without any interfering elements.
  • FIG. 9 shows a case where a PCR test under the same conditions was performed using a conventional DNA amplification apparatus and a DNA amplification apparatus 51 including a temperature element 61 having a metal well 71 according to the present invention. It is a figure which shows the comparison with a case.
  • FIG. 9A shows an agarose gel electrophoresis photograph in the case where the PCR method was tested using the DNA amplification device 51 including the temperature element 61 having the metal well 71 having a small thickness according to the present invention.
  • FIG. FIG. 9 (B) is a diagram showing an agarose gel electrophoresis photograph in a case where a PCR test was conducted using a conventional DNA amplification apparatus.
  • the horizontal axis indicates the temperature (degrees), and the horizontal axis indicates the length (kb) of the DNA fragment.
  • PCR targeting the internal region of the AT1G15830 gene of Arabidopsis thaliana was performed.
  • the target sequence length is 1,000 bp (1 kb).
  • Arabidopsis genomic DNA (gDNA) was used as the template DNA.
  • the composition of the reaction solution was 0.5 ng / ⁇ l: gDNA, 0.2 ⁇ M: primer, 0.2 mM: dNTP, 2.0 mM: MgCl2, 1 ⁇ ExTaq buffer, 0.025 U / ⁇ l ExTaq DNA polymerase.
  • the thermal cycle conditions were as follows. First, heat denaturation was performed at 94 ° C.
  • the target sequence (upper and lower two pairs) 701 hardly increased at 58 degrees or less, and many non-specific sequences (objectives).
  • Product 801 The target product target sequence 701 was finally amplified at 60 degrees or more.
  • FIG. 9 (A) when the PCR method test is performed using the metal well 71 according to the present invention, the target sequence 501 of the target product is seen at least 50 degrees or more. Therefore, the target product is considered to be amplified at least 50 degrees or more. Further, as is clear from the fact that almost no non-specific sequence appeared, the non-specific sequence decreased dramatically and a marked improvement was observed.
  • the present invention can produce the following effects, for example, regardless of the various embodiments.
  • the configuration disclosed as follows realizes the temperature control device according to the present invention.
  • the metal well 71 provided in the temperature element 61 according to the present invention directly joins the p-type semiconductor 72P and the n-type semiconductor 72n, and allows current to flow from one of the p-type semiconductor 72P and the n-type semiconductor 72n to the other. It has a function of causing the Peltier effect by propagating heat.
  • the metal well 71 is provided with a mounting portion 81 to which a cooling or heating object can be directly mounted. Therefore, the target object is heated or cooled closely by the p-type semiconductor 72P and the n-type semiconductor 72n without interposing a delay element (for example, the thickness of the extra metal well 71) for the temperature control system.
  • the p-type semiconductor 72P and the n-type semiconductor 72n can directly transfer heat from the p-type semiconductor 72P and the n-type semiconductor 72n to the object mounted by the metal well 71. Therefore, when the heat propagating through the path is directly supplied to the object, the object is heated, and the heat generated from the object is directly supplied to the path, so that the object is Is cooled. As a result, compared with the case where the Peltier device 1 having the conventional metal well 71 is employed, high responsiveness of temperature control is realized.
  • the DNA amplification device 51 according to the first embodiment of the present invention has been described.
  • a DNA amplification device 151 according to the second embodiment of the present invention will be described.
  • the DNA amplification device 151 according to the second embodiment of the present invention can basically have the same schematic configuration as the DNA amplification device 51 according to the first embodiment. Therefore, FIG. 2 is also a top view showing a schematic configuration of the DNA amplification device 151 according to the second embodiment.
  • the shape of the metal well 71 is different in the second embodiment compared to the first embodiment.
  • the mounting portion 111 is employed in the second embodiment instead of the mounting portion 81 of the first embodiment.
  • FIG. 10 is a perspective view showing a schematic configuration of the DNA amplification device 151 according to the second embodiment.
  • the DNA amplification device 151 includes a temperature element 61, a temperature control unit 62, and a water cooling unit 63.
  • the configurations of the temperature control unit 62 and the water cooling unit 63 are basically the same as the configuration of the first embodiment, and thus the description thereof is omitted.
  • the temperature element 61 includes a metal well 171, a set of a p-type semiconductor 72P and an n-type semiconductor 72N, electrode and heat dissipation plates 73P and 73N, and water tubes 74P and 74N.
  • the configuration of the p-type semiconductor 72P and the n-type semiconductor 72N, the electrode / heat radiation plates 73P and 73N, and the water tubes 74P and 74N are basically the same as the configuration of the first embodiment. Since this is the same, the description is omitted.
  • the metal well 171 is formed in a flat plate shape having a length of 1 cm and a width of 1 cm, for example.
  • the other end of the p-type semiconductor 72P is directly bonded to one end 171a of the metal well 171, while the other end of the n-type semiconductor 72N is directly bonded to the other end 171b facing the one end 171a of the metal well 171.
  • the metal well 171 of this embodiment has a function of directly joining a set of a p-type semiconductor 72P and an n-type semiconductor 72N, that is, a function similar to the electrode plate 22A of the conventional Peltier element 1 of FIG. . That is, the function is a function that causes a Peltier effect by flowing current and propagating heat from one of the p-type semiconductor 72P and the n-type semiconductor 72N to the other.
  • a mounting portion 111 for directly mounting an object to be heated or cooled.
  • the outer shape of the metal well 171 is substantially the same as the outer shape of the mounting portion 111. That is, the metal well 171 is formed thin so that the distance between the p-type semiconductor 72P and the n-type semiconductor 72N and the placement portion 111 (more precisely, the DNA specimen) is closer.
  • the mounting portion 111 is generally called a capillary chip, and is formed in a flat plate shape having a length of 1 cm and a width of 1 cm in accordance with, for example, a metal well 171.
  • the placement unit 111 includes a plurality of injection ports 121a, 121b, 121c, and 121d and a capillary 122 in order to place a liquid such as a DNA specimen in the PCR method, which is an object.
  • inlet 121 When there is no need to describe each inlet 121a, 121b, 121c, 121d in particular, these are collectively referred to as “inlet 121”.
  • Each injection port 121 is formed in a hole shape so that a liquid such as a DNA sample can be injected by a pipette, a micropipette, or the like.
  • a plurality of the inlets 121 are formed on the mounting portion 111, and the number of the inlets 121 is not particularly limited, but is four in the present embodiment.
  • the capillary 122 is composed of a plurality of flow paths (capillaries) that connect the inlets 121a, 121b, 121c, and 121d.
  • the liquid (object) injected from the injection port 121 moves to the other injection port 121 by capillary action.
  • the liquid injected from the injection port 121a moves in the capillary 122 by capillary action and moves to the other injection ports 121b, 121c or 121.
  • the liquid injected from one injection port for example, the injection port 121a
  • the liquid injected from the other injection port for example, the injection port 121b, 121c, or 121d
  • the metal well 171 provided in the temperature element 61 according to the present invention directly joins the p-type semiconductor 72P and the n-type semiconductor 72n, and flows current from one of the p-type semiconductor 72P and the n-type semiconductor 72n to the other. It has a function of causing the Peltier effect by propagating heat.
  • the metal well 171 is provided with a mounting portion 111 on which an object to be cooled or heated can be directly mounted. Therefore, the target object is heated or cooled closely by the p-type semiconductor 72P and the n-type semiconductor 72n without any intervening elements (for example, the thickness of the excess metal well 171).
  • the p-type semiconductor 72P and the n-type semiconductor 72n can directly transfer heat from the p-type semiconductor 72P and the n-type semiconductor 72n to the object placed by the metal well 171. Therefore, when the heat propagating through the path is directly supplied to the object, the object is heated, and the heat generated from the object is directly supplied to the path, so that the object is Is cooled. As a result, compared with the case where the Peltier device 1 having the conventional metal well 71 is employed, high responsiveness of temperature control is realized.
  • the DNA amplification device 151 according to the second embodiment of the present invention has been described.
  • a DNA amplification device 251 according to the third embodiment of the present invention will be described.
  • the DNA amplification device 251 according to the third embodiment of the present invention can basically have the same schematic configuration as the DNA amplification device 51 according to the first embodiment. Therefore, FIG. 2 is also a top view showing a schematic configuration of the DNA amplification device 251 according to the third embodiment. However, the shape of the metal well 71 is different in the third embodiment compared to the first embodiment. Further, in accordance with the difference in the shape of the metal well 71, a mounting portion 211 is employed instead of the mounting portion 81 of the first embodiment.
  • FIG. 11 is a perspective view showing a schematic configuration of a DNA amplification device 251 according to the third embodiment.
  • the DNA amplification device 251 includes a temperature element 61, a temperature control unit 62, and a water cooling unit 63.
  • the temperature element 61 includes a metal well 271, a set of a p-type semiconductor 72P and an n-type semiconductor 72N, electrode / heat dissipation plates 73P and 73N, and water tubes 74P and 74N.
  • the configuration of the p-type semiconductor 72P and the n-type semiconductor 72N, the electrode / heat radiation plates 73P and 73N, and the water tubes 74P and 74N are basically the same as the configuration of the first embodiment. Since this is the same, the description is omitted.
  • the metal well 271 is formed, for example, in a flat plate shape having a length of 1 cm and a width of 1 cm.
  • the other end of the p-type semiconductor 72P is directly bonded to one end 271a of the metal well 271.
  • the other end of the n-type semiconductor 72N is directly bonded to the other end 271b facing the one end 271a of the metal well 271. Has been.
  • the metal well 271 of this embodiment has a function of directly joining a set of a p-type semiconductor 72P and an n-type semiconductor 72N, that is, a function similar to the electrode plate 22A of the conventional Peltier element 1 of FIG. . That is, the function is a function that causes a Peltier effect by flowing current and propagating heat from one of the p-type semiconductor 72P and the n-type semiconductor 72N to the other.
  • a placement unit 211 for directly placing an object to be heated or cooled is provided on the upper surface 271u of the metal well 271.
  • the outer shape of the metal well 271 is substantially the same as the outer shape of the mounting portion 211. That is, the thickness of the metal well 271 is thin so that the distance between the p-type semiconductor 72P and the n-type semiconductor 72N and the mounting portion 211 (more precisely, the DNA specimen) is closer.
  • the mounting portion 211 is formed in a flat plate shape having a length of 1 cm and a width of 1 cm, for example, in accordance with the metal well 171.
  • the placement unit 211 has a plurality of recesses 221-1, 221-2,... 221-n (n is a natural number of 1 or more) in order to place a liquid such as a DNA sample in the PCR method as a target. Is provided. When there is no need to describe each of the recesses 221-1, 221-2,... 221-n in particular, they are collectively referred to as “recesses 221”.
  • Each recess 221 is formed by a rectangular recess whose one side is formed by, for example, several tens of ⁇ m, and is formed so as to receive a liquid dropped by a pipette, a micropipette or the like.
  • a plurality of the concave portions 221 are formed on the mounting portion 211, and the number and arrangement of the concave portions 221 are not particularly limited. However, in this embodiment, nine columns in the horizontal direction of the mounting portion 211, four rows in the vertical direction, etc. A total of 36 pieces are formed at intervals.
  • the metal well 271 provided in the temperature element 61 according to the present invention directly joins the p-type semiconductor 72P and the n-type semiconductor 72n, and allows current to flow from one of the p-type semiconductor 72P and the n-type semiconductor 72n to the other. It has a function of causing the Peltier effect by propagating heat.
  • the metal well 271 is provided with a mounting portion 211 on which an object to be cooled or heated can be directly mounted. Therefore, the target object is heated or cooled closely by the p-type semiconductor 72P and the n-type semiconductor 72n without any intervening elements (for example, the thickness of the excess metal well 271).
  • the p-type semiconductor 72P and the n-type semiconductor 72n can directly transfer heat from the p-type semiconductor 72P and the n-type semiconductor 72n to the object placed by the metal well 271. Therefore, when the heat propagating through the path is directly supplied to the object, the object is heated, and the heat generated from the object is directly supplied to the path, so that the object is Is cooled. As a result, compared with the case where the Peltier device 1 having the conventional metal well 71 is employed, high responsiveness of temperature control is realized.
  • the temperature element 61 is applied to the DNA amplification device 51 that follows the temperature change of the DNA sample (reaction solution) with respect to a predetermined temperature pattern in the PCR method.
  • the present invention can be applied to all control devices that cause the temperature element 61 to follow a temperature change of a liquid other than a DNA specimen (reaction solution) with respect to a predetermined temperature pattern in a method for controlling the temperature of a general liquid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 PCR法等の液体の温度を制御する方法における所定の温度パターンに対して、DNA検体(反応溶液)等の液体の温度変化を追従させること。 温度素子61は、相互に離間して配置されるp型半導体72Pとn型半導体72Nとの組と、DNA検体の容器を直接装着する装着部81を有し、p型半導体72Pとn型半導体72Nとの各々に接合する金属製ウェル71と、p型半導体72Pに接合され、温度制御部62により電圧が印加される電極兼放熱板73Pと、n型半導体72Nに接合され、温度制御部62により電圧が印加される電極兼放熱板73Nとを備えている。金属製ウェル71の形状は、DNA検体の容器の外形形状と略同形状に形成されている。

