WO2020054921A1 - 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법 - Google Patents

드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법 Download PDF

Info

Publication number
WO2020054921A1
WO2020054921A1 PCT/KR2019/000375 KR2019000375W WO2020054921A1 WO 2020054921 A1 WO2020054921 A1 WO 2020054921A1 KR 2019000375 W KR2019000375 W KR 2019000375W WO 2020054921 A1 WO2020054921 A1 WO 2020054921A1
Authority
WO
WIPO (PCT)
Prior art keywords
pmos
μled
driving
driving pmos
enable
Prior art date
Application number
PCT/KR2019/000375
Other languages
English (en)
French (fr)
Inventor
김진혁
김종선
Original Assignee
(주)실리콘인사이드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)실리콘인사이드 filed Critical (주)실리콘인사이드
Priority to CN201980003340.0A priority Critical patent/CN111247579A/zh
Publication of WO2020054921A1 publication Critical patent/WO2020054921A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0248Precharge or discharge of column electrodes before or after applying exact column voltages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level

Definitions

  • the present invention relates to a method for controlling a ⁇ LED pixel structure, and more specifically, in determining the magnitude of a current flowing through a ⁇ LED, completely removes interference of a driving PMOS threshold voltage so that a greyscale of the ⁇ LED can be easily controlled. It relates to a method of controlling the ⁇ LED pixel structure.
  • ⁇ LED Micro-LED
  • LCD Liquid Crystal Display
  • OLED Organic Light Emitting Diode
  • ⁇ LED refers to an ultra-small LED with a chip size of only 5 to 10 ⁇ m, and since it can utilize the LED chip itself as a pixel, it has the feature of overcoming problems such as warpage or breakage that cannot be realized with conventional LEDs.
  • Quantum Dot it is similar to Quantum Dot in that it uses ultra-small particles as a light emitting material, but it has the advantage of showing improved performance in terms of low power, small size, and light weight.
  • Flexible displays, smart fibers that combine fiber and LED, human-attached and implantable medical devices, bio-contact lenses, and virtual reality (VR) displays are also in the spotlight in terms of scalability that enables convergence with various industries. .
  • these ⁇ LEDs are composed of pixels, and are mounted in a number to form a matrix on a wafer.
  • a driving PMOS Driving P-channel Metal Oxide Semiconductor
  • ⁇ LED Light-emitting Diode
  • the current is determined by various parameters such as electron mobility, specific values of driving PMOS or device characteristics, and most of them can be controlled in the process, but the threshold voltage of driving PMOS is not.
  • the gray scale of the ⁇ LED will show a dispersion of ⁇ 15% due to the threshold voltage of the driving PMOS. .
  • a structure or a method capable of completely eliminating interference of the driving PMOS threshold voltage is very important.
  • the present invention has been devised to solve the above-mentioned problems of the prior art, and it is a method of controlling the ⁇ LED pixel structure to more easily control the grayscale of the ⁇ LED by completely removing the interference of the driving PMOS threshold voltage in the ⁇ LED pixel structure
  • the purpose is to provide.
  • the present invention prevents the phenomenon that the corresponding transistor is not completely turned off by the threshold voltage of the driving PMOS and is finely turned on, so that the ⁇ LED and ⁇ LED pixel modules can realize a completely black ( ⁇ LED) pixel.
  • Another objective is to provide a method for controlling structures.
  • the pre-charge NMOS according to the pre-signal (PRE)
  • the pre-charge (Pre-charging) to maintain the gate bias (V BIAS ) of the driving PMOS to 0V (Pre -Charge) step
  • V BIAS gate bias
  • the driving PMOS is performed by turning off the pre-charge NMOS and enable-off PMOS according to an enable signal EN and turning on the enable-on PMOS.
  • the gate bias of the driving PMOS (V BIAS ) is [data value-threshold voltage of the driving PMOS (V TH ) + the first capacitor connected to the gate node of the driving PMOS (C ST ) And the second capacitor (C CC ), the voltage change amount ( ⁇ V)], and accordingly, the driving PMOS gate-source voltage (V GS ) by the current (I D ) flows to the ⁇ LED Emission (Emission) step; It provides a method for controlling the ⁇ LED pixel structure completely removing interference of the driving PMOS threshold voltage comprising a.
  • the voltage change amount ( ⁇ V) is preferably determined by the following equation.
  • ⁇ V is the amount of voltage change by the first capacitor (C ST ) and the second capacitor (C CC ) connected to the gate node of the driving PMOS
  • V LED is the power supply voltage
  • C ST is the first capacitor
  • C CC is Corresponds to the second capacitor
  • the invention of the first capacitor (C ST) so as to have the same value as the first capacitor (C ST) and the second capacitor (C CC) voltage change amount ( ⁇ V) and a threshold voltage (V TH) of the driving PMOS by It is preferable to apply by adjusting each of the capacitance ratio of the second capacitor C CC .
  • the gate-source voltage (V GS ) of the driving PMOS is [power supply voltage (V LED )-data value + threshold voltage of the driving PMOS (V TH )-a first capacitor connected to the gate node of the driving PMOS ( C ST ) and the second capacitor (C CC ) voltage change ( ⁇ V)].
  • the current I D is determined by the following equation.
  • I D is current
  • ⁇ n is electron mobility
  • C ox is the capacitance of the driving PMOS gate
  • W is the width of the driving PMOS gate
  • L is the length of the driving PMOS gate
  • V GS is the driving PMOS Gate-source voltage
  • V TH is the threshold voltage of the driving PMOS
  • ⁇ V corresponds to the amount of voltage change by the first capacitor (C ST ) and the second capacitor (C CC ) connected to the gate node of the driving PMOS).
  • the enable-on PMOS and the enable-off PMOS are controlled to operate on or off each other by providing opposite voltages to respective gates using a converter.
  • the emission NMOS and the emission PMOS are controlled to operate on or off the same by providing a voltage opposite to each gate using a converter.
  • the enable on PMOS includes a first enable on PMOS and a second enable on PMOS, and the drain of the first enable on PMOS is arranged to be connected to a source of the driving PMOS, and the second
  • a source of an enable on PMOS is connected to a drain of the driving PMOS
  • a drain of the second enable on PMOS is connected to a gate of the driving PMOS.
  • the ⁇ LED pixels constitute a display by forming a matrix in a number
  • the display includes a scan controller that scans a row of ⁇ LED pixels in a matrix; A source driver providing data to corresponding ⁇ LED pixels in a row scanned by the scan controller; A timing controller controlling timing of the scan controller and the source driver; And a Serial Peripheral Interface (SPI), Low Voltage Differential Signaling (LVDS) or Red-Green-Blue (RGB) interface. It is preferably controlled by a DDI (Display Driver IC) containing a.
  • DDI Display Driver IC
  • the ⁇ LED pixel structure control method of the present invention it is possible to completely remove interference of a driving PMOS threshold voltage to a current flowing through a ⁇ LED using device characteristics such as NMOS and PMOS applied to the ⁇ LED pixel structure.
  • the present invention can more fully control the gray scale of the ⁇ LED, and has the effect of further reducing the dispersion of ⁇ 15% that the gray scale of the conventional ⁇ LED has within ⁇ 1.5%.
  • the ⁇ LED and ⁇ LED pixel modules can realize a complete black. It works.
  • the present invention has the effect of helping to develop and commercialize display devices capable of miniaturization or weight reduction with lower power by improving the efficiency and performance of the display using ⁇ LED.
  • FIG. 1 is an exemplary view showing a basic concept of a ⁇ LED pixel structure control method according to the prior art.
  • FIG. 2 is a flowchart of a method of controlling a ⁇ LED pixel structure according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a ⁇ LED pixel structure according to an embodiment of the present invention.
  • Figure 4 is an exemplary view showing a control state of the pre-charge step of the ⁇ LED pixel structure control method according to an embodiment of the present invention.
  • Figure 5 is an exemplary view showing a pre-signal applied during the pre-charge step of the ⁇ LED pixel structure control method according to an embodiment of the present invention.
  • Figure 6 is an exemplary view showing a control state of the data enable step of the ⁇ LED pixel structure control method according to an embodiment of the present invention.
  • FIG. 7 is an exemplary view showing an enable signal applied during a data enable step of a ⁇ LED pixel structure control method according to an embodiment of the present invention.
  • FIG 8 is an exemplary view showing a control of the emission step of the ⁇ LED pixel structure control method according to an embodiment of the present invention.
  • FIG. 9 is an exemplary view showing an emission signal applied during an emission step of a ⁇ LED pixel structure control method according to an embodiment of the present invention.
  • FIG. 10 is an exemplary view showing a result of measuring a ⁇ LED current for a ⁇ LED grayscale according to an embodiment of the present invention.
  • 11 is an exemplary view showing a result of measuring pixel data for three gray values according to an embodiment of the present invention.
  • FIG. 12 is a display driver IC (DDI) including a scan controller, a source driver, a timing controller and a serial peripheral interface, a low voltage differential signaling and an RGB interface, and a plurality of ⁇ LED pixels form a matrix according to an embodiment of the present invention. Illustrative diagram showing the appearance of the display being formed.
  • DPI display driver IC
  • the ⁇ LED pixel structure control method in which interference of a driving PMOS threshold voltage is completely eliminated according to an embodiment of the present invention is achieved by turning on a pre-charge NMOS according to a pre-signal (PRE) to turn on the gate bias (V BIAS ) of the driving PMOS.
  • PRE pre-signal
  • V BIAS gate bias
  • the driving PMOS is performed by turning off the pre-charge NMOS and enable-off PMOS according to an enable signal EN and turning on the enable-on PMOS.
  • the gate bias of the driving PMOS (V BIAS ) is [data value-threshold voltage of the driving PMOS (V TH ) + the first capacitor connected to the gate node of the driving PMOS (C ST ) And the second capacitor (C CC ), the voltage change amount ( ⁇ V)], and accordingly, the driving PMOS gate-source voltage (V GS ) by the current (I D ) flows to the ⁇ LED Emission (Emission) step; It characterized in that it comprises a.
