WO2020065833A1 - 二次電池 - Google Patents
二次電池 Download PDFInfo
- Publication number
- WO2020065833A1 WO2020065833A1 PCT/JP2018/035975 JP2018035975W WO2020065833A1 WO 2020065833 A1 WO2020065833 A1 WO 2020065833A1 JP 2018035975 W JP2018035975 W JP 2018035975W WO 2020065833 A1 WO2020065833 A1 WO 2020065833A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- negative electrode
- electrode active
- secondary battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- This technology relates to a secondary battery including an electrolyte solution together with a positive electrode and a negative electrode.
- This secondary battery includes an electrolyte solution together with a positive electrode and a negative electrode. Since the configuration of a secondary battery has a great effect on battery characteristics, various studies have been made on the configuration of the secondary battery. Specifically, in order to realize stable charge / discharge cycle performance, each of primary particles of a plurality of lithium phosphate compounds is coated with a carbon-containing electronic conductive material, and the plurality of lithium phosphate compounds are Primary particles are bonded to each other via an electronic conductive substance (for example, see Patent Document 1).
- the present technology has been made in view of such a problem, and an object thereof is to provide a secondary battery capable of obtaining excellent battery characteristics.
- a secondary battery includes a positive electrode including a lithium manganese phosphate compound represented by the following formula (1) and including a plurality of primary particles having an average particle diameter of 100 nm or less; It comprises a negative electrode having an electrochemical capacity per unit area that is equal to or less than the electrochemical capacity per unit area, and an electrolytic solution.
- a positive electrode including a lithium manganese phosphate compound represented by the following formula (1) and including a plurality of primary particles having an average particle diameter of 100 nm or less; It comprises a negative electrode having an electrochemical capacity per unit area that is equal to or less than the electrochemical capacity per unit area, and an electrolytic solution.
- M1 is magnesium (Mg), aluminum (Al), boron (B), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), silicon (Si), tin (Sn), strontium (Sr), titanium (Ti), vanadium (V), tungsten (W), zinc (Zn), zirconium (Zr) and iron (Fe) .x and y Satisfies 0 ⁇ x ⁇ 1.2 and 0 ⁇ y ⁇ 1.)
- each of the plurality of primary particles contained in the positive electrode is lithium manganese. Since it contains a phosphoric acid compound and the average particle size of the plurality of primary particles is 100 nm or less, excellent battery characteristics can be obtained.
- the effects of the present technology are not necessarily limited to the effects described here, and may be any of a series of effects related to the present technology described later.
- FIG. 2 is an enlarged cross-sectional view illustrating a configuration of a main part of the secondary battery illustrated in FIG. 1.
- FIG. 3 is a cross-sectional view schematically illustrating a configuration of a plurality of positive electrode active material particles.
- FIG. 9 is a cross-sectional view schematically illustrating another configuration of a plurality of positive electrode active material particles. It is sectional drawing which represents typically the structure of the some positive electrode active material particle which is a comparative example.
- FIG. 4 is a cross-sectional view for describing a method for measuring the particle size of positive electrode active material particles.
- FIG. 8 is an enlarged cross-sectional view illustrating a configuration of a main part of the secondary battery illustrated in FIG. 7. It is sectional drawing showing the structure of the secondary battery (coin type) for a test. It is a figure showing a discharge curve.
- Secondary battery (cylindrical) 1-1. Configuration 1-2. Operation 1-3. Manufacturing method 1-3-1. Method for producing positive electrode active material 1-3-2. Manufacturing method of secondary battery 1-4. Action and effect Secondary battery (laminated film type) 2-1. Configuration 2-2. Operation 2-3. Manufacturing method 2-4. Action and effect Modified example 4. Applications of secondary batteries
- the secondary battery described here includes a positive electrode 21 and a negative electrode 22 as described later.
- This secondary battery is, for example, a lithium ion secondary battery in which a battery capacity (capacity of the negative electrode 22) is obtained by utilizing insertion and extraction of lithium.
- FIG. 1 shows a cross-sectional configuration of the secondary battery
- FIG. 2 is an enlarged cross-sectional configuration of a main part (the wound electrode body 20) of the secondary battery shown in FIG.
- FIG. 2 shows only a part of the spirally wound electrode body 20.
- FIGS. 3 and 4 each schematically show a cross-sectional configuration of the plurality of positive electrode active material particles 1.
- FIG. 5 schematically illustrates a cross-sectional configuration of a plurality of positive electrode active material particles 3 as a comparative example.
- FIG. 6 schematically illustrates a cross-sectional configuration of the positive electrode active material particles 1 to explain a method for measuring the particle size of the positive electrode active material particles 1 (primary particles P1).
- This secondary battery is, for example, a cylindrical secondary battery in which a battery element (rolled electrode body 20) is housed inside a cylindrical battery can 11, as shown in FIG.
- the secondary battery includes, for example, a pair of insulating plates 12 and 13 and a wound electrode body 20 inside a battery can 11.
- the wound electrode body 20 is, for example, a structure in which a positive electrode 21 and a negative electrode 22 are stacked on each other with a separator 23 interposed therebetween, and then the positive electrode 21, the negative electrode 22, and the separator 23 are wound.
- the wound electrode body 20 is impregnated with an electrolytic solution that is a liquid electrolyte.
- the battery can 11 has, for example, a hollow cylindrical structure in which one end is closed and the other end is open, and includes, for example, a metal material such as iron. However, the surface of the battery can 11 may be plated with a metal material such as nickel, for example.
- the insulating plates 12 and 13 are arranged, for example, so as to sandwich the wound electrode body 20 therebetween.
- a battery cover 14, a safety valve mechanism 15, and a PTC element 16 are caulked via a gasket 17. For this reason, the open end of the battery can 11 is sealed.
- the material for forming the battery lid 14 is, for example, the same as the material for forming the battery can 11.
- the safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery lid 14, and the safety valve mechanism 15 is electrically connected to the battery lid 14 via the thermal resistance element 16.
- the disk plate 15 ⁇ / b> A is inverted. Connection is lost.
- the electric resistance of the thermal resistance element 16 increases as the temperature rises in order to prevent abnormal heat generation due to a large current.
- the gasket 17 includes, for example, an insulating material. However, the surface of the gasket 17 may be coated with, for example, asphalt.
- a center pin 24 is inserted into a space 20C provided at the center of the wound electrode body 20.
- the center pin 24 does not have to be inserted into the space 20C, for example.
- a positive electrode lead 25 is connected to the positive electrode 21.
- the positive electrode lead 25 contains, for example, a conductive material such as aluminum.
- the positive electrode lead 25 is, for example, electrically connected to the battery cover 14 via the safety valve mechanism 15.
- a negative electrode lead 26 is connected to the negative electrode 22, and the negative electrode lead 26 includes, for example, a conductive material such as nickel.
- the negative electrode lead 26 is, for example, electrically connected to the battery can 11.
- the positive electrode 21 includes, for example, a positive electrode current collector 21A and a positive electrode active material layer 21B provided on the positive electrode current collector 21A, as shown in FIG.
- This positive electrode active material layer 21B may be provided, for example, only on one surface of the positive electrode current collector 21A, or may be provided on both surfaces of the positive electrode current collector 21A.
- FIG. 2 shows a case where, for example, the positive electrode active material layer 21B is provided on both surfaces of the positive electrode current collector 21A.
- the positive electrode current collector 21A contains, for example, a conductive material such as aluminum.
- the positive electrode active material layer 21B includes a plurality of positive electrode active material particles 1, which are a plurality of primary particles P1, and each of the plurality of positive electrode active material particles 1 stores and releases lithium. It includes any one or more of the possible positive electrode materials.
- the positive electrode active material layer 21B may further include, for example, one or more of other materials such as a positive electrode binder and a positive electrode conductive agent.
- the positive electrode material contains any one or more of lithium manganese phosphate compounds represented by the following formula (1). This is because the lithium manganese phosphate compound is extremely stable at the time of charge and discharge, and the charge and discharge reaction easily and smoothly proceeds.
- M1 is magnesium (Mg), aluminum (Al), boron (B), cobalt (Co), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), silicon (Si), tin (Sn), strontium (Sr), titanium (Ti), vanadium (V), tungsten (W), zinc (Zn), zirconium (Zr) and iron (Fe) .x and y Satisfies 0 ⁇ x ⁇ 1.2 and 0 ⁇ y ⁇ 1.)
- the lithium manganese phosphate compound represented by the formula (1) is a phosphate compound containing lithium (Li) and manganese (Mn) as constituent elements.
- the lithium manganese phosphate compound may further contain any one or more of the additional metal elements (M1).
- the lithium manganese phosphate compound not containing the additional metal element (M1) is, for example, LiMn 0.50 Co 0.50 PO 4 , LiMn 0.30 Co 0.70 PO 4 , LiMn 0.5 Fe 0.5 PO 4 , LiMn 0.7 Fe 0.3 PO 4 and LiMn 0.75 Fe 0.25 PO 4 .
- the lithium manganese phosphate compound containing the additional metal element (M1) is, for example, LiMn 0.70 Fe 0.27 Mg 0.03 PO 4 , LiMn 0.85 Fe 0.10 Mg 0.05 PO 4 and LiMn 0.75 Fe 0.20 Mg 0.04 Co 0.01 PO 4 And so on.
- the type of the additional metal element (M1) is not particularly limited as long as it is one or more of magnesium and the like. That is, the type of the additional metal element (M1) may be only one type or two or more types.
- the value of y shown in Expression (1) is not particularly limited as long as it satisfies 0 ⁇ y ⁇ ⁇ 1. Among them, y preferably satisfies y ⁇ 0.5.
- a range (discharge region R1) attributable to the manganese reduction reaction (Mn 3+ ⁇ Mn 2+ ) in the discharge curve (the horizontal axis is the depth of discharge (%) and the vertical axis is the discharge voltage (V)). This is because the range of the discharge voltage is essentially widened, that is, the range in which the discharge voltage is apt to decrease is widened, and the decrease in the discharge voltage is effectively suppressed in that range (see FIG. 8).
- the average particle size (nm) of the plurality of positive electrode active material particles 1 is controlled to be extremely small, and specifically, 100 nm or less. As described below, under the condition that the electrochemical capacity per unit area of the negative electrode 22 is equal to or less than the electrochemical capacity per unit area of the positive electrode 21, the average of the plurality of positive electrode active material particles 1 (lithium manganese phosphate compound) is determined. This is because the following advantages can be obtained when the particle size is 100 nm or less.
- each positive electrode active material particle 1 the stress at the time of inserting and extracting lithium is reduced.