Description

温度制御装置、及び温度素子
 本発明は、DNA検体を増幅するPCR法等の液体の温度を制御する方法に適用可能な温度制御装置、及び温度素子に関し、特に、PCR法におけるDNA検体等の液体に対する温度制御の高応答性を実現可能な温度制御装置、及び温度素子に関する。
 一般に、DNA(Deoxyribonucleic acid、デオキシリボ核酸)を増幅する手法として、PCR法(Polymerase chain Reaction、ポリメラーゼ連鎖反応法)が知られている。PCR法は、DNA検体に対して、当該DNA検体と反応させるプライマ、酵素、及びデオキシリボヌクレオシド三リン酸を加えた反応溶液を、温度目標値の時間推移の所定パターンにしたがって加熱又は冷却する処理を繰り返すことによって、DNAを増幅する手法である。
 このようなPCR法によりDNAを増幅する従来のDNA増幅装置においては、DNA検体(反応溶液)を加熱又は冷却するために、ペルチェ効果を有する素子(以下、「ペルチェ素子」と称する)が利用されている(特許文献1,2参照)。ペルチェ効果とは、異なる導体、例えばp型半導体とn型半導体との接合に対して電流を流した場合に、その接合部で熱の吸収が発生する現象をいう。
 図1は、従来のペルチェ素子1の概略構成を示す断面図である。
 従来のペルチェ素子1は、図1中下方から順に、放熱板21Bと、電圧が印加される電極板23P,23Nと、電極板23Pに接合されるp型半導体24P及び電極板23Nに接合されるn型半導体24Nの組と、この組に接合される電極板22Aと、放熱板21Aとが積層されて構成される。
 なお、特許文献2においては、電極板23P,23Nに相当する金属板a11,a12と、p型半導体24P及びn型半導体24Nの組に相当するp型半導体a4及びn型半導体a3の組と、電極板22Aに相当する金属板a2とからなるものを、ペルチェ素子と称している(特許文献2の図6参照)。しかしながら、特許文献2でいうペルチェ素子により加熱又は冷却される被温度制御対象は、熱伝導板12,22等を介在して配設されている(特許文献2の図1参照)。即ち、図1において、被温度制御対象は容器31であり、この容器31と電極板22Aとの間に放熱板21Aが介在していることと、特許文献2において、被温度制御対象(容器31に相当)と金属板a2との間に熱伝導板12,22等を介在していることとは等価である。換言すると、特許文献2における熱伝導板12,22等は、図1の放熱板21Aに相当する。同様に、特許文献2における放熱フィン51,52の下面部は、図1の放熱板21Bに相当する。以上まとめると、特許文献2には、図1の従来のペルチェ素子1をそのまま用いて、被温度制御対象に対する温度制御が実行されることが単に開示されているに過ぎない。
 以下、説明の簡略上、従来のペルチェ素子1の図1中上方の面側の部位、即ち、放熱板21A及び電極板22Aをまとめて、「A面部位」と称する。一方、ペルチェ素子1の図1中下方の面側の部位、即ち、放熱板21B及び電極板23P,23Nをまとめて、「B面部位」と称する。また、電極板23Nを基準として、電極板23Nが高電位になり、電極板23Pが低電位になるように電圧が印加されることを、以下、「従来のペルチェ素子1にプラス電圧が印加される」と表現する。逆に、電極板23Nが低電位になり、電極板23Pが高電位になるように電圧が印加されることを、以下、「従来のペルチェ素子1にマイナス電圧が印加される」と表現する。
 例えば図1に示すように、DNA検体(反応溶液)が収容された容器31が、従来のペルチェ素子1のA面部位側に、より具体的には、放熱板21Aの表面上に配置されているとする。
 この場合、従来のペルチェ素子1にプラス電圧が印加されると、電流が、電極板23Nから電極板23Pに向けて流れる。具体的には、電流が、電極板23N、n型半導体24N、電極板22A、p型半導体24P、及び電極板23Pの順に流れる。その結果、A面部位が吸熱部となり、B面部位が発熱部となる。具体的には、従来のペルチェ素子1に印加されたプラス電圧によって、電極板23Nから電極板23Pに向けて流れる電流の値に応じて、A面部位が低温となりB面部位が高温となるような温度差△Tが生ずる。これにより、容器31の熱がA面部位に吸熱され、容器31が冷却される。
 これに対して、従来のペルチェ素子1にマイナス電圧が印加されると、電流が、プラス電圧が印加された場合とは逆方向に流れる。具体的には、電流が、電極板23P、p型半導体24P、電極板22A、n型半導体24N、及び電極板23Nの順に流れる。その結果、プラス電圧が印加された場合とは逆に、A面部位が発熱部となり、B面部位が吸熱部となる。具体的には、従来のペルチェ素子1に印加されたマイナス電圧の電圧値によって、電極板23Pから電極板23Nに向けて流れる電流の値に応じて、A面部位が高温となりB面部位が低温となるような温度差△Tが生ずる。これにより、A面部位から発せられた熱が容器31に伝搬され、容器31が加熱される。
 したがって、電極板23Nと電極板23Pとの間に流れる電流の値を、温度目標値の時間推移の所定パターンに対応するように可変制御することによって、PCR法におけるDNA検体に対する温度制御が実現可能になる。
特開2006-223292号公報 特開2007-198718号公報
 しかしながら、特許文献1や2を含む従来のDNA増幅装置を利用した場合、PCR法における温度目標値の時間推移の所定パターンに対して、DNA検体(反応溶液)の温度が十分に追従して推移しない。即ち、特許文献1や2を含む従来のDNA増幅装置では、PCR法におけるDNA検体(反応溶液)に対する温度制御の応答性が十分に得られない。
 このように応答性が十分に得られないという点は、他の液体に対する従来の温度制御でも同様である。
 本発明は、このような状況に鑑みてなされたものであり、PCR法等の液体の温度を制御する方法におけるDNA検体等の液体に対する温度制御の高応答性を実現することを目的とする。
 なお、本明細書において、「高応答性」という用語は、応答速度が高速になるという意味で用いるものとする。
 本発明の温度制御装置(例えば実施形態におけるDNA増幅装置51)は、
 対象物(例えば実施形態におけるプラスチックチューブ91)を加熱又は冷却する温度制御装置において、
 ペルチェ効果により前記対象物を加熱又は冷却する温度素子(例えば実施形態における温度素子61)と、
 前記温度素子に対する通電制御を行う制御部(例えば実施形態における温度制御部62)と
 を備え、
 前記温度素子は、
  相互に離間して配置されるp型半導体(例えば実施形態におけるp型半導体72P)及びn型半導体(例えば実施形態におけるn型半導体72N)の組と、
  前記対象物を装着する装着部(例えば実施形態における装着部81)を有し、前記p型半導体とは第1又は第2の面で、前記n型半導体とは前記第1又は第2の面に対向する第2又は第1の面で各々に接合する接合部位(例えば実施形態における金属製ウェル71)と、
  前記p型半導体に接合され、前記制御部により電圧が印加される第1の電極部位(例えば実施形態における電極兼放熱板73P)と、
  前記n型半導体に接合され、前記制御部により電圧が印加される第2の電極部位(例えば実施形態における電極兼放熱板73N)と
 を有し、
 前記接合部位の形状は、前記対象物の外形形状と略同形状に形成され、
 前記制御部により前記第1の電極部位と前記第2の電極部位との各々に異なる電圧が印加されて、前記p型半導体と前記n型半導体との間に電位差が生じた場合、前記接合部位は、前記p型半導体と前記n型半導体との一方から他方へ電流を流すと共に熱を伝搬することで、前記ペルチェ効果を生じさせる
 温度制御装置であることを特徴とする。
 この発明によれば、対象物は、温度素子に設けられた接合部位を介してp型半導体とn型半導体と密接に接合し、p型半導体とn型半導体の一方から他方へ電流を流すと共に熱を伝搬することで、ペルチェ効果を生じさせる機能を有している。この接合部位には装着部が設けられており、DNA検体を収容した所定の容器を当該装着部に直接装着することができる。したがって、DNA検体は、温度制御系にとって遅れ要素となるもの(例えば余分な接合部位の厚み)を介在せずに、p型半導体及びn型半導体により直接加熱又は冷却される。その結果、従来の接合部位を採用した場合と比較して、温度制御の高応答性が実現する。
 この場合、前記対象物は、DNA(Deoxyribonucleic acid)検体収容に用いられる所定の容器であり、前記装着部には、前記容器が装着されることになる。
 この発明をPCR法に適用することで、その温度目標値の時間推移の所定パターンに対して、DNA検体の温度を追従させて推移させることが可能になる。即ち、PCR法におけるDNA検体に対する温度制御の高応答性が実現可能になる。
 また、この場合、前記温度素子の前記第1の電極部位と前記第2の電極部位とのうち少なくとも一方を冷却する冷却部(例えば実施形態における水冷部63)をさらに備えるようにしてもよい。
 さらにまた、この場合、前記温度制御装置は、携帯型の装置であるようにしてもよい。携帯型の装置とは、人間が自在に持ち運び可能に構成された装置をいう。
 本発明の温度素子(例えば実施形態における温度素子61)は、
 ペルチェ効果により対象物(例えば実施形態におけるプラスチックチューブ82)を加熱又は冷却する温度素子において、
  相互に離間して配置されるp型半導体(例えば実施形態におけるp型半導体72P)及びn型半導体(例えば実施形態におけるn型半導体72N)の組と、
  前記対象物を装着する装着部(例えば実施形態における装着部81)を有し、前記p型半導体と前記n型半導体との各々に接合する接合部位(例えば実施形態における金属製ウェル71)と、
  前記p型半導体に接合され、外部から電圧が印加される第1の電極部位(例えば実施形態における電極兼放熱板73P)と、
  前記n型半導体に接合され、外部から電圧が印加される第2の電極部位(例えば実施形態における電極兼放熱板73N)と
 を有し、
 前記接合部位の形状は、前記対象物の外形形状と略同形状に形成され、
 前記第1の電極部位と前記第2の電極部位との各々に異なる電圧が外部から印加されて、前記p型半導体と前記n型半導体との間に電位差が生じた場合、前記接合部位は、前記p型半導体と前記n型半導体との一方から他方へ電流を流すと共に熱を伝搬することで、前記ペルチェ効果を生じさせる
 温度素子であることを特徴とする。
 この発明によれば、対象物は、温度素子に設けられた接合部位を介してp型半導体とn型半導体と密接に接合し、p型半導体とn型半導体の一方から他方へ電流を流すと共に熱を伝搬することで、ペルチェ効果を生じさせる機能を有している。この接合部位には装着部が設けられており、DNA検体を収容した所定の容器を当該装着部に直接装着することができる。したがって、DNA検体は、温度制御系にとって遅れ要素となるもの(例えば余分な接合部位の厚み)を介在せずに、p型半導体及びn型半導体により直接加熱又は冷却される。その結果、従来の接合部位を採用した場合と比較して、温度制御の高応答性が実現する。したがって、本発明に係る温度素子をPCR法に適用することで、即ち、当該対象物としてDNA検体を収容可能な所定の容器を採用することで、PCR法における温度目標値の時間推移の所定パターンに対して、DNA検体の温度を追従させて推移させることが可能になる。即ち、PCR法におけるDNA検体に対する温度制御の高応答性が実現可能になる。
 この場合、前記装着部は、前記対象物の形状に対応した加工が施されて、前記接合部位内に形成されているようにすることができる。
