WO2020057587A1 - 用于食品包装的具有持久高表面张力的覆膜铁及制备方法 - Google Patents

用于食品包装的具有持久高表面张力的覆膜铁及制备方法 Download PDF

Info

Publication number
WO2020057587A1
WO2020057587A1 PCT/CN2019/106617 CN2019106617W WO2020057587A1 WO 2020057587 A1 WO2020057587 A1 WO 2020057587A1 CN 2019106617 W CN2019106617 W CN 2019106617W WO 2020057587 A1 WO2020057587 A1 WO 2020057587A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified polyester
polyester
temperature
isophthalic acid
acid
Prior art date
Application number
PCT/CN2019/106617
Other languages
English (en)
French (fr)
Inventor
谢龙
王章薇
倪骅
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP19862974.3A priority Critical patent/EP3854850A4/en
Priority to US17/277,495 priority patent/US20210395448A1/en
Publication of WO2020057587A1 publication Critical patent/WO2020057587A1/zh
Priority to PH12021550590A priority patent/PH12021550590A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • C08G63/6884Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6886Dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the invention relates to the field of coated metal plates for food metal packaging, and more particularly, to a coated iron with long-lasting high surface tension for food packaging and a preparation method thereof.
  • thermosetting coating In the traditional metal packaging container industry, the surface of cans / caps metal materials is usually coated with a thermosetting coating, and a layer of thermosetting coating is formed on the surface of the metal material through the evaporation of organic solvents, which is used to protect the metal from Corrosion of contents, with people's increasing requirements for living environment and food safety requirements, such thermosetting coatings that pollute the environment and have food safety hazards have been difficult to meet the increasingly strict and demanding packaging containers.
  • thermoplastic biaxially stretched polyester film BOPET
  • BOPET film itself has excellent properties, but the PET molecular chain itself is rigid.
  • the heat setting during the production process makes its high crystallinity, which results in a relatively high melting point, which makes it difficult to adhere to metal surfaces. If it can solve the problem of high self-crystallinity of BOPET film and the difficulty of bonding with metal surface, it will be extremely beneficial to reduce the amount and weight of sprayed packaging materials and simplify the process of composite application of steel plates.
  • corresponding modified polyester films (CN102432984A, US20170152075A1) have been reported in this field, which can be applied to the field of coated metal materials.
  • the applicant also reported a non-additive method with durable high surface tension Polyester film (CN 201510044905.3).
  • the present invention provides a coated iron.
  • the coated iron uses a polyester film with long-lasting high surface tension and a steel plate to be thermally compounded. It has excellent printability and can be omitted for downstream users. Surface treatment methods such as flame treatment and corona treatment before film iron printing reduce downstream users' investment in surface treatment equipment and related manpower for film iron.
  • the coated iron provided by the invention can be applied to metal containers for high-end food and beverage packaging, and meets the requirements for the use of packaging containers such as food and beverages.
  • the present invention adopts the following technical solutions.
  • a polyester film having a high surface tension for food packaging is copolymerized with terephthalic acid, isophthalic acid, ethylene glycol and a fourth component.
  • the fourth component is one selected from the group consisting of isophthalic acid-5-sulfonate, 1,4-cyclohexanedimethanol, neopentyl glycol, and trimellitic acid;
  • SiO 2 is added to the polyester film by in-situ polymerization in an amount of 800-2000 ppm, preferably 1000-1500 ppm, and more preferably 1200 ppm.
  • the isophthalic acid-5-sulfonate is sodium isophthalate-5-sulfonate, Potassium 5-sulfonate or lithium isophthalate-5-sulfonate.
  • the polyester film having a high surface tension and lasting for food packaging according to one aspect of the present invention
  • the polyester film is composed of terephthalic acid, isophthalic acid, ethylene glycol, isophthalic acid-5-sulfonic acid Salt, 1,4-cyclohexanedimethanol, and neopentyl glycol are copolymerized and biaxially stretched.
  • the molar ratio of each feed is terephthalic acid: ethylene glycol: isophthalic acid: isophthalic acid.
  • the polyester film having a persistently high surface tension for food packaging has a surface tension of ⁇ 45 dyne / cm.
  • a polyester film with long-lasting high surface tension for food packaging is prepared by adding different pigments and fillers to obtain polyester films of different colors.
  • a coated iron including a steel plate and a polymer having a long-lasting high surface tension for food packaging as described above, which is thermally compounded on the steel plate. Ester film, the coated iron has excellent printability.
  • the coated steel is selected from the group consisting of chrome-plated steel, tin-plated steel, low-tin steel, galvanized steel, cold-rolled steel, and stainless steel.
  • a metal container used for packaging of high-end food and beverage the metal container is made of the coated iron as described above.
  • a method for preparing a polyester film with a high surface tension for food packaging includes the following steps:
  • terephthalic acid, isophthalic acid, ethylene glycol, and the fourth component to the reactor in proportions.
  • the fourth component is selected from the group consisting of isophthalic acid-5-sulfonate, 1,4-cyclohexane
  • a catalyst, N 2 as a protective gas stir and heat up the temperature, control the temperature 175-260 °C, the copolymerization time is 1-3h, and The pressure was released to normal pressure; the temperature was increased and reduced, and the temperature in the reactor was raised to 240-310 ° C.
  • the pressure was reduced to 50-100Pa to start vacuum polycondensation.
  • the vacuum polycondensation time was 1.6-2.3h.
  • Polyester melt was obtained.
  • step (1) The chemically modified polyester obtained in step (1) is dried on an ebullating bed, and the slab is extruded through a twin-screw extruder. The slab is first longitudinally stretched, then transversely stretched, and finally heat-set. The temperature is 150-230 ° C and the time is 6-14s. Finally, the film is cooled and rolled to obtain a biaxially stretched polyester film.
  • the catalyst is selected from the group consisting of antimony trioxide, antimony acetate, ethylene glycol antimony, and titanate. One or more.
  • the catalyst has a mass fraction of 60-300 ppm based on the amount of polyester produced.
  • the temperature of each section of the screw of the twin-screw extruder is 250-270 ° C.
  • the die temperature is 270-285 ° C
  • the extruder screw speed is 45-50 r / min
  • the thickness of the slab is 0.15-0.25 mm.
  • the cast sheet is first stretched longitudinally, and the stretching temperature is 70 to 80 ° C.
  • the stretching ratio is 3 to 4, and then heat-set after transverse stretching, the stretching temperature is 95 to 105 ° C, and the stretching ratio is 2.5 to 3.5.
  • the present invention provides a modified polyester whose monomers are terephthalic acid, isophthalic acid, ethylene glycol, and a fourth component. Among them, terephthalic acid, ethylene glycol, and isobenzene in the modified polyester are included.
  • the molar ratio of dicarboxylic acid to the fourth component is A: B: C: D, A is 135-165, preferably 140-160, B is 148-194, preferably 155-194, more preferably 160-192, C is 11-15, preferably 12-15, D is 0.01-12, preferably 3-12; the fourth component is selected from isophthalic acid-5-sulfonate, 1,4-cyclohexanedi One or more of methanol, neopentyl glycol, and trimellitic acid, and the modified polyester contains 800-2000 ppm, preferably 1000-1500 ppm, and more preferably 1200 ppm of SiO 2 .
  • the SiO 2 is added to the modified polyester in an in-situ polymerization manner.
  • the “in-situ polymerization addition” described herein refers to mixing SiO 2 with a monomer for synthesizing the modified polyester, and then polymerizing to produce the modified polyester according to the present invention.
  • isophthalic acid-5-sulfonic acid salt is an alkali metal salt of isophthalic acid-5-sulfonic acid, such as sodium isophthalic acid-5-sulfonic acid, isophthalic acid-5-sulfonic acid Potassium or lithium isophthalate-5-sulfonate.
  • isophthalic acid-5-sulfonates can be used.
  • isophthalic acid-5-sulfonate When isophthalic acid-5-sulfonate is used, its molar ratio can be in the range of 0.01-5, such as in the range of 0.5-5 or 1-4.
  • the value of its molar ratio may be in the range of 0.01-3.5, such as in the range of 0.05-3.5 or 0.5-2.
  • the value of its molar ratio may be in the range of 0.5-3.5, preferably in the range of 1-3.5.
  • trimellitic acid when trimellitic acid is used, its molar ratio can be in the range of 0.5-5, such as 0.5-4.
  • the monomers used to form the modified polyesters of the present invention are terephthalic acid, ethylene glycol, isophthalic acid, isophthalic acid-5-sulfonate, 1,4-cyclohexane Alkylenedimethanol, neopentyl glycol, and optionally trimellitic acid.
  • the molar ratio of these monomers is (135-165): (148-194): (11-15): (0.01-5): (0.01-3.5): (0.5-3.5 ): (0-5).
