WO2020055199A1 - 황산화 히알루론산 기반의 하이드로겔 및 이를 포함하는 약제학적 조성물 - Google Patents
황산화 히알루론산 기반의 하이드로겔 및 이를 포함하는 약제학적 조성물 Download PDFInfo
- Publication number
- WO2020055199A1 WO2020055199A1 PCT/KR2019/011888 KR2019011888W WO2020055199A1 WO 2020055199 A1 WO2020055199 A1 WO 2020055199A1 KR 2019011888 W KR2019011888 W KR 2019011888W WO 2020055199 A1 WO2020055199 A1 WO 2020055199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hyaluronic acid
- sulfated
- sulfated hyaluronic
- hydrogel
- group
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/715—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- A61K31/726—Glycosaminoglycans, i.e. mucopolysaccharides
- A61K31/728—Hyaluronic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Definitions
- the present invention relates to a hydrogel based on sulfated hyaluronic acid and a pharmaceutical composition comprising the same.
- Hyaluronic acid is a polysaccharide molecule with significant viscoelastic properties.
- Hyaluronic acid acts as a lubricant and shock absorber and is present in the joint cavity as a basic component of synovial fluid that protects chondrocytes against inflammatory cytokine activity (Asari et al., Arch Histol Cytol, 1995 , 58: 65-76; Brun et al., Osteoarthr Cartil, 2003, 11: 208-16; Stove et al., J Orthop Res, 2002, 20: 551-5).
- Hyaluronic acid has long been used as a “viscosupplement” or lubricant to treat degenerative osteoarthritis or the like in its own or derivative form.
- Sulphated hyaluronic acid and its derivatives have known anti-inflammatory and anti-VEGF efficacy.
- sulfated hyaluronic acid as a drug having actual efficacy, it is necessary to increase the residual rate in the body and to have physical properties suitable for use.
- the known sulfated hyaluronic acid polymer solution is rapidly decomposed in the body, and it is difficult to control physical properties according to the use.
- a sulfated hyaluronic acid-based material that exhibits anti-inflammatory and anti-VEGF efficacy, has resistance to decomposition, prolongs the efficacy in the body, and can control physical properties for each use.
- the present invention is to provide a new hydrosulfate-based hydrogel based hydrogel for controlling the physical properties of the sulfated hyaluronic acid in the body for long-term efficacy and use.
- the present invention is to provide an anti-inflammatory or anti-angiogenic pharmaceutical composition containing the sulfated hyaluronic acid-based hydrogel as an active ingredient.
- the present invention is a hydrogel formed by crosslinking a hyaluronic acid crosslinking monomer comprising at least one selected from the group consisting of hyaluronic acid, its derivatives and salts with a crosslinking agent, at least selected from the group consisting of sulfated hyaluronic acid, its derivatives and salts It provides a hydrogel based on sulfated hyaluronic acid, one or more of which are included in an interpenetrating network structure.
- the present invention provides an anti-inflammatory or anti-angiogenic pharmaceutical composition
- an anti-inflammatory or anti-angiogenic pharmaceutical composition comprising the sulfated hyaluronic acid-based hydrogel as an active ingredient.
- the present invention provides a pharmaceutical composition for the prevention or treatment of arthritis, prevention or treatment of eye diseases, anti-cancer, comprising the sulfated hyaluronic acid-based hydrogel as an active ingredient.
- the hydrogel based on sulfated hyaluronic acid according to the present invention has an anti-inflammatory or anti-angiogenic effect, can inhibit decomposition in the body, prolong the anti-inflammatory or anti-angiogenic effect, and easily adapt the physical properties of the gel to suit the application. Can be adjusted.
- the hydrogel based sulfated hyaluronic acid according to the present invention can be effectively used as an anti-cancer agent for the prevention or treatment of arthritis and eye diseases.
- FIG. 1 is a schematic diagram illustrating a hydrogel structure based on the sulfated hyaluronic acid of the present invention.
- Figure 3 is a 1H NMR results for confirming the hydrogel based on the sulfated hyaluronic acid of the present invention.
- FIG. 4 is a graph evaluating the stability of the hydrogel based on the sulfated hyaluronic acid of the present invention.
- FIG. 5 is a graph of enzyme resistance evaluation of a hydrogel based on sulfated hyaluronic acid of the present invention.
- FIG. 6 is a graph of cytotoxicity evaluation of a hydrogel based on sulfated hyaluronic acid of the present invention.
- Figure 7 is a graph of the anti-proliferation (proliferation) efficacy evaluation of the hydrogel-based hydrogel of the present invention.
- FIG. 8 is an optical micrograph of vascular tube formation of VEGF-treated samples of HUVEC cells and non-VEGF-treated samples of HUVEC cells.
- FIG. 9 is an optical micrograph for observing the efficacy of inhibiting tube formation during treatment with a sulfated hyaluronic acid-based hydrogel (HA / SHA Gel) on a VEGF-treated sample of HUVEC cells.
- HA / SHA Gel sulfated hyaluronic acid-based hydrogel
- 10 and 11 are graphs of anti-inflammatory efficacy evaluation of the hydrogel based on the sulfated hyaluronic acid of the present invention.
- FIG. 12 is a graph for evaluating the efficacy of osteoarthritis treatment using tissue analysis of a rabbit anterior cruciate ligament rupture animal model of a sulfated hyaluronic acid based hydrogel (HA / SHA Gel) of the present invention.
- 13 to 15 is an evaluation of the efficacy of treatment of osteoarthritis using a synovial fluid inflammatory cytokine concentration analysis of a rabbit anterior cruciate ligament rupture animal model of sulfated hyaluronic acid-based hydrogel (HA / SHA Gel) of the present invention. It is a graph.
- the present invention provides a sulfated hyaluronic acid based hydrogel formed by including at least one selected from the group consisting of sulfated hyaluronic acid, its derivatives and salts.
- a hyaluronic acid crosslinking monomer comprising at least one or more selected from the group consisting of hyaluronic acid, its derivatives and salts, a sulfated hyaluronic acid, At least one selected from the group consisting of its derivatives and salts is included as an interpenetrating network structure.
- the present invention provides a hydrogel based on a sulfated hyaluronic acid formed by including at least one selected from the group consisting of sulfated hyaluronic acid, its derivatives, and salts, thereby inhibiting decomposition in the body and inhibiting the body of sulfated hyaluronic acid.
- the hydrogel based on sulfated hyaluronic acid according to the present invention has an anti-inflammatory or anti-angiogenic effect, and can be effectively used as an anti-cancer agent for the prevention or treatment of arthritis and eye diseases.
- the sulfated hyaluronic acid means that at least one of the alcoholic hydroxyl groups of hyaluronic acid is sulfated and substituted, and the sulfated hyaluronic acid derivative means other chemically modified sulfated hyaluronic acid or substituted sulfated hyaluronic acid. .
- sulfated hyaluronic acid derivatives include sulfated hyaluronic acid-poloxamer derivatives, sulfated hyaluronic acid-polyethylene glycol derivatives, sulfated hyaluronic acid- (CH 2 ) n- CH 3 derivatives, sulfated hyaluronic acid-benzyl esters It may be composed of one or more selected from derivatives, sulfated hyaluronic acid-chitosan derivatives, sulfated hyaluronic acid-PLGA derivatives, sulfated hyaluronic acid-gelatin or sulfated hyaluronic acid-collagen derivatives.
- the sulfated hyaluronic acid salt is selected from, for example, sodium sulfated hyaluronate, calcium sulfated hyaluronate, magnesium sulfated hyaluronate, zinc sulfated hyaluronate, cobalt sulfated hyaluronate or tetrabutylammonium sulfated hyaluronate It may be composed of one or more. Alternatively, the sulfated hyaluronic acid may be represented by, for example, the following formula.
- R 1 may each independently be SO 3 H or H, and n is an integer of 1 or more.
- At least one or more selected from the group consisting of the sulfated hyaluronic acid, its derivatives and salts may have a weight average molecular weight (Mw) of 800 to 5,000 kDa. More preferably, it may be 1,000 to 4,000 kDa, and more preferably 1,200 to 3,000 kDa.
- Mw weight average molecular weight
- sulfated hyaluronic acid, its derivatives or salts within the weight average molecular weight range, reactivity with a crosslinking agent and ease of hydrogel production can be improved, and physical properties of the prepared hydrogel can be improved.
- sulfated hyaluronic acid refers to both sulfated hyaluronic acid and its derivatives and salts.
- the sulfated hyaluronic acid is a primary -OH group, that is, the C6 site of hyaluronic acid is sulfated and substituted, so that the sulfated hyaluronic acid is used as a crosslinking monomer to crosslink with a crosslinking agent. It was difficult to form a hydrogel based on sulfated hyaluronic acid.
- the present invention is in the group consisting of the sulfated hyaluronic acid, its derivatives and salts in a hydrogel formed by crosslinking a hyaluronic acid crosslinking monomer comprising at least one selected from the group consisting of hyaluronic acid, its derivatives and salts with a crosslinking agent It provides a hydrogel based on a sulfated hyaluronic acid in which at least one selected is included as an interpenetrating network structure.