 前記接合部位の厚さ寸法は、略均一に形成され、前記装着部の形状に沿って形成されているようにすることができる。
 本発明の温度制御装置(例えば実施形態におけるDNA増幅装置151又は251)は、
 対象物(例えば実施形態におけるDNA検体を含む液体)を加熱又は冷却する温度制御装置において、
 ペルチェ効果により前記対象物を加熱又は冷却する温度素子(例えば実施形態における温度素子61)と、
 前記温度素子に対する通電制御を行う制御部(例えば実施形態における温度制御部62)と
 を備え、
 前記温度素子は、
  相互に離間して配置されるp型半導体(例えば実施形態におけるp型半導体72P)及びn型半導体(例えば実施形態におけるn型半導体72N)の組と、
  前記対象物を載置する載置部(例えば実施形態における載置部111)を有し、前記p型半導体とは第1又は第2の部位で、前記n型半導体とは前記第1又は第2の部位に対向する第2又は第1の部位で各々に接合する接合部位(例えば実施形態における金属製ウェル171)と、
  前記p型半導体に接合され、前記制御部により電圧が印加される第1の電極部位(例えば実施形態における電極兼放熱板73P)と、
  前記n型半導体に接合され、前記制御部により電圧が印加される第2の電極部位(例えば実施形態における電極兼放熱板73N)と
 を有し、
 前記接合部位の形状は、前記載置部の外形形状と略同形状に形成され、
 前記制御部により前記第1の電極部位と前記第2の電極部位との各々に異なる電圧が印加されて、前記p型半導体と前記n型半導体との間に電位差が生じた場合、前記接合部位は、前記p型半導体と前記n型半導体との一方から他方へ電流を流すと共に熱を伝搬することで、前記ペルチェ効果を生じさせる
 温度制御装置であることを特徴とする。
 この発明によれば、対象物は、温度素子に設けられた接合部位を介してp型半導体とn型半導体と密接に接合し、p型半導体とn型半導体の一方から他方へ電流を流すと共に熱を伝搬することで、ペルチェ効果を生じさせる機能を有している。この接合部位には載置部が設けられており、DNA検体を含む液体を当該載置部に直接載置することができる。したがって、DNA検体は、温度制御系にとって遅れ要素となるもの(例えば余分な接合部位の厚み)を介在せずに、p型半導体及びn型半導体により直接加熱又は冷却される。その結果、従来の接合部位を採用した場合と比較して、温度制御の高応答性が実現する。
 この場合、前記載置部は、
  前記対象物を注入する注入口(実施形態における注入口121)と、
  前記注入口から注入された前記対象物を、毛細管現象により移動させるキャピラリ(実施形態におけるキャピラリ122)と、を含むように形成されている。
 また、この場合、前記載置部は、
 前記対象物を受け入れる複数の凹部(実施形態における凹部221)を含むように形成されている。
 本発明によれば、PCR法等の液体の温度を制御する方法におけるDNA検体等の液体に対する温度制御の高応答性が実現可能になる。
従来のペルチェ素子の概略構成を示す断面図である。 本発明の第1実施形態に係るDNA増幅装置の概略構成を示す上面図である。 図2のDNA増幅装置の温度素子の金属製ウェルの概略構成を示す斜視図である。 装着部に直接装着される対象物の一例であるプラスチックチューブの概略構成を示す側面図である。 図2のDNA増幅装置の温度素子の金属製ウェルの概略構成を示す斜視図である。 本発明に係る厚み寸法が薄い金属製ウェルを有する温度素子を備えるDNA増幅装置を用いてPCR法の試験を行った場合における、DNA検体(反応溶液)の温度の時系列変化を示す図である。 従来の厚み寸法が厚い金属製ウェルを有する温度素子を備えるDNA増幅装置を用いてPCR法の試験を行った場合における、DNA検体(反応溶液)の温度の時系列変化を示す図である。 本発明に係る厚み寸法が薄い金属製ウェルを有する温度素子を備えるDNA増幅装置を用いてPCR法の試験を25サイクル行った場合における、DNA検体(反応溶液)の温度の時系列変化を示す図である。 同一条件によるPCR法の試験を、従来の金属製ウェルを有する温度素子を備える従来のDNA増幅装置を用いて行った場合と、本発明に係る金属製ウェルを有する温度素子を備えるDNA増幅装置を用いて行った場合との比較を示す図である。 第2実施形態に係るDNA増幅装置の概略構成を示す斜視図である。 第3実施形態に係るDNA増幅装置の概略構成を示す斜視図である。
 以下、本発明の一実施形態を図面に基づいて説明する。
[第1実施形態]
 図2は、本発明の第1実施形態に係るDNA増幅装置51の概略構成を示す上面図である。
 DNA増幅装置51は、温度素子61と、温度制御部62と、水冷部63とを備える。温度素子61は、ペルチェ効果により対象物を冷却又は加熱すべく、金属製ウェル71と、p型半導体72P及びn型半導体72Nの組と、電極兼放熱板73P,73Nと、水管74P,74Nとを備える。
 図2に示すように、電極兼放熱板73Pには水管74Pが、電極兼放熱板73Nには水管74Nが、それぞれ接続されている。水冷部63は、水管74P,74Nの各々に水を流すことで、電極兼放熱板73P,73Nの各々を冷却して一定温度に保つ。即ち、電極兼放熱板73P,73Nは、図1の従来のペルチェ素子1の放熱板21Bと同様の機能(以下、「放熱板機能」と称する)を有している。
 さらに、電極兼放熱板73P,73Nの各々は、温度制御部62と電気的に接続されており、温度制御部62により電圧が印加される。即ち、電極兼放熱板73Pは、図1の従来のペルチェ素子1の電極板23Pと同様の機能を有し、電極兼放熱板73Nは、図1の従来のペルチェ素子1の電極板23Nと同様の機能を有している。なお、以下、これらの機能を「電圧被印加機能」と称する。詳細については後述するが、電極兼放熱板73P,73Nに印加される電圧の極性(電流の極性)及び電流値が温度制御部62により制御されることによって、温度素子61を用いた温度制御が実現される。
 電極兼放熱板73P,73Nは、放熱板機能及び電圧被印加機能を有していれば、その素材や構造等は任意でよい。ただし、放熱板機能及び電圧被印加機能をより発揮すべく、電極兼放熱板73P,73Nの素材としては、熱伝導率が高く、かつ、電気抵抗が小さい素材が好適である。本実施形態では、このような素材として銅(Cu)が採用されている。
 電極兼放熱板73Pにはp型半導体72Pの一端が接合されている一方で、電極兼放熱板73Nにはn型半導体72Nの一端が接合されている。即ち、p型半導体72Pは、図1の従来のペルチェ素子1のp型半導体24Pと同様の機能を有し、n型半導体72Nは、図1の従来のペルチェ素子1のn型半導体24Nと同様の機能を有している。
 p型半導体72P及びn型半導体72Nの組は、ペルチェ効果を奏すれば、その素材や構造等は任意でよい。ただし、本実施形態では、p型半導体72P及びn型半導体72Nの組の素材として、より大きなペルチェ効果が得られるビスマステルルが採用されている。
 p型半導体72Pの他端は、金属製ウェル71の側面71aに直接接合されている一方で、n型半導体72Nの他端は、金属製ウェル71の側面71aに対向する側面71bに直接接合されている。
 ここで、本明細書において「直接接合」又は「直接装着」という用語は、温度制御系にとって遅れ要素となるもの(例えば図1の従来のペルチェ素子1の放熱板21A)を介在しない接合又は装着を意味する。したがって、当然ながら、p型半導体72P及びn型半導体72Nの組と、金属製ウェル71との間には、両者を接合する目的の素材が介在する場合があり得る。具体的には例えば、本実施形態では、p型半導体72P及びn型半導体72Nの組は、その表面がニッケルでメッキされ、さらに、GaIn等の低融点合金によって、金属製ウェル71と接合される。即ち、本実施形態では、両者を接合する目的の素材として、メッキ用のニッケルと、低融点合金とが採用されている。なお、本実施形態の接合手法は例示に過ぎず、その他例えば、ニッケル以外の金属でメッキする接合手法、二重にメッキする接合手法、低融点合金として他の材料を採用する接合手法、低融点合金の代わりに半田付けにより接合する接合手法等、各種各様の接合手法を採用することが可能である。
 換言すると、金属製ウェル71は、p型半導体72P及びn型半導体72Nの組を直接接合する機能、即ち、図1の従来のペルチェ素子1の電極板22Aと同様の機能を有している。即ち、当該機能とは、p型半導体72Pとn型半導体72Nとの一方から他方へ、電流を流すと共に熱を伝搬することで、ペルチェ効果を生じさせる機能である。なお、以下、当該効果を、「ブリッジ兼電極機能」と称する。
 金属製ウェル71は、ブリッジ兼電極機能を有していれば、その素材は任意でよい。ただし、金属製ウェル71は、ブリッジ兼電極機能をより発揮するために、電気抵抗が小さい素材が採用されると好適であり、例えば銅(Cu)やアルミニウム(Al)が採用されると好適である。なお、ここでいうアルミニウムとは、純アルミニウムのみならず、アルミニウム合金も含んでいる。本実施形態では、所定のアルミニウム合金が採用されている。
 また、金属製ウェル71の上面71uには、加熱又は冷却の対象物を直接装着する装着部81が設けられている。
 ここで注目すべき点は、金属製ウェル71の外側形状は、金属製ウェル71の内側形状と略同様の形状である点である。即ち、金属製ウェル71の厚みは、p型半導体72P及びn型半導体72Nとプラスチックチューブ91(より正確には、DNA検体)との距離がより接近するように、薄く形成されている。
 図3~5は、このような装着部81を有する金属製ウェル71の概略構成を示す図である。具体的には、図3Aは、プラスチックチューブ91(対象物の一例)を直接装着可能な装着部81を有する金属製ウェル71の概略構成を示す斜視図である。図3Bは、金属製ウェル71を下方から見た底面図である。なお、図3に示す各種寸法(mmが記載されている箇所)は、本実施形態で採用されている寸法であって例示にしか過ぎない。また、図4は、装着部81に直接装着される対象物の一例であるプラスチックチューブ91の概略構成を示す側面図である。
 本実施形態では、温度素子61はDNA増幅装置51に備えられているため、温度素子61により加熱又は冷却される対象物は、正確にいうと、DNA検体(反応溶液)である。しかしながら、DNA検体(反応溶液)は、直接的な加熱又は冷却が困難であるので、図4に示すようなプラスチックチューブ91に収容されて加熱又は冷却される。したがって、以下の説明では、加熱又は冷却の対象物は、DNA検体(反応溶液)収容に用いられるプラスチックチューブ91であるとする。
 図3Aに示すように、金属製ウェル71の装着部81は、プラスチックチューブ91の下側部分(図4中12mmという寸法が記載されている部分)の形状に合わせた凹部として形成されている。換言すると、装着部81は、プラスチックチューブ91を装着すべく加工が施されている。そして、装着部81に設けられたこの凹部の厚さ寸法は、p型半導体72P及びn型半導体72Nからの熱の授受を容易に行うことができるようにプラスチックチューブ91の外形形状に沿って薄く均一に形成されている。この厚さは、材料に依存した金属製ウェル71の形状を維持できる強度範囲であれば、極力薄くすることができる。
 このように、本実施形態では、DNA検体(反応溶液)収容に用いられるプラスチックチューブ91は、装着部81に直接装着される。このことは、図1の従来のペルチェ素子1を例えとして用いているならば、容器31がプラスチックチューブ91に相当し、電極板22Aがブリッジ兼電極機能を有していることを考慮すると、容器31が放熱板21Aを介在せずに電極板22Aの内部に直接装着されるのと等価であることを意味する。