  • the molar ratio of these monomers is (135-165): (160-192): (11-15): (0.01-5): (0.01-3.5): (1-3.5): (0-4).
  • Each of the raw materials described herein is put into a reactor, and the reaction is performed in the presence of a catalyst and under the protection of an inert gas such as nitrogen.
  • an inert gas such as nitrogen.
  • the reaction temperature can be in the range of 175-260 ° C, and the copolymerization time can be controlled in the range of 1-3 hours.
  • the pressure in the reactor was released to normal pressure, and then the temperature was increased and reduced to raise the temperature in the reactor to 240-310 ° C and the pressure to 50-120Pa.
  • Vacuum condensation polymerization was started, and the vacuum condensation polymerization time could be controlled at 1.6 In the range of -2.3 hours, a polyester melt is obtained, and the chemically modified polyester of the present invention is obtained by cooling.
  • the resulting modified polyester may be pelletized.
  • the method further includes a drying step, such as drying on a boiling bed for 3-6 hours, and the drying temperature may be 120-160 ° C.
  • the temperature of the copolymerization reaction can be controlled in a range of 175-200 ° C, and the copolymerization time can be controlled in a range of 1.2-2.2 hours.
  • the pressure in the reactor can be controlled in a range of 0.08-0.2 MPa, and preferably in a range of 0.05-0.12 MPa.
  • the reaction temperature can be controlled in the range of 260-300 ° C, preferably in the range of 265-285 ° C
  • the reaction time can be controlled in the range of 1.6-2.0 hours
  • the pressure can be controlled in the range of 80-120Pa, It is preferably in a range of about 100 Pa.
  • the catalyst may be selected from one or more of an antimony-based catalyst and a titanate-based catalyst.
  • Antimony-based catalysts include, but are not limited to, antimony trioxide, antimony acetate, and ethylene glycol antimony.
  • Titanate-based catalysts include, but are not limited to, tetrabutyl titanate, isopropyl titanate, tetramethyl titanate, tetraethyl titanate, and tetrapropyl titanate. Any one or a mixture of any of these catalysts can be used.
  • the amount of catalyst added is 60-300 ppm by mass, such as 60-280 ppm.
  • the antimony-based catalyst is usually added in the range of 80-280ppm by mass, such as 80-280ppm; the titanate-based catalyst is usually added in the range of 200-280ppm by mass, such as 200-260ppm; In the case of these two types of catalysts, the total amount of addition is usually in the range of 60-300 ppm by mass.
  • the modified polyester of the present invention can be used to prepare a polyester film having a persistently high surface tension for food packaging.
  • the surface tension of the polyester film is ⁇ 45 dyne / cm.
  • a polyester film is provided, which is prepared from the modified polyester according to any embodiment of the present invention.
  • the surface tension of the polyester film is ⁇ 45 dyne / cm.
  • the polyester film of the present invention can be prepared as follows: the modified polyester of the present invention is extruded into a cast sheet through a twin-screw extruder, and then biaxially stretched, and finally heat-set and cooled to obtain the polyester film of the present invention.
  • the temperature of each section of the extruder screw is 250 to 270 ° C
  • the die temperature is 270 to 285 ° C
  • the rotation speed of the extruder screw is 45 to 50 r / min
  • the thickness of the cast piece is 0.15 to 0.25 mm.
  • the cast piece is stretched longitudinally, the stretching temperature is 70 to 80 ° C, the stretching ratio is 3 to 4, and then the transverse stretching is performed, the stretching temperature is 95 to 105 ° C, and the stretching ratio is 2.5. ⁇ 3.5.
  • the heat setting temperature is preferably 150 to 230 ° C. and the time is 6 to 14 s.
  • Polyester films of different colors can be prepared by adding different pigments and fillers.
  • the modified polyester or polyester film of the present invention can be used to prepare coated iron. Therefore, the present invention provides a coated iron, which includes a steel plate and the modified polyester or polyester film according to any embodiment of the present invention.
  • the polyester film of the present invention may be laminated on the steel plate in a thermal lamination method.
  • the coated iron of the present invention has excellent printability.
  • the steel plate in the coated iron may be selected from the group consisting of a chrome-plated steel plate, a tin-plated steel plate, a low-tin steel plate (tin plating amount ⁇ 1.1 g / m 2 ), a galvanized steel plate, a cold-rolled steel plate, and a stainless steel plate.
  • the coated iron of the present invention can be used for preparing metal containers for high-end food and beverage packaging. Therefore, the present invention also provides a metal container made of the coated iron according to the present invention.
  • the present invention has the following beneficial technical effects:
  • the invention provides a coated iron having excellent printability and a preparation method thereof.
  • the coated iron is prepared by directly performing a thermal compounding method by using a durable high surface tension polyester film and a steel plate.
  • the polyester film is prepared by using a modified ordinary polyethylene terephthalate (PET) as a master batch, modified by chemically modified molecular chain design and embedding means, and subjected to a biaxial stretching process.
  • PET polyethylene terephthalate
  • Its mechanism is to introduce new functional groups to destroy the rigid structure of ordinary polyethylene terephthalate, promote the decrease in crystallinity and have direct heat-sealability; meanwhile, it introduces hydrophilic and alkali-soluble groups to greatly increase polyester
  • the film has surface tension ( ⁇ 45 dyne / cm) and has long-lasting constancy.
  • the coated iron does not need surface treatment to ensure long-lasting high surface tension, which greatly improves the wetting and spreading ability of the ink on the surface of the coated iron. It can achieve
  • the coated iron according to the present invention has the characteristics of no deformation at high temperature, good barrier properties, good corrosion resistance, no pollution to the contents, no blocking, etc., and can be widely used in various beverage and food packaging containers. At the same time, the coated iron according to the present invention can have excellent printability without surface treatment such as corona and flame treatment.
  • Adding SiO 2 to the polymer through in situ polymerization uniformly improves the crystallization properties of the polyester film as a whole; and by improving the traditional method of adding SiO 2 in the form of master batches, high-melting resin is avoided from being added to the film.
  • the two points mentioned above significantly improve the overall performance of the polyester film, and significantly improve the complex processability and corrosion resistance of the coated iron including the film of the present invention.
  • the polyester film and the coated iron according to the present invention simultaneously have the following three characteristics:
  • the polyester film has high food safety characteristics and has Resistant to deep-drawing and complex deformation processing, with excellent corrosion resistance, can be widely used in high-end metal packaging industry.
  • the temperature is controlled at 185 ° C.
  • the pressure is released to normal pressure to complete the esterification reaction.
  • the temperature was increased and the pressure was reduced.
  • the temperature in the reactor was increased to 280 ° C, and the pressure was reduced to 100 Pa.
  • the vacuum polycondensation was started, and the polycondensation was performed for 1.8 hours to obtain a polyester melt.
  • the water tank was cooled and pelletized to obtain a chemically modified polyester. In the in-situ polymerization method, 1200 parts by mass of SiO 2 was added .
  • Preparation of modified polyester film The obtained master batch is dried on an ebullating bed for 4 hours, the drying temperature is 120-160 ° C, and the casting sheet is extruded through a twin-screw extruder, and the temperature of each section of the extruder screw is 250-270 °C, die temperature is 270 ⁇ 285 °C, extruder screw speed is 45 ⁇ 50r / min, and slab thickness is 0.15 ⁇ 0.25mm.
  • the slab is stretched longitudinally at a stretching temperature of 70 to 80 ° C and a stretching ratio of 3 to 4 and then heat-set after transverse stretching. The stretching temperature is 95 to 105 ° C and the stretch ratio is 2.5 to 3.5.
  • Heat setting The temperature is 150-230 ° C, and the time is 6-14s. Finally, the film is cooled, rolled, and slitted for later use.
  • the prepared biaxially stretched polyester film is thermally bonded to a surface of a thin steel plate of 0.10 to 0.50 mm under a pressure of 2 to 10 Kg and a temperature of 180 to 260 ° C to obtain coated iron.
  • the temperature is controlled at 175 ° C, and when the esterified water is significantly reduced in about 1.5 hours, the pressure is released to normal pressure to complete the esterification reaction. Next, the temperature was increased and the pressure was reduced. The temperature in the reaction vessel was raised to 280 ° C, and the pressure was reduced to 100 Pa. The vacuum polycondensation was started, and the polycondensation was performed for 1.8 hours to obtain a polyester melt. The water tank was cooled and pelletized to obtain a chemically modified polyester. In the modified polyester, 1200 parts by mass of SiO 2 is added by in-situ polymerization.
