WO2020063259A1 - 量子点的制备方法 - Google Patents

量子点的制备方法 Download PDF

Info

Publication number
WO2020063259A1
WO2020063259A1 PCT/CN2019/103821 CN2019103821W WO2020063259A1 WO 2020063259 A1 WO2020063259 A1 WO 2020063259A1 CN 2019103821 W CN2019103821 W CN 2019103821W WO 2020063259 A1 WO2020063259 A1 WO 2020063259A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
quantum dot
group iii
precursor
metal
Prior art date
Application number
PCT/CN2019/103821
Other languages
English (en)
French (fr)
Inventor
聂志文
杨一行
Original Assignee
Tcl集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811157040.1A external-priority patent/CN110964506A/zh
Priority claimed from CN201811156017.0A external-priority patent/CN110964500A/zh
Priority claimed from CN201811156030.6A external-priority patent/CN110964501A/zh
Application filed by Tcl集团股份有限公司 filed Critical Tcl集团股份有限公司
Publication of WO2020063259A1 publication Critical patent/WO2020063259A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus

Definitions

  • the present application relates to the technical field of nanomaterials, and in particular, to a method for preparing quantum dots.
  • Quantum dots also called semiconductor nanocrystals
  • Quantum dots have a particle radius close to or smaller than the exciton Bohr radius. Due to the existence of the "quantum size" effect, as the size of the quantum dot is further reduced, the continuous energy level structure will gradually change to a discrete, discontinuous energy level structure. After being excited by light with a certain wavelength of energy, photons that absorb a certain amount of energy in the valence band are excited to the conduction band, and the electrons in the excited state will transition from the conduction band to the valence band and release energy in the form of light. Fluorescence. Therefore, by adjusting the size and chemical composition of the quantum dots in a certain way, the emission spectrum can cover the entire visible light region, even the near infrared region.
  • quantum dots have high dispersibility as a colloidal solution, which facilitates physical operations; on the other hand, quantum dots have high color purity, wide color gamut, and high stability.
  • the advantage is the core material of the new generation display technology.
  • III-V quantum dots typified by InP have many incomparably superior properties.
  • the Bohr radius of InP quantum dots is 13nm, and the large Bohr radius makes it more affected by the quantum dot effect.
  • InP quantum dots do not contain restricted heavy metal elements, which is in line with the concept of green environmental protection. Inherent toxicity is regarded as the most important core material to replace the traditionally toxic and polluted Group II-VI cadmium-based quantum dots, and it is also the key to break through the existing display technology.
  • InP quantum dots have some shortcomings: First, compared with traditional type II-VI quantum dots formed by ionic bonding, InP quantum dots are made by covalent bonding of In and P elements. Quantum dot stability is usually poor. Secondly, there are a large number of P dangling bonds on the surface of InP quantum dots. The presence of dangling bonds as a non-radiative compound transition center will greatly reduce its luminous efficiency. Generally, the luminous efficiency of the InP core is less than 1%. In order to further prepare quantum dots with high luminous efficiency, it is necessary to coat one or more layers of a wide-gap outer shell material. Such a core-shell structure can effectively confine carriers in the core and act as non-radiative recombination.
  • the surface states of the transition centers are separated, thereby greatly improving their luminous efficiency.
  • the commonly used shell material is ZnSe or ZnS. Due to the large lattice fit between InP and ZnSe or ZnS, it is difficult for the ZnSe or ZnS shell to effectively grow on the surface of InP, making the final core-shell Structured quantum dots have low luminous efficiency.
  • the thickness of the quantum dot shell layer with high synthesis quality does not exceed 2 nm, and the stability is poor.
  • the thin shell layer is not conducive to the perfect binding of excitons, it is easy to cause the electron or hole wave function to delocalize into the shell layer, which greatly limits its application in new displays.
  • the preparation method based on InP quantum dots generally uses a two-pot method, that is, the preparation of the InP core is performed first, and then the precursor required for the transition shell or the shell is added to the cleaned core solution.
  • the control of the heating rate of the method requires preciseness, and a long reaction time is required regardless of the nucleation and long shell processes, and the shell layer precursor is easy to nucleate spontaneously during the addition process, which is not conducive to the subsequent growth of the shell layer.
  • One of the objectives of the embodiments of the present application is to provide a method for preparing a quantum dot, which aims to solve the technical problems of long time, high cost, and low efficiency of the existing quantum dot preparation method.
  • a method for preparing a quantum dot including the following steps:
  • the mixed solution is further heated to a second temperature, and then a group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • FIG. 1 is a schematic flowchart of a method for preparing a quantum dot according to an embodiment of the present application.
  • the terms “including” and “containing” indicate the existence of the described features, wholes, elements and / or components, but do not exclude the presence of one or more other features, wholes, elements, components and / or sets thereof. Exist or add.
  • the terms “first” and “second” are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of "plurality” is two or more, unless specifically defined otherwise.
  • Some embodiments of the present application provide a method for preparing a quantum dot. As shown in FIG. 1, the method includes the following steps:
  • S001 providing a group III cation precursor and a ligand, dissolving the group III cation precursor and the ligand in a solvent, and performing a heat treatment under a first temperature condition to obtain a mixed solution;
  • a group III cation precursor and a ligand are dissolved in a solvent and heated under a first temperature condition before performing a nucleation reaction.
  • This not only makes the ligand and the group III
  • the cations are fully coordinated, which is conducive to the full reaction of anions and cations, and can effectively remove the water and oxygen in the reaction in advance, thereby avoiding the defects of the easily oxidized surface of the generated III-V quantum dot core surface, so that the final produced
  • the luminous effect of quantum dots is improved; at the same time, the process of nucleation reaction from the first temperature to the second temperature is a continuous heating process, which can greatly shorten the nucleation time, and high temperature nucleation is conducive to improving the quantum
  • the crystallinity of the dots and the yield of the quantum dots are improved. Therefore, this method of preparing the quantum dots, which is stable in technology, simple in process, and low in cost, is very conducive to large-scale preparation in the later
  • the group III cation precursor is selected from indium chloride, indium bromide, indium iodide, indium acetate, indium carbonate, indium nitrate, indium perchlorate, indium cyanide, and chloride.
  • the ligand is selected from the group consisting of oleic acid, C4-C20 saturated fatty acids (that is, saturated fatty acids having 4-20 carbon atoms
  • organic phosphines having 6-22 carbon atoms in the substituent such as trioctylphosphine
  • C6-C22 alkyl-substituted phosphine equivalent carbon atoms in the substituent is 6 -22 organophosphine, such as trioctylphosphine
  • primary C6-C22 amine ie, primary amines with 4-20 carbon atoms, such as hexadecylamine
  • secondary C6-C22 ie, substituents 6-22 atoms of secondary amine, carbon atoms, such as di-octyl amine
  • C6-C40 tertiary amines i.e., tertiary amine substituents of 6-40, such as at least one trioctylamine
  • the solvent is a non-ligand solvent and is selected from C6-C40 aliphatic hydrocarbons (ie, aliphatic hydrocarbons having 6 to 40 carbon atoms, such as alkanes, olefins, or alkynes, specifically, such as hexadecane, octadecane, Octadecene, or Squalane), C6-C30 aromatic hydrocarbons (that is, aromatic hydrocarbons having 6-30 carbon atoms, such as phenyldodecane, phenyltetradecane, or phenylhexadecane) At least one of a nitrogen-containing heterocyclic compound (such as pyridine), a C12-C22 aromatic ether (that is, an aromatic ether having 12-22 carbon atoms, such as a phenyl ether or a benzyl ether).
  • C6-C40 aliphatic hydrocarbons ie, aliphatic hydrocarbons having 6 to 40 carbon
  • the heat treatment is performed in an inert atmosphere and a first temperature condition.
  • the inert atmosphere is specifically nitrogen.
  • the inert atmosphere can isolate air to make the reaction system more stable.
  • the first temperature is 100-200 ° C; the heat treatment time under the first temperature condition is 1-2h. Within the temperature and time ranges, the coordination effect of the ligand with the group III cation is better, and the water and oxygen removal effect in the reaction system is the best.
  • a vacuum treatment step is further included before performing the heat treatment under the first temperature condition. Vacuum treatment allows water and oxygen to be removed as completely as possible from the entire reaction manifestation before the nucleation reaction takes place. Specifically, the temperature of the vacuum treatment is 80-150 ° C; and the time of the vacuum treatment is 30min-1h.
  • the first group II cation precursor, the group III cation precursor and the ligand are dissolved in a solvent, and the heat treatment is performed under a first temperature condition.
  • the group II cation precursor is added to the reaction system.
  • the group II cation can not only effectively bind to the surface of the group III-V quantum dot core, thereby passivating the group III-V quantum dot.
  • the core can also serve as a precursor for the subsequent growth of the II-VI semiconductor shell layer.
  • the first group II cation precursor is selected from zinc chloride, zinc bromide, zinc iodide, zinc acetate, zinc stearate, zinc undecylenate, zinc acetylacetonate, zinc hexafluoroacetylacetonate, Zinc oxide, zinc hydroxide, zinc carbonate, zinc nitrate, zinc perchlorate, zinc cyanide, cadmium chloride, cadmium bromide, cadmium iodide, cadmium acetate, cadmium stearate, cadmium undecylate, acetylacetone Cadmium, cadmium hexafluoroacetylacetone, cadmium oxide, cadmium hydroxide, cadmium carbonate, cadmium nitrate, cadmium perchlorate, cadmium cyanide, magnesium chloride, magnesium bromide, magnesium iodide, magnesium acetate, magnesium stearate,
  • the group V anion precursor is selected from the group consisting of tris (trimethylsilyl) phosphine, tris (trimethylsilyl) phosphine, tris (dimethylamino) phosphine, and tris (diethyl).
  • the second temperature is 260-320 ° C; and the time of the nucleation reaction is 1-20min.
  • the second temperature is a generation temperature of the III-V quantum dot core, and within the temperature and time range, a III-V quantum dot core can be better formed.
  • a second group II cation precursor and a group VI anion precursor are added to the group III-V core solution, and the shell layer is grown under the third temperature condition.
  • a group II-VI semiconductor shell is formed on the surface of the group III-V quantum dot core to obtain a core-shell quantum dot solution.
  • the second group II cation precursor is selected from the group consisting of cadmium oleate, cadmium butyrate, cadmium n-octoate, cadmium hexanoate, cadmium octoate, cadmium dodecanoate, cadmium myristate, cadmium palmitate, and hard Cadmium stearate, mercury oleate, mercury butyrate, mercury n-caprylate, mercury hexanoate, mercury octoate, mercury dodecanoate, mercury myristate, mercury palmitate, mercury stearate, zinc oleate, butyric acid Zinc, zinc n-octoate, zinc caproate, zinc caprylate, zinc dodecanoate, zinc myristate, zinc palmitate, zinc stearate, magnesium oleate, magnesium butyrate, magnesium ortho-caprate, magnesium caproate At least one of magnesium octanoate, magnesium dodecanoate
  • the third temperature is 260-320 ° C; and the time for performing the growth of the shell layer under the third temperature condition is 15min-90min.
  • the third temperature is the growth temperature of the II-VI semiconductor shell layer, and within the temperature and time range, the II-VI semiconductor shell layer can be better formed.
  • the method further includes performing solid-liquid separation on the core-shell quantum dot solution and then vacuum drying.
  • the core-shell quantum dot solution can be obtained by centrifuging and precipitating the core-shell quantum dot solution, and finally drying it under vacuum for 12-24 h.
  • quantum dots with different light emitting properties can be prepared by using cationic precursors with different activities, such as quantum dots with narrow peak widths, or quantum dots with high light emitting efficiency or Highly stable quantum dots.
  • the obtained quantum dots include at least one of a group III-V quantum dot core and a halide ion, an acetylacetonate ion, and a hydroxide ion bound to the surface of the group III-V quantum dot core; wherein, the A halide ion, an acetylacetonate ion and a hydroxide ion are combined with a group III cation on the surface of the core of the group III-V quantum dot.
  • the obtained quantum dots include a group III-V quantum dot core, a group II cation bound to a group V anion on the surface of the group III-V quantum dot core, and a group III cation on the surface of the group III-V quantum dot core.
  • a quantum dot including a group III-V quantum dot core and a halide ion bonded to a surface of the group III-V quantum dot core; wherein the halogen ion and the III-V Group III cation binding on the surface of the group quantum dot core.
  • a quantum dot including a group III-V quantum dot core, a group II cation bound to the surface of the group III-V quantum dot core, and a surface of the group III-V quantum dot core.
  • Group III cation and Group II cation combined halide.
  • Group III-V quantum dots are formed by covalent bonding. Therefore, the surface of group III-V quantum dots has a large number of defect states. The existence of the defect states will cause non-radiative transitions of the quantum dots, thereby greatly reducing the quantum dots. Its own luminous efficiency, and in the quantum dot in the embodiment of the present application, the halide ion is combined with a metal cation (such as a group III cation, or a group III cation and a group II cation) on the surface of the group III-V quantum dot core, which is equivalent to A metal halide is completely or partially coated on the surface of the core of the quantum dot.
  • a metal cation such as a group III cation, or a group III cation and a group II cation
  • the metal halide can passivate the surface of the group III-V quantum dot core, and can also act as a transitional shell, thereby more effectively suppressing non-radiation.
  • the occurrence of transitions greatly improves the luminous efficiency of the quantum dots (luminous efficiency is greater than 70%).
  • the material of the III-V quantum dot core is selected from the group consisting of GaP, GaN, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InP, InAs, InSb, GaNP, GaAs, GaNSb, GaPSb, AlNP , AlNAs, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, and InPGa.
  • the group III cation is selected from at least one of indium ion, gallium ion, and aluminum ion; the group II cation is selected from at least one of zinc ion, cadmium ion, mercury ion, and magnesium ion; From at least one of chloride ion, bromide ion and iodide ion, specifically, for group III-V quantum dot cores, these halogen ions will be combined with group III cations on the surface, which is equivalent to completely covering the surface of the quantum dot core or Incomplete coating of metal halides, for example, forming indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide At least one.
  • the metal halide includes a group III metal halide such as indium chloride, indium bromide, indium iodide, gallium chloride, and gallium bromide.
  • At least one of gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide, and group II metal halides such as zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, iodine
  • group II metal halides such as zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, iodine
  • the surface of the group III-V quantum dot core is coated with a group II-VI semiconductor shell layer, and the group II-VI semiconductor shell layer covers the group III-V quantum dot core and a bond A halide ion on the surface of the group III-V quantum dot core.
  • the surface of the group III-V quantum dot core is coated with a group II-VI semiconductor shell layer, and the group II-VI semiconductor shell layer covers the group III-V quantum dot.
  • a nucleus and a group II metal ion and a halide ion bonded to the surface of the group III-V quantum dot core.
  • a halide ion is located between the III-V quantum dot core and the II-VI semiconductor shell layer.
  • a metal halide formed by a halide ion and a metal cation on the core surface of a III-V quantum dot cooperates with a II-VI semiconductor shell to form a core-shell quantum dot structure, which can more effectively confine the
  • the carrier is separated from the surface state that serves as the center of the non-radiative compound transition, thereby greatly improving its luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS At least one of ZnSeTe, ZnSTe, ZnSTe, MgZnSe, and MgZnS.
  • a method for preparing the quantum dot includes the following steps:
  • SA011 providing a group III cation precursor and a ligand, the group III cation precursor includes one or more metal halide precursors; dissolving the group III cation precursor and the ligand in a solvent, and Heat treatment under temperature conditions to obtain a mixed solution;
  • SA012 The mixed solution is further heated to a second temperature, and then a group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • another preparation method includes the following steps:
  • SB011 providing a group III cation precursor, a first group II cation precursor, and a ligand; wherein the group III cation precursor includes one or more metal halide precursors, and / or the first group II The cation precursor includes one or more metal halide precursors; the group III cation precursor, the first group II cation precursor, and the ligand are dissolved in a solvent, and heat treatment is performed at a first temperature to obtain mixture;
  • the mixed solution is further heated to a second temperature, and then a Group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • the cation in the metal halide precursor can be used for the nucleation reaction.
  • the anion is halogen.
  • the ions can react with the dangling group V anion on the surface of the nucleated group III-V quantum dot core.
  • the generated VX 3 (V is N, P or As, X is halogen) gas is conducive to the reaction, making III -Group III and Group V atoms on the surface of the Group-V quantum dot core recombine to form a group III-V quantum dot core with a more stable atomic ratio.
  • the halide ion can interact with cations on the surface of the Group III-V quantum dot core (such as III Group cations, or group III cations and group II cations), is equivalent to completely or partially coating a layer of metal halide on the surface of the core of the group III-V quantum dot, which can not only passivate III-
  • the surface of the group V quantum dot core can also act as a transitional shell, which can more effectively suppress the occurrence of non-radiation transitions, greatly improve the luminous efficiency of the quantum dots, and the prepared quantum dots have higher luminous efficiency (greater than 70) %).
  • the group III cation precursor includes one or more metal halide precursors, that is, the group III cation precursor may be only a metal halide precursor, or it may be in addition to the metal halide precursor. May include other precursors such as aluminum isopropoxide, indium acetate, indium carbonate, indium nitrate, indium perchlorate, indium cyanide, gallium carbonate, gallium nitrate, gallium perchlorate, gallium cyanide, aluminum carbonate, aluminum nitrate , Aluminum perchlorate, aluminum cyanide, etc.
  • the metal halide precursor in the group III cation precursor is selected from indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide. At least one of.
  • the group III cation precursor includes one or more metal halide precursors, and / or the first group II cation precursor includes one or more metal halide precursors
  • a group III cation precursor includes one or more metal halide precursors
  • the first group II cation precursor includes one or more metal halide precursors
  • the cation precursors also include one or more metal halide precursors; when the group III cation precursor includes one or more metal halide precursors, the metal halide precursor is selected from indium chloride, bromine At least one of indium iodide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide; when the first group II cation precursor includes one or more In the case of a metal halide precursor, the metal halide precursor is selected from the group
  • the halide ion is combined with a group III cation on the surface of the group III-V quantum dot core to form a metal halide, which is equivalent to completely or partially coating a layer of metal halide on the surface of the group III-V quantum dot core.
  • the metal halide includes at least one of indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide;
  • step SB011 because the first group II cation precursor is introduced: the group II cation will be combined with the group V anion (such as P) on the surface of the group III-V quantum dot core, thereby leaving a group III cation vacancy, and the halide ion will Combined with the group III cation vacancies on the surface of the core, and the halide ion will also be combined with the group II cations on the surface of the group III-V quantum dot core, that is, the halide ion will be combined with the group III cations and group II on the surface of the group III-V quantum dot core.
  • the group V anion such as P
  • Cation bonding is equivalent to completely or partially coating a metal halide material composed of a group III metal halide and a group II metal halide on the surface of the quantum dot core.
  • the metal halide material includes a group III metal halide Such as at least one of indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide, and group II metal halides such as chlorine
  • group III metal halide such as at least one of indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide
  • group II metal halides such as chlorine
  • the surface of the group III-V quantum dot core is completely or incompletely covered with a metal halide material composed of a group III metal halide and a group II metal halide, which can more effectively cover the entire group III-V quantum dot core. , Which helps to bind the excitons in the nucleus more effectively and greatly improves the luminous efficiency.
  • a second group II cation precursor and a group VI anion precursor are added to the group III-V nuclear solution, and a shell layer is grown under a third temperature condition.
  • the III-V quantum dot core surface forms a II-VI semiconductor shell layer to obtain a core-shell quantum dot solution. Because the ions of the III-V quantum dot core are combined with halogen ions, the metal halide can act as a transition shell layer, which is more conducive to the growth of the I-VI semiconductor shell layer.
  • a surface of the group III-V quantum dot core is covered with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the group III-V quantum dot.
  • Halide ions on the surface of the core Alternatively, a surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the group III-V quantum Group II metal ions and halide ions on the core surface.
  • a halide ion is located between the III-V quantum dot core and the II-VI semiconductor shell layer.
  • a metal halide formed by a halide ion and a metal cation on the core surface of a III-V quantum dot cooperates with a II-VI semiconductor shell to form a core-shell quantum dot structure, which can more effectively confine the
  • the carrier is separated from the surface state that serves as the center of the non-radiative compound transition, thereby greatly improving its luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, At least one of MgTe, ZnSeS, ZnSeTe, ZnSTe, MgZnSe, and MgZnS.
  • Examples of the above-mentioned method for preparing a quantum dot are shown in Examples 1-1 to 1-6.
  • a quantum dot including a group III-V quantum dot core and an acetylacetonate ion bound to the surface of the group III-V quantum dot core; wherein the acetylacetonate ion and The group III-cation cation binding on the surface of the group III-V quantum dot is described.
  • a quantum dot including a group III-V quantum dot core, a group II cation bound to the surface of the group III-V quantum dot core, and a surface of the group III-V quantum dot core.
  • Group III cations and Group II cations combine with acetylacetonate ions.
  • Acetylacetone ions have a smaller radial dimension and bidentate coordination sites, and will exchange with ligands such as carboxylic acids introduced.
  • Acetylacetone ions pass through metal cations on the surface of the III-V quantum dot core (such as Group III cations, or a combination of Group III cations and Group II cations), is equivalent to completely or partially coating a layer of metal acetylacetonate on the surface of the quantum dot core, which can reduce the original surface of the III-V quantum dot core surface.
  • the ligand can realize the separation of nucleation and growth, which can effectively improve the size dispersion of the quantum dots, so that the quantum dots significantly narrow the peak width and make the peak width range ⁇ 45nm.
  • the material of the III-V quantum dot core is selected from the group consisting of GaP, GaN, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InP, InAs, InSb, GaNP, GaAs, GaNSb, GaPSb, AlNP , AlNAs, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, and InPGa.
  • the group III cation is selected from at least one of indium ion, gallium ion, and aluminum ion; the group II cation is selected from at least one of zinc ion, cadmium ion, mercury ion, and magnesium ion.
  • the acetoacetone ion is selected from at least one of hexahydroacetylacetone ion and hexafluoroacetylacetone ion.
  • hexahydroacetylacetonate ions and hexafluoroacetylacetonate ions can form indium hexahydroacetylacetonate, gallium hexahydroacetylacetonate, and aluminum hexahydroacetylacetone with group III cations on the surface. At least one of hexafluoroacetylacetonate, gallium hexafluoroacetylacetonate, and aluminum hexafluoroacetylacetone.
  • the acetylacetonate ion will simultaneously combine with the group III cation and the group II cation on the surface of the group III-V quantum dot core, which is equivalent.
  • a layer of metal acetylacetonate is completely or partially coated on the surface of the quantum dot core to form a group III metal acetylacetone metal compound such as indium hexahydroacetylacetonate, gallium hexahydroacetylacetonate, aluminum hexahydroacetylacetonate, hexafluoro At least one of indium acetylacetonate, gallium hexafluoroacetylacetonate, and aluminum hexafluoroacetylacetonate, and a group II metal acetylacetone compound such as zinc hexahydroacetylacetonate, cadmium hexahydroacetylacetone, magnesium hexahydroacetylacetone, hexahydroacetyl At least one of mercury acetone, zinc hexafluoroacetylacetonate, cadmium hexafluoroacety
  • the surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the III-V Acylacetonate ions on the surface of Group V quantum dot cores.
  • the surface of the group III-V quantum dot core is coated with a group II-VI semiconductor shell layer, and the shell layer covers the group III-V quantum dot core and is bonded to The group II metal ions and acylacetonate ions on the surface of the group III-V quantum dot core are described.
  • the acylacetone ion is located between the group III-V quantum dot core and the group II-VI semiconductor shell layer.
  • the acetylacetone metal compound formed by the acylacetonate ion and the metal cation on the core surface of the III-V quantum dot cooperates with the II-VI semiconductor shell to form the core-shell quantum dot structure, which can be more effectively limited to
  • the carriers in the nucleus are separated from the surface state that serves as the center of the non-radiative compound transition, thereby greatly improving their luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS At least one of ZnSeTe, ZnSTe, ZnSTe, MgZnSe, and MgZnS.
  • a method for preparing the quantum dot includes the following steps:
  • SA021 providing a group III cation precursor and a ligand;
  • the group III cation precursor includes one or more acetylacetone metal salt precursors;
  • the group III cation precursor and the ligand are dissolved in a solvent, and Heat treatment under a temperature condition to obtain a mixed solution;
  • SA022 The mixed solution is further heated to a second temperature, and then a group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • another preparation method includes the following steps:
  • SB021 providing a group III cation precursor, a first group II cation precursor, and a ligand; wherein the group III cation precursor includes one or more acetylacetone metal salt precursors, and / or the first II
  • the group cation precursor includes one or more acetylacetone metal salt precursors; the group III cation precursor, the second group II cation precursor, and the ligand are dissolved in a solvent, and heat treatment is performed under a first temperature condition To obtain a mixed solution;
  • the mixed solution is further heated to a second temperature, and then a Group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • III-V quantum dots are generally prepared using a combination of non-ligand solvents and fatty acid ligands. Although the introduction of fatty acid ligands improves the reaction speed of the system, the nucleation process of III-V semiconductor quantum dots is accelerated. The resulting nuclei have a relatively uniform particle size. However, fatty acid ligands bind to Group III cations through oxygen in the carboxylate. The binding energy of Group III cations and oxygen is greater than that of Group II cations in the same cycle, such as those between In-O bonds.
  • the binding energy is twice as large as the binding energy between Cd-O bonds:
  • the carboxylic acid ligands will bind closely to In on the surface of the InP quantum dots at high temperatures, making the distribution ratio of carboxylic acid ligands on the surface of the InP quantum dots II.
  • -Group VI quantum dots are much higher; on the other hand, the close binding of carboxylic acid ligands to the surface of InP quantum dots is very unfavorable for subsequent growth during the nucleation stage, so the denseness of the surface of group III-V quantum dots is removed.
  • Carboxylic acid ligands are necessary to achieve separation of nucleation and growth.
  • the cations in the acetylacetone metal salt precursor can be used for the nucleation reaction.
  • the acetylacetonate ion has a smaller radial dimension and more (2) coordination sites, it will exchange with the carboxylic acid ligand, and the surface of the group III-V quantum dot core
  • the combination of metal cations (such as Group III cations, or Group III cations and Group II cations) is equivalent to completely or partially coating a layer of metal acetylacetonate on the surface of the core of the quantum dots, which can reduce the III-V quantum Point to the original ligand on the surface of the nucleus, thereby achieving separation of nucleation and growth.
  • the resulting quantum dots have good size dispersion and can significantly narrow the peak width, making the peak width range ⁇ 45nm.
  • the group III cation precursor includes one or more acetylacetone metal salt precursors, that is, the group III cation precursor may be only the acetylacetone metal salt precursor, or may be in addition to one or more This acetylacetone metal salt precursor contains other precursors.
  • the acetylacetone metal salt precursor in the group III cation precursor is selected from at least one of indium acetylacetonate, indium hexafluoroacetylacetone, gallium acetylacetonate, gallium hexafluoroacetylacetonate, aluminum acetylacetonate, and aluminum hexafluoroacetylacetonate.
  • the group III cation precursor includes one or more metal acetylacetone precursors, and / or the first group II cation precursor includes one or more metal acetylacetone precursors, It can be understood that the group III cation precursor includes one or more metal acetylacetonate precursors, or the first group II cation precursor includes one or more metal acetylacetonate precursors, or the group III cation precursor and The first group II cation precursor includes both one or more metal acetylacetone precursors; when the group III cation precursor includes one or more metal acetylacetone precursors, the metal acetylacetone precursors At least one selected from the group consisting of indium acetylacetonate, indium hexafluoroacetylacetonate, gallium acetylacetonate, gallium hexafluoroacetylacetonate, aluminum acetylacetonate, and aluminum hexafluor
  • the acetylacetonate ion is combined with the group III cation on the surface of the group III-V quantum dot core to form indium hexahydroacetylacetonate, gallium hexahydroacetylacetonate, aluminum hexahydroacetylacetone, indium hexafluoroacetylacetone, hexafluoro At least one of gallium acetylacetonate and aluminum hexafluoroacetylacetonate.
  • step SB021 after adding the group II cation precursor, the group II cation will combine with the group V anion (such as P) on the surface of the group III-V quantum dot core, thereby leaving a group III cation vacancy and a small molecule of acetylacetonate Ionic ligands can be exchanged with carboxylic acids on the surface of Group III cations. Therefore, acetylacetonate ions also bind to Group III cations on the surface of the core, and acetylacetonate ions can also bind to the surface of Group III-V quantum dot cores.
  • the group V anion such as P
