WO2020063250A1 - 量子点及其制备方法 - Google Patents

量子点及其制备方法 Download PDF

Info

Publication number
WO2020063250A1
WO2020063250A1 PCT/CN2019/103484 CN2019103484W WO2020063250A1 WO 2020063250 A1 WO2020063250 A1 WO 2020063250A1 CN 2019103484 W CN2019103484 W CN 2019103484W WO 2020063250 A1 WO2020063250 A1 WO 2020063250A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetylacetonate
quantum dot
group
zinc
shell
Prior art date
Application number
PCT/CN2019/103484
Other languages
English (en)
French (fr)
Inventor
聂志文
杨一行
Original Assignee
Tcl集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl集团股份有限公司 filed Critical Tcl集团股份有限公司
Publication of WO2020063250A1 publication Critical patent/WO2020063250A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium

Definitions

  • the present application relates to the field of nanomaterials, and in particular, to a quantum dot and a preparation method thereof.
  • a quantum dot is an inorganic semiconductor light-emitting nanocrystal with a particle size smaller than or close to its Bohr radius. Due to its unique quantum confinement effect, quantum dots have excellent luminous properties, such as: controllable particle size, narrow half-peak width, adjustable luminous peak, high luminous efficiency, and strong light temperature properties. Conversion and other fields have a wide range of applications.
  • the research objects of quantum dot technology are mainly II-VI quantum dots (typical materials such as CdS and CdSe, etc.). Their preparation methods are mature and their luminous properties are excellent.
  • the above-mentioned materials contain heavy metal Cd, and the presence of this element not only has great toxicity to the environment, but also has irreversible harm to the human body. Therefore, the development of an excellent Cd-free quantum dot material has become the focus of research at this stage.
  • InP is a typical III-V group element without Cd quantum dots. Its energy band gap is 1.36 eV and the Bohr radius is 11 nm.
  • the luminous efficiency of InP cores is usually low, only ⁇ 1%.
  • the thickness of the shell layer of the core-shell structure quantum dots is usually less than 2 nm.
  • the thin shell layer is not conducive to the perfect binding of excitons, it is easy to cause the electron or hole wave function to delocalize into the shell layer; on the other hand, because the Bohr radius of the InP quantum dot is large, the particle size of the particles is increased. The diameter size helps to enhance the quantum confinement effect, thereby greatly improving the luminous efficiency of quantum dots.
  • One of the objectives of the embodiments of the present application is to provide a quantum dot and a method for preparing the same, which are aimed at solving the technical problems of unstable size and low luminous efficiency of the existing III-V quantum dots.
  • a quantum dot including a III-V quantum dot core and an acetylacetonate shell layer covering a surface of the III-V quantum dot core.
  • the material of the acetylacetonate shell is selected from zinc acetylacetonate, cadmium acetylacetonate, mercury acetylacetonate, beryllium acetylacetonate, calcium acetylacetonate, magnesium acetylacetonate, strontium acetylacetonate, barium acetylacetonate, acetyl Cobalt acetone, nickel acetylacetonate, iron acetylacetonate, titanium acetylacetonate, manganese acetylacetonate, potassium acetylacetonate, zirconium acetylacetonate, lithium acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, titanium acetylacetonate, vanadyl acetylacetonate, acetyl At least one of strontium
  • the material of the acetylacetonate shell is selected from the group consisting of zinc acetylacetonate, cadmium acetylacetonate, mercury acetylacetonate, beryllium acetylacetonate, calcium acetylacetonate, magnesium acetylacetonate, strontium acetylacetonate, and barium acetylacetonate. At least one.
  • a material of the acylacetone shell of the acetylacetonate shell is selected from at least one of gallium acetylacetonate, indium acetylacetonate, and aluminum acetylacetonate.
  • the material of the group III-V quantum dot core is selected from GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaNP, GaAs, GaNSb, GaPAs , GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlPAs, InAlNPs , InAlPSb and InZnP.
  • the III-V quantum dot core contains a doping element selected from the group consisting of a group IIA element having a smaller effective ion radius than Zn 2+ and an effective ion radius smaller than Zn 2+ At least one of the small Group IIIA elements.
  • the group IIA element having a smaller effective ion radius than Zn 2+ is selected from at least one of Be, Mg, Ga; and / or,
  • the group IIIA element having a smaller effective ion radius than Zn 2+ is selected from at least one of B, Al, Ga, and In.
  • the quantum dot further includes a II-VI semiconductor shell layer coated on a surface of the acetylacetonate shell layer.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe , ZnSTe, HgSeS, HgSeTe, HgSTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnTeS, CdHgSeCdHdZnSeTe At least one of.
  • the thickness of the II-VI semiconductor shell layer is 3-5 nm.
  • a method for preparing a quantum dot including the following steps:
  • the quantum dot core being a III-V quantum dot core containing a doping element or a III-V quantum dot core not containing a doping element;
  • acetylacetone salt to the solution containing the quantum dot core, heating under a first temperature condition, forming an acetylacetonate shell layer on the surface of the III-V quantum dot core to obtain the quantum dot .
  • the acetylacetonate salt is selected from the group consisting of zinc acetylacetonate, cadmium acetylacetonate, mercury acetylacetonate, beryllium acetylacetonate, calcium acetylacetonate, magnesium acetylacetonate, strontium acetylacetonate, barium acetylacetonate, cobalt acetylacetonate, acetyl Nickel acetone, iron acetylacetonate, titanium acetylacetonate, manganese acetylacetonate, potassium acetylacetonate, zirconium acetylacetonate, lithium acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, titanium acetylacetonate, vanadyl acetylacetonate, strontium acetylacetonate
  • the material of the acetylacetonate shell is selected from the group consisting of zinc acetylacetonate, cadmium acetylacetonate, mercury acetylacetonate, beryllium acetylacetonate, calcium acetylacetonate, magnesium acetylacetonate, strontium acetylacetonate, and barium acetylacetonate. At least one.
  • a material of the acylacetone shell of the acetylacetonate shell is selected from at least one of gallium acetylacetonate, indium acetylacetonate, and aluminum acetylacetonate.
  • the first temperature condition is 120-250 ° C.
  • the heating time under the first temperature condition is 30-60 minutes.
  • the method further includes the step of adding a group II cation precursor and a group VI anion precursor to A shell layer is grown in a group III-V quantum dot core solution on which an acetylacetonate shell layer is formed on the surface, and a group II-VI semiconductor shell layer is formed on the surface of the acetylacetonate shell layer.
  • the group II cation precursor is selected from the group consisting of cadmium oleate, cadmium butyrate, cadmium n-octoate, cadmium hexanoate, cadmium octoate, cadmium dodecanoate, cadmium myristate, cadmium palmitate, Cadmium stearate, mercury oleate, mercury butyrate, mercury n-caprylate, mercury hexanoate, mercury octoate, mercury dodecanoate, mercury myristate, mercury palmitate, mercury stearate, zinc oleate, butylene Zinc acid, zinc n-octoate, zinc hexanoate, zinc octoate, zinc dodecanoate, zinc myristate, zinc palmitate, zinc stearate, magnesium oleate, magnesium butyrate, magnesium orthoate, hexanoate At least one of magnesium, magnesium octoate, magnesium
  • the Group VI anion precursor is selected from the group consisting of thiol, octyl mercaptan, thiocaptan, dodecyl mercaptan, cetyl mercaptan, mercaptopropylsilane, and trioctylphosphine sulfide.
  • the second temperature condition is 260-320 ° C.
  • the beneficial effect of the quantum dots provided in the embodiments of the present application is that in the quantum dots, the surface of the core of the III-V quantum dots is coated with a layer of acetylacetonate shell.
  • the acetylacetonate anion in the acetylacetonate shell has Smaller radial dimension and more coordination points, so that it can better bind to the surface of group III-V quantum dots to a certain extent, and the metal cations in the acetylacetonate shell can not only passivate III-V
  • the surface of a family of quantum dot cores can also act as a precursor for the shell or for doping the shell.
  • the surface of the III-V quantum dot core can be passivated, which not only makes the quantum dots more stable, the size distribution becomes uniform, but also has better
  • the dispersibility can significantly narrow the peak width, and at the same time, it is very conducive to the growth of thick shell layers to further improve the luminous efficiency of the quantum dots, which is of great significance to the use and development of III-V quantum dots.
  • the method for preparing a quantum dot has the beneficial effect that in the preparation method, a metal salt of acetylacetone is added to a solution containing a quantum dot core, and heating is performed under a first temperature condition, so that the group III-V A layer of acetylacetone metal salt shell is formed on the surface of the quantum dot core.
  • the acetylacetone anion will have a smaller radial dimension and more coordination sites, which will interact with III-V.
  • the initial ligands on the surface of group QD cores such as carboxylic acid ligands are exchanged, which can reduce the carboxylic acid ligands on the surface of Group III-V quantum dot cores to a certain extent; on the other hand, metal cations in acetylacetone metal salts will adsorb On the surface of the III-V quantum dot core, this can not only passivate the surface of the quantum dot, but also act as a precursor for the shell layer or for doping metal in the shell layer.
  • the quantum dots finally produced by this preparation method not only make the quantum dots more stable and the size distribution uniform, but also have better dispersibility, which can significantly narrow the peak width, and at the same time, it is very conducive to the growth of thick shell layers and luminous efficiency. Get improved.
  • FIG. 1 is a schematic structural diagram of a quantum dot according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for preparing a quantum dot according to an embodiment of the present application.
  • the quantum dot includes a III-V quantum dot core and an acetylacetonate shell layer covering a surface of the III-V quantum dot core.
  • the surface of the III-V quantum dot core is coated with an acetylacetonate shell; the acetylacetonate anion in the acetylacetonate shell has a smaller radial dimension and More coordination points make the size distribution of the quantum dots uniform, so that they can be better bound to the core surface of the III-V quantum dots to a certain extent, and the metal cations in the acetylacetonate shell can not only passivate III
  • the surface of the -V quantum dot core can also act as a precursor for the shell or for doping the shell.
  • the surface of the III-V quantum dot core can be passivated, which not only makes the quantum dots more stable, the size distribution becomes uniform, but also has better
  • the dispersibility can significantly narrow the peak width, and at the same time, it is very conducive to the growth of thick shell layers to further improve the luminous efficiency of the quantum dots, which is of great significance to the use and development of III-V quantum dots.