- the potential of the positive electrode 21 decreases during charging, irreversible changes (deterioration) of each positive electrode active material particle 1 are suppressed.
- the diffusion path of lithium in each positive electrode active material particle 1 is shortened, the electric resistance of each positive electrode active material particle 1 is reduced.
- the electric resistance is reduced and the discharge voltage is hardly reduced. More specifically, the discharge voltage does not easily decrease even when charge and discharge are repeated, and the discharge voltage does not easily decrease even when the current value during discharge is increased.
- the average particle diameter of the plurality of positive electrode active material particles 1 is preferably 60 nm or less. This is because the irreversible deterioration of each positive electrode active material particle 1 is further suppressed, and the electric resistance of each positive electrode active material particle 1 is further reduced, so that the discharge voltage is less likely to decrease.
- the procedure for specifying the average particle size of the plurality of positive electrode active material particles 1 is, for example, as described below.
- the cathode 21 is taken out by disassembling the secondary battery in an inert gas atmosphere.
- the type of the inert gas is not particularly limited, and is, for example, one or more of an argon gas, a nitrogen gas, and the like.
- the positive electrode active material layer 21B is put into an organic solvent.
- the type of the organic solvent is not particularly limited, but is, for example, N-methyl-2-pyrrolidone.
- a plurality of positive electrode active material particles 1 are observed using a microscope in the same atmosphere to obtain a micrograph.
- the type of the microscope is not particularly limited, and is, for example, any one or more of a scanning electron microscope (SEM), a transmission electron microscope (TEM), a scanning transmission electron microscope (STEM), and the like. .
- the magnification at the time of observation is not particularly limited, but is, for example, 100,000 to 500,000.
- a plurality of positive electrode active material particles 1 as primary particles P1 are observed, and a plurality of secondary particles P2 as an aggregate of the plurality of primary particles P1 are observed. Is done.
- the particle size of 100 arbitrary positive electrode active material particles 1 is measured based on the micrograph.
- 100 particle diameters are obtained.
- the shape of the primary particle P1 is not circular, for example, as shown in FIG. 6, by specifying a circle C inscribed in the outer edge (contour) of the primary particle P1, the diameter D of the circle C is specified. Is the particle size.
- FIG. 6 shows, for example, a case where the shape of the primary particles P1 is substantially rectangular.
- an average value of 100 particle diameters is calculated to obtain an average particle diameter.
- the method for producing the plurality of positive electrode active material particles 1 is not particularly limited, but may be, for example, one or more of a hydrothermal synthesis method and a solid phase synthesis method.
- a raw material for synthesizing a lithium manganese phosphate compound and a carbon source for forming a carbon material 2 described later are used.
- a lithium manganese phosphate compound is synthesized.
- the carbon source is carbonized on the surface of the lithium manganese phosphate compound, so that the carbon material 2 is formed. Therefore, a plurality of positive electrode active material particles 1 are obtained.
- the above-mentioned raw materials are two or more compounds containing any one or two or more of a series of constituent elements of the lithium manganese phosphate compound.
- the raw materials are, for example, a lithium-containing compound that is a supply source of lithium, a manganese-containing compound that is a supply source of manganese, and a phosphate compound that is a supply source of phosphate ions.
- one kind of compound may also serve as a supply source of two or more kinds of constituent elements.
- the type of each of the lithium-containing compound and the manganese-containing compound is not particularly limited, but includes, for example, sulfates, nitrates, and acetates, and may be hydrates.
- the type of the phosphoric acid compound is not particularly limited, and is, for example, phosphoric acid.
- the carbon source is, for example, sucrose.
- the carbon material 2 makes the positive electrode active material particles 1 adhere to each other to form the secondary particles P2 while suppressing the sintering of the positive electrode active material particles 1 (primary particles P1). Further, the carbon material 2 imparts electron conductivity to the surface of the positive electrode active material particles 1 (primary particles P1) and supplies electrons to the inside of the secondary particles P2.
- a plurality of positive electrode active material particles 1 (primary particles P1) containing a lithium manganese phosphate compound are synthesized.
- the carbon source is carbonized on the surface of the positive electrode active material particles 1.
- the plurality of positive electrode active material particles 1 are interposed via the carbon material 2. Congregate with each other when separated from each other. Therefore, the plurality of positive electrode active material particles 1 covered with the carbon material 2 adhere to each other, so that a plurality of secondary particles P2 are formed.
- FIG. 3 and 4 show three positive electrode active material particles 1 (primary particles P1) for simplification of the illustration, and are formed by the three positive electrode active material particles 1.
- Primary particles P1 primary particles for simplification of the illustration, and are formed by the three positive electrode active material particles 1.
- One secondary particle P2 is shown. What has been described here is the same for FIG.
- each positive electrode active material particle 1 can be identified. Therefore, even after the formation of the plurality of secondary particles P2, the particle size of each positive electrode active material particle 1 can be measured, so that the average particle size of the plurality of positive electrode active material particles 1 can be specified.
- a plurality of secondary particles P2 are formed by the plurality of positive electrode active material particles 1 using the carbon material 2. Have been. Thereby, as described above, the formation state of the plurality of positive electrode active material particles 1 is controlled so that the average particle size can be specified even after the formation of the plurality of secondary particles P2.
- the average particle size (nm) of the active material particles 1 is controlled to be 100 nm or less.
- the secondary particles P2 include the carbon material 2.
- the content of the carbon material 2 in the plurality of secondary particles P2 is not particularly limited, but is preferably 1.4% by weight to 4.8% by weight. Since the formation amount of the carbon material 2 is optimized, the plurality of secondary particles are formed by the plurality of the positive electrode active material particles 1 separated from each other via the carbon material 2 while suppressing the occlusion and release of lithium. This is because P2 is easily formed.
- the content of the carbon material 2 is less than 1.4% by weight, the formation amount of the carbon material 2 is too small, so that the plurality of positive electrode active material particles 1 Separation may be difficult.
- the content of the carbon material 2 is more than 4.8% by weight, the amount of the carbon material 2 formed is too large, so that lithium ions may not be easily input / output in each positive electrode active material particle 1. There is.
- the positive electrode active material layer 21B may further include, for example, one or more of other positive electrode materials.
- the above-mentioned lithium manganese phosphate compound is excluded from other cathode materials described below.
- another positive electrode material contains a lithium compound, and the lithium compound is a general term for a compound containing lithium as a constituent element. This is because a high energy density can be obtained.
- the type of the lithium compound is not particularly limited, and examples thereof include a lithium composite oxide and a lithium phosphate compound.
- Lithium composite oxide is a general term for oxides containing lithium and one or more kinds of other elements as constituent elements, and has a crystal structure such as a layered rock salt type and a spinel type.
- the lithium phosphate compound is a general term for a phosphate compound containing lithium and one or more kinds of other elements as constituent elements, and has, for example, an olivine-type crystal structure.
- Other elements are elements other than lithium.
- the type of the other element is not particularly limited, but is preferably an element belonging to Group 2 to Group 15 of the long periodic table. This is because a high voltage can be obtained.
- other elements are, for example, nickel, cobalt, manganese, and iron.
- Lithium composite oxides having a layered rock salt type crystal structure include, for example, LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi Examples include 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
- the lithium composite oxide having a spinel-type crystal structure is, for example, LiMn 2 O 4 .
- the lithium phosphate compound having the olivine type crystal structure is, for example, LiFePO 4 and the like.
- the positive electrode binder contains, for example, a synthetic rubber and a polymer compound.
- the synthetic rubber is, for example, a styrene-butadiene rubber.
- the polymer compound is, for example, polyvinylidene fluoride and polyimide.
- the positive electrode conductive agent contains, for example, a conductive material such as a carbon material.
- the carbon material is, for example, graphite, carbon black, acetylene black, Ketjen black, or the like, and may be carbon nanotubes, carbon nanofibers, or the like.
- the positive electrode conductive agent may be a metal material, a conductive polymer, or the like.
- the negative electrode 22 includes, for example, a negative electrode current collector 22A and a negative electrode active material layer 22B provided on the negative electrode current collector 22A, as shown in FIG.
- the negative electrode active material layer 22B may be provided, for example, only on one surface of the negative electrode current collector 22A, or may be provided on both surfaces of the negative electrode current collector 22A.
- FIG. 2 shows a case where, for example, the negative electrode active material layer 22B is provided on both surfaces of the negative electrode current collector 22A.
- the negative electrode current collector 22A contains, for example, a conductive material such as copper.
- the surface of the negative electrode current collector 22A is preferably roughened using an electrolytic method or the like. This is because the adhesiveness of the anode active material layer 22B to the anode current collector 22A is improved by using the anchor effect.
- the negative electrode active material layer 22B contains, as a negative electrode active material, any one or more of negative electrode materials capable of inserting and extracting lithium. However, the negative electrode active material layer 22B may further include another material such as a negative electrode binder and a negative electrode conductive agent.
- the charge termination electrode of the secondary battery is the negative electrode 22. That is, the chargeable capacity of the negative electrode material included in the negative electrode 22 is equal to or smaller than the discharge capacity of the positive electrode 21, so that the charging reaction of the secondary battery ends. Whether or not this is determined according to the chargeable capacity of the negative electrode 22, which is the charge termination electrode. As described above, since the potential of the positive electrode 21 decreases during charging, irreversible deterioration of each positive electrode active material particle 1 is suppressed.
- the fact that the electrochemical capacity per unit area of the negative electrode 22 is equal to or less than the electrochemical capacity per unit area of the positive electrode 21 means that the following two conditions described below are satisfied. ing.
- charge capacity and discharge capacity charge and discharge capacity
- Initial charge capacity Qc1 (mAh / cm 2 ) per unit area of positive electrode 21 [Initial charge capacity of the positive electrode active material qc1 (mAh / g) percentage of the positive electrode active material in the ⁇ cathode active material layer 21B rc ⁇ cathode active material layer 21B of the area density lc (mg / cm 2)] / 1000
- Initial discharge capacity Qc1 ′ per unit area of positive electrode 21 (mAh / cm 2 ) [First charge capacity of positive electrode active material qc1 (mAh / g) ⁇ First charge / discharge efficiency Ec1 of positive electrode 21 ⁇ Ratio rc of positive electrode active material in positive electrode active material layer 21B ⁇ Area density lc of positive electrode active material layer 21B (Mg / cm 2 )] / 1000 Charge capacity QcN (mAh / cm 2 ) for the second and subsequent times per unit area of positive electrode 21
- a series of capacities (charge capacity and discharge capacity) of the negative electrode 22 are as follows.
