WO2020062503A1 - 三甲基胂的制备方法 - Google Patents

三甲基胂的制备方法 Download PDF

Info

Publication number
WO2020062503A1
WO2020062503A1 PCT/CN2018/116433 CN2018116433W WO2020062503A1 WO 2020062503 A1 WO2020062503 A1 WO 2020062503A1 CN 2018116433 W CN2018116433 W CN 2018116433W WO 2020062503 A1 WO2020062503 A1 WO 2020062503A1
Authority
WO
WIPO (PCT)
Prior art keywords
trimethylphosphonium
organic solvent
preparation
methyl iodide
present
Prior art date
Application number
PCT/CN2018/116433
Other languages
English (en)
French (fr)
Inventor
宁红锋
赵青松
Original Assignee
深圳市永盛隆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市永盛隆科技有限公司 filed Critical 深圳市永盛隆科技有限公司
Publication of WO2020062503A1 publication Critical patent/WO2020062503A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G28/00Compounds of arsenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/66Arsenic compounds
    • C07F9/70Organo-arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/66Arsenic compounds
    • C07F9/70Organo-arsenic compounds
    • C07F9/72Aliphatic compounds

Definitions

  • the invention relates to the technical field of organic synthesis, in particular to a method for preparing trimethylphosphonium.
  • arsenic-containing semiconductors are produced using arsenane, which is highly toxic and gaseous, with a high risk of leakage and destructiveness.
  • Trimethylarsine is a liquid at room temperature, and its toxicity is much smaller than that of arsenane. The replacement of arsenane with methyl sulfonium will greatly reduce the safety risks and will be conducive to the long-term development of arsenic-containing semiconductors.
  • Trimethylarsine is an organic arsenic compound with the molecular formula (CH 3 ) 3 As). It has a melting point of -87.3 ° C and a boiling point of 51 ° C. It is liquid at normal temperature and has a garlic-like odor.
  • the traditional method for preparing trimethylphosphonium is to react arsenic trioxide with trimethylaluminum.
  • the amount of water is large, the reaction is incomplete, it is easy to generate a large amount of hazardous waste liquid, and the environment is greatly damaged.
  • the main purpose of the present invention is to provide a method for preparing trimethylphosphonium to solve the problems that the method for preparing trimethylphosphonium in the prior art is incomplete and the arsenic-containing waste liquid produced causes damage to the environment.
  • a method for preparing trimethylphosphonium includes the following steps: mixing a raw material including calcium arsenide and methyl iodide in a water content of less than 100 ppm in a vacuum environment, Trimethylamidine was obtained.
  • the raw material also includes an organic solvent that does not contain active hydrogen and has a boiling point of 40 to 80 ° C.
  • the water content of the organic solvent is less than 100 ppm, and the organic solvent does not contain air.
  • the preparation method includes the following steps: S1, mixing calcium arsenide and an organic solvent under a vacuum environment to obtain a mixed solution; S2, adding methyl iodide to the mixed solution and stirring, and making calcium arsenide and methyl iodide The reaction was performed at 20 to 80 ° C to obtain trimethylphosphonium.
  • the degree of vacuum in the vacuum environment in step S1 is 10-50 pa; preferably, the molar ratio of calcium arsenide to the organic solvent is 1: 5-10.
  • the molar ratio of calcium arsenide to methyl iodide is 1: 6.5-9; in step S2, methyl iodide is preferably added to the mixed solution at a temperature of 20-40 ° C; The reaction temperature is 20 to 50 ° C; the stirring rate is preferably 60 to 80 r / min.
  • the preparation method further includes the following steps: S3, condensing the trimethylphosphonium and the organic solvent, and preferably the condensation temperature is 0-20 ° C.
  • step S3 further includes a step of refluxing the condensed organic solvent and trimethylphosphonium.
  • the preparation method further includes: heating and recovering trimethylphosphonium at a temperature of 70 to 100 ° C.
  • the preparation method further includes: vacuum heating the organic solvent to evaporate the organic solvent, preferably the temperature of the vacuum heating is 70 to 100 ° C, and the degree of vacuum of the vacuum heating is 1 to 10 kpa.
  • Trimethylphosphonium is prepared by reacting calcium arsenide with methyl iodide.
  • the preparation process of trimethylphosphonium causes water in the trimethylphosphonium to be difficult to remove, and the present invention avoids the difficulty of water removal in purification, and solves the problem of water content in the trimethylphosphonium produced; and, the present invention
  • the problem of incomplete reaction of trimethylphosphonium in the trimethylphosphonium production process in the prior art can also be effectively solved.
