WO2019033612A1 - 一种有机发光二极管显示器的驱动方法及装置 - Google Patents

一种有机发光二极管显示器的驱动方法及装置 Download PDF

Info

Publication number
WO2019033612A1
WO2019033612A1 PCT/CN2017/113689 CN2017113689W WO2019033612A1 WO 2019033612 A1 WO2019033612 A1 WO 2019033612A1 CN 2017113689 W CN2017113689 W CN 2017113689W WO 2019033612 A1 WO2019033612 A1 WO 2019033612A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
light emitting
organic light
emitting diode
current
Prior art date
Application number
PCT/CN2017/113689
Other languages
English (en)
French (fr)
Inventor
梁鹏飞
黄泰钧
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/578,716 priority Critical patent/US10535307B2/en
Publication of WO2019033612A1 publication Critical patent/WO2019033612A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a driving method and apparatus for an organic light emitting diode display.
  • OLED Organic Light-Emitting Diode
  • the existing AMOLED pixel driving circuit includes a first thin film transistor T1 and a second thin film transistor T2. a third thin film transistor T3, a capacitor C1, a capacitor C2, and an organic light emitting diode D1.
  • the first thin film transistor T1 is a driving thin film transistor, and the capacitor C1 For storage capacitors.
  • the gate of the second thin film transistor T2 is connected to the scan signal Scan, the source is connected to the data signal Data, and the drain is electrically connected to the first thin film transistor T1.
  • a gate of the first thin film transistor T1 is connected to a positive voltage of the power supply OVDD, and a drain is electrically connected to an anode of the organic light emitting diode D1; a cathode of the organic light emitting diode D1 is connected to a negative voltage of the power supply OVSS.
  • One end of the capacitor C1 is electrically connected to the gate of the first thin film transistor T1, the other end is electrically connected to the drain of the first thin film transistor T1, and one end of the capacitor C2 is electrically connected to the organic light emitting diode D1.
  • the anode is electrically connected to the cathode of the organic light emitting diode D1
  • the gate of the third thin film transistor T3 is connected to the turn-on signal Sen
  • the source is connected to the reference voltage Vref
  • the drain is connected to the first thin film transistor.
  • the drain of T1 is electrically connected.
  • FIG 2 shows the timing diagram of the pixel drive circuit of Figure 1, in the T1 phase (also known as the Program phase), due to The Scan/sen signal is high, the second and third thin film transistors T2 and T3 are turned on, and the voltage Vg at the gate g of the first thin film transistor T1 and the voltage Vs at the s point are respectively equal to Vdata, Vref.
  • Vdata Vdata
  • the Vg of the first row of pixels is equal to Vdata0
  • the second row of pixels, Line2 as an example, the Vg of the second row of pixels. Equal to Vdata1.
  • Vgs a voltage formed in the T1 phase, and since Vref is smaller than the turn-on voltage of the organic light emitting diode D1, the Program stage, the OLED Will not shine.
  • the Vs voltage rises and enters the T2 phase, which is the illumination phase.
  • the function consumption of the picture is equal to OVDD*Ids, where Ids is flowing through the OLED. Current.
  • Vg ' Vgs + Ids * R + Voled
  • Voled is the voltage of the organic light-emitting diode
  • Vg the voltage of the organic light-emitting diode
  • Vg of each frame the magnitude of the increase is different. If the same OVDD is input to different pictures, the power consumption of the display becomes large.
  • An object of the present invention is to provide a driving method and apparatus for an organic light emitting diode display, which can reduce power consumption of the display.
  • the present invention provides a driving method of an organic light emitting diode display.
  • the organic light emitting diode display includes a cathode, and the organic light emitting diode display is input with a power positive voltage and a power negative voltage, and the method includes:
  • the voltage value of the actually input power supply positive voltage is controlled according to the current voltage of the gate of the driving thin film transistor to reduce the power consumption of the organic light emitting diode display.