- Initial charge capacity Qa1 (mAh / cm 2 ) per unit area of negative electrode 22 [Initial charge capacity of negative electrode active material qa1 (mAh / g) ⁇ ratio of negative electrode active material in negative electrode active material layer 22B ⁇ area density la of negative electrode active material layer 22B (mg / cm 2 )] / 1000
- Initial discharge capacity Qa1 ′ per unit area of negative electrode 22 (mAh / cm 2 ) [Initial charge capacity qa1 (mAh / g) of negative electrode active material ⁇ initial charge / discharge efficiency Ea1 of negative electrode 22 ⁇ ratio of negative electrode active material in negative electrode active material layer 22B ⁇ area density la of negative electrode active material layer 22B (Mg / cm 2 )] / 1000
- Second and subsequent charge capacities QaN (mAh / cm 2 ) per unit area of the negative electrode 22 [Initial discharge capacity Qa1 ′ (mAh / g
- the amount of the negative electrode active material contained in the negative electrode 22 and the amount of the negative electrode active material contained in the positive electrode 21 are set such that the electrochemical capacity per unit area of the negative electrode 22 is equal to or less than the electrochemical capacity per unit area of the positive electrode 21.
- the amount of the positive electrode active material is adjusted to each other.
- the negative electrode material is, for example, a carbon material, a metal-based material, a titanium-containing compound, a niobium-containing compound, or the like. However, the material corresponding to each of the titanium-containing compound and the niobium-containing compound is excluded from the metal-based material.
- Carbon material is a general term for materials containing carbon as a constituent element. This is because the crystal structure of the carbon material hardly changes during insertion and extraction of lithium, so that a high energy density can be stably obtained. Further, since the carbon material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 22B is improved.
- the carbon material is, for example, graphitizable carbon, non-graphitizable carbon, and graphite.
- the plane spacing of the (002) plane in the non-graphitizable carbon is, for example, 0.37 nm or more, and the plane spacing of the (002) plane in the graphite is, for example, 0.34 nm or less.
- the carbon material is, for example, pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, carbon blacks, and the like.
- the cokes include, for example, pitch coke, needle coke, petroleum coke, and the like.
- the organic polymer compound fired body is a fired product obtained by firing (carbonizing) a polymer compound such as a phenol resin and a furan resin at an arbitrary temperature.
- the carbon material may be, for example, low-crystalline carbon heat-treated at a temperature of about 1000 ° C. or lower, or amorphous carbon.
- the shape of the carbon material is, for example, fibrous, spherical, granular, scale-like, or the like.
- Metal-based material is a general term for materials containing one or more of a metal element and a metalloid element as constituent elements. This is because a high energy density can be obtained.
- the metal-based material may be a simple substance, an alloy, a compound, a mixture of two or more of them, or a material containing one or two or more phases thereof.
- the alloy includes not only a material including two or more metal elements but also a material including one or two or more metal elements and one or two or more metalloid elements. Further, the alloy may include one or more kinds of nonmetallic elements.
- the structure of the metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a coexistence of two or more of them.
- metal element and the metalloid element is an element capable of forming an alloy with lithium.
- metal elements and metalloid elements include, for example, magnesium, boron, aluminum, gallium, indium, silicon, germanium, tin, lead, bismuth, cadmium, silver, zinc, hafnium, zirconium, yttrium, palladium and platinum. And so on.
- silicon and tin are preferred, and silicon is more preferred. This is because a remarkably high energy density can be obtained due to the excellent ability to insert and extract lithium.
- the metal-based material may be a simple substance of silicon, may be an alloy of silicon, may be a compound of silicon, may be a simple substance of tin, may be an alloy of tin, or may be a compound of tin. Alternatively, it may be a mixture of two or more of them, or a material containing one or two or more phases thereof. Since the simple substance described here means a general simple substance, the simple substance may contain a trace amount of impurities. That is, the purity of the simple substance is not necessarily limited to 100%.
- Silicon alloy for example, as a constituent element other than silicon, tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and any one or the like or Contains two or more types.
- the silicon compound contains, for example, one or more of carbon and oxygen as constituent elements other than silicon.
- the silicon compound may include, for example, the constituent elements described for the alloy of silicon as constituent elements other than silicon.
- the alloy of silicon and the compound of silicon include, for example, SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O and SiO v (0 ⁇ v ⁇ 2).
- the range of v may be, for example, 0.2 ⁇ v ⁇ 1.4.
- Tin alloy for example, as a constituent element other than tin, silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium and any one or more Contains two or more types.
- the tin compound contains, for example, one or more of carbon and oxygen as constituent elements other than tin.
- the tin compound may include, for example, the constituent elements described for the tin alloy as constituent elements other than tin.
- the alloy of tin and the compound of tin are, for example, SnO w (0 ⁇ w ⁇ 2), SnSiO 3, and Mg 2 Sn.
- Titanium-containing compound is a general term for materials containing titanium as a constituent element. This is because the titanium-containing compound is electrochemically stable as compared with a carbon material or the like, and therefore has a low electrochemical reactivity. Thereby, the decomposition reaction of the electrolytic solution caused by the reactivity of the negative electrode 22 is suppressed.
- the titanium-containing compound is, for example, a titanium oxide, a lithium-titanium composite oxide, a hydrogen titanium compound, or the like.
- the titanium oxide is, for example, a compound represented by the following formula (11), that is, bronze-type titanium oxide.
- the titanium oxide is, for example, anatase-type, rutile-type or brookite-type titanium oxide (TiO 2 ).
- the titanium oxide may be a composite oxide containing one or more of titanium, phosphorus, vanadium, tin, copper, nickel, iron, cobalt, and the like as a constituent element.
- This composite oxide is, for example, TiO 2 -P 2 O 5 , TiO 2 -V 2 O 5 , TiO 2 -P 2 O 5 -SnO 2 and TiO 2 -P 2 O 5 -MeO.
- Me is, for example, one or more of copper, nickel, iron, cobalt, and the like.
- the potential at which the titanium oxide stores and releases lithium is, for example, 1 V to 2 V (vs Li / Li + ).
- Lithium-titanium composite oxide is a general term for composite oxides containing lithium and titanium as constituent elements.
- the lithium-titanium composite oxide is, for example, a compound represented by each of the following formulas (12) to (14), that is, a ramsdellite-type lithium titanate.
- M12 shown in the formula (12) is a metal element that can be a divalent ion.
- M13 shown in the formula (13) is a metal element that can be a trivalent ion.
- M14 shown in the formula (14) is a metal element that can be a tetravalent ion.
- M12 is at least one of magnesium (Mg), calcium (Ca), copper (Cu), zinc (Zn) and strontium (Sr).
- X satisfies 0 ⁇ x ⁇ .
- Li [Li y M13 1-3y Ti 1 + 2y ] O 4 (13) (M13 is at least one of aluminum (Al), scandium (Sc), chromium (Cr), manganese (Mn), iron (Fe), germanium (Ga), and yttrium (Y). 0 ⁇ y ⁇ 1 / is satisfied.)
- Li [Li 1/3 M14 z Ti (5/3) -z ] O 4 (14) (M14 is at least one of vanadium (V), zirconium (Zr) and niobium (Nb). Z satisfies 0 ⁇ z ⁇ 2/3.)
- the crystal structure of the lithium-titanium composite oxide is not particularly limited, but among them, a spinel type is preferable. This is because the battery characteristics are stabilized because the crystal structure does not easily change during charge and discharge.
- the lithium-titanium composite oxide represented by the formula (12) is, for example, Li 3.75 Ti 4.875 Mg 0.375 O 12 .
- the lithium-titanium composite oxide represented by the formula (13) is, for example, LiCrTiO 4 .
- the lithium-titanium composite oxide represented by the formula (14) is, for example, Li 4 Ti 5 O 12 and Li 4 Ti 4.95 Nb 0.05 O 12 .
- the hydrogen titanium compound is a general term for oxides containing hydrogen and titanium as constituent elements.
- the hydrogen titanium compound is, for example, H 2 Ti 3 O 7 (3TiO 2 ⁇ 1H 2 O), H 6 Ti 12 O 27 (3TiO 2 ⁇ 0.75H 2 O), H 2 Ti 6 O 13 (3TiO 2 ⁇ 0.5H 2 O) , H 2 Ti 7 O 15 (3TiO 2 ⁇ 0.43H 2 O) and H 2 Ti 12 O 25 (3TiO 2 ⁇ 0.25H 2 O) and the like.
- Niobium-containing compound is a general term for materials containing niobium as a constituent element. This is because the niobium-containing compound is electrochemically stable similarly to the above-described titanium-containing compound, and therefore, the decomposition reaction of the electrolytic solution due to the reactivity of the negative electrode 22 is suppressed.
- the niobium-containing compound is, for example, a lithium niobium composite oxide, a hydrogen niobium compound, a titanium niobium composite oxide, or the like.
- materials corresponding to the niobium-containing compound are excluded from the titanium-containing compound.
- the lithium-niobium composite oxide is a general term for a composite oxide containing lithium and niobium as constituent elements, and is, for example, LiNbO 2 .
- the niobium hydrogen compound is a general term for a composite oxide containing hydrogen and titanium as constituent elements, and is, for example, H 4 Nb 6 O 17 .
- the titanium-niobium composite oxide is a generic name of a composite oxide containing titanium and niobium as constituent elements, and includes, for example, TiNb 2 O 7 and Ti 2 Nb 10 O 29 .
- lithium may be intercalated.
- Intercalating amount of lithium to Chitan'niobu composite oxide is not particularly limited, for example, intercalating amount of lithium to TiNb 2 O 7 is a 4 equal amounts up to that TiNb 2 O 7.
- the negative electrode material is preferably one or more of titanium oxide, lithium titanium composite oxide, titanium titanium compound, lithium niobium composite oxide, niobium hydrogen compound and titanium composite oxide. . This is because titanium oxide and the like are sufficiently electrochemically stable, so that the decomposition reaction of the electrolytic solution due to the reactivity of the negative electrode 22 is sufficiently suppressed.
- the details regarding the negative electrode binder are the same as the details regarding the positive electrode binder, for example.
- the details regarding the negative electrode conductive agent are, for example, the same as the details regarding the positive electrode conductive agent.
- the separator 23 includes, for example, a porous film such as a synthetic resin and ceramic, and may be a laminated film in which two or more types of porous films are laminated.
- the synthetic resin is, for example, polyethylene.
- the separator 23 may include, for example, the above-described porous film (base layer) and a polymer compound layer provided on the base layer.