 即ち、図1の従来のペルチェ素子1を用いて容器31を加熱又は冷却する場合、容器31は、放熱板21Aを介在して、ブリッジ兼電極機能を有する電極板22Aと熱の授受を行うことになる。したがって、従来のペルチェ素子1を用いて容器31を加熱又は冷却するための温度制御系では、セラミック等で形成される放熱板21Aは遅れ要素となる。この遅れ要素の分だけ、図1の従来のペルチェ素子1を用いた温度制御の応答性は悪化することになる。さらに、プラスチックチューブ91は、図5に示すように、p型半導体72P及びn型半導体72Nから金属製ウェル71を介在して熱の授受を行うことになる。したがって、厚み寸法が大きい金属製ウェル71は遅れ要素となる。この遅れ要素の分だけ温度制御の応答性は悪化することになる。
 これに対して、本実施形態の温度制御系、即ち、温度素子61を用いてプラスチックチューブ91を加熱又は冷却する温度制御系では、プラスチックチューブ91は、従来の放熱板21Aのような遅れ要素となるものを介在せずに、ブリッジ兼電極機能を有する金属製ウェル71と直接熱を授受することができる。したがって、遅れ要素が無い分だけ、本実施形態の温度制御の応答性は、図1の従来のペルチェ素子1を用いた場合と比較して高いものになる。さらに、本実施形態の金属製ウェル71の厚さ寸法は非常に薄いため、プラスチックチューブ91は、金属製ウェル71自体を加熱又は吸熱するための余分な熱を必要とせず、p型半導体72P及びn型半導体72Nは金属製ウェル71に対し直接熱を授受することができる。したがって、図示はしないが、余計な厚み寸法を有する金属製ウェル71を使用した場合と比較して、本実施形態の温度制御系の応答性はより一段と高いものになる。なお、このような効果の詳細については、図6~9を参照して後述する。
 次に、以上のDNA増幅装置51の動作について説明する。
 上述のごとく、機能的な視点では、本実施形態の電極兼放熱板73P,73Nは、放熱板機能及び電圧被印加機能を有するので、図1の従来のペルチェ素子1の放熱板21B及び電極板23P,23Nに相当する。したがって、電極兼放熱板73P,73Nは、従来のペルチェ素子1のB面部位と同じ振る舞いをする。そこで、以下、電極兼放熱板73P,73Nを、本実施形態の温度素子61における「B面部位」と適宜称する。
 一方、機能的な視点では、金属製ウェル71は、ブリッジ兼電極機能を有するので、上述のごとく、図1の従来のペルチェ素子1の電極板22Aに相当する。したがって、金属製ウェル71は、従来のペルチェ素子1のA面部位と同じ振る舞いをする。そこで以下、金属製ウェル71を、本実施形態の温度素子61における「A面部位」と適宜称する。ここで、注意すべき点は、本実施形態の温度素子61におけるA面部位には、従来のペルチェ素子1におけるA面部位の放熱板21Aのような、温度制御系にとって遅れ要素となるものは存在しない点である。
 また、本実施形態では、電極兼放熱板73Nの側を基準として、電極兼放熱板73Nが高電位になり、電極兼放熱板73Pが低電位になるように、温度制御部62により電圧が印加されることを、以下、「温度素子61にプラス電圧が印加される」と表現する。逆に、電極兼放熱板73Nが低電位になり、電極兼放熱板73Pが高電位になるように、温度制御部62により電圧が印加されることを、以下、「温度素子61にマイナス電圧が印加される」と表現する。
 この場合、温度制御部62により、温度素子61にプラス電圧が印加されると、電流が、図2中右方から左方に流れる。具体的には、電流が、電極兼放熱板73N、n型半導体72N、金属製ウェル71、p型半導体72P、及び電極兼放熱板73Pの順に流れる。その結果、A面部位である金属製ウェル71が吸熱部となる。即ち、A面部位である金属製ウェル71に直接装着されたプラスチックチューブ91(図3)から発せられた熱は、金属製ウェル71に直接吸熱され、これにより、プラスチックチューブ91が冷却される。
 詳細には、温度素子61に印加されたプラス電圧により流れる電流の値(絶対値)に応じて、A面部位である金属製ウェル71が低温となり、B面部位である電極兼放熱板73P,73Nが高温となるような温度差△Tが生ずる。
 ここで、A面部位が低温とは、絶対的な意味で低温というのではなく、B面部位の温度に対して相対的に低温という意味である。即ち、上述したように、B面部位である電極兼放熱板73P,73Nは、水冷部63により水冷されて一定温度を保っている。以下、このようなB面部位である電極兼放熱板73P,73N側の一定温度を、「基準温度」と称する。したがって、A面部位である金属製ウェル71は、基準温度よりも温度差△Tだけ低い温度になるように冷却される。
 この温度差△Tは、一定のリミットは存在するものの、温度素子61に印加されるプラス電圧により流れる電流の値(絶対値)が高くなるほど大きくなる。したがって、温度制御部62は、このような電流の値(絶対値)を徐々に大きくすることによって、温度差△Tを徐々に大きくしていくこと、即ち、A面部位である金属製ウェル71の温度を徐々に降下させることができる。この場合、プラスチックチューブ91は金属製ウェル71により直接冷却されるので、従来の図1の放熱板21Aのような遅れ要素を介して冷却される場合と比較して、温度制御の応答性は高いものになる。さらに、プラスチックチューブ91を冷却する金属製ウェル71の厚みは非常に薄いので、金属製ウェル71に対して余計な冷却を行う必要がない。したがって、余分な熱の伝導が必要となる厚い金属製ウェル71(図示せず)のような遅れ要素を介して冷却される場合と比較して、温度制御の応答性は高いものになる。即ち、本実施形態では温度制御の目標値は電流値として温度制御部62により与えられるので、温度制御の目標値に対する対象物(プラスチックチューブ91)の温度降下の追従性は高いものになる。
 その後、温度制御部62により出力電圧の極性が反転された場合、即ち、温度素子61にマイナス電圧が印加された場合、電流が、プラス電圧が印加された場合とは逆方向の図2中左方から右方に流れる。具体的には、電流が、電極兼放熱板73P、p型半導体72P、金属製ウェル71、n型半導体72N、及び電極兼放熱板73Nの順に流れる。その結果、A面部位である金属製ウェル71は、今度は発熱部となる。即ち、A面部位である金属製ウェル71から発せられた熱は、プラスチックチューブ91に対して直接伝播され、これにより、プラスチックチューブ91が加熱される。
 詳細には、温度素子61にマイナス電圧が印加されると、A面部位である金属製ウェル71は、基準温度よりも温度差△Tだけ高い温度になるように加熱される。この温度差△Tは、一定のリミットは存在するものの、温度素子61に印加されるマイナス電圧によって流れる電流の値(絶対値)が高くなるほど大きくなる。したがって、温度制御部62は、このような電流の値(絶対値)を徐々に大きくすることによって、温度差△Tを徐々に大きくしていくこと、即ち、A面部位である金属製ウェル71の温度を徐々に上昇させることができる。この場合、プラスチックチューブ91は金属製ウェル71により直接加熱されるので、従来の図1の放熱板21Aのような遅れ要素を介して加熱される場合と比較して、温度制御の応答性は高いものになる。さらに、プラスチックチューブ91を加熱する金属製ウェル71の厚みは非常に薄いので、金属製ウェル71に対して余計な加熱を行う必要がない。したがって、余分な熱の伝導が必要となる厚い金属製ウェル71(図示せず)のような遅れ要素を介して加熱される場合と比較して、温度制御の応答性は高いものになる。即ち、ここでは温度制御の目標値が電流値として温度制御部62により与えられるので、温度制御の目標値に対する対象物(プラスチックチューブ91)の温度上昇の追従性は高いものになる。
 このように、温度制御部62は、出力電圧の極性(電流の極性)及び電流値を変化させることで、温度素子61を用いたプラスチックチューブ91に対する温度制御を実行することが可能になる。したがって、温度目標値の時間推移の所定パターンとして、出力電流の時間推移の所定パターンが温度制御部62に与えられることにより、PCR法が容易に実現可能になる。即ち、プラスチックチューブ91に収納されたDNA検体(反応溶液)が、当該所定パターンにしたがって変化する温度素子61の熱サイクルにより加熱又は冷却され、その結果、DNAが増幅する。
 なお、本発明は本実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、p型半導体及びn型半導体の組の個数は、図2の実施形態ではp型半導体72P及びn型半導体72nの組といった1組だけとされていたが、これに限定されず、複数組とすることができる。
 以上、本発明の実施形態として、p型半導体及びn型半導体の組の視点で幾つかの実施形態について説明した。当然ながら、その他の視点でも、本発明は様々な実施形態を取ることが可能である。
 例えば、温度素子61の基準温度を維持するための電極兼放熱板の冷却手法は、図2の実施形態では水冷部63による水冷式の手法が採用されていたが、これに限定されず、その他例えば、水以外の液体を使用した冷却手法を採用してもよいし、空冷式の手法を採用してもよい。
 また例えば、温度素子61により冷却又は加熱される対象物は、図2の実施形態ではプラスチックチューブ91、より正確にはそれに収納されたDNA検体(反応溶液)とされていたが、金属製ウェル71の装着部81に直接装着可能な物体であれば特に限定されない。換言すると、金属製ウェル71の装着部81の形状や個数は、図3の例に特に限定されず、冷却又は加熱の対象物体に応じて任意に変更することが可能である。ただし、この場合、装着部81は、対象物の形状に対応した加工が施されて、金属製ウェル71内に形成されていると、対象物に対する加熱又は冷却の応答性がさらに一段と高まるので好適である。
 また例えば、複数のプラスチックチューブ91を加熱又は冷却すべく、複数の金属製ウェル71を接続してもよいし、或いはまた、金属製ウェル71に形成させる装着部81の数を複数にしてもよい。即ち、図2の実施形態では温度素子61の個数は1つとされていたが、これに限定されず、その他例えば、各金属製ウェル71を1以上含む温度素子61を複数用意し、複数の温度素子61を連結して用いることもできる。
 以上、図2を参照して1つの温度素子61を含む場合のDNA増幅装置51について説明したが、DNA増幅装置51に含まれる温度素子61の個数は、これらの例に特に限定されない。
 例えば、直線状にM個の温度素子61を直列接続することができる。
 この場合には、メイン温度制御として、直列接続された方向に電流を流す温度制御を採用することによって、M個の温度素子61全体の温度制御(粗調整の温度制御)を実現できる。
 一方、サブ温度制御として、直列接続された方向と略垂直方向に、M個の温度素子61の個々に電流をそれぞれ独立して流す温度制御を採用することによって、M個の温度素子61の各々に対する個別の温度制御(微調整の温度制御)を、メイン制御とは独立かつ並行に実現できる。
 なお、M個の温度素子61のうち所定の1つを基準素子とすれば、基準素子に対するサブ温度制御は省略可能である。
 また、サブ温度制御の単位は、1つの温度素子61である必要はなく、2以上の温度素子61であってもよい。
 このように、M個の温度素子61を直列接続し、メイン温度制御とサブ温度制御とを適切に組み合わせることによって、M個の温度素子間のバラつきの影響を吸収して、複数の温度素子の各々の温度変化を略同一にすることが可能になる。
 なお、メイン温度制御とサブ温度制御とを適切に組み合わせることによって、逆に、複数の温度素子61の各々に対して、相異なる温度目標値を設定して、個別に温度制御することも容易に可能になる。