  • the preparation method of the modified polyester film and the preparation method of the coated iron are the same as those in the application example 1.
  • the temperature is controlled at 175 ° C, and when the esterified water is significantly reduced in about 1.4 hours, the pressure is released to normal pressure to complete the esterification reaction. Next, the temperature was increased and the pressure was reduced. The temperature in the reaction kettle was raised to 270 ° C, and the pressure was reduced to 100 Pa. The vacuum polycondensation was started, and the polycondensation was obtained for 1.8 hours to obtain a polyester melt. The water tank was cooled and pelletized to obtain a chemically modified polyester. In the modified polyester, 1200 parts by mass of SiO 2 is added by in-situ polymerization.
  • the preparation method of the modified polyester film and the preparation method of the coated iron are the same as those in the application example 1.
  • the temperature was increased by stirring and heating at a gas pressure of 0.1 MPa. The temperature is controlled at 185 ° C. When the esterified water is significantly reduced in about two hours, the pressure is released to normal pressure to complete the esterification reaction. Next, the temperature was increased and the pressure was reduced. The temperature in the reaction vessel was raised to 280 ° C, and the pressure was reduced to 100 Pa. The vacuum polycondensation was started, and the polycondensation was performed for 1.8 hours to obtain a polyester melt. The water tank was cooled and pelletized to obtain a chemically modified polyester. In the modified polyester, 1200 parts by mass of SiO 2 is added by in-situ polymerization.
  • the preparation method of the modified polyester film and the preparation method of the coated iron are the same as those in the application example 1.
  • N 2 is used as a protective gas, and the temperature is stirred and heated under a gas pressure of 0.1 MPa. The temperature is controlled at 185 ° C. When the esterified water is significantly reduced in about two hours, the pressure is released to normal pressure to complete the esterification reaction.
  • the temperature in the reaction vessel was raised to 280 ° C, and the pressure was reduced to 100 Pa.
  • the vacuum polycondensation was started, and the polycondensation was performed for 1.8 hours to obtain a polyester melt.
  • the water tank was cooled and pelletized to obtain a chemically modified polyester.
  • 1200 parts by mass of SiO 2 is added by in-situ polymerization.
  • the preparation method of the modified polyester film and the preparation method of the coated iron are the same as those in the application example 1.
  • the temperature is controlled at 185 ° C.
  • the pressure is released to normal pressure to complete the esterification reaction.
  • the temperature was increased and the pressure was reduced.
  • the temperature in the reaction vessel was raised to 280 ° C, and the pressure was reduced to 100 Pa.
  • the vacuum polycondensation was started, and the polycondensation was performed for 1.8 hours to obtain a polyester melt.
  • the water tank was cooled and pelletized to obtain a chemically modified polyester. In the modified polyester, 1200 parts by mass of SiO 2 is added by in-situ polymerization.
  • the preparation method of the modified polyester film and the preparation method of the coated iron are the same as those in the application example 1.
  • Antimony acetate (300 ppm by mass) was Catalyst, wherein the molar ratio of 1,4-cyclohexanedimethanol is 0.05, the molar ratio of neopentyl glycol is 3.5, the molar ratio of sodium isophthalate-5-sulfonate is 3.5, and N 2 is used as a protective gas , Stir and heat under 0.1MPa gas pressure.
  • the temperature is controlled at 185 ° C. When the esterified water is significantly reduced in about two hours, the pressure is released to normal pressure to complete the esterification reaction. Next, the temperature was increased and the pressure was reduced. The temperature in the reaction vessel was raised to 280 ° C, and the pressure was reduced to 100 Pa.
  • the vacuum polycondensation was started, and the polycondensation was performed for 1.8 hours to obtain a polyester melt.
  • the water tank was cooled and pelletized to obtain a chemically modified polyester.
  • 1200 parts by mass of SiO 2 is added by in-situ polymerization.
  • the preparation method of the modified polyester film and the preparation method of the coated iron are the same as those in the application example 1.
  • the temperature is controlled at 185 ° C.
  • the pressure is released to normal pressure to complete the esterification reaction.
  • the temperature was increased and the pressure was reduced.
  • the temperature in the reaction vessel was raised to 280 ° C, and the pressure was reduced to 100 Pa.
  • the vacuum polycondensation was started, and the polycondensation was performed for 1.8 hours to obtain a polyester melt.
  • the water tank was cooled and pelletized to obtain a chemically modified polyester. In the modified polyester, 1200 parts by mass of SiO 2 is added by in-situ polymerization.
  • the preparation method of the modified polyester film and the preparation method of the coated iron are the same as those in the application example 1.
  • the temperature is controlled at 185 ° C.
  • the pressure is released to normal pressure to complete the esterification reaction.
  • the temperature was increased and the pressure was reduced.
  • the temperature in the reaction vessel was raised to 280 ° C, and the pressure was reduced to 100 Pa.
  • the vacuum polycondensation was started, and the polycondensation was performed for 1.8 hours to obtain a polyester melt.
  • the water tank was cooled and pelletized to obtain a chemically modified polyester. In the modified polyester, 1200 parts by mass of SiO 2 is added by in-situ polymerization.
  • the preparation method of the modified polyester film and the preparation method of the coated iron are the same as those in the application example 1.
  • N 2 was used as a protective gas, and the temperature was increased by stirring and heating at a gas pressure of 0.1 MPa. The temperature is controlled at 185 ° C. When the esterified water is significantly reduced in about two hours, the pressure is released to normal pressure to complete the esterification reaction. Next, the temperature was increased and the pressure was reduced. The temperature in the reaction vessel was raised to 280 ° C, and the pressure was reduced to 100 Pa. The vacuum polycondensation was started, and the polycondensation was performed for 1.8 hours to obtain a polyester melt. The water tank was cooled and pelletized to obtain a chemically modified polyester. In the modified polyester, 1200 parts by mass of SiO 2 is added by in-situ polymerization.
  • the preparation method of the modified polyester film and the preparation method of the coated iron are the same as those in the application example 1.
  • the modified polyester was prepared by referring to the method in Example 1, but the added mass of SiO 2 was 800 ppm.
  • the modified polyester film and coated iron were prepared from the modified polyester prepared in Example 11 as described in Example 1.
  • the modified polyester was prepared by referring to the method of Example 2, but the added mass of SiO 2 was 2000 ppm.
  • the modified polyester film and coated iron were prepared from the modified polyester prepared in Example 12 as described in Example 1.
  • the coated iron obtained in Examples 1-12 was subjected to a surface tension test.
  • the surface tension test standard is: JISK-6763-71, the specific method is as follows: prepare a mixture with a series of various surface tension values, then dip the mixture with a clean cotton ball, and apply about 6cm on the surface of the coated iron 2 liquid film, if the liquid film is not broken for more than 2s, it indicates that the surface tension of the coated iron is greater than the mixed liquid used, and continue to try with a solution with a higher surface tension; otherwise, if the liquid film ruptures, it indicates the coating The surface tension of iron is less than the mixed solution. Try a liquid with a lower surface tension value until the critical condition is reached. The previous mixture can spread, but the higher mixture cannot. The surface tension of the previous mixture This is the surface tension of the coated iron.
  • the film for coated iron prepared by the present invention uses a bulk modification method, and a fourth component having a long-lasting surface tension is added during the design of the molecular chain, so the prepared coated iron will not be affected by an increase in storage time. Surface tension is degraded.
  • the surface tension test was performed on Examples 1-12, and the test results were in the range of 45-52 dyne / cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种优良可印刷性的覆膜铁及其制备方法,所述覆膜铁采用具有持久高表面张力的聚酯薄膜与钢板进行热复合方式进行制备,所述聚酯薄膜由对苯二甲酸,间苯二甲酸,乙二醇和第四组份共聚后经双向拉伸而制成,投料摩尔比为:对苯二甲酸∶乙二醇∶间苯二甲酸∶第四组份=(135-165)∶(148-194)∶(11-15)∶(0.01-12);所述第四组份选自间苯二甲酸-5-磺酸盐,1,4-环己烷二甲醇,新戊二醇,和偏苯三甲酸中的一种或多种,所述的共聚聚酯中采用原位聚合的方式加入了质量份数为800-2000ppm的SiO 2。该覆膜铁具有优良的可印刷性,满足食品、饮料等包装容器的使用要求。