  • the material of the acetylacetonate shell is selected from zinc acetylacetonate, cadmium acetylacetonate, mercury acetylacetonate, beryllium acetylacetonate, calcium acetylacetonate, magnesium acetylacetonate, strontium acetylacetonate, barium acetylacetonate, acetyl Cobalt acetone, nickel acetylacetonate, iron acetylacetonate, titanium acetylacetonate, manganese acetylacetonate, potassium acetylacetonate, zirconium acetylacetonate, lithium acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, titanium acetylacetonate, vanadyl acetylacetonate, acetyl At least one of strontium
  • the material of the acetylacetonate shell layer is selected from group II cation precursors such as zinc acetylacetonate, cadmium acetylacetonate, mercury acetylacetonate, beryllium acetylacetonate, calcium acetylacetonate, magnesium acetylacetonate, strontium acetylacetonate, and barium acetylacetonate, This can be used as a precursor for the growth of the II-VI semiconductor shell layer; or the material of the acetylacetonate shell layer is selected from group III cation precursors such as gallium acetylacetonate, indium acetylacetonate, and aluminum acetylacetonate, and other precursors. Can be used as a doping element for the growth of the shell layer.
  • group II cation precursors such as zinc acetylacetonate, cadmium acetylacetonate, mercury
  • the III-V quantum dot core is a conductor nanocrystalline core, and may be composed of an undoped III-V semiconductor, and the undoped III-V semiconductor is selected from GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb (and other binary compounds), GaNP, GaAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb (and other ternary compounds), GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, and other quaternary compounds At least one of InZnP
  • the group III-V quantum dot core contains a doping element, that is, the group III-V quantum dot core is composed of a group III-V semiconductor containing a doping element, and the group III-V containing a doping element i.e., semiconductor doping elements added to the above-described group III-V semiconductor material, an element selected smaller than the effective ionic radius of Zn 2+ and the group IIA element is smaller than the effective ionic radius of Zn 2+ doping said group IIIA element At least one of.
  • the presence of the above-mentioned doping elements can provide volume in the III-V quantum dot core, but it will not significantly change its own band gap, which will help reduce the occurrence of aging and thus help stabilize the growth of the core.
  • the group IIA element includes Be, Mg, Ga, and the like; the group IIIA element includes B, Al, Ga, In, and the like.
  • the molar ratio of the doping element to the cation precursor in the III-V quantum dot core is 0.001 to 5: 1, and specifically, the molar ratio is 0.01 to 2: 1.
  • the quantum dot further includes a II-VI semiconductor shell layer coated on the surface of the acetylacetonate shell layer.
  • the existence of the acetylacetonate shell layer can be more conducive to the existence of a thick II-VI semiconductor shell layer, thereby increasing the particle size of the quantum dot particles, helping to enhance the quantum confinement effect, and thus greatly improving the quantum dots. Luminous efficiency.
  • the material of the II-VI semiconductor shell layer is selected from the group consisting of CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS (such as binary compounds), CdSeS, CdSeTe , CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgC, ZnTed, SeZnTe, etc.
  • the thickness of the II-VI semiconductor shell layer is 3-5 nm.
  • an embodiment of the present application also provides a method for preparing a quantum dot. As shown in FIG. 2, the method includes the following steps:
  • a metal salt of acetylacetone is added to a solution containing a quantum dot core, and heating is performed under a first temperature condition, so that a surface of a group III-V quantum dot core is formed.
  • the acetylacetone anion will be initially coordinated with the III-V quantum dot core surface Exchange of ligands such as carboxylic acid ligands can reduce the carboxylic acid ligands on the surface of III-V quantum dot cores to a certain extent; on the other hand, metal cations in acetylacetone metal salts will be adsorbed on the III-V quantum dot cores Surface, which can not only passivate the surface of the quantum dots, but also serve as a precursor for the shell or for doping the shell.
  • the preparation method is simple and effective, and the resulting quantum dots not only make the quantum dots more stable and uniform in size distribution, but also have better dispersibility, can significantly narrow the peak width, and are very beneficial to thick shell layers. Growth, and luminous efficiency is improved.
  • III-V quantum dots are prepared by combining non-coordinating solvents and fatty acids. Compared with II-VI quantum dots, the binding energy between In-O bonds is double the binding energy between Cd-O bonds. On the order of magnitude; under high temperature conditions, carboxylic acid ligands will bind tightly to the surface of III-V quantum dots, causing a large number of dense carboxylic acid ligands on the surface, which is not conducive to the uniform growth of subsequent shells, especially It is the growth of thick shells.
  • a shell layer of a metal salt of acetylacetone is prepared on the surface of the core of the III-V quantum dot, the growth of a thick shell layer can be achieved.
  • the acetylacetonate is selected from zinc acetylacetonate, cadmium acetylacetonate, mercury acetylacetonate, beryllium acetylacetonate, calcium acetylacetonate, magnesium acetylacetonate, strontium acetylacetonate, barium acetylacetonate, and acetylacetone.
  • the material of the III-V quantum dot core is selected from an undoped III-V semiconductor or a III-V semiconductor containing a doping element.
  • the III-V quantum dot core is composed of an undoped III-V semiconductor material, it can be prepared by a conventional method; when the III-V quantum dot core is composed of a III-V semiconductor material containing a doping element, In the process of preparing the III-V quantum dot core, the doping of the dopant element precursor into the cation precursor can be achieved.
  • Doping elements include Be, Mg, Ga, etc. of group IIA elements, and B, Al, Ga, In, etc. of group IIIA elements.
  • Doping element precursors include C6 ⁇ C20 carboxylates, boranes, triethylboranes, or combinations thereof, and specifically include magnesium oleate, magnesium octoate, magnesium dodecanoate, magnesium myristate, and hexadecane
  • the acetylacetonate salt is added to the solution for vacuum treatment, and then heated under the first temperature condition.
  • Vacuum treatment can remove the gas in the reaction and improve the quality of quantum dots. Specifically, the best effect is achieved by vacuum treatment at 80 ⁇ 120 °C for 1 ⁇ 2h.
  • the heating temperature under the first temperature condition is 80-300 ° C, specifically 120-250 ° C; and the heating time under the first temperature condition is 10min-24 h, specifically 30-60min.
  • Heating under the first temperature condition is to form an acetylacetonate shell on the surface of the III-V quantum dot core. Within this temperature and time range, the acetylacetonate can better form on the surface of the III-V quantum dot core.
  • Shell of acetylacetonate Specifically, under an inert atmosphere, an acetylacetonate shell layer is formed on the surface of the group III-V quantum dot core.
  • the method further includes the step of adding a group II cation precursor and a group VI anion precursor to A shell layer is grown in a group III-V quantum dot core solution on which an acetylacetonate shell layer is formed on the surface, and a group II-VI semiconductor shell layer is formed on the surface of the acetylacetonate shell layer.
  • the existence of the acetylacetonate shell layer can passivate the surface of the quantum dots. It can also act as a precursor for the shell layer or for doping metal in the shell layer, which helps to enhance the quantum confinement effect and make the quantum dots more stable.
  • the size distribution becomes uniform, and it has better dispersibility, which can significantly narrow the peak width, and at the same time is very conducive to the growth of thick shell layers, and the luminous efficiency is improved.
  • the Group II cation precursor is selected from the group consisting of cadmium oleate, cadmium butyrate, cadmium n-octoate, cadmium hexanoate, cadmium octoate, cadmium dodecanoate, cadmium myristate, cadmium palmitate, Cadmium stearate, mercury oleate, mercury butyrate, mercury n-caprylate, mercury hexanoate, mercury octoate, mercury dodecanoate, mercury myristate, mercury palmitate, mercury stearate, zinc oleate, butylene Zinc acid, zinc n-octoate, zinc hexanoate, zinc octoate, zinc dodecanoate, zinc myristate, zinc palmitate, zinc stearate, magnesium oleate, magnesium butyrate, magnesium orthoate, hexanoate At least one of magnesium, magnesium octoate, magnesium
  • the second temperature condition is 250 ⁇ 350 ° C, specifically 260-320 ° C; the time for forming the II-VI semiconductor shell layer on the surface of the acetylacetonate shell layer is 10 ⁇ 240 min, specifically 20-60min.
  • the Group II cation precursor and the Group VI anion precursor can better grow the Group II-VI semiconductor shell layer on the surface of the acetylacetonate shell layer.
  • the product can be dissolved, centrifuged and precipitated, and dried under vacuum for 12-24 hours.
  • the method for preparing InP / ZnSe / ZnS core-shell quantum dots includes the following steps:
  • the method for preparing InP / ZnSeS core-shell quantum dots includes the following steps:
  • the temperature was further increased to 300 ° C, and 4.8 ml of a 0.5 M zinc oleate precursor was added to the reaction system. And then 2.3 ml of 1 M selenium-trioctylphosphine sulfide and 1 ml of dodecyl mercaptan were simultaneously injected into the reaction system, and the reaction was carried out for 20 mins. After the reaction is completed, the product is repeatedly dissolved, precipitated and centrifuged through chloroform and acetone to obtain InP / ZnSeS core-shell quantum dots.
  • the method for preparing InP / ZnSe / ZnS core-shell quantum dots includes the following steps:
  • the method for preparing InP / ZnSeS core-shell quantum dots includes the following steps:
  • the temperature was further increased to 300 ° C, and 4.8 ml of a 0.5 M zinc oleate precursor was added to the reaction system. And then 2.3 ml of 1 M selenium-trioctylphosphine sulfide and 1 ml of dodecyl mercaptan were simultaneously injected into the reaction system, and the reaction was carried out for 20 mins. After the reaction is completed, the product is repeatedly dissolved, precipitated and centrifuged through chloroform and acetone to obtain InP / ZnSeS core-shell quantum dots.
  • the method for preparing InP / ZnSe / ZnS core-shell quantum dots includes the following steps:
  • the method for preparing InP / ZnSeS core-shell quantum dots includes the following steps:
  • the temperature was further increased to 300 ° C, and 4.8 ml of a 0.5 M zinc oleate precursor was added to the reaction system. And then 2.3 ml of 1 M selenium-trioctylphosphine sulfide and 1 ml of dodecyl mercaptan were simultaneously injected into the reaction system, and the reaction was carried out for 20 mins. After the reaction is completed, the product is repeatedly dissolved, precipitated and centrifuged through chloroform and acetone to obtain InP / ZnSeS core-shell quantum dots.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种量子点及其制备方法,该量子点包括III-V族量子点核和包覆在所述III-V族量子点核表面的乙酰丙酮盐壳层。该量子点通过在III-V族量子点核的表面引入一层乙酰丙酮盐壳层,可以钝化III-V族量子点核表面,不仅使量子点更加稳定、尺寸分布变得均匀,而且具有更好的分散性,可显著收窄峰宽,同时非常有利于厚外壳层的生长,以进一步提高量子点的发光效率,对III-V族量子点的使用和发展具有极为重要的意义。