- the hyaluronic acid crosslinking monomer is a hyaluronic acid which is not sulfated and substituted, a derivative or a salt thereof, and such a hyaluronic acid crosslinking monomer is crosslinked to form a hydrogel, and the sulfated hyaluronic acid sulfated and substituted in the hydrogel Or it is a hydrogel based on sulfated hyaluronic acid in the form of a salt contained in an interpenetrating network structure.
- FIG. 1 is a schematic diagram illustrating a hydrogel structure based on the sulfated hyaluronic acid of the present invention.
- a linear sulfated HA in a network structure of a hyaluronic acid hydrogel (HA hydrogel) crosslinked with a crosslinking agent (ex) BDDE) is a physical structure that is entangled without chemical bonding. Is formed, and this structure is called an interpenetrating network structure.
- the sulfated hyaluronic acid may be at least one selected from the group consisting of sulfated hyaluronic acid, derivatives and salts of which 90% or more of the C6 sites of hyaluronic acid are sulfated.
- the sulfated hyaluronic acid may be at least one selected from the group consisting of sulfated hyaluronic acid, derivatives and salts of which 90% to 100% of the C6 sites of hyaluronic acid are sulfated, more preferably May be at least one selected from the group consisting of sulfated hyaluronic acid, its derivatives, and salts in which all of the C6 sites of hyaluronic acid are sulfated. That is, the sulfated hyaluronic acid may be one in which primary -OH groups are 100% sulfated substituted, and in this specification, primary -OH groups are 100% sulfated substituted in complete sulfuric acid. It is referred to as full hyaluronic acid (full sulfated HA).
- hyaluronic acid has a total of four -OH groups, including three secondary -OH groups in addition to the primary -OH groups.
- primary) -OH group is first sulfated substituted, the further the reaction proceeds, the secondary (OH) group can be sulfated substituted, and when all -OH of hyaluronic acid is sulfated substituted, the total substitution rate is 400%.
- the sulfated hyaluronic acid according to an embodiment of the present invention may further preferably have a total substitution ratio of up to a secondary -OH group of 90 to 400%, more preferably 100 to 400%.
- Such a hydrogel based on sulfated hyaluronic acid according to the present invention has a weight ratio of at least one selected from the group consisting of the sulfated hyaluronic acid, its derivatives and salts and the hyaluronic acid crosslinking monomer in a weight ratio of 10:90 to 70:30. It may be formed by including.
- the sulfated hyaluronic acid and the hyaluronic acid crosslinking monomer may be formed by including a weight ratio of 20:80 to 60:40, and more preferably formed by including a weight ratio of 30:70 to 50:50 May be By forming a cross-linked monomer that is a full sulfated HA and a sulfated unsubstituted hyaluronic acid (HA) within the above weight ratio range, it contains a sulfated hyaluronic acid and is a primary -OH of hyaluronic acid.
- HA sulfated unsubstituted hyaluronic acid
- the hydrogel based on sulfated hyaluronic acid according to an embodiment of the present invention may be formed using a crosslinking agent that crosslinks using a -OH group of hyaluronic acid.
- the crosslinking agent is, for example, 1,4-butanediol diglycidyl ether (BDDE), polyethylene glycol diglycidyl ether (Poly (ethylene glycol) diglycidyl ether), bisphenol A diglycidyl ether, glycerol diglycidyl ether, ethylene glycol diglycidyl ether, Ethylene glycol diglycidyl ether, Polypropylene glycol diglycidyl ether, divinyl sulfone, polyethylene glycol dithiol, cinnamic acid, 2-chloro Cross-linking agents selected from the group consisting of 2-chloro-1-methyl
- the hydrogel based on sulfated hyaluronic acid according to the present invention has anti-inflammatory or anti-angiogenic effects.
- the hydrogel based on sulfated hyaluronic acid according to the present invention can prolong the efficacy of anti-inflammatory or anti-angiogenic effects by slowing the rate of degradation in the body. Accordingly, the hydrogel based on the sulfated hyaluronic acid according to the present invention can be effectively used as a prophylactic or therapeutic agent for arthritis, a prophylactic or therapeutic agent for eye diseases, anticancer agent, and the like.
- the present invention provides an anti-inflammatory or anti-angiogenic pharmaceutical composition
- an anti-inflammatory or anti-angiogenic pharmaceutical composition comprising the sulfated hyaluronic acid-based hydrogel as an active ingredient.
- the pharmaceutical composition according to the present invention can be used for preventing or treating arthritis, preventing or treating eye diseases, and anticancer.
- the “pharmaceutical composition” may include other chemical components such as a hydrogel based on the sulfated hyaluronic acid of the present invention, a diluent, and a carrier. Accordingly, the pharmaceutical composition may include a pharmaceutically acceptable carrier, diluent, or excipient, or a combination thereof, as necessary.
- the pharmaceutical composition facilitates administration of the compound into an organism. There are various techniques for administering the compound, including, but not limited to, oral, injection, aerosol, parenteral, and topical administration.
- the present invention provides a method for preventing or treating arthritis in mammals by administering a hydrogel based on sulfated hyaluronic acid as an active ingredient.
- the administration of the hydrogel based on sulfated hyaluronic acid may be preferably introduced as an injection preparation.
- the hydrogels based on the sulfated hyaluronic acid of the present invention may be particularly useful for treating chronic or acute inflammation.
- Treatment refers to stopping, delaying or alleviating the progression of the disease when used on an object exhibiting an onset symptom, and “preventing” indicates an onset symptom when used on an object that does not exhibit an onset symptom but is at such a high risk It means stopping, delaying, or alleviating.
- HA-TBA derivatives incorporating tetrabutyl ammonium salt (TBA) into hyaluronic acid (HA) using ion exchange resin were added to 3 mg / mL of dimethylformamide (DMF), an organic solvent.
- DMF dimethylformamide
- Sulfur trioxide pyridine complex was dissolved at a concentration, and 15 mol of the HA-TBA derivative monomer was added, followed by reacting with nitrogen gas at 5 ° C. for 2 hours, and then sulfuric acid purified through ethanol precipitation.
- Hyaluronic acid derivatives were obtained.
- HA 3,000 kDa hyaluronic acid
- SHA fully sulfated hyaluronic acid
- reaction solution concentration the weight ratio of the fully sulfated hyaluronic acid (SHA) and the content of the crosslinking agent were carried out in the same manner as in Example 1, except that the contents were changed as shown in Table 1 to prepare a sulfated hyaluronic acid-based hydrogel.
- SHA fully sulfated hyaluronic acid
- Example 1 Reaction solution concentration (wt%) SHA: HA weight ratio Crosslinking agent (mol%) Example 1 20 50:50 4 Example 2 20 30:70 4 Example 3 20 50:50 3 Example 4 20 30:70 3 Example 5 20 20:80 3 Example 6 20 50:50 3.25 Example 7 15 30:70 5 Example 8 25 30:70 2 Example 9 22.5 45:55 3.5 Example 10 20 60:40 2 Example 11 20 60:40 5 Example 12 22.5 45:55 3.5 Example 13 22.5 45:55 3.5 Example 14 20 30:70 5 Example 15 20 30:70 2
- Example 2 It was carried out in the same manner as in Example 1, except that hyaluronic acid (HA) was not used as a crosslinking monomer, and only sulfated hyaluronic acid (SHA) of Preparation Example 1 was used. However, in the case of Comparative Example 1 in which only C6 site was 100% sulfated substituted fully sulfated hyaluronic acid (full sulfated HA) as a crosslinking monomer, it did not form a hydrogel and was analyzed in the form of a solution even after the reaction was completed. This was impossible.
- HA hyaluronic acid
- SHA sulfated hyaluronic acid
- sulfated hyaluronic acid (SHA) prepared in Preparation Example 1 was confirmed by 1H NMR analysis and elemental analysis to determine the degree of sulfate substitution, and the sulfated hyaluronic acid-based hydrogel prepared in Example 2 was subjected to 1H NMR analysis. It was confirmed, and the results are shown in FIGS. 2 and 3.
- the sulfated hyaluronic acid (SHA) prepared in Preparation Example 1 completely disappears from the peak of 3.4 ppm in FIG. 2 data, whereby the C6 site of hyaluronic acid is 100% sulfated and replaced by fully sulfated hyaluronic acid. It was confirmed that it was a full sulfated HA.
- the sulfated hyaluronic acid and hyaluronic acid prepared in Preparation Example 1 were mixed in a weight ratio of 30:70 and crosslinked with BDDE, 1.52 ppm peak was generated and sulfated with BDDE. It was confirmed that hyaluronic acid-based hydrogels were prepared.
- hydrogels based on the sulfated hyaluronic acid prepared in Examples 1 to 15 were measured for viscoelasticity using an MCR 302 rheometer equipped with a 25mm steel plate at 25 ° C with 4% strain and 2.5 Hz.
- changes in viscoelasticity after autoclave sterilization of the hydrogels based on the sulfated hyaluronic acid prepared in Examples 1 to 15 at 121 ° C for 10 minutes were measured. Table 2 shows the results.