  • the step of calculating an equivalent voltage according to the current of the organic light emitting diode includes:
  • An equivalent voltage is obtained according to the equivalent resistance and the current of the organic light emitting diode.
  • the step of acquiring a current flowing through each of the organic light emitting diodes according to the input video signal includes:
  • a current flowing through each of the organic light emitting diodes is obtained according to the gray scale distribution information.
  • the current voltage Vg of the gate of the driving thin film transistor 'For the current voltage Vg of the gate of the driving thin film transistor 'For:
  • Vg ' Vgs+U2+U3+Vth
  • Vgs is the voltage difference between the gate and the source of the driving thin film transistor
  • U2 is the equivalent voltage
  • U3 For the maximum voltage value
  • Vth is the threshold voltage of the driving thin film transistor.
  • the invention provides a driving method of an organic light emitting diode display,
  • the organic light emitting diode display includes a cathode, and the organic light emitting diode display is input with a power positive voltage and a power negative voltage, and the method includes:
  • the voltage value of the actually input power supply positive voltage is controlled according to the current voltage of the gate of the driving thin film transistor to reduce the power consumption of the organic light emitting diode display.
  • the step of acquiring an equivalent voltage between the cathode and the access terminal of the negative voltage of the power supply according to the input video signal includes:
  • An equivalent voltage is calculated based on the current of the organic light emitting diode.
  • the step of calculating an equivalent voltage according to the current of the organic light emitting diode includes:
  • An equivalent voltage is obtained according to the equivalent resistance and the current of the organic light emitting diode.
  • the step of acquiring a current flowing through each of the organic light emitting diodes according to the input video signal includes:
  • a current flowing through each of the organic light emitting diodes is obtained according to the gray scale distribution information.
  • the step of calculating the current voltage of the gate of the light emitting phase driving thin film transistor according to the equivalent voltage includes:
  • Vgs is the voltage difference between the gate and the source of the driving thin film transistor
  • U2 is the equivalent voltage
  • U3 For the maximum voltage value
  • Vth is the threshold voltage of the driving thin film transistor.
  • the present invention also provides a driving device for an organic light emitting diode display, wherein the organic light emitting diode display includes a cathode, and the organic light emitting diode display is input with a power positive voltage and a power negative voltage, and the driving device includes:
  • a first voltage obtaining module configured to acquire an equivalent voltage between the cathode and the input end of the negative voltage of the power source according to the input video signal
  • a second voltage obtaining module configured to calculate a current voltage of a gate of the light emitting phase driving thin film transistor according to the equivalent voltage
  • a control module configured to control a voltage value of the actually input power supply positive voltage according to a current voltage of the gate of the driving thin film transistor to reduce power consumption of the organic light emitting diode display.
  • the first voltage acquiring module is specifically configured to: obtain a current flowing through each of the organic light emitting diodes according to the input video signal; and calculate a current according to the organic light emitting diode Equivalent voltage.
  • the first voltage acquiring module is specifically configured to: obtain an equivalent resistance of each pixel between the cathode and the access terminal of the negative voltage of the power source; An equivalent voltage is obtained according to the equivalent resistance and the current of the organic light emitting diode.
  • the first voltage acquiring module is specifically configured to: acquire a histogram of the video signal to obtain grayscale distribution information of the display screen;
  • a current flowing through each of the organic light emitting diodes is obtained according to the gray scale distribution information.
  • the second voltage acquiring module is configured to: obtain a maximum value of voltages of all the organic light emitting diodes according to the video signal, to obtain a maximum voltage value;
  • the equivalent voltage and the maximum voltage value calculate a current voltage of a gate of the driving thin film transistor.
  • Vg ' Vgs+U2+U3+Vth
  • Vgs is the voltage difference between the gate and the source of the driving thin film transistor
  • U2 is the equivalent voltage
  • U3 For the maximum voltage value
  • Vth is the threshold voltage of the driving thin film transistor.
  • the driving method and device for the OLED display of the present invention by calculating the voltage of the gate of the thin film transistor in the illuminating phase of each frame, and controlling the magnitude of the positive voltage of the power input to the display according to the voltage, thereby reducing the display Power consumption.