Description

量子点及其制备方法
本申请要求于2018年09月30日在中国专利局提交的、申请号为2018111565812、发明名称为“量子点及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及纳米材料领域,具体涉及一种量子点及其制备方法。
背景技术
量子点是一种粒径小于或接近于其波尔半径的无机半导体发光纳米晶。由于其特有的量子限域效应,量子点具有优良的发光性能,比如:粒径可控、半峰宽窄、发光峰可调,发光效率高、光温度性强等优点,在照明、显示、太阳能转换等领域具有广泛的应用。
目前,量子点技术的研究对象主要为II-VI族量子点(典型的材料如:CdS和CdSe等),其制备方法成熟,发光性能优异。然而,上述材料含有重金属Cd,该元素的存在不仅对环境具有较大的毒害,且对人体具有不可逆的危害。因此,发展一种性能优异的无Cd量子点材料成为了现阶段的研究重点。
InP作为典型的III-V族元素无Cd量子点,其能带间隙为1.36 eV,波尔半径为11 nm,通过调控其粒径的大小可以实现蓝光区(~480 nm)到近红外区(~750 nm)的发光。InP核的发光效率通常较低,仅为~1%。为了提高其发光效率和稳定性,通常需要在其外面包覆一层或多层具有宽带隙的半导体材料,如ZnSe和ZnS等以构建一种type-I型核壳结构。然而,由于InP量子点(a=0.5869 nm)与壳层材料ZnSe(a=0.5668 nm)和ZnS(a=0.5410 nm)的晶格参数存在较大的晶格不匹配,导致壳层材料很难完整的包覆在InP表面。通常,所制备的核壳结构量子点的壳层的厚度通常小于2 nm。一方面,由于薄壳层不利于激子的完美束缚,容易造成电子或空穴波函数离域至壳层中;另一方面,由于InP量子点的波尔半径较大,增大颗粒的粒径尺寸有助于增强量子限域效应,从而大大提高量子点发光效率。
因此,相关技术有待改进和发展。
技术问题
本申请实施例的目的之一在于:提供一种量子点及其制备方法,旨在解决现有III-V族量子点尺寸不稳定,发光效率低的技术问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种量子点,包括III-V族量子点核和包覆在所述III-V族量子点核表面的乙酰丙酮盐壳层。
在一个实施例中,所述乙酰丙酮盐壳层的材料选自乙酰丙酮锌、乙酰丙酮镉、乙酰丙酮汞、乙酰丙酮铍、乙酰丙酮钙、乙酰丙酮镁、乙酰丙酮锶、乙酰丙酮钡、乙酰丙酮钴、乙酰丙酮镍、乙酰丙酮铁、乙酰丙酮钛、乙酰丙酮锰、乙酰丙酮钾、乙酰丙酮锆、乙酰丙酮锂、乙酰丙酮钴、乙酰丙酮铜、乙酰丙酮氧钛、乙酰丙酮氧钒、乙酰丙酮锶、乙酰丙酮钍、乙酰丙酮亚铁、乙酰丙酮锆、乙酰丙酮铪、乙酰丙酮镓、乙酰丙酮铟和乙酰丙酮铝中的至少一种。
在一个实施例中,所述乙酰丙酮盐壳层的材料选自乙酰丙酮锌、乙酰丙酮镉、乙酰丙酮汞、乙酰丙酮铍、乙酰丙酮钙、乙酰丙酮镁、乙酰丙酮锶、乙酰丙酮钡中的至少一种。
在一个实施例中,所述乙酰丙酮盐壳层的酰丙酮盐壳层的材料选自乙酰丙酮镓、乙酰丙酮铟和乙酰丙酮铝中的至少一种。
在一个实施例中,所述III-V族量子点核的材料选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb和InZnP中的一种。
在一个实施例中,所述III-V族量子点核中含有掺杂元素,所述掺杂元素选自比Zn 2+的有效离子半径小的IIA族元素和比Zn 2+的有效离子半径小的IIIA族元素中的至少一种。
在一个实施例中,所述比Zn 2+的有效离子半径小的IIA族元素选自Be、Mg、Ga中的至少一种;和/或,
所述比Zn 2+的有效离子半径小的IIIA族元素选自B、Al、Ga、In中的至少一种。
在一个实施例中,所述量子点还包括包覆在所述乙酰丙酮盐壳层表面的II-VI族半导体外壳层。
在一个实施例中,所述II-VI族半导体外壳层的材料选自CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、MgSe、MgS、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、HgZnS、HgZnSe、HgZnTe、MgZnSe、MgZnS、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe和HgZnSTe中的至少一种。
在一个实施例中,所述II-VI族半导体外壳层的厚度为3-5nm。
第二方面,提供了一种量子点的制备方法,包括如下步骤:
提供乙酰丙酮盐和含有量子点核的溶液,所述量子点核为含有掺杂元素的III-V族量子点核或者不含有掺杂元素的III-V族量子点核;
将所述乙酰丙酮盐加入所述含有量子点核的所述溶液中,在第一温度条件下加热,在所述III-V族量子点核表面形成乙酰丙酮盐壳层,得到所述量子点。
在一个实施例中,所述乙酰丙酮盐选自乙酰丙酮锌、乙酰丙酮镉、乙酰丙酮汞、乙酰丙酮铍、乙酰丙酮钙、乙酰丙酮镁、乙酰丙酮锶、乙酰丙酮钡、乙酰丙酮钴、乙酰丙酮镍、乙酰丙酮铁、乙酰丙酮钛、乙酰丙酮锰、乙酰丙酮钾、乙酰丙酮锆、乙酰丙酮锂、乙酰丙酮钴、乙酰丙酮铜、乙酰丙酮氧钛、乙酰丙酮氧钒、乙酰丙酮锶、乙酰丙酮钍、乙酰丙酮亚铁、乙酰丙酮锆、乙酰丙酮铪、乙酰丙酮镓、乙酰丙酮铟、乙酰丙酮铝中的至少一种。
在一个实施例中,所述乙酰丙酮盐壳层的材料选自乙酰丙酮锌、乙酰丙酮镉、乙酰丙酮汞、乙酰丙酮铍、乙酰丙酮钙、乙酰丙酮镁、乙酰丙酮锶、乙酰丙酮钡中的至少一种。
在一个实施例中,所述乙酰丙酮盐壳层的酰丙酮盐壳层的材料选自乙酰丙酮镓、乙酰丙酮铟和乙酰丙酮铝中的至少一种。
在一个实施例中,所述第一温度条件为120-250℃。
在一个实施例中,所述第一温度条件下加热的时间为30-60min。
在一个实施例中,在所述III-V族量子点核表面形成乙酰丙酮盐壳层之后,还包括步骤:在第二温度条件下,将II族阳离子前驱体和VI族阴离子前驱体加入含有表面形成乙酰丙酮盐壳层的III-V族量子点核溶液中进行外壳层生长,在所述乙酰丙酮盐壳层表面形成II-VI族半导体外壳层。
在一个实施例中,所述II族阳离子前驱体选自油酸镉、丁酸镉、正葵酸镉、己酸镉、辛酸镉、十二烷酸镉、肉豆蔻酸镉、棕榈酸镉、硬脂酸镉、油酸汞、丁酸汞、正葵酸汞、己酸汞、辛酸汞、十二烷酸汞、肉豆蔻酸汞、棕榈酸汞、硬脂酸汞、油酸锌、丁酸锌、正葵酸锌、己酸锌、辛酸锌、十二烷酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、油酸镁、丁酸镁、正葵酸镁、己酸镁、辛酸镁、十二烷酸镁、肉豆蔻酸镁、棕榈酸镁和硬脂酸镁中的至少一种。