 さらに、M個の温度素子61の直列接続は、N個存在してもよい。
 この場合、温度制御部62は、N個の直列接続の各々を単位として、他の単位とは独立して、メイン温度制御及びサブ温度制御を実行することができる。
 換言すると、温度素子61は、N行M列の行列状に配置することができる。この場合、電流を流す方向を、行方向と列方向とに区分することができる。この場合、温度制御部62は、例えば行方向に流れる電流の制御としてメイン温度制御を行い、列方向に流れる電流の制御としてサブ温度制御を行うこともできる。このようにして、行方向と列方向との各々に対する個別の温度制御が相互に独立して実行可能になる。
 この場合も、メイン温度制御とサブ温度制御とを適切に組み合わせることによって、M個の温度素子間のバラつきの影響を吸収して、複数の温度素子の各々の温度変化を略同一にすることが可能になる。
 なお、メイン温度制御とサブ温度制御とを適切に組み合わせることによって、逆に、複数の温度素子61の各々に対して、相異なる温度目標値を設定して、個別に温度制御することも容易に可能になる。
 また、N行M列の行列状に配置され、メイン温度制御及びサブ温度制御が施される対象は、温度素子61である必要は特になく、ペルチェ効果を奏することが可能な任意の温度素子を採用することができる。
 このような各種各様の効果を奏する温度素子61をPCR法に適用することで、即ち、当該対象物としてDNA検体収容に用いられるプラスチックチューブ91を採用することで、PCR法における温度目標値の時間推移の所定パターンに対して、DNA検体の温度を追従して変化させることが可能になる。即ち、図6~8に示すように、PCR法におけるDNA検体の温度制御の高応答性が実現可能になる。その結果、1工程に要する時間が短縮され、処理効率の向上や省電力性の向上が達成可能になる。
 図6~8は、同一条件によるPCR法の試験を、従来のペルチェ素子1を備える従来のDNA増幅装置を用いて行った場合と、本発明に係る温度素子61を備えるDNA増幅装置51を用いて行った場合との比較を示す図である。
 図6は、本発明に係る厚み寸法が薄い金属製ウェル71を有する温度素子61を備えるDNA増幅装置51を用いてPCR法の試験を行った場合における、DNA検体(反応溶液)の温度の時系列変化を示す図である。
 図7は、従来のDNA増幅装置を用いてPCR法の試験を行った場合における、DNA検体(反応溶液)の温度の時系列変化を示す図である。
 図8は、本発明に係る厚み寸法が薄い金属製ウェル71を有する温度素子61を備えるDNA増幅装置51を用いてPCR法の試験を25サイクル行った場合における、DNA検体(反応溶液)の温度の時系列変化を示す図である。図6~8において、縦軸は温度(度)を示し、横軸は時間(秒)を示している。
 この両試験におけるPCR法における温度目標値の時間推移のパターンは、次の(A)乃至(C)のとおりである。
(A)最初に、温度目標値を94度として、94度まで加熱させて、94度で240秒間保持させる(変性)。この期間が、図6においては期間201aであり、図7においては期間301aである。
(B)次に、温度目標値を60度に切り替えて、60度まで冷却させて、60度で20秒間保持させる(アニーリング)。この期間が、図6においては期間201bであり、図7においては期間301bである。
(C)次に、温度目標値を72度に切り替えて、72度まで加熱させて、72度で60秒間保持させる(伸長)。この期間が、図6においては期間201cであり、図7においては期間301cである。
 以後、上述の(A)の工程(変性)の期間を30秒間に切り替え、このサイクル201及び301((変性)~(伸長))を25回繰り返し行った。
 また、この試験条件は次の(a)乃至(c)のとおりである。
 (a)両試験とも、0.2mlの標準品のプラスチックチューブ91が用いられ、当該プラスチックチューブ91の装着部の穴径は、9.6mmとされた。ただし、装着部を有する従来の金属製ウェルは、本発明に係る装着部81を有する金属製ウェル71の厚さ寸法と比較して、厚いものが採用された。
 (b)DNA検体(反応溶液)の温度は、両試験とも、同一の熱電対をプラスチックチューブ91内に挿入することで測定された。
 (c)なお、本発明に係る温度素子61を備えるDNA増幅装置51を用いたPCR法の試験において、温度制御部62の出力電流は次のとおりとなった。
 即ち、図6の期間201aのうち、加熱期間(94度まで温度を上昇させている期間)は19.6Aであり、温度保持期間(94度で保持させている期間)は10.4Aであった。図6の期間201bのうち、冷却期間(60度まで温度を下降させている期間)は18.1Aであり、温度保持期間(60度で保持させている期間)は5.4Aであった。図6の期間201cのうち、加熱期間(72度まで温度を上昇させている期間)は18.5Aであり、温度保持期間(72度で保持させている期間)は7.3Aであった。
 従来の金属製ウェルを備える従来のDNA増幅装置を用いてPCR法の試験を行った場合には、図7の期間301a乃至301cの何れにおいても波形が鈍っていることから明らかなように、温度目標値の時間推移のパターンに対して、DNA検体(反応溶液)の温度が追従して変化していない。即ち、DNA検体(反応溶液)の温度が、温度目標値(期間301aにおいては94度、期間301bおいては60度、期間301cにおいては72度)に到達するまでに遅れが生じている。また、初めのサイクル301の伸長の期間301cと3回目のサイクルの伸長の期間303cとを比較すると明らかなように、サイクル数を増毎に波形が乱れていくことから、非特異的配列(目的としていない産物)も一緒に増幅されることとなる。これに対して、本発明に係る金属製ウェル71を有する温度素子61を備えるDNA増幅装置51を用いてPCR法の試験を行った場合には、図8に示すように、最初のサイクル205の波形と最後の方のサイクル225の波形とで乱れが殆ど生じない。
 このように、従来のDNA増幅装置では、温度目標値の時間推移のパターンに対してDNA検体(反応溶液)の温度が追従できない。この理由は次のとおりである。即ち、上述したように、従来のペルチェ素子1のA面部位での温度変化は、遅れ要素となる金属製ウェルを介在して、金属製ウェルに装着されたプラスチックチューブ91に伝達されるからである。
 これに対して、本発明に係る金属製ウェル71を有する温度素子61を備えるDNA増幅装置51を用いてPCR法の試験を行った場合には、図6の期間201a乃至201cの何れにおいても波形が急峻になっていることから明らかなように、温度目標値の時間推移のパターンに対して、DNA検体(反応溶液)の温度がほぼ追従して変化している。即ち、DNA検体(反応溶液)の温度が、温度目標値(期間201aにおいては94度、期間201bにおいては60度、期間201cにおいては72度)に到達するまでに遅れがほぼ生じていない。その結果、温度目標値の時間推移のパターンの(A)における「94度で240秒間保持させる」という目標に対して、図6の期間201aでは、94度±0.5度以内の時間が240秒と当該目標が達成できている。以下同様に、温度目標値の時間推移のパターンの(B)における「60度で20秒間保持させる」という目標に対して、図6の期間201cでは、60度±0.5度以内の時間が20秒と当該目標が達成できている。温度目標値の時間推移のパターンの(C)における「72度で60秒間保持させる」という目標に対して、図6の期間201cでは、72度±0.5度以内の時間が60秒と当該目標が達成できている。
 さらに言えば、±0.5度という目標が達成されただけではなく、それよりも遥かに高精度の±0.01度が達成できている点にも注目すべきである。
 なお、図6において、温度上昇又は下降時においてプロット点の間隔が空いているのは、温度勾配が急峻になったため、即ち、温度制御の応答性が向上して短時間で温度上昇又は下降ができるようになったためである。
 このようにして本発明に係る金属製ウェル71を有する温度素子61を備えるDNA増幅装置51では、温度目標値の時間推移のパターンに対してDNA検体(反応溶液)の温度が追従できるようになる。この理由は次のとおりである。即ち、上述したように、非常に薄い金属製ウェル71により必要以上の熱が奪われないことから、遅れ要素となるものを一切介在せずに、プラスチックチューブ91に直接伝達されるからである。
 図9は、同一条件によるPCR法の試験を、従来のDNA増幅装置を用いて行った場合と、本発明に係る金属製ウェル71を有する温度素子61を備えるDNA増幅装置51を用いて行った場合との比較を示す図である。
 図9(A)は、本発明に係る厚み寸法が薄い金属製ウェル71を有する温度素子61を備えるDNA増幅装置51を用いてPCR法の試験を行った場合における、アガロースゲル電気泳動写真を示す図である。
 図9(B)は、従来のDNA増幅装置を用いてPCR法の試験を行った場合における、アガロースゲル電気泳動写真を示す図である。図9において、横軸は温度(度)を示し、横軸はDNA断片の長さ(kb)を示している。
 この両試験におけるPCR法におけるアガロースゲル電気泳動写真の材料及び方法は次のとおりである。
 シロイヌナズナのAT1G15830遺伝子の内部領域を標的としたPCRを行った。標的配列長は1,000bp(1kb)である。鋳型DNAにはシロイヌナズナのゲノムDNA(gDNA)を用いた。
 反応液組成は0.5 ng/μl:gDNA, 0.2 μM: primer, 0.2 mM: dNTP, 2.0 mM: MgCl2, 1x ExTaq buffer, 0.025 U/μl ExTaq DNA polymeraseとした。
 サーマルサイクル条件は、初め、94度で4分間の熱変性を行い、1サイクルにつき熱変性94度で30秒、Ta(アニーリング)で20秒、及び伸長72度で60秒の3ステップ反応を25回繰り返し、その後72度で3分間の追加伸長反応を行った。Taは48度から62度の間で2度間隔とし、温度変化速度は上昇下降ともに3度/秒で行った。
 対照実験にはiCycler(BioRad社)を使用し、温度条件は上記と同じとした。
[結果]
 上記試薬をアガロースゲル電気泳動にかけることにより、図9のアガロースゲル泳動写真が示す増幅結果が得られた。図9(B)に示すように、対照実験(従来のDNA増幅装置による実験)では、58度以下では標的配列(上下2本の対)701は殆ど増加せず多数の非特異的配列(目的としていない産物)801が見られた。そして、目的産物の標的配列701は60度以上でようやく増幅が見られた。
 これに対し、図9(A)に示すように、本発明に係る金属製ウェル71を用いてPCR法の試験を行った場合には、目的産物の標的配列501は、少なくとも50度以上で見られることから、目的産物は、少なくとも50度以上で増幅していると考えられる。また、非特異的配列は、殆ど表れてないことからも明らかなように、非特異的配列は劇的に減少しており著しい改善が認められた。
 したがって、上述のことからも明らかなように、従来の金属製ウェルを使用した場合には、標的配列が、対で揃って出るのが難しい。
 また、従来の金属製ウェルを使用した場合には、標的配列の上方下方に非特異的配列も一緒に増幅されてしまった。
 以上のことから、本発明に係る金属製ウェル71を有するDNA増幅装置51を使用した場合には、従来のDNA増幅装置を使用した場合と比較して、温度勾配が大きく、かつ、温度の追随が正確であることが反映されている。
 本発明は、このような各種各様の実施形態によらず、例えば次のような効果を奏することが可能である。次のように開示する構成が本願発明に係る温度制御装置を実現させることになる。