  • Group II cation binding that is, acetylacetonate ions are combined with Group III cations and Group II cations on the surface of the quantum dot core of III-V at the same time, which is equivalent to completely or partially coating a layer of quantum dot core by III A metal acetylacetone metal compound and a metal acetyl acetone metal compound.
  • Group III metal acetylacetone metal compound including indium hexahydroacetylacetonate, gallium hexahydroacetylacetonate, aluminum hexahydroacetylacetone, indium hexafluoroacetylacetone, gallium hexafluoroacetylacetone, and aluminum hexafluoroacetylacetone
  • Group II metal acetylacetonate compounds such as zinc hexahydroacetylacetonate, cadmium hexahydroacetylacetonate, magnesium hexahydroacetylacetonate, mercury hexahydroacetylacetonate, zinc hexafluoroacetylacetone, cadmium hexafluoroacetylacetone, magnesium hexafluoroacetylacetone, At least one of mercury hexafluoroacetylacetone.
  • a second group II cation precursor and a group VI anion precursor are added to the group III-V nuclear solution, and a shell layer is grown under a third temperature condition.
  • the III-V quantum dot core surface forms a II-VI semiconductor shell layer to obtain a core-shell quantum dot solution.
  • a surface of the group III-V quantum dot core is covered with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the group III-V quantum dot.
  • Acetylacetone ions on the surface of the core Alternatively, a surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the group III-V quantum Group II metal ions and acetylacetonate ions on the core surface.
  • An acetylacetonate ion is located between the III-V quantum dot core and the II-VI semiconductor shell layer.
  • the acetylacetonate metal compound formed by the acetylacetonate ion and the metal cation on the core surface of the III-V quantum dot cooperates with the II-VI semiconductor shell to form the core-shell quantum dot structure, which can be more effectively limited to
  • the carriers in the nucleus are separated from the surface state that serves as the center of the non-radiative compound transition, thereby greatly improving their luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS, ZnSeTe, At least one of ZnSTe, MgZnSe, and MgZnS.
  • Examples of the above-mentioned method for preparing a quantum dot are shown in Examples 2-1 to 2-6.
  • a quantum dot which includes a group III-V quantum dot core and a halide ion and an acetylacetonate ion bonded to a surface of the group III-V quantum dot core; wherein the halide ion and The acetylacetonate ion is combined with a group III cation on the surface of the group III-V quantum dot core.
  • a quantum dot including a group III-V quantum dot core, a group II cation combined with a group V anion on a surface of the group III-V quantum dot core, and a group III-V Group III cations and group II cations combined with halide and acetylacetonate ions on the surface of the quantum dot core.
  • the surface of the III-V quantum dot core is combined with a halide ion and an acetylacetonate ion at the same time, which is equivalent to completely or partially covering a layer of a metal on the surface of the III-V quantum dot core.
  • a mixed material consisting of a halide and a metal acetylacetone compound.
  • the halide ions are combined with metal cations on the surface of the III-V quantum dot core to passivate the surface of the III-V quantum dot core, effectively inhibit the occurrence of non-radiation transitions, and thus avoid the covalently bonded III-V group.
  • the original ligands achieve separation of nucleation and growth.
  • the halide ion and acetylacetonate ion can be combined with the cations on the surface of the group III-V quantum dots to form a layer of mixed material composed of a metal halide and a metal compound of acetylacetone, which can not only passivate the group III-V
  • the surface of the quantum dot core greatly improves the luminous efficiency of the quantum dots, and at the same time can increase the size dispersion of the quantum dots, thereby significantly narrowing the peak width; the final quantum dot luminous efficiency is greater than 70%, and the peak width range is ⁇ 45nm.
  • the material of the III-V quantum dot core is selected from the group consisting of GaP, GaN, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InP, InAs, InSb, GaNP, GaAs, GaNSb, GaPSb, AlNP, and AlNAs.
  • the group III cation is selected from at least one of indium ion, gallium ion, and aluminum ion
  • the halogen ion is selected from chloride ion, At least one of bromine ion and iodine ion.
  • the acetylacetonate ion is selected from at least one of hexahydroacetylacetonate ion and hexafluoroacetylacetonate ion.
  • hexahydroacetylacetonate ions and hexafluoroacetylacetonate ions will form indium hexahydroacetylacetonate and hexahydroacetylacetone with group III cations on the surface of the III-V quantum dot core.
  • Halide ions can form with Group III cations on the surface of Group III-V quantum dot cores such as indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and At least one of aluminum iodide.
  • the quantum dot further includes a shell layer, and the shell layer is made of a group II-VI semiconductor material, and the shell layer covers the group III-V quantum dot core and is bonded to the core layer. Halide and acetylacetonate ions on the surface of a quantum dot core.
  • a halide ion and an acetylacetonate ion are located between the III-V quantum dot core and a shell layer composed of the II-VI semiconductor material.
  • the core-shell quantum dot structure formed by the coordinated action of the halide ion, acetylacetonate ion and the group II-VI semiconductor shell has higher luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS At least one of ZnSeTe, ZnSTe, ZnSTe, MgZnSe, and MgZnS.
  • the acetylacetonate ion will simultaneously combine with the group III cation and the group II cation on the surface of the group III-V quantum dot core, which is equivalent.
  • III-V quantum dot core surface is completely or partially coated with a layer of a mixed material consisting of a metal acetylacetone compound and a metal halide to form a group III metal acetylacetone metal compound such as indium hexahydroacetylacetonate, hexahydro
  • a group III metal acetylacetone metal compound such as indium hexahydroacetylacetonate, hexahydro
  • a group II metal acetylacetone compound such as zinc hexahydroacetylacetone, hexahydroacetyl
  • the metal halide is selected from at least one of a group III metal halide such as indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide.
  • a group III metal halide such as indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide.
  • Species, and Group II metal halides such as zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, magnesium chloride, magnesium bromide, magnesium iodide, mercury chloride, mercury bromide And at least one of mercury iodide.
  • the quantum dot further includes a shell layer, and the shell layer is made of a group II-VI semiconductor material, and the shell layer covers the group III-V quantum dot core and is bonded to the core layer.
  • a halide ion and an acetylacetonate ion are located between the III-V quantum dot core and a shell layer composed of the II-VI semiconductor material. In this way, the core-shell quantum dot structure formed by the coordinated action of the halide ion, acetylacetonate ion and the group II-VI semiconductor shell has higher luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS, ZnSeTe, At least one of ZnSTe, MgZnSe, and MgZnS.
  • a method for preparing the quantum dot includes the following steps:
  • SA031 providing a group III cation precursor and a ligand; the group III cation precursor includes one or more acetylacetone metal salt precursors and one or more metal halide precursors; and the group III cation precursor
  • the ligand and the ligand are dissolved in a solvent and heat-treated under a first temperature condition to obtain a mixed solution;
  • SA032 The mixed solution is further heated to a second temperature, and then a group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • another preparation method includes the following steps:
  • the cationic precursors are a group III cationic precursor and a first group II cationic precursor, wherein the cationic precursor includes one or more acetylacetone metal salt precursors And one or more metal halide precursors; dissolving the cation precursor and the ligand in a solvent, and performing heat treatment under a first temperature condition to obtain a mixed solution;
  • SB033 heating the mixed solution to a second temperature, and then adding a Group V anion precursor to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • At least one acetylacetone metal salt precursor and at least one metal halide precursor are introduced into the precursor, so that during the preparation process, the metal acetylacetone
  • the metal cations in the salt precursor can be used for the nucleation reaction.
  • the acetylacetonate ion since the acetylacetonate ion has a smaller radial dimension and more (2) coordination sites at the moment of nucleation, it will coordinate with the carboxylic acid.
  • the halide ion can react with the dangling group V anion on the surface of the nucleated group III-V quantum dot core, and the generated VX 3 (V is N, P or As, X is halogen) gas is favorable for the reaction to occur, so that Group III and Group V atoms on the surface of Group III-V quantum dot cores recombine to form a more stable atomic ratio of Group III-V quantum dot cores.
  • halide ions can be combined with cations on the surface of Group III-V quantum dot cores to Passivation III-V quantum dot core surface; in the end, halide and acetylacetonate ions can be combined with cations on the nucleated III-V quantum dot core surface at the same time, which is equivalent to completely covering the III-V quantum dot core surface Covering or incompletely coating a mixed material composed of a metal compound of acetylacetone and a metal halide, not only can passivate the surface of the III-V quantum dot core, greatly improve the luminous efficiency of the quantum dot, but also improve the quantum dot's Size dispersion, which significantly narrows the peak width; the final quantum dot luminous efficiency is greater than 70%, and the peak width range is ⁇ 45nm.
  • the group III cation precursor includes one or more acetylacetone metal salt precursors and one or more metal halide precursors, that is, the group III cation precursor may contain only acetylacetone
  • the metal salt precursor and metal halide precursor may also contain other precursors in addition to the acetylacetone metal salt precursor and metal halide precursor; and the acetylacetone metal salt precursor in the group III cation precursor is selected from acetylacetone At least one of indium, indium hexafluoroacetylacetonate, gallium acetylacetonate, gallium hexafluoroacetylacetonate, aluminum acetylacetonate and aluminum hexafluoroacetylacetonate, metal halide precursors indium chloride, indium bromide, indium iodide, At least one of gallium chloride, gallium bromide, gallium iodide, aluminum chloride,
  • the cation precursor (group III cation precursor and first group II cation precursor) includes one or more acetylacetone metal salt precursors and one or more metal halide precursors. It is understood as follows: (1) the group III cation precursor includes one or more acetylacetone metal salt precursors and one or more metal halide precursors; (2) the first group II cation precursor includes One or more acetylacetone metal salt precursors and one or more metal halide precursors; (3) group III cation precursors include one or more acetylacetone metal salt precursors (group III cation precursors also May include one or more metal halide precursors) and the first group II cation precursor includes one or more metal halide precursors (the first group II cation precursor may also include one or more acetyl precursors Acetone metal salt precursor); (4) group III cation precursors include one or more metal halide precursors (group III cation precursors may also include one or more acetylacetone
  • step SA031 the halide ion and the acetylacetonate ion are simultaneously combined with the group III cation on the surface of the group III-V quantum dot core; it is equivalent to completely or partially covering the surface of the group III-V quantum dot core.
  • III A mixed material consisting of a metal compound of acetylacetone and a metal halide of III.
  • step SB031 after the group II cation precursor is added, the group II cation will combine with the group V anion (such as P) on the surface of the group III-V quantum dot core, thereby leaving group III cation vacancies, small molecule halide ions and Both acetylacetonate ion ligands can bind to Group III cations on the core surface, and halide acetylacetonate ions can also bind to Group II cations bound to the surface of the III-V quantum dot core, that is, halide and acetylacetonate The ions bind to the group III cations and the group II cations on the surface of the group III-V quantum dot core at the same time.
  • group V anion such as P
  • a second group II cation precursor and a group VI anion precursor are added to the group III-V nuclear solution, and a shell layer is grown under a third temperature condition.
  • the III-V quantum dot core surface forms a II-VI semiconductor shell layer to obtain a core-shell quantum dot solution.
  • a surface of the group III-V quantum dot core is covered with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the group III-V quantum dot. Acetylacetonate and halide ions on the surface of the core.
  • a surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the group III-V quantum Group II metal ions, acetylacetonate ions and halide ions on the surface of the core.
  • a halide ion and an acetylacetonate ion are located between the group III-V quantum dot core and the group II-VI semiconductor shell layer.
  • the metal halide, metal acetyl acetone compound formed by the halide ion and the acetylacetonate ion with the metal cation on the surface of the group III-V core dot, and the II-VI semiconductor shell layer cooperate to form a core-shell quantum dot structure.
  • the carrier confined in the nucleus can be more effectively separated from the surface state serving as the center of non-radiative recombination, thereby greatly improving its luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS, ZnSeTe, At least one of ZnSTe, MgZnSe, and MgZnS.
  • Example 3-1 Examples of the above-mentioned method for preparing a quantum dot are shown in Example 3-1 to Example 3-6.
  • a quantum dot including a group III-V quantum dot core and a hydroxide ion bonded to a surface of the group III-V quantum dot core; wherein the hydroxide ion and The group III cation binding on the surface of the quantum dot core is described.
  • a quantum dot including a group III-V quantum dot core, a group II cation combined with a group V anion on a surface of the group III-V quantum dot core, and a group III-V Group III cations and group II cations on the surface of the quantum dot core.
  • the combination of hydroxide ions and III metal cations on the surface of the group III-V quantum dot core is equivalent to forming a layer on the surface of the group III-V quantum dot core that is completely coated or incomplete.
  • the metal hydroxide of the core can not only passivate the surface of the III-V quantum dot core, but also serve as a buffer shell layer, which can effectively reduce the gap between the III-V quantum dot core and the II-VI semiconductor shell layer.
  • the problem of lattice adaptation is beneficial to the growth of the thick shell layer. Therefore, the combination of the hydroxide ion on the surface of the group III-V quantum dot core can greatly improve the stability of the quantum dot.
  • the group III cation is selected from at least one of indium ion, gallium ion, and aluminum ion; the group II cation is selected from at least one of zinc ion, cadmium ion, mercury ion, and magnesium ion.
  • the material of the III-V quantum dot core is selected from the group consisting of GaP, GaN, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InP, InAs, InSb, GaNP, GaAs, GaNSb, GaPSb, AlNP , AlNAs, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, and InPGa.
  • the quantum dot further includes an outer shell layer.
  • the outer shell layer is made of a group II-VI semiconductor material.
  • the outer shell layer covers the III-V quantum dot core and combines the III-V quantum dot core.
  • the group II-VI semiconductor material is selected from CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS, ZnSeTe, ZnSTe, MgZnSe And at least one of MgZnS.
  • the hydroxide ion will simultaneously combine with the group III cation and the group II cation on the surface of the group III-V quantum dot core to form A layer of metal hydroxide that is completely or partially coated on the surface of the quantum dot core.
  • the metal hydroxide at this time includes at least one of a group III metal hydroxide such as indium hydroxide, gallium hydroxide, and aluminum hydroxide.
  • a group II metal hydroxide such as zinc hydroxide, cadmium hydroxide, magnesium hydroxide, and mercury hydroxide.
  • the quantum dot further includes a shell layer, and the shell layer is made of a group II-VI semiconductor material, and the shell layer covers the group III-V quantum dot core and is bonded to the core layer.
  • a hydroxide ion is located between the III-V quantum dot core and the II-VI semiconductor shell layer.
  • the hydroxide-ion ions and the metal cations on the surface of the III-V quantum dot core form a structure equivalent to a metal hydroxide layer and the II-VI semiconductor shell layer cooperate to form a core-shell quantum dot structure, which has more High luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS At least one of ZnSeTe, ZnSTe, ZnSTe, MgZnSe, and MgZnS.
  • the thickness of the shell layer composed of the group II-VI semiconductor material is 3-5 nm.
  • the thickness of the shell group II-VI semiconductor layer is increased due to the presence of the equivalent metal hydroxide layer, thereby increasing the thickness. Luminous efficiency of core-shell quantum dots.
  • a method for preparing the quantum dot includes the following steps:
  • SA041 providing a group III cation precursor and a ligand; the group III cation precursor includes one or more metal oxide precursors and / or one or more metal hydroxide precursors; and the group III
  • the cation precursor and the ligand are dissolved in a solvent, and a first heat treatment is performed to obtain a mixed solution; a Group V anion precursor is added to the mixed solution, and the heat treatment is performed under a first temperature condition to obtain a mixed solution;
  • SA042 The mixed solution is further heated to a second temperature, and then a group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • another preparation method includes the following steps:
  • SB041 providing a cationic precursor and a ligand, the cationic precursor is a group III cation precursor and a first group II cation precursor, wherein the cationic precursor includes one or more metal oxide precursors and / Or one or more metal hydroxide precursors; dissolving the cation precursor and the ligand in a solvent, and performing heat treatment under a first temperature condition to obtain a mixed solution;
  • the mixed solution is further heated to a second temperature, and then a Group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • At least one metal oxide precursor and / or metal hydroxide precursor is introduced into the precursor before the nucleation reaction, so that during the preparation process, the metal oxide precursor metal ions and / or metal hydroxide precursor involved in the formation of group III-V quantum dot core, and a metal oxide precursor in the O 2- anions i.e.
  • OH - can be quickly combined with cations on the surface of group III-V quantum dot cores (such as group III cations, or group III cations and group II cations) to form a fully-coated or incompletely-coated group III-V quantum
  • group III-V quantum dot cores such as group III cations, or group III cations and group II cations
  • the metal oxide layer on the surface of the dot can not only effectively passivate the surface of the III-V quantum dot core, but also can be used as a buffer shell layer to effectively reduce the lattice matching problem between the core and the shell layer, which is beneficial to the thick shell. Layer of growth.
  • the group III cation precursor includes one or more metal oxide precursors and / or one or more metal hydroxide precursors, that is, the group III cation precursor may contain only one or Multiple metal oxide precursors, or a Group III cation precursor may contain only one or more metal hydroxide precursors, or a Group III cation precursor may have one or more metal oxide precursors and one Or more metal hydroxide precursors.
  • the Group III cation precursor may contain other precursors in addition to one or more metal oxide precursors and / or metal hydroxide precursors.
  • the metal oxide precursor is selected from at least one of indium oxide, gallium oxide, and aluminum oxide; and / or, the group III cations
  • the group III metal hydroxide precursor is selected from at least one of indium hydroxide, gallium hydroxide, and aluminum hydroxide.
  • the cationic precursor (group III cationic precursor and first group II cationic precursor) includes one or more metal oxide precursors and / or one or more metal hydroxide precursors.
  • the precursor can be understood as follows: (1) the group III cation precursor includes one or more metal oxide precursors and / or metal hydroxide precursors. At this time, the group III cation precursor may contain only one One or more metal oxide precursors, or the group III cation precursor may contain only one or more metal hydroxide precursors, or the group III cation precursor may contain one or more metal oxide precursors at the same time And one or more metal hydroxide precursors. (2)
  • the first group II cation precursor includes one or more metal oxide precursors and / or metal hydroxide precursors.
  • the first group II cation precursor may contain only one or more metals.
  • the oxide precursor, or the first group II cation precursor may contain only one or more metal hydroxide precursors, or the first group II cation precursor may contain one or more metal oxide precursors and One or more metal hydroxide precursors.
  • the group III cation precursor includes one or more metal oxide precursors, and the first group II cation precursor includes one or more metal oxide precursors and / or metal hydroxide precursors; 4)
  • the group III cation precursor includes one or more metal hydroxide precursors, and the first group II cation precursor includes one or more metal oxide precursors and / or metal hydroxide precursors.
  • the group III cation precursor includes one or more metal oxide precursors and one or more metal hydroxide precursors
  • the first group II cation precursor includes one or more metal oxide precursors.
  • the metal oxide is selected from at least one of indium oxide, gallium oxide, and aluminum oxide
  • the metal hydroxide At least one selected from the group consisting of indium hydroxide, gallium hydroxide, and aluminum hydroxide.
  • the group II metal oxide is selected from zinc oxide, cadmium oxide, magnesium oxide, magnesium hydroxide, and mercury oxide At least one of the group II metal hydroxides is selected from at least one of zinc hydroxide, cadmium hydroxide, magnesium hydroxide, and mercury hydroxide.
  • the first Group II cation precursor may contain other precursors in addition to the metal oxide and / or metal hydroxide.
  • the cationic Group III precursor comprises one or more metal oxides and / or metal hydroxides, metal oxide O 2- anions i.e. first with protic reaction system solution is formed OH -, OH - will be combined with a group III cation on the surface of a group III-V quantum dot core, which is equivalent to forming a layer of metal hydroxide covering the quantum dot core on the surface of the quantum dot core.
  • the metal hydroxide is hydroxide At least one of indium, gallium hydroxide, and aluminum hydroxide.
  • step SB041 because the first group II cation precursor is introduced: the group II cation will combine with the group V anion (such as P) on the surface of the group III-V quantum dot core, thereby leaving a group III cation vacancy, OH - and Group III cations on the surface of the core, and OH - will also bind to group II cations bound to the surface of the quantum dot core of the III-V group, which is equivalent to forming a layer of metal II coated on the surface of the quantum dot core.
  • the group III metal hydroxide such as at least one of indium hydroxide, gallium hydroxide, and aluminum hydroxide
  • the group II metal hydrogen An oxide such as at least one of zinc hydroxide, cadmium hydroxide, magnesium hydroxide, and mercury hydroxide.
  • a second group II cation precursor and a group VI anion precursor are added to the group III-V nuclear solution, and a shell layer is grown under a third temperature condition.
  • the III-V quantum dot core surface forms a II-VI semiconductor shell layer to obtain a core-shell quantum dot solution.
  • a surface of the group III-V quantum dot core is covered with a layer of a group II-VI semiconductor shell, and the shell layer covers the group III-V quantum dot core and combines the group III-V quantum dot core.
  • Surface hydroxide ions Or, a surface of the group III-V quantum dot core is covered with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the group III-V quantum dot.
  • the hydroxide-ion ions and the metal cations on the surface of the III-V quantum dot core form a structure equivalent to a metal hydroxide layer and the II-VI semiconductor shell layer cooperate to form a core-shell quantum dot structure, which has a more High luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS, ZnSeTe, At least one of ZnSTe, MgZnSe, and MgZnS.
  • Example 4-1 Examples of the above-mentioned method for preparing a quantum dot are shown in Example 4-1 to Example 4-6.
  • a quantum dot including a group III-V quantum dot core and a halide ion and a hydroxide ion combined on a surface of the group III-V quantum dot core; wherein the halogen ion and The hydroxide ion is bound to a group III cation on the surface of the quantum dot core.
  • a quantum dot, a group II cation combined with a group V anion on the surface of the group III-V quantum dot core, and a group III cation on the surface of the group III-V quantum dot core, and Group II cations combine halide and hydroxide ions.
  • the combination of halide ions and hydroxide ions with cations on the surface of the core of the III-V quantum dot is equivalent to completely or partially covering a surface of the quantum dot core with a metal halide and A mixed material layer composed of a metal hydroxide, a halide ion is combined with a metal cation on the surface of a group III-V quantum dot core to passivate the surface of the group III-V quantum dot core, and effectively suppress the occurrence of non-radiation transitions, thereby avoiding co-existence.
  • a large number of defect states on the surface of group III-V quantum dots formed by valence bonding, and the combination of hydroxide ions and metal cations on the surface of group III-V quantum dot cores can not only passivate the surface of group III-V quantum dot cores, At the same time, it can also be used as a buffer shell layer, which can effectively reduce the lattice matching problem between III-V quantum dot cores and II-VI semiconductor shell layers, which is conducive to the growth of thick shell layers and improve the luminescence of quantum dots. Efficiency (more than 70%), and increase the stability of quantum dots.
  • the material of the III-V quantum dot core is selected from the group consisting of GaP, GaN, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InP, InAs, InSb, GaNP, GaAs, GaNSb, GaPSb, AlNP, AlNAs, AlPAs, At least one of AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, and InPGa;
  • the group III cation is selected from at least one of indium ion, gallium ion, and aluminum ion;
  • the group II cation is selected from zinc ion, At least one of a cadmium ion, a mercury ion, and a magnesium ion;
  • a halide ion is selected from at least one of a chloride ion, a bromide ion, and an iodine ion.
  • Group III metal hydroxides formed by hydroxide ions such as at least one of indium hydroxide, gallium hydroxide, and aluminum hydroxide
  • group II metal hydroxides formed by hydroxide ions such as zinc hydroxide and cadmium hydroxide
  • Group III metal halides such as indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide
  • the halide ion forms a group II metal halide such as zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, magnesium chloride, magnesium bromide, magnesium iodide, mercury chloride, bromide At least one of mercury and mercury iodide.
  • the surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the III-V Halide and hydroxide ions on the surface of a group V quantum dot core.
  • a halide ion and a hydroxide ion are located between the group III-V quantum dot core and the group II-VI semiconductor shell layer.
  • the surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the III-V Group II cations, halide ions, and hydroxide ions on the surface of a group V quantum dot core.
  • a halide ion and a hydroxide ion are located between the group III-V quantum dot core and the group II-VI semiconductor shell layer.
  • the halide ions passivate the surface of the III-V quantum dot core, effectively suppressing the occurrence of non-radiation transitions, and the hydroxide ion can make the lattice fit between the III-V quantum dot core and the II-VI semiconductor shell layer , II-VI semiconductor shells more effectively separate the carriers confined in the nucleus from the surface state that acts as the center of the non-radiative compound transition; thus, through the coordination of halide ions, hydroxide ions, and II-VI semiconductor shells
  • the core-shell quantum dot structure is formed, which has higher luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS, ZnSeTe, ZnSTe, MgZnSe At least one of MgZnS and MgZnS; in an embodiment, the thickness of the II-VI semiconductor shell layer is 3-5 nm.
  • a method for preparing the quantum dot includes the following steps:
  • SA051 providing a group III cation precursor and a ligand;
  • the group III cation precursor includes one or more metal halide precursors and one or more metal oxide precursors and / or one or more metals A hydroxide precursor;
  • the group III cation precursor and the ligand are dissolved in a solvent, and heat treatment is performed under a first temperature condition to obtain a mixed solution;
  • SA052 The mixed solution is further heated to a second temperature, and then a group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • another preparation method includes the following steps:
  • SB051 providing a cation precursor and a ligand, the cation precursor is a group III cation precursor and a first group II cation precursor, wherein the cation precursor includes one or more metal halide precursors and One or more metal oxide precursors and / or one or more metal hydroxide precursors; the cation precursor and the ligand are dissolved in a solvent, and heat treatment is performed under a first temperature condition to obtain mixture;;
  • the mixed solution is further heated to a second temperature, and then a Group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • At least one metal oxide precursor and / or metal hydroxide precursor and at least one metal are introduced into the reaction system during the nucleation process before the nucleation reaction.
  • Halide precursors in the preparation process, on the one hand, the cations of the metal halide precursors can be used for nucleation reactions; on the other hand, the halide ions can interact with the group V of the nucleated III-V quantum dot core surface
  • the anion dangling bond reacts, and the generated VX 3 (V is N, P or As, X is halogen) gas is conducive to the reaction, so that the group III and group V atoms on the surface of the group III-V quantum dot core are recombined to form Group III-V quantum dot cores with more stable atomic ratios, and halogen ions can be combined with cations on the surface of group III-V quantum dot cores to passivate the surface of group III-V quantum dot cores; metal oxides
  • the surface of the III-V quantum dot core is combined with both a halogen ion and a hydroxide ion.
  • the surface greatly improves the luminous efficiency of the quantum dots, and the final luminous efficiency of the quantum dots is greater than 70%. At the same time, it is beneficial to the growth of the thick shell layer, which can greatly improve the stability of the quantum dots.
  • the group III cation precursor includes one or more metal halide precursors, and includes one or more metal oxide precursors and / or metal hydroxide precursors, which can be understood as: (1 ) Group III cation precursors have one or more metal halide precursors and one or more metal oxide precursors, (2) Group III cation precursors have one or more metal halide precursors and one One or more metal hydroxide precursors, (3) a group III cation precursor has one or more metal halide precursors, one or more metal oxide precursors, and one or more metal hydroxides Thing precursor.
  • the Group III cation precursor contains one or more metal halide precursors, one or more metal oxide precursors, and / or metal hydroxide precursors, as well as other precursors.
  • the cation precursor includes one or more metal halide precursors and one or more metal oxide precursors and / Or one or more metal hydroxide precursors can be understood as follows: (1) the group III cationic precursor includes one or more metal halide precursors and includes one or more Metal oxide precursor and / or metal hydroxide precursor; (2) the first group II cationic precursor includes one or more metal halide precursors and includes one or more metal oxides And / or metal hydroxide precursors, (3) the group III cation precursor includes one or more metal halide precursors (group III cation precursors may also include one or more metal oxide precursors And / or metal hydroxide precursors), and the first group II cation precursor includes one or more metal oxides and / or metal hydroxides (the first group II cation precursor may also be Includes one or more metal halides Precursor); (4) the group III cation precursor includes one or more metal oxide precursors and / or
  • the halide ion and hydroxide ion are combined with the group III cation on the surface of the group III-V quantum dot core at the same time; it is equivalent to completely or partially covering the surface of the quantum dot core with a group III metal halide.