在一个实施例中,所述VI族阴离子前驱体选自己硫醇、辛硫醇、葵硫醇、十二烷基硫醇、十六烷基硫醇、巯基丙基硅烷、硫化三辛基膦、硫化三丁基膦、硫化三苯基膦、硫化三辛基胺、三(三甲基甲硅烷基)硫化物、硫化铵、硫化钠、硒化三辛基膦、硒化三丁基膦、硒化三苯基膦、碲化三丁基膦、碲化三辛基膦和碲化三苯基膦中的至少一种。
在一个实施例中,所述第二温度条件为260-320℃。
有益效果
本申请实施例提供的量子点的有益效果在于:该量子点中,在III-V族量子点核表面包覆一层乙酰丙酮盐壳层,乙酰丙酮盐壳层中的乙酰丙酮根阴离子由于具有更小的径向维度和更多的配位点,从而一定程度上可以更好地结合在III-V族量子点核表面,而该乙酰丙酮盐壳层中金属阳离子不仅可以钝化III-V族量子点核表面,同时也可以充当壳层用的前驱体或用于壳层掺杂金属用。因此,通过在III-V族量子点核的表面引入该乙酰丙酮盐壳层,可以钝化III-V族量子点核表面,不仅使量子点更加稳定、尺寸分布变得均匀,而且具有更好的分散性,可显著收窄峰宽,同时非常有利于厚外壳层的生长,以进一步提高量子点的发光效率,对III-V族量子点的使用和发展具有极为重要的意义。
本申请实施例提供的量子点的制备方法的有益效果在于:该制备方法中,在含有量子点核的溶液中加入乙酰丙酮金属盐,进行第一温度条件下的加热,使在III-V族量子点核的表面形成了一层乙酰丙酮金属盐壳层,在该加热的过程中,一方面,乙酰丙酮阴离子由于具有更小的径向维度和更多的配位点,会与III-V族量子点核表面的初始配体如羧酸配体发生交换,从而一定程度上可以减少III-V族量子点核表面的羧酸配体;另一方面,乙酰丙酮金属盐中金属阳离子会吸附在III-V族量子点核表面,这样不仅可以钝化量子点表面,同时也可以充当壳层用的前驱体或用于壳层掺杂金属用。该制备方法最终制得的量子点,不仅使量子点更加稳定、尺寸分布变得均匀,而且具有更好的分散性,可显著收窄峰宽,同时非常有利于厚外壳层的生长,发光效率得到提高。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请一实施例提供的量子点的结构示意图;
图2是本申请一实施例提供的量子点的制备方法的流程示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请一些实施例提供一种量子点,如图1所示,包括III-V族量子点核和包覆在所述III-V族量子点核表面的乙酰丙酮盐壳层。
本申请实施例提供的量子点中,在III-V族量子点核表面包覆一层乙酰丙酮盐壳层;该乙酰丙酮盐壳层中的乙酰丙酮根阴离子由于具有更小的径向维度和更多的配位点,使量子点尺寸分布变得均匀,从而一定程度上可以更好地结合在III-V族量子点核表面,而该乙酰丙酮盐壳层中金属阳离子不仅可以钝化III-V族量子点核表面,同时也可以充当壳层用的前驱体或用于壳层掺杂金属用。因此,通过在III-V族量子点核的表面引入该乙酰丙酮盐壳层,可以钝化III-V族量子点核表面,不仅使量子点更加稳定、尺寸分布变得均匀,而且具有更好的分散性,可显著收窄峰宽,同时非常有利于厚外壳层的生长,以进一步提高量子点的发光效率,对III-V族量子点的使用和发展具有极为重要的意义。
在一实施例中,所述乙酰丙酮盐壳层的材料选自乙酰丙酮锌、乙酰丙酮镉、乙酰丙酮汞、乙酰丙酮铍、乙酰丙酮钙、乙酰丙酮镁、乙酰丙酮锶、乙酰丙酮钡、乙酰丙酮钴、乙酰丙酮镍、乙酰丙酮铁、乙酰丙酮钛、乙酰丙酮锰、乙酰丙酮钾、乙酰丙酮锆、乙酰丙酮锂、乙酰丙酮钴、乙酰丙酮铜、乙酰丙酮氧钛、乙酰丙酮氧钒、乙酰丙酮锶、乙酰丙酮钍、乙酰丙酮亚铁、乙酰丙酮锆、乙酰丙酮铪、乙酰丙酮镓、乙酰丙酮铟和乙酰丙酮铝中的至少一种。具体地,乙酰丙酮盐壳层的材料选自乙酰丙酮锌、乙酰丙酮镉、乙酰丙酮汞、乙酰丙酮铍、乙酰丙酮钙、乙酰丙酮镁、乙酰丙酮锶、乙酰丙酮钡等II族阳离子前驱体,这样可以成为II-VI族半导体外壳层生长用的前驱体;或者,乙酰丙酮盐壳层的材料选自乙酰丙酮镓、乙酰丙酮铟和乙酰丙酮铝等III族阳离子前驱体以及其他前驱体,这样可以成为外壳层生长用的掺杂元素。
在一实施例中,所述III-V族量子点核即为导体纳米晶核,可以是由未掺杂的III-V族半导体组成,该未掺杂的III-V族半导体选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb(等二元化合物)、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb(等三元化合物)、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb(等四元化合物)和InZnP中的至少一种;所述III-V族量子点核可包括II族金属但不包括镉,例如InZnP。或者,所述III-V族量子点核中含有掺杂元素,即所述III-V族量子点核由含有掺杂元素的III-V族半导体组成,该含有掺杂元素的III-V族半导体即在上述III-V族半导体材料中加入掺杂元素,所述掺杂元素选自比Zn 2+的有效离子半径小的IIA族元素和比Zn 2+的有效离子半径小的IIIA族元素中的至少一种。上述掺杂元素的存在,可以在III-V族量子点核中提供体积,但不会显著改变其自身带隙,这样有利于减少熟化的发生,从而有助于稳定核的生长。具体地,IIA族元素包括Be、Mg、Ga等;IIIA族元素包括B、Al、Ga、In等。在一实施例中,掺杂元素与III-V族量子点核中阳离子前驱体的摩尔比为0.001~5:1,具体地,摩尔比为0.01~2:1。
在一实施例中,如图1所示,所述量子点还包括包覆在所述乙酰丙酮盐壳层表面的II-VI族半导体外壳层。因乙酰丙酮盐壳层的存在,可以更有利于厚的II-VI族半导体外壳层的存在,从而增大量子点颗粒的粒径尺寸,有助于增强量子限域效应,从而大大提高量子点发光效率。
在一实施例中,所述II-VI族半导体外壳层的材料选自CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、MgSe、MgS(等二元化合物)、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、HgZnS、HgZnSe、HgZnTe、MgZnSe、MgZnS、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe(等三元化合物)、HgZnTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe和HgZnSTe(等四元化合物)中的至少一种。在一实施例中,所述II-VI族半导体外壳层的厚度为3-5nm。