  • the present invention adopts a specific organic solvent and adopts a distillation method to recycle the organic solvent, thereby greatly reducing the arsenic content. Generation of waste liquid. Therefore, adopting the above-mentioned preparation method provided by the present invention solves problems such as incomplete reaction of the traditional method and damage to the environment caused by waste liquid containing arsenic, and is beneficial to achieving large-scale production.
  • the present invention provides a method for preparing trimethylphosphonium, including the following steps: mixing raw materials including calcium arsenide and methyl iodide in a water content of less than 100 ppm and in a vacuum environment to obtain trimethyl Alas.
  • the preparation process of trimethylphosphonium causes water in the trimethylphosphonium to be difficult to remove, and the present invention avoids the difficulty of water removal in purification, and solves the problem of water content in the trimethylphosphonium produced; and, the present invention By adopting the reaction between calcium arsenide and methyl iodide, the problem of incomplete reaction of trimethylphosphonium in the trimethylphosphonium production process in the prior art can also be effectively solved.
  • the present invention adopts a specific organic solvent and uses the distillation method to recycle the organic solvent, which greatly reduces the arsenic-containing waste ⁇ ⁇ production. Therefore, adopting the above-mentioned preparation method provided by the present invention solves problems such as incomplete reaction of the traditional method and damage to the environment caused by waste liquid containing arsenic, and is beneficial to achieving large-scale production.
  • the raw materials may further include an organic solvent that does not contain active hydrogen and has a boiling point of 40 to 80 ° C.
  • the organic solvent has a water content of less than 100 ppm, and the organic solvent does not contain air; more preferably, the organic solvent is an ether.
  • the above-mentioned preparation method of the present invention the above-mentioned specific organic solvent is used. By distilling off the organic solvent after the reaction is completed, the difficulty of water removal in purification can be avoided, the problem of water content in the produced trimethylphosphonium is solved, and the residue in the solvent remains. Has less arsenic, which makes it more suitable for large-scale production.
  • the above-mentioned preparation method of the present invention includes the following steps: S1, mixing calcium arsenide and the above-mentioned organic solvent under a vacuum environment to obtain a mixed solution; S2, adding methyl iodide to the mixed solution dropwise It was stirred in the middle, and calcium arsenide and methyl iodide were reacted at 20 to 80 ° C to obtain trimethylphosphonium.
  • the mixed solution can be heated at the beginning of the methyl iodide dripping. Since calcium arsenide and methyl iodide will exotherm during the reaction by stirring, in order to prevent The temperature of the reaction process is too high, and heating is stopped when calcium arsenide and methyl iodide begin to react.
  • the degree of vacuum in the vacuum environment in step S1 is 10 to 50 Pa; more preferably, the molar ratio of calcium arsenide to the solvent is 1: 5 to 10; more preferably, arsenic
  • the molar ratio of calcium chloride to methyl iodide is 1: 6.5-9; more preferably, in step S2 above, methyl iodide is added to the mixed solution at a temperature of 20-40 ° C; more preferably, the above stirring The rate is 60 to 80 r / min; and, more preferably, the reaction temperature of calcium arsenide and methyl iodide is 20 to 50 ° C.
  • the preparation method further includes the following steps: S3, condensing trimethylphosphonium and an organic solvent; the condensation temperature is preferably 0-20 ° C.
  • the condensation temperature is preferably 0-20 ° C.
  • a part of the organic solvent and the trimethylsulfonium formed by the reaction are vaporized to form a gas phase solvent; at this time, in the above step S3, the trimethylsulfonium and the gas phase solvent are condensed simultaneously to liquefy the gas phase solvent A liquid phase solvent was formed.
  • the reaction process requires heating, and the trimethylsulfonium produced is easily vaporized to cause loss. Under the conditions of the above-mentioned condensation temperature, the vaporized trimethylsulfonium can be effectively condensed.
  • the step S3 further includes a step of refluxing the condensed organic solvent and trimethylphosphonium, and the steps S1 to S3 are repeatedly performed.
  • the organic solvent in the step S1 Including the above-mentioned liquid phase solvents. Costs can be saved by liquefying and recycling the organic solvent vaporized during the reaction;