  • Material and a group III metal hydroxide such as at least one of indium hydroxide, gallium hydroxide, and aluminum hydroxide.
  • the metal halide is selected from at least one of a group III metal halide such as indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide. Species.
  • step SB051 after the group II cation precursor is added, the group II cation will be combined with the group V anion (such as P) on the surface of the group III-V quantum dot core, thereby leaving group III cation vacancies, small molecule halide ions and Both hydroxide ion ligands can be combined with group III cations on the surface of the core, while halogen ions and hydroxide ions can also be combined with group II cations bound on the surface of the group III-V quantum dot core, that is, halide and hydroxide
  • the root ion binds to a group III cation and a group II cation on the surface of the group III-V quantum dot core at the same time. It is equivalent to completely or partially covering a quantum dot core surface with a mixed material layer composed of a group II metal halide, a group III metal halide, a group II metal metal hydroxide, and a group III metal hydroxide.
  • a second group II cation precursor and a group VI anion precursor are added to the group III-V nuclear solution, and a shell layer is grown under a third temperature condition.
  • the III-V quantum dot core surface forms a II-VI semiconductor shell layer to obtain a core-shell quantum dot solution.
  • a surface of the group III-V quantum dot core is covered with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the group III-V quantum dot.
  • a surface of the group III-V quantum dot core is covered with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the group III-V quantum dot.
  • a halide ion and a hydroxide ion are located between the group III-V quantum dot core and the group II-VI semiconductor shell layer.
  • the halide ions passivate the surface of the III-V quantum dot core, effectively suppressing the occurrence of non-radiation transitions, and the hydroxide ion can make the lattice fit between the III-V quantum dot core and the II-VI semiconductor shell layer , II-VI semiconductor shells more effectively separate the carriers confined in the nucleus from the surface state that acts as the center of the non-radiative compound transition; thus, through the coordination of halide ions, hydroxide ions, and II-VI semiconductor shells
  • the core-shell quantum dot structure is formed, which has higher luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS, ZnSeTe, ZnSTe, MgZnSe And at least one of MgZnS; specifically, the thickness of the II-VI semiconductor shell layer is 3-5 nm.
  • Example 5-1 Examples of the above-mentioned method for preparing a quantum dot are shown in Example 5-1 to Example 5-6.
  • a quantum dot including a group III-V quantum dot core and an acetylacetonate ion and a hydroxide ion bound on the surface of the group III-V quantum dot core; Acetone ions and hydroxide ions are combined with group III cations on the surface of the group III-V quantum dot core.
  • a quantum dot including a group III-V quantum dot core, a group II cation combined with a group V anion on a surface of the group III-V quantum dot core, and a group III-V Group III cations and group II cations on the surface of the quantum dot core combine acetylacetonate ions and hydroxide ions.
  • the acetylacetonate ion has a smaller radial dimension and a bidentate coordination site, and will be exchanged with the introduced carboxylic acid ligand, which can reduce the surface of the III-V quantum dot core surface Primitive ligands for separation of nucleation and growth.
  • the cation binding of hydroxide ions to the III-V quantum dot core surface can not only passivate the III-V quantum dot core surface, but also serve as a buffer shell. Layer, which can effectively reduce the lattice matching problem between III-V quantum dot cores and II-VI semiconductor shell layers, and is conducive to the growth of thick shell layers.
  • acetylacetonate ions and hydroxide ions with the cations on the surface of the group III-V quantum dot core, it is equivalent to completely or partially coating a layer of metal acetylacetonate on the surface of the group III-V quantum dot core.
  • a layer of mixed material consisting of a compound and a metal hydroxide.
  • the acetylacetonate ion and hydroxide ion are combined with a group III cation on the surface of the group III-V quantum dot core to form a group III acetylacetone metal compound and a group III metal hydroxide.
  • the acetylacetonate ion and hydroxide ion are combined with a group III cation on the surface of the group III-V quantum dot core and a group II cation to form a group III acetylacetonate metal compound and a group II metal acetylacetonate.
  • Compounds, Group II metal hydroxides and Group III metal hydroxides are used.
  • the mixed material not only improves the size dispersion of the quantum dots, thereby significantly narrowing the peak width, but also facilitates the growth of thick shell layers, which can greatly improve the stability of the quantum dots.
  • the material of the III-V quantum dot core is selected from the group consisting of GaP, GaN, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InP, InAs, InSb, GaNP, GaAs, GaNSb, GaPSb, AlNP, and AlNAs.
  • the group III cation is selected from at least one of indium ion, gallium ion, and aluminum ion;
  • the group II cation is selected from At least one of zinc ion, cadmium ion, mercury ion, and magnesium ion.
  • the acetylacetonate ion is selected from at least one of hexahydroacetylacetonate ion and hexafluoroacetylacetonate ion.
  • the Group III metal acetylacetonate compound is at least one of indium hexahydroacetylacetonate, gallium hexahydroacetylacetonate, aluminum hexahydroacetylacetone, indium hexafluoroacetylacetone, gallium hexafluoroacetylacetone, and aluminum hexafluoroacetylacetone.
  • the Group II metal acetylacetone compound such as zinc hexahydroacetylacetonate, cadmium hexahydroacetylacetonate, magnesium hexahydroacetylacetone, mercury hexahydroacetylacetone, zinc hexafluoroacetylacetone, cadmium hexafluoroacetylacetone, magnesium hexafluoroacetylacetone At least one of mercury hexafluoroacetylacetone.
  • Group III metal hydroxides formed by hydroxide ions such as at least one of indium hydroxide, gallium hydroxide, and aluminum hydroxide
  • group II metal hydroxides formed by hydroxide ions such as zinc hydroxide and cadmium hydroxide
  • the surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the III-V Acetylacetone ions and hydroxide ions on the surface of the core of a group V quantum dot. Acetylacetone ions and hydroxide ions are located between the III-V quantum dot core and the II-VI semiconductor shell layer.
  • the surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the III-V Group II cations, acetylacetonate ions and hydroxide ions on the surface of the group V quantum dot core.
  • Acetylacetone ions and hydroxide ions are located between the group III-V quantum dot core and the group II-VI semiconductor shell.
  • the core-shell quantum dot structure formed through the synergistic action of acetylacetonate ions, hydroxide ions, and group II-VI semiconductor shells has higher luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS, ZnSeTe, ZnSTe, MgZnSe At least one of MgZnS and MgZnS; in an embodiment, the thickness of the II-VI semiconductor shell layer is 3-5 nm.
  • a method for preparing the quantum dot includes the following steps:
  • SA061 providing a group III cation precursor and a ligand;
  • the group III cation precursor includes one or more acetylacetone metal salt precursors and one or more metal oxide precursors and / or one or more A metal hydroxide precursor;
  • the group III cation precursor and the ligand are dissolved in a solvent, and heat treatment is performed under a first temperature condition to obtain a mixed solution;
  • SA062 The mixed solution is further heated to a second temperature, and then a group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • another preparation method includes the following steps:
  • the cationic precursors are a group III cationic precursor and a first group II cationic precursor, wherein the cationic precursor includes one or more acetylacetone metal salt precursors And one or more metal oxide precursors and / or one or more metal hydroxide precursors; dissolving the cation precursor and the ligand in a solvent, and performing a heat treatment under a first temperature condition, Get a mixed solution;
  • the mixed solution is further heated to a second temperature, and then a Group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • At least one metal oxide precursor and / or metal hydroxide precursor and at least one acetyl group are introduced into the reaction system during the nucleation process.
  • Acetone metal salt precursor in this way, during the preparation process, the cations in the acetylacetone metal salt precursor can be used for the nucleation reaction.
  • the acetylacetonate ion has a smaller radial dimension and more (2) coordination sites will be exchanged with carboxylic acid ligands, which can reduce the original ligands on the surface of the III-V quantum dot cores, thereby achieving separation of nucleation and growth; metal oxide precursors and / metal ions or metal hydroxide precursor is formed also involved in the III-V quantum dot core, and a metal oxide precursor in the O 2- anions i.e.
  • OH - first with protic reaction system solution is formed OH -
  • final OH - can be quickly dot core with a cation of the group III-V surface of the quantum dot core combination with an effective surface passivation quantum group III-V, as well as the buffer layer shell layers effective in reducing intergranular core and casing layer Adaptation problems, is conducive to the growth of thick shell layer.
  • the quantum dots finally obtained by the preparation method of this embodiment are bound to the cations on the surface of the III-V quantum dot core through acetylacetonate ions and hydroxide ions, which is equivalent to completely covering or not covering the surface of the III-V quantum dot core. It completely covers a mixed material layer composed of acetylacetone metal compound and metal hydroxide.
  • the mixed material not only improves the size dispersion of the quantum dots, thereby significantly narrowing the peak width (peak width range ⁇ 45nm), but also beneficial to The growth of thick shell layers can greatly improve the stability of quantum dots.
  • the acetylacetonate ion and the hydroxide ion are simultaneously bound to a group III cation on the surface of the group III-V quantum dot core; in one embodiment, the acetylacetonate ion and the hydroxide ion and The group III cations on the surface of the group III-V quantum dot core combine to form a group III metal acetylacetone metal compound and a group III metal hydroxide, which is equivalent to completely or partially covering the surface of the group III-V quantum dot core.
  • a mixed material layer composed of a group III acetylacetone metal compound and a group III metal hydroxide.
  • step SB061 after adding a group II cation precursor, the group II cation will combine with a group V anion (such as P) on the surface of the group III-V quantum dot core, thereby leaving a group III cation vacancy and a small molecule of acetylacetonate
  • ions and hydroxide ion ligands can bind to Group III cations on the surface of the core, while acetylacetonate and hydroxide ions can also bind to Group II cations bound to the surface of Group III-V quantum dot cores, that is, acetyl Acetone ions and hydroxide ions bind to group III cations and group II cations on the surface of the group III-V quantum dot core at the same time.
  • group III-V quantum dot core Corresponding to the surface of the group III-V quantum dot core completely or incompletely coated with a group III metal acetylacetone metal compound, a group II metal acetylacetone compound, a group II metal hydroxide and a group III metal hydroxide Mixed material layer.
  • the acetylacetonate ion and hydroxide ion are combined with a group III cation on the surface of the group III-V quantum dot core to form a group III acetylacetone metal compound and a group III metal hydroxide.
  • the acetylacetonate ion and hydroxide ion are combined with a group III cation on the surface of the group III-V quantum dot core and a group II cation to form a group III acetylacetonate metal compound and a group II metal acetylacetonate.
  • Compounds, Group II metal hydroxides and Group III metal hydroxides are combined with a group III cation on the surface of the group III-V quantum dot core to form a group III acetylacetone metal compound and a group III metal hydroxide.
  • the group III cation precursor includes one or more acetylacetone metal salt precursors, and includes one or more metal oxide precursors and / or metal hydroxide precursors, which can be understood as : (1) a group III cation precursor has one or more acetylacetone metal salt precursors and one or more metal oxide precursors, and (2) a group III cation precursor has one or more metal acetylacetone precursors Salt precursor and one or more metal hydroxide precursors, (3) Group III cation precursors have one or more acetylacetone metal salt precursors, one or more metal oxide precursors, and one Or more metal hydroxide precursors.
  • the Group III cation precursor contains one or more precursors in addition to one or more acetylacetone metal salt precursors, one or more metal oxide precursors, and / or metal hydroxide precursors.
  • the cation precursor (group III cation precursor and first group II cation precursor) includes one or more acetylacetone metal salt precursors and one or more metal oxide precursors and
  • the one or more metal hydroxide precursors can be understood as the following situations: (1) The group III cation precursor includes one or more metal acetylacetone precursors, and includes one or A plurality of metal oxide precursors and / or metal hydroxide precursors; (2) the first group II cation precursor includes one or more acetylacetone metal salt precursors, and includes one or more Metal oxide precursor and / or metal hydroxide precursor, (3) the group III cation precursor includes one or more acetylacetone metal salt precursors (the group III cation precursor also includes one or more Metal oxide precursors and / or metal hydroxide precursors), and the first group II cationic precursor includes one or more metal oxide precursors and / or metal hydroxide precursors ( First group II cationic precursor May include one or more acetylacetone metal salt precursor
  • a second group II cation precursor and a group VI anion precursor are added to the group III-V nuclear solution, and a shell layer is grown under a third temperature condition.
  • the III-V quantum dot core surface forms a II-VI semiconductor shell layer to obtain a core-shell quantum dot solution. That is, a surface of the group III-V quantum dot core is covered with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the group III-V quantum dot.
  • An acetylacetonate ion and a hydroxide ion on the surface of the core, a halide ion and a hydroxide ion are located between the group III-V quantum dot core and the group II-VI semiconductor shell layer.
  • a surface of the group III-V quantum dot core is covered with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the group III-V quantum dot.
  • a group II cation, an acetylacetonate ion and a hydroxide ion on the core surface, and the acetylacetonate ion and the hydroxide ion are located between the group III-V quantum dot core and the group II-VI semiconductor shell layer.
  • the core-shell quantum dot structure formed through the synergistic action of acetylacetonate ions, hydroxide ions, and group II-VI semiconductor shells has higher luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS, ZnSeTe, ZnSTe, MgZnSe At least one of MgZnS and MgZnS; in an embodiment, the thickness of the II-VI semiconductor shell layer is 3-5 nm.
  • Examples of the above-mentioned method for preparing a quantum dot are shown in Examples 6-1 to 6-6.
  • a quantum dot including a group III-V quantum dot core and a halide ion, an acetylacetonate ion, and a hydroxide ion bonded to a surface of the group III-V quantum dot core; wherein, The halide ion, acetylacetonate ion and hydroxide ion are combined with a group III cation on the surface of the group III-V quantum dot core.
  • a quantum dot including a group III-V quantum dot core, a group II cation combined with a group V anion on a surface of the group III-V quantum dot core, and a group III-V Group III cations and group II cations are combined with halide, acetylacetonate and hydroxide ions on the surface of the quantum dot core.
  • a halide ion is combined with a metal cation on the surface of the group III-V quantum dot core to passivate the surface of the group III-V quantum dot core, effectively suppressing the occurrence of non-radiation transitions, thereby avoiding covalent bonds.
  • the combined III-V quantum dot surface has a large number of defect states.
  • the acetylacetonate ion has a smaller radial dimension and a bidentate coordination site, which will exchange with the introduced carboxylic acid ligand, which can reduce III -The original ligand on the surface of the Group-V quantum dot core, to achieve the separation of nucleation and growth.
  • the combination of hydroxide ions and metal cations on the surface of the Group III-V quantum dot core can not only passivate the surface of the Group III-V quantum dot core. At the same time, it can also be used as a buffer shell layer, which can effectively reduce the lattice matching between the III-V quantum dot core and the II-VI semiconductor shell layer, which is conducive to the growth of thick shell layers. Therefore, the combination of halide, acetylacetonate and hydroxide ions with the cations on the surface of the group III-V quantum dot core is equivalent to completely or partially covering the surface of the group III-V quantum dot core.
  • a mixed material layer composed of a metal acetylacetone compound and a metal hydroxide.
  • the acetylacetonate ion and hydroxide ion are combined with a group III cation on the surface of the group III-V quantum dot core to form a group III acetylacetone metal compound, a group III metal hydroxide, and III Group metal halides.
  • the acetylacetonate ion and hydroxide ion are combined with a group III cation on the surface of the group III-V quantum dot core and a group II cation to form a group III acetylacetonate metal compound and a group II metal acetylacetonate.
  • a mixed material layer is formed by the combination of halide, acetylacetonate and hydroxide ions with the cations on the core surface of the III-V quantum dots, which not only greatly improves the luminous efficiency of the quantum dots (greater than 70%), but also improves the quantum
  • the size dispersion of dots significantly narrows the peak width (peak width range ⁇ 45nm), and is conducive to the growth of thick shell layers, which can greatly improve the stability of quantum dots.
  • the material of the III-V quantum dot core is selected from the group consisting of GaP, GaN, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InP, InAs, InSb, GaNP, GaAs, GaNSb, GaPSb, AlNP, and AlNAs.
  • the acetylacetonate ion is selected from at least one of hexahydroacetylacetonate ion and hexafluoroacetylacetonate ion.
  • the Group III metal acetylacetonate compound is at least one of indium hexahydroacetylacetonate, gallium hexahydroacetylacetonate, aluminum hexahydroacetylacetone, indium hexafluoroacetylacetone, gallium hexafluoroacetylacetone, and aluminum hexafluoroacetylacetone.
  • the Group II metal acetylacetone compound such as zinc hexahydroacetylacetonate, cadmium hexahydroacetylacetonate, magnesium hexahydroacetylacetone, mercury hexahydroacetylacetone, zinc hexafluoroacetylacetone, cadmium hexafluoroacetylacetone, magnesium hexafluoroacetylacetone At least one of mercury hexafluoroacetylacetone.
  • the group III metal halide is at least one of indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide.
  • the group II metal halides such as zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, magnesium chloride, magnesium bromide, magnesium iodide, mercury chloride, mercury bromide, and At least one of mercury iodide.
  • the surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the III-V Halo ions, acetylacetonate ions and hydroxide ions on the surface of the group V quantum dot core.
  • a halide ion, an acetylacetonate ion and a hydroxide ion are located between the group III-V quantum dot core and the group II-VI semiconductor shell layer
  • the surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the III-V Group II cations, halide ions, acetylacetonate ions and hydroxide ions on the surface of the group V quantum dot core.
  • a halide ion, an acetylacetonate ion and a hydroxide ion are located between the group III-V quantum dot core and the group II-VI semiconductor shell layer.
  • Halide ions passivate the surface of group III-V quantum dots and effectively suppress the occurrence of non-radiation transitions.
  • Acetylacetone ions realize the separation of nucleation and growth. Hydroxide ions can make the group III-V quantum dot cores and II-VI Lattice adaptation between Group III semiconductor shell layers, Group II-VI semiconductor shell layers more effectively separate the carriers confined in the nucleus from the surface state that acts as the center of the non-radiative compound transition; thus, the halide ion, acetylacetone
  • the core ions, hydroxide ions, and II-VI semiconductor shells work together to form a core-shell quantum dot structure with higher luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS, ZnSeTe, ZnSTe, MgZnSe And at least one of MgZnS; the thickness of the II-VI semiconductor shell layer is 3-5 nm.
  • a method for preparing the quantum dot includes the following steps:
  • SA071 Provide a group III cation precursor and a ligand;
  • the group III cation precursor includes one or more metal halide precursors, one or more acetylacetone metal salt precursors, and one or more metal oxidation Precursors and / or one or more metal hydroxide precursors; dissolving the group III cation precursor and the ligand in a solvent, and performing heat treatment under a first temperature condition to obtain a mixed solution;
  • SA072 The mixed solution is further heated to a second temperature, and then a group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • another preparation method includes the following steps:
  • the cationic precursors are a group III cationic precursor and a first group II cationic precursor, wherein the cationic precursor includes one or more acetylacetone metal salt precursors One or more metal halide precursors and one or more metal oxide precursors and / or one or more metal hydroxide precursors; the cationic precursor and the ligand are dissolved in a solvent , Performing a heat treatment under a first temperature condition to obtain a mixed solution;
  • SB072 The temperature of the mixed solution is further increased to a second temperature, and then a group V anion precursor is added to the mixed solution to perform a nucleation reaction to obtain a group III-V quantum dot nuclear solution.
  • At least one metal oxide and / or metal hydroxide and at least one acetylacetone metal salt precursor are introduced into the reaction system during the nucleation process before the nucleation reaction.
  • at least one metal halide precursor thus, during the preparation process, the cations in the acetylacetone metal salt precursor can be used for the nucleation reaction.
  • the acetylacetonate ion has a smaller diameter at the moment of nucleation.
  • the acetylacetonate ion, halide ion and hydroxide ion are combined on the surface of the group III-V quantum dot core at the same time, which not only greatly improves the luminous efficiency of the quantum dot (greater than 70%) ), And the size dispersion of the quantum dots is improved, thereby narrowing the peak width significantly (peak width range ⁇ 45nm), at the same time conducive to the growth of thick shell layers, and can greatly improve the stability of the quantum dots.
  • the group III cation precursor includes one or more metal halide precursors, one or more acetylacetone metal salt precursors, and one or more metal oxide precursors and / or One or more metal hydroxide precursors can be understood as: (1) a group III cation precursor has one or more metal halide precursors, one or more acetylacetone metal salt precursors, and one or more Various metal oxide precursors, (2) Group III cation precursors have one or more metal halide precursors, one or more acetylacetone metal salt precursors, and one or more metal hydroxide precursors (3) Group III cation precursors have one or more metal halide precursors, one or more acetylacetone metal salt precursors, one or more metal oxide precursors, and one or more Metal hydroxide precursor. In addition, the Group III cation precursor contains, in addition to one or more metal halides, one or more acetylacetone metal salt precursors, one or more metal oxide precursors, and / or metal hydroxide precursor.
  • the cation precursor (group III cation precursor and first group II cation precursor) includes one or more acetylacetone metal salt precursors, one or more metal halides, and one
  • the one or more metal oxide precursors and / or the one or more metal hydroxide precursors can be understood as follows: (1) the group III cation precursor includes one or more metal halides A precursor and one or more acetylacetone metal salt precursors, and including one or more metal oxide precursors and / or metal hydroxide precursors; (2) the first group II cation precursor Including one or more metal halide precursors and one or more acetylacetone metal salt precursor precursors, and including one or more metal oxide precursors and / or metal hydroxide precursors, (3 )
  • the group III cation precursor includes one or more acetylacetone metal salt precursors (the group III cation precursor may further include one or more metal oxide precursors and / or metal hydroxide precursors, Halogenation of one or more metals At the same
  • the precursor may further include one or more acetylacetone metal salt precursors; (4) the group III cation precursor includes one or more metal oxide precursors and / or metal hydroxide precursors (the first The group III cation precursor may further include one or more acetylacetone metal salt precursors, one or more metal halide precursors), and the first group II cation precursor includes one or more Metal halides and one or more acetylacetone metal salt precursors (the first Group II cation precursor may also include one or more metal oxide precursors and / or metal hydroxide precursors); ( 5) The group III cation precursor includes one or more metal halides (the group III cation precursor may further include one or more metal oxide precursors and / or metal hydroxide precursors, a (Or precursors of acetylacetone metal salts) Meanwhile, the first group II cation precursor includes one or more acetylacetone metal salt precursors and one or more metal oxide precursors and / or metal hydroxide precursors (first group II
  • the precursor may also include one or more metal halides), and so on; as long as the cation precursor mixture composed of the group III cation precursor and the first group II cation precursor contains both halide and acetylacetonate ions, And O 2- and / or OH -is fine.
  • the acetylacetonate ion, halide ion and hydroxide ion are simultaneously combined with the group III cation on the surface of the group III-V quantum dot core; it is equivalent to completely or partially covering the surface of the quantum dot core.
  • a mixed material layer composed of a group III metal halide, a group III metal hydroxide, and a group III metal acetylacetone compound.
  • the group III metal hydroxide such as at least one of indium hydroxide, gallium hydroxide, and aluminum hydroxide.
  • the group III metal acetylacetone compound includes at least one of indium hexahydroacetylacetonate, gallium hexahydroacetylacetonate, aluminum hexahydroacetylacetone, indium hexafluoroacetylacetone, gallium hexafluoroacetylacetone, and aluminum aluminum hexafluoroacetylacetone.
  • Group III metal halides include at least one of indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide,
  • step SB071 after adding a group II cation precursor, the group II cation will combine with a group V anion (such as P) on the surface of the group III-V quantum dot core, thereby leaving a group III cation vacancy, acetylacetonate ion, halogen
  • ions and hydroxide ion ligands can bind to Group III cations on the surface of the core, while acetylacetonate ions, halogen ions, and hydroxide ions can also bind to Group II cations on the surface of Group III-V quantum dot cores That is, the acetylacetonate ion, halide ion and hydroxide ion are simultaneously combined with the group III cation and the group II cation on the surface of the group III-V quantum dot core.
  • a group V anion such as P
  • a layer of a group II metal halide, a group III metal halide, a group II metal hydroxide, a group III metal hydroxide, and a group II metal acetylacetone A mixed material layer composed of a compound and a group III metal acetylacetone compound.
  • Group III acetylacetonate metal compounds include at least one of indium hexahydroacetylacetonate, gallium hexahydroacetylacetonate, aluminum hexahydroacetylacetonate, indium hexafluoroacetylacetone, gallium hexafluoroacetylacetone, and aluminum aluminum hexafluoroacetylacetonate
  • group II Metal acetylacetone compounds include zinc hexahydroacetylacetonate, cadmium hexahydroacetylacetonate, magnesium hexahydroacetylacetone, mercury hexahydroacetylacetone, zinc hexafluoroacetylacetone, cadmium hexafluoroacetylacetone, magnesium hexafluoroacetylacetone, hexafluoroacetyl At least one of mercury acetone.
  • Group III metal halides include at least one of indium chloride, indium bromide, indium iodide, gallium chloride, gallium bromide, gallium iodide, aluminum chloride, aluminum bromide, and aluminum iodide
  • group II metals Halides include zinc chloride, zinc bromide, zinc iodide, cadmium chloride, cadmium bromide, cadmium iodide, magnesium chloride, magnesium bromide, magnesium iodide, mercury chloride, mercury bromide, and mercury iodide. At least one.
  • the group III metal hydroxide includes at least one of indium hydroxide, gallium hydroxide, and aluminum hydroxide
  • the group II metal hydroxide includes at least one of zinc hydroxide, cadmium hydroxide, magnesium hydroxide, and mercury hydroxide.
  • a second group II cation precursor and a group VI anion precursor are added to the group III-V nuclear solution, and a shell layer is grown under a third temperature condition.
  • the III-V quantum dot core surface forms a II-VI semiconductor shell layer to obtain a core-shell quantum dot solution.
  • the surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the III-V Halo ions, acetylacetonate ions and hydroxide ions on the surface of the group V quantum dot core.
  • a halide ion, an acetylacetonate ion and a hydroxide ion are located between the group III-V quantum dot core and the group II-VI semiconductor shell layer
  • the surface of the group III-V quantum dot core is coated with a layer of a group II-VI semiconductor shell, the shell layer covers the group III-V quantum dot core and is bonded to the III-V Group II cations, halide ions, acetylacetonate ions and hydroxide ions on the surface of the group V quantum dot core.
  • a halide ion, an acetylacetonate ion and a hydroxide ion are located between the group III-V quantum dot core and the group II-VI semiconductor shell layer.
  • Halide ions passivate the surface of group III-V quantum dots and effectively suppress the occurrence of non-radiation transitions.
  • Acetylacetone ions realize the separation of nucleation and growth. Hydroxide ions can make the group III-V quantum dots nucleus and II-VI. Lattice adaptation between Group III semiconductor shell layers, Group II-VI semiconductor shell layers more effectively separate the carriers confined in the nucleus from the surface state that acts as the center of the non-radiative compound transition; thus, the halide ion, acetylacetone
  • the core ions, hydroxide ions, and II-VI semiconductor shells work together to form a core-shell quantum dot structure with higher luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdS, CdSe, CdO, CdTe, HgO, HgS, HgTe, HgSe, ZnSe, ZnS, ZnTe, ZnO, MgSe, MgS, MgTe, ZnSeS, ZnSeTe, ZnSTe, MgZnSe And at least one of MgZnS; the thickness of the II-VI semiconductor shell layer is 3-5 nm.
  • Examples of the above-mentioned method for preparing a quantum dot are shown in Examples 7-1 to 7-6.
  • InP / GaP Zn quantum dot nuclear solution at 300 ° C., 0.2 mmol of tributyl phosphine selenide, 0.2 ml of octyl mercaptan, and 2 mmol of zinc oleate were added. After 60mins of reaction, InP / ZnSeS core-shell quantum dots were obtained.
  • InP / GaP Zn quantum dot nuclear solution at 300 ° C., 0.2 mmol of tributyl phosphine selenide, 0.2 ml of octyl mercaptan, and 2 mmol of zinc oleate were added. After 60mins of reaction, InP / ZnSeS core-shell quantum dots were obtained.
  • InP / GaP Zn quantum dot nuclear solution at 300 ° C., 0.2 mmol of tributyl phosphine selenide, 0.2 ml of octyl mercaptan, and 2 mmol of zinc oleate were added. After 60mins of reaction, InP / ZnSeS core-shell quantum dots were obtained.
  • InP / GaP Zn quantum dot nuclear solution at 300 ° C., 0.2 mmol of tributyl phosphine selenide, 0.2 ml of octyl mercaptan, and 2 mmol of zinc oleate were added. After 60mins of reaction, InP / ZnSeS core-shell quantum dots were obtained.
  • InP / GaP Zn quantum dot nuclear solution at 300 ° C., 0.2 mmol of tributyl phosphine selenide, 0.2 ml of octyl mercaptan, and 2 mmol of zinc oleate were added. After 60mins of reaction, InP / ZnSeS core-shell quantum dots were obtained.
  • InP / GaP Zn quantum dot nuclear solution at 300 ° C., 0.2 mmol of tributyl phosphine selenide, 0.2 ml of octyl mercaptan, and 2 mmol of zinc oleate were added. After 60mins of reaction, InP / ZnSeS core-shell quantum dots were obtained.
  • InP / GaP Zn quantum dot nuclear solution at 300 ° C., 0.2 mmol of tributyl phosphine selenide, 0.2 ml of octyl mercaptan, and 2 mmol of zinc oleate were added. After 60mins of reaction, InP / ZnSeS core-shell quantum dots were obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种量子点的制备方法,所述制备方法包括如下步骤:提供III族阳离子前驱体和配体,将所述III族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。所述制备方法利于提高量子点的结晶性,并提高量子点的产率,技术稳定、工艺简单、成本低,非常有利于后期规模化制备。