另一方面,本申请实施例还提供了一种量子点的制备方法,如图2所示,该制备方法包括如下步骤:
S01:提供乙酰丙酮盐和含有量子点核的溶液,所述量子点核为含有掺杂元素的III-V族量子点核或者不含有掺杂元素的III-V族量子点核;;
S02:将所述乙酰丙酮盐加入所述含有量子点核的溶液中,在第一温度条件下加热,在所述III-V族量子点核表面形成乙酰丙酮盐壳层,得到所述量子点。
本申请实施例提供的量子点的制备方法中,在含有量子点核的溶液中加入乙酰丙酮金属盐,进行第一温度条件下的加热,使在III-V族量子点核的表面形成了一层乙酰丙酮金属盐壳层,在该加热的过程中,一方面,乙酰丙酮阴离子由于具有更小的径向维度和更多的配位点,会与III-V族量子点核表面的初始配体如羧酸配体发生交换,从而一定程度上可以减少III-V族量子点核表面的羧酸配体;另一方面,乙酰丙酮金属盐中金属阳离子会吸附在III-V族量子点核表面,这样不仅可以钝化量子点表面,同时也可以充当壳层用的前驱体或用于壳层掺杂金属用。该制备方法工艺简单、有效,最终制得的量子点,不仅使量子点更加稳定、尺寸分布变得均匀,而且具有更好的分散性,可显著收窄峰宽,同时非常有利于厚外壳层的生长,发光效率得到提高。
目前,III-V族量子点通过非配位溶剂和脂肪酸的联用来制备,相比II-VI族量子点制备,In-O键间的结合能是Cd-O键间结合能的成倍数量级;在高温的条件下,羧酸配体会与III-V族量子点表面发生紧密结合,使得其表面存在大量的、致密的羧酸配体,这非常不利于后续壳层的均一生长,尤其是厚壳层的生长。而在本申请实施例中,因在III-V族量子点核表面制备一乙酰丙酮金属盐壳层,从而可以实现厚壳层的生长。
在一实施例中,上述步骤S01中:乙酰丙酮盐选自乙酰丙酮锌、乙酰丙酮镉、乙酰丙酮汞、乙酰丙酮铍、乙酰丙酮钙、乙酰丙酮镁、乙酰丙酮锶、乙酰丙酮钡、乙酰丙酮钴、乙酰丙酮镍、乙酰丙酮铁、乙酰丙酮钛、乙酰丙酮锰、乙酰丙酮钾、乙酰丙酮锆、乙酰丙酮锂、乙酰丙酮钴、乙酰丙酮铜、乙酰丙酮氧钛、乙酰丙酮氧钒、乙酰丙酮锶、乙酰丙酮钍、乙酰丙酮亚铁、乙酰丙酮锆、乙酰丙酮铪、乙酰丙酮镓、乙酰丙酮铟和乙酰丙酮铝中的至少一种。而所述III-V族量子点核的材料选自未掺杂的III-V族半导体或含有掺杂元素的III-V族半导体。当III-V族量子点核由未掺杂的III-V族半导体材料组成,采用常规方法制备即可;当III-V族量子点核由含有掺杂元素的III-V族半导体材料组成,则在制备III-V族量子点核的过程中,将掺杂元素前驱体混入到阳离子前驱体中,即可实现核内掺杂。掺杂元素包括IIA族元素的Be、Mg、Ga等,IIIA族元素的B、Al、Ga、In等。掺杂元素前驱体包括C6~C20的羧酸盐、硼烷、三乙基硼烷或其组合,具体包括油酸镁、辛酸镁、十二烷酸镁、十四烷酸镁、十六烷酸镁、硬脂酸钙、油酸钙、辛酸钙、十二烷酸钙、十四烷酸钙、十六烷酸钙、硬脂酸钙、油酸镓、辛酸镓、十二烷酸镓、十四烷酸镓、十六烷酸镓、硬脂酸镓等。
在一实施例中,将所述乙酰丙酮盐加入所述溶液中先进行真空处理,然后再在第一温度条件下加热。真空处理可使得反应体现中的气体去除,提高量子点质量。具体点地,在80~120℃的条件下真空处理1~2h,效果最佳。
在一实施例中,在上述步骤S02中,所述第一温度条件下加热的温度为80-300℃,具体为120-250℃;所述第一温度条件下加热的时间为10min-24 h,具体为30-60min。在第一温度条件下加热是为了在III-V族量子点核表面形成乙酰丙酮盐壳层,在该温度和时间范围内,乙酰丙酮盐可更好地在III-V族量子点核表面形成乙酰丙酮盐壳层。具体地,在惰性气氛下,在所述III-V族量子点核表面形成乙酰丙酮盐壳层。
在一实施例中,在所述III-V族量子点核表面形成乙酰丙酮盐壳层之后,还包括步骤:在第二温度条件下,将II族阳离子前驱体和VI族阴离子前驱体加入含有表面形成乙酰丙酮盐壳层的III-V族量子点核溶液中进行外壳层生长,在所述乙酰丙酮盐壳层表面形成II-VI族半导体外壳层。因乙酰丙酮盐壳层的存在,可以钝化量子点表面,同时也可以充当壳层用的前驱体或用于壳层掺杂金属用,有助于增强量子限域效应,使量子点更加稳定、尺寸分布变得均匀,而且具有更好的分散性,可显著收窄峰宽,同时非常有利于厚外壳层的生长,发光效率得到提高。
在一实施例中,所述II族阳离子前驱体选自油酸镉、丁酸镉、正葵酸镉、己酸镉、辛酸镉、十二烷酸镉、肉豆蔻酸镉、棕榈酸镉、硬脂酸镉、油酸汞、丁酸汞、正葵酸汞、己酸汞、辛酸汞、十二烷酸汞、肉豆蔻酸汞、棕榈酸汞、硬脂酸汞、油酸锌、丁酸锌、正葵酸锌、己酸锌、辛酸锌、十二烷酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、油酸镁、丁酸镁、正葵酸镁、己酸镁、辛酸镁、十二烷酸镁、肉豆蔻酸镁、棕榈酸镁和硬脂酸镁中的至少一种;所述VI族阴离子前驱体选自己硫醇、辛硫醇、葵硫醇、十二烷基硫醇、十六烷基硫醇、巯基丙基硅烷、硫化三辛基膦、硫化三丁基膦、硫化三苯基膦、硫化三辛基胺、三(三甲基甲硅烷基)硫化物、硫化铵、硫化钠、硒化三辛基膦、硒化三丁基膦、硒化三苯基膦、碲化三丁基膦、碲化三辛基膦和碲化三苯基膦中的至少一种。
在一实施例中,所述第二温度条件为250~350℃,具体为260-320℃;在所述乙酰丙酮盐壳层表面形成II-VI族半导体外壳层的时间为10~240 min,具体为20-60min。在该温度和时间范围内,II族阳离子前驱体和VI族阴离子前驱体可更好地在乙酰丙酮盐壳层表面生长II-VI族半导体外壳层。
最后,待反应结束后,产物通过溶解、离心和沉淀,置于真空下干燥12~24h即可。
本申请先后进行过多次试验,现举一部分试验结果作为参考对申请进行进一步详细描述,下面结合具体实施例进行详细说明。
实施例1
InP/ZnSe/ZnS核壳量子点的制备方法,包括如下步骤:
a.将0.12 mmol 醋酸铟,0.06 mmol 醋酸锌,0.36 mmol 十六烷酸,8 ml 十八烯,进行混合,升温至150℃,并于该温度下进行真空处理30 mins。在氩气气氛下,将溶液继续加热至300℃,将0.06 mmol三(三甲基硅基)膦的和1 ml 十八烯组成的混合液一次性快速注入到上述反应体系中,并于300℃下反应10 mins,得到InP量子点核。