- Example 1 160 84 99 35 Example 2 357 154 204 71 Example 3 173 18 57 9 Example 4 341 47 168 29 Example 5 749 128 529 73 Example 6 75 39 48 20 Example 7 69 16 31 7 Example 8 337 360 311 228 Example 9 118 92 105 67 Example 10 33 16 15 6 Example 11 31 15 30 13 Example 12 166 123 131 100 Example 13 104 77 97 78 Example 14 605 390 482 236 Example 15 180 65 73 16
- hydrogels based on the sulfated hyaluronic acid prepared in Examples 1 to 15 can be manufactured to have viscoelasticity in a wide range from hard to soft properties according to application purpose, and if necessary, Autoclave It was confirmed through sterilization that it can have a desired viscoelastic range even after final sterilization.
- Sulfuric acid hyaluronic acid-based hydrogel of Example 16 was prepared in the same manner as in Example 2, except that the final HA and SHA contents were changed as shown in Table 3.
- hydrogels based on the sulfated hyaluronic acid prepared in Examples 2 and 16, and Synovian were autoclave with autoclave at 121 ° C. for a specific time in Table 4, autoclaving so that the initial value was G ′ 200-300 Pa. After that, the stability was confirmed by measuring the viscoelastic change after 1 to 4 weeks at 55 ° C. The results are shown in Table 4 and Figure 4 below.
- Example 14 The enzyme resistance of HA / SHA Gel of Example 14 and Example 2 is shown in FIG. 5 in comparison with Synovian.
- the cytotoxicity of HUVEC, FLS, and Chondrocyte cells of 3 types was evaluated using the sulfated hyaluronic acid-based hydrogel of Example 2 (HA / SHA Gel), hyaluronic acid (HA), and sulfated hyaluronic acid (SHA). .
- HUVEC, FLS, and Chondrocyte 3 types of cells are each in a 96 well 5.0x10 4 , 8.0x10 3 , After seeding with 3.4x10 4 cells / well and growing cells by overnight, each sample was treated with 1 mg / ml. After the sample treatment, the viability of the cells after an additional 24 hour incubation was measured using a resazaurin assay. The results are shown in FIG. 6.
- Example 2 all samples of the sulfated hyaluronic acid-based hydrogel (HA / SHA Gel), hyaluronic acid hydrogel (HA), and sulfated hyaluronic acid (SHA) of Example 2 did not process any samples.
- the viability of HUVEC, FLS, and Chondrocyte 3 cells compared to the control group was found to be 90% or higher, indicating no cytotoxicity.
- HUVEC cells were seeded in 96 wells using a cell medium that did not contain FBS and VEGF, and then added to the medium to have a VEGF concentration of 0.1% FBS, 200 ng / mL.
- Each well was treated with hyaluronic acid (HA), sulfated hyaluronic acid (SHA), Avastin, and sulfated hyaluronic acid hydrogel of Example 2 (HA / SHA Gel) for each concentration, followed by incubation for 4 days. Did. After 4 days, cell viability was confirmed using a resazurin assay.
- the data shows that the cell population according to the concentration of each sample is calculated when the cell population of the 200 ng / ml VEGF-treated group is 100% without any inhibitor and the cell population of the non-proliferative group without VEGF is 0%.
- the result of the population calculation and expressed in% is shown in FIG. 7.
- FIG. 8 shows the tube formation formed when 3D culture was performed using Matrigel of the VEGF-treated and VEGF-untreated sample groups of HUVEC cells.
- HUVEC cells were seeded in matrigel-coated 96 wells to confirm the degree of tube formation after 16h incubation through an optical microscope.
- a certain concentration of VEGF was treated, hyaluronic acid, sulfated hyaluronic acid, sulfated hyaluronic acid After treatment with hydrogel and avastin for 16 hours, the degree of blood vessel formation was observed through an optical microscope, and the results are shown in FIG. 9.
- sulfated hyaluronic acid-based hydrogel of Example 2 HA / SHA Gel
- HA hyaluronic acid
- SHA sulfated hyaluronic acid
- Chondrocyte, FLS 2 types of cells are respectively 3.4x10 4 in 96 wells and After seeding with 8.0x10 3 cells / well, TNF-alpha was treated with 10 ng / ml and 1 ng / ml to activate the cells with overnight, and each sample was treated with 5 mg / ml and 1 mg / ml. . After 24 hours of incubation after sample treatment, the cytokine secretion amount of cells in the medium was measured using ELISA, and the results are shown in FIGS. 10 (Chondrocyte) and 11 (FLS).
- IL-6 secretion of Chondrocyte cells was reduced to 61% or less compared to the control group in which the sulfated hyaluronic acid-based hydrogel (HA / SHA Gel) of Example 2 did not process any samples.
- the anti-inflammatory efficacy of IL-6 and IL-8 secretion of FLS cells was reduced to 40% or less.
- Sulfate hyaluronic acid (SHA) was injected 3 times a week for 20 mg / ml, 200 mL once a week from the 4th week after the model was prepared, and after the model was prepared, the sulfated hyaluronic acid hydrogel (HA / SHA Gel) of Example 16 was 4 600 mL was injected once for parking. After 6 weeks of the first sample injection, the efficacy of treatment was evaluated through an analysis of joint tissues and a collection of synovial fluid, followed by an inflammatory cytokine analysis.
- sulfated hyaluronic acid hydrogel (HA / SHA Gel) has an equivalent or improved effect on sulfated hyaluronic acid (SHA) injected 3 times even after one injection. Looked.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Rheumatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Dermatology (AREA)
- Pain & Pain Management (AREA)
- Ophthalmology & Optometry (AREA)
- Immunology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Materials For Medical Uses (AREA)
Abstract
본 발명은 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 히알루론산 가교 모노머를 가교제로 가교시켜 형성된 하이드로겔 내에, 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상이 상호 침투 네트워크(interpenetrating network) 구조로 포함된 황산화 히알루론산 기반의 하이드로겔에 관한 것이다.
Description
관련출원과의 상호인용
본 출원은 2018년 9월 13일자 한국 특허 출원 제10-2018-0109800호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 황산화 히알루론산 기반의 하이드로겔 및 이를 포함하는 약제학적 조성물에 관한 것이다.
히알루론산은 상당한 점탄성(viscoelastic)을 갖는 다당류 분자이다. 히알루론산은 윤활제 및 충격흡수제로 작용하고, 염증성 시토킨의 활성에 대항하는 연골세포를 보호하는 활액(synovial fluid)의 기본적인 성분으로서 관절강(joint cavity)에 존재한다(Asari 등, Arch Histol Cytol, 1995, 58:65-76; Brun 등, Osteoarthr Cartil, 2003, 11:208-16; Stove 등, J Orthop Res, 2002, 20:551-5). 히알루론산은 그 자체 또는 유도체 형태로 퇴행성 골관절염 등을 치료하기 위해 "점성보충제(viscosupplement)" 또는 윤활제로서, 오랫동안 사용되어 왔다.
황산화 히알루론산 및 그 유도체는 항염증성, 항-VEGF 효능이 알려져 있다. 그러나, 황산화 히알루론산을 실제 효능이 있는 의약품으로 사용하기 위해서는 체내 잔존률을 높이고, 용도에 적합한 물리적 특성을 갖는 것이 필요하다. 기존에 알려진 황산화 히알루론산 고분자 용액은 체내에서 분해가 빠르며, 용도에 따른 물성의 조절이 어려운 문제가 있었다.
이에, 항염증성, 항-VEGF 효능을 나타내면서, 분해에 대한 저항성이 있어 체내 효능 장기화가 가능하며, 용도별 물리적 특성의 조절이 가능한 황산화 히알루론산 기반 물질의 개발이 필요하다.
본 발명은 황산화 히알루론산의 체내 효능 장기화 및 용도별 필요한 물성을 조절하기 위한 신규한 황산화 히알루론산 기반의 하이드로겔을 제공하고자 하는 것이다.
또한, 본 발명은 상기 황산화 히알루론산 기반의 하이드로겔을 유효성분으로서 함유하는 항염 또는 항혈관신생용 약제학적 조성물을 제공하고자 하는 것이다.
본 발명은 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 히알루론산 가교 모노머를 가교제로 가교시켜 형성된 하이드로겔 내에, 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상이 상호 침투 네트워크(interpenetrating network) 구조로 포함된 황산화 히알루론산 기반의 하이드로겔을 제공한다.
또한, 본 발명은 상기 황산화 히알루론산 기반의 하이드로겔을 유효성분으로 포함하는, 항염 또는 항혈관신생용 약제학적 조성물을 제공한다.
또한, 본 발명은 상기 황산화 히알루론산 기반의 하이드로겔을 유효성분으로 포함하는, 관절염의 예방 또는 치료용, 안질환의 예방 또는 치료용, 항암용 약제학적 조성물을 제공한다.
본 발명에 따른 황산화 히알루론산 기반의 하이드로겔은 항염 또는 항혈관신생 효능을 가지며, 체내에서 분해를 억제하여 항염 또는 항혈관신생 효능을 장기화할 수 있고, 용도에 맞게 용이하게 겔의 물리적 특성을 조절할 수 있다.
본 발명에 따른 황산화 히알루론산 기반의 하이드로겔은 관절염, 안질환 등의 예방 또는 치료, 항암제로서 효과적으로 사용할 수 있다.
도 1은 본 발명의 황산화 히알루론산 기반의 하이드로겔 구조를 설명하는 모식도이다.
도 2는 황산화 히알루론산(SHA)의 황산화 치환을 확인하기 위한 1H NMR 결과이다.
도 3은 본 발명의 황산화 히알루론산 기반의 하이드로겔을 확인하기 위한 1H NMR 결과이다.