Description

量子点的制备方法
本申请要求于2018年09月30日在中国专利局提交的、申请号为2018111560306、发明名称为“量子点的制备方法”,以及申请号为2018111570401、发明名称为“量子点的制备方法”和申请号为2018111560170、发明名称为“量子点的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及纳米材料技术领域,具体涉及一种量子点的制备方法。
背景技术
量子点,也称为半导体纳米晶,其颗粒半径接近或小于激子波尔半径。由于“量子尺寸”效应的存在,随着量子点的尺寸进一步减小时,连续的能级结构会逐渐向分立、不连续的能级结构转变。在受一定波长能量的光激发后,价带中吸收一定能量的光子被激发到导带,而处于激发态的电子会从导带跃迁至价带,并以光的形式释放能量,发出显著的荧光现象。因此,通过一定的方式来调整量子点的尺寸和化学组成可以使其发射光谱覆盖整个可见光区,甚至是近红外区。高质量的量子点的制备通常是采用溶液法制备,一方面量子点作为胶体溶液具有高分散性,从而便于物理操作;另一方面量子点具有的高色纯、宽色域和高稳定性等优点,是新一代显示技术的核心材料。
迄今,关于II-VI族量子点在合成和制备方面已经日趋成熟,所制备的量子点不仅质量高,且荧光性能优良。同时,高性能器件所使用的量子点多基于II-VI族化合物所构筑,尤其是红、绿色量子点,不仅发光效率高、且荧光寿命长,均可达到商业应用需求。但是,由于II-VI族量子点本身含有受限制的重金属元素,它们在实际应用和发展中受到了严格限制。反之,相比于II-VI族量子点,以InP为典型代表的III-V族量子点具有许多无比优越的性能。一方面,InP量子点的波尔半径为13nm,大的波尔半径使其受到的量子点效应更强;另一方面,InP量子点不含有受限制的重金属元素,符合绿色环保理念,且无内在毒性,被视为替代传统毒性强、污染严重的II-VI族镉基量子点的最重要的核心材料,同时也 是突破现有显示技术的关键。
InP量子点存在一些不足:首先,与由离子键键合而成的传统型II-VI族量子点相比,InP量子点中In和P元素是通过共价键键合而成,所制备的量子点稳定性通常较差。其次,InP量子点的表面存在大量的P悬挂键,悬挂键的存在作为非辐射复合跃迁中心会大大降低其发光效率,通常InP核的发光效率低于1%。为进一步制备高发光效率的量子点,需要在其外面包覆一层或多层宽带隙的外壳层材料,这样的核壳结构可以有效的将局限在核中的载流子与充当非辐射复合跃迁中心的表面态分开,从而大大提高其发光效率。目前,常用的外壳层材料选择为ZnSe或ZnS,由于InP与ZnSe或ZnS间均存在较大的晶格适配度,因此ZnSe或ZnS外壳层均难以有效的生长在InP表面,使得最终核壳结构量子点发光效率较低。通常,合成质量较高的量子点外壳层的厚度不超过2nm,且稳定性较差。一方面,由于薄外壳层不利于激子的完美束缚,容易造成电子或空穴波函数离域至外壳层中,这极大的限制了其在新型显示中的应用。另一方面,由于P源选择有限,且其活性太强,高温注入瞬间,大量P单体用于成核,成核后未有足够的P单体用于后续外壳层的生长。因此,成核后的粒子进一步进行奥斯特瓦尔德熟化生长,最终量子点的尺寸分布相对较差,峰宽较宽。
目前,基于InP量子点的制备方法通常采用的是两锅法,即先进行InP核的制备,然后向清洗后的核溶液中加入过渡壳或外壳所需要的前驱体。所述方法升温速率的控制要求精确,且无论成核与长壳过程均需要较长的反应时间,而且外壳层前驱体加入过程中容易自发成核,不利于后续外壳层的生长。
因此,相关技术有待改进。
发明概述
技术问题
本申请实施例的目的之一在于:提供一种量子点的制备方法,旨在解决现有量子点制备方法时间长、成本高和效率低的技术问题。
问题的解决方案
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
提供了一种量子点的制备方法,包括如下步骤:
提供III族阳离子前驱体和配体,将所述III族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
发明的有益效果
对附图的简要说明
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请一实施例提供的量子点的制备方法的流程示意图。
发明实施例
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需说明的是,术语“包括”、“含有”指示所描述特征、整体、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、元素、组件和/或其集合的存在或添加。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请一些实施例提供一种量子点的制备方法,如图1所示,该制备方法包括如下步骤:
S001:提供III族阳离子前驱体和配体,将所述III族阳离子前驱体和配体溶于溶 剂中,在第一温度条件下进行加热处理,得到混合溶液;
S002:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
本申请实施例提供的量子点的制备方法,在进行成核反应之前,先将III族阳离子前驱体和配体溶于溶剂中在第一温度条件下进行加热,这样不仅可以使得配体与III族阳离子充分配位,有助于阴、阳离子的充分反应,而且可以事先有效除去反应体现中的水和氧,从而避免生成的III-V族量子点核表面易氧化的缺陷,使最终制得的量子点的发光效果得到提高;同时,从第一温度升温至第二温度进行成核反应这样的过程是一种连续升温的过程,这样可极大地缩短成核时间,且高温成核有利于提高量子点的结晶性,并提高量子点的产率,因此,这种技术稳定、工艺简单、成本低的量子点制备方法,非常有利于后期规模化制备。
在一实施例中,上述步骤S001中:III族阳离子前驱体选自氯化铟、溴化铟、碘化铟、醋酸铟、碳酸铟、硝酸铟、高氯酸铟、氰化铟、氯化镓、溴化镓、碘化镓、碳酸镓、硝酸镓、高氯酸镓、氰化镓、氯化铝、溴化铝、碘化铝、碳酸铝、硝酸铝、高氯酸铝、氰化铝、乙酰丙酮铟、醋酸镓、乙酰丙酮镓、醋酸铝、乙酰丙酮铝、异丙醇铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓、异丙醇铝、六氟乙酰丙酮铝、氧化铟、氢氧化铟、氧化镓、氢氧化镓、氧化铝和氢氧化铝的至少一种;配体选自油酸、C4-C20饱和脂肪酸(即碳原子数为4-20的饱和脂肪酸)、被C6-C22烷基取代的膦(即取代基的碳原子数为6-22的有机膦,如三辛基膦)、被C6-C22烷基取代的氧膦(取代基的碳原子数为6-22的有机氧膦,如三辛基氧膦)、C6-C22伯胺(即碳原子数为4-20的伯胺,如十六胺)、C6-C22仲胺(即取代基的碳原子数为6-22的仲胺,如二辛基胺)和C6-C40叔胺(即取代基的碳原子数为6-40的叔胺,如三辛基胺)中的至少一种。溶剂为非配体溶剂,选自C6-C40脂族烃(即碳原子数为6-40的脂族烃,如烷烃、烯烃、或炔烃,具体地,如十六烷、十八烷、十八烯、或角鲨烷)、C6-C30芳族烃(即碳原子数为6-30的芳族烃,如苯基十二烷、苯基十四烷、或苯基十六烷)、含氮杂环化合物(如吡啶)、C12-C22芳族醚(即碳原子数为12-22的芳族醚,如苯基醚或苄 基醚)中的至少一种。
在一实施例中,在惰性气氛中和第一温度条件下进行加热处理,惰性气氛具体为氮气,惰性气氛可隔离空气,使反应体系更加稳定;在一实施例中,所述第一温度为100-200℃;所述在第一温度条件下进行加热处理的时间为1-2h。所述温度和时间范围内,配体与III族阳离子配位效果更好,且反应系统中的水和氧去除效果最好。在一实施例中,在第一温度条件下进行加热处理之前,还包括真空处理步骤。真空处理可使得在成核反应发生之前的整个反应体现中水氧尽可能完全去除。具体地,所述真空处理的温度为80-150℃;所述真空处理的时间为30min-1h。
在一实施例中,将第一II族阳离子前驱体与所述III族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理。在成核反应之前,先向反应体系中加入的II族阳离子前驱体,在成核瞬间II族阳离子不仅可以有效地结合在III-V族量子点核的表面,从而钝化III-V族量子点核,同时,可以还可以充当后续II-VI族半导体外壳层生长用前驱体。
具体地,所述第一II族阳离子前驱体选自氯化锌、溴化锌、碘化锌、醋酸锌、硬脂酸锌、十一烯酸锌、乙酰丙酮锌、六氟乙酰丙酮锌、氧化锌、氢氧化锌、碳酸锌、硝酸锌、高氯酸锌、氰化锌、氯化镉、溴化镉、碘化镉、醋酸镉、硬脂酸镉、十一烯酸镉、乙酰丙酮镉、六氟乙酰丙酮镉、氧化镉、氢氧化镉、碳酸镉、硝酸镉、高氯酸镉、氰化镉、氯化镁、溴化镁、碘化镁、醋酸镁、硬脂酸镁、十一烯酸镁、乙酰丙酮镁、六氟乙酰丙酮镁、氧化镁、氢氧化镁、碳酸镁、硝酸镁、高氯酸镁、氰化镁、氯化汞、溴化汞、碘化汞、醋酸汞、乙酰丙酮汞、氧化汞、氢氧化汞、碳酸汞、硝酸汞、高氯酸汞和氰化汞中的至少一种。
在一实施例中,上述步骤S002中:所述V族阴离子前驱体选自三(三甲硅烷基)膦,三(三甲锗烷基)膦、三(二甲胺基)磷,三(二乙氨基)磷、三乙基膦、三丁基膦、三辛基膦、三苯基膦、三环己基膦、三(三甲硅烷基)砷、三(二甲胺基)砷,三(二乙氨基)砷、三乙基砷、三丁基砷、三辛基砷、三苯基砷、三环己基砷、氧化砷、氯化砷、溴化砷、碘化砷、硫化砷和氨气中的至少一种。在 一实施例中,所述第二温度为260-320℃;所述成核反应的时间为1-20min。第二温度为III-V族量子点核的生成温度,在所述温度和时间范围内,可以更好地形成III-V族量子点核。
在一实施例中,在上述成核反应完成后,即刻将第二II族阳离子前驱体和VI族阴离子前驱体加入所述III-V族核溶液中,在第三温度条件下进行外壳层生长,在III-V族量子点核表面形成II-VI族半导体外壳层,得到核壳量子点溶液。具体地,所述第二II族阳离子前驱体选自油酸镉、丁酸镉、正葵酸镉、己酸镉、辛酸镉、十二烷酸镉、肉豆蔻酸镉、棕榈酸镉、硬脂酸镉、油酸汞、丁酸汞、正葵酸汞、己酸汞、辛酸汞、十二烷酸汞、肉豆蔻酸汞、棕榈酸汞、硬脂酸汞、油酸锌、丁酸锌、正葵酸锌、己酸锌、辛酸锌、十二烷酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、油酸镁、丁酸镁、正葵酸镁、己酸镁、辛酸镁、十二烷酸镁、肉豆蔻酸镁、棕榈酸镁和硬脂酸镁中的至少一种;所述VI族阴离子前驱体选自己硫醇、辛硫醇、葵硫醇、十二烷基硫醇、十六烷基硫醇、巯基丙基硅烷、硫化三辛基膦、硫化三丁基膦、硫化三苯基膦、硫化三辛基胺、三(三甲基甲硅烷基)硫化物、硫化铵、硫化钠、硒化三辛基膦、硒化三丁基膦、硒化三苯基膦、碲化三丁基膦、碲化三辛基膦和碲化三苯基膦中的至少一种。
在一实施例中,所述第三温度为260-320℃;所述在第三温度条件下进行外壳层生长的时间为15min-90min。第三温度为II-VI族半导体外壳层的生长温度,在所述温度和时间范围内,可以更好地形成II-VI族半导体外壳层。
在一实施例中,在得到所述核壳量子点溶液之后,还包括将所述核壳量子点溶液进行固液分离后再真空干燥。具体地,将核壳量子点溶液通过离心和沉淀,最后置于真空下干燥12-24h,即可得到固态的核壳量子点。
本申请实施例的量子点的制备方法中,可通过采用不同活性的阳离子前驱体,制备得到不同发光性能的量子点,如具有窄峰宽的量子点、或具有高发光效率的量子点或具有高稳定性的量子点。例如,得到的量子点包括III-V族量子点核和结合在所述III-V族量子点核表面的卤离子、乙酰丙酮根离子和氢氧根离子中的至少一种;其中,所述卤离子、乙酰丙酮根离子和氢氧根离子与所述III-V族量子点核表面的III族阳离子结合。例如,得到的量子点包括III-V族量子点核, 与所述III-V族量子点核表面的V族阴离子结合的II族阳离子,以及与III-V族量子点核表面的III族阳离子和II族阳离子结合的卤离子、乙酰丙酮根离子和氢氧根离子中的至少一种。
本申请一实施例中,提供一种量子点,包括III-V族量子点核和结合在所述III-V族量子点核表面的卤离子;其中,所述卤离子与所述III-V族量子点核表面的III族阳离子结合。
本本申请另一实施例中,提供一种量子点,包括III-V族量子点核、结合在所述III-V族量子点核表面的II族阳离子,以及与III-V族量子点核表面的III族阳离子和II族阳离子结合的卤离子。
III-V族量子点是通过共价键结合而成的,因此III-V族量子点表面具有大量的缺陷态,所述缺陷态的存在会引发量子点的无辐射跃迁,从而大大降低量子点自身的发光效率,而本申请实施例的量子点中,所述卤离子与III-V族量子点核表面的金属阳离子(如III族阳离子,或者III族阳离子和II族阳离子)结合,相当于在量子点核表面完全包覆或非完全包覆一层金属卤化物,金属卤化物可以钝化III-V族量子点核表面,又可以充当过渡外壳层的作用,从而更有效地抑制无辐射跃迁的发生,大大提高量子点的发光效率(发光效率大于70%)。
在一实施例中,所述III-V族量子点核的材料选自GaP、GaN、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPSb、AlNP、AlNAs、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb和InPGa中的至少一种。所述III族阳离子选自铟离子、镓离子和铝离子中的至少一种;所述II族阳离子选自锌离子、镉离子、汞离子和镁离子中的至少一种;所述卤离子选自氯离子、溴离子和碘离子中的至少一种,具体地,对于III-V族量子点核,这些卤离子会与表面的III族阳离子结合,相当于在量子点核表面完全包覆或非完全包覆一层金属卤化物,例如,形成氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种。当III-V族量子点核表面存在结合在核表面结合有II族阳离子时,则这些卤离子会同时与III-V族量子点核表面的III族阳离子和II族阳离子结合,相当于在量子点核表面完全包覆或非完全包覆一层金属卤化物,此时所述金属卤化物包括III族金属卤化物如氯化铟、 溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种,以及II族金属卤化物如氯化锌、溴化锌、碘化锌、氯化镉、溴化镉、碘化镉、氯化镁、溴化镁、碘化镁、氯化汞、溴化汞和碘化汞中的至少一种。
在一实施例中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述II-VI族半导体外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的卤离子。或者,在另一实施方式中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述II-VI族半导体外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族金属离子和卤离子。卤离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。这样,卤离子与III-V族量子点核表面的金属阳离子形成的金属卤化物与II-VI族半导体外壳层协同作用,形成的核壳量子点结构,可以更有效地将局限在核中的载流子与充当非辐射复合跃迁中心的表面态分开,从而大大提高其发光效率。在一实施例中,所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种。
本申请一实施例中,上述量子点的一种制备方法包括如下步骤:
SA011:提供III族阳离子前驱体和配体,所述III族阳离子前驱体包括一种或多种金属卤化物前驱体;将所述III族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
SA012:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
或者,另一种制备方法包括如下步骤:
SB011:提供III族阳离子前驱体、第一II族阳离子前驱体和配体;其中,所述III族阳离子前驱体包括一种或多种金属卤化物前驱体,和/或所述第一II族阳离子前驱体包括一种或多种金属卤化物前驱体;将所述III族阳离子前驱体、第一II族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
SB012:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V 族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
上述量子点的制备方法,在成核反应发生前,先在前驱体中引入至少一种金属卤化物前驱体,所述金属卤化物前驱体中的阳离子可以用于成核反应,另一方面阴离子即卤离子可以与已成核的III-V族量子点核表面的V族阴离子悬挂键发生反应,生成的VX 3(V为N、P或As,X为卤素)气体有利于反应的发生,使得III-V族量子点核表面的III族和V族原子发生重组,形成原子比例更加稳定的III-V族量子点核,同时卤离子又可以与III-V族量子点核表面的阳离子(如III族阳离子,或者III族阳离子和II族阳离子)结合,相当于在III-V族量子点核表面完全包覆或非完全包覆一层金属卤化物,所述金属卤化物不仅可以钝化III-V族量子点核表面,又可以充当过渡外壳层的作用,从而更有效地抑制无辐射跃迁的发生,大大提高量子点的发光效率,所制备的量子点具有更高的发光效率(大于70%)。
具体地,上述步骤SA011中:所述III族阳离子前驱体包括一种或多种金属卤化物前驱体,即III族阳离子前驱体可以只有金属卤化物前驱体,也可以除了金属卤化物前驱体外还可以包括其他前驱体,如异丙醇铝、醋酸铟、碳酸铟、硝酸铟、高氯酸铟、氰化铟、碳酸镓、硝酸镓、高氯酸镓、氰化镓、碳酸铝、硝酸铝、高氯酸铝、氰化铝等。而III族阳离子前驱体中的金属卤化物前驱体选自氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种。
上述步骤SB011中:所述III族阳离子前驱体包括一种或多种金属卤化物前驱体,和/或所述第一II族阳离子前驱体包括一种或多种金属卤化物前驱体,可以理解为:III族阳离子前驱体包括一种或多种金属卤化物前驱体,或者第一II族阳离子前驱体包括一种或多种金属卤化物前驱体,或者III族阳离子前驱体和第一II族阳离子前驱体同时都包括一种或多种金属卤化物前驱体;当所述III族阳离子前驱体包括一种或多种金属卤化物前驱体时,金属卤化物前驱体选自氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种;当第一II族阳离子前驱体包括一种或多种金属卤化物前驱体时,所述金属卤化物前驱体选自氯化锌、溴化锌、碘化锌、氯化镉、溴化镉、碘化镉、氯化镁 、溴化镁、碘化镁、氯化汞、溴化汞和碘化汞中的至少一种;而所述第一II族阳离子前驱体除了金属卤化物前驱体外还可以包括其他前驱体,如醋酸锌、硬脂酸锌、十一烯酸锌、碳酸锌、硝酸锌、高氯酸锌、氰化锌、醋酸镉、硬脂酸镉、十一烯酸镉、碳酸镉、硝酸镉、高氯酸镉、氰化镉、醋酸镁、硬脂酸镁、十一烯酸镁、碳酸镁、硝酸镁、高氯酸镁、氰化镁、醋酸汞、碳酸汞、硝酸汞、高氯酸汞、氰化汞等中的至少一种。
对于步骤SA011中,卤离子与III-V族量子点核表面的III族阳离子结合形成金属卤化物,相当于在III-V族量子点核表面完全包覆或非完全包覆一层金属卤化物,所述金属卤化物包括氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种;
对于步骤SB011中,因引入了第一II族阳离子前驱体:II族阳离子会与III-V族量子点核表面的V族阴离子(如P)结合,从而留出III族阳离子空位,卤离子会与核表面的III族阳离子空位结合,同时卤离子还会与III-V族量子点核表面的II族阳离子结合,即卤离子同时与III-V族量子点核表面的III族阳离子和II族阳离子结合,相当于在量子点核表面完全或非完全包覆一层由III族金属卤化物和II族金属卤化物组成的金属卤化物材料,此时,金属卤化物材料包括III族金属卤化物如氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种,以及II族金属卤化物如氯化锌、溴化锌、碘化锌、氯化镉、溴化镉、碘化镉、氯化镁、溴化镁、碘化镁、氯化汞、溴化汞和碘化汞中的至少一种。所述III-V族量子点核表面完全或非完全包覆有由III族金属卤化物和II族金属卤化物组成的金属卤化物材料,可以更有效地包覆整个III-V族量子点核,从而有助于将激子更有效地束缚在核中,大大提高发光效率。
在步骤SA012或SB012中的成核反应完成后,即刻将第二II族阳离子前驱体和VI族阴离子前驱体加入所述III-V族核溶液中,在第三温度条件下进行外壳层生长,在III-V族量子点核表面形成II-VI族半导体外壳层,得到核壳量子点溶液。因III-V族量子点核表面结合有卤离子,金属卤化物可以充当过渡外壳层的作用,更有利于I-VI族半导体外壳层生长。
即在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆 所述III-V族量子点核以及结合在所述III-V族量子点核表面的卤离子。或者,在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族金属离子和卤离子。卤离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。这样,卤离子与III-V族量子点核表面的金属阳离子形成的金属卤化物与II-VI族半导体外壳层协同作用,形成的核壳量子点结构,可以更有效地将局限在核中的载流子与充当非辐射复合跃迁中心的表面态分开,从而大大提高其发光效率。具体地,在一实施例中,所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种。
上述量子点的制备方法的实施例如实施例1-1至实施例1-6所示。
本申请一实施例中,提供一种量子点,包括III-V族量子点核和结合在所述III-V族量子点核表面的乙酰丙酮根离子;其中,所述乙酰丙酮根离子与所述III-V族量子点核表面的III族阳离子结合。
本申请另一实施例中,提供一种量子点,包括III-V族量子点核、结合在所述III-V族量子点核表面的II族阳离子,以及与III-V族量子点核表面的III族阳离子和II族阳离子结合的乙酰丙酮根离子。
乙酰丙酮根离子具有更小的径向维度和双齿的配位点,会与引入的羧酸等配体发生交换,乙酰丙酮根离子通过与III-V族量子点核表面的金属阳离子(如III族阳离子,或者III族阳离子和II族阳离子)结合,相当于在量子点核表面完全包覆或非完全包覆一层乙酰丙酮金属化合物,这样可以减少III-V族量子点核表面的原始配体,实现成核与生长的分离,进而可以有效提高量子点的尺寸分散性,从而量子点显著收窄峰宽,使峰宽范围<45nm。
在一实施例中,所述III-V族量子点核的材料选自GaP、GaN、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPSb、AlNP、AlNAs、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb和InPGa中的至少一种。所述III族阳离子选自铟离子、镓离子和铝离子中的至少一种;所述II族阳离子选自锌离子、镉离子、汞离子和镁离子中的至少一种。所述乙酰丙 酮根离子选自六氢乙酰丙酮根离子和六氟乙酰丙酮根离子中的至少一种。
具体地,对于III-V族量子点核,六氢乙酰丙酮根离子、六氟乙酰丙酮根离子会与表面的III族阳离子形成六氢乙酰丙酮铟、六氢乙酰丙酮镓、六氢乙酰丙酮铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓和六氟乙酰丙酮铝中的至少一种。
具体地,当III-V族量子点核表面存在结合在核表面的II族阳离子时,则乙酰丙酮根离子会同时与III-V族量子点核表面的III族阳离子和II族阳离子结合,相当于在量子点核表面完全包覆或非完全包覆一层乙酰丙酮金属化合物,形成包括III族乙酰丙酮金属化合物如六氢乙酰丙酮铟、六氢乙酰丙酮镓、六氢乙酰丙酮铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓和六氟乙酰丙酮铝中的至少一种,以及II族金属乙酰丙酮化合物如六氢乙酰丙酮锌、六氢乙酰丙酮镉、六氢乙酰丙酮镁、六氢乙酰丙酮汞、六氟乙酰丙酮锌、六氟乙酰丙酮镉、六氟乙酰丙酮镁、六氟乙酰丙酮汞中的至少一种。
在一实施例中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的酰丙酮根离子。或者,在另一实施方式中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族金属离子和酰丙酮根离子。酰丙酮根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。这样,酰丙酮根离子与III-V族量子点核表面的金属阳离子形成的乙酰丙酮金属化合物与II-VI族半导体外壳层协同作用,形成的核壳量子点结构,可以更有效地将局限在核中的载流子与充当非辐射复合跃迁中心的表面态分开,从而大大提高其发光效率。在一实施例中,所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种。
本申请一实施例中,上述量子点的一种制备方法包括如下步骤:
SA021:提供III族阳离子前驱体和配体;所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体;将所述III族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
SA022:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
或者,另一种制备方法包括如下步骤:
SB021:提供III族阳离子前驱体、第一II族阳离子前驱体和配体;其中,所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体,和/或所述第一II族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体;将所述III族阳离子前驱体、第二II族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
SB022:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
传统III-V族量子点一般采用非配体溶剂和脂肪酸配体联用来制备,而脂肪酸配体的引入虽然提高了体系的反应速度,使得III-V族半导体量子点的成核过程加快,产生的晶核粒径相对均一,但是,脂肪酸配体通过羧酸根中的氧与III族阳离子结合,III族阳离子与氧的结合能比同周期的II族阳离子大,如In-O键间的结合能是Cd-O键间结合能的一倍数量级:一方面,羧酸配体在高温下会与InP量子点表面的In发生紧密结合,使得InP量子点表面的羧酸配体分布比II-VI族量子点要高很多;另一方面,羧酸配体与InP量子点表面的紧密结合非常不利于后续生长于成核阶段的分离,因此,移除III-V族量子点表面的致密的羧酸配体对实现成核与生长的分离非常有必要。而本申请实施例的上述制备方法中,通过在成核反应前,先在前驱体中引入至少一种乙酰丙酮金属盐前驱体,所述乙酰丙酮金属盐前驱体中的阳离子可以用于成核反应,另一方面在成核的瞬间由于乙酰丙酮根离子具有更小的径向维度和更多(2个)的配位点,会与羧酸配体发生交换,与III-V族量子点核表面的金属阳离子(如III族阳离子,或者III族阳离子和II族阳离子)结合,相当于在量子点核表面完全包覆或非完全包覆一层乙酰丙酮金属化合物,从而可以减少III-V族量子点核表面的原始配体,进而实现成核与生长的分离。最终制得的量子点具有很好的尺寸分散性,可显著收窄峰宽,使峰宽范围<45nm。
具体地,上述步骤SA021中:所述III族阳离子前驱体包括一种或多种乙酰丙酮 金属盐前驱体,即III族阳离子前驱体可以只有乙酰丙酮金属盐前驱体,也可以除了一种或多种乙酰丙酮金属盐前驱体外,还含有其他前驱体。而III族阳离子前驱体中的乙酰丙酮金属盐前驱体选自乙酰丙酮铟、六氟乙酰丙酮铟、乙酰丙酮镓、六氟乙酰丙酮镓、乙酰丙酮铝和六氟乙酰丙酮铝中的至少一种。
上述步骤SB021中:所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体,和/或所述第一II族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体,可以理解为,III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体,或者第一II族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体,或者III族阳离子前驱体和第一II族阳离子前驱体同时都包括一种或多种乙酰丙酮金属盐前驱体;当所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体时,乙酰丙酮金属盐前驱体选自乙酰丙酮铟、六氟乙酰丙酮铟、乙酰丙酮镓、六氟乙酰丙酮镓、乙酰丙酮铝和六氟乙酰丙酮铝中的至少一种;当所述第一II族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体时,乙酰丙酮金属盐前驱体选自乙酰丙酮锌、六氟乙酰丙酮锌、乙酰丙酮镉、六氟乙酰丙酮镉、乙酰丙酮镁、六氟乙酰丙酮镉和乙酰丙酮汞中。而II族阳离子前驱体也可以含有其他前驱体。
对于步骤SA021中,乙酰丙酮根离子与III-V族量子点核表面的III族阳离子结合形成六氢乙酰丙酮铟、六氢乙酰丙酮镓、六氢乙酰丙酮铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓和六氟乙酰丙酮铝中的至少一种。
对于步骤SB021中,加入II族阳离子前驱体后,II族阳离子会与III-V族量子点核表面的V族阴离子(如P)结合,从而留出III族阳离子空位,小分子的乙酰丙酮根离子配体可以与III族阳离子表面的羧酸发生交换,因此,乙酰丙酮根离子同样与核表面的III族阳离子结合,同时,乙酰丙酮根离子还可以与结合在III-V族量子点核表面的II族阳离子结合,即乙酰丙酮根离子同时与III-V族量子点核表面的III族阳离子和II族阳离子结合,相当于在量子点核表面完全包覆或非完全包覆一层由III族乙酰丙酮金属化合物和II族乙酰丙酮金属化合物组成的乙酰丙酮金属化合物。形成包括III族乙酰丙酮金属化合物包括六氢乙酰丙酮铟、六氢乙酰丙酮镓、六氢乙酰丙酮铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓和六氟乙酰丙酮铝中的至少一种,以及II族乙酰丙酮金属化合物如六氢乙酰丙酮锌、六氢乙酰丙酮 镉、六氢乙酰丙酮镁、六氢乙酰丙酮汞、六氟乙酰丙酮锌、六氟乙酰丙酮镉、六氟乙酰丙酮镁、六氟乙酰丙酮汞中的至少一种。
在步骤SA022或SB022中的成核反应完成后,即刻将第二II族阳离子前驱体和VI族阴离子前驱体加入所述III-V族核溶液中,在第三温度条件下进行外壳层生长,在III-V族量子点核表面形成II-VI族半导体外壳层,得到核壳量子点溶液。
即在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的乙酰丙酮根离子。或者,在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族金属离子和乙酰丙酮根离子。乙酰丙酮根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。这样,乙酰丙酮根离子与III-V族量子点核表面的金属阳离子形成的乙酰丙酮金属化合物与II-VI族半导体外壳层协同作用,形成的核壳量子点结构,可以更有效地将局限在核中的载流子与充当非辐射复合跃迁中心的表面态分开,从而大大提高其发光效率。具体地,所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种。
上述量子点的制备方法的实施例如实施例2-1至实施例2-6所示。
本申请一实施例中,提供一种量子点,包括III-V族量子点核和结合在所述III-V族量子点核表面的卤离子和乙酰丙酮根离子;其中,所述卤离子和乙酰丙酮根离子与所述III-V族量子点核表面的III族阳离子结合。本申请另一实施例中,提供一种量子点,包括III-V族量子点核,与所述III-V族量子点核表面的V族阴离子结合的II族阳离子,以及与III-V族量子点核表面的III族阳离子和II族阳离子结合的卤离子和乙酰丙酮根离子。本实施例的量子点中,III-V族量子点核表面同时结合有卤离子和乙酰丙酮根离子,相当于在III-V族量子点核表面完全包覆或非完全包覆一层有金属卤化物和乙酰丙酮金属化合物组成的混合材料。卤离子与III-V族量子点核表面的金属阳离子结合,以钝化III-V族量子点核表面,有效的抑制无辐射跃迁的发生,从而避免共价键结合而成的III-V族量子点表面的大量缺 陷态,而乙酰丙酮根离子具有更小的径向维度和双齿的配位点,会与引入的羧酸配体发生交换,这样可以减少III-V族量子点核表面的原始配体,实现成核与生长的分离。因此,通过卤离子和乙酰丙酮根离子可以与III-V族量子点核表面的阳离子结合协同形成一层有金属卤化物和乙酰丙酮金属化合物组成的混合材料,这样不仅可以钝化III-V族量子点核表面,大大提高量子点的发光效率,而且同时可以提高量子点的尺寸分散性,从而显著收窄峰宽;最终量子点发光效率大于70%,且峰宽范围<45nm。
在一实施例中,III-V族量子点核的材料选自GaP、GaN、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPSb、AlNP、AlNAs、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb和InPGa中的至少一种;所述III族阳离子选自铟离子、镓离子和铝离子中的至少一种;卤离子选自氯离子、溴离子和碘离子中的至少一种。所述乙酰丙酮根离子选自六氢乙酰丙酮根离子和六氟乙酰丙酮根离子中的至少一种。
具体地,对于III-V族量子点核,六氢乙酰丙酮根离子、六氟乙酰丙酮根离子会与III-V族量子点核表面的III族阳离子形成六氢乙酰丙酮铟、六氢乙酰丙酮镓、六氢乙酰丙酮铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓和六氟乙酰丙酮铝中的至少一种。卤离子会与III-V族量子点核表面的III族阳离子形成如氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种。在一实施例中,所述量子点还包括一外壳层,所述外壳层的材料为II-VI族半导体材料,所述外壳层包覆所述III-V族量子点核以及结合在所述量子点核表面的卤离子和乙酰丙酮根离子。卤离子和乙酰丙酮根离子位于所述III-V族量子点核和所述II-VI族半导体材料组成的外壳层之间。这样通过卤离子、乙酰丙酮根离子和II-VI族半导体外壳层协同作用,形成的核壳量子点结构,具有更高的发光效率。在一实施例中,所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种。
具体地,当III-V族量子点核表面存在结合在核表面的II族阳离子时,则乙酰丙酮根离子会同时与III-V族量子点核表面的III族阳离子和II族阳离子结合,相当于 在III-V族量子点核表面完全包覆或非完全包覆一层乙酰丙酮金属化合物和金属卤化物组成的混合材料,形成包括III族乙酰丙酮金属化合物如六氢乙酰丙酮铟、六氢乙酰丙酮镓、六氢乙酰丙酮铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓和六氟乙酰丙酮铝中的至少一种,以及II族金属乙酰丙酮化合物如六氢乙酰丙酮锌、六氢乙酰丙酮镉、六氢乙酰丙酮镁、六氢乙酰丙酮汞、六氟乙酰丙酮锌、六氟乙酰丙酮镉、六氟乙酰丙酮镁、六氟乙酰丙酮汞中的至少一种。金属卤化物选自III族金属卤化物如氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种,以及II族金属卤化物如氯化锌、溴化锌、碘化锌、氯化镉、溴化镉、碘化镉、氯化镁、溴化镁、碘化镁、氯化汞、溴化汞和碘化汞中的至少一种。