- This polymer compound layer may be provided, for example, on only one surface of the base material layer, or may be provided on both surfaces of the base material layer.
- the polymer compound layer contains, for example, a polymer compound such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable.
- the polymer compound layer may include, for example, insulating particles such as inorganic particles. This is because safety is improved.
- the type of the inorganic particles is not particularly limited, and examples thereof include aluminum oxide and aluminum nitride.
- the electrolytic solution is impregnated in the wound electrode body 20 as described above. For this reason, the electrolytic solution is impregnated in each of the positive electrode 21, the negative electrode 22, and the separator 23, for example.
- This electrolytic solution contains a solvent and an electrolyte salt.
- the type of the solvent may be only one type or two or more types. As described above, only one kind or two or more kinds may be used for the electrolyte salt.
- the solvent is, for example, one or more of non-aqueous solvents (organic solvents) and the like.
- the electrolyte containing a non-aqueous solvent is a so-called non-aqueous electrolyte.
- the type of the non-aqueous solvent is not particularly limited, and examples thereof include a cyclic carbonate, a chain carbonate, a lactone, a chain carboxylate, and a nitrile (mononitrile) compound.
- the cyclic carbonate is, for example, ethylene carbonate and propylene carbonate.
- the chain carbonate is, for example, dimethyl carbonate and diethyl carbonate.
- Lactones are, for example, ⁇ -butyrolactone and ⁇ -valerolactone.
- Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, and methyl propionate.
- Nitrile compounds include, for example, acetonitrile, methoxyacetonitrile and 3-methoxypropionitrile.
- the non-aqueous solvent may be, for example, an unsaturated cyclic carbonate, a halogenated carbonate, a sulfonic acid ester, an acid anhydride, a dicyano compound (dinitrile compound), a diisocyanate compound, a phosphoric acid ester, or the like.
- unsaturated cyclic carbonate include vinylene carbonate, vinyl ethylene carbonate, and methylene ethylene carbonate.
- the halogenated carbonate include 4-fluoro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one and fluoromethylmethyl carbonate.
- Examples of the sulfonic acid ester include 1,3-propane sultone and 1,3-propene sultone.
- Examples of the acid anhydride include succinic anhydride, glutaric anhydride, maleic anhydride, ethanedisulfonic anhydride, propanedisulfonic anhydride, sulfobenzoic anhydride, sulfopropionic anhydride, and sulfobutyric anhydride.
- the dinitrile compound is, for example, succinonitrile, glutaronitrile, adiponitrile, phthalonitrile and the like.
- the diisocyanate compound is, for example, hexamethylene diisocyanate.
- Phosphate esters include, for example, trimethyl phosphate and triethyl phosphate.
- the electrolyte salt is, for example, one or more of lithium salts and the like.
- the type of the lithium salt is not particularly limited.
- the content of the electrolyte salt is not particularly limited, but is, for example, 0.3 mol / kg or more and 3.0 mol / kg or less based on the solvent.
- the aqueous solution is reacted by heating the aqueous solution using a pressure vessel such as an autoclave.
- the pressure inside the pressure vessel can be set arbitrarily, and the temperature during heating can be set arbitrarily.
- a plurality of crystals of the lithium manganese phosphate compound grow under the conditions of high temperature and high pressure.
- the sprayed matter is dried to obtain a plurality of positive electrode active material particles 1 as primary particles P1.
- a plurality of crystals of the lithium manganese phosphate compound may be pulverized using a pulverizer such as a ball mill to obtain a plurality of positive electrode active material particles 1 as primary particles P1.
- a pulverizer such as a ball mill
- the particle size of each positive electrode active material particle 1 can be adjusted using a pulverizing process.
- the carbon source is heated. Details regarding the carbon source are as described above.
- the temperature at the time of heating is not particularly limited, but is, for example, 700 ° C. or higher.
- the carbon source is carbonized (so-called carbon coating) on the surface of each positive electrode active material particle 1, so that the surface of each positive electrode active material particle 1 is covered with the carbon material 2.
- the crystallinity of each positive electrode active material particle 1 lithium manganese phosphate compound
- each positive electrode active material particle 1 may be covered with the carbon material 2. Also in this case, a plurality of secondary particles P2 shown in FIG. 3 are formed.
- Solid phase synthesis method When solid-phase synthesis is used, a carbon source is added to the above mixture, and the mixture is heated. Details regarding each of the mixture and the carbon source are as described above.
- the heating temperature is not particularly limited, but is, for example, 500 ° C. or higher.
- the plurality of particles of the lithium manganese phosphate compound are dry-synthesized, so that the plurality of positive electrode active material particles 1 as the primary particles P1 are formed, and the carbon source is carbonized on the surface of each positive electrode active material particle 1. Therefore, the surface of each positive electrode active material particle 1 is covered with the carbon material 2.
- the particle size of each positive electrode active material particle 1 can be adjusted by changing the addition amount of the carbon source. Therefore, since the plurality of positive electrode active material particles 1 covered with the carbon material 2 adhere to each other, a plurality of secondary particles P2 are formed as shown in FIG.
- a positive electrode mixture is prepared by mixing a positive electrode active material containing a plurality of positive electrode active material particles 1 with a positive electrode binder and a positive electrode conductive agent as necessary. Subsequently, the positive electrode mixture slurry is prepared by dispersing or dissolving the positive electrode mixture in an organic solvent or the like. Finally, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A, and then the positive electrode mixture slurry is dried to form the positive electrode active material layer 21B. Thereafter, the positive electrode active material layer 21B may be compression molded using a roll press or the like. In this case, the positive electrode active material layer 21B may be heated, or compression molding may be repeated a plurality of times.
- a negative electrode active material layer 22B is formed on both surfaces of the negative electrode current collector 22A by a procedure similar to the above-described procedure for manufacturing the positive electrode 21. Specifically, by mixing a negative electrode active material and, if necessary, a negative electrode binder and a negative electrode conductive agent, a negative electrode mixture is formed, and then the negative electrode mixture is dispersed or dissolved in an organic solvent or the like. Thus, a paste-like negative electrode mixture slurry is prepared. Subsequently, after applying the negative electrode mixture slurry to both surfaces of the negative electrode current collector 22A, the negative electrode mixture slurry is dried to form the negative electrode active material layer 22B. Thereafter, the negative electrode active material layer 22B may be compression molded.
- the negative electrode active material is set so that the electrochemical capacity per unit area of the negative electrode 22 is equal to or less than the electrochemical capacity per unit area of the positive electrode 21.
- the amount of the substance and the amount of the positive electrode active material are mutually adjusted.
- the cathode lead 25 is connected to the cathode current collector 21A using a welding method or the like, and the anode lead 26 is connected to the anode current collector 22A using a welding method or the like.
- the positive electrode 21 and the negative electrode 22 are stacked on each other with the separator 23 interposed therebetween, the positive electrode 21, the negative electrode 22, and the separator 23 are wound to form a wound body.
- the center pin 24 is inserted into the space 20C provided at the center of the winding body.
- the wound body is housed inside the battery can 11 together with the insulating plates 12 and 13.
- the positive electrode lead 25 is connected to the safety valve mechanism 15 using a welding method or the like
- the negative electrode lead 26 is connected to the battery can 11 using a welding method or the like.
- the electrolytic solution is injected into the battery can 11 to impregnate the wound body with the electrolytic solution.
- each of the positive electrode 21, the negative electrode 22, and the separator 23 is impregnated with the electrolytic solution, so that the wound electrode body 20 is formed.
- the plurality of positive electrode active material particles 1 (primary particles P1) included in the positive electrode 21 include a lithium manganese phosphate compound, and the plurality of positive electrode active material particles 1 The average particle size is 100 nm or less. Further, the electrochemical capacity per unit area of the negative electrode 22 is equal to or less than the electrochemical capacity per unit area of the positive electrode 21.
- the discharge voltage is less likely to decrease, so that a higher effect can be obtained.
- the plurality of secondary particles are separated in a state where the plurality of positive electrode active material particles 1 are separated from each other via the carbon material 2. Since P2 is easily formed and the electrical resistance of the negative electrode 22 is reduced by utilizing the conductivity of the carbon material 2, higher effects can be obtained. In this case, when the content of the carbon material 2 in the plurality of secondary particles P2 is from 1.4% by weight to 4.8% by weight, it is possible to suppress the inhibition of lithium storage and release while maintaining the carbon material 2 content. Since the plurality of secondary particles P2 are easily formed by the positive electrode active material particles 1, a higher effect can be obtained.
- the decomposition reaction of the electrolytic solution caused by the reactivity of the negative electrode 22 is performed by utilizing the properties of electrochemically stable titanium oxide or the like. Is suppressed, a higher effect can be obtained.
- FIG. 7 shows a perspective configuration of another secondary battery
- FIG. 8 shows a cross-sectional configuration of a main part (the wound electrode body 30) of the secondary battery along the line VIII-VIII shown in FIG. Is expanding.
- FIG. 7 shows a state in which the wound electrode body 30 and the exterior member 40 are separated from each other.
- This secondary battery is, for example, a laminated film in which a battery element (rolled electrode body 30) is housed inside a flexible (or flexible) film-like exterior member 40 as shown in FIG. Type secondary battery.
- the wound electrode body 30 is, for example, a structure in which a positive electrode 33 and a negative electrode 34 are stacked on each other via a separator 35 and an electrolyte layer 36, and then the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36 are wound.
- the surface of the spirally wound electrode body 30 is protected by, for example, a protective tape 37.
- the electrolyte layer 36 is interposed, for example, between the positive electrode 33 and the separator 35 and is interposed between the negative electrode 34 and the separator 35.
- a positive electrode lead 31 is connected to the positive electrode 33, and the positive electrode lead 31 is led from the inside of the exterior member 40 to the outside.
- the material for forming the positive electrode lead 31 is, for example, the same as the material for forming the positive electrode lead 25, and the shape of the positive electrode lead 31 is, for example, a thin plate shape or a mesh shape.
- a negative electrode lead 32 is connected to the negative electrode 34, and the negative electrode lead 32 is led out from the inside of the exterior member 40 to the outside.
- the lead-out direction of the negative electrode lead 32 is, for example, the same as the lead-out direction of the positive electrode lead 31.
- the material for forming the negative electrode lead 32 is, for example, the same as the material for forming the negative electrode lead 26, and the shape of the negative electrode lead 32 is, for example, the same as the shape of the positive electrode lead 31.
- the exterior member 40 is, for example, a single film that can be folded in the direction of the arrow R illustrated in FIG.
- the exterior member 40 is provided with, for example, a recess 40U for accommodating the wound electrode body 30.