도 4는 본 발명의 황산화 히알루론산 기반의 하이드로겔의 안정성을 평가한 그래프이다.
도 5는 본 발명의 황산화 히알루론산 기반의 하이드로겔의 효소 저항성 평가 그래프이다.
도 6 본 발명의 황산화 히알루론산 기반의 하이드로겔의 세포 독성 평가 그래프이다.
도 7은 본 발명의 황산화 히알루론산 기반의 하이드로겔의 항-증식(proliferation) 효능 평가 그래프이다.
도 8은 HUVEC 세포의 VEGF 처리 샘플 및 HUVEC 세포의 VEGF 비처리 샘플의 혈관 생성(tube formation)을 관찰한 광학 현미경 사진이다.
도 9는 HUVEC 세포의 VEGF 처리 샘플에 황산화 히알루론산 기반의 하이드로겔(HA/SHA Gel) 처리시의 혈관 생성(tube formation) 억제 효능을 관찰하기 위한 광학 현미경 사진이다.
도 10 및 도 11은 본 발명의 황산화 히알루론산 기반의 하이드로겔의 항염 효능 평가 그래프이다.
도 12는 본 발명의 황산화 히알루론산 기반의 하이드로겔(HA/SHA Gel)의 토끼 전방십자인대 파열 동물 모델의 조직분석을 이용한 골관절염 치료 효능 평가 그래프이다.
도 13 내지 도 15은 본 발명의 황산화 히알루론산 기반의 하이드로겔 (HA/SHA Gel)의 토끼 전방십자인대파열 동물 모델의 관절액(synovial fluid) 염증성 사이토킨(cytokine) 농도 분석을 이용한 골관절염 치료 효능 평가 그래프이다.
이하에서는 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하여 형성된 황산화 히알루론산 기반의 하이드로겔을 제공한다. 본 발명의 황산화 히알루론산 기반의 하이드로겔은, 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 히알루론산 가교 모노머를 가교제로 가교시켜 형성된 하이드로겔 내에, 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상이 상호 침투 네트워크(interpenetrating network) 구조로 포함된다.
종래의 황산화 히알루론산, 그 유도체 및 염은 항염증성, 항-VEGF 효능이 알려져 있으나, 상기 황산화 히알루론산, 그 유도체 및 염을 포함하는 고분자 용액 등은 체내에서 분해가 빠르며, 용도에 따른 물성의 조절이 어려운 문제가 있었다. 이에, 본 발명에서는 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하여 형성된 황산화 히알루론산 기반의 하이드로겔을 제공함으로써, 체내에서 분해를 억제하여 황산화 히알루론산의 체내 효능을 장기화할 수 있고, 용도에 맞게 용이하게 겔의 물리적 특성을 조절할 수 있도록 하였다. 본 발명에 따른 황산화 히알루론산 기반의 하이드로겔은 항염 또는 항혈관신생 효능을 가지며, 관절염, 안질환 등의 예방 또는 치료, 항암제로서 효과적으로 사용할 수 있다.
상기 황산화 히알루론산은 히알루론산의 알코올성 수산기가 적어도 하나 이상 황산화 치환된 것을 의미하며, 상기 황산화 히알루론산 유도체는 그 외에 화학적으로 변형된 황산화 히알루론산 또는 치환된 황산화 히알루론산을 의미한다. 예를 들어, 황산화 히알루론산 유도체는 황산화 히알루론산-폴록사머 유도체, 황산화 히알루론산-폴리에틸렌글리콜 유도체, 황산화 히알루론산-(CH2)n-CH3 유도체, 황산화 히알루론산-벤질에스터 유도체, 황산화 히알루론산-키토산 유도체, 황산화 히알루론산-PLGA 유도체, 황산화 히알루론산-젤라틴 또는 황산화 히알루론산-콜라겐 유도체에서 선택되는 1종 이상으로 구성될 수 있다. 상기 황산화 히알루론산 염은 예를 들어, 황산화 히알루론산 나트륨, 황산화 히알루론산 칼슘, 황산화 히알루론산 마그네슘, 황산화 히알루론산 아연, 황산화 히알루론산 코발트 또는 황산화 히알루론산 테트라부틸암모늄에서 선택되는 1종 이상으로 구성될 수 있다. 또는, 상기 황산화 히알루론산은 예를 들어, 하기 화학식과 같이 표시될 수 있다.
[화학식]
상기 화학식에서, R1은 각각 독립적으로 SO3H 또는 H 일 수 있으며, n은 1 이상의 정수이다.
상기 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상은, 중량 평균 분자량(Mw)이 800 내지 5,000kDa일 수 있다. 보다 바람직하게는 1,000 내지 4,000kDa일 수 있으며, 더욱 바람직하게는 1,200 내지 3,000kDa일 수 있다. 상기 중량 평균 분자량 범위 내의 황산화 히알루론산, 그 유도체 또는 염을 사용함으로써 가교제와의 반응성, 하이드로겔 제조의 용이성을 향상시킬 수 있으며, 제조된 하이드로겔의 물성을 개선할 수 있다.
이하에서는 편의상 달리 지시되지 않는 한, 황산화 히알루론산은 황산화 히알루론산과, 그 유도체 및 염을 모두 지칭한다.
기존에는 황산화 히알루론산은 프라이머리(primary) -OH 그룹, 즉, 히알루론산의 C6 사이트가 황산화 치환되어 있기 때문에 상기 황산화 히알루론산을 가교 모노머로 하여 가교제로 가교시키는 종래의 일반적인 가교 방법으로는 황산화 히알루론산 기반의 하이드로겔을 형성하는 것이 어려웠다.
이에, 본 발명은 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 히알루론산 가교 모노머를 가교제로 가교시켜 형성된 하이드로겔 내에 상기 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상이 상호 침투 네트워크(interpenetrating network) 구조로 포함된 황산화 히알루론산 기반의 하이드로겔을 제공한다.
상기 히알루론산 가교 모노머는 황산화 치환되지 않은 히알루론산, 그 유도체 또는 염이며, 이와 같은 히알루론산 가교 모노머가 가교되어 하이드로겔을 형성하고, 이러한 하이드로겔 내에 황산화 치환된 황산화 히알루론산, 그 유도체 또는 염이 상호 침투 네트워크(interpenetrating network) 구조로 포함된 형태의 황산화 히알루론산 기반의 하이드로겔이다.
도 1은 본 발명의 황산화 히알루론산 기반의 하이드로겔 구조를 설명하는 모식도이다. 도 1을 참조하면, 가교제(ex) BDDE)로 가교된 히알루론산 하이드로겔(HA hydrogel) 망상 구조 내에 선형 황산화 히알루론산(linear sulfated HA)이 화학 결합은 하지 않은 상태로 얽혀있는 물리적인 구조로 형성되며, 이러한 구조를 상호 침투 네트워크(interpenetrating network) 구조라고 한다.
이때, 상기 황산화 히알루론산은, 히알루론산의 C6 사이트 중 90% 이상이 황산화된 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상일 수 있다. 보다 바람직하게는 상기 황산화 히알루론산은, 히알루론산의 C6 사이트 중 90% 내지 100%가 황산화 치환된 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상일 수 있으며, 더욱 바람직하게는 히알루론산의 C6 사이트 전부가 황산화 치환된 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상일 수 있다. 즉, 상기 황산화 히알루론산은 프라이머리(primary) -OH 그룹이 100% 황산화 치환된 것을 사용한 것일 수 있고, 본 명세서에서는 프라이머리(primary) -OH 그룹이 100% 황산화 치환된 것을 완전 황산화 히알루론산(full sulfated HA)이라고 지칭한다.
더 나아가, 히알루론산은 상기 프라이머리(primary) -OH 그룹 이외에 세컨더리(secondary) -OH 그룹 3개를 더 포함해 총 4개의 -OH 그룹을 가지는데, 황산화 치환 반응시 반응성이 좋은 프라이머리(primary) -OH 그룹이 먼저 황산화 치환되고, 반응이 더 진행될수록 세컨더리(secondary) -OH 그룹이 황산화 치환될 수 있고, 히알루론산의 모든 -OH가 황산화 치환됐을 때 총 치환율은 400%가 될 수 있다. 본 발명의 일 실시예에 따른 상기 황산화 히알루론산은 세컨더리(secondary) -OH 그룹까지 포함한 총 치환율이 보다 바람직하게는 90 내지 400%일 수 있고, 더욱 바람직하게는 100 내지 400%일 수 있다.
이와 같은 본 발명에 따른 황산화 히알루론산 기반의 하이드로겔은, 상기 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상과 상기 히알루론산 가교 모노머가 10:90 내지 70:30의 중량비로 포함하여 형성된 것일 수 있다. 보다 바람직하게는 상기 황산화 히알루론산 및 히알루론산 가교 모노머는 20:80 내지 60:40의 중량비로 포함하여 형성한 것일 수 있으며, 더욱 바람직하게는 30:70 내지 50:50의 중량비로 포함하여 형성된 것일 수 있다. 완전 황산화 히알루론산(full sulfated HA)과 황산화 치환되지 않은 히알루론산(HA)인 가교 모노머를 상기 중량비 범위 내로 혼합하여 형성함으로써 황산화 히알루론산을 포함하면서도 히알루론산의 프라이머리(primary) -OH 그룹을 이용한 가교 하이드로겔 형성이 잘 이루어지고, 응용 목적에 따른 물성의 조절이 용이한 장점이 있다.