b.待成核反应结束后,将1.5 mmol 乙酰丙酮锌的四氢呋喃溶液加入至反应体系中,然后在真空、80℃下处理60 mins。继续升温至250℃,反应30 mins,即可得到乙酰丙酮锌包覆的InP量子点。
c.继续升温至300℃,将2.3 ml 的1 M的硒-硫化三辛基膦快速注入到反应体系中。20 mins后,将4.8 ml的0.5 M的油酸锌前驱物加入到反应体系中。待反应20mins后,将1ml十二硫醇注入到反应体系中,反应20 mins。待反应结束后,将产物通过氯仿和丙酮进行反复的溶解、沉淀与离心,即可得到InP/ZnSe/ZnS核壳量子点。
实施例2
InP/ZnSeS核壳量子点的制备方法,包括如下步骤:
a.将0.12 mmol 醋酸铟,0.06 mmol 醋酸锌,0.36 mmol 十六烷酸,8 ml 十八烯,进行混合,升温至150℃,并于该温度下进行真空处理30 mins。在氩气气氛下,将溶液继续加热至300℃,将0.06 mmol三(三甲基硅基)膦的和1 ml 十八烯组成的混合液一次性快速注入到上述反应体系中,并于300℃下反应10 mins,得到InP量子点核。
b.待成核反应结束后,将1.5 mmol 乙酰丙酮锌的四氢呋喃溶液加入至反应体系中,然后在真空、80℃下处理60 mins。继续升温至250℃,反应30 mins,即可得到乙酰丙酮锌包覆的InP量子点。
c.继续升温至300℃,将4.8 ml的0.5 M的油酸锌前驱物加入到反应体系中。然后,将2.3 ml 的1 M的硒-硫化三辛基膦和1ml十二硫醇注入到反应体系中同步注入到反应体系中,反应20mins。待反应结束后,将产物通过氯仿和丙酮进行反复的溶解、沉淀与离心,即可得到InP/ZnSeS核壳量子点。
实施例3
InP/ZnSe/ZnS核壳量子点的制备方法,包括如下步骤:
a.将0.12 mmol 醋酸铟,0.06 mmol 醋酸锌,0.36 mmol 十六烷酸,8 ml 十八烯,进行混合,升温至150℃,并于该温度下进行真空处理30 mins。在氩气气氛下,将溶液继续加热至300℃,将0.06 mmol三(三甲基硅基)膦的和1 ml 十八烯组成的混合液一次性快速注入到上述反应体系中,并于300℃下反应10 mins,得到InP量子点核。
b.待成核反应结束后,将1.5 mmol 乙酰丙酮铝的四氢呋喃溶液加入至反应体系中,然后在真空、80℃下处理60 mins。继续升温至250℃,反应30 mins,即可得到乙酰丙酮锌包覆的InP量子点。
c.继续升温至300℃,将2.3 ml 的1 M的硒-硫化三辛基膦快速注入到反应体系中。20 mins后,将4.8 ml的0.5 M的油酸锌前驱物加入到反应体系中。待反应20mins后,将1ml十二硫醇注入到反应体系中,反应20 mins。待反应结束后,将产物通过氯仿和丙酮进行反复的溶解、沉淀与离心,即可得到InP/ZnSe/ZnS核壳量子点。
实施例4
InP/ZnSeS核壳量子点的制备方法,包括如下步骤:
a.将0.12 mmol 醋酸铟,0.06 mmol 醋酸锌,0.36 mmol 十六烷酸,8 ml 十八烯,进行混合,升温至150℃,并于该温度下进行真空处理30 mins。在氩气气氛下,将溶液继续加热至300℃,将0.06 mmol三(三甲基硅基)膦的和1 ml 十八烯组成的混合液一次性快速注入到上述反应体系中,并于300℃下反应10 mins,得到InP量子点核。
b.待成核反应结束后,将1.5 mmol 乙酰丙酮铝的四氢呋喃溶液加入至反应体系中,然后在真空、80℃下处理60 mins。继续升温至250℃,反应30 mins,即可得到乙酰丙酮锌包覆的InP量子点。
c.继续升温至300℃,将4.8 ml的0.5 M的油酸锌前驱物加入到反应体系中。然后,将2.3 ml 的1 M的硒-硫化三辛基膦和1ml十二硫醇注入到反应体系中同步注入到反应体系中,反应20mins。待反应结束后,将产物通过氯仿和丙酮进行反复的溶解、沉淀与离心,即可得到InP/ZnSeS核壳量子点。
实施例5
InP/ZnSe/ZnS核壳量子点的制备方法,包括如下步骤:
a.将0.12 mmol 醋酸铟,0.06 mmol 醋酸锌,0.36 mmol 十六烷酸,8 ml 十八烯,进行混合,升温至150℃,并于该温度下进行真空处理30 mins。在氩气气氛下,将溶液继续加热至300℃,将0.06 mmol三(三甲基硅基)膦的和1 ml 十八烯组成的混合液一次性快速注入到上述反应体系中,并于300℃下反应10 mins,得到InP量子点核。
b.待成核反应结束后,将1.5 mmol 乙酰丙酮钙的四氢呋喃溶液加入至反应体系中,然后在真空、80℃下处理60 mins。继续升温至250℃,反应30 mins,即可得到乙酰丙酮锌包覆的InP量子点。
c.继续升温至300℃,将2.3 ml 的1 M的硒-硫化三辛基膦快速注入到反应体系中。20 mins后,将4.8 ml的0.5 M的油酸锌前驱物加入到反应体系中。待反应20mins后,将1ml十二硫醇注入到反应体系中,反应20 mins。待反应结束后,将产物通过氯仿和丙酮进行反复的溶解、沉淀与离心,即可得到InP/ZnSe/ZnS核壳量子点。
实施例6
InP/ZnSeS核壳量子点的制备方法,包括如下步骤:
a.将0.12 mmol 醋酸铟,0.06 mmol 醋酸锌,0.36 mmol 十六烷酸,8 ml 十八烯,进行混合,升温至150℃,并于该温度下进行真空处理30 mins。在氩气气氛下,将溶液继续加热至300℃,将0.06 mmol三(三甲基硅基)膦的和1 ml 十八烯组成的混合液一次性快速注入到上述反应体系中,并于300℃下反应10 mins,得到InP量子点核。
b.待成核反应结束后,将1.5 mmol 乙酰丙酮钙的四氢呋喃溶液加入至反应体系中,然后在真空、80℃下处理60 mins。继续升温至250℃,反应30 mins,即可得到乙酰丙酮锌包覆的InP量子点。
c.继续升温至300℃,将4.8 ml的0.5 M的油酸锌前驱物加入到反应体系中。然后,将2.3 ml 的1 M的硒-硫化三辛基膦和1ml十二硫醇注入到反应体系中同步注入到反应体系中,反应20mins。待反应结束后,将产物通过氯仿和丙酮进行反复的溶解、沉淀与离心,即可得到InP/ZnSeS核壳量子点。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (20)