在一实施例中,所述量子点还包括一外壳层,所述外壳层的材料为II-VI族半导体材料,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族阳离子、卤离子和乙酰丙酮根离子。卤离子和乙酰丙酮根离子位于所述III-V族量子点核和所述II-VI族半导体材料组成的外壳层之间。这样通过卤离子、乙酰丙酮根离子和II-VI族半导体外壳层协同作用,形成的核壳量子点结构,具有更高的发光效率。具体地,所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种。
本申请一实施例中,上述量子点的一种制备方法包括如下步骤:
SA031:提供III族阳离子前驱体和配体;所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体和一种或多种金属卤化物前驱体;将所述III族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
SA032:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
或者,另一种制备方法包括如下步骤:
SB031:提供阳离子前驱体和配体,所述阳离子前驱体为III族阳离子前驱体和第一II族阳离子前驱体,其中,所述阳离子前驱体中包括一种或多种乙酰丙酮金属盐前驱体和一种或多种金属卤化物前驱体;将所述阳离子前驱体和配体溶于 溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
SB033:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
本申请实施例的上述制备方法中,通过在成核反应前,先在前驱体中引入至少一种乙酰丙酮金属盐前驱体和至少一种金属卤化物前驱体,这样在制备过程中,乙酰丙酮金属盐前驱体中的金属阳离子可以用于成核反应,另一方面在成核的瞬间由于乙酰丙酮根离子具有更小的径向维度和更多(2个)的配位点,会与羧酸配体发生交换,从而可以减少III-V族量子点核表面的原始配体,进而实现成核与生长的分离;而所述金属卤化物前驱体中的阳离子也可以用于成核反应,另一方面卤离子可以与已成核的III-V族量子点核表面的V族阴离子悬挂键发生反应,生成的VX 3(V为N、P或As,X为卤素)气体有利于反应的发生,使得III-V族量子点核表面的III族和V族原子发生重组,形成原子比例更加稳定的III-V族量子点核,同时卤离子又可以与III-V族量子点核表面的阳离子结合以钝化III-V族量子点核表面;最终,卤离子和乙酰丙酮根离子可以同时与已成核的III-V族量子点核表面的阳离子结合,相当于在III-V族量子点核表面完全包覆或非完全包覆一层乙酰丙酮金属化合物和金属卤化物组成的混合材料,这样不仅可以钝化III-V族量子点核表面,大大提高量子点的发光效率,而且同时可以提高量子点的尺寸分散性,从而显著收窄峰宽;最终量子点发光效率大于70%,且峰宽范围<45nm。
具体地,上述步骤SA031中:所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体和一种或多种金属卤化物前驱体,即III族阳离子前驱体可以只含有乙酰丙酮金属盐前驱体和金属卤化物前驱体,也可以除了乙酰丙酮金属盐前驱体和金属卤化物前驱体外,还含有其他前驱体;而III族阳离子前驱体中乙酰丙酮金属盐前驱体选自乙酰丙酮铟、六氟乙酰丙酮铟、乙酰丙酮镓、六氟乙酰丙酮镓、乙酰丙酮铝和六氟乙酰丙酮铝中的至少一种,金属卤化物前驱体氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种。
上述步骤SB031中:所述阳离子前驱体(III族阳离子前驱体和第一II族阳离子 前驱体)中包括一种或多种乙酰丙酮金属盐前驱体和一种或多种金属卤化物前驱体可以理解为如下多种情况:(1)III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体和一种或多种金属卤化物前驱体;(2)第一II族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体和一种或多种金属卤化物前驱体;(3)III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体(III族阳离子前驱体还可以包括一种或多种金属卤化物前驱体),且第一II族阳离子前驱体包括一种或多种金属卤化物前驱体(第一II族阳离子前驱体还可以包括一种或多种乙酰丙酮金属盐前驱体);(4)III族阳离子前驱体包括一种或多种金属卤化物前驱体(III族阳离子前驱体还可以包括一种或多种乙酰丙酮金属盐前驱体),且第一II族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体(第一II族阳离子前驱体还可以包括一种或多种金属卤化物前驱体)等多种情况;只要III族阳离子前驱体和第一II族阳离子前驱体组成的阳离子前驱体中同时含有卤离子和乙酰丙酮根离子即可。
对于步骤SA031中,卤离子和乙酰丙酮根离子同时与III-V族量子点核表面的III族阳离子结合;相当于在III-V族量子点核表面完全包覆或非完全包覆一层由III乙酰丙酮金属化合物和III金属卤化物组成的混合材料。
对于步骤SB031中,加入II族阳离子前驱体后,II族阳离子会与III-V族量子点核表面的V族阴离子(如P)结合,从而留出III族阳离子空位,小分子的卤离子和乙酰丙酮根离子配体均可以与核表面的III族阳离子结合,同时卤离子乙酰丙酮根离子还可以与结合在III-V族量子点核表面的II族阳离子结合,即卤离子和乙酰丙酮根离子同时与III-V族量子点核表面的III族阳离子和II族阳离子结合。相当于在量子点核表面完全包覆或非完全包覆一层由II族乙酰丙酮金属化合物、III乙酰丙酮金属化合物、II族金属卤化物和III金属卤化物组成的混合材料。
在步骤SA032或SB032中的成核反应完成后,即刻将第二II族阳离子前驱体和VI族阴离子前驱体加入所述III-V族核溶液中,在第三温度条件下进行外壳层生长,在III-V族量子点核表面形成II-VI族半导体外壳层,得到核壳量子点溶液。
即在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的乙酰丙酮根离子和 卤离子。或者,在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族金属离子、乙酰丙酮根离子和卤离子。卤离子、乙酰丙酮根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。这样,卤离子、乙酰丙酮根离子分别与III-V族量子点核表面的金属阳离子形成的金属卤化物、乙酰丙酮金属化合物与II-VI族半导体外壳层协同作用,形成的核壳量子点结构,可以更有效地将局限在核中的载流子与充当非辐射复合跃迁中心的表面态分开,从而大大提高其发光效率。具体地,所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种。
上述量子点的制备方法的实施例如实施例3-1至实施例3-6所示。
本申请一实施例中,提供一种量子点,包括III-V族量子点核和结合在所述III-V族量子点核表面的氢氧根离子;其中,所述氢氧根离子与所述量子点核表面的III族阳离子结合。
本申请另一实施例中,提供一种量子点,包括III-V族量子点核,与所述III-V族量子点核表面的V族阴离子结合的II族阳离子,以及与III-V族量子点核表面的III族阳离子和II族阳离子结合的氢氧根离子。
所述实施方式的量子点,氢氧根离子与III-V族量子点核表面的III金属阳离子结合,相当于在III-V族量子点核表面形成一层完全包覆或非完全于量子点核的金属氢氧化物,不仅可以钝化III-V族量子点核表面,同时也可以作为一层缓冲外壳层,可以有效地减少III-V族量子点核与II-VI族半导体外壳层间的晶格适配问题,有利于厚外壳层的生长,因此所述氢氧根离子结合在III-V族量子点核表面可以大大提升量子点的稳定性。所述III族阳离子选自铟离子、镓离子和铝离子中的至少一种;所述II族阳离子选自锌离子、镉离子、汞离子和镁离子中的至少一种。在一实施例中,所述III-V族量子点核的材料选自GaP、GaN、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPSb、AlNP、AlNAs、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb和InPGa中的至少一种。
具体地,对于III-V族量子点核,氢氧根离子会与表面的III族阳离子形成相当金属氢氧化物层的结构,例如,形成氢氧化铟、氢氧化镓和氢氧化铝中的至少一种。在一实施例中,所述量子点还包括一外壳层,所述外壳层的材料为II-VI族半导体材料,所述外壳层包覆所述III-V族量子点核以及结合所述III-V族量子点核表面的氢氧根离子。具体地,所述II-VI族半导体材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种。
具体地,当III-V族量子点核表面存在结合在核表面的II族阳离子时,则氢氧根离子会同时与III-V族量子点核表面的III族阳离子和II族阳离子结合,形成一层完全包覆或非完全包覆于量子点核表面的金属氢氧化物,此时的金属氢氧化物包括III族金属氢氧化物如氢氧化铟、氢氧化镓和氢氧化铝中的至少一种,以及II族金属氢氧化物如氢氧化锌、氢氧化镉、氢氧化镁和氢氧化汞中的至少一种。在一实施例中,所述量子点还包括一外壳层,所述外壳层的材料为II-VI族半导体材料,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族阳离子和氢氧根离子。氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。
这样,通过氢氧根离子与III-V族量子点核表面的金属阳离子形成相当于金属氢氧化物层的结构和II-VI族半导体外壳层协同作用,形成的核壳量子点结构,具有更高的发光效率。在一实施例中,所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种。
在一实施例中,所述II-VI族半导体材料组成的外壳层的厚度为3-5nm,因相当金属氢氧化物层的存在,使得II-VI族半导体外壳层的厚度增大,进而提高核壳量子点的发光效率。
本申请一实施例中,上述量子点的一种制备方法包括如下步骤:
SA041:提供III族阳离子前驱体和配体;所述III族阳离子前驱体包括一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体;将所述III族阳离子前驱体和配体溶于溶剂中,进行第一加热处理,得到混合溶液;向所述混合溶 液中加入V族阴离子前驱体,在第一温度条件下进行加热处理,得到混合溶液;
SA042:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
或者,另一种制备方法包括如下步骤:
SB041:提供阳离子前驱体和配体,所述阳离子前驱体为III族阳离子前驱体和第一II族阳离子前驱体,其中,所述阳离子前驱体中包括一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体;将所述阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
SB042:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
本申请实施例的上述制备方法中,通过在成核反应前,先在前驱体中引入至少一种金属氧化物前驱体和/或金属氢氧化物前驱体,这样在制备过程中,金属氧化物前驱体和/或金属氢氧化物前驱体中的金属离子参与III-V族量子点核的形成,而金属氧化物前驱体中的阴离子即O 2-先与反应体系溶液中的质子结合形成OH -,OH -可以快速与III-V族量子点核表面的阳离子(如III族阳离子,或者III族阳离子和II族阳离子)进行结合,形成一层完全包覆或非完全包覆III-V族量子点表面的金属氧化物层,不仅可以有效钝化III-V族量子点核表面,同时也可以作为一层缓存外壳层有效地减少核与外壳层间的晶格适配问题,有利于厚外壳层的生长。
上述步骤SA041中:所述III族阳离子前驱体包括一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体,即III族阳离子前驱体可以只含有一种或多种金属氧化物前驱体,或者III族阳离子前驱体可以只含有一种或多种金属氢氧化物前驱体,或者III族阳离子前驱体可以同时有一种或多种金属氧化物前驱体和一种或多种金属氢氧化物前驱体。另外,III族阳离子前驱体除了含有一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体外,还可以含有其他前驱体。而所述III族阳离子前驱体包括一种或多种金属氧化物前驱体时,金属氧化物前驱体选自氧化铟、氧化镓、氧化铝的至少一种;和/或,所述III族阳离子前驱体包括包括一种或多种金属氢氧化物前驱体时,III族金属氢氧化物前驱体选自 氢氧化铟、氢氧化镓和氢氧化铝中的至少一种。
上述步骤SB041中:所述阳离子前驱体(III族阳离子前驱体和第一II族阳离子前驱体)中包括一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体可以理解为如下多种情况:(1)III族阳离子前驱体包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体,此时,III族阳离子前驱体可以只含有一种或多种金属氧化物前驱体,或者III族阳离子前驱体可以只含有一种或多种金属氢氧化物前驱体,或者III族阳离子前驱体可以同时含有一种或多种金属氧化物前驱体和一种或多种金属氢氧化物前驱体。(2)第一II族阳离子前驱体包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体,此时,第一II族阳离子前驱体可以只含有一种或多种金属氧化物前驱体,或者第一II族阳离子前驱体可以只含有一种或多种金属氢氧化物前驱体,或者第一II族阳离子前驱体可以同时含有一种或多种金属氧化物前驱体和一种或多种金属氢氧化物前驱体。(3)III族阳离子前驱体包括一种或多种金属氧化物前驱体,且第一II族阳离子前驱体包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体;(4)III族阳离子前驱体包括一种或多种金属氢氧化物前驱体,且第一II族阳离子前驱体包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体。(5)III族阳离子前驱体包括一种或多种金属氧化物前驱体和一种或多种金属氢氧化物前驱体,且第一II族阳离子前驱体包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体等等多种情况,只要III族阳离子前驱体和第一II族阳离子前驱体组成的混合物中,存在O 2-和/或OH -即可。对于所述第一II族阳离子前驱体中的一种或多种金属氧化物和/或金属氢氧化物,金属氧化物选自氧化铟、氧化镓、氧化铝的至少一种,金属氢氧化物选自氢氧化铟、氢氧化镓和氢氧化铝中的至少一种。对于所述第一II族阳离子前驱体中的金属氧化物前驱体和/或金属氢氧化物前驱体,II族金属氧化物选自氧化锌、氧化镉、氧化镁、氢氧化镁和氧化汞中的至少一种,II族金属氢氧化物选自氢氧化锌、氢氧化镉、氢氧化镁和氢氧化汞中的至少一种。而第一II族阳离子前驱体除了金属氧化物和/或金属氢氧化物外,也可以含有其他前驱体。
对于步骤SA041中,III族阳离子前驱体包括一种或多种金属氧化物和/或金属氢 氧化物,金属氧化物中的阴离子即O 2-先与反应体系溶液中的质子结合形成OH -,OH -会与III-V族量子点核表面的III族阳离子结合,相当于在量子点核表面形成一层包覆于量子点核的金属氢氧化物,所述金属氢氧化物即为氢氧化铟、氢氧化镓和氢氧化铝中的至少一种。
对于步骤SB041中,因引入了第一II族阳离子前驱体:II族阳离子会与III-V族量子点核表面的V族阴离子(如P)结合,从而留出III族阳离子空位,OH -与核表面的III族阳离子结合,同时OH -还会与结合在III-V族量子点核表面的II族阳离子结合,相当于在量子点核表面形成一层包覆于量子点核的由II金属氢氧化物和由III金属氢氧化物组成的混合材料,此时,所述III族金属氢氧化物如氢氧化铟、氢氧化镓和氢氧化铝中的至少一种,所述II族金属氢氧化物如氢氧化锌、氢氧化镉、氢氧化镁和氢氧化汞中的至少一种。
在步骤SA042或SB042中的成核反应完成后,即刻将第二II族阳离子前驱体和VI族阴离子前驱体加入所述III-V族核溶液中,在第三温度条件下进行外壳层生长,在III-V族量子点核表面形成II-VI族半导体外壳层,得到核壳量子点溶液。
即在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合所述III-V族量子点核表面氢氧根离子。或在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族阳离子和氢氧根离子。氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。这样,通过氢氧根离子与III-V族量子点核表面的金属阳离子形成相当于金属氢氧化物层的结构和II-VI族半导体外壳层协同作用,形成的核壳量子点结构,具有更高的发光效率。具体地,所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种。
上述量子点的制备方法的实施例如实施例4-1至实施例4-6所示。
本申请一实施例中,提供一种量子点,包括III-V族量子点核和结合在所述III-V族量子点核表面的卤离子和氢氧根离子;其中,所述卤离子和氢氧根离子与所述量子点核表面的III族阳离子结合。
本申请另一实施例中,提供一种量子点,与所述III-V族量子点核表面的V族阴离子结合的II族阳离子,以及与III-V族量子点核表面的III族阳离子和II族阳离子结合的卤离子和氢氧根离子。
本实施例的量子点中,卤离子和氢氧根离子与III-V族量子点核表面的阳离子结合,相当于在量子点核表面完全包覆或非完全包覆一层由金属卤化物和金属氢氧化物组成的混合材料层,卤离子与III-V族量子点核表面的金属阳离子结合,以钝化III-V族量子点核表面,有效的抑制无辐射跃迁的发生,从而避免共价键结合而成的III-V族量子点表面的大量缺陷态,而氢氧根离子与III-V族量子点核表面的金属阳离子结合不仅也可以钝化III-V族量子点核表面,同时还可以作为一层缓冲外壳层,可以有效地减少III-V族量子点核与II-VI族半导体外壳层间的晶格适配问题,有利于厚外壳层的生长,提高量子点的发光效率(大于70%),且升量子点的稳定性。
具体地,III-V族量子点核的材料选自GaP、GaN、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPSb、AlNP、AlNAs、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb和InPGa中的至少一种;所述III族阳离子选自铟离子、镓离子和铝离子中的至少一种;所述II族阳离子选自锌离子、镉离子、汞离子和镁离子中的至少一种;卤离子选自氯离子、溴离子和碘离子中的至少一种。氢氧根离子形成的III族金属氢氧化物如氢氧化铟、氢氧化镓和氢氧化铝中的至少一种,氢氧根离子形成的II族金属氢氧化物如氢氧化锌、氢氧化镉、氢氧化镁和氢氧化汞中的至少一种。卤离子形成的III族金属卤化物如氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种,卤离子形成II族金属卤化物如氯化锌、溴化锌、碘化锌、氯化镉、溴化镉、碘化镉、氯化镁、溴化镁、碘化镁、氯化汞、溴化汞和碘化汞中的至少一种。
在一实施例中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的卤离子和氢氧根离子。卤离子和氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。
在一实施例中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族阳离子、卤离子和氢氧根离子。卤离子和氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。
这样,卤离子钝化III-V族量子点核表面,有效抑制无辐射跃迁的发生,氢氧根离子可以使III-V族量子点核与II-VI族半导体外壳层间的晶格适配,II-VI族半导体外壳层更有效地将局限在核中的载流子与充当非辐射复合跃迁中心的表面态分开;如此通过卤离子、氢氧根离子和II-VI族半导体外壳层协同作用,形成的核壳量子点结构,具有更高的发光效率。所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种;在一实施例中,所述II-VI族半导体外壳层的厚度为3-5nm。
本申请一实施例中,上述量子点的一种制备方法包括如下步骤:
SA051:提供III族阳离子前驱体和配体;所述III族阳离子前驱体包括一种或多种金属卤化物前驱体以及一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体;将所述III族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
SA052:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
或者,另一种制备方法包括如下步骤:
SB051:提供阳离子前驱体和配体,所述阳离子前驱体为III族阳离子前驱体和第一II族阳离子前驱体,其中,所述阳离子前驱体中包括一种或多种金属卤化物前驱体以及一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体;将所述阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;;
SB052:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
本申请实施例的上述制备方法中,通过在成核反应前,先在成核过程中向反应 体系中引入至少一种金属氧化物前驱体和/或金属氢氧化物前驱体,以及至少一种金属卤化物前驱体;这样在制备过程中,所述金属卤化物前驱体中一方面阳离子可以用于成核反应,另一方面卤离子可以与已成核的III-V族量子点核表面的V族阴离子悬挂键发生反应,生成的VX 3(V为N、P或As,X为卤素)气体有利于反应的发生,使得III-V族量子点核表面的III族和V族原子发生重组,形成原子比例更加稳定的III-V族量子点核,同时卤离子又可以与III-V族量子点核表面的阳离子结合以钝化III-V族量子点核表面;金属氧化物和/或金属氢氧化物中的金属离子也参与III-V族量子点核的形成,而金属氧化物中的阴离子即O 2-先与反应体系溶液中的质子结合形成OH -,最终OH -可以快速与III-V族量子点核表面的阳离子进行结合,OH -与III-V族量子点核表面的金属结合后形成金属氢氧化物,可以有效钝化III-V族量子点核表面,有效地减少核与外壳层间的晶格适配问题,有利于厚外壳层的生长。本实施例的制备方法最终得到的量子点中,III-V族量子点核表面既结合了卤离子,同时结合氢氧根离子,这样通过协同作用,不仅可以钝化III-V族量子点核表面,大大提高量子点的发光效率,最终量子点发光效率大于70%,同时有利于厚外壳层的生长,可以大大提升量子点的稳定性。
上述步骤SA051中:III族阳离子前驱体包括一种或多种金属卤化物前驱体,且包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体,可以理解为:(1)III族阳离子前驱体同时有一种或多种金属卤化物前驱体和一种或多种金属氧化物前驱体,(2)III族阳离子前驱体同时有一种或多种金属卤化物前驱体和一种或多种金属氢氧化物前驱体,(3)III族阳离子前驱体同时有一种或多种金属卤化物前驱体、一种或多种金属氧化物前驱体和一种或多种金属氢氧化物前驱体。此外,III族阳离子前驱体除了含有一种或多种金属卤化物前驱体、一种或多种金属氧化物前驱体和/或金属氢氧化物外前驱体,还含有其他前驱体。
上述步骤SB051中:所述阳离子前驱体(III族阳离子前驱体和第一II族阳离子前驱体)中包括一种或多种金属卤化物前驱体以及一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体,可以理解为如下多种情况:(1)所述III族阳离子前驱体包括一种或多种金属卤化物前驱体,且包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体;(2)所述第一II族阳离子前驱体中包 括一种或多种金属卤化物前驱体,且包括一种或多种金属氧化物和/或金属氢氧化物前驱体,(3)所述III族阳离子前驱体包括一种或多种金属卤化物前驱体(第III族阳离子前驱体还可以包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体),同时,所述第一II族阳离子前驱体中包括一种或多种金属氧化物和/或金属氢氧化物(第一II族阳离子前驱体还可以包括一种或多种金属卤化物前驱体);(4)所述III族阳离子前驱体包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体(第III族阳离子前驱体还可以包括一种或多种金属卤化物前驱体),同时,所述第一II族阳离子前驱体中包括一种或多种金属卤化物前驱体(所述第一II族阳离子前驱体还可以包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体);等等多种情况;只要III族阳离子前驱体和第一II族阳离子前驱体组成的阳离子前驱体中同时含有卤离子,以及O 2-和/或OH -即可。
对于步骤SA051中,卤离子和氢氧根离子同时与III-V族量子点核表面的III族阳离子结合;相当于在量子点核表面完全包覆或非完全包覆一层由III族金属卤化物和III族金属氢氧化物组成的混合材料层。所述III族金属氢氧化物如氢氧化铟、氢氧化镓和氢氧化铝中的至少一种。金属卤化物选自III族金属卤化物如氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种。
对于步骤SB051中,加入II族阳离子前驱体后,II族阳离子会与III-V族量子点核表面的V族阴离子(如P)结合,从而留出III族阳离子空位,小分子的卤离子和氢氧根离子配体均可以与核表面的III族阳离子结合,同时卤离子和氢氧根离子还可以与结合在III-V族量子点核表面的II族阳离子结合,即卤离子和氢氧根离子同时与III-V族量子点核表面的III族阳离子和II族阳离子结合。相当于在量子点核表面完全包覆或非完全包覆一层由II族金属卤化物、III族金属卤化物、II族金属金属氢氧化物和III族金属氢氧化物组成的混合材料层。
在步骤SA052或SB052中的成核反应完成后,即刻将第二II族阳离子前驱体和VI族阴离子前驱体加入所述III-V族核溶液中,在第三温度条件下进行外壳层生长,在III-V族量子点核表面形成II-VI族半导体外壳层,得到核壳量子点溶液。
即在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆 所述III-V族量子点核以及结合在所述III-V族量子点核表面的卤离子和氢氧根离子。卤离子和氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。
或在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族阳离子、卤离子和氢氧根离子。卤离子和氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。
这样,卤离子钝化III-V族量子点核表面,有效抑制无辐射跃迁的发生,氢氧根离子可以使III-V族量子点核与II-VI族半导体外壳层间的晶格适配,II-VI族半导体外壳层更有效地将局限在核中的载流子与充当非辐射复合跃迁中心的表面态分开;如此通过卤离子、氢氧根离子和II-VI族半导体外壳层协同作用,形成的核壳量子点结构,具有更高的发光效率。所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种;具体地,所述II-VI族半导体外壳层的厚度为3-5nm。
上述量子点的制备方法的实施例如实施例5-1至实施例5-6所示。
本申请一实施例中,提供一种量子点,包括III-V族量子点核和结合在所述III-V族量子点核表面的乙酰丙酮根离子和氢氧根离子;其中,所述乙酰丙酮根离子和氢氧根离子与所述III-V族量子点核表面的III族阳离子结合。
本申请另一实施例中,提供一种量子点,包括III-V族量子点核,与所述III-V族量子点核表面的V族阴离子结合的II族阳离子,以及与III-V族量子点核表面的III族阳离子和II族阳离子结合的乙酰丙酮根离子和氢氧根离子。
本实施例的量子点中,乙酰丙酮根离子具有更小的径向维度和双齿的配位点,会与引入的羧酸配体发生交换,这样可以减少III-V族量子点核表面的原始配体,实现成核与生长的分离,氢氧根离子与III-V族量子点核表面的阳离子结合不仅也可以钝化III-V族量子点核表面,同时还可以作为一层缓冲外壳层,可以有效地减少III-V族量子点核与II-VI族半导体外壳层间的晶格适配问题,有利于厚外壳层的生长。因此,通过乙酰丙酮根离子和氢氧根离子与III-V族量子点核表 面的阳离子结合,相当于在III-V族量子点核表面完全包覆或非完全包覆一层由乙酰丙酮金属化合物和金属氢氧化物组成的混合材料层。在一种实施方式中,所述乙酰丙酮根离子和氢氧根离子与所述III-V族量子点核表面的III族阳离子结合形成III族乙酰丙酮金属化合物和III族金属氢氧化物。在一种实施方式中,所述乙酰丙酮根离子和氢氧根离子与所述III-V族量子点核表面的III族阳离子与II阳离子结合形成III族乙酰丙酮金属化合物、II族乙酰丙酮金属化合物、II族金属氢氧化物和III族金属氢氧化物。混合材料不仅提高了量子点的尺寸分散性,从而显著收窄峰宽,而且有利于厚外壳层的生长,可以大大提升量子点的稳定性。
在一实施例中,III-V族量子点核的材料选自GaP、GaN、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPSb、AlNP、AlNAs、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb和InPGa中的至少一种;所述III族阳离子选自铟离子、镓离子和铝离子中的至少一种;所述II族阳离子选自锌离子、镉离子、汞离子和镁离子中的至少一种。所述乙酰丙酮根离子选自六氢乙酰丙酮根离子和六氟乙酰丙酮根离子中的至少一种。
所述III族乙酰丙酮金属化合物如六氢乙酰丙酮铟、六氢乙酰丙酮镓、六氢乙酰丙酮铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓和六氟乙酰丙酮铝中的至少一种。所述II族金属乙酰丙酮化合物如六氢乙酰丙酮锌、六氢乙酰丙酮镉、六氢乙酰丙酮镁、六氢乙酰丙酮汞、六氟乙酰丙酮锌、六氟乙酰丙酮镉、六氟乙酰丙酮镁、六氟乙酰丙酮汞中的至少一种。氢氧根离子形成的III族金属氢氧化物如氢氧化铟、氢氧化镓和氢氧化铝中的至少一种,氢氧根离子形成的II族金属氢氧化物如氢氧化锌、氢氧化镉、氢氧化镁和氢氧化汞中的至少一种
在一实施例中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的乙酰丙酮根离子和氢氧根离子。乙酰丙酮根离子和氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。
在一实施例中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族阳离子、乙酰丙酮根离子和氢氧根离子。乙酰丙酮根离子和氢氧根离子位于所述III- V族量子点核和所述II-VI族半导体外壳层之间。通过乙酰丙酮根离子、氢氧根离子和II-VI族半导体外壳层协同作用,形成的核壳量子点结构,具有更高的发光效率。所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种;在一实施例中,所述II-VI族半导体外壳层的厚度为3-5nm。
本申请一实施例中,上述量子点的一种制备方法包括如下步骤:
SA061:提供III族阳离子前驱体和配体;所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体以及一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体;将所述III族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
SA062:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
或者,另一种制备方法包括如下步骤:
SB061:提供阳离子前驱体和配体,所述阳离子前驱体为III族阳离子前驱体和第一II族阳离子前驱体,其中,所述阳离子前驱体中包括一种或多种乙酰丙酮金属盐前驱体以及一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体;将所述阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
SB062:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
本实施例的量子点制备方法中,通过在成核反应前,先在成核过程中向反应体系中引入至少一种金属氧化物前驱体和/或金属氢氧化物前驱体,以及至少一种乙酰丙酮金属盐前驱体;这样在制备过程中,乙酰丙酮金属盐前驱体中的阳离子可以用于成核反应,另一方面在成核的瞬间由于乙酰丙酮根离子具有更小的径向维度和更多(2个)的配位点,会与羧酸配体发生交换,从而可以减少III-V族量子点核表面的原始配体,进而实现成核与生长的分离;金属氧化物前驱体和/或金属氢氧化物前驱体中的金属离子也参与III-V族量子点核的形成,而金属 氧化物前驱体中的阴离子即O 2-先与反应体系溶液中的质子结合形成OH -,最终OH -可以快速与III-V族量子点核表面的阳离子进行结合有效钝化III-V族量子点核表面,同时还作为一层缓存外壳层有效地减少核与外壳层间的晶格适配问题,有利于厚外壳层的生长。本实施例制备方法最终得到的量子点,通过乙酰丙酮根离子和氢氧根离子与III-V族量子点核表面的阳离子结合,相当于在III-V族量子点核表面完全包覆或非完全包覆一层由乙酰丙酮金属化合物和金属氢氧化物组成的混合材料层,混合材料不仅提高了量子点的尺寸分散性,从而显著收窄峰宽(峰宽范围<45nm),而且有利于厚外壳层的生长,可以大大提升量子点的稳定性。
对于步骤SA061中,乙酰丙酮根离子和氢氧根离子同时与III-V族量子点核表面的III族阳离子结合;在一种实施方式中,所述乙酰丙酮根离子和氢氧根离子与所述III-V族量子点核表面的III族阳离子结合形成III族乙酰丙酮金属化合物和III族金属氢氧化物,相当于在III-V族量子点核表面完全包覆或非完全包覆一层由III族乙酰丙酮金属化合物和III族金属氢氧化物组成的混合材料层。
对于步骤SB061中,加入II族阳离子前驱体后,II族阳离子会与III-V族量子点核表面的V族阴离子(如P)结合,从而留出III族阳离子空位,小分子的乙酰丙酮根离子和氢氧根离子配体均可以与核表面的III族阳离子结合,同时乙酰丙酮根离子和氢氧根离子还可以与结合在III-V族量子点核表面的II族阳离子结合,即乙酰丙酮根离子和氢氧根离子同时与III-V族量子点核表面的III族阳离子和II族阳离子结合。相当于在III-V族量子点核表面完全包覆或非完全包覆一层III族乙酰丙酮金属化合物、II族乙酰丙酮金属化合物、II族金属氢氧化物和III族金属氢氧化物组成的混合材料层。