Description

用于食品包装的具有持久高表面张力的覆膜铁及制备方法 技术领域
本发明涉及食品金属包装用的覆膜金属板领域,更具体地涉及一种用于食品包装的具有持久高表面张力的覆膜铁及其制备方法。
背景技术
在传统的金属包装容器行业里,通常在制罐/盖金属材料的表面涂上热固型涂料,通过有机溶剂的挥发在金属材料表面形成一层热固性的涂膜层,用于保护金属不受内容物的腐蚀,随着人们对生活环境的要求和食品安全的要求日益提高,这类污染环境、有食品安全隐患的热固性涂层已难于满足日趋严格高要求包装容器的需求。
近年来,人们通过热熔方式将热塑性双向拉伸聚酯薄膜(BOPET)复合到钢板表面,有效解决了热固性涂料导致的环境污染问题,并消除了传统热固型涂层中的食品安全隐患,这种覆膜金属材料的出现带来了食品饮料包装材料的革新。
BOPET薄膜本身具有优异的性能,然而PET分子链本身是刚性的,加之生产过程中的热定型使得其结晶度高导致熔点比较高,很难与金属表面贴合。如果能够解决BOPET膜的自身结晶度高难以与金属表面贴合难的问题,则极为有利于减少喷涂包装材料的使用量及轻量化,有利于简化钢板复合应用中的工艺。近年来在该领域陆续报道了相应改性聚酯薄膜(CN 102432984A,US 20170152075A1),可应用到覆膜金属材料领域,本申请人也报道了一种通过非添加剂方式制备的具有持久高表面张力的聚酯薄膜(CN 201510044905.3)。
当覆膜铁应用于食品饮料包装容器时,需要通过各种印刷方式在覆膜铁、覆膜罐/盖的表面印刷出精美的图案、商标、文字说明等,现在往往通 过涂装方式在薄膜的表层引入可印刷层来改善油墨的润湿能力(CN 106957616A),或通过火焰处理(CN 201680033425.X)等方式来提高印刷基材的表面张力以改善油墨在其表面的润湿铺展能力,从而提高其可印刷性,因此需要下游用户增加额外的表面处理设备和相关人力的投入。
发明内容
为了改善这一技术问题,本发明提供一种覆膜铁,所述覆膜铁采用具有持久高表面张力的聚酯薄膜与钢板热复合,具有优异的可印刷性,可以为下游用户省去覆膜铁印刷前的火焰处理、电晕处理等表面处理方式,减少下游用户在覆膜铁的表面处理设备和相关人力的投入。由本发明提供的覆膜铁可应用于中高端食品饮料包装用金属容器,满足食品、饮料等包装容器的使用要求。
为了实现上述目的,本发明采用以下技术方案。
根据本发明的一个方面,提供一种用于食品包装的具有持久高表面张力的聚酯薄膜,所述聚酯薄膜由对苯二甲酸,间苯二甲酸,乙二醇和第四组份共聚后经双向拉伸而制成,投料摩尔比为:对苯二甲酸:乙二醇:间苯二甲酸:第四组份=(135-165):(148-194):(11-15):(0.01-12);所述第四组份选自间苯二甲酸-5-磺酸盐,1,4-环己烷二甲醇,新戊二醇,和偏苯三甲酸中的一种或多种;所述聚酯薄膜中采用原位聚合的方式加入了质量份数为800-2000ppm、优选1000-1500ppm、更优选1200ppm的SiO 2
根据本发明的一个方面的用于食品包装的具有持久高表面张力的聚酯薄膜中,间苯二甲酸-5-磺酸盐为间苯二甲酸-5-磺酸钠、间苯二甲酸-5-磺酸钾或者间苯二甲酸-5-磺酸锂。
根据本发明的一个方面的用于食品包装的具有持久高表面张力的聚酯薄膜中,聚酯薄膜由对苯二甲酸,间苯二甲酸,乙二醇,间苯二甲酸-5-磺酸盐,1,4-环己烷二甲醇,和新戊二醇共聚后经双向拉伸而制成,各投料摩尔比为对苯二甲酸:乙二醇:间苯二甲酸:间苯二甲酸-5-磺酸盐:1,4-环己烷二甲醇:新戊二醇=(135-165):(148-194):(11-15):(0.01-5):(0.01-3.5):(0.5-3.5)。
根据本发明的一个方面的用于食品包装的具有持久高表面张力的聚酯薄膜中,所述聚酯薄膜的表面张力为≥45达因/厘米。
根据本发明的一个方面的用于食品包装的具有持久高表面张力的聚酯薄膜中,通过加入不同的颜料、填料制备得到不同颜色的聚酯薄膜。
根据本发明的另一个方面,提供一种覆膜铁,所述覆膜铁包括钢板和以热复合方式复合在所述钢板上的如上所述的用于食品包装的具有持久高表面张力的聚酯薄膜,所述覆膜铁具有优良的可印刷性。
根据本发明的另一个方面的覆膜铁,所述钢板选自镀铬钢板、镀锡钢板、低锡钢板、镀锌钢板、冷轧钢板、不锈钢板。
根据本发明的再一个方面,提供一种应用于中高端食品饮料包装用金属容器,所述金属容器采用如上所述的覆膜铁制成。
根据本发明的又一个方面,提供一种用于食品包装的具有持久高表面张力的聚酯薄膜的制备方法,所述方法包括以下步骤:
(1)化学改性聚酯的制备:
将对苯二甲酸、间苯二甲酸、乙二醇、第四组份按比例加入到反应器中,投料摩尔比为对苯二甲酸:乙二醇:间苯二甲酸:第四组份=(135-165):(148-194):(11-15):(0.01-12),所述第四组份选自间苯二甲酸-5-磺酸盐,1,4-环己烷二甲醇,新戊二醇,和偏苯三甲酸中的一种或多种,再加入催化剂,N 2作为保护气,搅拌加热升温,控制温度175-260℃,共聚时间为1-3h,将压力泄至常压;再升温降压,反应釜内升温至240-310℃,压力降到50-100Pa开始真空缩聚,真空缩聚时间为1.6-2.3h,得到聚酯熔体,冷却切粒得到化学改性聚酯,在所述化学改性聚酯中采用原位聚合的方式加入了质量份数为1200ppm的SiO 2
(2)薄膜制备方法:
将步骤(1)得到的化学改性聚酯在沸腾床上烘干,经双螺杆挤出机挤出铸片,铸片先纵向拉伸,然后横向拉伸,最后热定型,所述热定型的温度为150~230℃,时间为6~14s,最后薄膜冷却、收卷,得到双向拉伸聚酯薄膜。
根据本发明的又一个方面的用于食品包装的具有持久高表面张力的 聚酯薄膜的制备方法中,所述催化剂选自三氧化二锑、醋酸锑、乙二醇锑、钛酸酯中的一种或多种。
根据本发明的又一个方面的用于食品包装的具有持久高表面张力的聚酯薄膜的制备方法中,所述催化剂的质量份数为60-300ppm,基于生成的聚酯的量。
根据本发明的又一个方面的用于食品包装的具有持久高表面张力的聚酯薄膜的制备方法中,在所述步骤(2)中双螺杆挤出机的螺杆各段温度为250~270℃,模头温度为270~285℃,挤出机螺杆转速为45~50r/min,铸片厚度为0.15~0.25mm。
根据本发明的又一个方面的用于食品包装的具有持久高表面张力的聚酯薄膜的制备方法中,在所述步骤(2)中铸片先纵向拉伸,拉伸温度为70~80℃,拉伸比为3~4,然后横向拉伸后热定型,拉伸温度为95~105℃,拉伸比2.5~3.5。
具体实施方式
本发明提供一种改性聚酯,其单体为对苯二甲酸、间苯二甲酸、乙二醇和第四组份,其中,改性聚酯中对苯二甲酸、乙二醇、间苯二甲酸和第四组份的摩尔比为A:B:C:D,A为135-165、优选为140-160,B为148-194、优选为155-194、更优选为160-192,C为11-15、优选为12-15,D为0.01-12、优选为3-12;该第四组份选自间苯二甲酸-5-磺酸盐、1,4-环己烷二甲醇、新戊二醇和偏苯三甲酸中的一种或多种,且该改性聚酯含有质量份数为800-2000ppm、优选1000-1500ppm、更优选1200ppm的SiO 2。优选地,所述SiO 2以原位聚合的方式加入所述改性聚酯中。本文所述的“原位聚合加入”指将SiO 2与合成所述改性聚酯的单体一起混合,然后进行聚合,制造得到本发明所述的改性聚酯。
本发明中,间苯二甲酸-5-磺酸盐为间苯二甲酸-5-磺酸的碱金属盐,如间苯二甲酸-5-磺酸钠、间苯二甲酸-5-磺酸钾或者间苯二甲酸-5-磺酸锂。可使用一种或多种间苯二甲酸-5-磺酸盐。当使用间苯二甲酸-5-磺酸盐,其摩尔比的值可在0.01-5的范围内,如在0.5-5或1-4的范围内。当使用1,4-环 己烷二甲醇时,其摩尔比的值可在0.01-3.5的范围内,如在0.05-3.5或0.5-2的范围内。当使用新戊二醇时,其摩尔比的值可在0.5-3.5的范围内,优选在1-3.5的范围内。当使用偏苯三甲酸时,其摩尔比的值可在0.5-5的范围内,如0.5-4。
在一些实施方案中,用于形成本发明改性聚酯的单体为对苯二甲酸、乙二醇、间苯二甲酸、间苯二甲酸-5-磺酸盐、1,4-环己烷二甲醇、新戊二醇和任选的偏苯三甲酸。在这些实施方案中,优选地,这些单体的摩尔比为(135-165):(148-194):(11-15):(0.01-5):(0.01-3.5):(0.5-3.5):(0-5)。在优选的实施方案中,这些单体的摩尔比为(135-165):(160-192):(11-15):(0.01-5):(0.01-3.5):(1-3.5):(0-4)。