  • FIG. 1 is an exemplary view showing a basic concept of a ⁇ LED pixel structure control method according to the prior art.
  • the display is configured by forming a matrix of a plurality of ⁇ LED pixels.
  • FIG. 1 illustrates the concept of a single ⁇ LED pixel structure, scan data by the scan controller 110 that scans a row of ⁇ LED pixels, and the corresponding ⁇ LED pixel.
  • Source data by the source driver 120 that provides data to the fields is provided to the ⁇ LED pixel by timing control of the timing controller 130.
  • the current flowing through the ⁇ LED 40 is determined by the gate-source voltage V GS of the driving P-channel metal oxide semiconductor (PMOS) 100, and the magnitude of the current is as shown in Equation 1 below. .
  • Equation 1 I D is the current, ⁇ n is electron mobility, C ox is the capacitance of the driving PMOS gate, W is the width of the driving PMOS gate, L is the length of the driving PMOS gate, V GS corresponds to the gate-source voltage of the driving PMOS, and V TH corresponds to the threshold voltage of the driving PMOS.
  • the size of the current (I D ) that can be expressed by Equation 1 above determines the grayscale of the corresponding ⁇ LED, and the current is determined by various parameters, and most can be easily controlled in the process.
  • the threshold voltage (V TH ) of the driving PMOS 100 is difficult to control with the current process technology, and the gray scale of the ⁇ LED is generally displayed as a dispersion of ⁇ 15% if no special measures are taken. to be.
  • the current I D flowing through the ⁇ LED 40 in FIG. 1 is determined by the gate-source voltage V GS of the driving PMOS. According to Equation 1 above, the current I D is driven. It becomes proportional to the square of the change in the threshold voltage (V TH ) of the PMOS, in this case V TH of the driving PMOS. The dispersion of the current I D is affected by the dispersion.
  • the present invention was devised for the purpose of realizing a complete black implementation through ⁇ LED by lowering and easily controlling it, and further removing interference of the threshold voltage (V TH ) of the driving PMOS.
  • the pre-charge NMOS 10 and the enable-off PMOS 23 are turned off and enabled on the PMOS 20 according to the enable signal EN.
  • the gate bias V BIAS of the driving PMOS is [data value-threshold voltage of the driving PMOS (V TH ) + driving PMOS Voltage change ( ⁇ V) by the first capacitor (C ST ) and the second capacitor (C CC ) connected to the gate node of [Delta] V, and accordingly, the ⁇ LED (40) by the gate-source voltage (V GS ) of the driving PMOS It is formed by including an emission (Emission) step to cause the current to flow.
  • FIG. 2 is a flowchart illustrating a method of controlling a ⁇ LED pixel structure according to an embodiment of the present invention
  • FIG. 3 is a configuration diagram showing a ⁇ LED pixel structure according to an embodiment of the present invention
  • the pre-charge step of maintaining the gate bias V BIAS of the driving PMOS at 0 V is performed by turning on the pre-charge NMOS 10 according to the pre-signal PRE (s10). ).
  • the enable on PMOS 20, the emission NMOS 30, and the emission PMOS 31 are all in the off state, and only the enable off PMOS 23 is turned on, which is in the direction of ⁇ LED 40.
  • an unwanted current is prevented from flowing without permission, and it can be said to be an outpost step for receiving data values through lines connected to the first enable on PMOS 21 and the second enable on PMOS 22.
  • a data enable step is performed such that the gate bias V BIAS of the driving PMOS becomes [data value-threshold voltage V TH of the driving PMOS] (s20). ).
  • the data enable step is a step of completing preparation for receiving data input by initializing a ⁇ LED pixel after the precharge step, and is in an ON state in the precharge step according to an enable (EN) signal shown in FIG. 7.
  • the gate bias (V BIAS ) of the driving PMOS 100 is caused by placing the pre-charged NMOS 10 and the enable-off PMOS 23 in the Off state and at the same time placing the Enable-on PMOS 20 in the ON state. ) Is charged as much as [data value-V TH ].
  • the enable on PMOS 20 includes a first enable on PMOS 21 and a second enable on PMOS 22, wherein the first enable on PMOS is At the same time as the drain is arranged to be connected to the source of the driving PMOS 100, the second enable on PMOS is arranged so that the source is connected to the drain of the driving PMOS, and the drain of the second enable on PMOS is connected to the gate of the driving PMOS. Configure as much as possible.
  • V BIAS gate bias of the driving PMOS 100 charged in the data enable step to drive the current I D with ⁇ LED in the emission step to be described later, thereby preparing the light emission of the ⁇ LED 40. It can be said that is completed.
  • the enable on PMOS 20 and the enable off PMOS 23 are provided with opposite voltages to each gate by using a converter, so that the ON or Off operation is performed in reverse. .
  • FIG 8 is an exemplary view showing an emission step of a method of controlling a ⁇ LED pixel structure according to an embodiment of the present invention, and the ⁇ LED according to the gate-source voltage V GS charged in the driving PMOS 100 which is the last step
  • the emission step in which the current flows to (40) is performed (s30).
  • the emission step turns on the enable-off PMOS 23 according to the emission signal EN and the emission signal EMM having a non-overlap period as shown in FIG. It is made by turning on the enable-on PMOS 20 and turning on the emission NMOS 30 and the emission PMOS 31 that are in the Off state, and the ⁇ LED is driven by the gate-source voltage (V GS ) of the driving PMOS.
  • the current I D flows to 40.
  • Equation 2 the voltage change amount ⁇ V is determined by Equation 2 below.
  • ⁇ V is the amount of voltage change by the first capacitor (C ST ) and the second capacitor (C CC ) connected to the gate node of the driving PMOS
  • V LED is the power supply voltage
  • C ST is the first capacitor
  • C CC is Corresponds to the second capacitor.
  • the current I D to the ⁇ LED 40 by the gate-source voltage V GS of the driving PMOS in the emission step may be determined by Equation 3 below.
  • Equation 3 I D is current, ⁇ n is electron mobility, C ox is capacitance of driving PMOS gate, W is width of driving PMOS gate, L is length of driving PMOS gate, and V GS is driving PMOS
  • the gate-source voltage of V TH is the threshold voltage of the driving PMOS, and ⁇ V corresponds to the amount of voltage change by the first capacitor C ST and the second capacitor C CC connected to the gate node of the driving PMOS.
  • the dispersion of the current I D to the ⁇ LED 40 is affected by the dispersion of the threshold voltage V TH of the driving PMOS, and the current I D is equal to the square of the V TH change. It is proportionally affected.
  • the influence of V TH itself by having the same value as the voltage change amount ⁇ V by the first capacitor C ST and the second capacitor C CC and the threshold voltage V TH of the driving PMOS itself Can be completely removed. That is, according to Equation 2, the capacitance ratio of the first capacitor C ST and the second capacitor C CC is adjusted, so that the voltage change amount ⁇ V is equal to the threshold voltage V TH of the driving PMOS. By having the same value, there is an advantage of removing the influence of the threshold voltage (V TH ) of the driving PMOS.
  • V TH threshold voltage
  • ⁇ LED 40 gates V BIAS to express black.
  • the emission NMOS 30 and the emission PMOS 31 are provided with opposite voltages to the respective gates by using converters, so that they are the same ON or Off. It can be controlled to operate.
  • the emission signal EMM is formed and input to have an enable signal EN and a non-overlap period, and the enable off PMOS 23 is turned on in advance, After the first enable on PMOS 21 and the second enable on PMOS 22 are turned off in advance, a common node outputs current by outputting a current through the emission signal EMM at a non-overlap period. It functions so that the current path error does not occur.
  • the high period (emission period) of the emission signal EMM it is possible to separately control the current emission time of the output stage, and ultimately, the overall brightness of the ⁇ LED module can be controlled.
  • FIG. 10 shows an exemplary view showing the result of measuring the ⁇ LED current for the ⁇ LED grayscale according to an embodiment of the present invention
  • FIG. 11 shows the present invention An exemplary view showing a result of measuring pixel data for three gray values according to an embodiment is illustrated.
  • the ⁇ LED 40 current for a ⁇ LED grayscale (total of 256 gray steps from 0 gray to 255 gray) is measured, and linearity from 0 gray to 255 gray is linear. ).
  • 11 shows that nine pixel data for three gray values are collected: 4 gray (low), 128 gray (medium), and 255 gray (high).
  • FIG. 12 is a display driver IC (DDI) including a scan controller, a source driver, a timing controller and a serial peripheral interface, a low voltage differential signaling and an RGB interface, and a plurality of ⁇ LED pixels form a matrix according to an embodiment of the present invention.
  • DPI display driver IC
  • the present invention constitutes a display by forming a matrix of a plurality of ⁇ LED pixels as shown in FIG. 12.
  • the display includes a scan controller (Scan Controller; 110) that scans rows of matrixed ⁇ LED pixels, a source driver (120) that provides data to the corresponding ⁇ LED pixels of the row scanned by the scan controller, and the scan controller Timing controller (130) and serial peripheral interface (Serial Peripheral Interface: 140), low voltage differential signaling (Low Voltage Differential Signaling; 150) or RGB interface 160 to control the timing of the and source driver It may be controlled by a DDI (Display Driver IC) including.
  • the present invention has an advantage of removing interference of a driving PMOS threshold voltage to a current flowing through a ⁇ LED by using device characteristics such as NMOS and PMOS in a ⁇ LED pixel structure.
  • the present invention can more easily control the grayscale of the ⁇ LED, and further reduces the dispersion of ⁇ 15% that the grayscale of the conventional ⁇ LED has, so that the grayscale of the ⁇ LED is within ⁇ 1.5%.
  • the present invention prevents the phenomenon that the corresponding transistor is not completely turned off and finely turned on due to the threshold voltage of the driving PMOS, so that the ⁇ LED and ⁇ LED pixel modules can implement a completely black color, so the ⁇ LED It has the advantage of improving the efficiency and performance of the display by using ⁇ LED to help improve the quality of devices and devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