  • trimethylsulfonium is heated and recovered at a temperature of 70 to 100 ° C.
  • the preparation method further includes a step of vacuum heating the organic solvent to evaporate the organic solvent.
  • the temperature of the vacuum heating is preferably 70 to 100 ° C, and the degree of vacuum of the vacuum heating is preferably 1 to 10 kpa. .
  • a raw material including calcium arsenide and methyl iodide may be passed into a reaction kettle to perform a reaction to obtain trimethylphosphonium. After the reaction is completed, the reaction kettle is heated to evaporate the organic solvent.
  • calcium arsenide is used as a solvent in an ether as a solvent to dropwise add iodomethane to the reaction under stirring.
  • the condenser is refluxed. After the dropwise addition of iodomethane is heated, the reactants are completely reacted. After the reaction was completed, the reaction solution was transferred to an evaporation kettle. Turn on stirring and heat to completely dissolve the dissolved trimethylphosphonium from the solvent. After trimethylarsine was distilled off, the solvent was completely distilled off under reduced pressure and reused. The residue in the kettle was treated with 95% industrial alcohol.
  • the temperature of the reaction kettle was set to 80 ° C. Calcium arsenide and methyl iodide were reacted to obtain trimethylphosphonium.
  • the n-butyl ether and trimethylphosphonium evaporated in the reactor entered condensation. Liquefaction was performed in the reactor, and the liquefied n-butyl ether and trimethylsulfonium were refluxed into the reaction kettle, and the reflux continued for 2 h.
  • the reaction solution was transferred to an evaporation kettle. Turn on the stirring, set the temperature of the evaporation kettle to 80 ° C, and evaporate the trimethylsulfonium to recover. The temperature of the evaporation kettle was maintained at 80 ° C. Under a vacuum of 3 kpa, n-butyl ether was distilled off and reused. The residue in the kettle was treated with 95% industrial alcohol.
  • the temperature of the reaction kettle was set to 80 ° C. Calcium arsenide and methyl iodide were reacted to obtain trimethylphosphonium. Liquefaction was performed in the reactor, and the liquefied n-butyl ether and trimethylsulfonium were refluxed into the reaction kettle, and the reflux continued for 2 h. After the reaction was completed, the reaction solution was transferred to an evaporation kettle. Turn on the stirring, set the temperature of the evaporation kettle to 80 ° C, and evaporate the trimethylsulfonium to recover. The temperature of the evaporation kettle was maintained at 80 ° C. Under a vacuum of 3 kpa, n-butyl ether was distilled off and reused. The residue in the kettle was treated with 95% industrial alcohol.
  • the molar ratio of calcium arsenide to the solvent is 1: 5.
  • the molar ratio of calcium arsenide to the solvent is 1:10.
  • the molar ratio of calcium arsenide to methyl iodide is 1: 6.5.
  • the molar ratio of calcium arsenide to methyl iodide is 1: 9.
  • the reaction temperature of calcium arsenide and methyl iodide was 20 ° C.
  • the reaction temperature of calcium arsenide and methyl iodide was 50 ° C.
  • the temperature of the condenser was 0 ° C.
  • the condenser temperature was 20 ° C.
  • the evaporation kettle temperature was 100 ° C when trimethylphosphonium was distilled off.
  • Example 1 Zh Trimethylamidine weight / g Yield/% Example 1 944 80.0
  • Example 2 1003 85.0
  • Example 3 1005 85.0
  • Example 4 882 76.2
  • Example 5 887 76.4
  • Example 6 869 75.6
  • Example 7 857 75.3
  • Example 9 843 75.2
  • Example 10 886 77.4
  • Example 11 898 76.9
  • Example 12 926 78.4
  • Example 13 913 77.6
  • Example 14 935 79.1
  • Example 15 923 78.4
  • Example 16 945 79.8
  • Example 17 948 80.0
  • the present invention can also effectively solve the problem of incomplete reaction of trimethylphosphonium in the trimethylphosphonium production technology in the prior art by using the reaction of calcium arsenide and methyl iodide;
  • the present invention adopts a specific organic solvent and uses the distillation method to recycle the organic solvent, which greatly reduces the arsenic-containing waste liquid.
  • the above-mentioned preparation method provided by the present invention solves problems such as incomplete reaction of the traditional method and damage to the environment caused by arsenic-containing waste liquid, and is beneficial to achieving large-scale production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明提供了一种三甲基胂的制备方法。该制备方法包括以下步骤:将包括砷化钙与碘甲烷的原料在含水量小于100ppm且真空环境下混合反应,得到三甲基胂。本发明避免了纯化方面的除水的困难,解决了生产的三甲基胂含水问题;本发明通过采用砷化钙与碘甲烷反应,还能够有效解决现有技术中三甲基胂生产工艺中存在三甲基胂反应不彻底的问题。优选地,为了进一步解决现有技术中三甲基胂的生产过程产生大量含砷废液的问题,本发明采用特定的有机溶剂,并采用蒸馏法将有机溶剂回收利用,极大地减少了含砷废液的产生。因此,采用本发明提供的上述制备方法解决了传统方法反应不彻底、含砷废液对环境造成破坏等存在的问题,有利于实现规模化生产。