在一种实施方式中,所述乙酰丙酮根离子和氢氧根离子与所述III-V族量子点核表面的III族阳离子结合形成III族乙酰丙酮金属化合物和III族金属氢氧化物。在一种实施方式中,所述乙酰丙酮根离子和氢氧根离子与所述III-V族量子点核表面的III族阳离子与II阳离子结合形成III族乙酰丙酮金属化合物、II族乙酰丙酮金属化合物、II族金属氢氧化物和III族金属氢氧化物。
上述步骤SA061中:所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前 驱体,且包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体,可以理解为:(1)III族阳离子前驱体同时有一种或多种乙酰丙酮金属盐前驱体和一种或多种金属氧化物前驱体,(2)III族阳离子前驱体同时有一种或多种乙酰丙酮金属盐前驱体和一种或多种金属氢氧化物前驱体,(3)III族阳离子前驱体同时有一种或多种乙酰丙酮金属盐前驱体、一种或多种金属氧化物前驱体和一种或多种金属氢氧化物前驱体。此外,III族阳离子前驱体除了含有一种或多种乙酰丙酮金属盐前驱体、一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体外,还含有其他前驱体。
上述步骤SB061中:所述阳离子前驱体(III族阳离子前驱体和第一II族阳离子前驱体)中包括一种或多种乙酰丙酮金属盐前驱体以及一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体,可以理解为如下多种情况:(1)所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体,且包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体;(2)所述第一II族阳离子前驱体中包括一种或多种乙酰丙酮金属盐前驱体,且包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体,(3)所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体(第III族阳离子前驱体还包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体),同时,所述第一II族阳离子前驱体中包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体(第一II族阳离子前驱体还可以包括一种或多种乙酰丙酮金属盐前驱体);(4)所述III族阳离子前驱体包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体(第III族阳离子前驱体还可以包括一种或多种乙酰丙酮金属盐前驱体),同时,所述第一II族阳离子前驱体中包括一种或多种乙酰丙酮金属盐前驱体(所述第一II族阳离子前驱体还可以包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体)等多种情况;只要III族阳离子前驱体和第一II族阳离子前驱体组成的混合物中同时含有乙酰丙酮根离子,以及O 2-和/或OH -即可。
在步骤SA062或SB062中的成核反应完成后,即刻将第二II族阳离子前驱体和VI族阴离子前驱体加入所述III-V族核溶液中,在第三温度条件下进行外壳层生长,在III-V族量子点核表面形成II-VI族半导体外壳层,得到核壳量子点溶液。即 在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的乙酰丙酮根离子和氢氧根离子,卤离子和氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。或在所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族阳离子、乙酰丙酮根离子和氢氧根离子,乙酰丙酮根离子和氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。通过乙酰丙酮根离子、氢氧根离子和II-VI族半导体外壳层协同作用,形成的核壳量子点结构,具有更高的发光效率。所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种;在一实施例中,所述II-VI族半导体外壳层的厚度为3-5nm。
上述量子点的制备方法的实施例如实施例6-1至实施例6-6所示。
本申请一实施例中,提供一种量子点,包括III-V族量子点核和结合在所述III-V族量子点核表面的卤离子、乙酰丙酮根离子和氢氧根离子;其中,所述卤离子、乙酰丙酮根离子和氢氧根离子与所述III-V族量子点核表面的III族阳离子结合。
本申请另一实施例中,提供一种量子点,包括III-V族量子点核,与所述III-V族量子点核表面的V族阴离子结合的II族阳离子,以及与III-V族量子点核表面III族阳离子和II族阳离子结合的卤离子、乙酰丙酮根离子和氢氧根离子。
本实施例的量子点中,卤离子与III-V族量子点核表面的金属阳离子结合,以钝化III-V族量子点核表面,有效的抑制无辐射跃迁的发生,从而避免共价键结合而成的III-V族量子点表面的大量缺陷态,乙酰丙酮根离子具有更小的径向维度和双齿的配位点,会与引入的羧酸配体发生交换,这样可以减少III-V族量子点核表面的原始配体,实现成核与生长的分离,氢氧根离子与III-V族量子点核表面的金属阳离子结合不仅也可以钝化III-V族量子点核表面,同时还可以作为一层缓冲外壳层,可以有效地减少III-V族量子点核与II-VI族半导体外壳层间的晶格适配问题,有利于厚外壳层的生长。因此,通过卤离子、乙酰丙酮根离子和 氢氧根离子与III-V族量子点核表面的阳离子结合,相当于在III-V族量子点核表面完全包覆或非完全包覆一层由乙酰丙酮金属化合物和金属氢氧化物组成的混合材料层。在一种实施方式中,所述乙酰丙酮根离子和氢氧根离子与所述III-V族量子点核表面的III族阳离子结合形成III族乙酰丙酮金属化合物、III族金属氢氧化物和III族金属卤化物。在一种实施方式中,所述乙酰丙酮根离子和氢氧根离子与所述III-V族量子点核表面的III族阳离子与II阳离子结合形成III族乙酰丙酮金属化合物、II族乙酰丙酮金属化合物、II族金属氢氧化物、III族金属氢氧化物、II族金属卤化物和III族金属卤化物。通过卤离子、乙酰丙酮根离子和氢氧根离子与III-V族量子点核表面的阳离子结合协同形成一混合材料层,不仅大大提高量子点的发光效率(大于70%),而且提高了量子点的尺寸分散性,从而显著收窄峰宽(峰宽范围<45nm),同时有利于厚外壳层的生长,可以大大提升量子点的稳定性。
在一实施例中,III-V族量子点核的材料选自GaP、GaN、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPSb、AlNP、AlNAs、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb和InPGa中的至少一种;所述III族阳离子选自铟离子、镓离子和铝离子中的至少一种;所述II族阳离子选自锌离子、镉离子、汞离子和镁离子中的至少一种;卤离子选自氯离子、溴离子和碘离子中的至少一种。所述乙酰丙酮根离子选自六氢乙酰丙酮根离子和六氟乙酰丙酮根离子中的至少一种。
所述III族乙酰丙酮金属化合物如六氢乙酰丙酮铟、六氢乙酰丙酮镓、六氢乙酰丙酮铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓和六氟乙酰丙酮铝中的至少一种。所述II族金属乙酰丙酮化合物如六氢乙酰丙酮锌、六氢乙酰丙酮镉、六氢乙酰丙酮镁、六氢乙酰丙酮汞、六氟乙酰丙酮锌、六氟乙酰丙酮镉、六氟乙酰丙酮镁、六氟乙酰丙酮汞中的至少一种。所述III族金属卤化物如氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种。所述II族金属卤化物如氯化锌、溴化锌、碘化锌、氯化镉、溴化镉、碘化镉、氯化镁、溴化镁、碘化镁、氯化汞、溴化汞和碘化汞中的至少一种。
在一实施例中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述 外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的卤离子、乙酰丙酮根离子和氢氧根离子。卤离子、乙酰丙酮根离子和氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间
在一实施例中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族阳离子、卤离子、乙酰丙酮根离子和氢氧根离子。卤离子、乙酰丙酮根离子和氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。卤离子钝化III-V族量子点核表面,有效抑制无辐射跃迁的发生,乙酰丙酮根离子实现成核与生长的分离,氢氧根离子可以使III-V族量子点核与II-VI族半导体外壳层间的晶格适配,II-VI族半导体外壳层更有效地将局限在核中的载流子与充当非辐射复合跃迁中心的表面态分开;如此,通过卤离子、乙酰丙酮根离子、氢氧根离子和II-VI族半导体外壳层协同作用,形成的核壳量子点结构,具有更高的发光效率。所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种;所述II-VI族半导体外壳层的厚度为3-5nm。
本申请一实施例中,上述量子点的一种制备方法包括如下步骤:
SA071:提供III族阳离子前驱体和配体;所述III族阳离子前驱体包括一种或多种金属卤化物前驱体、一种或多种乙酰丙酮金属盐前驱体以及一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体;将所述III族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
SA072:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
或者,另一种制备方法包括如下步骤:
SB071:提供阳离子前驱体和配体,所述阳离子前驱体为III族阳离子前驱体和第一II族阳离子前驱体,其中,所述阳离子前驱体中包括一种或多种乙酰丙酮金属盐前驱体、一种或多种金属卤化物前驱体以及一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体;将所述阳离子前驱体和配体溶于溶剂中 ,在第一温度条件下进行加热处理,得到混合溶液;
SB072:将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
本申请实施例的上述制备方法中,通过在成核反应前,先在成核过程中向反应体系中引入至少一种金属氧化物和/或金属氢氧化物,以及至少一种乙酰丙酮金属盐前驱体和至少一种金属卤化物前驱体;这样在制备过程中,乙酰丙酮金属盐前驱体中的阳离子可以用于成核反应,另一方面在成核的瞬间由于乙酰丙酮根离子具有更小的径向维度和更多(2个)的配位点,会与羧酸配体发生交换,从而可以减少III-V族量子点核表面的原始配体,进而实现成核与生长的分离;金属卤化物前驱体中的阳离子可以用于成核反应,另一方面卤离子可以与已成核的III-V族量子点核表面的V族阴离子悬挂键发生反应,生成的VX 3(V为N、P或As,X为卤素)气体有利于反应的发生,使得III-V族量子点核表面的III族和V族原子发生重组,形成原子比例更加稳定的III-V族量子点核,同时卤离子又可以与III-V族量子点核表面的阳离子结合以钝化III-V族量子点核表面;金属氧化物前驱体和/或金属氢氧化物前驱体中的金属离子也参与III-V族量子点核的形成,而金属氧化物前驱体中的阴离子即O 2-先与反应体系溶液中的质子结合形成OH -,这样前驱体中引入的金属氧化物前驱体和/或金属氢氧化物前驱体所产生的阴离子只存在OH -,最终OH -可以快速与III-V族量子点核表面的阳离子进行结合不仅有效钝化III-V族量子点核表面,同时还作为一层缓存外壳层有效地减少核与外壳层间的晶格适配问题,有利于厚外壳层的生长。本实施例的制备方法最终得到的量子点中,III-V族量子点核表面同时结合了乙酰丙酮根离子、卤离子和氢氧根离子,这样不仅大大提高量子点的发光效率(大于70%),而且提高了量子点的尺寸分散性,从而显著收窄峰宽(峰宽范围<45nm),同时有利于厚外壳层的生长,可以大大提升量子点的稳定性。
上述步骤SA071中:所述III族阳离子前驱体包括一种或多种金属卤化物前驱体、一种或多种乙酰丙酮金属盐前驱体以及一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体,可以理解为:(1)III族阳离子前驱体同时有一种或多种金属卤化物前驱体、一种或多种乙酰丙酮金属盐前驱体和一种或多种 金属氧化物前驱体,(2)III族阳离子前驱体同时有一种或多种金属卤化物前驱体、一种或多种乙酰丙酮金属盐前驱体和一种或多种金属氢氧化物前驱体,(3)III族阳离子前驱体同时有一种或多种金属卤化物前驱体、一种或多种乙酰丙酮金属盐前驱体、一种或多种金属氧化物前驱体和一种或多种金属氢氧化物前驱体。此外,III族阳离子前驱体除了含有一种或多种金属卤化物、一种或多种乙酰丙酮金属盐前驱体、一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体外,还含有其他前驱体。
上述步骤SB071中:所述阳离子前驱体(III族阳离子前驱体和第一II族阳离子前驱体)中包括一种或多种乙酰丙酮金属盐前驱体、一种或多种金属卤化物以及一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体,可以理解为如下多种情况:(1)所述III族阳离子前驱体包括一种或多种金属卤化物前驱体和一种或多种乙酰丙酮金属盐前驱体,且包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体;(2)所述第一II族阳离子前驱体中包括一种或多种金属卤化物前驱体和一种或多种乙酰丙酮金属盐前驱体前驱体,且包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体,(3)所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体(第III族阳离子前驱体还可以包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体,一种或多种金属卤化物),同时,所述第一II族阳离子前驱体中包括一种或多种金属卤化物和一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体(第一II族阳离子前驱体还可以包括一种或多种乙酰丙酮金属盐前驱体);(4)所述III族阳离子前驱体包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体(第III族阳离子前驱体还可以包括一种或多种乙酰丙酮金属盐前驱体,一种或多种金属卤化物前驱体),同时,所述第一II族阳离子前驱体中包括一种或多种金属卤化物和一种或多种乙酰丙酮金属盐前驱体(所述第一II族阳离子前驱体还可以包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体);(5)所述III族阳离子前驱体包括一种或多种金属卤化物(第III族阳离子前驱体还可以包括一种或多种金属氧化物前驱体和/或金属氢氧化物前驱体,一种或多种乙酰丙酮金属盐前驱体),同时,所述第一II族阳离子前驱体中包括一种或多种乙酰丙酮金属盐前驱体和一种或多 种金属氧化物前驱体和/或金属氢氧化物前驱体(第一II族阳离子前驱体还可以包括一种或多种金属卤化物)等多种情况;只要III族阳离子前驱体和第一II族阳离子前驱体组成的阳离子前驱体混合物中同时含有卤离子、乙酰丙酮根离子,以及O 2-和/或OH -即可。
对于步骤SA071中,乙酰丙酮根离子、卤离子和氢氧根离子同时与III-V族量子点核表面的III族阳离子结合;相当于在量子点核表面完全包覆或非完全包覆一层由III族金属卤化物、III族金属氢氧化物、III族金属乙酰丙酮化合物组成的混合材料层。所述III族金属氢氧化物如氢氧化铟、氢氧化镓和氢氧化铝中的至少一种。III族金属乙酰丙酮化合物包括六氢乙酰丙酮铟、六氢乙酰丙酮镓、六氢乙酰丙酮铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓和六氟乙酰丙酮铝中的至少一种。III族金属卤化物包括氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种,
对于步骤SB071中,加入II族阳离子前驱体后,II族阳离子会与III-V族量子点核表面的V族阴离子(如P)结合,从而留出III族阳离子空位,乙酰丙酮根离子、卤离子和氢氧根离子配体均可以与核表面的III族阳离子结合,同时乙酰丙酮根离子、卤离子和氢氧根离子还可以与结合在III-V族量子点核表面的II族阳离子结合,即乙酰丙酮根离子、卤离子和氢氧根离子同时与III-V族量子点核表面的III族阳离子和II族阳离子结合。相当于在量子点核表面完全包覆或非完全包覆一层由II族金属卤化物、III族金属卤化物、II族金属金属氢氧化物、III族金属氢氧化物、II族金属乙酰丙酮化合物和III族金属乙酰丙酮化合物组成的混合材料层。III族乙酰丙酮金属化合物包括六氢乙酰丙酮铟、六氢乙酰丙酮镓、六氢乙酰丙酮铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓和六氟乙酰丙酮铝中的至少一种,II族金属乙酰丙酮化合物包括六氢乙酰丙酮锌、六氢乙酰丙酮镉、六氢乙酰丙酮镁、六氢乙酰丙酮汞、六氟乙酰丙酮锌、六氟乙酰丙酮镉、六氟乙酰丙酮镁、六氟乙酰丙酮汞中的至少一种。III族金属卤化物包括氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种,II族金属卤化物包括氯化锌、溴化锌、碘化锌、氯化镉、溴化镉、碘化镉、氯化镁、溴化镁、碘化镁、氯化汞、溴化汞和碘化汞中的至少一种。III族金属氢氧化物包括氢 氧化铟、氢氧化镓和氢氧化铝中的至少一种,以及II族金属氢氧化物包括氢氧化锌、氢氧化镉、氢氧化镁和氢氧化汞中的至少一种。
在步骤SA072或SB072中的成核反应完成后,即刻将第二II族阳离子前驱体和VI族阴离子前驱体加入所述III-V族核溶液中,在第三温度条件下进行外壳层生长,在III-V族量子点核表面形成II-VI族半导体外壳层,得到核壳量子点溶液。在一实施例中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的卤离子、乙酰丙酮根离子和氢氧根离子。卤离子、乙酰丙酮根离子和氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间
在一实施例中,所述III-V族量子点核表面包覆一层II-VI族半导体外壳层,所述外壳层包覆所述III-V族量子点核以及结合在所述III-V族量子点核表面的II族阳离子、卤离子、乙酰丙酮根离子和氢氧根离子。卤离子、乙酰丙酮根离子和氢氧根离子位于所述III-V族量子点核和所述II-VI族半导体外壳层之间。卤离子钝化III-V族量子点核表面,有效抑制无辐射跃迁的发生,乙酰丙酮根离子实现成核与生长的分离,氢氧根离子可以使III-V族量子点核与II-VI族半导体外壳层间的晶格适配,II-VI族半导体外壳层更有效地将局限在核中的载流子与充当非辐射复合跃迁中心的表面态分开;如此,通过卤离子、乙酰丙酮根离子、氢氧根离子和II-VI族半导体外壳层协同作用,形成的核壳量子点结构,具有更高的发光效率。所述II-VI族半导体外壳层的材料选自CdS、CdSe、CdO、CdTe、HgO、HgS、HgTe、HgSe、ZnSe、ZnS、ZnTe、ZnO、MgSe、MgS、MgTe、ZnSeS、ZnSeTe、ZnSTe、MgZnSe和MgZnS中的至少一种;所述II-VI族半导体外壳层的厚度为3-5nm。
上述量子点的制备方法的实施例如实施例7-1至实施例7-6所示。
本申请先后进行过多次试验,现举一部分试验结果作为参考对本申请进行进一步详细描述,下面结合具体实施例进行详细说明。
实施例1-1
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol氯化铟,1mmol醋酸锌,加入到50ml三口烧瓶中,然后 加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.3ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnS核壳量子点。
实施例1-2
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol氯化铟,1mmol醋酸锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例1-3
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol氯化铟,1mmol醋酸锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例1-4
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol氯化铟,0.17mmol氯化镓,1.5mmol醋酸锌,加入到50 ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.5ml辛硫醇和3mmol油酸锌。反应30mins,得到InP/GaP/ZnS核壳量子点。
实施例1-5
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol氯化铟,0.17mmol氯化镓,1.5mmol醋酸锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例1-6
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol氯化铟,0.17mmol氯化镓,1.5mmol醋酸锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核 壳量子点。
实施例2-1
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,1mmol乙酰丙酮锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.3ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnS核壳量子点。
实施例2-2
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,1mmol乙酰丙酮锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例2-3
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,1mmol乙酰丙酮锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml 辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例2-4
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol乙酰丙酮镓,1.5mmol乙酰丙酮锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.5ml辛硫醇和3mmol油酸锌。反应30mins,得到InP/GaP/ZnS核壳量子点。
实施例2-5
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol乙酰丙酮镓,1.5mmol乙酰丙酮锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例2-6
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol乙酰丙酮镓,1.5mmol乙酰丙酮锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2 mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例3-1
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,1mmol氯化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.3ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnS核壳量子点。
实施例3-2
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,1mmol氯化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例3-3
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,1mmol氯化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在 氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例3-4
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol氯化镓,1.5mmol乙酰丙酮锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.5ml辛硫醇和3mmol油酸锌。反应30mins,得到InP/GaP/ZnS核壳量子点。
实施例3-5
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol氯化镓,1.5mmol乙酰丙酮锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例3-6
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol氯化镓,1.5mmol乙酰丙酮锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例4-1
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol氧化铟,1mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.3ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnS核壳量子点。
实施例4-2
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol氧化铟,1mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例4-3
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol氧化铟,1mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例4-4
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol氧化铟,0.17mmol氧化镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.5ml辛硫醇和3mmol油酸锌。反应30mins,得到InP/GaP/ZnS核壳量子点。
实施例4-5
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol氧化铟,0.17mmol氧化镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。 反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例4-6
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol氧化铟,0.17mmol氧化镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例5-1
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol氯化铟,1mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.3ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnS核壳量子点。
实施例5-2
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol氯化铟,1mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例5-3
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol氯化铟,1mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例5-4
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol氯化铟,0.17mmol氧化镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.5ml辛硫醇和3mmol油酸锌。反应30mins,得到InP/GaP/ZnS核壳量子点。
实施例5-5
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol氯化铟,0.17mmol氧化镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃ 下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例5-6
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol氯化铟,0.17mmol氧化镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例6-1
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,1mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.3ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnS核壳量子点。
实施例6-2
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,1mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例6-3
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,1mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例6-4
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol乙酰丙酮镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.5ml辛硫醇和3mmol油酸锌。反应30mins,得到InP/GaP/ZnS核壳量子点。
实施例6-5
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol乙酰丙酮镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例6-6
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol乙酰丙酮镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例7-1
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.5mmol氧化锌,0.5mmol氯化锌加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.3ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnS核壳量子点。
实施例7-2
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.5mmol氧化锌,0.5mmol氯化锌加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例7-3
(1)制备量子点核InP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.5mmol氧化锌,0.5mmol氯化锌加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.15mmol三(三甲硅烷基)膦,反应2mins,得到InP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
实施例7-4
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol氯化镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽 真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.5ml辛硫醇和3mmol油酸锌。反应30mins,得到InP/GaP/ZnS核壳量子点。
实施例7-5
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol氯化镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSe/ZnS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦。反应20mins后,加入0.2ml辛硫醇和2mmol油酸锌。反应40mins,得到InP/ZnSe/ZnS核壳量子点。
实施例7-6
(1)制备量子点核InP/GaP:Zn溶液
室温下,将0.2mmol乙酰丙酮铟,0.17mmol氯化镓,1.5mmol氧化锌,加入到50ml三口烧瓶中,然后加入1ml油酸,10ml十八烯。在真空保护下在80℃抽真空60mins,随后在氮气气氛保护下在140℃排氮气60mins。升温至280℃下,加入0.3mmol三(三甲硅烷基)膦,反应2mins,得到InP/GaP:Zn量子点核溶液。
(2)合成包覆所述量子点核InP/GaP:Zn的量子点外壳层ZnSeS
在300℃下,向所述InP/GaP:Zn量子点核溶液中加入0.2mmol硒化三丁基膦、0.2ml辛硫醇和2mmol油酸锌。反应60mins,得到InP/ZnSeS核壳量子点。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所 作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (20)