  1. 一种量子点,其特征在于,包括III-V族量子点核和包覆在所述III-V族量子点核表面的乙酰丙酮盐壳层。
  2. 如权利要求1所述的量子点,其特征在于,所述乙酰丙酮盐壳层的材料选自乙酰丙酮锌、乙酰丙酮镉、乙酰丙酮汞、乙酰丙酮铍、乙酰丙酮钙、乙酰丙酮镁、乙酰丙酮锶、乙酰丙酮钡、乙酰丙酮钴、乙酰丙酮镍、乙酰丙酮铁、乙酰丙酮钛、乙酰丙酮锰、乙酰丙酮钾、乙酰丙酮锆、乙酰丙酮锂、乙酰丙酮钴、乙酰丙酮铜、乙酰丙酮氧钛、乙酰丙酮氧钒、乙酰丙酮锶、乙酰丙酮钍、乙酰丙酮亚铁、乙酰丙酮锆、乙酰丙酮铪、乙酰丙酮镓、乙酰丙酮铟和乙酰丙酮铝中的至少一种。
  3. 如权利要求2所述的量子点,其特征在于,所述乙酰丙酮盐壳层的材料选自乙酰丙酮锌、乙酰丙酮镉、乙酰丙酮汞、乙酰丙酮铍、乙酰丙酮钙、乙酰丙酮镁、乙酰丙酮锶、乙酰丙酮钡中的至少一种。
  4. 如权利要求2所述的量子点,其特征在于,所述乙酰丙酮盐壳层的酰丙酮盐壳层的材料选自乙酰丙酮镓、乙酰丙酮铟和乙酰丙酮铝中的至少一种。
  5. 如权利要求1所述的量子点,其特征在于,所述III-V族量子点核的材料选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb和InZnP中的一种。
  6. 如权利要求1所述的量子点,其特征在于,所述III-V族量子点核中含有掺杂元素,所述掺杂元素选自比Zn 2+的有效离子半径小的IIA族元素和比Zn 2+的有效离子半径小的IIIA族元素中的至少一种。
  7. 如权利要求6所述的量子点,其特征在于,所述比Zn 2+的有效离子半径小的IIA族元素选自Be、Mg、Ga中的至少一种;和/或,
    所述比Zn 2+的有效离子半径小的IIIA族元素选自B、Al、Ga、In中的至少一种。
  8. 如权利要求1的量子点,其特征在于,所述量子点还包括包覆在所述乙酰丙酮盐壳层表面的II-VI族半导体外壳层。
  9. 如权利要求8所述的量子点,其特征在于,所述II-VI族半导体外壳层的材料选自CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、MgSe、MgS、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、HgZnS、HgZnSe、HgZnTe、MgZnSe、MgZnS、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnTeS、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe和HgZnSTe中的至少一种。
  10. 如权利要求8所述的量子点,其特征在于,所述II-VI族半导体外壳层的厚度为3-5nm。
  11. 一种量子点的制备方法,其特征在于,包括如下步骤:
    提供乙酰丙酮盐和含有量子点核的溶液,所述量子点核为含有掺杂元素的III-V族量子点核或者不含有掺杂元素的III-V族量子点核;
    将所述乙酰丙酮盐加入所述含有量子点核的溶液中,在第一温度条件下加热,在所述III-V族量子点核表面形成乙酰丙酮盐壳层,得到所述量子点。
  12. 如权利要求11所述的制备方法,其特征在于,所述乙酰丙酮盐选自乙酰丙酮锌、乙酰丙酮镉、乙酰丙酮汞、乙酰丙酮铍、乙酰丙酮钙、乙酰丙酮镁、乙酰丙酮锶、乙酰丙酮钡、乙酰丙酮钴、乙酰丙酮镍、乙酰丙酮铁、乙酰丙酮钛、乙酰丙酮锰、乙酰丙酮钾、乙酰丙酮锆、乙酰丙酮锂、乙酰丙酮钴、乙酰丙酮铜、乙酰丙酮氧钛、乙酰丙酮氧钒、乙酰丙酮锶、乙酰丙酮钍、乙酰丙酮亚铁、乙酰丙酮锆、乙酰丙酮铪、乙酰丙酮镓、乙酰丙酮铟、乙酰丙酮铝中的至少一种。
  13. 如权利要求11所述的量子点,其特征在于,所述乙酰丙酮盐壳层的材料选自乙酰丙酮锌、乙酰丙酮镉、乙酰丙酮汞、乙酰丙酮铍、乙酰丙酮钙、乙酰丙酮镁、乙酰丙酮锶、乙酰丙酮钡中的至少一种。
  14. 如权利要求11所述的制备方法,其特征在于,所述乙酰丙酮盐壳层的酰丙酮盐壳层的材料选自乙酰丙酮镓、乙酰丙酮铟和乙酰丙酮铝中的至少一种。
  15. 如权利要求11所述的制备方法,其特征在于,所述第一温度条件为120-250℃。
  16. 如权利要求11所述的制备方法,其特征在于,所述第一温度条件下加热的时间为30-60min。
  17. 如权利要求11所述的制备方法,其特征在于,在所述III-V族量子点核表面形成乙酰丙酮盐壳层之后,还包括步骤:在第二温度条件下,将II族阳离子前驱体和VI族阴离子前驱体加入含有表面形成乙酰丙酮盐壳层的III-V族量子点核溶液中进行外壳层生长,在所述乙酰丙酮盐壳层表面形成II-VI族半导体外壳层。
  18. 如权利要求17所述的制备方法,其特征在于,所述II族阳离子前驱体选自油酸镉、丁酸镉、正葵酸镉、己酸镉、辛酸镉、十二烷酸镉、肉豆蔻酸镉、棕榈酸镉、硬脂酸镉、油酸汞、丁酸汞、正葵酸汞、己酸汞、辛酸汞、十二烷酸汞、肉豆蔻酸汞、棕榈酸汞、硬脂酸汞、油酸锌、丁酸锌、正葵酸锌、己酸锌、辛酸锌、十二烷酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、油酸镁、丁酸镁、正葵酸镁、己酸镁、辛酸镁、十二烷酸镁、肉豆蔻酸镁、棕榈酸镁和硬脂酸镁中的至少一种。
  19. 如权利要求17所述的制备方法,其特征在于,所述VI族阴离子前驱体选自己硫醇、辛硫醇、葵硫醇、十二烷基硫醇、十六烷基硫醇、巯基丙基硅烷、硫化三辛基膦、硫化三丁基膦、硫化三苯基膦、硫化三辛基胺、三(三甲基甲硅烷基)硫化物、硫化铵、硫化钠、硒化三辛基膦、硒化三丁基膦、硒化三苯基膦、碲化三丁基膦、碲化三辛基膦和碲化三苯基膦中的至少一种。
  20. 如权利要求17所述的制备方法,其特征在于,所述第二温度条件为260-320℃。
PCT/CN2019/103484 2018-09-30 2019-08-30 量子点及其制备方法 WO2020063250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811156581.2A CN110964504A (zh) 2018-09-30 2018-09-30 量子点及其制备方法
CN201811156581.2 2018-09-30