  • FIG. 1 is a circuit diagram of a pixel driving circuit of an existing AMOLED
  • FIG. 2 is a timing diagram of the pixel driving circuit of FIG. 1;
  • FIG. 3 is an equivalent circuit diagram of a pixel driving circuit of an existing AMOLED in an illuminating phase
  • FIG. 4 is a schematic structural view of a cathode of an organic light emitting diode display of the present invention.
  • FIG. 5 is an equivalent circuit diagram of a pixel driving circuit of an AMOLED of the present invention in an illuminating phase
  • Fig. 6 is a schematic structural view of a driving device of an organic light emitting diode display of the present invention.
  • the driving method of the organic light emitting diode display of the present invention comprises the following steps:
  • the flow of each organic light emitting diode is obtained.
  • the current Id0 - Idn on P1-Pn is calculated according to the current of each OLED and the corresponding resistance.
  • the equivalent voltage is the negative voltage of the cathode node relative to the power supply. The voltage between the access terminals 12 .
  • the steps of obtaining the equivalent voltage between the cathode and the access terminal of the negative voltage of the power supply include:
  • a current Id0 flowing through each of the organic light emitting diodes is obtained - Idn.
  • the step S201 according to the input video signal, acquiring the current flowing through each of the organic light emitting diodes includes:
  • the histogram is used to display the gray scale distribution information of the picture when the video signal is displayed, and then calculating the current flowing through each organic light emitting diode according to the gray scale distribution information Id0 - Idn .
  • the step may include:
  • each pixel forms an equivalent resistance R0-Rn between the cathode 11 and the input terminal 12 of the negative supply voltage. It can be understood that the equivalent resistance R0-Rn is normally distributed.
  • each pixel is obtained according to the current of each organic light emitting diode and the corresponding equivalent resistance, and the sum of the voltages of all the pixels is calculated to obtain the equivalent voltage, wherein the equivalent voltage U2 is specifically as follows:
  • the current voltage Vg' of the gate of the first thin film transistor T1 in the light-emitting phase is calculated from the equivalent voltage.
  • the step of calculating the current voltage of the gate of the light-emitting phase driving thin film transistor according to the equivalent voltage includes:
  • the direct display of the picture displayed by the video signal is performed, thereby obtaining the gray scale distribution of the display picture, and the gray scale distribution can correspondingly obtain the current distribution, and each organic can be calculated according to the current distribution.
  • S1022 calculates a current voltage of a gate of the driving thin film transistor according to the equivalent voltage and the maximum voltage value.
  • the current voltage Vg' of the gate of the driving thin film transistor is as follows:
  • Vg' Vgs + U2 + U3 + Vth ;
  • Vgs is the voltage difference between the gate and the source of the driving thin film transistor
  • U2 is the equivalent voltage
  • U3 is the maximum voltage value
  • Vth is the threshold voltage of the driving thin film transistor.
  • the power consumption P for the display is as follows:
  • the positive voltage of the power supply and the current voltage of the gate of the driving thin film transistor Vg' Related to the fact that the positive voltage of the power source is greater than the sum of the current voltage of the gate of the driving thin film transistor and the threshold voltage of the driving thin film transistor. Even if the driving thin film transistor T1 is saturated, according to each frame Vg' controls the actual input OVDD, which reduces the OVDD size to reduce display power consumption.
  • the present invention also provides a driving device for an organic light emitting diode display, as shown in FIG. 6, the driving device 20 Connected to the OLED display 10, the driving device 20 includes a first voltage acquisition module 21, a first voltage acquisition module 22, and a control module 23.
  • First voltage acquisition module 21 And for obtaining an equivalent voltage between the cathode and the access terminal of the negative voltage of the power source according to the input video signal; the first voltage acquiring module 21 inputs a video signal.