- the exterior member 40 is, for example, a laminate (laminated film) in which a fusion layer, a metal layer, and a surface protection layer are laminated in this order from the inside to the outside.
- the fusion layer is, for example, a film containing a polymer compound such as polypropylene.
- the metal layer is, for example, a metal foil containing a metal material such as aluminum.
- the surface protective layer is, for example, a film containing a polymer compound such as nylon.
- the exterior member 40 is, for example, two laminated films, and the two laminated films may be bonded to each other via, for example, an adhesive.
- the adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31, for example, to prevent invasion of outside air.
- the adhesive film 41 includes a material having adhesiveness to the positive electrode lead 31, and the material is, for example, a polyolefin resin such as polypropylene.
- An adhesive film 42 having the same function as the adhesive film 41 is inserted between the exterior member 40 and the negative electrode lead 32, for example.
- the material for forming the adhesive film 42 is the same as the material for forming the adhesive film 41 except that the material for the adhesive film 42 has adhesiveness to the negative electrode lead 32 instead of the positive electrode lead 31.
- the positive electrode 33 includes, for example, a positive electrode current collector 33A and a positive electrode active material layer 33B
- the negative electrode 34 includes, for example, a negative electrode current collector 34A and a negative electrode active material layer 34B.
- the respective configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, and the negative electrode active material layer 34B include, for example, the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode.
- the configuration is the same as that of each of the active material layers 22B.
- the configuration of the separator 35 is, for example, the same as the configuration of the separator 23.
- the plurality of positive electrode active material particles 1 (primary particles P1) included in the positive electrode 33 include a lithium manganese phosphate compound, and the average particle diameter of the plurality of positive electrode active material particles 1 is 100 nm or less. is there.
- the electrochemical capacity per unit area of the negative electrode 34 is equal to or less than the electrochemical capacity per unit area of the positive electrode 33.
- the electrolyte layer 36 contains a polymer compound together with the electrolytic solution. Since the electrolyte layer 36 described here is a so-called gel electrolyte, the electrolyte solution is held in the electrolyte layer 36 by a polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) can be obtained and electrolyte leakage can be prevented. However, the electrolyte layer 36 may further include, for example, other materials such as various additives.
- the composition of the electrolyte is as described above.
- the polymer compound includes, for example, one or both of a homopolymer and a copolymer.
- the homopolymer is, for example, polyvinylidene fluoride
- the copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene.
- the solvent contained in the electrolytic solution is a broad concept including not only a liquid material but also a material having ion conductivity capable of dissociating an electrolyte salt. Therefore, when a high molecular compound having ion conductivity is used, the high molecular compound is also included in the solvent.
- the secondary battery including the electrolyte layer 36 is manufactured by, for example, three types of procedures described below.
- the positive electrode 33 is manufactured by forming the positive electrode active material layers 33B on both surfaces of the positive electrode current collector 33A in the same procedure as the manufacturing procedure of the positive electrode 21.
- the negative electrode 34 is manufactured by forming the negative electrode active material layers 34B on both surfaces of the negative electrode current collector 34A in the same procedure as the manufacturing procedure of the negative electrode 22.
- a precursor solution is prepared by mixing the electrolytic solution, a polymer compound, an organic solvent and the like. Subsequently, after applying the precursor solution to the positive electrode 33, the precursor solution is dried to form the electrolyte layer 36, and after applying the precursor solution to the negative electrode 34, the precursor solution is dried to obtain an electrolyte. A layer 36 is formed. Subsequently, the positive electrode lead 31 is connected to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is connected to the negative electrode current collector 34A using a welding method or the like.
- the wound electrode body 30 is formed.
- a protective tape 37 is attached to the surface of the wound electrode body 30.
- the outer peripheral edges of the exterior member 40 are bonded to each other by using a heat fusion method or the like.
- the adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31, and the adhesive film 42 is inserted between the exterior member 40 and the negative electrode lead 32.
- the wound electrode body 30 is sealed in the exterior member 40, so that the secondary battery is completed.
- the mixture is stirred to form an electrolyte.
- the composition is prepared.
- the exterior member 40 is sealed using a heat fusion method or the like.
- a monomer is thermally polymerized to form a polymer compound.
- the electrolyte solution is held by the polymer compound, so that the electrolyte layer 36 is formed. Therefore, since the wound electrode body 30 is sealed in the exterior member 40, the secondary battery is completed.
- a wound body is prepared by the same procedure as the above-described second procedure except that a separator 35 having a polymer compound layer provided on both surfaces of a base material layer is used, and then a bag-shaped exterior member is formed.
- the wound body is housed inside 40.
- the exterior member 40 is sealed using a heat fusion method or the like.
- the separator 35 is brought into close contact with each of the positive electrode 33 and the negative electrode 34 via the polymer compound layer by heating the outer member 40 while applying a load to the outer member 40.
- the polymer compound layer is impregnated with the electrolytic solution, and the polymer compound layer is gelled, so that the electrolyte layer 36 is formed. Therefore, since the wound electrode body 30 is sealed in the exterior member 40, the secondary battery is completed.
- the secondary battery is less likely to swell than in the first procedure. Further, in the third procedure, the solvent and the monomer (raw material of the polymer compound) hardly remain in the electrolyte layer 36 as compared with the second procedure, so that the positive electrode 33, the negative electrode 34, and the separator 35 The electrolyte layer 36 adheres sufficiently.
- the plurality of positive electrode active material particles 1 (primary particles P1) included in the positive electrode 33 include the lithium manganese phosphate compound, and the plurality of positive electrode active material particles 1 Has an average particle size of 100 nm or less.
- the electrochemical capacity per unit area of the negative electrode 34 is equal to or less than the electrochemical capacity per unit area of the positive electrode 33. Therefore, excellent battery characteristics can be obtained for the same reason as a cylindrical secondary battery.
- the other functions and effects of the laminate film type secondary battery are the same as those of the cylindrical type secondary battery.
- the laminate film type secondary battery may include an electrolytic solution instead of the electrolyte layer 36.
- the electrolytic solution is impregnated into each of the positive electrode 33, the negative electrode 34, and the separator 35.
- the electrolyte is injected into the inside of the bag-shaped exterior member 40, so that the wound body is impregnated with the electrolyte solution. Therefore, the wound electrode body 30 is formed. In this case, the same effect can be obtained.
- Secondary batteries include machines, equipment, appliances, devices and systems (aggregates of multiple equipment, etc.) that can use the secondary batteries as a power source for driving and a power storage source for power storage. If there is, it is not particularly limited.
- the secondary battery used as a power supply may be a main power supply or an auxiliary power supply.
- the main power supply is a power supply that is used preferentially regardless of the presence or absence of another power supply.
- the auxiliary power supply may be, for example, a power supply used in place of the main power supply, or a power supply switched from the main power supply as needed.
- the type of main power source is not limited to a secondary battery.
- Applications of the secondary battery are, for example, as follows.
- Electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals.
- It is a portable living device such as an electric shaver.
- a storage device such as a backup power supply and a memory card.
- Electric tools such as electric drills and electric saws.
- It is a battery pack that is mounted on a notebook computer as a detachable power supply.
- Medical electronic devices such as pacemakers and hearing aids.
- It is an electric vehicle such as an electric vehicle (including a hybrid vehicle).
- It is a power storage system such as a home battery system that stores power in case of emergency.
- the use of the secondary battery may be another use other than the use described above.
- the coin-type secondary battery has a test electrode 51 and a counter electrode 52 stacked on each other with a separator 53 interposed therebetween, and an outer can 54 containing the test electrode 51 and a counter electrode 52 contained therein.
- the exterior cup 55 is a lithium ion secondary battery that is caulked to each other via a gasket 56.
- a plurality of positive electrode active material particles 1 as primary particles P1 were obtained by pulverizing the solid using a ball mill.
- a mixed solution was obtained by mixing the plurality of positive electrode active material particles 1 with a carbon source (sucrose aqueous solution).
- the mixed solution was sprayed using a spray drying device, and the sprayed material was dried.
- the addition amount (% by weight) of the carbon source and the content (% by weight) of the carbon material 2 in the plurality of secondary particles P2 are as shown in Table 1.
- the average particle size of the plurality of positive electrode active material particles 1 was changed. (Nm) was adjusted.
- a positive electrode active material layer was compression-molded using a roll press.
- a negative electrode active material Li 4 Ti 5 O 12 which is a lithium-titanium composite oxide
- a negative electrode binder polyvinylidene fluoride
- a negative electrode conductive agent graphite
- a negative electrode active material layer was compression molded using a roll press.
- the amount of the positive electrode active material and the amount of the negative electrode active material are mutually adjusted, as shown in Table 1, so that the unit of the test electrode 51 (positive electrode) is adjusted.
- the magnitude relationship between the electrochemical capacity per area and the electrochemical capacity per unit area of the counter electrode 52 (negative electrode) was set, and the charge termination electrode was set.
- the column of “electrochemical capacity” in Table 1 shows the magnitude relation described above.
- an electrolyte salt lithium hexafluorophosphate
- a solvent propylene carbonate and dimethyl carbonate
- test electrode 51 was punched out in a pellet shape, and the test electrode 51 was housed in the outer can 54.
- the counter electrode 52 was punched out into a pellet shape, and the counter electrode 52 was housed in the exterior cup 55.
- discharge voltage characteristics When examining the discharge voltage characteristics, four types of average discharge voltages (V) and two types of average discharge voltage maintenance rates (V) were calculated as described below.
- the values of the four types of average discharge voltage and the two types of average discharge voltage maintenance ratio are values obtained by rounding off the value of the second decimal place.
- the secondary battery was charged and discharged for 50 cycles in the same environment.
- the charge and discharge conditions were the same as in the case where the cycle characteristics were examined.
- the discharge voltage (V) was measured every time the depth of discharge (%) increased by 10% at the 53rd cycle of discharge (discharge step 2). ).
- the charge / discharge conditions were the same as in the case of examining the cycle characteristics, except that the current during charging and the current during discharging were each changed to 0.05C.
- V average discharge voltage
- FIG. 10 shows a discharge curve of the secondary battery (the horizontal axis represents the depth of discharge (%) and the vertical axis represents the discharge voltage (V)).
- each of the plurality of positive electrode active material particles 1 contains a lithium manganese phosphate compound (LiMn 0.70 Fe 0.27 Mg 0.03 PO 4 )
- the discharge voltage was measured while discharging the secondary battery, as shown in FIG.