Description

三甲基胂的制备方法 技术领域
本发明涉及有机合成技术领域,具体而言,涉及一种三甲基胂的制备方法。
背景技术
目前含砷半导体都是采用砷烷生产的,砷烷毒性巨大,且为气体,泄漏风险大,破坏性巨大,三甲基胂常温下为液体,毒性相对砷烷来说,小很多,因此三甲基胂代替砷烷将会极大降低安全风险,更加有利于含砷半导体的长足发展。
三甲基胂是一种分子式为(CH 3) 3As)的有机砷化合物,熔点-87.3℃,沸点51℃,常温下为液体,具有类似大蒜的气味。
传统三甲基胂的制备方法通常是采用三氧化二砷与三甲基铝反应。然而,上述方法中水的用量大,反应不彻底,易产生大量危险废液,对环境破坏大。
发明内容
本发明的主要目的在于提供一种三甲基胂的制备方法,以解决现有技术三甲基胂的制备方法反应不彻底且产生的含砷废液对环境造成破坏的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种三甲基胂的制备方法,包括以下步骤:将包括砷化钙与碘甲烷的原料在含水量小于100ppm且真空环境下混合反应,得到三甲基胂。
进一步地,原料还包括不含有活泼氢的且沸点为40~80℃的有机溶剂。
进一步地,有机溶剂的含水量小于100ppm,且有机溶剂中不含有空气。
进一步地,制备方法包括以下步骤:S1,将砷化钙与有机溶剂在真空环境下混合,以得到混合溶液;S2,将碘甲烷滴加至混合溶液中搅拌,并使砷化钙与碘甲烷在20~80℃反应,得到三甲基胂。
进一步地,步骤S1中真空环境的真空度为10~50pa;优选砷化钙与有机溶剂的摩尔比为1:5~10。
进一步地,砷化钙与碘甲烷的摩尔比为1:6.5~9;在步骤S2中,优选在20~40℃的温度下将碘甲烷加到混合溶液中;优选砷化钙与碘甲烷的反应温度为20~50℃;优选搅拌速率为60~80r/min。
进一步地,在步骤S2之后,制备方法还包括以下步骤:S3,对三甲基胂和有机溶剂进行冷凝,优选冷凝的温度为0~20℃。
进一步地,步骤S3还包括将冷凝后的有机溶剂和三甲基胂进行回流的步骤。
进一步地,在步骤S3之后,制备方法还包括:将三甲基胂在70~100℃的温度下加热并回收。
进一步地,在步骤S3之后,制备方法还包括:对有机溶剂真空加热以使有机溶剂蒸发,优选真空加热的温度为70~100℃,真空加热的真空度为1~10kpa。
应用本发明的技术方案,提供一种三甲基胂的制备方法,采用砷化钙与碘甲烷反应制备三甲基胂。现有技术中三甲基胂的制备工艺会导致三甲基胂中水难以除去,而本发明避免了纯化方面的除水的困难,解决了生产的三甲基胂含水问题;并且,本发明通过采用砷化钙与碘甲烷反应,还能够有效解决现有技术中三甲基胂生产工艺中存在三甲基胂反应不彻底的问题。优选地,为了进一步解决现有技术中三甲基胂的生产过程产生大量含砷废液的问题,本发明采用特定的有机溶剂,并采用蒸馏法将有机溶剂回收利用,极大地减少了含砷废液的产生。因此,采用本发明提供的上述制备方法解决了传统方法反应不彻底、含砷废液对环境造成破坏等存在的问题,有利于实现规模化生产。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
正如背景技术所描述的,现有技术中三甲基胂生产工艺中存在三甲基胂反应不彻底的问题。为了解决上述技术问题,本发明提供了一种三甲基胂的制备方法,包括以下步骤:将包括砷化钙与碘甲烷的原料在含水量小于100ppm且真空环境下混合反应,得到三甲基胂。
现有技术中三甲基胂的制备工艺会导致三甲基胂中水难以除去,而本发明避免了纯化方面的除水的困难,解决了生产的三甲基胂含水问题;并且,本发明通过采用砷化钙与碘甲烷反应,还能够有效解决现有技术中三甲基胂生产工艺中存在三甲基胂反应不彻底的问题。进一步地,为了解决现有技术中三甲基胂的生产过程产生大量含砷废液的问题,本发明采用特定的有机溶剂,并采用蒸馏法将有机溶剂回收利用,极大地减少了含砷废液的产生。因此,采用本发明提供的上述制备方法解决了传统方法反应不彻底、含砷废液对环境造成破坏等存在的问题,有利于实现规模化生产。