상기 본 발명의 일 실시예에 따른 황산화 히알루론산 기반의 하이드로겔은 히알루론산의 -OH 그룹을 이용하여 가교하는 가교제를 사용하여 형성될 수 있다. 본 발명에 따른 황산화 히알루론산 기반의 하이드로겔 형성시 상기 가교제는 예를 들면, 1,4-부탄디올 디글리시딜 에테르(1,4-butanediol diglycidyl ether, BDDE), 폴리에틸렌글리콜 디글리시딜 에테르(Poly(ethylene glycol)diglycidyl ether), 비스페놀 에이 디글리시딜 에테르(Bisphenol A diglycidyl ether), 글리세롤 디글리시딜 에테르(Glycerol diglycidyl ether), 에틸렌글리콜 디글리시딜 에테르(Ethylene glycol diglycidyl ether), 폴리프로필렌글리콜 디글리시딜 에티르(Poly(propylene glycol) diglycidyl ether), 다이비닐 술폰(Divinyl sulfone), 폴리에틸렌글리콜 다이치올 (Poly(ethylene glycol dithiol), 시나믹 산 (cinnamic acid), 2-클로로-1-메틸피리디늄 아이오다이드(2-chloro-1-methylpyridinium iodide) 및 바이카보다이이미드(Bicarbodiimide)로 이루어진 군에서 선택된 가교제를 사용할 수 있으며, 가장 바람직하게는 1,4-부탄디올 디글리시딜 에테르(1,4-butanediol diglycidyl ether)를 사용할 수 있다.
이와 같이 본 발명에 따른 황산화 히알루론산 기반의 하이드로겔은 항염 또는 항혈관신생의 효능을 갖는다. 또한, 본 발명에 따른 황산화 히알루론산 기반의 하이드로겔은 체내에서 분해 속도를 늦추어 항염 또는 항혈관신생의 효능을 장기화할 수 있다. 이에, 본 발명에 따른 상기 황산화 히알루론산 기반의 하이드로겔은 관절염의 예방 또는 치료제, 안질환의 예방 또는 치료제, 항암제 등으로 효과적으로 사용될 수 있다.
또한, 본 발명은 상기 황산화 히알루론산 기반의 하이드로겔을 유효성분으로 포함하는, 항염 또는 항혈관신생용 약제학적 조성물을 제공한다. 본 발명에 따른 약제학적 조성물은 관절염의 예방 또는 치료용, 안질환의 예방 또는 치료용, 항암용으로 사용할 수 있다.
상기 “약제학적 조성물(pharmaceutical composition)”은 본 발명의 황산화 히알루론산 기반의 하이드로겔과 희석제, 담체 등과 같은 다른 화학 성분들을 포함할 수 있다. 따라서, 상기 약제학적 조성물에는 약제학적으로 허용되는 담체, 희석제, 또는 부형제, 또는 이들의 조합이 필요에 따라 포함될 수 있다. 약제학적 조성물은 생물체 내로 화합물의 투여를 용이하게 한다. 화합물을 투여하는 다양한 기술들이 존재하며, 여기에는 경구, 주사, 에어로졸, 비경구, 및 국소 투여 등이 포함되지만, 이들만으로 한정되는 것은 아니다.
또한, 본 발명은 유효성분으로서 황산화 히알루론산 기반의 하이드로겔을 투여하여, 포유동물에서 관절염의 예방 또는 치료하는 방법을 제공한다. 이때, 황산화 히알루론산 기반의 하이드로겔의 투여는 바람직하게는 주사용 제제로서 투입될 수 있다. 본 발명의 황산화 히알루론산 기반의 하이드로겔을 통하여 치료할 수 있는 대표적인 예로는, 골관절염(osteoarthritis) 또는 류머티스성 관절염(rheumatoid arthritis)의 치료에, 또는 통풍(gout) 또는 칼슘 피로포스페이트 침착 질환(calcium pyrophosphate dihydrate deposition disease)과 같은 다른 염증성 관절염에, 또는 수술 과정 후 형성될 수 있는 유착(adhesion)의 감소 또는 예방에서 사용될 수도 있다. 본 발명의 황산화 히알루론산 기반의 하이드로겔은 만성 또는 급성 염증을 치료하는데 특히 유용할 수 있다.
본 명세서에서 "치료"란 발병 증상을 보이는 객체에 사용될 때 질병의 진행을 중단, 지연 또는 완화시키는 것을 의미하며, "예방"이란 발병 증상을 보이지는 않지만 그러한 위험성이 높은 객체에 사용될 때 발병 징후를 중단, 지연 또는 완화시키는 것을 의미한다.
다음 실시예는 당업자에게 본원에서 제공된 화합물, 조성물, 및 방법이 어떻게 만들어지고 평가되는지의 완전한 개시 및 설명을 제공하기 위해 제시되고, 순전히 예시적인 것으로 의도된다. 따라서, 실시예는 발명자들이 그들의 발명으로 간주하는 것의 범위를 제한하기 위한 것이 결코 아니다. 반응 조건, 예를 들어, 구성요소 농도, 원하는 용매, 용매 혼합물, 온도, 압력, 및 다른 반응 파라미터 및 순도, 수율, 등과 같은 생성물 특성을 최적화하기 위해 이용될 수도 있는 조건의 많은 변형 및 조합이 있다. 이러한 것들은 또한 본원의 범위 내에 있는 것으로 간주된다. 모든 가능한 변화에서 상기 설명된 요소의 어떤 조합도 본원에서 달리 지시되지 않거나 문맥상 달리 분명하게 부인되지 않으면 본 발명에 의해 포함된다.
[제조예 1] - 완전 황산화 히알루론산(full sulfated HA) 합성
이온 교환 수지(ion exchange resin)를 이용하여 히알루론산(HA)에 테트라부틸 암모늄 염(tetrabutyl ammonium salt, TBA)을 도입한 HA-TBA 유도체를 유기 용매인 디메틸폼아마이드(DMF)에 3mg/mL의 농도로 녹인 후 설퍼 트리옥사이드 피리딘 컴플렉스(sulfur trioxide pyridine complex)를 HA-TBA 유도체 모노머의 15몰(mole)배 투입한 뒤, 질소 가스, 5℃에서 2시간을 반응 후 에탄올 침전을 통하여 정제한 황산화 히알루론산 유도체를 수득하였다.
실시예 1
3,000kDa의 히알루론산(HA)과, 제조예 1에서 제조된 2,000kDa의 완전 황산화 히알루론산(SHA)을 50:50의 중량비로 섞어준 뒤, NaOH에 20wt%로 녹인 후 BDDE를 히알루론산(HA) 모노머에 대하여 4mole%로 넣어 30℃에서 오버나이트(overnight)하여 반응시켜 하이드로겔을 제조하였다.
실시예 2 내지 15
반응액 농도, 완전 황산화 히알루론산(SHA)의 중량비 및 가교제의 함량을 표 1에서와 같이 변경한 것을 제외하고는 실시예 1과 동일하게 실시하여 황산화 히알루론산 기반 하이드로겔을 제조하였다.
반응액 농도(wt%) | SHA:HA 중량비 | 가교제 (몰%) | |
실시예1 | 20 | 50:50 | 4 |
실시예2 | 20 | 30:70 | 4 |
실시예3 | 20 | 50:50 | 3 |
실시예4 | 20 | 30:70 | 3 |
실시예5 | 20 | 20:80 | 3 |
실시예6 | 20 | 50:50 | 3.25 |
실시예7 | 15 | 30:70 | 5 |
실시예8 | 25 | 30:70 | 2 |
실시예9 | 22.5 | 45:55 | 3.5 |
실시예10 | 20 | 60:40 | 2 |
실시예11 | 20 | 60:40 | 5 |
실시예12 | 22.5 | 45:55 | 3.5 |
실시예13 | 22.5 | 45:55 | 3.5 |
실시예14 | 20 | 30:70 | 5 |
실시예15 | 20 | 30:70 | 2 |
비교예 1
가교 모노머로서 히알루론산(HA)을 사용하지 않고, 제조예 1의 황산화 히알루론산(SHA)만을 사용한 것을 제외하고는, 실시예 1과 동일하게 실시하였다. 그러나, C6 사이트가 100% 황산화 치환된 완전 황산화 히알루론산(full sulfated HA)만을 가교 모노머로 사용한 비교예 1의 경우, 하이드로겔을 형성하지 못하고 반응이 완료된 이후에도 용액(solution)의 형태로 분석이 불가하였다.
[실험예 1] - 완전 SHA 및 황산화 히알루론산 기반 하이드로겔 확인
제조예 1에서 제조된 황산화 히알루론산(SHA)을 1H NMR 분석 및 원소 분석을 통하여 황산화 치환된 정도를 확인하였으며, 실시예 2에서 제조된 황산화 히알루론산 기반 하이드로겔을 1H NMR 분석을 통하여 확인하였고, 그 결과를 도 2 및 도 3에 나타내었다.