 本発明に係る温度素子61に設けられた金属製ウェル71は、p型半導体72Pとn型半導体72nとを直接接合し、p型半導体72Pとn型半導体72nの一方から他方へ電流を流すと共に熱を伝搬することで、ペルチェ効果を生じさせる機能を有している。この金属製ウェル71には、冷却又は加熱の対象物を直接装着可能な装着部81が設けられている。したがって、当該対象物は、温度制御系にとって遅れ要素となるもの(例えば余分な金属製ウェル71の厚み)を介在せずにp型半導体72Pとn型半導体72nにより密接に加熱又は冷却される。即ち、p型半導体72Pとn型半導体72nは、金属製ウェル71により装着された対象物に対し、p型半導体72Pとn型半導体72nによる熱を直接伝達することができる。したがって、当該経路を伝搬する熱が対象物に直接供給されることによって、当該対象物が加熱され、また、当該対象物から発せられた熱が当該経路に直接供給されることによって、当該対象物が冷却される。その結果、従来の金属製ウェル71を有するペルチェ素子1を採用した場合と比較して、温度制御の高応答性が実現する。
 以上、本発明の第1実施形態に係るDNA増幅装置51について説明した。
 次に、本発明の第2実施形態に係るDNA増幅装置151について説明する。
[第2実施形態]
 本発明の第2実施形態に係るDNA増幅装置151は、第1実施形態に係るDNA増幅装置51と基本的に同様の概略構成を取ることができる。
 従って、図2は、第2実施形態に係るDNA増幅装置151の概略構成を示す上面図でもある。但し、第2実施形態では第1実施形態と比較して、金属製ウェル71の形状が異なる。また、金属製ウェル71の形状が異なることにあわせて、第2実施形態では、第1実施形態の装着部81に代えて、載置部111が採用される。
 図10は、第2実施形態に係るDNA増幅装置151の概略構成を示す斜視図である。
 DNA増幅装置151は、温度素子61と、温度制御部62と、水冷部63と、を備える。DNA増幅装置151の構成のうち、温度制御部62と、水冷部63と、の構成については、第1実施形態の構成と基本的に同様であるため、説明を省略する。
 温度素子61は、金属製ウェル171と、p型半導体72P及びn型半導体72Nの組と、電極兼放熱板73P,73Nと、水管74P,74Nと、を備える。温度素子61の構成のうち、p型半導体72P及びn型半導体72Nの組と、電極兼放熱板73P,73Nと、水管74P,74Nと、の構成については、第1実施形態の構成と基本的に同様であるため、説明を省略する。
 金属製ウェル171は、例えば縦1cm、横1cmの平板状に形成される。p型半導体72Pの他端は、金属製ウェル171の一端171aに直接接合されている一方で、n型半導体72Nの他端は、金属製ウェル171の一端171aに対向する他端171bに直接接合されている。
 本実施形態の金属製ウェル171は、p型半導体72P及びn型半導体72Nの組を直接接合する機能、即ち、図1の従来のペルチェ素子1の電極板22Aと同様の機能を有している。即ち、当該機能とは、p型半導体72Pとn型半導体72Nとの一方から他方へ、電流を流すと共に熱を伝搬することで、ペルチェ効果を生じさせる機能である。
 また、金属製ウェル171の上面171uには、加熱又は冷却の対象物を直接載置する載置部111が設けられている。
 ここで注目すべき点は、金属製ウェル171の外側形状は、載置部111の外形形状と略同様の形状である点である。即ち、金属製ウェル171の厚みは、p型半導体72P及びn型半導体72Nと載置部111(より正確には、DNA検体)との距離がより接近するように、薄く形成されている。
 載置部111は、一般的に、キャピラリチップとも呼ばれ、例えば金属製ウェル171にあわせて縦1cm、横1cmの平板状に形成される。載置部111は、対象物であるPCR法におけるDNA検体等の液体を載置すべく、複数の注入口121a、121b、121c、121dと、キャピラリ122と、を備える。各注入口121a、121b、121c、121dを特に分けて説明する必要がない場合には、これらをまとめて「注入口121」と呼ぶ。
 各注入口121は、穴状に形成され、ピペットやマイクロピペット等により、DNA検体等の液体を注入できるように形成されている。注入口121は、載置部111上に複数形成され、その個数は特に限定されないが、本実施形態においては4個形成されている。
 キャピラリ122は、各注入口121a、121b、121c、121d同士を接続する複数の流路(毛細管)により構成されている。1つの流路においては、注入口121から注入された液体(対象物)が、毛細管現象により他方の注入口121に移動する。具体的には例えば、注入口121aから注入された液体は、毛細管現象によりキャピラリ122内を移動して、他の注入口121b、121c又は121へ移動する。これにより、キャピラリ122内において、一の注入口(例えば、注入口121a)から注入された液体と、他の注入口(例えば、注入口121b、121c又は121d)から注入された液体と、を混合することができる。
 本発明に係る温度素子61に設けられた金属製ウェル171は、p型半導体72Pとn型半導体72nとを直接接合し、p型半導体72Pとn型半導体72nの一方から他方へ電流を流すと共に熱を伝搬することで、ペルチェ効果を生じさせる機能を有している。この金属製ウェル171には、冷却又は加熱の対象物を直接載置可能な載置部111が設けられている。したがって、当該対象物は、温度制御系にとって遅れ要素となるもの(例えば余分な金属製ウェル171の厚み)を介在せずにp型半導体72Pとn型半導体72nにより密接に加熱又は冷却される。即ち、p型半導体72Pとn型半導体72nは、金属製ウェル171により載置された対象物に対し、p型半導体72Pとn型半導体72nによる熱を直接伝達することができる。したがって、当該経路を伝搬する熱が対象物に直接供給されることによって、当該対象物が加熱され、また、当該対象物から発せられた熱が当該経路に直接供給されることによって、当該対象物が冷却される。その結果、従来の金属製ウェル71を有するペルチェ素子1を採用した場合と比較して、温度制御の高応答性が実現する。
 以上、本発明の第2実施形態に係るDNA増幅装置151について説明した。
 次に、本発明の第3実施形態に係るDNA増幅装置251について説明する。
[第3実施形態]
 本発明の第3実施形態に係るDNA増幅装置251は、第1実施形態に係るDNA増幅装置51と基本的に同様の概略構成を取ることができる。
 従って、図2は、第3実施形態に係るDNA増幅装置251の概略構成を示す上面図でもある。但し、第3実施形態では第1実施形態と比較して、金属製ウェル71の形状が異なる。また、金属製ウェル71の形状が異なることにあわせて、第1実施形態の装着部81に代えて、載置部211が採用される。
 図11は、第3実施形態に係るDNA増幅装置251の概略構成を示す斜視図である。
 DNA増幅装置251は、温度素子61と、温度制御部62と、水冷部63と、を備える。DNA増幅装置251の構成のうち、温度制御部62と、水冷部63と、の構成については、第1実施形態の構成と基本的に同様であるため、説明を省略する。
 温度素子61は、金属製ウェル271と、p型半導体72P及びn型半導体72Nの組と、電極兼放熱板73P,73Nと、水管74P,74Nと、を備える。温度素子61の構成のうち、p型半導体72P及びn型半導体72Nの組と、電極兼放熱板73P,73Nと、水管74P,74Nと、の構成については、第1実施形態の構成と基本的に同様であるため、説明を省略する。
 金属製ウェル271は、例えば縦1cm、横1cmの平板状に形成される。p型半導体72Pの他端は、金属製ウェル271の一端271aに直接接合されている一方で、n型半導体72Nの他端は、金属製ウェル271の一端271aに対向する他端271bに直接接合されている。
 本実施形態の金属製ウェル271は、p型半導体72P及びn型半導体72Nの組を直接接合する機能、即ち、図1の従来のペルチェ素子1の電極板22Aと同様の機能を有している。即ち、当該機能とは、p型半導体72Pとn型半導体72Nとの一方から他方へ、電流を流すと共に熱を伝搬することで、ペルチェ効果を生じさせる機能である。
 また、金属製ウェル271の上面271uには、加熱又は冷却の対象物を直接載置する載置部211が設けられている。
 ここで注目すべき点は、金属製ウェル271の外側形状は、載置部211の外形形状と略同様の形状である点である。即ち、金属製ウェル271の厚みは、p型半導体72P及びn型半導体72Nと載置部211(より正確には、DNA検体)との距離がより接近するように、薄く形成されている。
 載置部211は、例えば金属製ウェル171にあわせて縦1cm、横1cmの平板状に形成される。載置部211は、対象物であるPCR法におけるDNA検体等の液体を載置すべく、複数の凹部221-1、221-2、・・・221-n(nは1以上の自然数)、を備える。各凹部221-1、221-2、・・・221-nを特に分けて説明する必要がない場合には、これらをまとめて「凹部221」と呼ぶ。
 各凹部221は、一辺が例えば数十μmにより形成された矩形状の凹みにより形成され、ピペットやマイクロピペット等により滴下された液体を受け入れることができるように形成されている。凹部221は、載置部211上に複数形成され、その個数や配置の形態は特に限定されないが、本実施形態においては、載置部211の横方向に9列、縦方向に4行略等間隔で載置され、合計36個形成されている。
 本発明に係る温度素子61に設けられた金属製ウェル271は、p型半導体72Pとn型半導体72nとを直接接合し、p型半導体72Pとn型半導体72nの一方から他方へ電流を流すと共に熱を伝搬することで、ペルチェ効果を生じさせる機能を有している。この金属製ウェル271には、冷却又は加熱の対象物を直接載置可能な載置部211が設けられている。したがって、当該対象物は、温度制御系にとって遅れ要素となるもの(例えば余分な金属製ウェル271の厚み)を介在せずにp型半導体72Pとn型半導体72nにより密接に加熱又は冷却される。即ち、p型半導体72Pとn型半導体72nは、金属製ウェル271により載置された対象物に対し、p型半導体72Pとn型半導体72nによる熱を直接伝達することができる。したがって、当該経路を伝搬する熱が対象物に直接供給されることによって、当該対象物が加熱され、また、当該対象物から発せられた熱が当該経路に直接供給されることによって、当該対象物が冷却される。その結果、従来の金属製ウェル71を有するペルチェ素子1を採用した場合と比較して、温度制御の高応答性が実現する。
 なお、本発明は本実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、本実施形態では、温度素子61をPCR法における所定の温度パターンに対して、DNA検体(反応溶液)の温度変化を追従させるDNA増幅装置51に適用する例について説明したが、これに限定されない。例えば、温度素子61を一般的な液体を温度制御する方法における所定の温度パターンに対して、DNA検体(反応溶液)以外の液体の温度変化を追従させる制御装置全般について適用することができる。
 51 DNA増幅装置
 61,61a,61b 温度素子
 62 温度制御部
 63 水冷部
 71 金属製ウェル
 72P p型半導体
 72N n型半導体
 73P,73N 電極兼放熱板
 74P,74N 水管
 81 装着部
 111 載置部
 121 注入口
 122 キャピラリ
 151 DNA増幅装置
 171 金属製ウェル
 211 載置部
 221 凹部
 251 DNA増幅装置
 271 金属製ウェル