在本发明的上述制备方法中,原料还可以包括不含有活泼氢的且沸点为40~80℃的有机溶剂。优选地,该有机溶剂的含水量小于100ppm,且该有机溶剂中不含有空气;更为优选地,该有机溶剂为醚。本发明的上述制备方法中采用上述特定的有机溶剂,通过在反应结束后将有机溶剂蒸出,能够避免纯化方面的除水的困难,解决了生产的三甲基胂含水问题,而且溶剂中残留的含砷物更少,进而更加适合规模化生产。
本发明的上述制备方法中砷化钙与碘甲烷的反应式如下所示:
Ca 3As 2+6CH 3I=3CaI 2+2As(CH 3) 3
在一种优选的实施方式中,本发明的上述制备方法包括以下步骤:S1,将砷化钙与上述有机溶剂在真空环境下混合,以得到混合溶液;S2,将碘甲烷滴加至混合溶液中搅拌,并使砷化钙与碘甲烷在20~80℃反应,得到三甲基胂。为了使砷化钙与碘甲烷能够在20~80℃发生反应,可以先在碘甲烷滴加初期对混合溶液进行加热,由于砷化钙与碘甲烷通过搅拌在反应过程中会放热,为了防止该反应过程温度过高,在砷化钙与碘甲烷开始反应时停止加热。
在上述优选的实施方式中,优选地,步骤S1中真空环境的真空度为10~50pa;更为优选地,砷化钙与溶剂的摩尔比为1:5~10;更为优选地,砷化钙与碘甲烷的摩尔比为1:6.5~9;更为优选地,在上述步骤S2中,在20~40℃的温度下将碘甲烷加到混合溶液中;更为优选地,上述搅拌的速率为60~80r/min;并且,更为优选地,砷化钙与碘甲烷的反应温度为20~50℃。在上述反应条件下,砷化钙与碘甲烷能够充分反应,从而不仅提高了制备三甲基胂的效率,还极大程度减少废液中砷的含量,进而极大地减少含砷废液的排放。
在上述优选的实施方式中,优选地,在步骤S2之后,制备方法还包括以下步骤:S3,对三甲基胂和有机溶剂进行冷凝;冷凝的温度优选为0~20℃。在上述步骤S2中,部分有机溶剂和反应生成的三甲基胂汽化形成气相溶剂;此时,在上述步骤S3中,将三甲基胂与该气相溶剂同时进行冷凝,以将该气相溶剂液化形成液相溶剂。反应的过程需要加热,产生的三甲基胂易汽化而造成损失,在上述冷凝温度条件下,汽化的三甲基胂能够被有效冷凝。
在上述优选的实施方式中,所述步骤S3还包括将冷凝后的所述有机溶剂和三甲基胂进行回流的步骤,重复执行上述步骤S1至步骤S3,此时上述步骤S1中的有机溶剂包括上述液相溶剂。通过将反应中汽化的有机溶剂液化后回收利用,能够节约成本;
在上述优选的实施方式中,优选将三甲基胂在70~100℃的温度下加热并回收。
在一种优选的实施方式中,上述制备方法还包括对有机溶剂真空加热以使有机溶剂蒸发的步骤,上述真空加热的温度优选为70~100℃,上述真空加热的真空度优选为1~10kpa。具体地,可以将包括砷化钙与碘甲烷的原料通入反应釜中进行反应,以得到三甲基胂,在反应结束之后,对反应釜加热以使有机溶剂蒸出。
在本发明一种典型的实施方式中,采用砷化钙在醚做溶剂在搅拌的条件下滴加碘甲烷反应,冷凝器回流,滴加完碘甲烷后,加热,使反应物彻底反应。反应结束后,将反应液转至蒸发釜。打开搅拌,加热,将溶解的三甲基胂彻底从溶剂中脱离出来。三甲基胂蒸出后,将溶剂减压全部蒸出,重复使用,釜残用95%的工业酒精处理。
以下结合具体实施例对本发明作进一步详细描述,这些实施例不能理解为限制本发明所要求保护的范围。
实施例1
本实施例三甲基胂的制备方法包括以下步骤:
在反应釜中加入1340g砷化钙,真空处理反应釜,待反应釜真空度1kpa时,采用分子泵将反应釜压力降至10pa,以保证极少量的空气残留在反应釜中,向反应釜中通入3250g正丁醚(水分小于100ppm,已无空气处理)。反应釜温度设置为30℃,冷凝器温度设置为10℃,待反应釜和冷凝器的温度达到设置温度时,打开搅拌,开始滴加45g碘甲烷,待温度升至55℃时,开始继续滴加,使反应釜温度维持在65℃,滴加完毕将反应釜温度设置为80℃,砷化钙与碘甲烷反应得到三甲基胂,反应釜中蒸发的正丁醚与三甲基胂进入冷凝器中进行液化,液化后的正丁醚与三甲基胂回流至反应釜中,回流持续2h。反应结束后,将反应液转至蒸发釜。打开搅拌,设置蒸发釜温度为80℃,蒸出三甲基胂回收。蒸发釜温度维持在80℃,在3kpa真空下,蒸出正丁醚,重复使用,釜残用95%的工业酒精处理。