- a discharge region R1 caused by a manganese reduction reaction (Mn 3+ ⁇ Mn 2+ ) and a discharge region R2 caused by an iron reduction reaction (Fe 3+ ⁇ Fe 2+ ) are observed.
- the discharge voltage tends to decrease in the discharge region R1 caused by the reduction reaction of manganese. This is because in the discharge region R1, not only the discharge voltage inherently tends to decrease, but also the electric resistance increases.
- the value Y (%) of the depth of discharge corresponding to the boundary between the discharge regions R1 and R2 corresponds to the manganese content in the lithium manganese phosphate compound, that is, the value of y shown in the equation (1).
- the value of y is a value obtained by multiplying the value of y by 100.
- the first type of average discharge voltage maintenance ratio is described in the column of “before cycle” in “average discharge voltage maintenance ratio” in Table 1.
- the second type of average discharge voltage maintenance ratio is described in the column of “average discharge voltage maintenance ratio” in Table 1 in the column “before and after cycles”.
- the secondary particles P2 containing the carbon material 2 were formed by adding a carbon source during the synthesis of the plurality of positive electrode active material particles 1 (lithium manganese phosphate compound).
- a plurality of positive electrode active material particles 1 (primary particles P1) having an average particle diameter of 1 were obtained.
- the condition that the electrochemical capacity per unit area of the negative electrode 34 is equal to or less than the electrochemical capacity per unit area of the positive electrode 33 and the average particle size of the plurality of positive electrode active material particles 1 is 100 nm or less is satisfied.
- the average discharge voltage maintenance ratio before the cycle and the average discharge voltage maintenance ratio before and after the cycle are different. Both were significantly higher.
- the average discharge voltage maintenance ratio before the cycle and the average discharge voltage maintenance ratio before and after the cycle are reduced. Each increased more.
- a positive electrode active material (a plurality of positive electrode active materials) was formed in the same procedure except that the content (% by weight) of the carbon material 2 was changed in accordance with the addition amount (% by weight) of the carbon source. After synthesizing the material particles 1) and producing a secondary battery, the battery characteristics of the secondary battery were evaluated.
- each of the four types of average discharge voltage and the two types of average discharge voltage maintenance rates were changed according to the change in the content of the carbon material 2. changed.
- the content of the carbon material 2 is 1.4% by weight to 4.8% by weight (Experimental Examples 1, 10, and 11)
- the average discharge voltage maintenance ratio before the cycle and the average discharge before and after the cycle are measured. The voltage maintenance ratios were all higher.
- a cylindrical secondary battery, a laminated film secondary battery, and a coin secondary battery have been described, but the present invention is not limited thereto.
- another secondary battery such as a square secondary battery may be used.
- the battery element has a wound structure
- the present invention is not limited to this.
- the battery element may have another structure such as a laminated structure.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
(M1は、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、コバルト(Co)、クロム(Cr)、銅(Cu)、モリブデン(Mo)、ニッケル(Ni)、ケイ素(Si)、スズ(Sn)、ストロンチウム(Sr)、チタン(Ti)、バナジウム(V)、タングステン(W)、亜鉛(Zn)、ジルコニウム(Zr)および鉄(Fe)のうちの少なくとも1種である。xおよびyは、0<x<1.2および0<y≦1を満たす。)
1.二次電池(円筒型)
1-1.構成
1-2.動作
1-3.製造方法
1-3-1.正極活物質の製造方法
1-3-2.二次電池の製造方法
1-4.作用および効果
2.二次電池(ラミネートフィルム型)
2-1.構成
2-2.動作
2-3.製造方法
2-4.作用および効果
3.変形例
4.二次電池の用途
まず、本技術の一実施形態の二次電池に関して説明する。
図1は、二次電池の断面構成を表していると共に、図2は、図1に示した二次電池の主要部(巻回電極体20)の断面構成を拡大している。ただし、図2では、巻回電極体20の一部だけを示している。
正極21は、例えば、図2に示したように、正極集電体21Aと、その正極集電体21Aに設けられた正極活物質層21Bとを含んでいる。この正極活物質層21Bは、例えば、正極集電体21Aの片面だけに設けられていてもよいし、正極集電体21Aの両面に設けられていてもよい。図2では、例えば、正極活物質層21Bが正極集電体21Aの両面に設けられている場合を示している。
(M1は、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、コバルト(Co)、クロム(Cr)、銅(Cu)、モリブデン(Mo)、ニッケル(Ni)、ケイ素(Si)、スズ(Sn)、ストロンチウム(Sr)、チタン(Ti)、バナジウム(V)、タングステン(W)、亜鉛(Zn)、ジルコニウム(Zr)および鉄(Fe)のうちの少なくとも1種である。xおよびyは、0<x<1.2および0<y≦1を満たす。)
負極22は、例えば、図2に示したように、負極集電体22Aと、その負極集電体22Aに設けられた負極活物質層22Bとを含んでいる。この負極活物質層22Bは、例えば、負極集電体22Aの片面だけに設けられていてもよいし、負極集電体22Aの両面に設けられていてもよい。図2では、例えば、負極活物質層22Bが負極集電体22Aの両面に設けられている場合を示している。
正極21の単位面積当たりにおける初回の充電容量Qc1(mAh/cm2 )
=[正極活物質の初回の充電容量qc1(mAh/g)×正極活物質層21B中における正極活物質の割合rc×正極活物質層21Bの面積密度lc(mg/cm2 )]/1000
正極21の単位面積当たりにおける初回の放電容量Qc1’(mAh/cm2 )
=[正極活物質の初回の充電容量qc1(mAh/g)×正極21の初回の充放電効率Ec1×正極活物質層21B中における正極活物質の割合rc×正極活物質層21Bの面積密度lc(mg/cm2 )]/1000
正極21の単位面積当たりにおける2回目以降の充電容量QcN(mAh/cm2 )
=[正極21の単位面積当たりにおける初回の放電容量Qc1’(mAh/g)×正極21の充放電効率EcN]/1000
正極21の単位面積当たりにおける2回目以降の放電容量QcN’(mAh/cm2 )
=[直前のサイクルにおける正極21の単位面積当たりにおける充電容量QcN×正極21の充放電効率EcN]/1000
負極22の単位面積当たりにおける初回の充電容量Qa1(mAh/cm2 )
=[負極活物質の初回の充電容量qa1(mAh/g)×負極活物質層22B中における負極活物質の割合ra×負極活物質層22Bの面積密度la(mg/cm2 )]/1000
負極22の単位面積当たりにおける初回の放電容量Qa1’(mAh/cm2 )
=[負極活物質の初回の充電容量qa1(mAh/g)×負極22の初回の充放電効率Ea1×負極活物質層22B中における負極活物質の割合ra×負極活物質層22Bの面積密度la(mg/cm2 )]/1000
負極22の単位面積当たりにおける2回目以降の充電容量QaN(mAh/cm2 )
=[負極22の単位面積当たりにおける初回の放電容量Qa1’(mAh/g)×負極22の充放電効率EaN]/1000
負極22の単位面積当たりにおける2回目以降の放電容量QaN’(mAh/cm2 )
=[直前のサイクルにおける負極22の単位面積当たりにおける充電容量QaN×負極22の充放電効率EaN]/1000
正極21の単位面積当たりにおける初回の充電容量Qc1(mAh/cm2 )≧負極22の単位面積当たりにおける初回の充電容量Qa1(mAh/cm2 )
正極21の単位面積当たりにおける2回目以降の充電容量QcN(mAh/cm2 )≧負極22の単位面積当たりにおける2回目以降の充電容量QaN(mAh/cm2 )
(wは、1.85≦w≦2.15を満たす。)
(M12は、マグネシウム(Mg)、カルシウム(Ca)、銅(Cu)、亜鉛(Zn)およびストロンチウム(Sr)のうちの少なくとも1種である。xは、0≦x≦1/3を満たす。)
(M13は、アルミニウム(Al)、スカンジウム(Sc)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、ゲルマニウム(Ga)およびイットリウム(Y)のうちの少なくとも1種である。yは、0≦y≦1/3を満たす。)
(M14は、バナジウム(V)、ジルコニウム(Zr)およびニオブ(Nb)のうちの少なくとも1種である。zは、0≦z≦2/3を満たす。)
セパレータ23は、例えば、合成樹脂およびセラミックなどの多孔質膜を含んでおり、2種類以上の多孔質膜が互いに積層された積層膜でもよい。合成樹脂は、例えば、ポリエチレンなどである。
電解液は、上記したように、巻回電極体20に含浸されている。このため、電解液は、例えば、正極21、負極22およびセパレータ23のそれぞれに含浸されている。
溶媒は、例えば、非水溶媒(有機溶剤)などのうちのいずれか1種類または2種類以上である。非水溶媒を含む電解液は、いわゆる非水電解液である。
電解質塩は、例えば、リチウム塩などのうちのいずれか1種類または2種類以上である。リチウム塩の種類は、特に限定されないが、例えば、六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、ビス(フルオロスルホニル)イミドリチウム(LiN(SO2 F)2 )、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3 SO2 )2 )、ジフルオロリン酸リチウム(LiPF2 O2 )およびフルオロリン酸リチウム(Li2 PFO3 )などである。電解質塩の含有量は、特に限定されないが、例えば、溶媒に対して0.3mol/kg以上3.0mol/kg以下である。