Claims (10)

  1.  対象物を加熱又は冷却する温度制御装置において、
     ペルチェ効果により前記対象物を加熱又は冷却する温度素子と、
     前記温度素子に対する通電制御を行う制御部と
     を備え、
     前記温度素子は、
      相互に離間して配置されるp型半導体及びn型半導体の組と、
      前記対象物を装着する装着部を有し、前記p型半導体とは第1又は第2の面で、前記n型半導体とは前記第1又は第2の面に対向する第2又は第1の面で各々に接合する接合部位と、
      前記p型半導体に接合され、前記制御部により電圧が印加される第1の電極部位と、
      前記n型半導体に接合され、前記制御部により電圧が印加される第2の電極部位と
     を有し、
     前記接合部位の形状は、前記対象物の外形形状と略同形状に形成され、
     前記制御部により前記第1の電極部位と前記第2の電極部位との各々に異なる電圧が印加されて、前記p型半導体と前記n型半導体との間に電位差が生じた場合、前記接合部位は、前記p型半導体と前記n型半導体との一方から他方へ電流を流すと共に熱を伝搬することで、前記ペルチェ効果を生じさせる
     温度制御装置。
  2.  前記対象物は、DNA(Deoxyribonucleic acid)検体収容に用いられる所定の容器であり、
     前記装着部は、前記容器を装着すべく加工が施された
     請求項1に記載の温度制御装置。
  3.  前記温度素子の前記第1の電極部位と前記第2の電極部位とのうち少なくとも一方を冷却する冷却部
     をさらに備える請求項1又は2の何れか1項に記載の温度制御装置。
  4.  前記温度制御装置は、携帯型の装置である
     請求項1乃至3の何れか1項に記載の温度制御装置。
  5.  ペルチェ効果により対象物を加熱又は冷却する温度素子において、
      相互に離間して配置されるp型半導体及びn型半導体の組と、
      前記対象物を装着する装着部を有し、前記p型半導体と前記n型半導体との各々に接合する接合部位と、
      前記p型半導体に接合され、外部から電圧が印加される第1の電極部位と、
      前記n型半導体に接合され、外部から電圧が印加される第2の電極部位と
     を有し、
     前記接合部位の形状は、前記対象物の外形形状と略同形状に形成され、
     前記第1の電極部位と前記第2の電極部位との各々に異なる電圧が外部から印加されて、前記p型半導体と前記n型半導体との間に電位差が生じた場合、前記接合部位は、前記p型半導体と前記n型半導体との一方から他方へ電流を流すと共に熱を伝搬することで、前記ペルチェ効果を生じさせる
     温度素子。
  6.  前記装着部は、前記対象物の形状に対応した加工が施されて、前記接合部位内に形成されている
     請求項5に記載の温度素子。
  7.  前記接合部位の厚さ寸法は、略均一に形成され、前記装着部の形状に沿って形成されている
     請求項6に記載の温度素子。
  8.  対象物を加熱又は冷却する温度制御装置において、
     ペルチェ効果により前記対象物を加熱又は冷却する温度素子と、
     前記温度素子に対する通電制御を行う制御部と
     を備え、
     前記温度素子は、
      相互に離間して配置されるp型半導体及びn型半導体の組と、
      前記対象物を載置する載置部を有し、前記p型半導体とは第1又は第2の部位で、前記n型半導体とは前記第1又は第2の部位に対向する第2又は第1の部位で各々に接合する接合部位と、
      前記p型半導体に接合され、前記制御部により電圧が印加される第1の電極部位と、
      前記n型半導体に接合され、前記制御部により電圧が印加される第2の電極部位と
     を有し、
     前記接合部位の形状は、前記載置部の外形形状と略同形状に形成され、
     前記制御部により前記第1の電極部位と前記第2の電極部位との各々に異なる電圧が印加されて、前記p型半導体と前記n型半導体との間に電位差が生じた場合、前記接合部位は、前記p型半導体と前記n型半導体との一方から他方へ電流を流すと共に熱を伝搬することで、前記ペルチェ効果を生じさせる
     温度制御装置。
  9.  前記載置部は、
      前記対象物が注入される注入口と、
      前記注入口から注入された前記対象物を、毛細管現象により移動させるキャピラリと、
     を含むように形成されている、
     請求項8に記載の温度制御装置。
  10.  前記載置部は、
     前記対象物を受け入れる複数の凹部を含むように形成されている、
     請求項8に記載の温度制御装置。
     