본 발명은 μLED 픽셀 구조를 제어하는 방법에 관한 것으로서, 보다 상세하게는 μLED로 흐르는 전류의 크기를 결정하는데 있어 드라이빙 PMOS 문턱전압의 간섭을 완전히 제거함으로써 μLED의 그레이스케일을 보다 용이하게 제어할 수 있도록 하는 μLED 픽셀 구조 제어 방법에 관한 것이다.

Description

드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법
본 발명은 μLED 픽셀 구조를 제어하는 방법에 관한 것으로서, 보다 상세하게는 μLED로 흐르는 전류의 크기를 결정하는데 있어 드라이빙 PMOS 문턱전압의 간섭을 완전히 제거함으로써 μLED의 그레이스케일을 매우 용이하게 제어할 수 있도록 하는 μLED 픽셀 구조 제어 방법에 관한 것이다.
최근 LCD(Liquid Crystal Display)와 OLED(Organic Light Emitting Diode) 이후 차세대 디스플레이로 μLED(Micro-LED)가 주목받고 있다.
μLED는 통상적으로 칩 크기가 5 ~ 10㎛에 불과한 초소형 LED를 말하는데, LED 칩 자체를 화소로 활용할 수 있기 때문에 기존 LED로 구현할 수 없는 휘어짐이나 깨짐 등의 문제를 극복할 수 있는 특징이 있다.
초소형 입자를 발광재료로 사용한다는 점에서는 퀀텀닷(Quantum Dot)과 비슷하지만, 저전력, 소형화, 경량화 측면에서는 더욱 개선된 성능을 보인다는 것이 장점이다.
플렉서블 디스플레이(Flexible Display), 섬유와 LED가 결합한 스마트 섬유, 인체 부착 및 삽입형 의료기기, 바이오 콘택트렌즈, 가상현실(VR) 디스플레이 등 다양한 산업군과 융복합이 가능해지는 확장성 측면에서도 각광받고 있는 실정이다.
디스플레이를 구현하기 위하여 이러한 μLED는 픽셀 단위로 구성되어 웨이퍼 상에 매트릭스를 이루도록 다수로 장착되는데, 각각의 μLED 픽셀 구조에는 드라이빙 PMOS(Driving P-channel Metal Oxide Semiconductor)가 μLED로 흐르는 전류를 제어함으로써 μLED의 그레이스케일을 조절하게 된다.
상기 전류는 전자 이동도(mobility), 드라이빙 PMOS의 특정 수치나 소자 특성 등 다양한 파라미터들에 의해 결정되는데, 대부분은 공정 과정에서 제어가 가능하지만 드라이빙 PMOS의 문턱전압은 그렇지 못한 문제점이 있다.
왜냐하면 아무런 조치를 취하지 않는 경우 상기 드라이빙 PMOS의 문턱전압에 의해 μLED의 그레이스케일은 ±15%의 산포(散布)를 보이게 되며, 이는 μLED를 이용한 디스플레이의 개발과 상용화에 큰 문제가 아닐 수 없기 때문이다.
또한, μLED 픽셀 구조에 있어서, 드라이빙 PMOS의 문턱전압에 의해 해당 트랜지스터가 완전히 오프(Off)되지 않고 미세하게 온(On)되는 현상이 발생되고 있다. 예컨대, μLED 픽셀구조를 이용해 완벽한 흑색(Black)을 구현하기 어려운 문제점이 있었고, 종국적으로 μLED 를 적용한 디스플레이 기기의 품질에도 간섭을 미치는 단점이 있었다.
따라서, μLED로 흐르는 전류를 결정하는데 있어 드라이빙 PMOS 문턱전압의 간섭을 완전히 제거할 수 있는 구조 또는 방식이 매우 긴요하게 요구되고 있다.
본 발명은 전술한 종래기술의 문제점을 해결하기 위해 안출된 것으로서, μLED 픽셀 구조에서 드라이빙 PMOS 문턱전압의 간섭을 완벽하게 제거함으로써 μLED의 그레이스케일을 보다 용이하게 제어할 수 있도록 하는 μLED 픽셀 구조 제어 방법을 제공하는데 그 목적이 있다.
또한, 본 발명은 드라이빙 PMOS의 문턱전압에 의해 해당 트랜지스터가 완전히 오프(Off)되지 않고 미세하게 온(On)되는 현상을 방지하여 μLED 및 μLED 픽셀모듈이 완전한 흑색(Black)을 구현할 수 있는 μLED 픽셀 구조 제어 방법을 제공하는데 또 다른 목적이 있다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 본 발명의 기재로부터 당해 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 종래기술의 문제점을 해결하기 위한 본 발명에 의하면, 프리 신호(PRE)에 따라 프리차지 NMOS를 온(on) 시킴으로써, 드라이빙 PMOS의 게이트 바이어스(V BIAS)를 0V 로 유지시키는 프리차지(Pre-Charge) 단계; 소스 드라이버(Source Driver)에서 μLED 픽셀에 데이터를 제공할 때, 인에이블 신호(EN)에 따라 상기 프리차지 NMOS와 인에이블 오프 PMOS를 오프(off) 시키고 인에이블 온 PMOS를 온 시킴으로써, 상기 드라이빙 PMOS의 게이트 바이어스(V BIAS)가 [데이터값 - 드라이빙 PMOS의 문턱전압(V TH)]이 되도록 하는 데이터 인에이블(Data Enable) 단계; 및 상기 인에이블 신호(EN)와 논-오버랩(non-overlap) 구간을 두는 에미션 신호(EMM)에 따라 상기 인에이블 오프 PMOS를 온 시키고 상기 인에이블 온 PMOS를 오프 시킨 후, 오프 상태로 있던 에미션 NMOS와 에미션 PMOS를 온 시킴으로써, 드라이빙 PMOS의 게이트 바이어스(V BIAS)는 [데이터값 - 드라이빙 PMOS의 문턱전압(V TH) + 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)]이 되고, 이에 따른 드라이빙 PMOS의 게이트-소스전압(V GS)에 의해 μLED로 전류(I D)가 흐르도록 하는 에미션(Emission) 단계; 를 포함하는 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법을 제공한다.
본 발명에서 상기 전압변화량(ΔV)은 아래의 수학식으로 결정되는 것이 바람직하다.
Figure PCTKR2019000375-appb-img-000001
(이 때, ΔV는 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량, V LED는 전원전압, C ST는 제 1커패시터, C CC는 제 2커패시터에 해당됨).
본 발명은 상기 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)과 상기 드라이빙 PMOS의 문턱전압(V TH)과 같은 값을 갖도록 제1 커패시터(C ST)와 제2 커패시터(C CC)의 커패시턴스(Capacitance) 비율을 각각 조정하여 적용하는 것이 바람직하다.
본 발명에서 상기 드라이빙 PMOS의 게이트-소스전압(V GS)은, [전원전압(V LED) - 데이터값 + 드라이빙 PMOS의 문턱전압(V TH) - 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)] 이 되는 것이 바람직하다.
본 발명에서 상기 전류(I D)는 다음의 수학식으로 결정되는 것이 바람직하다.
Figure PCTKR2019000375-appb-img-000002
(이 때, I D는 전류, μ n은 전자 이동도(mobility), C ox는 드라이빙 PMOS 게이트의 커패시턴스, W는 드라이빙 PMOS 게이트의 폭, L은 드라이빙 PMOS 게이트의 길이, V GS는 드라이빙 PMOS의 게이트-소스전압, V TH는 드라이빙 PMOS의 문턱전압, ΔV는 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량에 해당됨).
본 발명에서 상기 인에이블 온 PMOS와 인에이블 오프 PMOS는 컨버터(Converter)를 이용해 각각의 게이트에 반대되는 전압을 제공함으로써 서로 반대의 온 또는 오프 동작을 하도록 제어하는 것이 바람직하다.
본 발명에서 상기 에미션 NMOS와 에미션 PMOS는 컨버터를 이용해 각각의 게이트에 반대되는 전압을 제공함으로써 서로 동일한 온 또는 오프 동작을 하도록 제어하는 것이 바람직하다.