实施例2
本实施例三甲基胂的制备方法包括以下步骤:
在反应釜中加入1340g砷化钙,真气处理处理反应釜,待反应釜真空度1kpa时,采用分子泵将反应釜压力降至10pa,以保证极少量的空气残留在反应釜中,向反应釜中通入3200g正丁醚。反应釜温度设置为30℃,冷凝器设置10℃,待反应釜和冷凝器的温度达到设置温度时,打开搅拌,开始滴加45g碘甲烷,待温度升至55℃时,开始继续滴加,使反应釜温度维持在65℃,滴加完毕将反应釜的温度设置为80℃,砷化钙与碘甲烷反应得到三甲基胂,反应釜中蒸发的正丁醚与三甲基胂进入冷凝器中进行液化,液化后的正丁醚与三甲基胂回流至反应釜中,回流持续2h。反应结束后,将反应液转至蒸发釜。打开搅拌,设置蒸发釜温度为80℃,蒸出三甲基胂回收。蒸发釜温度维持在80℃,在3kpa真空下,蒸出正丁醚,重复使用,釜残用95%的工业酒精处理。
实施例3
本实施例三甲基胂的制备方法包括以下步骤:
在反应釜中加入1340g砷化钙,真气处理处理反应釜,待反应釜真空度1kpa时,采用分子泵将反应釜压力降至10pa,以保证极少量的空气残留在反应釜中,向反应釜中通入3100g正丁醚。反应釜温度设置为30℃,冷凝器设置10℃,待反应釜和冷凝器的温度达到设置温度时,打开搅拌,开始滴加45g碘甲烷,待温度升至55℃时,开始继续滴加,使反应釜温度维持在65℃,滴加完毕将反应釜的温度设置为80℃,砷化钙与碘甲烷反应得到三甲基胂,反应釜中蒸发的正丁醚与三甲基胂进入冷凝器中进行液化,液化后的正丁醚与三甲基胂回流至反应釜中,回流持续2h。反应结束后,将反应液转至蒸发釜。打开搅拌,设置蒸发釜温度为80℃,蒸出三甲基胂回收。蒸发釜温度维持在80℃,在3kpa真空下,蒸出正丁醚,重复使用,釜残用95%的工业酒精处理。
实施例4
本实施例三甲基胂的制备方法与实施例1的区别在于:
砷化钙与溶剂的摩尔比为1:5。
实施例5
本实施例三甲基胂的制备方法与实施例1的区别在于:
砷化钙与溶剂的摩尔比为1:10。
实施例6
本实施例三甲基胂的制备方法与实施例1的区别在于:
砷化钙与碘甲烷的摩尔比为1:6.5。
实施例7
本实施例三甲基胂的制备方法与实施例1的区别在于:
砷化钙与碘甲烷的摩尔比为1:9。
实施例8
本实施例三甲基胂的制备方法与实施例1的区别在于:
砷化钙与碘甲烷的反应温度为20℃。
实施例9
本实施例三甲基胂的制备方法与实施例1的区别在于:
砷化钙与碘甲烷的反应温度为50℃。
实施例10
本实施例三甲基胂的制备方法与实施例1的区别在于:
在20℃的温度下将碘甲烷加到混合溶液中;砷化钙与碘甲烷的搅拌速率为80r/min。
实施例11
本实施例三甲基胂的制备方法与实施例1的区别在于:
在40℃的温度下将碘甲烷加到混合溶液中;砷化钙与碘甲烷搅拌的搅拌速率为60r/min。
实施例12
本实施例三甲基胂的制备方法与实施例1的区别在于:
冷凝器的温度为0℃。
实施例13
本实施例三甲基胂的制备方法与实施例1的区别在于:
冷凝器的温度为20℃。
实施例14
本实施例三甲基胂的制备方法与实施例1的区别在于:
蒸出三甲基胂时蒸发釜温度为70℃。
实施例15
本实施例三甲基胂的制备方法与实施例1的区别在于:
蒸出三甲基胂时蒸发釜温度为100℃。
实施例16
本实施例三甲基胂的制备方法与实施例1的区别在于:
蒸出正丁醚时蒸发釜温度为70℃,真空度为1kpa。
实施例17
本实施例三甲基胂的制备方法与实施例1的区别在于:
蒸出正丁醚时蒸发釜温度为100℃,真空度为10kpa。
上述实施例1-17制备的三甲基胂的产品指标见表1。
表1
  三甲基胂重量/g 产率/%
实施例1 944 80.0
实施例2 1003 85.0
实施例3 1005 85.0
实施例4 882 76.2