在一些优选的实施方案中,本发明的改性聚酯由对苯二甲酸、间苯二甲酸、乙二醇、间苯二甲酸-5-磺酸盐、1,4-环己烷二甲醇和新戊二醇共聚形成,且原位聚合加入了质量份数为1000-1500ppm的SiO 2,其中,各单体的摩尔比为对苯二甲酸:乙二醇:间苯二甲酸:间苯二甲酸-5-磺酸盐:1,4-环己烷二甲醇:新戊二醇=(135-165):(148-194):(11-15):(0.01-5):(0.01-3.5):(0.5-3.5),优选为(135-165):(160-192):(11-15):(0.01-5):(0.01-3.5):(1-3.5)。
本发明改性聚酯的制备包括,按投料摩尔比对苯二甲酸:乙二醇:间苯二甲酸:第四组份=(135-165):(148-194):(11-15):(0.01-12)将本文所述的各原料投入反应器中,在催化剂的存在下和惰性气体如氮气的保护下进行反应。投料时同时投入质量份数为800-2000ppm的SiO 2,以以原位聚合的方式在本发明的改性聚酯中加入SiO 2。反应温度可在175-260℃的范围内,共聚时间可控制在1-3小时的范围内。之后,将反应器内的压力泄至常压,然后再升温降压,将反应器内的温度升至240-310℃,压力降到50-120Pa,开始真空缩聚,真空缩聚时间可控制在1.6-2.3小时的范围内,得到聚酯熔体,冷却得到本发明的化学改性聚酯。可对所得改性聚酯切粒。在一些实施方案中,所述方法还包括烘干的步骤,如在沸腾床上烘干3-6小时,烘干温度可为120~160℃。
优选地,共聚反应的温度可控制在175-200℃的范围内,共聚时间可 控制在1.2-2.2小时的范围内。共聚反应开始时,反应器内的压力可控制在0.08-0.2MPa的范围内,优选控制在0.05-0.12MPa的范围内。真空缩聚反应中,反应温度可控制在260-300℃的范围内,优选控制在265-285℃的范围内,反应时间可控制在1.6-2.0小时的范围内,压力可控制在80-120Pa、优选大约100Pa的范围内。
本发明中,催化剂可选自锑系催化剂和钛酸酯类催化剂中的一种或多种。锑系催化剂包括但不限于三氧化二锑、醋酸锑和乙二醇锑。钛酸酯类催化剂包括但不限于钛酸四丁酯、钛酸异丙酯、钛酸四甲酯、钛酸四乙酯和钛酸四丙酯。可使用这些催化剂中的任意一种或任意多种的混合物。通常,基于生产的改性聚酯的质量,催化剂的加入量为质量份数60-300ppm,如60-280ppm。锑系催化剂的加入量通常在质量份数80-280ppm的范围内,如80-280ppm;钛酸酯类催化剂的加入量通常在质量份数200-280ppm的范围内,如200-260ppm;同时加这两类催化剂时,其添加总量通常在质量份数60-300ppm的范围内。
可使用本发明的改性聚酯制备用于食品包装的具有持久高表面张力的聚酯薄膜。优选地,所述聚酯薄膜的表面张力≥45达因/厘米。
因此,在本发明的一些实施方案中提供一种聚酯薄膜,其由本发明任一实施方案所述的改性聚酯制备得到。在一些实施方案中,该聚酯薄膜的表面张力≥45达因/厘米。
本发明的聚酯薄膜可如下制备:将本发明的改性聚酯经双螺杆挤出机挤出铸片,然后双向拉伸,最后热定型,冷却,由此获得本发明的聚酯薄膜。优选地,挤出机螺杆各段温度为250~270℃,模头温度为270~285℃,挤出机螺杆转速为45~50r/min,铸片厚度为0.15~0.25mm。双向拉伸时,优选地,铸片先纵向拉伸,拉伸温度为70~80℃,拉伸比为3~4,然后横向拉伸,拉伸温度为95~105℃,拉伸比2.5~3.5。热定型时,优选地,热定型温度为150~230℃,时间为6~14s。
可通过加入不同的颜料、填料制备得到不同颜色的聚酯薄膜。
本发明的改性聚酯或聚酯薄膜可用于制备覆膜铁。因此,本发明提供一种覆膜铁,所述覆膜铁包括钢板和本发明任一实施方案所述的改性聚酯 或聚酯薄膜。可以热复合方式将本发明的聚酯薄膜复合在所述钢板上。本发明的覆膜铁具有优良的可印刷性。本发明中,覆膜铁中的钢板可选自镀铬钢板、镀锡钢板、低锡钢板(镀锡量≤1.1g/m 2)、镀锌钢板、冷轧钢板和不锈钢板。
本发明的覆膜铁可用于制备应用于中高端食品饮料包装用金属容器。因此,本发明还提供一种金属容器,其采用本发明所述的覆膜铁制成。
与现有技术相比,本发明具有如下有益技术效果:
本发明提供一种具有极好可印刷性的覆膜铁及其制备方法,所述覆膜铁采用具有持久的高表面张力聚酯薄膜与钢板直接进行热复合方式制备得到。该聚酯薄膜是利用改性普通聚对苯二甲酸乙二醇酯(PET)为母料,利用化学改性分子链设计与嵌入手段改性,经双向拉伸工艺制备而成。其作用机理是引入新官能团破坏普通聚对苯二甲酸乙二醇酯的刚性结构,促使结晶度下降而具有可直接热封性;同时引入亲水性和碱溶性基团,大幅度增加聚酯薄膜表面张力(≥45达因/厘米)并具有持久恒定性。该覆膜铁无需经过表面处理就能保证持久的高表面张力,极好的改善了油墨在覆膜铁表面的润湿铺展能力,在无需火焰、电晕等方式的表面处理就可以达到很好的油墨可印刷性。
本发明所述覆膜铁兼顾高温不变形、阻隔性好、耐腐蚀好,对内容物无污染、不粘连等特点,可广泛的用于各种饮料食品包装容器。同时,本发明所述的覆膜铁不需要经过电晕、火焰处理等表面处理就可以具有极好的可印刷性。
聚合物中通过原位聚合加入SiO 2,从整体上均匀地改善聚酯薄膜的结晶性能;并且通过改善传统以母粒形式加入SiO 2的方式,避免了高熔点树脂加入薄膜中。上述两点使聚酯薄膜的综合性能得到明显提升,包含本发明薄膜的覆膜铁的耐复杂加工性、覆膜铁的耐腐蚀性能等得到显著提高。
由于采用原位聚合的方式加入了质量份数为800-2000ppm的SiO 2,根据本发明的聚酯薄膜以及覆膜铁同时具备如下三种特性:该聚酯薄膜具有高度的食品安全特性,具有耐深冲加工和复杂变形加工性能,具有耐腐蚀性优的特性,可广泛用于中高端金属包装行业。
以下在具体实施方式中通过对非限制性实施例所作的详细描述,本发明的目的、特征、和优点将变得更清楚明显。其内容足以使本领域技术人员了解和实施本发明。
实施例1
改性聚酯的制备:实验在10L反应釜中进行,将对苯二甲酸、间苯二甲酸、乙二醇按照摩尔比为:对苯二甲酸:乙二醇:间苯二甲酸=135:160:12的比例加入到反应器中,再加入催化剂、1,4-环己烷二甲醇、新戊二醇和间苯二甲酸二甲酯-5-磺酸钠,三氧化二锑(质量份数为300ppm)为催化剂,其中1,4-环己烷二甲醇的摩尔比值为3.5、新戊二醇的摩尔比值为1、间苯二甲酸二甲酯-5-磺酸钠的摩尔比值为0.01,用N 2作为保护气,在0.1MPa的气体压力下搅拌加热升温。控制温度185℃,大约两小时待酯化水明显减少时,将压力泄至常压,完成酯化反应。接下来升温降压,反应釜内升温至280℃,压力降到100Pa开始真空缩聚,缩聚1.8h,得到聚酯熔体,水槽冷却切粒得到化学改性聚酯,所述的改性聚酯中采用原位聚合的方式加入了质量份数为1200ppm的SiO 2
改性聚酯薄膜的制备:将得到的母料沸腾床上烘干4小时,烘干温度120~160℃,经双螺杆挤出机挤出铸片,挤出机螺杆各段温度为250~270℃,模头温度为270~285℃,挤出机螺杆转速为45~50r/min,铸片厚度为0.15~0.25mm。铸片先纵向拉伸,拉伸温度为70~80℃,拉伸比为3~4,然后横向拉伸后热定型,拉伸温度为95~105℃,拉伸比2.5~3.5,热定型温度为150~230℃,时间为6~14s,最后薄膜冷却、收卷、分切待用。
覆膜铁的制备:将制备好的双向拉伸聚酯薄膜在压力2~10Kg温度180~260℃下热贴合在0.10~0.50mm的薄钢板表面制得覆膜铁。
实施例2
改性聚酯的制备:实验在10L反应釜中进行,将对苯二甲酸、间苯二甲酸、乙二醇按照摩尔比为:对苯二甲酸:乙二醇:间苯二甲酸=150:180: 14的比例加入到反应器中,再加入催化剂和间苯二甲酸-5-磺酸钠,三氧化二锑(质量份数为40ppm)、钛酸酯(钛酸四丁酯,质量份数为260ppm)为催化剂,其中间苯二甲酸-5-磺酸钠的摩尔比值为3.8,用N 2置换,在0.1MPa的气体压力下搅拌加热升温。控制温度175℃,大约1.5h待有酯化水明显减少时,将压力泄至常压,完成酯化反应。接下来升温降压,反应釜内升温至280℃,压力降到100Pa开始真空缩聚,缩聚1.8h,得到聚酯熔体,水槽冷却切粒得到化学改性聚酯。所述的改性聚酯中采用原位聚合的方式加入了质量份数为1200ppm的SiO 2
改性聚酯薄膜的制备和覆膜铁的制备方法同应用实施例1。
实施例3
改性聚酯的制备:实验在10L反应釜中进行,将对苯二甲酸、间苯二甲酸、乙二醇按照摩尔比为:对苯二甲酸:乙二醇:间苯二甲酸=158:168:15的比例加入到反应器中,再加入催化剂和偏苯三甲酸和间苯二甲酸-5-磺酸钠,三氧化二锑(质量份数为40ppm)、钛酸酯(钛酸异丙酯,质量份数为200ppm)为催化剂,其中偏苯三甲酸的摩尔比值为0.5和间苯二甲酸-5-磺酸钠的摩尔比值为2,用N 2置换,在0.1MPa的气体压力下搅拌加热升温。控制温度175℃,大约1.4h待有酯化水明显减少时,将压力泄至常压,完成酯化反应。接下来升温降压,反应釜内升温至270℃,压力降到100Pa开始真空缩聚,缩聚1.8h,得到聚酯熔体,水槽冷却切粒得到化学改性聚酯。所述的改性聚酯中采用原位聚合的方式加入了质量份数为1200ppm的SiO 2