この二次電池では、例えば、充電時において、正極21からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極22に吸蔵される。また、二次電池では、例えば、放電時において、負極22からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極21に吸蔵される。
ここでは、正極活物質の製造方法に関して説明したのち、二次電池の製造方法に関して説明する。
正極活物質を製造する場合には、例えば、以下で説明する手順により、水熱合成法または固相合成法を用いる。ただし、正極活物質を合成するために、他の合成方法を用いてもよい。
水熱合成法を用いる場合には、最初に、リチウムマンガンリン酸化合物の原料を準備したのち、その原料を混合することにより、混合物を得る。原料に関する詳細は、上記した通りである。
固相合成を用いる場合には、上記した混合物に炭素源を加えたのち、その混合物を加熱する。混合物および炭素源のそれぞれに関する詳細は、上記した通りである。加熱温度は、特に限定されないが、例えば、500℃以上である。これにより、複数のリチウムマンガンリン酸化合物の粒子が乾式合成されるため、一次粒子P1である複数の正極活物質粒子1が形成されると共に、各正極活物質粒子1の表面において炭素源が炭化されるため、各正極活物質粒子1の表面が炭素材料2により被覆される。この場合には、炭素源の添加量を変更することにより、各正極活物質粒子1の粒径を調整可能である。よって、炭素材料2により被覆された複数の正極活物質粒子1が互いに密着するため、図3に示したように、複数の二次粒子P2が形成される。
二次電池を製造する場合には、例えば、以下で説明する手順により、正極21の作製、負極22の作製および電解液の調製を行ったのち、二次電池の組み立てを行う。
最初に、複数の正極活物質粒子1を含む正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を分散または溶解させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体21Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成する。こののち、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
上記した正極21の作製手順と同様の手順により、負極集電体22Aの両面に負極活物質層22Bを形成する。具体的には、負極活物質と、必要に応じて負正極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤などに負極合剤を分散または溶解させることにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層22Bを形成する。こののち、負極活物質層22Bを圧縮成型してもよい。
溶媒に電解質塩を加えたのち、その溶媒を撹拌する。この場合には、必要に応じて、上記した不飽和環状炭酸エステルなどのうちのいずれか1種類または2種類以上を添加剤として溶媒に加えてもよい。
最初に、溶接法などを用いて正極集電体21Aに正極リード25を接続させると共に、溶接法などを用いて負極集電体22Aに負極リード26を接続させる。続いて、セパレータ23を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回体を形成する。続いて、巻回体の巻回中心に設けられた空間20Cにセンターピン24を挿入する。
この円筒型の二次電池によれば、正極21に含まれている複数の正極活物質粒子1(一次粒子P1)がリチウムマンガンリン酸化合物を含んでおり、その複数の正極活物質粒子1の平均粒径が100nm以下である。また、負極22の単位面積当たりの電気化学容量が正極21の単位面積当たりの電気化学容量以下である。
図7は、他の二次電池の斜視構成を表していると共に、図8は、図7に示したVIII-VIII線に沿った二次電池の主要部(巻回電極体30)の断面構成を拡大している。ただし、図7では、巻回電極体30と外装部材40とが互いに離間された状態を示している。
この二次電池は、例えば、図7に示したように、柔軟性(または可撓性)を有するフィルム状の外装部材40の内部に電池素子(巻回電極体30)が収納されたラミネートフィルム型の二次電池である。
外装部材40は、例えば、図7に示した矢印Rの方向に折り畳み可能な1枚のフィルムである。外装部材40には、例えば、巻回電極体30を収納するための窪み40Uが設けられている。
正極33は、例えば、正極集電体33Aおよび正極活物質層33Bを含んでいると共に、負極34は、例えば、負極集電体34Aおよび負極活物質層34Bを含んでいる。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bのそれぞれの構成は、例えば、正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bのそれぞれの構成と同様である。また、セパレータ35の構成は、例えば、セパレータ23の構成と同様である。
電解質層36は、電解液と共に高分子化合物を含んでいる。ここで説明する電解質層36は、いわゆるゲル状の電解質であるため、その電解質層36中では、電解液が高分子化合物により保持されている。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。ただし、電解質層36は、例えば、さらに、各種の添加剤などの他の材料を含んでいてもよい。
この二次電池では、例えば、充電時において、正極33からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して負極34に吸蔵される。また、二次電池では、例えば、放電時において、負極34からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して正極33に吸蔵される。
電解質層36を備えた二次電池は、例えば、以下で説明する3種類の手順により製造される。
最初に、正極21の作製手順と同様の手順により、正極集電体33Aの両面に正極活物質層33Bを形成することにより、正極33を作製する。また、負極22の作製手順と同様の手順により、負極集電体34Aの両面に負極活物質層34Bを形成することにより、負極34を作製する。
最初に、正極33および負極34を作製したのち、正極33に正極リード31を接続させると共に、負極34に負極リード32を接続させる。続いて、セパレータ35を介して正極33および負極34を互いに積層させたのち、その正極33、負極34およびセパレータ35を巻回させることにより、巻回体を形成する。続いて、巻回体の表面に保護テープ37を貼り付ける。続いて、巻回体を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40のうちの一辺の外周縁部を除いた残りの外周縁部同士を互いに接着させることにより、袋状の外装部材40の内部に巻回体を収納する。
最初に、基材層の両面に高分子化合物層が設けられたセパレータ35を用いることを除いて、上記した第2手順と同様の手順により、巻回体を作製したのち、袋状の外装部材40の内部に巻回体を収納する。続いて、外装部材40の内部に電解液を注入したのち、熱融着法などを用いて外装部材40を密封する。最後に、外装部材40に加重をかけながら、その外装部材40を加熱することにより、高分子化合物層を介してセパレータ35を正極33および負極34のそれぞれに密着させる。これにより、高分子化合物層に電解液が含浸されると共に、その高分子化合物層がゲル化するため、電解質層36が形成される。よって、外装部材40の内部に巻回電極体30が封入されるため、二次電池が完成する。
このラミネートフィルム型の二次電池によれば、正極33に含まれている複数の正極活物質粒子1(一次粒子P1)がリチウムマンガンリン酸化合物を含んでおり、その複数の正極活物質粒子1の平均粒径が100nm以下である。また、負極34の単位面積当たりの電気化学容量が正極33の単位面積当たりの電気化学容量以下である。よって、円筒型の二次電池と同様の理由により、優れた電池特性を得ることができる。これ以外のラミネートフィルム型の二次電池に関する作用および効果は、円筒型の二次電池に関する作用および効果と同様である。
ラミネートフィルム型の二次電池は、電解質層36の代わりに電解液を備えていてもよい。この場合には、電解液が巻回電極体30に含浸されているため、その電解液が正極33、負極34およびセパレータ35のそれぞれに含浸されている。また、袋状の外装部材40の内部に巻回体が収納されたのち、その袋状の外装部材40の内部に電解液が注入されることにより、その巻回体に電解液が含浸されるため、巻回電極体30が形成される。この場合においても同様の効果を得ることができる。
上記した二次電池の用途は、例えば、以下で説明する通りである。
以下で説明するように、正極活物質を合成すると共に、図9に示した試験用の二次電池(コイン型)を作製したのち、その二次電池の電池特性を評価した。ここでは、正極活物質として、図3に示した複数の正極活物質粒子1(一次粒子P1)の集合体(複数の二次粒子P2)を合成した。
正極活物質を合成する場合には水熱合成法を用いた。この場合には、最初に、原料として、リチウム含有化合物(水酸化リチウム(LiOH))と、マンガン含有化合物(硫酸マンガン・一水和物(MnSO4 ・H2 O))と、鉄含有化合物(硫酸鉄・七水和物(FeSO4 ・7H2 O))と、マグネシウム含有化合物(硫酸マグネシウム・七水和物(MgSO4 ・7H2 O))と、リン酸化合物(リン酸(H3 PO4 ))とを準備した。続いて、上記した一連の原料を混合することにより、混合物を得た。この場合には、一連の元素のモル比がLi:P:Mn:Fe:Mg=3:1:0.7:0.27:0.03となるように、一連の原料を混合した。
試験極51を作製する場合には、最初に、正極活物質(上記した二次粒子P2)90.5質量部と、正極結着剤(ポリフッ化ビニリデン)5.0質量部と、正極導電剤(黒鉛)4.5質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層を形成した。最後に、ロールプレス機を用いて正極活物質層を圧縮成型した。
二次電池の電池特性を評価したところ、表1に示した結果が得られた。ここでは、電池特性としてサイクル特性および放電電圧特性を調べた。
サイクル特性を調べる場合には、最初に、二次電池の状態を安定化させるために、常温環境中(温度=23℃)において二次電池を1サイクル充放電させた。続いて、同環境中において二次電池を1サイクル充放電させることにより、2サイクル目の放電容量を測定した。続いて、同環境中において二次電池を50サイクル充放電させることにより、52サイクル目の放電容量を測定した。最後に、容量維持率(%)=(52サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。
放電電圧特性を調べる場合には、以下で説明するように、4種類の平均放電電圧(V)と、2種類の平均放電電圧維持率(V)とを算出した。なお、4種類の平均放電電圧および2種類の平均放電電圧維持率のそれぞれの値は、小数点第二位の値を四捨五入した値である。
上記した手順により、二次電池の状態を安定化させたのち、最初に、同環境中において二次電池を1サイクル充放電させることにより、2サイクル目の放電時において放電深度(%)が10%増加するごとに放電電圧(V)を測定した(放電工程1)。充放電条件は、充電時の電流および放電時の電流のそれぞれを0.05Cに変更したことを除いて、サイクル特性を調べた場合と同様にした。
上記した手順により、二次電池の状態を安定化させたのち、最初に、充電時の電流および放電時の電流のそれぞれを1Cに変更したことを除いて放電工程1と同様の手順により、放電深度(%)が10%増加するごとに放電電圧(V)を測定した(放電工程3)。続いて、上記した手順により、二次電池を50サイクル充放電させた。続いて、充電時の電流および放電時の電流のそれぞれを1Cに変更したことを除いて放電工程2と同様の手順により、放電深度(%)が10%増加するごとに放電電圧(V)を測定した(放電工程4)。最後に、以下で説明するように、上記した放電工程3,4のそれぞれにおける放電電圧の測定結果に基づいて、2種類の平均放電電圧(V)を算出した。
1種類目の平均放電電圧維持率(%)を算出する場合には、平均放電電圧維持率(%)=[放電工程3(放電時の電流=1C)における平均放電電圧/放電工程1(放電時の電流=0.05C)における平均放電電圧]×100を算出した。この1種類目の平均放電電圧維持率は、表1中の「平均放電電圧維持率」のうちの「サイクル前」の欄に記載されている。
表1に示したように、複数の正極活物質粒子1(リチウムマンガンリン酸化合物)の合成時において炭素源を添加することにより、炭素材料2を含む二次粒子P2を形成したところ、100nm以下の平均粒径を有する複数の正極活物質粒子1(一次粒子P1)が得られた。
表2に示したように、炭素源の添加量(重量%)に応じて炭素材料2の含有量(重量%)を変更したことを除いて同様の手順により、正極活物質(複数の正極活物質粒子1)を合成すると共に二次電池を作製したのち、その二次電池の電池特性を評価した。
これらのことから、負極の単位面積当たりの電気化学容量が正極の単位面積当たりの電気化学容量以下である場合において、その正極に含まれている複数の正極活物質粒子1(一次粒子P1)がリチウムマンガンリン酸化合物を含んでおり、その複数の正極活物質粒子1の平均粒径が100nm以下であると、サイクル特性および放電電圧特性が改善された。よって、二次電池において優れた電池特性が得られた。
Claims (6)
- 下記の式(1)で表されるリチウムマンガンリン酸化合物を含むと共に100nm以下の平均粒径を有する複数の一次粒子、を含む正極と、
前記正極の単位面積当たりの電気化学容量以下である単位面積当たりの電気化学容量を有する負極と、
電解液と
を備えた、二次電池。
Lix Mny M11-y PO4 ・・・(1)
(M1は、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、コバルト(Co)、クロム(Cr)、銅(Cu)、モリブデン(Mo)、ニッケル(Ni)、ケイ素(Si)、スズ(Sn)、ストロンチウム(Sr)、チタン(Ti)、バナジウム(V)、タングステン(W)、亜鉛(Zn)、ジルコニウム(Zr)および鉄(Fe)のうちの少なくとも1種である。xおよびyは、0<x<1.2および0<y≦1を満たす。) - 前記式(1)中のyは、y≧0.5を満たす、
請求項1記載の二次電池。 - 前記複数の一次粒子の平均粒径は、60nm以下である、
請求項1または請求項2に記載の二次電池。 - 前記正極は、さらに、前記複数の一次粒子のそれぞれの表面を被覆する炭素材料を含む、
請求項1ないし請求項3のいずれか1項に記載の二次電池。 - 前記炭素材料により被覆された前記複数の一次粒子は、複数の二次粒子を形成しており、
前記複数の二次粒子中における前記炭素材料の含有量は、1.4重量%以上4.8重量%以下である、
請求項4記載の二次電池。 - 前記負極は、チタン酸化物、リチウムチタン複合酸化物、水素チタン化合物、リチウムニオブ複合酸化物、水素ニオブ化合物およびチタンニオブ複合酸化物のうちの少なくとも1種を含む、