도 2의 NMR 데이터를 참조하면, 제조예 1에서 제조된 황산화 히알루론산(SHA)은 도 2 데이터에서 3.4ppm의 peak이 완전히 사라져 히알루론산의 C6 사이트가 100% 황산화 치환된 완전 황산화 히알루론산(full sulfated HA)임을 확인할 수 있었다. 도 3의 NMR 데이터를 참조하면, 제조예 1에서 제조된 황산화 히알루론산과 히알루론산을 30:70의 중량비로 혼합한 후 BDDE로 가교하였을 때, 1.52ppm peak이 생성되어 BDDE로 가교된 황산화 히알루론산 기반 하이드로겔이 제조되었음을 확인할 수 있었다.
[실험예 2: 하이드로겔의 점탄성 측정]
실시예 1~15에서 제조된 황산화 히알루론산 기반의 하이드로겔을 25℃에서 4% strain, 2.5Hz로 25mm 강철 플레이트가 장착된 MCR 302 유동계를 이용하여 점탄성을 측정하였다. 또한, 실시예 1~15에서 제조된 황산화 히알루론산 기반의 하이드로겔을 Autoclave로 121℃, 10분간 고압 증기 멸균한 한 후의 점탄성 변화를 측정하였다. 그 결과를 표 2에 나타내었다.
멸균 전 | 멸균 후 | |||
G'(Pa) | G''(Pa) | G'(Pa) | G''(Pa) | |
실시예1 | 160 | 84 | 99 | 35 |
실시예2 | 357 | 154 | 204 | 71 |
실시예3 | 173 | 18 | 57 | 9 |
실시예4 | 341 | 47 | 168 | 29 |
실시예5 | 749 | 128 | 529 | 73 |
실시예6 | 75 | 39 | 48 | 20 |
실시예7 | 69 | 16 | 31 | 7 |
실시예8 | 337 | 360 | 311 | 228 |
실시예9 | 118 | 92 | 105 | 67 |
실시예10 | 33 | 16 | 15 | 6 |
실시예11 | 31 | 15 | 30 | 13 |
실시예12 | 166 | 123 | 131 | 100 |
실시예13 | 104 | 77 | 97 | 78 |
실시예14 | 605 | 390 | 482 | 236 |
실시예15 | 180 | 65 | 73 | 16 |
상기 표 2를 참조하면, 실시예 1~15에서 제조된 황산화 히알루론산 기반의 하이드로겔이 응용 목적에 따라 단단한 물성부터 부드러운 물성까지 다양한 범위의점탄성을 갖도록 제조 가능한 것을 확인할 수 있으며, 필요시 Autoclave 멸균을 통해 최종 멸균 후에도 원하는 점탄성의 범위를 가질 수 있음을 확인하였다.
[실험예 3: 멸균 후 고온 안정성 평가]
최종 HA 및 SHA 함량을 표 3에서와 같이 변경한 것을 제외하고는 실시예 2와 동일하게 실시하여 실시예 16의 황산화 히알루론산 기반 하이드로겔을 제조하였다.
실시예 2 및 16에서 제조된 황산화 히알루론산 기반의 하이드로겔과, 시노비안(Synovian)을 Autoclave로 121℃, 표 4의 특정 시간 동안, 초기 값이 G' 200~300Pa이 되도록 고압 증기 멸균한 후, 55℃에서 1주~4주 이후 점탄성 변화를 측정하여 안정성을 확인하였다. 그 결과를 하기 표 4 및 도 4에 나타내었다.
SHA:HA 중량비 | 가교제(몰%) | 최종 HA 및 SHA 함량(%) | |
시노비안 | 0:1 | 1.72 | 2 |
실시예2 | 30:70 | 4 | 2 |
실시예16 | 30:70 | 4 | 3 |
시노비안 | 실시예16 | 실시예2 | ||
습식 멸균(분) | 40 | 40 | 10 | |
0주 | G'(Pa) | 285 | 299 | 269 |
G''(Pa) | 46 | 70 | 102 | |
│η*│(mPa·S) | - | 19552 | 18294 | |
pH | - | 6.98 | 7.24 | |
1주 | G'(Pa) | - | 258 | 264 |
G''(Pa) | - | 62 | 70 | |
│η*│(mPa·S) | - | 16881 | 17363 | |
pH | - | 6.95 | 7.27 | |
2주 | G'(Pa) | 145 | 240 | 254 |
G''(Pa) | 30 | 57 | 71 | |
│η*│(mPa·S) | - | 15700 | 16803 | |
pH | - | 6.97 | 7.25 | |
3주 | G'(Pa) | - | 241 | 258 |
G''(Pa) | - | 58 | 67 | |
│η*│(mPa·S) | - | 15793 | 16961 | |
pH | - | 6.92 | 7.29 | |
4주 | G'(Pa) | 111 | 224 | 245 |
G''(Pa) | 26 | 53 | 64 | |
│η*│(mPa·S) | - | 14652 | 16096 | |
pH | - | 6.95 | 7.28 |
상기 표 4 및 도 4를 참조하면, 실시예 2 및 16의 경우 멸균 후 55℃의 가혹 조건에서 보관하였을 때, 점탄성 및 복소점도 유지율이 60% 이상 수준으로 시노비안(Synovian) 대비 우수한 안정성을 나타내었다.
[실험예 4: 효소 저항성 평가]
실시예 14 및 실시예 2의 HA/SHA Gel의 효소 저항성을 시노비안(Synovian)과 비교하여 도 5에 나타내었다.
각 하이드로겔 1g을 히알루론산 분해 효소인 히알루로니데이즈 (Hyaluronidase) 500uint/g solution 10ul와 섞은 후 37℃에서 4% strain, 2.5Hz로 25mm 강철 플레이트가 장착된 MCR 302 유동계를 이용하여 점탄성을 측정하였다. 그 결과를 도 5에 나타내었다.
도 5를 참조하면, 시노비안(Synovian)의 경우 시간에 따른 겔의 분해가 빠른 반면, 실시예 14 및 2의 황산화 히알루론산 하이드로겔(HA/SHA Gel)의 경우 분해 효소에 의한 물성 저하가 현저히 개선되는 것을 확인하였다.
[실험예 5: 세포 독성 평가]
실시예 2의 황산화 히알루론산 기반의 하이드로겔(HA/SHA Gel), 히알루론산(HA), 황산화 히알루론산(SHA)을 사용하여 HUVEC, FLS, Chondrocyte 3종류의 세포의 세포 독성을 평가하였다.
HUVEC, FLS, Chondrocyte 3종류의 세포를 각각 96 well에 5.0x104, 8.0x103, 3.4x104 cells/well로 시딩(seeding) 후 오버나이트(overnight)하여 세포를 키운 후, 각 샘플을 1mg/ml 처리하였다. 샘플 처리 후 추가로 24시간 인큐베이션(incubation) 후 세포의 viability를 resazaurin assay를 이용하여 측정하였다. 그 결과를 도 6에 나타내었다.
도 6을 참조하면, 실시예 2의 황산화 히알루론산 기반의 하이드로겔(HA/SHA Gel), 히알루론산 하이드로겔(HA), 황산화 히알루론산(SHA)의 모든 샘플이 아무런 샘플도 처리하지 않은 control 군 대비 HUVEC, FLS, Chondrocyte 3종류의 세포의 viability가 90% 이상으로 세포 독성이 없음을 확인할 수 있었다.
[실험예 6: HUVEC 항-증식(proliferation) 효능 확인]
HUVEC 세포의 VEGF에 의한 증식 효능을 실시예 2의 황산화 히알루론산 기반의 하이드로겔(HA/SHA Gel)을 사용하여 저해할 수 있는지 HUVEC의 증식 (proliferation)을 관찰하여 확인하였다.
FBS와 VEGF를 함유하지 않은 세포 배지를 이용하여 HUVEC 세포를 96well에 시딩(seeding) 후 0.1% FBS, 200ng/mL의 VEGF 농도가 되도록 배지에 추가하였다. 각 well에 히알루론산(HA), 황산화 히알루론산(SHA), 아바스틴(Avastin), 실시예 2의 황산화 히알루론산 하이드로겔(HA/SHA Gel)을 농도 별로 처리후 4일 동안 인큐베이션(incubation)하였다. 4일 후 resazurin assay를 이용하여 cell viability를 확인하였다. 데이터는, 아무런 저해제 없이 200ng/ml의 VEGF가 처리된 군의 세포 population을 100%, VEGF를 넣지 않아 증식이 되지 않은 군의 세포 population을 0%로 계산하였을 때, 각 샘플의 농도에 따른 cell의 population을 계산하여 %로 나타낸 결과를 도 7에 나타내었다.
도 7을 참조하면, 히알루론산 샘플 처리 군의 경우, 농도에 관계없이 세포의 증식에 영향이 없었으며, 황산화 히알루론산 고분자 처리군과 실시예 2의 황산화 히알루론산 하이드로겔의 처리한 샘플군의 경우 농도 의존적으로 VEGF의 활성을 저해하여 항-증식 (proliferation) 효능을 나타내는 것을 확인할 수 있었다. 이를 통하여, 황산화 히알루론산을 이용하여 하이드로겔의 형태로 만들어도 황산화 히알루론산과 같이 VEGF의 활동을 저해하여 HUVEC의 세포 증식을 억제하는 효능이 유지되는 것을 확인할 수 있었다. 또한, 해당 활성은 실제 VEGF blocking 약물로 사용되고 있는 Avastin과 비교하였을 때 비슷한 수준의 활성을 나타내는 것을 확인할 수 있었다.