实施例5 887 76.4
实施例6 869 75.6
实施例7 857 75.3
实施例8 832 74.8
实施例9 843 75.2
实施例10 886 77.4
实施例11 898 76.9
实施例12 926 78.4
实施例13 913 77.6
实施例14 935 79.1
实施例15 923 78.4
实施例16 945 79.8
实施例17 948 80.0
从上述测试结果可以看出,采用本发明的制备方法生产三甲基胂产率高,并且产生的废液中砷的含量也很低。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
1、现有技术中三甲基胂的制备工艺会导致三甲基胂中水难以除去,而本发明避免了纯化方面的除水的困难,解决了生产的三甲基胂含水问题;
2、本发明通过采用砷化钙与碘甲烷反应,还能够有效解决现有技术中三甲基胂生产工艺中存在三甲基胂反应不彻底的问题;
3、为了解决现有技术中三甲基胂的生产过程产生大量含砷废液的问题,本发明采用特定的有机溶剂,并采用蒸馏法将有机溶剂回收利用,极大地减少了含砷废液的产生;
4、采用本发明提供的上述制备方法解决了传统方法反应不彻底、含砷废液对环境造成破坏等存在的问题,有利于实现规模化生产。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种三甲基胂的制备方法,其特征在于,包括以下步骤:
    将包括砷化钙与碘甲烷的原料在含水量小于100ppm的真空环境下混合反应,得到所述三甲基胂。
  2. 根据权利要求1所述的制备方法,其特征在于,所述原料还包括不含有活泼氢的且沸点为40~80℃的有机溶剂。
  3. 根据权利要求2所述的制备方法,其特征在于,所述有机溶剂的含水量小于100ppm,且所述有机溶剂中不含有空气。
  4. 根据权利要求2所述的制备方法,其特征在于,所述制备方法包括以下步骤:
    S1,将所述砷化钙与所述有机溶剂在真空环境下混合,以得到混合溶液;
    S2,将所述碘甲烷滴加至所述混合溶液中搅拌,并使所述砷化钙与所述碘甲烷在20~80℃反应,得到所述三甲基胂。
  5. 根据权利要求2至4中任一项所述的制备方法,其特征在于,所述步骤S1中所述真空环境的真空度为10~50pa;优选所述砷化钙与所述有机溶剂的摩尔比为1:5~10。
  6. 根据权利要求4所述的制备方法,其特征在于,所述砷化钙与所述碘甲烷的摩尔比为1:6.5~9;在所述步骤S2中,优选在20~40℃的温度下将所述碘甲烷加到所述混合溶液中;优选所述砷化钙与所述碘甲烷的反应温度为20~50℃;优选所述搅拌速率为60~80r/min。
  7. 根据权利要求4所述的制备方法,其特征在于,在所述步骤S2之后,所述制备方法还包括以下步骤:
    S3,对所述三甲基胂和所述有机溶剂进行冷凝,优选所述冷凝的温度为0~20℃。
  8. 根据权利要求7所述的制备方法,其特征在于,所述步骤S3还包括将冷凝后的所述有机溶剂和所述三甲基胂进行回流的步骤。
  9. 根据权利要求7所述的制备方法,其特征在于,在所述步骤S3之后,所述制备方法还包括:将所述三甲基胂在70~100℃的温度下加热并回收。
  10. 根据权利要求4至8中任一项所述的制备方法,其特征在于,在所述步骤S2之后,所述制备方法还包括:对所述有机溶剂真空加热以使所述有机溶剂蒸发,优选所述真空加热的温度为70~100℃,所述真空加热的真空度为1~10kpa。
PCT/CN2018/116433 2018-09-26 2018-11-20 三甲基胂的制备方法 WO2020062503A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811126784.7 2018-09-26
CN201811126784.7A CN110950911B (zh) 2018-09-26 2018-09-26 三甲基胂的制备方法