Publications (1)

Publication Number Publication Date
WO2020063250A1 true WO2020063250A1 (zh) 2020-04-02

Family

ID=69950295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103484 WO2020063250A1 (zh) 2018-09-30 2019-08-30 量子点及其制备方法

Country Status (2)

Country Link
CN (1) CN110964504A (zh)
WO (1) WO2020063250A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995997B (zh) * 2020-08-05 2022-03-08 深圳市华星光电半导体显示技术有限公司 光学薄膜的制备方法及光学薄膜
CN112592713B (zh) * 2020-12-22 2023-10-13 深圳扑浪创新科技有限公司 一种量子点材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045235A (zh) * 2012-12-18 2013-04-17 上海交通大学 乙酰丙酮酸稳定的Mn2+掺杂CdS荧光量子点的水相合成方法
CN105670631A (zh) * 2014-12-05 2016-06-15 上海交通大学 一种自钝化量子点及其制备方法
CN106010524A (zh) * 2016-05-24 2016-10-12 浙江大学 Iii-v族量子点、其制备方法及其应用
CN109935722A (zh) * 2017-12-18 2019-06-25 Tcl集团股份有限公司 一种qled器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101664180B1 (ko) * 2010-03-22 2016-10-12 삼성디스플레이 주식회사 양자점 제조 방법
KR102446858B1 (ko) * 2015-08-07 2022-09-23 삼성디스플레이 주식회사 양자점 제조 방법
KR101739751B1 (ko) * 2015-12-30 2017-05-26 주식회사 상보 합금-쉘 양자점 제조 방법, 합금-쉘 양자점 및 이를 포함하는 백라이트 유닛
CN110072969A (zh) * 2016-12-15 2019-07-30 默克专利股份有限公司 半导体发光纳米粒子
CN107338048B (zh) * 2017-06-29 2021-01-29 深圳天吉新创科技有限公司 InP/GaP/ZnS核壳量子点及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045235A (zh) * 2012-12-18 2013-04-17 上海交通大学 乙酰丙酮酸稳定的Mn2+掺杂CdS荧光量子点的水相合成方法
CN105670631A (zh) * 2014-12-05 2016-06-15 上海交通大学 一种自钝化量子点及其制备方法
CN106010524A (zh) * 2016-05-24 2016-10-12 浙江大学 Iii-v族量子点、其制备方法及其应用
CN109935722A (zh) * 2017-12-18 2019-06-25 Tcl集团股份有限公司 一种qled器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EUIDOCK, RYU ET AL.: "Step-Wise Synthesis of InP/ZnS Core-Shell Quantum Dots and the Role of Zinc Acetate", CHEMISTRY OF MATERIALS, vol. 21, no. 4, 23 January 2009 (2009-01-23), pages 573 - 575, XP008150537, DOI: 10.1021/cm803084p *
FU, XIN ET AL.: "A Highly Sensitive and Rapid Bacteria-Counting New Approach Based on CdSe/ZnS Core/Shell Quantum Dots", CHINESE JOURNAL OF SENSORS AND ACTUATORS, vol. 25, no. 6, 30 June 2012 (2012-06-30), pages 723 - 728 *

Also Published As

Publication number Publication date
CN110964504A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
JP5193425B2 (ja) 量子ドット蛍光体およびその製造方法
CN110964528B (zh) 量子点及其制备方法
US10472562B2 (en) Quantum dot-polymer micronized composite, production method thereof, and article and electronic device including the same
KR101874413B1 (ko) 무기 리간드를 갖는 양자점 및 그의 제조방법
JP6118825B2 (ja) 新規材料並びに高量子収率及び高安定性を有するナノ粒子のマトリックス中への分散方法
JP2015147726A (ja) ナノ結晶粒子及びその製造方法並びに素子
JP2006322001A (ja) コーティングされたナノ粒子およびそれを利用した電子素子
CN109468134B (zh) 量子点、制作方法、单光子源和qled
KR101668480B1 (ko) 양자점의 내화학성 부여 표면처리 방법 및 이에 의해 제조되는 양자점
KR20170007641A (ko) 표면개질된 코어/쉘 양자점 제조 방법
WO2020063250A1 (zh) 量子点及其制备方法
KR20150016436A (ko) 마그네슘-셀레나이드 나노 결정 합성 방법
KR20120053325A (ko) 신규한 리간드 치환법에 의한 고효율의 양자점의 합성 방법 및 합성된 양자점의 후처리 방법
US9925568B2 (en) Semiconductor device
TWI754394B (zh) 基於具有發光摻雜劑的多殼結構的量子點
KR20210033165A (ko) 양자점 나노입자 및 이의 제조방법
CN113853417B (zh) 基于梯度-多壳结构的量子点及其制备方法
US20230193122A1 (en) Method of preparing quantum dot, quantum dot, and electronic apparatus including the quantum dot
US20230028670A1 (en) Method of manufacturing multi-component semiconductor nanocrystal, multi-component semiconductor nanocrystal, and quantum dot including the same
KR20210089442A (ko) 양자점
KR20230011568A (ko) 양자점 복합 입자 및 그 제조방법
CN115820241A (zh) 量子点、量子点复合物及其制备方法、量子点制品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867533

Country of ref document: EP

Kind code of ref document: A1