[실험예 7: HUVEC 항혈관생성 효능 확인]
HUVEC 세포의 VEGF 처리 및 VEGF 비처리 샘플 군의 Matrigel을 이용하여 3D culture를 진행하였을 때 형성되는 혈관 생성(tube formation)을 도 8에 나타내었다.
VEGF 처리군/VEGF 비처리 군에서 HUVEC 세포를 matrigel이 coating 되어있는 96 well에 시딩(seeding)하여 16h 인큐베이션(incubation) 후 혈관(tube)의 형성 정도를 광학 현미경을 통해 확인하였다. 또한 각 샘플의 혈관 생성(tube formation) 저해 효능 평가를 위하여 matrigel이 코팅된 96well에 HUVEC 세포를 시딩(seeding) 한 뒤 일정 농도의 VEGF를 처리하고, 히알루론산, 황산화 히알루론산, 황산화 히알루론산 하이드로겔, 아바스틴을 처리 후 16시간 인큐베이션(incubation) 후 혈관(tube)의 형성 정도를 광학 현미경을 통하여 관찰하였으며, 그 결과를 도 9에 나타내었다.
도 8 및 도 9를 참조하면, 실시예 2의 HA/SHA Gel을 처리한 경우 혈관 생성이 거의 이루어지지 않음을 확인할 수 있었다. 특히, HA/SHA Gel은 제조 후 분쇄를 통해 입자화를 하게 되는데 이 입자의 입자 사이즈가 작을수록 항혈관생성 효능이 좋은 것으로 나타났다.
[실험예 8: 항염 효능 평가]
실시예 2의 황산화 히알루론산 기반의 하이드로겔(HA/SHA Gel), 히알루론산(HA), 황산화 히알루론산(SHA)을 사용하여 Chondrocyte, FLS 2종류 세포의 항염 효능 평가를 실시하였다.
Chondrocyte, FLS 2종류의 세포를 각각 96 well에 3.4x104 및 8.0x103 cells/well로 시딩(seeding)하고, TNF-alpha를 10ng/ml 및 1ng/ml 처리하여 오버나이트(overnight)로 세포를 activation한 후, 각 샘플을 5mg/ml 및 1mg/ml 처리하였다. 샘플 처리 후 추가로 24시간 인큐베이션(incubation) 후 배지 내 세포의 cytokine 분비량을 ELISA를 이용하여 측정하였고, 그 결과를 도 10(Chondrocyte) 및 도 11(FLS)에 나타내었다.
도 10 및 도 11을 참조하면, 실시예 2의 황산화 히알루론산 기반의 하이드로겔(HA/SHA Gel)이 아무런 샘플도 처리하지 않은 control 군 대비 Chondrocyte 세포의 IL-6 분비가 61% 이하로 감소하였으며, FLS 세포의 IL-6 및 IL-8 분비가 40% 이하로 감소하는 항염 효능을 확인할 수 있었다.
[실험예 9: 항응고 반응 평가]
실시예 2 및 실시예 16의 황산화 히알루론산 기반의 하이드로겔(HA/SHA Gel), 헤파린(Heparin), 황산화 히알루론산(SHA)을 사용하여 Factor IIa와 Factor Xa의 활동 저해 정도를 발색분석법(Chromogenic assay)을 이용하여 측정하였다. 그 결과를 표 5에 나타내었다.
Anti-IIa activity [Unit/mg] | Anti-Xa activity [IU/mg] | |
Heparin | 209 | 209 |
SHA | 0.13 | 0.17 |
실시예2 | 0.23 | 0.28 |
실시예16 | 0.27 | 0.18 |
상기 표 5를 참조하면, 황산화 히알루론산(SHA)의 헤파린 대비하여 Factor IIa 및 Factor Xa를 저해하는 활동이 1000배 이상 낮았으며, 실시예 2 및 16의 황산화 히알루론산 기반의 하이드로겔(HA/SHA Gel)의 활동이 헤파린 대비 700배 이상 낮아, 항응고 반응이 거의 일어나지 않음을 확인할 수 있었다.
[실험예 10: 골관절염 치료 효능 평가]
토끼의 전방십자인대 파열을 이용한 골관절염 모델을 이용하여 황산화 히알루론산 하이드로겔(HA/SHA Gel)의 골관절염 치료효능을 평가한 결과를 도 12 내지 도 15에 나타내었다.
수술을 통하여 토끼의 전방십자 인대를 파열 후 인공적인 운동을 4주간 수행하여 골관절염 동물 모델을 제조 후, 생리식염수, 황산화 히알루론산(SHA), 실시예 16의 황산화 히알루론산 하이드로겔(HA/SHA Gel)을 관절 주사를 통하여 주입하였다.
황산화 히알루론산(SHA)은 모델 제조 후 4주차부터 20mg/ml, 200mL을 주 1회씩 총 3회 injection 하였으며, 실시예 16의 황산화 히알루론산 하이드로겔(HA/SHA Gel)을 모델 제조 후 4주차에 600mL을 1회만 injection 하였다. 첫번째 샘플 injection 6주 이후 관절조직의 분석 및 관절액(synovial fluid) 채취 후 염증성 사이토킨(cytokine) 분석을 통하여 치료 효능을 평가하였다.
도 12를 참조하면, 조직분석을 통한 OARSI scoring 결과 황산화 히알루론산 하이드로겔(HA/SHA Gel)의 경우 1회 injection을 했음에도 3회 injection한 황산화 히알루론산(SHA)에 동등 또는 개선된 효과를 보였다.
또한, 도 13 내지 도 15의 결과를 보면, 관절액(synovial fluid)에서의 염증성 사이토킨(cytokine)이 생리 식염수를 injection한 negative group에 비하여 줄어들었으며, 황산화 히알루론산 하이드로겔(HA/SHA Gel) 군이 1회 injection을 했음에도 3회 injection을 수행한 황산화 히알루론산(SHA) 군과 동등 또는 동등 이상의 효과를 보였다. 이를 통하여 황산화 히알루론산을 하이드로겔로 제조할 경우, 황산화 히알루론산의 항염/항혈관신생 효능을 통한 골관절염 치료 효능은 유지하면서, 체내 잔류 시간을 늘려 관절주사 횟수를 줄일 수 있는 장점이 있는 것을 확인하였다.
Claims (12)
- 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 히알루론산 가교 모노머를 가교제로 가교시켜 형성된 하이드로겔 내에, 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상이 상호 침투 네트워크(interpenetrating network) 구조로 포함된 황산화 히알루론산 기반의 하이드로겔.
- 제1항에 있어서,상기 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상과 상기 히알루론산 가교 모노머는 10:90 내지 70:30의 중량비로 포함하여 형성된 황산화 히알루론산 기반의 하이드로겔.
- 제1항에 있어서,상기 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상은, 히알루론산의 C6 사이트 중 90% 이상이 황산화 치환된 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상인 황산화 히알루론산 기반의 하이드로겔.
- 제1항에 있어서,상기 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상은, 히알루론산의 C6 사이트 전부가 황산화 치환된 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상인 황산화 히알루론산 기반의 하이드로겔.
- 제1항에 있어서,상기 가교제는 1,4-부탄디올 디글리시딜 에테르(1,4-butanediol diglycidyl ether), 폴리에틸렌글리콜 디글리시딜 에테르(Poly(ethylene glycol)diglycidyl ether), 비스페놀 에이 디글리시딜 에테르(Bisphenol A diglycidyl ether), 글리세롤 디글리시딜 에테르(Glycerol diglycidyl ether), 에틸렌글리콜 디글리시딜 에테르(Ethylene glycol diglycidyl ether), 폴리프로필렌글리콜 디글리시딜 에티르(Poly(propylene glycol) diglycidyl ether), 다이비닐 술폰(Divinyl sulfone), 폴리에틸렌글리콜 다이치올 (Poly(ethylene glycol dithiol), 시나믹 산 (cinnamic acid), 2-클로로-1-메틸피리디늄 아이오다이드(2-chloro-1-methylpyridinium iodide) 및 바이카보다이이미드(Bicarbodiimide)로 이루어진 군에서 선택된 적어도 하나 이상인 황산화 히알루론산 기반의 하이드로겔.
- 제1항에 있어서,상기 황산화 히알루론산, 그 유도체 및 염으로 이루어진 군에서 선택된 적어도 하나 이상은, 중량 평균 분자량(Mw)이 800 내지 5,000kDa인 황산화 히알루론산 기반의 하이드로겔.
- 제1항에 있어서,상기 황산화 히알루론산 기반의 하이드로겔은 항염 또는 항혈관신생을 위해 사용하는 황산화 히알루론산 기반의 하이드로겔.
- 제1항에 따른 황산화 히알루론산 기반의 하이드로겔을 유효성분으로 포함하는, 항염 또는 항혈관신생용 약제학적 조성물.
- 제1항에 따른 황산화 히알루론산 기반의 하이드로겔을 유효성분으로 포함하는, 관절염의 예방 또는 치료용 약제학적 조성물.
- 제1항에 따른 황산화 히알루론산 기반의 하이드로겔을 유효성분으로 포함하는, 안질환의 예방 또는 치료용 약제학적 조성물.