Publications (1)

Publication Number Publication Date
WO2020062503A1 true WO2020062503A1 (zh) 2020-04-02

Family

ID=69950863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116433 WO2020062503A1 (zh) 2018-09-26 2018-11-20 三甲基胂的制备方法

Country Status (2)

Country Link
CN (1) CN110950911B (zh)
WO (1) WO2020062503A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906762A (en) * 1987-08-27 1990-03-06 Sumitomo Chemical Company, Limited Process for producing trialkylarsenic compound
CN1400214A (zh) * 2001-04-06 2003-03-05 希普雷公司 三烷基第va族金属化合物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992620A (en) * 1989-11-21 1991-02-12 Phillips Petroleum Company Removal of trialkyl arsines from fluids
CN102020668B (zh) * 2010-12-22 2013-03-13 江苏南大光电材料股份有限公司 工业化制备三甲基铟的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906762A (en) * 1987-08-27 1990-03-06 Sumitomo Chemical Company, Limited Process for producing trialkylarsenic compound
CN1400214A (zh) * 2001-04-06 2003-03-05 希普雷公司 三烷基第va族金属化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ADOLFSSON, H.ET AL: "Science of synthesis", vol. 4, 31 December 2002, article M.D.SMITH: "Product class 1: arsenic compounds", pages: 14, DOI: 10.1055/sos-SD-004-00002 *

Also Published As

Publication number Publication date
CN110950911B (zh) 2021-10-08
CN110950911A (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2016131371A1 (zh) 一种制备甲酰胺类化合物的方法
ES2672893T3 (es) Procesos y aparato para polimerización continua en disolución
CN101341155B (zh) 铪系化合物、形成铪系薄膜的材料和形成铪系薄膜的方法
CN105906837B (zh) 一种聚苯硫醚合成料浆中n-甲基吡咯烷酮溶剂的回收方法
CN105585501B (zh) 乙二胺生产方法
TWI761569B (zh) 將環狀伸烷基脲轉變成其相應之伸烷基胺之反應性分離方法
WO2020062503A1 (zh) 三甲基胂的制备方法
US9764961B2 (en) Cyclohexasilane
CN104829484A (zh) 一种dmac或dmf废液的六塔四效精馏系统及其回收方法
CN108148089B (zh) 一种四(二甲氨基)钛的制备方法
JP2019001714A (ja) 高純度シクロヘキサシラン
WO2020062502A1 (zh) 砷烷的制备方法
TWI424981B (zh) 1,4-雙(氯二氟甲基)苯之簡易式高效率製備方法
CN116574134A (zh) 一种含羟基和乙氧基的环三磷腈衍生物及其制备方法
KR101363571B1 (ko) 고순도의 저메인 생성방법 및 생성장치
CN110950909B (zh) 三甲基膦的制备方法
WO2016054963A1 (zh) 用于薄膜沉积的铝前驱体及其制备方法和用途
CN206295615U (zh) 一种乙醇回收提纯设备
Liu et al. Imine-linkage covalent organic framework synthesis in deep eutectic solvent at ambient conditions
CN111569808B (zh) 一种能量集成利用的原料药反应提纯系统及其工艺方法
KR20150119372A (ko) 이온성 액체의 제조 공정
JP2006327964A (ja) ボラジン化合物の製造方法
CN105820025A (zh) 一种制备高纯度环戊二烯的方法
CN107286029A (zh) 双二甲胺基乙基醚的合成
CN107382648A (zh) 一种环戊二烯生产工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935960

Country of ref document: EP

Kind code of ref document: A1