본 발명은 상기 인에이블 온 PMOS는 제1 인에이블 온 PMOS 및 제2 인에이블 온 PMOS를 포함하며, 상기 제1 인에이블 온 PMOS의 드레인은 상기 드라이빙 PMOS의 소스에 연결되도록 배치되고, 상기 제2 인에이블 온 PMOS의 소스가 상기 드라이빙 PMOS의 드레인에 연결되고, 상기 제2 인에이블 온 PMOS의 드레인은 상기 드라이빙 PMOS의 게이트에 연결되도록 배치되는 것이 바람직하다.
본 발명에서 상기 μLED 픽셀은 다수로 매트릭스를 이룸으로써 디스플레이를 구성하며, 상기 디스플레이는, 매트릭스를 이룬 μLED 픽셀들의 행을 스캔하는 스캔 컨트롤러(Scan Controller); 상기 스캔 컨트롤러가 스캔하는 행의 해당 μLED 픽셀들에 데이터를 제공하는 소스 드라이버; 상기 스캔 컨트롤러와 소스 드라이버의 타이밍을 제어하는 타이밍 컨트롤러(Timing Controller); 및 직렬 주변 장치 인터페이스(Serial Peripheral Interface: SPI), 저전압 차등 시그널링(Low Voltage Differential Signaling; LVDS) 또는 RGB(Red-Green-Blue) 인터페이스 중 어느 하나 이상을 포함하는 인터페이스; 를 포함하는 DDI(Display Driver IC)에 의해 제어되는 것이 바람직하다.
본 발명의 μLED 픽셀 구조 제어 방법에 의하면, μLED 픽셀 구조에 적용되는 NMOS와 PMOS 등의 소자 특성을 이용해 μLED로 흐르는 전류에 드라이빙 PMOS 문턱전압의 간섭을 완벽히 제거할 수 있는 효과가 있다.
이에 따라, 본 발명은 μLED의 그레이스케일을 보다 완벽하게 제어할 수 있으며, 종래 μLED의 그레이스케일이 가지던 ±15%의 산포를 보다 감소시켜 ±1.5% 이내의 산포를 갖도록 하는 효과가 있다.
또한, 본 발명에 의하면, 드라이빙 PMOS의 문턱전압에 의해 해당 트랜지스터가 완전히 오프(Off)되지 않고 미세하게 온(ON)되는 현상을 방지하여 μLED 및 μLED 픽셀모듈이 완전한 흑색(Black)을 구현할 수 있는 효과가 있다.
더불어서 본 발명은 μLED를 이용한 디스플레이의 효율과 성능을 향상시켜 보다 저전력으로 소형화 또는 경량화가 가능한 디스플레이 장치들을 개발 및 상용화할 수 있도록 조력하는 효과가 있다.
도 1은 종래기술에 따른 μLED 픽셀 구조 제어 방법의 기본적인 개념을 나타낸 예시도.
도 2는 본 발명의 일실시예에 따른 μLED 픽셀 구조 제어 방법의 순서도.
도 3은 본 발명의 일실시예에 따른 μLED 픽셀 구조의 구성도.
도 4는 본 발명의 일실시예에 따른 μLED 픽셀 구조 제어 방법의 프리차지 단계의 제어 모습을 나타낸 예시도.
도 5는 본 발명의 일실시예에 따른 μLED 픽셀 구조 제어 방법의 프리차지 단계 시 인가되는 프리 신호를 나타낸 예시도.
도 6는 본 발명의 일실시예에 따른 μLED 픽셀 구조 제어 방법의 데이터 인에이블 단계의 제어 모습을 나타낸 예시도.
도 7는 본 발명의 일실시예에 따른 μLED 픽셀 구조 제어 방법의 데이터 인에이블 단계 시 인가되는 인에이블 신호를 나타낸 예시도.
도 8는 본 발명의 일실시예에 따른 μLED 픽셀 구조 제어 방법의 에미션 단계의 제어모습을 나타낸 예시도.
도 9는 본 발명의 일실시예에 따른 μLED 픽셀 구조 제어 방법의 에미션 단계 시 인가되는 에미션 신호를 나타낸 예시도.
도 10은 본 발명의 일실시예에 따른 μLED 그레이스케일에 대한 μLED 전류를 측정한 결과를 나타낸 예시도.
도 11은 본 발명의 일실시예에 따른 세 가지 그레이값에 대한 픽셀 데이터를 측정한 결과를 나타낸 예시도.
도 12는 본 발명의 일실시예 따른 스캔 컨트롤러, 소스 드라이버, 타이밍 컨트롤러 및 직렬 주변 장치 인터페이스, 저전압 차등 시그널링 및 RGB 인터페이스를 포함하는 DDI(Display Driver IC)와, μLED 픽셀이 다수로 매트릭스를 이룸으로써 형성되는 디스플레이의 모습을 나타낸 예시도.
본 발명의 실시예에 따른 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법은, 프리 신호(PRE)에 따라 프리차지 NMOS를 온(on) 시킴으로써, 드라이빙 PMOS의 게이트 바이어스(V BIAS)를 0V 로 유지시키는 프리차지(Pre-Charge) 단계; 소스 드라이버(Source Driver)에서 μLED 픽셀에 데이터를 제공할 때, 인에이블 신호(EN)에 따라 상기 프리차지 NMOS와 인에이블 오프 PMOS를 오프(off) 시키고 인에이블 온 PMOS를 온 시킴으로써, 상기 드라이빙 PMOS의 게이트 바이어스(V BIAS)가 [데이터값 - 드라이빙 PMOS의 문턱전압(V TH)]이 되도록 하는 데이터 인에이블(Data Enable) 단계; 및 상기 인에이블 신호(EN)와 논-오버랩(non-overlap) 구간을 두는 에미션 신호(EMM)에 따라 상기 인에이블 오프 PMOS를 온 시키고 상기 인에이블 온 PMOS를 오프 시킨 후, 오프 상태로 있던 에미션 NMOS와 에미션 PMOS를 온 시킴으로써, 드라이빙 PMOS의 게이트 바이어스(V BIAS)는 [데이터값 - 드라이빙 PMOS의 문턱전압(V TH) + 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)]이 되고, 이에 따른 드라이빙 PMOS의 게이트-소스전압(V GS)에 의해 μLED로 전류(I D)가 흐르도록 하는 에미션(Emission) 단계; 를 포함하는 것을 특징으로 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
먼저, 도 1은 종래기술에 따른 μLED 픽셀 구조 제어 방법의 기본적인 개념을 나타낸 예시도이다.
μLED 픽셀들이 다수로 매트릭스를 형성함으로써 디스플레이를 구성하게 되는데, 도 1은 하나의 μLED 픽셀 구조의 개념을 나타낸 것으로, μLED 픽셀들의 행을 스캔하는 스캔 컨트롤러(110)에 의한 스캔 데이터와, 해당 μLED 픽셀들에 데이터를 제공하는 소스 드라이버(120)에 의한 소스 데이터가 타이밍 컨트롤러(130)의 타이밍 제어에 의해 μLED 픽셀에 제공된다.
이 때 드라이빙 PMOS(Driving P-channel Metal Oxide Semiconductor)(100)의 게이트-소스전압(V GS)에 의해 μLED(40)로 흐르는 전류가 결정되는데, 상기 전류의 크기는 아래의 수학식 1과 같다.
Figure PCTKR2019000375-appb-img-000003
상기 수학식 1에서, I D는 전류, μ n은 전자 이동도(mobility), C ox는 드라이빙 PMOS 게이트의 커패시턴스(Capacitance), W는 드라이빙 PMOS 게이트의 폭, L은 드라이빙 PMOS 게이트의 길이, V GS는 드라이빙 PMOS의 게이트-소스전압, V TH는 드라이빙 PMOS의 문턱전압에 해당한다.
위의 수학식 1로 표현될 수 있는 전류(I D)의 크기는, 해당 μLED의 그레이스케일(Grayscale)을 결정하는데, 상기 전류는 다양한 파라미터들에 의해 결정되고 대부분은 공정 과정에서 쉽게 제어가 가능하지만, 드라이빙 PMOS(100)의 문턱전압(Threshold Voltage; V TH)은 현재의 공정 기술로는 제어하기가 어려워 별다른 조치를 취하지 않을 경우 μLED의 그레이스케일은 ±15% 정도의 산포를 보이게 되는 것이 일반적이다.
즉, 도 1에서 μLED(40)로 흐르는 전류(I D)는 드라이빙 PMOS의 게이트-소스전압(V GS)에 의해 결정되는데, 위의 수학식 1에 의할 때, 전류(I D)는 드라이빙 PMOS의 문턱전압(V TH)의 변화의 제곱에 비례하게 되고, 이 경우 드라이빙 PMOS의 V TH 산포에 의해 전류(I D)의 산포가 영향을 받게 된다.