請求項1ないし請求項5のいずれか1項に記載の二次電池。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217008921A KR20210046765A (ko) | 2018-09-27 | 2018-09-27 | 이차 전지 |
CA3114560A CA3114560A1 (en) | 2018-09-27 | 2018-09-27 | Secondary battery |
EP18934953.3A EP3859855A4 (en) | 2018-09-27 | 2018-09-27 | SECONDARY BATTERY |
JP2020547725A JP7150038B2 (ja) | 2018-09-27 | 2018-09-27 | 二次電池 |
PCT/JP2018/035975 WO2020065833A1 (ja) | 2018-09-27 | 2018-09-27 | 二次電池 |
CN201880098065.0A CN112789755A (zh) | 2018-09-27 | 2018-09-27 | 二次电池 |
US17/203,277 US20210210760A1 (en) | 2018-09-27 | 2021-03-16 | Secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/035975 WO2020065833A1 (ja) | 2018-09-27 | 2018-09-27 | 二次電池 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/203,277 Continuation US20210210760A1 (en) | 2018-09-27 | 2021-03-16 | Secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020065833A1 true WO2020065833A1 (ja) | 2020-04-02 |
Family
ID=69950041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/035975 WO2020065833A1 (ja) | 2018-09-27 | 2018-09-27 | 二次電池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210210760A1 (ja) |
EP (1) | EP3859855A4 (ja) |
JP (1) | JP7150038B2 (ja) |
KR (1) | KR20210046765A (ja) |
CN (1) | CN112789755A (ja) |
CA (1) | CA3114560A1 (ja) |
WO (1) | WO2020065833A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004087319A (ja) * | 2002-08-27 | 2004-03-18 | Sony Corp | 電池 |
JP2010251302A (ja) * | 2009-03-27 | 2010-11-04 | Sumitomo Osaka Cement Co Ltd | リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池 |
JP2011517053A (ja) * | 2008-04-14 | 2011-05-26 | ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー | 二次リチウム電池用の陰極活性材料としてのリン酸マンガンリチウム/炭素ナノ複合材 |
JP2012104290A (ja) | 2010-11-08 | 2012-05-31 | Sony Corp | 非水電解質電池用正極活物質、非水電解質電池用正極および非水電解質電池 |
JP2012204015A (ja) * | 2011-03-23 | 2012-10-22 | Sumitomo Osaka Cement Co Ltd | リチウムイオン電池用正極活物質とその製造方法及びリチウムイオン電池用電極並びにリチウムイオン電池 |
JP2013127845A (ja) * | 2011-12-16 | 2013-06-27 | Nissan Motor Co Ltd | 電気デバイス |
JP2014209463A (ja) * | 2013-03-26 | 2014-11-06 | 株式会社東芝 | 正極活物質、非水電解質電池および電池パック |
JP2016081798A (ja) * | 2014-10-20 | 2016-05-16 | トヨタ自動車株式会社 | 非水電解質二次電池 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06104013A (ja) * | 1992-08-06 | 1994-04-15 | Ricoh Co Ltd | 二次電池 |
JP4432203B2 (ja) * | 2000-04-25 | 2010-03-17 | ソニー株式会社 | 正極活物質及び非水電解質電池 |
CN103503207B (zh) * | 2011-04-28 | 2016-01-20 | 昭和电工株式会社 | 锂二次电池用正极活性物质的制造方法 |
JP5736965B2 (ja) * | 2011-05-27 | 2015-06-17 | 日立金属株式会社 | リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、及びリチウム二次電池 |
JP2013048053A (ja) * | 2011-08-29 | 2013-03-07 | Sony Corp | 活物質、電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JP5807749B2 (ja) | 2011-12-08 | 2015-11-10 | ソニー株式会社 | 非水電解液二次電池用正極、非水電解液二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JP6216965B2 (ja) | 2012-01-31 | 2017-10-25 | 住友大阪セメント株式会社 | 電極材料と電極板及びリチウムイオン電池並びに電極材料の製造方法、電極板の製造方法 |
US9647264B2 (en) * | 2012-09-04 | 2017-05-09 | Toyota Jidosha Kabushiki Kaisha | Nonaqueous electrolyte secondary battery |
JP2015082476A (ja) * | 2013-10-24 | 2015-04-27 | 日立金属株式会社 | リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法 |
JP6570843B2 (ja) * | 2014-07-31 | 2019-09-04 | 株式会社東芝 | 非水電解質電池及び電池パック |
JP6112367B2 (ja) * | 2014-09-12 | 2017-04-12 | トヨタ自動車株式会社 | リチウムイオン二次電池およびその製造方法 |
JP5999240B1 (ja) * | 2015-09-30 | 2016-09-28 | 住友大阪セメント株式会社 | リチウムイオン二次電池用電極材料およびその製造方法 |
JP2017103141A (ja) * | 2015-12-03 | 2017-06-08 | 株式会社デンソー | 二次電池装置及び非水電解質二次電池の放電方法 |
-
2018
- 2018-09-27 EP EP18934953.3A patent/EP3859855A4/en not_active Withdrawn
- 2018-09-27 CA CA3114560A patent/CA3114560A1/en not_active Abandoned
- 2018-09-27 CN CN201880098065.0A patent/CN112789755A/zh active Pending
- 2018-09-27 WO PCT/JP2018/035975 patent/WO2020065833A1/ja unknown
- 2018-09-27 JP JP2020547725A patent/JP7150038B2/ja active Active
- 2018-09-27 KR KR1020217008921A patent/KR20210046765A/ko not_active Application Discontinuation
-
2021
- 2021-03-16 US US17/203,277 patent/US20210210760A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004087319A (ja) * | 2002-08-27 | 2004-03-18 | Sony Corp | 電池 |
JP2011517053A (ja) * | 2008-04-14 | 2011-05-26 | ダウ グローバル テクノロジーズ リミティド ライアビリティ カンパニー | 二次リチウム電池用の陰極活性材料としてのリン酸マンガンリチウム/炭素ナノ複合材 |
JP2010251302A (ja) * | 2009-03-27 | 2010-11-04 | Sumitomo Osaka Cement Co Ltd | リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池 |
JP2012104290A (ja) | 2010-11-08 | 2012-05-31 | Sony Corp | 非水電解質電池用正極活物質、非水電解質電池用正極および非水電解質電池 |
JP2012204015A (ja) * | 2011-03-23 | 2012-10-22 | Sumitomo Osaka Cement Co Ltd | リチウムイオン電池用正極活物質とその製造方法及びリチウムイオン電池用電極並びにリチウムイオン電池 |
JP2013127845A (ja) * | 2011-12-16 | 2013-06-27 | Nissan Motor Co Ltd | 電気デバイス |
JP2014209463A (ja) * | 2013-03-26 | 2014-11-06 | 株式会社東芝 | 正極活物質、非水電解質電池および電池パック |
JP2016081798A (ja) * | 2014-10-20 | 2016-05-16 | トヨタ自動車株式会社 | 非水電解質二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3859855A4 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020065833A1 (ja) | 2021-08-30 |
JP7150038B2 (ja) | 2022-10-07 |
CA3114560A1 (en) | 2020-04-02 |
EP3859855A4 (en) | 2022-04-27 |
US20210210760A1 (en) | 2021-07-08 |
KR20210046765A (ko) | 2021-04-28 |
EP3859855A1 (en) | 2021-08-04 |
CN112789755A (zh) | 2021-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9843044B2 (en) | Positive electrode | |
JP6416214B2 (ja) | 非水電解質二次電池用活物質、非水電解質二次電池用電極、非水電解質二次電池、電池パックおよび非水電解質二次電池用活物質の製造方法 | |
JPWO2012111813A1 (ja) | 正極、非水電解質電池及び電池パック | |
JP2011253762A (ja) | リチウムイオン二次電池用負極、リチウムイオン二次電池、電動工具、電気自動車および電力貯蔵システム | |
JP7322776B2 (ja) | リチウムイオン二次電池 | |
US11916196B2 (en) | Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery | |
US20210202951A1 (en) | Electrically conductive substance, positive electrode, and secondary battery | |
CN110832678A (zh) | 二次电池、电池包、电动车辆、电力储存系统、电动工具及电子设备 | |
US11276878B2 (en) | Anode for lithium ion secondary battery and lithium ion secondary battery | |
JP5646661B2 (ja) | 正極、非水電解質電池及び電池パック | |
JP7074203B2 (ja) | リチウムイオン二次電池用負極およびリチウムイオン二次電池 | |
WO2020065833A1 (ja) | 二次電池 | |
WO2020065831A1 (ja) | リチウムイオン二次電池 | |
CN113169304B (zh) | 二次电池 | |
WO2017046891A1 (ja) | 充電システム及び非水電解質電池の充電方法 | |
JP7156393B2 (ja) | 二次電池 | |
WO2020110799A1 (ja) | 二次電池 | |
WO2017168982A1 (ja) | 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具及び電子機器 | |
JP2019114338A (ja) | リチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18934953 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020547725 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20217008921 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3114560 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018934953 Country of ref document: EP Effective date: 20210428 |