- 제1항에 따른 황산화 히알루론산 기반의 하이드로겔을 유효성분으로 포함하는, 항암용 약제학적 조성물.
- 제1항에 따른 황산화 히알루론산 기반의 하이드로겔을 투여하는 단계를 포함하는, 포유동물에서 관절염을 치료하는 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180109800 | 2018-09-13 | ||
KR10-2018-0109800 | 2018-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020055199A1 true WO2020055199A1 (ko) | 2020-03-19 |
Family
ID=69778205
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/011891 WO2020055202A1 (ko) | 2018-09-13 | 2019-09-11 | 황산화 히알루론산 기반의 하이드로겔 및 이를 포함하는 약제학적 조성물 |
PCT/KR2019/011888 WO2020055199A1 (ko) | 2018-09-13 | 2019-09-11 | 황산화 히알루론산 기반의 하이드로겔 및 이를 포함하는 약제학적 조성물 |
PCT/KR2019/011890 WO2020055201A1 (ko) | 2018-09-13 | 2019-09-11 | 황산화 히알루론산 기반의 하이드로겔 및 이를 포함하는 약제학적 조성물 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/011891 WO2020055202A1 (ko) | 2018-09-13 | 2019-09-11 | 황산화 히알루론산 기반의 하이드로겔 및 이를 포함하는 약제학적 조성물 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/011890 WO2020055201A1 (ko) | 2018-09-13 | 2019-09-11 | 황산화 히알루론산 기반의 하이드로겔 및 이를 포함하는 약제학적 조성물 |
Country Status (3)
Country | Link |
---|---|
KR (3) | KR20200031059A (ko) |
TW (3) | TWI782232B (ko) |
WO (3) | WO2020055202A1 (ko) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998045335A1 (en) * | 1997-04-04 | 1998-10-15 | Fidia Advanced Biopolymers, S.R.L. | N-sulphated hyaluronic acid compounds, derivatives thereof and a process for their preparation |
KR20120114031A (ko) * | 2011-04-06 | 2012-10-16 | 한국원자력연구원 | 히알루론산과 콘드로이틴 설페이트를 함유한 수화겔 및 이의 제조방법 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11279042A (ja) * | 1998-03-30 | 1999-10-12 | Shiseido Co Ltd | 皮膚外用剤 |
IT1317358B1 (it) * | 2000-08-31 | 2003-06-16 | Fidia Advanced Biopolymers Srl | Derivati cross-linkati dell'acido ialuronico. |
DE10053053A1 (de) * | 2000-10-19 | 2002-05-16 | Knoell Hans Forschung Ev | Pharmazeutische Formulierungen zur Hemmung von entzündlichen Arthritiden |
ITPD20060219A1 (it) * | 2006-05-31 | 2007-12-01 | Fidia Farmaceutici | Composizioni farmaceutiche contenenti acido ialuronico solfatato nel trattamento dell'osteoartrosi |
US8343942B2 (en) | 2008-04-04 | 2013-01-01 | University Of Utah Research Foundation | Methods for treating interstitial cystitis |
KR101865168B1 (ko) * | 2016-06-01 | 2018-07-04 | 한양대학교 산학협력단 | 히알루로네이트 기반 자가치유 하이드로젤 및 이의 용도 |
-
2019
- 2019-09-11 WO PCT/KR2019/011891 patent/WO2020055202A1/ko active Application Filing
- 2019-09-11 KR KR1020190113086A patent/KR20200031059A/ko not_active IP Right Cessation
- 2019-09-11 WO PCT/KR2019/011888 patent/WO2020055199A1/ko active Application Filing
- 2019-09-11 KR KR1020190113085A patent/KR20200031058A/ko not_active IP Right Cessation
- 2019-09-11 WO PCT/KR2019/011890 patent/WO2020055201A1/ko active Application Filing
- 2019-09-11 KR KR1020190113084A patent/KR102248721B1/ko active IP Right Grant
- 2019-09-12 TW TW108132989A patent/TWI782232B/zh active
- 2019-09-12 TW TW108132990A patent/TWI724542B/zh active
- 2019-09-12 TW TW108133025A patent/TWI728463B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998045335A1 (en) * | 1997-04-04 | 1998-10-15 | Fidia Advanced Biopolymers, S.R.L. | N-sulphated hyaluronic acid compounds, derivatives thereof and a process for their preparation |
KR20120114031A (ko) * | 2011-04-06 | 2012-10-16 | 한국원자력연구원 | 히알루론산과 콘드로이틴 설페이트를 함유한 수화겔 및 이의 제조방법 |
Non-Patent Citations (3)
Title |
---|
CEN, L. ET AL.: "Assessment of in vitro bioactivity of hyaluronic acid and sulfated hyaluronic acid functionalized electroactive polymer", BIOMACROMOLECULES, vol. 5, no. 6, 1 November 2004 (2004-11-01), pages 2238 - 2246, XP055232796, ISSN: 1525-7797, DOI: 10.1021/bm040048v * |
JORDAN. A. R. ET AL.: "Antitumor activity of sulfated hyaluronic acid fragments in pre-clinical models of bladder cancer", ONCOTARGET, vol. 8, no. 15, 11 April 2017 (2017-04-11), pages 24262 - 24274, XP055691118, ISSN: 1949-2553, DOI: 10.18632/oncotarget.10529 * |
KHUNMANEE, S. ET AL.: "Crosslinking method of hyaluronic-based hydrogel for biomedical applications", JOURNAL OF TISSUE ENGINEERING, vol. 8, 1 January 2017 (2017-01-01), pages 1 - 16, XP002791499 * |
Also Published As
Publication number | Publication date |
---|---|
WO2020055202A1 (ko) | 2020-03-19 |
KR20200031058A (ko) | 2020-03-23 |
TW202026005A (zh) | 2020-07-16 |
TW202027758A (zh) | 2020-08-01 |
TWI782232B (zh) | 2022-11-01 |
KR102248721B1 (ko) | 2021-05-07 |
TW202026004A (zh) | 2020-07-16 |
WO2020055201A1 (ko) | 2020-03-19 |
KR20200031059A (ko) | 2020-03-23 |
TWI728463B (zh) | 2021-05-21 |
TWI724542B (zh) | 2021-04-11 |
KR20200031057A (ko) | 2020-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017213404A1 (ko) | 단일상과 이성상의 특성을 동시에 갖는 히알루론산 가교체, 이의 제조 방법 및 이의 용도 | |
US20140105852A1 (en) | Cross-linked polysaccharide composition | |
US9480701B2 (en) | Low anticoagulant heparins | |
WO2012057381A1 (ko) | 히알루론산 및 l-아르기닌을 함유하는 유착방지제 | |
WO2017082446A1 (ko) | 생분해성 고분자 필름 및 그 제조방법 | |
KR20210040359A (ko) | 섬유성 유착 치료를 위한 고황산화 푸칸 | |
WO2022019701A1 (ko) | 유착방지용 고분자 조성물 | |
WO2021133000A1 (ko) | 항염 또는 항혈관신생용 약제학적 조성물 | |
WO2020055199A1 (ko) | 황산화 히알루론산 기반의 하이드로겔 및 이를 포함하는 약제학적 조성물 | |
WO2023282413A1 (ko) | 고팽윤성 히알루론산 비드 겔 | |
KR102688006B1 (ko) | 염증 상태의 치료에서의 작용화된 히알루론산 또는 이의 유도체 | |
PT91524B (pt) | Processo de preparacao de um medicamento a base de fraccoes e/ou fragmentos de heparina | |
EP2977460A1 (en) | Preparation method for hyaluronic acid, and anti-adhesive composition comprising hyaluronic acid prepared by same preparation method | |
WO2019054850A1 (ko) | 히알루론산을 포함하는 투명 하이드로겔 막 및 이를 이용한 콘택트렌즈 | |
JP4290231B2 (ja) | 角膜障害症治癒促進剤 | |
WO2023038463A1 (ko) | 6-arm peg 수화겔의 시간 경과에 따른 졸-겔 전환 | |
WO2017057824A1 (en) | Polyethylene glycol hydrogel injection | |
KR20190076365A (ko) | 히알루론산유도체, 플루란 및 카르복시메틸 셀룰로오스를 포함하는 유착방지용 조성물 및 이의 제조방법 | |
WO2020251241A1 (ko) | 히알루론산 기반의 안과용 약물전달체 및 이의 제조방법 | |
Li et al. | A rapid crosslinking injectable polygalacturonic acid barrier modified with zwitterion bottlebrush for preventing postoperative adhesion | |
WO2022196946A1 (ko) | 생체적합성 고분자를 포함하는 파우더형 유착방지제 및 그의 제조방법 | |
EP0514568B1 (en) | Antiprotozoal compositions containing 2-nitroimidazole derivatives | |
WO2016175548A1 (ko) | 생체적합성 천연고분자 및 dna 단편 혼합물을 함유하는 유착방지제 및 이의 제조 방법 | |
WO2022149750A1 (ko) | 온도감응성 히알루론산 비드 겔 | |
WO2023224213A1 (ko) | 약물전달체, 이를 포함하는 귀 질환 치료용 약학적 조성물 및 약물 방출 조절형 제제 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19860591 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19860591 Country of ref document: EP Kind code of ref document: A1 |