따라서 드라이빙 PMOS의 문턱전압(V TH)에 대한 보상이 필요하며, μLED(40)로 흐르는 전류(I D)에서 드라이빙 PMOS의 문턱전압(V TH)의 간섭을 최소한으로 감소시킴으로써 μLED 그레이스케일의 산포를 낮추고 이를 용이하게 제어할 수 있도록 하고, 더 나아가 드라이빙 PMOS의 문턱전압(V TH)의 간섭을 완전히 제거하여 μLED를 통한 완전한 흑색 구현을 실현하기 위한 목적하에서 본 발명이 고안되었다.
본 발명에 의하면, 1) 프리 신호(PRE)에 따라 프리차지 NMOS(10)를 ON 시킴으로써, 드라이빙 PMOS의 게이트 바이어스(V BIAS)를 0V 로 유지시키는 프리차지(Pre-Charge) 단계와,
2) 소스 드라이버(Source Driver)에서 μLED 픽셀에 데이터를 제공할 때, 인에이블 신호(EN)에 따라 상기 프리차지 NMOS(10)와 인에이블 오프 PMOS(23)를 Off 시키고 인에이블 온 PMOS(20)를 ON 시킴으로써, 상기 드라이빙 PMOS의 게이트 바이어스(V BIAS)가 [데이터값 - 드라이빙 PMOS의 문턱전압(V TH)]이 되도록 하는 데이터 인에이블(Data Enable) 단계와,
3) 상기 인에이블 신호(EN)와 논-오버랩(non-overlap) 구간을 두는 에미션 신호(EMM)에 따라 상기 인에이블 오프 PMOS(23)를 ON 시키고 상기 인에이블 온 PMOS(20)를 Off 시킨 후, Off 상태로 있던 에미션 NMOS(30)와 에미션 PMOS(31)를 ON 시킴으로써, 드라이빙 PMOS의 게이트 바이어스(V BIAS)는 [데이터값 - 드라이빙 PMOS의 문턱전압(V TH) + 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)]이 되고, 이에 따른 드라이빙 PMOS의 게이트-소스전압(V GS)에 의해 μLED(40)로 전류가 흐르도록 하는 에미션(Emission) 단계를 포함하여 형성된다.
이에 대한 이해를 돕기 위해, 도 2에는 본 발명의 일실시예에 따른 μLED 픽셀 구조 제어 방법 순서도가 도시되고, 도 3에는 본 발명의 일실시예에 따른 μLED 픽셀 구조를 나타낸 구성도가 도시되며, 도 2 내지 도 3을 참조하여 본 발명을 구성하는 각각의 단계들을 설명하면 다음과 같다.
먼저 본 발명은 도 4에 도시된 것과 같이 프리 신호(PRE)에 따라 프리차지 NMOS(10)를 ON 시킴으로써, 드라이빙 PMOS의 게이트 바이어스(V BIAS)를 0V 로 유지시키는 프리차지 단계가 수행된다(s10).
이 때에는 인에이블 온 PMOS(20), 에미션 NMOS(30), 에미션 PMOS(31)는 모두 Off 상태에 놓이며, 인에이블 오프 PMOS(23)만 ON 상태가 되며, 이는 μLED(40) 방향으로 원치 않는 전류가 무단으로 흐르는 것을 방지하고, 제1 인에이블 온 PMOS(21) 및 제2 인에이블 온 PMOS(22)로 연결되는 라인을 통해 데이터 값을 입력받기 위한 전초 단계라 할 수 있다.
그러므로, 프리차지 단계에서는 프리차지 NMOS(10)가 ON 상태에 놓여 드라이빙 PMOS(100)의 게이트에서 상기 프리차지 NMOS 방향으로 전류가 흐르게 됨으로써 상기 드라이빙 PMOS의 게이트 바이어스(V BIAS)가 0V 로 유지되게 된다(V BIAS =0).
이후, 소스 드라이버에서 μLED 픽셀에 데이터를 제공할 때 상기 드라이빙 PMOS의 게이트 바이어스(V BIAS)가 [데이터값 - 드라이빙 PMOS의 문턱전압(V TH)]이 되도록 하는 데이터 인에이블 단계가 진행된다(s20).
상기 데이터 인에이블 단계는 프라차지 단계 이후, μLED 픽셀을 초기화하여 데이터 입력을 받을 준비를 완료하는 단계로서, 도 7에 도시된 것과 같은 인에이블(EN) 신호에 따라 상기 프리차지 단계에서 ON 상태에 놓여있던 프리차지 NMOS(10)와 인에이블 오프 PMOS(23)를 Off 상태에 놓이도록 하고, 이와 동시에 인에이블 온 PMOS(20)를 ON 상태에 놓음으로써 드라이빙 PMOS(100)의 게이트 바이어스(V BIAS)가 [데이터값 - V TH] 만큼의 전하가 충전되도록 한다.
도 6을 참조하여 보다 자세히 설명하면, 상기 인에이블 온 PMOS(20)는 제1 인에이블 온 PMOS(21) 및 제2 인에이블 온 PMOS(22)를 포함하며, 상기 제1 인에이블 온 PMOS는 드레인이 드라이빙 PMOS(100)의 소스에 연결되도록 배치됨과 동시에 상기 제2 인에이블 온 PMOS는 소스가 드라이빙 PMOS의 드레인에 연결되고, 제2 인에이블 온 PMOS의 드레인이 드라이빙 PMOS의 게이트에 연결되도록 배치되도록 구성한다.
이와 같은 경우, 제1 인에이블 온 PMOS(21)에서 제2 인에이블 온 PMOS(22)로 전류가 흐르고, 결과적으로 드라이빙 PMOS의 게이트에는 소스 드라이버에서 입력한 데이터값에서 드라이빙 PMOS의 문턱전압을 뺀 값(데이터값 - 드라이빙 PMOS의 문턱전압(V TH))만큼의 전압이 충전되게 된다(V BIAS = DATA - V TH).
따라서, 데이터 인에이블 단계에서 충전된 드라이빙 PMOS(100)의 게이트 바이어스(V BIAS)를 이용하여 후술할 에미션 단계에서 μLED로 전류(I D)를 구동시키게 되며, 이로써 μLED(40)의 발광준비가 완료되었다고 할 수 있다.
여기에서 상기 인에이블 온 PMOS(20)와 인에이블 오프 PMOS(23)에는 각각의 게이트에 컨버터(Converter)를 이용하여 서로 반대되는 전압을 제공함으로써 ON 또는 Off 동작을 서로 반대로 수행하도록 하는 것이 바람직하다.
도 8에 본 발명의 일실시예에 따른 μLED 픽셀 구조 제어 방법의 에미션 단계를 나타낸 예시도가 도시되며, 마지막 단계인 드라이빙 PMOS(100)에 충전된 게이트-소스전압(V GS)에 따라 μLED(40)로 전류가 흐르는 에미션 단계가 수행된다(s30).
상기 에미션 단계는 도 9에 도시된 것처럼 상기 인에이블 신호(EN)와 논-오버랩(non-overlap) 구간을 두는 에미션 신호(EMM)에 따라 상기 인에이블 오프 PMOS(23)를 ON 시키고 상기 인에이블 온 PMOS(20)를 Off 시킴과 동시에, Off 상태로 있던 에미션 NMOS(30)와 에미션 PMOS(31)를 ON 시킴으로써 이루어지며, 드라이빙 PMOS의 게이트-소스전압(V GS)에 의해 μLED(40)로 전류(I D)가 흐르게 된다.
도 8을 참조할 때, 드라이빙 PMOS의 게이트 바이어스(V BIAS)는 [데이터값 - 드라이빙 PMOS의 문턱전압(V TH) + 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)]이 된다(V BIAS = DATA - V TH + ΔV).
여기서, 상기 전압변화량(ΔV)은 아래의 수학식 2으로 결정되게 된다.
Figure PCTKR2019000375-appb-img-000004
이 때, 상기 ΔV는 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량, V LED는 전원전압, C ST는 제 1커패시터, C CC는 제 2커패시터에 해당된다.
따라서, 에미션 단계에서 상기 드라이빙 PMOS의 게이트-소스전압(V GS)은, [전원전압(V LED) - 데이터값 + 드라이빙 PMOS의 게이트 바이어스(V BIAS)]가 되므로 결국, [전원전압(V LED) - 데이터값 + 드라이빙 PMOS의 문턱전압(V TH) - 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)] 이 된다(V GS = V LED - DATA + V TH - ΔV).
한편, 상기 에미션 단계에서 드라이빙 PMOS의 게이트-소스전압(V GS)에 의해 μLED(40)로 전류(I D)는 하기의 수학식 3으로 결정될 수 있다.