改性聚酯薄膜的制备和覆膜铁的制备方法同应用实施例1。
实施例4
改性聚酯的制备:实验在10L反应釜中进行,将对苯二甲酸、间苯二甲酸、乙二醇、按照摩尔比为:对苯二甲酸:乙二醇:间苯二甲酸=165:192:11的比例加入到反应器中,再加入催化剂、1,4-环己烷二甲醇、新戊二醇、偏苯三甲酸和间苯二甲酸-5-磺酸钾,醋酸锑(质量份数为180ppm) 为催化剂,其中1,4-环己烷二甲醇的摩尔比值为1,其中新戊二醇的摩尔比值为2.5,其中偏苯三甲酸的摩尔比值为0.5和间苯二甲酸-5-磺酸钾的摩尔比值为1,用N 2作为保护气,在0.1MPa的气体压力下搅拌加热升温。控制温度185℃,大约两小时待有酯化水明显减少时,将压力泄至常压,完成酯化反应。接下来升温降压,反应釜内升温至280℃,压力降到100Pa开始真空缩聚,缩聚1.8h,得到聚酯熔体,水槽冷却切粒得到化学改性聚酯。所述的改性聚酯中采用原位聚合的方式加入了质量份数为1200ppm的SiO 2
改性聚酯薄膜的制备和覆膜铁的制备方法同应用实施例1。
实施例5
改性聚酯的制备:实验在10L反应釜中进行,将对苯二甲酸、间苯二甲酸、乙二醇、按照摩尔比为:对苯二甲酸:乙二醇:间苯二甲酸=140:190:13的比例加入到反应器中,再加入催化剂、1,4-环己烷二甲醇、新戊二醇、偏苯三甲酸和间苯二甲酸-5-磺酸钠,三氧化二锑(质量份数为40ppm)、钛酸酯(钛酸四甲酯,质量份数为60ppm)为催化剂,其中1,4-环己烷二甲醇的摩尔比值为0.01,其中新戊二醇的摩尔比值为3.5,其中偏苯三甲酸的摩尔比值为2.8和间苯二甲酸-5-磺酸钠的摩尔比值为0.2,用N 2作为保护气,在0.1MPa的气体压力下搅拌加热升温。控制温度185℃,大约两小时待有酯化水明显减少时,将压力泄至常压,完成酯化反应。接下来升温降压,反应釜内升温至280℃,压力降到100Pa开始真空缩聚,缩聚1.8h,得到聚酯熔体,水槽冷却切粒得到化学改性聚酯。所述的改性聚酯中采用原位聚合的方式加入了质量份数为1200ppm的SiO 2
改性聚酯薄膜的制备和覆膜铁的制备方法同应用实施例1。
实施例6
改性聚酯的制备:实验在10L反应釜中进行,将对苯二甲酸、间苯二甲酸、乙二醇按照摩尔比为:对苯二甲酸:乙二醇:间苯二甲酸=150:180:12的比例加入到反应器中,再加入催化剂、1,4-环己烷二甲醇、新戊二醇 和间苯二甲酸-5-磺酸钠,钛酸酯(钛酸四乙酯,质量份数为60ppm)为催化剂,其中1,4-环己烷二甲醇的摩尔比值为3,其中新戊二醇的摩尔比值为1.5,其中间苯二甲酸-5-磺酸钠的摩尔比值为0.5,用N 2作为保护气,在0.1MPa的气体压力下搅拌加热升温。控制温度185℃,大约两小时待有酯化水明显减少时,将压力泄至常压,完成酯化反应。接下来升温降压,反应釜内升温至280℃,压力降到100Pa开始真空缩聚,缩聚1.8h,得到聚酯熔体,水槽冷却切粒得到化学改性聚酯。所述的改性聚酯中采用原位聚合的方式加入了质量份数为1200ppm的SiO 2
改性聚酯薄膜的制备和覆膜铁的制备方法同应用实施例1。
实施例7
改性聚酯的制备:实验在10L反应釜中进行,将对苯二甲酸、间苯二甲酸、乙二醇按照摩尔比为:对苯二甲酸:乙二醇:间苯二甲酸=155:175:13的比例加入到反应器中,再加入催化剂、1,4-环己烷二甲醇、新戊二醇和间苯二甲酸-5-磺酸钠,醋酸锑(质量份数为300ppm)为催化剂,其中1,4-环己烷二甲醇的摩尔比值为0.05、新戊二醇的摩尔比值为3.5、间苯二甲酸-5-磺酸钠的摩尔比值为3.5,用N 2作为保护气,在0.1MPa的气体压力下搅拌加热升温。控制温度185℃,大约两小时待有酯化水明显减少时,将压力泄至常压,完成酯化反应。接下来升温降压,反应釜内升温至280℃,压力降到100Pa开始真空缩聚,缩聚1.8h,得到聚酯熔体,水槽冷却切粒得到化学改性聚酯。所述的改性聚酯中采用原位聚合的方式加入了质量份数为1200ppm的SiO 2
改性聚酯薄膜的制备和覆膜铁的制备方法同应用实施例1。
实施例8
改性聚酯的制备:实验在10L反应釜中进行,将对苯二甲酸、间苯二甲酸、乙二醇按照摩尔比为:对苯二甲酸:乙二醇:间苯二甲酸=135:182:15的比例加入到反应器中,再加入催化剂、1,4-环己烷二甲醇、新戊二醇和间苯二甲酸-5-磺酸钠,钛酸酯(钛酸四丁酯,质量份数为200ppm)为 催化剂,其中1,4-环己烷二甲醇的摩尔比值为0.01、新戊二醇的摩尔比值为0.5、间苯二甲酸-5-磺酸钠的摩尔比值为5,用N 2作为保护气,在0.1MPa的气体压力下搅拌加热升温。控制温度185℃,大约两小时待有酯化水明显减少时,将压力泄至常压,完成酯化反应。接下来升温降压,反应釜内升温至280℃,压力降到100Pa开始真空缩聚,缩聚1.8h,得到聚酯熔体,水槽冷却切粒得到化学改性聚酯。所述的改性聚酯中采用原位聚合的方式加入了质量份数为1200ppm的SiO 2
改性聚酯薄膜的制备和覆膜铁的制备方法同应用实施例1。
实施例9
改性聚酯的制备:实验在10L反应釜中进行,将对苯二甲酸、间苯二甲酸、乙二醇按照摩尔比为:对苯二甲酸:乙二醇:间苯二甲酸=148:180:15的比例加入到反应器中,再加入催化剂、1,4-环己烷二甲醇、新戊二醇和间苯二甲酸-5-磺酸钠,三氧化二锑(质量份数为60ppm)为催化剂,其中1,4-环己烷二甲醇的摩尔比值为2,其中新戊二醇的摩尔比值为2,间苯二甲酸-5-磺酸钠的摩尔比值为1,用N 2作为保护气,在0.1MPa的气体压力搅拌加热升温。控制温度185℃,大约两小时待有酯化水明显减少时,将压力泄至常压,完成酯化反应。接下来升温降压,反应釜内升温至280℃,压力降到100Pa开始真空缩聚,缩聚1.8h,得到聚酯熔体,水槽冷却切粒得到化学改性聚酯。所述的改性聚酯中采用原位聚合的方式加入了质量份数为1200ppm的SiO 2
改性聚酯薄膜的制备和覆膜铁的制备方法同应用实施例1。
实施例10
改性聚酯的制备:实验在10L反应釜中进行,将对苯二甲酸、间苯二甲酸、乙二醇按照摩尔比为:对苯二甲酸:乙二醇:间苯二甲酸=150:188:12的比例加入到反应器中,再加入催化剂、1,4-环己烷二甲醇、新戊二醇、偏苯三甲酸和间苯二甲酸-5-磺酸钾,乙二醇锑(质量份数为180ppm)为催化剂,其中1,4-环己烷二甲醇的摩尔比值为2,其中新戊二醇的摩尔比 值为2、其中偏苯三甲酸的摩尔比值为4和间苯二甲酸-5-磺酸钾的摩尔比值为0.1,用N 2作为保护气,在0.1MPa的气体压力下搅拌加热升温。控制温度185℃,大约两小时待有酯化水明显减少时,将压力泄至常压,完成酯化反应。接下来升温降压,反应釜内升温至280℃,压力降到100Pa开始真空缩聚,缩聚1.8h,得到聚酯熔体,水槽冷却切粒得到化学改性聚酯。所述的改性聚酯中采用原位聚合的方式加入了质量份数为1200ppm的SiO 2
改性聚酯薄膜的制备和覆膜铁的制备方法同应用实施例1。
实施例11
参照实施例1的方法制备改性聚酯,但SiO 2的加入质量份数为800ppm。如实施例1所述由实施例11制备得到的改性聚酯制备改性聚酯薄膜和覆膜铁。
实施例12
参照实施例2的方法制备改性聚酯,但SiO 2的加入质量份数为2000ppm。如实施例1所述由实施例12制备得到的改性聚酯制备改性聚酯薄膜和覆膜铁。
效果实施例
将实施例1-12所制得的覆膜铁进行表面张力测试。
表面张力测试标准为:JISK-6763-71,具体方法如下:配制具有一系列各种表面张力值的混合液,然后用清洁棉球棒蘸取混合液,在覆膜铁的表面涂布约6cm 2液膜,若液膜保持2s以上不破,则表明该覆膜铁的表面张力比所用的混合液要大,继续用更高表面张力的溶液进行尝试,反之若液膜破裂则表明该覆膜铁表面张力小于混合液,用较低表面张力值的液体进行尝试,直至达到临界条件,前一档混合液能铺展,但更高一档的混合液不能,那么前一档混合液的表面张力就是该覆膜铁的表面张力。
本发明制备的覆膜铁用膜是利用本体改性的方法,在分子链设计时就 加入具有保持持久表面张力的第四组分,所以所制备的覆膜铁不会因储存时间的加长而表面张力退化。对实施例1-12进行表面张力测试,测试结果均在45-52达因/厘米之间。
最后,需要指出的是,虽然本发明已参照的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,在不脱离本发明构思的前提下还可以作出各种等效的变化或替换,因此,只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本发明的权利要求书范围内。