  1. 一种量子点的制备方法,其特征在于,包括如下步骤:
    提供III族阳离子前驱体和配体,将所述III族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理,得到混合溶液;
    将所述混合溶液继续升温至第二温度,然后向所述混合溶液中加入V族阴离子前驱体,进行成核反应,得到III-V族量子点核溶液。
  2. 如权利要求1所述的制备方法,其特征在于,所述III族阳离子前驱体包括一种或多种金属卤化物前驱体。
  3. 如权利要求2所述的制备方法,其特征在于,所述金属卤化物前驱体选自氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种。
  4. 如权利要求1所述的制备方法,其特征在于,所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体。
  5. 如权利要求4所述的制备方法,其特征在于,所述乙酰丙酮金属盐前驱体选自乙酰丙酮铟、六氟乙酰丙酮铟、乙酰丙酮镓、六氟乙酰丙酮镓、乙酰丙酮铝和六氟乙酰丙酮铝中的至少一种。
  6. 如权利要求1所述的制备方法,其特征在于,所述III族阳离子前驱体包括一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体。
  7. 如权利要求6所述的制备方法,其特征在于,所述金属氧化物前驱体选自氧化铟、氧化铝和氧化镓中的至少一种;和/或,
    所述金属氢氧化物前驱体选自氢氧化镓、氢氧化铟和氢氧化铝中的至少一种。
  8. 如权利要求1所述的制备方法,其特征在于,所述III族阳离子前驱体选自氯化铟、溴化铟、碘化铟、醋酸铟、碳酸铟、硝酸铟、高氯酸铟、氰化铟、氯化镓、溴化镓、碘化镓、碳酸镓、硝酸镓、高氯酸镓、氰化镓、氯化铝、溴化铝、碘化铝、碳酸铝、硝酸铝、高氯酸铝、氰化铝、乙酰丙酮铟、醋酸镓、乙酰丙酮镓、醋酸 铝、乙酰丙酮铝、异丙醇铝、六氟乙酰丙酮铟、六氟乙酰丙酮镓、异丙醇铝、六氟乙酰丙酮铝、氧化铟、氢氧化铟、氧化镓、氢氧化镓、氧化铝和氢氧化铝的至少一种;和/或,
    所述V族阴离子前驱体选自三(三甲硅烷基)膦,三(三甲锗烷基)膦、三(二甲胺基)磷,三(二乙氨基)磷、三乙基膦、三丁基膦、三辛基膦、三苯基膦、三环己基膦、三(三甲硅烷基)砷、三(二甲胺基)砷,三(二乙氨基)砷、三乙基砷、三丁基砷、三辛基砷、三苯基砷、三环己基砷、氧化砷、氯化砷、溴化砷、碘化砷、硫化砷和氨气中的至少一种;和/或,
    所述配体选自油酸、C4-C20饱和脂肪酸、被C6-C22烷基取代的膦、被C6-C22烷基取代的氧膦、C6-C22伯胺、C6-C22仲胺和C6-C40叔胺中的至少一种;和/或,
    所述溶剂选自C6-C40脂族烃、C6-C30芳族烃、含氮杂环化合物、C12-C22芳族醚中的至少一种。
  9. 如权利要求1所述的制备方法,其特征在于,将第一II族阳离子前驱体与所述III族阳离子前驱体和配体溶于溶剂中,在第一温度条件下进行加热处理。
  10. 如权利要求9所述的制备方法,其特征在于,所述III族阳离子前驱体包括一种或多种金属卤化物前驱体,和/或所述第一II族阳离子前驱体包括一种或多种金属卤化物前驱体。
  11. 如权利要求10所述的制备方法,其特征在于,当所述III族阳离子前驱体包括金属卤化物前驱体时,所述III族阳离子前驱体中的金属卤化物前驱体选自氯化铟、溴化铟、碘化铟、氯化镓、溴化镓、碘化镓、氯化铝、溴化铝和碘化铝中的至少一种;和/或,当所述第一II族阳离子前驱体包括金属卤化物前驱体时,所述第一II族阳离子前驱体中的金属卤化物前驱体选自氯化锌、溴化锌、碘化锌、氯化镉、溴化镉、碘化镉、氯化镁、溴化镁、碘化镁、氯化汞、溴化汞和碘化汞中的至少一种。
  12. 如权利要求9所述的制备方法,其特征在于,所述III族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体,和/或所述第一II族阳离子前驱体包括一种或多种乙酰丙酮金属盐前驱体。
  13. 如权利要求12所述的制备方法,其特征在于,当所述III族阳离子前驱体包括乙酰丙酮金属盐前驱体时,所述III族阳离子前驱体中的乙酰丙酮金属盐前驱体选自乙酰丙酮铟、六氟乙酰丙酮铟、乙酰丙酮镓、六氟乙酰丙酮镓、乙酰丙酮铝和六氟乙酰丙酮铝中的至少一种;和/或,
    当所述第一II族阳离子前驱体包括乙酰丙酮金属盐前驱体时,所述第一II族阳离子前驱体中的乙酰丙酮金属盐前驱体选自乙酰丙酮锌、六氟乙酰丙酮锌、乙酰丙酮镉、六氟乙酰丙酮镉、乙酰丙酮镁、六氟乙酰丙酮镉和乙酰丙酮汞中的至少一种。
  14. 如权利要求9所述的制备方法,其特征在于,所述III族阳离子前驱体和第一II族阳离子前驱体中包括一种或多种金属氧化物前驱体和/或一种或多种金属氢氧化物前驱体。
  15. 如权利要求14所述的制备方法,其特征在于,当所述III族阳离子前驱体包括金属氧化物前驱体和/或金属氢氧化物前驱体时,所述III族阳离子前驱体中的所述金属氧化物前驱体选自氧化铟、氧化铝和氧化镓中的至少一种,所述所述III族阳离子前驱体中的金属氢氧化物前驱体选自氢氧化镓、氢氧化铟和氢氧化铝中的至少一种;和/或,
    当所述第一II族阳离子前驱体包括金属氧化物前驱体和/或金属氢氧化物时前驱体时,所述第一II族阳离子前驱体中的金属氧化物前驱体选自氧化锌、氧化镉、氧化镁和氧化汞中的至少一种;所述第一II族阳离子前驱体中的金属氢氧化物前驱体氢氧化锌、氢氧化镉、氢氧化镁和氢氧化汞中的至少一种。
  16. 如权利要求9所述的制备方法,其特征在于,所述第一II族阳离子前驱体选自氯化锌、溴化锌、碘化锌、醋酸锌、硬脂酸锌、十一 烯酸锌、乙酰丙酮锌、六氟乙酰丙酮锌、氧化锌、氢氧化锌、碳酸锌、硝酸锌、高氯酸锌、氰化锌、氯化镉、溴化镉、碘化镉、醋酸镉、硬脂酸镉、十一烯酸镉、乙酰丙酮镉、六氟乙酰丙酮镉、氧化镉、氢氧化镉、碳酸镉、硝酸镉、高氯酸镉、氰化镉、氯化镁、溴化镁、碘化镁、醋酸镁、硬脂酸镁、十一烯酸镁、乙酰丙酮镁、六氟乙酰丙酮镁、氧化镁、氢氧化镁、碳酸镁、硝酸镁、高氯酸镁、氰化镁、氯化汞、溴化汞、碘化汞、醋酸汞、乙酰丙酮汞、氧化汞、氢氧化汞、碳酸汞、硝酸汞、高氯酸汞和氰化汞中的至少一种。
  17. 如权利要求1所述的制备方法,其特征在于,所述成核反应完成后,即刻将第二II族阳离子前驱体和VI族阴离子前驱体加入所述III-V族量子点核溶液中,在第三温度条件下进行外壳层生长,在III-V族量子点核表面形成II-VI族半导体外壳层,得到核壳量子点溶液。
  18. 如权利要求17所述的制备方法,其特征在于,所述第二II族阳离子前驱体选自油酸镉、丁酸镉、正葵酸镉、己酸镉、辛酸镉、十二烷酸镉、肉豆蔻酸镉、棕榈酸镉、硬脂酸镉、油酸汞、丁酸汞、正葵酸汞、己酸汞、辛酸汞、十二烷酸汞、肉豆蔻酸汞、棕榈酸汞、硬脂酸汞、油酸锌、丁酸锌、正葵酸锌、己酸锌、辛酸锌、十二烷酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、油酸镁、丁酸镁、正葵酸镁、己酸镁、辛酸镁、十二烷酸镁、肉豆蔻酸镁、棕榈酸镁和硬脂酸镁中的至少一种;和/或,
    所述VI族阴离子前驱体选自己硫醇、辛硫醇、葵硫醇、十二烷基硫醇、十六烷基硫醇、巯基丙基硅烷、硫化三辛基膦、硫化三丁基膦、硫化三苯基膦、硫化三辛基胺、三(三甲基甲硅烷基)硫化物、硫化铵、硫化钠、硒化三辛基膦、硒化三丁基膦、硒化三苯基膦、碲化三丁基膦、碲化三辛基膦和碲化三苯基膦中的至少一种;和/或,
    所述第三温度为260-320℃;和/或,
    所述在第三温度条件下进行外壳层生长的时间为15min-90min。
  19. 如权利要求1所述的制备方法,其特征在于,所述第一温度为100-200℃;和/或,
    所述第一温度条件下进行加热处理的时间为1-2h;和/或,
    所述第二温度为260-320℃;和/或,
    所述成核反应的时间为1-20min。
  20. 如权利要求17所述的制备方法,其特征在于,在得到所述核壳量子点溶液之后,还包括将所述核壳量子点溶液进行固液分离后,进行真空干燥的步骤。
PCT/CN2019/103821 2018-09-30 2019-08-30 量子点的制备方法 WO2020063259A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811156017.0 2018-09-30
CN201811157040.1A CN110964506A (zh) 2018-09-30 2018-09-30 量子点的制备方法
CN201811157040.1 2018-09-30
CN201811156030.6 2018-09-30
CN201811156017.0A CN110964500A (zh) 2018-09-30 2018-09-30 量子点的制备方法
CN201811156030.6A CN110964501A (zh) 2018-09-30 2018-09-30 量子点的制备方法