Figure PCTKR2019000375-appb-img-000005
상기 수학식 3에서 I D는 전류, μ n은 전자 이동도(mobility), C ox는 드라이빙 PMOS 게이트의 커패시턴스, W는 드라이빙 PMOS 게이트의 폭, L은 드라이빙 PMOS 게이트의 길이, V GS는 드라이빙 PMOS의 게이트-소스전압, V TH는 드라이빙 PMOS의 문턱전압, ΔV는 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량에 해당된다.
즉, 전술한 바대로, 드라이빙 PMOS의 문턱전압(V TH)의 산포에 의해 μLED(40)로 전류(I D)의 산포가 영향을 받게 되는데, 전류(I D)는 V TH 변화의 제곱에 비례하는 영향을 받게 된다.
따라서, 본 발명에서는 상기 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)과 상기 드라이빙 PMOS의 문턱전압(V TH)과 같은 값을 갖도록 하여 V TH의 영향 자체를 완전히 제거할 수 있다. 즉, 상기 수학식 2에 따라 제1 커패시터(C ST)와 제2 커패시터(C CC)의 커패시턴스(Capacitance) 비율을 각각 조정하여 상기 전압변화량(ΔV)이 드라이빙 PMOS의 문턱전압(V TH)과 동일한 값을 갖게 하여 드라이빙 PMOS의 문턱전압(V TH)의 영향을 제거할 수 있는 장점이 있다.
이와 같이, 상기 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)과 상기 드라이빙 PMOS의 문턱전압(V TH)이 동일한 값을 갖는 경우에 μLED(40)로 전류(I D)의 크기는 아래의 수학식 4와 같다.
Figure PCTKR2019000375-appb-img-000006
즉, 제1 커패시터(C ST)와 제2 커패시터(C CC)의 커패시턴스 비율을 각각 조정하여 상기 전압변화량(ΔV)이 드라이빙 PMOS의 문턱전압(V TH)과 동일한 값을 갖게 되면, 상기 전류(I D)에 대한 드라이빙 PMOS의 문턱전압(V TH)의 간섭은 완전히 제거되게 된다.
예컨대, 단순히 드라이빙 PMOS의 문턱전압(V TH)를 보상하기 위해 'V BIAS = DATA - V TH'로만 형성하도록 하면, 이 경우, μLED(40)가 흑색(Black)을 표현하기 위해서는 V BIAS를 게이트로 하는 P형 트렌지스터가 완전히 Off되야 하는데, 'V BIAS = DATA - V TH'가 되면 미세하게 μLED(40) 또는 μLED 모듈이 ON되어 완벽한 흑색(Black)을 표현하기 어려운 문제점이 있었다.
그러므로, 본 발명과 같이 μLED(40)를 발광하는 시점, 즉 에미션 신호(EMM)이 하이(hight)가 되는 시점에서 제1 커패시터(C ST) 및 제2 커패시터(C CC)를 통해 'V BIAS = DATA - V TH + ΔV'로 형성하고, 제1 커패시터(C ST) 및 제2 커패시터(C CC)의 커패시턴스 비율 조정을 통해 'V TH = ΔV'가 되게 함으로써, P형 트렌지스터 또는 PMOS가 완전히 Off되도록 보장하여 완벽한 흑색(black) 표현이 구현될 수 있다.
한편, 앞의 데이터 인에이블 단계와 같은 원리로, 에미션 단계에서는 상기 에미션 NMOS(30)와 에미션 PMOS(31)에는 컨버터를 이용해 각각의 게이트에 반대되는 전압을 제공함으로써 서로 동일한 ON 또는 Off 동작을 하도록 제어할 수 있다.
한편, 도 9에 도시된 것처럼 에미션 신호(EMM)는 인에이블 신호(EN)와 논-오버랩(non-overlap) 구간을 갖도록 형성되어 입력되는데, 인에이블 오프 PMOS(23)는 미리 ON 시키고, 제1 인에이블 온 PMOS(21) 및 제2 인에이블 온 PMOS(22)는 미리 Off 시킨 후, non-overlap 구간을 두고 에미션 신호(EMM)를 통해 전류를 출력시킴으로써 전류가 출력되는 공통 노드에서의 전류 경로 오류가 발생하지 않도록 기능한다. 또한, 에미션 신호(EMM)의 high 구간(발광 구간)을 제어함으로써 출력 단계의 전류 발광 시간을 별도로 제어 가능하며, 종국적으로는 μLED 모듈의 전체적인 밝기를 제어할 수 있다.
위와 같은 단계들로 구성된 본 발명의 결과를 보이기 위해, 도 10에는 본 발명의 일실시예에 따른 μLED 그레이스케일에 대한 μLED 전류를 측정한 결과를 나타낸 예시도가 도시되고, 도 11에는 본 발명의 일실시예에 따른 세 가지 그레이값에 대한 픽셀 데이터를 측정한 결과를 나타낸 예시도가 도시된다.
먼저 도 10을 보면, μLED 그레이스케일(총 0 그레이(black)에서 255 그레이(white)로 256 그레이 단계)에 대한 μLED(40) 전류를 측정한 결과를 나타내며, 0 그레이에서 255 그레이까지 선형(linear)적인 곡선을 획득한 것을 알 수 있다.
그리고 도 11은 4 그레이(저), 128 그레이(중), 255 그레이(고) 세 가지 그레이값에 대한 9개의 픽셀 데이터를 수집한 것을 나타낸다.
본 측정 도면에서는 앞서 설명한 바와 같이, 그레이스케일이 ±1.5% 이내의 산포를 보이는 것을 확인할 수 있으며, 여기서 0 그레이가 아닌 4 그레이로 데이터 측정을 한 이유는, 0 그레이는 전류가 "0"에 가깝기 때문에 데이터로서 의미가 없으므로, 측정데이터로서의 요건을 만족하기 위해 임의의 4 그레이를 선택하여 측정하였다.
도 12는 본 발명의 일실시예 따른 스캔 컨트롤러, 소스 드라이버, 타이밍 컨트롤러 및 직렬 주변 장치 인터페이스, 저전압 차등 시그널링 및 RGB 인터페이스를 포함하는 DDI(Display Driver IC)와, μLED 픽셀이 다수로 매트릭스를 이룸으로써 형성되는 디스플레이의 모습을 나타낸 예시도이다.
전체적으로 본 발명은 도 12에서 보는 바와 같이 μLED 픽셀이 다수로 매트릭스를 이룸으로써 디스플레이를 구성하게 된다.
여기서 상기 디스플레이는, 매트릭스를 이룬 μLED 픽셀들의 행을 스캔하는 스캔 컨트롤러(Scan Controller; 110), 상기 스캔 컨트롤러가 스캔하는 행의 해당 μLED 픽셀들에 데이터를 제공하는 소스 드라이버(120), 상기 스캔 컨트롤러와 소스 드라이버의 타이밍을 제어하는 타이밍 컨트롤러(Timing Controller; 130) 및 직렬 주변 장치 인터페이스(Serial Peripheral Interface: 140), 저전압 차등 시그널링(Low Voltage Differential Signaling; 150) 또는 RGB 인터페이스(160) 중 어느 하나 이상을 포함하는 DDI(Display Driver IC)에 의해 제어될 수 있다.
위와 같이 본 발명은 μLED 픽셀 구조에 있어서 NMOS와 PMOS 등의 소자 특성을 이용해 μLED로 흐르는 전류에 드라이빙 PMOS 문턱전압의 간섭을 제거할 수 있는 장점이 있다.
이에 따라, 본 발명은 μLED의 그레이스케일을 보다 용이하게 제어할 수 있으며, 종래 μLED의 그레이스케일이 가지던 ±15%의 산포를 보다 감소시켜 ±1.5% 이내의 산포를 갖도록 한다.
더 나아가 본 발명은 드라이빙 PMOS의 문턱전압에 의해 해당 트랜지스터가 완전히 오프(Off)되지 않고 미세하게 온(On)되는 현상을 방지하여 μLED 및 μLED 픽셀모듈이 완전한 흑색(Black)을 구현할 수 있으므로, μLED를 이용한 디스플레이의 효율과 성능을 향상시켜 μLED 관련 장치 및 디바이스의 품질 향상에 조력할 수 있는 장점이 있다.
이상 본 발명의 구체적 실시형태와 관련하여 본 발명을 설명하였으나, 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 범위를 벗어나지 않고 설명된 실시형태를 변경 또는 변형할 수 있으며, 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능하다.