Claims (22)

  1. 一种改性聚酯,其特征在于,形成该改性聚酯的单体为对苯二甲酸、间苯二甲酸、乙二醇和第四组份,其中,改性聚酯中对苯二甲酸、乙二醇、间苯二甲酸和第四组份的摩尔比为A:B:C:D,A为135-165,B为148-194,C为11-15,D为0.01-12;该第四组份选自间苯二甲酸-5-磺酸盐、1,4-环己烷二甲醇、新戊二醇和偏苯三甲酸中的一种或多种,且该改性聚酯含有质量份数为800-2000ppm的SiO 2
  2. 如权利要求1所述的改性聚酯,其特征在于,A为140-160,B为160-194,C为12-15,D为3-12;SiO 2的质量份数为1000-1500ppm。
  3. 如权利要求1所述的改性聚酯,其特征在于,SiO 2的质量份数为1200ppm。
  4. 如权利要求1所述的改性聚酯,其特征在于,所述间苯二甲酸-5-磺酸盐选自间苯二甲酸-5-磺酸钠、间苯二甲酸-5-磺酸钾和间苯二甲酸-5-磺酸锂。
  5. 如权利要求1所述的改性聚酯,其特征在于,形成所述改性聚酯的单体为对苯二甲酸、乙二醇、间苯二甲酸、间苯二甲酸-5-磺酸盐、1,4-环己烷二甲醇、新戊二醇和任选的偏苯三甲酸,其中,这些单体的摩尔比为(135-165):(148-194):(11-15):(0.01-5):(0.01-3.5):(0.5-3.5):(0-4)。
  6. 如权利要求1所述的改性聚酯,其特征在于,所述对苯二甲酸、乙二醇、间苯二甲酸、间苯二甲酸-5-磺酸盐、1,4-环己烷二甲醇、新戊二醇和任选的偏苯三甲酸的摩尔比为(135-165):(160-192):(11-15): (0.01-5):(0.01-3.5):(1-3.5):(0-4)。
  7. 权利要求1-6中任一项所述的改性聚酯的制备方法,其特征在于,所述方法包括,按对苯二甲酸:乙二醇:间苯二甲酸:第四组份=(135-165):(148-194):(11-15):(0.01-12)的投料摩尔比将所述各原料投入反应器中,同时投入质量份数为800-2000ppm的SiO 2,在催化剂的存在下和惰性气体的保护下进行反应,得到聚酯熔体后冷却,从而制备得到所述的改性聚酯。
  8. 如权利要求7所述的制备方法,其特征在于,所述反应包括共聚反应和真空缩聚反应;其中,共聚反应的反应温度为175-260℃,共聚时间1-3小时;共聚反应后,将反应器内的压力泄至常压,然后再升温降压,将反应器内的温度升至240-310℃,压力降到50-120Pa,开始真空缩聚,真空缩聚时间为1.6-2.3小时。
  9. 如权利要求7所述的制备方法,其特征在于,基于生成的聚酯的量,所述催化剂的加入量为质量份数60-300ppm,且所述催化剂选自锑系催化剂和钛酸酯类催化剂中的一种或多种。
  10. 如权利要求9所述的制备方法,其特征在于,所述锑系催化剂选自三氧化二锑、醋酸锑和乙二醇锑,所述钛酸酯类催化剂选自钛酸四丁酯、钛酸异丙酯、钛酸四甲酯、钛酸四乙酯和钛酸四丙酯。
  11. 一种聚酯薄膜,含有权利要求1-6中任一项所述的改性聚酯,或由权利要求1-6中任一项所述的改性聚酯经双向拉伸制备得到。
  12. 如权利要求11所述的聚酯薄膜,其特征在于,所述聚酯薄膜的表面张力≥45达因/厘米。
  13. 如权利要求11所述的聚酯薄膜,其特征在于,所述聚酯薄膜含有不同的颜料和填料,从而具有不同颜色。
  14. 一种覆膜铁,其特征在于,所述覆膜铁包括钢板和以热复合方式复合在所述钢板上的如权利要求11-13中任一项所述的聚酯薄膜。
  15. 如权利要求14所述的覆膜铁,其特征在于,所述钢板选自镀铬钢板、镀锡钢板、低锡钢板、镀锌钢板、冷轧钢板和不锈钢板。
  16. 一种应用于中高端食品饮料包装用金属容器,其特征在于,所述金属容器采用如权利要求14或15所述的覆膜铁制成。
  17. 一种用于食品包装的具有持久高表面张力的聚酯薄膜的制备方法,其特征在于,所述方法包括将权利要求1-6中任一项所述的改性聚酯经双螺杆挤出机挤出铸片,铸片经双向拉伸后热定型,冷却,得到双向拉伸聚酯薄膜。
  18. 如权利要求17所述的用于食品包装的具有持久高表面张力的聚酯薄膜的制备方法,其特征在于,所述方法包括以下步骤:
    (1)化学改性聚酯的制备:
    将对苯二甲酸、间苯二甲酸、乙二醇、第四组份按比例加入到反应器中,投料摩尔比为对苯二甲酸:乙二醇:间苯二甲酸:第四组份=(135-165):(148-194):(11-15):(0.01-12),所述第四组份选自间苯二甲酸-5-磺酸盐,1,4-环己烷二甲醇,新戊二醇,和偏苯三甲酸中的一种或多种,再加入催化剂,N 2作为保护气,搅拌加热升温,控制温度175-260℃,共聚时间为1-3h,将压力泄至常压;再升温降压,反应釜内升温至240-310℃,压力降到50-100Pa开始真空缩聚,真空缩聚时间为1.6-2.3h,得到聚酯熔体,冷却切粒得到化学改性聚酯,在所述化学改性聚酯中采用原位聚合的方式加入了质量份数为800-2000ppm的SiO 2
    (2)薄膜制备方法:
    将步骤(1)得到的化学改性聚酯在沸腾床上烘干,经双螺杆挤出机挤出铸片,铸片先纵向拉伸,然后横向拉伸,最后热定型,所述热定型的温度为150~230℃,时间为6~14s,最后薄膜冷却、收卷,得到双向拉伸聚酯薄膜。
  19. 如权利要求18所述的用于食品包装的具有持久高表面张力的聚酯薄膜的制备方法,其特征在于,所述催化剂选自三氧化二锑、醋酸锑、乙二醇锑、钛酸酯中的一种或多种。
  20. 如权利要求19所述的用于食品包装的具有持久高表面张力的聚酯薄膜的制备方法,其特征在于,所述催化剂的加入量为质量份数60-300ppm,基于生成的聚酯的量。
  21. 如权利要求18所述的具有持久高表面张力的聚酯薄膜的制备方法,其特征在于,在所述步骤(2)中双螺杆挤出机的螺杆各段温度为250~270℃,模头温度为270~285℃,挤出机螺杆转速为45~50r/min,铸片厚度为0.15~0.25mm。
  22. 如权利要求18所述的具有持久高表面张力的聚酯薄膜的制备方法,其特征在于,在所述步骤(2)中铸片先纵向拉伸,拉伸温度为70~80℃,拉伸比为3~4,然后横向拉伸后热定型,拉伸温度为95~105℃,拉伸比2.5~3.5。
PCT/CN2019/106617 2018-09-19 2019-09-19 用于食品包装的具有持久高表面张力的覆膜铁及制备方法 WO2020057587A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19862974.3A EP3854850A4 (en) 2018-09-19 2019-09-19 LAMINATED IRON FOR FOOD PACKAGING WITH PERMANENT AND HIGH SURFACE TENSION AND METHOD OF MANUFACTURING
US17/277,495 US20210395448A1 (en) 2018-09-19 2019-09-19 Laminated iron used for food packaging and having durable and high surface tension force, and preparation method
PH12021550590A PH12021550590A1 (en) 2018-09-19 2021-03-17 Laminated iron used for food packaging and having durable and high surface tension force, and preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811090601.0 2018-09-19
CN201811090601.0A CN110922574A (zh) 2018-09-19 2018-09-19 用于食品包装的具有持久高表面张力的覆膜铁及制备方法