Publications (1)

Publication Number Publication Date
WO2020063259A1 true WO2020063259A1 (zh) 2020-04-02

Family

ID=69951052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103821 WO2020063259A1 (zh) 2018-09-30 2019-08-30 量子点的制备方法

Country Status (1)

Country Link
WO (1) WO2020063259A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105417504A (zh) * 2015-12-23 2016-03-23 济南大学 一种卤化铯铅与量子点复合材料的制备方法及所得产品
CN105576106A (zh) * 2016-01-13 2016-05-11 中国计量学院 一种基于白光LED用InP/ZnS量子点和CIS/ZnS量子点及其制备方法
WO2016185933A1 (ja) * 2015-05-15 2016-11-24 富士フイルム株式会社 コアシェル粒子、コアシェル粒子の製造方法およびフィルム
CN106433640A (zh) * 2016-09-07 2017-02-22 苏州星烁纳米科技有限公司 一种InP量子点及其制备方法
CN107098324A (zh) * 2017-05-08 2017-08-29 苏州星烁纳米科技有限公司 一种磷化铟量子点的制备方法
CN107502335A (zh) * 2017-07-10 2017-12-22 南京大学 高荧光效率核壳结构无镉量子点及其制备方法和用途
CN109929552A (zh) * 2017-12-18 2019-06-25 Tcl集团股份有限公司 一种量子点及其制备方法
CN109929558A (zh) * 2017-12-18 2019-06-25 Tcl集团股份有限公司 一种量子点及其制备方法
CN109988562A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 一种量子点及其制备方法与应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185933A1 (ja) * 2015-05-15 2016-11-24 富士フイルム株式会社 コアシェル粒子、コアシェル粒子の製造方法およびフィルム
CN105417504A (zh) * 2015-12-23 2016-03-23 济南大学 一种卤化铯铅与量子点复合材料的制备方法及所得产品
CN105576106A (zh) * 2016-01-13 2016-05-11 中国计量学院 一种基于白光LED用InP/ZnS量子点和CIS/ZnS量子点及其制备方法
CN106433640A (zh) * 2016-09-07 2017-02-22 苏州星烁纳米科技有限公司 一种InP量子点及其制备方法
CN107098324A (zh) * 2017-05-08 2017-08-29 苏州星烁纳米科技有限公司 一种磷化铟量子点的制备方法
CN107502335A (zh) * 2017-07-10 2017-12-22 南京大学 高荧光效率核壳结构无镉量子点及其制备方法和用途
CN109929552A (zh) * 2017-12-18 2019-06-25 Tcl集团股份有限公司 一种量子点及其制备方法
CN109929558A (zh) * 2017-12-18 2019-06-25 Tcl集团股份有限公司 一种量子点及其制备方法
CN109988562A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 一种量子点及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN110157407B (zh) 一种InP量子点及其制备方法
CN110964506A (zh) 量子点的制备方法
US10377946B2 (en) Self-passivating quantum dot and preparation method thereof
KR102604186B1 (ko) 반도체 나노 입자 및 그 제조 방법 및 발광 디바이스
CN108048084B (zh) 第iii-v族/锌硫属化物合金化的半导体量子点
JP5689575B2 (ja) 青色発光半導体ナノクリスタル物質
CN108239535B (zh) 具有核-壳结构的Ga掺杂的InP量子点及其制备方法
US11242483B2 (en) Quantum dot
JP2020522397A (ja) 量子ドット及び量子ドットの製造方法
CN110964503A (zh) 量子点及其制备方法
WO2020073927A1 (zh) 核壳结构纳米晶的制备方法
KR102602906B1 (ko) 퀀텀닷의 제조 방법
WO2020063259A1 (zh) 量子点的制备方法
CN109929331A (zh) 一种量子点墨水及其制备方法
CN110964500A (zh) 量子点的制备方法
CN110964505A (zh) 量子点及其制备方法
KR102640222B1 (ko) 양자점 및 이의 제조방법
WO2020063250A1 (zh) 量子点及其制备方法
CN111826158B (zh) 磷化铟纳米晶的制备方法
CN110616068A (zh) 粒子及其制备方法
WO2021106362A1 (ja) コアシェル型量子ドット及びコアシェル型量子ドットの製造方法
CN110885674A (zh) 一种复合材料及其制备方法
CN110964501A (zh) 量子点的制备方法
CN110964502A (zh) 量子点及其制备方法
CN110964507A (zh) 量子点及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864327

Country of ref document: EP

Kind code of ref document: A1