Claims (9)

  1. 프리 신호(PRE)에 따라 프리차지 NMOS를 온(on) 시킴으로써, 드라이빙 PMOS의 게이트 바이어스(V BIAS)를 0V 로 유지시키는 프리차지(Pre-Charge) 단계;
    소스 드라이버(Source Driver)에서 μLED 픽셀에 데이터를 제공할 때, 인에이블 신호(EN)에 따라 상기 프리차지 NMOS와 인에이블 오프 PMOS를 오프(off) 시키고 인에이블 온 PMOS를 온 시킴으로써, 상기 드라이빙 PMOS의 게이트 바이어스(V BIAS)가 [데이터값 - 드라이빙 PMOS의 문턱전압(V TH)]이 되도록 하는 데이터 인에이블(Data Enable) 단계; 및
    상기 인에이블 신호(EN)와 논-오버랩(non-overlap) 구간을 두는 에미션 신호(EMM)에 따라 상기 인에이블 오프 PMOS를 온 시키고 상기 인에이블 온 PMOS를 오프 시킨 후, 오프 상태로 있던 에미션 NMOS와 에미션 PMOS를 온 시킴으로써, 드라이빙 PMOS의 게이트 바이어스(V BIAS)는 [데이터값 - 드라이빙 PMOS의 문턱전압(V TH) + 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)]이 되고, 이에 따른 드라이빙 PMOS의 게이트-소스전압(V GS)에 의해 μLED로 전류(I D)가 흐르도록 하는 에미션(Emission) 단계; 를 포함하는 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법.
  2. 제1항에 있어서,
    상기 전압변화량(ΔV)은 아래의 수학식으로 결정되는 것을 특징으로 하는 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법.
    Figure PCTKR2019000375-appb-img-000007
    (이 때, ΔV는 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량, V LED는 전원전압, C ST는 제 1커패시터, C CC는 제 2커패시터에 해당됨).
  3. 제1항에 있어서,
    상기 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)과 상기 드라이빙 PMOS의 문턱전압(V TH)과 같은 값을 갖도록 제1 커패시터(C ST)와 제2 커패시터(C CC)의 커패시턴스(Capacitance) 비율을 각각 조정하여 적용하는 것을 특징으로 하는 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법.
  4. 제 1항에 있어서, 상기 드라이빙 PMOS의 게이트-소스전압(V GS)은,
    [전원전압(V LED) - 데이터값 + 드라이빙 PMOS의 문턱전압(V TH) - 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량(ΔV)] 이 되는 것을 특징으로 하는 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법.
  5. 제 1항에 있어서,
    상기 전류(I D)는 다음의 수학식으로 결정되는 것을 특징으로 하는 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법.
    Figure PCTKR2019000375-appb-img-000008
    (이 때, I D는 전류, μ n은 전자 이동도(mobility), C ox는 드라이빙 PMOS 게이트의 커패시턴스, W는 드라이빙 PMOS 게이트의 폭, L은 드라이빙 PMOS 게이트의 길이, V GS는 드라이빙 PMOS의 게이트-소스전압, V TH는 드라이빙 PMOS의 문턱전압, ΔV는 드라이빙 PMOS의 게이트 노드에 연결되는 제1 커패시터(C ST) 및 제2 커패시터(C CC)에 의한 전압변화량에 해당됨).
  6. 제 1항에 있어서,
    상기 인에이블 온 PMOS와 인에이블 오프 PMOS는 컨버터(Converter)를 이용해 각각의 게이트에 반대되는 전압을 제공함으로써 서로 반대의 온 또는 오프 동작을 하도록 제어하는 것을 특징으로 하는 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법.
  7. 제 1항에 있어서,
    상기 에미션 NMOS와 에미션 PMOS는 컨버터를 이용해 각각의 게이트에 반대되는 전압을 제공함으로써 서로 동일한 온 또는 오프 동작을 하도록 제어하는 것을 특징으로 하는 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법.
  8. 제 1항에 있어서,
    상기 인에이블 온 PMOS는 제1 인에이블 온 PMOS 및 제2 인에이블 온 PMOS를 포함하며,
    상기 제1 인에이블 온 PMOS의 드레인은 상기 드라이빙 PMOS의 소스에 연결되도록 배치되고,
    상기 제2 인에이블 온 PMOS의 소스가 상기 드라이빙 PMOS의 드레인에 연결되고, 상기 제2 인에이블 온 PMOS의 드레인은 상기 드라이빙 PMOS의 게이트에 연결되도록 배치되는 것을 특징으로 하는 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법.
  9. 제 1항에 있어서,
    상기 μLED 픽셀은 다수로 매트릭스를 이룸으로써 디스플레이를 구성하며,
    상기 디스플레이는,
    매트릭스를 이룬 μLED 픽셀들의 행을 스캔하는 스캔 컨트롤러(Scan Controller);
    상기 스캔 컨트롤러가 스캔하는 행의 해당 μLED 픽셀들에 데이터를 제공하는 소스 드라이버;
    상기 스캔 컨트롤러와 소스 드라이버의 타이밍을 제어하는 타이밍 컨트롤러(Timing Controller); 및
    직렬 주변 장치 인터페이스(Serial Peripheral Interface: SPI), 저전압 차등 시그널링(Low Voltage Differential Signaling; LVDS) 또는 RGB(Red-Green-Blue) 인터페이스 중 어느 하나 이상을 포함하는 인터페이스; 를 포함하는 DDI(Display Driver IC)에 의해 제어되는 것을 특징으로 하는 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한μLED 픽셀 구조 제어 방법.
PCT/KR2019/000375 2018-09-11 2019-01-10 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법 WO2020054921A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980003340.0A CN111247579A (zh) 2018-09-11 2019-01-10 用于完全消除驱动PMOS阈值电压的干扰的控制μLED像素结构方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180108057A KR102174973B1 (ko) 2018-09-11 2018-09-11 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법
KR10-2018-0108057 2018-09-11