Publications (1)

Publication Number Publication Date
WO2020057587A1 true WO2020057587A1 (zh) 2020-03-26

Family

ID=69855819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106617 WO2020057587A1 (zh) 2018-09-19 2019-09-19 用于食品包装的具有持久高表面张力的覆膜铁及制备方法

Country Status (5)

Country Link
US (1) US20210395448A1 (zh)
EP (1) EP3854850A4 (zh)
CN (1) CN110922574A (zh)
PH (1) PH12021550590A1 (zh)
WO (1) WO2020057587A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194808A (zh) * 2020-09-28 2021-01-08 内蒙古广播电视大学(内蒙古现代远程开放教育中心、内蒙古老年开放大学) 一种艺术设计包装薄膜材料及其制备方法
CN114536887A (zh) * 2022-02-09 2022-05-27 江阴卓普新型包装材料有限公司 一种覆膜铁及其加工工艺
CN115895010B (zh) * 2023-01-06 2023-05-02 河南华佳新材料技术有限公司 一种电容器用阻燃耐高温金属化薄膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110722A (en) * 1980-02-07 1981-09-02 Toray Ind Inc Preparation of polyester with excellent particle dispersibility
CN1580092A (zh) * 2004-05-18 2005-02-16 南亚塑胶工业股份有限公司 一种共聚酯及使用这种共聚酯制成热收缩套管的方法
CN102432984A (zh) 2011-09-02 2012-05-02 奥瑞金包装股份有限公司 聚酯薄膜、其制备方法及用途
CN103665352A (zh) * 2013-12-27 2014-03-26 天津万华股份有限公司 环保型覆铁专用改性聚酯切片的制备方法
CN105077898A (zh) * 2015-08-19 2015-11-25 树业环保科技股份有限公司 一种pet无纺布购物袋及其制备方法
US20170152075A1 (en) 2015-11-30 2017-06-01 Toray Plastics (America), Inc. Silicone coated polyester film for release of canned meat products
CN106957616A (zh) 2017-05-05 2017-07-18 杭州大华塑业有限公司 一种可印刷型覆铁膜及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310787A (en) * 1991-06-04 1994-05-10 Du Pont-Mitsui Polychemicals Co., Ltd. Polyester packaging material
JP4182579B2 (ja) * 1998-12-03 2008-11-19 東レ株式会社 積層ポリエステルフィルム
US6765070B2 (en) * 2001-05-18 2004-07-20 Mitsubishi Chemical Corporation Copolymerized polyester resin composition and stretched film
US6924349B2 (en) * 2003-06-23 2005-08-02 Sk Chemicals Co., Ltd. Copolyester resin and articles using the same
JP2013194144A (ja) * 2012-03-21 2013-09-30 Mitsubishi Plastics Inc 易延伸ポリエステルフィルム。
CN105985612B (zh) * 2015-01-29 2018-06-01 宝山钢铁股份有限公司 用于与金属表面直接进行热复合的聚酯薄膜及其制备方法
US10576712B2 (en) * 2015-03-26 2020-03-03 Jfe Steel Corporation Resin-coated metal sheet for container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56110722A (en) * 1980-02-07 1981-09-02 Toray Ind Inc Preparation of polyester with excellent particle dispersibility
CN1580092A (zh) * 2004-05-18 2005-02-16 南亚塑胶工业股份有限公司 一种共聚酯及使用这种共聚酯制成热收缩套管的方法
CN102432984A (zh) 2011-09-02 2012-05-02 奥瑞金包装股份有限公司 聚酯薄膜、其制备方法及用途
CN103665352A (zh) * 2013-12-27 2014-03-26 天津万华股份有限公司 环保型覆铁专用改性聚酯切片的制备方法
CN105077898A (zh) * 2015-08-19 2015-11-25 树业环保科技股份有限公司 一种pet无纺布购物袋及其制备方法
US20170152075A1 (en) 2015-11-30 2017-06-01 Toray Plastics (America), Inc. Silicone coated polyester film for release of canned meat products
CN106957616A (zh) 2017-05-05 2017-07-18 杭州大华塑业有限公司 一种可印刷型覆铁膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3854850A4

Also Published As

Publication number Publication date
PH12021550590A1 (en) 2021-11-29
US20210395448A1 (en) 2021-12-23
CN110922574A (zh) 2020-03-27
EP3854850A1 (en) 2021-07-28
EP3854850A4 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
JP4655365B2 (ja) 成形加工用二軸延伸ポリエステルフィルム
WO2020057587A1 (zh) 用于食品包装的具有持久高表面张力的覆膜铁及制备方法
KR102263118B1 (ko) 폴리에스테르 필름, 이의 제조 방법, 및 이를 이용한 폴리에틸렌테레프탈레이트 용기의 재생 방법
KR100721323B1 (ko) 성형가공용 이축연신 폴리에스테르필름
JP2012509785A (ja) 包装物品及び積層フィルム
KR100494598B1 (ko) 용기성형용이축연신폴리에스테르필름및그의제조방법
WO1997045483A1 (fr) Composition de resine polyester, film obtenu a partir de cette composition, film composite polyester, laminat metallique obtenu a partir de ce film et procede permettant de diminuer le contenu d'un polyester en composes de faible poids moleculaire
WO2015012222A1 (ja) 有機樹脂被覆金属板、その製造方法、その有機樹脂被覆金属板を加工して成る金属缶、及び、缶蓋
JP3753592B2 (ja) 金属板ラミネート用ポリエステルフィルム
JP4608729B2 (ja) 金属板貼合せ用二軸延伸着色ポリエステルフィルム
JP2009051965A (ja) 金属板ラミネート用水系接着剤、およびこれを積層してなる金属板ラミネート用ポリエステルフィルム
JP3181565B2 (ja) 金属缶胴部外面ラミネート用ポリエステルフィルム
JP4532137B2 (ja) 金属板ラミネート用フィルム、フィルムラミネート金属板、および金属缶体
JP4993974B2 (ja) 金属板ラミネート用水系接着剤、およびこれを積層してなる金属板ラミネート用ポリエステルフィルム
JP2010168432A (ja) 金属板ラミネート用ポリエステルフィルム
JP2004034451A (ja) 熱収縮性ポリエステル系フィルムの製造方法
JP3293297B2 (ja) 金属板ラミネート用ポリエステルフィルム
JP2010031207A (ja) 共重合ポリエステル樹脂組成物およびそれからなる二軸配向フィルム
JPH0858045A (ja) 金属ラミネート用ポリエステル系複合フィルム、ラミネート金属板および金属容器
JP2000345013A (ja) 成形用ポリエステル樹脂
JPH04368770A (ja) 乾電池用胴巻きラベル
JPH07316317A (ja) 金属ラミネート用ポリエステル系フィルム、ラミネート金属板及び金属容器
JP4121316B2 (ja) 金属板ラミネート用白色積層ポリエステルフィルム
JP4591057B2 (ja) 絞りしごき缶被覆用フィルム、絞りしごき缶用金属板及び絞りしごき缶
JPH0790094A (ja) 金属板ラミネート用ポリエステルフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019862974

Country of ref document: EP

Effective date: 20210419