PCT/JP2012/061747 2011-06-16 2012-05-08 温度制御装置、及び温度素子 WO2012172884A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/126,750 US9400128B2 (en) 2011-06-16 2012-05-08 Temperature control device and temperature element
JP2013520468A JP5761767B2 (ja) 2011-06-16 2012-05-08 温度制御装置、及び温度素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011134496 2011-06-16
JP2011-134496 2011-06-16

Publications (1)

Publication Number Publication Date
WO2012172884A1 true WO2012172884A1 (ja) 2012-12-20

Family

ID=47356880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061747 WO2012172884A1 (ja) 2011-06-16 2012-05-08 温度制御装置、及び温度素子

Country Status (3)

Country Link
US (1) US9400128B2 (ja)
JP (1) JP5761767B2 (ja)
WO (1) WO2012172884A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065917A1 (ja) * 2018-09-28 2020-04-02 株式会社日立ハイテクノロジーズ サーマルサイクラーおよびそれを備えたリアルタイムpcr装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317030A (ja) * 1992-05-21 1993-12-03 Hitachi Ltd マイクロチャンバを用いた生化学反応装置
JP2000270837A (ja) * 1999-03-25 2000-10-03 Sanyo Electric Co Ltd インキュベータ
JP2007078393A (ja) * 2005-09-12 2007-03-29 Yamaha Corp マイクロチップ
JP2011100939A (ja) * 2009-11-09 2011-05-19 Kanagawa Univ ペルチェモジュール
JP2011125287A (ja) * 2009-12-18 2011-06-30 Kanagawa Univ Dna増幅方法、温度制御装置、及び温度素子
JP2011188749A (ja) * 2010-03-11 2011-09-29 Kanagawa Univ 温度制御装置及び温度素子用の電源装置
JP2012055293A (ja) * 2010-09-13 2012-03-22 Kanagawa Univ 温度制御装置、及び温度素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865986A (en) * 1988-10-06 1989-09-12 Coy Corporation Temperature control apparatus
US6193866B1 (en) * 1996-03-27 2001-02-27 Curagen Corporation Separation of charged particles by a spatially and temporally varying electric field
US6558947B1 (en) * 1997-09-26 2003-05-06 Applied Chemical & Engineering Systems, Inc. Thermal cycler
US6657169B2 (en) * 1999-07-30 2003-12-02 Stratagene Apparatus for thermally cycling samples of biological material with substantial temperature uniformity
JP4464869B2 (ja) 2005-01-21 2010-05-19 長野県 Dna増幅装置
JP4857800B2 (ja) 2005-12-27 2012-01-18 凸版印刷株式会社 温度制御方法
TWI368651B (en) * 2008-10-24 2012-07-21 Quanta Comp Inc Temperature variation apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05317030A (ja) * 1992-05-21 1993-12-03 Hitachi Ltd マイクロチャンバを用いた生化学反応装置
JP2000270837A (ja) * 1999-03-25 2000-10-03 Sanyo Electric Co Ltd インキュベータ
JP2007078393A (ja) * 2005-09-12 2007-03-29 Yamaha Corp マイクロチップ
JP2011100939A (ja) * 2009-11-09 2011-05-19 Kanagawa Univ ペルチェモジュール
JP2011125287A (ja) * 2009-12-18 2011-06-30 Kanagawa Univ Dna増幅方法、温度制御装置、及び温度素子
JP2011188749A (ja) * 2010-03-11 2011-09-29 Kanagawa Univ 温度制御装置及び温度素子用の電源装置
JP2012055293A (ja) * 2010-09-13 2012-03-22 Kanagawa Univ 温度制御装置、及び温度素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065917A1 (ja) * 2018-09-28 2020-04-02 株式会社日立ハイテクノロジーズ サーマルサイクラーおよびそれを備えたリアルタイムpcr装置
KR20210028671A (ko) * 2018-09-28 2021-03-12 주식회사 히타치하이테크 서멀 사이클러 및 그것을 구비한 리얼타임 pcr 장치
GB2590312A (en) * 2018-09-28 2021-06-23 Hitachi High Tech Corp Thermal cycler and real-time PCR device having same
JPWO2020065917A1 (ja) * 2018-09-28 2021-08-30 株式会社日立ハイテク サーマルサイクラーおよびそれを備えたリアルタイムpcr装置
JP7038221B2 (ja) 2018-09-28 2022-03-17 株式会社日立ハイテク サーマルサイクラーおよびそれを備えたリアルタイムpcr装置
GB2590312B (en) * 2018-09-28 2022-10-19 Hitachi High Tech Corp Thermal cycler and real-time PCR device including same
KR102518245B1 (ko) 2018-09-28 2023-04-06 주식회사 히타치하이테크 서멀 사이클러 및 그것을 구비한 리얼타임 pcr 장치

Also Published As

Publication number Publication date
JP5761767B2 (ja) 2015-08-12
JPWO2012172884A1 (ja) 2015-02-23
US20140130518A1 (en) 2014-05-15
US9400128B2 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
JP4695851B2 (ja) マイクロ化学チップ温度調節装置
US9718061B2 (en) Instruments and method relating to thermal cycling
CN111998572B (zh) 包括电阻加热器的热电加热/冷却装置
US7440684B2 (en) Method and apparatus for improved temperature control in microfluidic devices
US9180459B2 (en) Devices and methods for thermally-mediated chemical reactions
US11845080B2 (en) Temperature control system for microfluidic device
US20070084279A1 (en) Apparatus and method for controlling micro-fluid temperature
KR20070118683A (ko) 다수의 샘플을 포함하는 블럭의 열순환
JP2008035859A (ja) 加熱及び冷却のための機器
US20120240597A1 (en) Temperature control apparatus for samples storage
JP5470655B2 (ja) 温度制御装置及び温度素子用の電源装置
JP5822448B2 (ja) 温度制御装置、及び温度素子
JP5761767B2 (ja) 温度制御装置、及び温度素子
JP4482684B2 (ja) マイクロ流体デバイス反応用温度調節器
JP2005117987A (ja) Dna増幅装置
JP2006064365A (ja) 温度調節装置
US20130071917A1 (en) Capillary for apparatus of insulated isothermal polymerase chain reaction
JP2011125287A (ja) Dna増幅方法、温度制御装置、及び温度素子
CN100405625C (zh) 制作微型热电元件的方法及其整合热电元件的结构
KR20100117922A (ko) Pcr 장치
JP4851822B2 (ja) マイクロ化学チップ
US20240109070A1 (en) Device for heating sample
JP7253032B1 (ja) 対流式ポリメラーゼ連鎖反応のための加熱装置
JP7132158B2 (ja) 温度調整装置及び核酸増幅装置
KR20090055201A (ko) 마랑고니 대류와 전기 모세관 유동을 이용한 pcr 장치및 pcr 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520468

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14126750

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12799783

Country of ref document: EP

Kind code of ref document: A1