Publications (1)

Publication Number Publication Date
WO2020054921A1 true WO2020054921A1 (ko) 2020-03-19

Family

ID=69777935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000375 WO2020054921A1 (ko) 2018-09-11 2019-01-10 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법

Country Status (3)

Country Link
KR (1) KR102174973B1 (ko)
CN (1) CN111247579A (ko)
WO (1) WO2020054921A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022061852A1 (zh) * 2020-09-28 2022-03-31 京东方科技集团股份有限公司 像素驱动电路及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4289311B2 (ja) * 2004-03-04 2009-07-01 セイコーエプソン株式会社 画素回路、画素回路の駆動方法及び表示装置
KR20130059359A (ko) * 2011-10-31 2013-06-05 보에 테크놀로지 그룹 컴퍼니 리미티드 픽셀 단위 구동 회로와 구동 방법 및 디스플레이 장치
US20160275869A1 (en) * 2015-03-20 2016-09-22 Samsung Display Co., Ltd. Pixel circuit and display apparatus including the pixel circuit
KR20170138812A (ko) * 2016-06-08 2017-12-18 삼성전자주식회사 이미지 센서
KR20180079699A (ko) * 2017-01-02 2018-07-11 (주)실리콘인사이드 드라이빙 PMOS 임계전압의 영향을 감소시킨 μLED 픽셀 구조 제어 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554552A (en) * 1995-04-03 1996-09-10 Taiwan Semiconductor Manufacturing Company PN junction floating gate EEPROM, flash EPROM device and method of manufacture thereof
JP4036209B2 (ja) * 2004-04-22 2008-01-23 セイコーエプソン株式会社 電子回路、その駆動方法、電気光学装置および電子機器
KR100873075B1 (ko) * 2007-03-02 2008-12-09 삼성모바일디스플레이주식회사 유기전계발광 표시장치
JP2011150294A (ja) * 2009-12-21 2011-08-04 Canon Inc 表示装置の駆動方法
TWI489776B (zh) * 2012-05-31 2015-06-21 Richwave Technology Corp Rf開關之電容補償電路
CN103035201B (zh) * 2012-12-19 2015-08-26 昆山工研院新型平板显示技术中心有限公司 有机发光二极管像素电路、驱动方法及其显示面板
TWI485684B (zh) * 2013-06-13 2015-05-21 Au Optronics Corp 像素驅動器
KR101702429B1 (ko) * 2013-12-13 2017-02-03 엘지디스플레이 주식회사 보상 화소 구조를 갖는 유기발광표시장치
TWI533277B (zh) * 2014-09-24 2016-05-11 友達光電股份有限公司 有機發光二極體畫素電路
CN107591123B (zh) * 2017-09-29 2019-05-21 深圳市华星光电半导体显示技术有限公司 像素驱动电路及有机发光二极管显示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4289311B2 (ja) * 2004-03-04 2009-07-01 セイコーエプソン株式会社 画素回路、画素回路の駆動方法及び表示装置
KR20130059359A (ko) * 2011-10-31 2013-06-05 보에 테크놀로지 그룹 컴퍼니 리미티드 픽셀 단위 구동 회로와 구동 방법 및 디스플레이 장치
US20160275869A1 (en) * 2015-03-20 2016-09-22 Samsung Display Co., Ltd. Pixel circuit and display apparatus including the pixel circuit
KR20170138812A (ko) * 2016-06-08 2017-12-18 삼성전자주식회사 이미지 센서
KR20180079699A (ko) * 2017-01-02 2018-07-11 (주)실리콘인사이드 드라이빙 PMOS 임계전압의 영향을 감소시킨 μLED 픽셀 구조 제어 방법

Also Published As

Publication number Publication date
KR20200029706A (ko) 2020-03-19
KR102174973B1 (ko) 2020-11-05
CN111247579A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021158004A1 (en) Led based display panel including common led driving circuit and display apparatus including the same
KR102573691B1 (ko) 발광표시장치 및 이의 구동방법
KR102503730B1 (ko) 표시 장치 및 표시 장치 구동 방법
WO2018176561A1 (zh) 一种液晶面板驱动电路及液晶显示装置
WO2021201361A1 (ko) 동일한 픽셀 메모리를 이용하여 저화질 모드와 고화질 모드로 동작이 가능한 서브 픽셀 구동 회로 및 이를 포함하는 디스플레이 장치
WO2020062556A1 (zh) 伽马电压调节电路及显示装置
WO2019132216A1 (en) Electroluminescent display device and method for driving the same
WO2017024621A1 (zh) 一种液晶显示器及其控制方法
WO2020027403A1 (ko) 클럭 및 전압 발생 회로 및 그것을 포함하는 표시 장치
US20200013331A1 (en) Display device and driving method of display device
WO2020119557A1 (zh) 显示驱动方法和显示装置
WO2022119341A1 (ko) 접점 수가 감소한 픽셀구동회로
WO2020054921A1 (ko) 드라이빙 PMOS 문턱전압의 간섭을 완전 제거한 μLED 픽셀 구조 제어 방법
WO2020105860A1 (ko) 주사 구동부
WO2011138978A1 (ko) 디스플레이 장치의 데이터 드라이버 및 그 동작 방법
CN108352150A (zh) 显示装置、用于驱动显示装置的方法、显示元件以及电子设备
KR100920341B1 (ko) 액정 표시 장치
WO2019033612A1 (zh) 一种有机发光二极管显示器的驱动方法及装置
WO2022164078A1 (ko) 기판 효과를 제거한 OLEDoS 화소 보상 회로 및 그 제어 방법
WO2019235679A1 (ko) Led 액티브 매트릭스 디스플레이 구현을 위한 led 픽셀 패키지
WO2020155268A1 (zh) 显示面板的驱动方法、驱动装置及显示设备
TWI794955B (zh) 顯示裝置
WO2022045676A1 (ko) 표시장치와 그 구동방법
WO2012134162A2 (ko) 유기전계발광 표시패널의 구동 장치 및 구동 방법
WO2013187558A1 (ko) 발광 다이오드 구동 장치, 발광 장치 및 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860378

Country of ref document: EP

Kind code of ref document: A1