  • Second voltage acquisition module 22 A current voltage for driving the gate of the light-emitting phase driving thin film transistor according to the equivalent voltage; that is, the second voltage acquiring module 22 is connected to the first voltage acquiring module 21.
  • the second voltage acquisition module 22 It can also be connected to the central control board TCON, which is connected to the OLED display.
  • Control module 23 And controlling a voltage value of the actually input power supply positive voltage according to a current voltage of the gate of the driving thin film transistor to reduce power consumption of the organic light emitting diode display. That is, the control module 23 outputs a positive power supply voltage OVDD. .
  • the first voltage acquisition module 21 Specifically, the method is: acquiring a current flowing through each of the organic light emitting diodes according to the input video signal; and calculating an equivalent voltage according to the current of the organic light emitting diode.
  • the first voltage acquisition module 21 Specifically, the method is: acquiring an equivalent resistance of each pixel between the cathode and the input end of the negative voltage of the power source; and obtaining an equivalent voltage according to the equivalent resistance and a current of the organic light emitting diode.
  • the first voltage acquisition module 21 Specifically, the method is: acquiring a histogram of the video signal to obtain gray scale distribution information of the display screen; and acquiring current flowing through each of the organic light emitting diodes according to the gray scale distribution information.
  • the second voltage acquisition module 22 Specifically, according to the video signal, obtaining a maximum value of voltages of all the organic light emitting diodes to obtain a maximum voltage value; and calculating a current gate of the driving thin film transistor according to the equivalent voltage and the maximum voltage value. Voltage.
  • the driving method and device for the OLED display of the present invention by calculating the voltage of the gate of the thin film transistor in the illuminating phase of each frame, and controlling the magnitude of the positive voltage of the power input to the display according to the voltage, thereby reducing the display Power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种有机发光二极管(D1,P1-Pn)显示器(10)的驱动方法及驱动装置(20),驱动方法包括:根据输入的视频信号,获取所有像素在阴极(11)与电源负电压(OVSS)的接入端(12)之间的等效电压(U2)(S101);根据等效电压(U2)计算发光阶段(T2)驱动薄膜晶体管(T1)的栅极(g)的当前电压(S102);根据驱动薄膜晶体管(T1)的栅极(g)的当前电压控制实际输入的电源正电压(OVDD)的电压值,以降低显示器(10)的功耗(S103)。

Description

一种有机发光二极管显示器的驱动方法及装置 技术领域
本发明涉及显示技术领域,特别是涉及一种有机发光二极管显示器的驱动方法及装置。
背景技术
有机发光二极管( Organic Light-Emitting Diode , OLED )显示面板,具备自发光、高亮度、宽视角、高对比度、可挠曲、低能耗等特性,因此被广泛应用在手机屏幕、电脑显示器、全彩电视等产品中。
如图 1 所示,现有的 AMOLED 像素驱动电路,包括第一薄膜晶体管 T1 、第二薄膜晶体管 T2 、第三薄膜晶体管 T3 、电容 C1 、电容 C2 及有机发光二极管 D1 ,所述第一薄膜晶体管 T1 为驱动薄膜晶体管,电容 C1 为存储电容。具体地,所述第二薄膜晶体管 T2 的栅极接入扫描信号 Scan ,源极接入数据信号 Data ,漏极电性连接第一薄膜晶体管 T1 的栅极;所述第一薄膜晶体管 T1 的源极接入电源正电压 OVDD ,漏极电性连接有机发光二极管 D1 的阳极;有机发光二极管 D1 的阴极接入电源负电压 OVSS 。电容 C1 的一端电性连接第一薄膜晶体管 T1 的栅极,另一端电性连接第一薄膜晶体管 T1 的漏极,电容 C2 的一端电性连接有机发光二极管 D1 的阳极,另一端电性连接有机发光二极管 D1 的阴极,所述第三薄膜晶体管 T3 的栅极接入开启信号 Sen ,源极接入参考电压 Vref ,漏极与第一薄膜晶体管 T1 的漏极电性连接。
图 2 给出图 1 的像素驱动电路的时序图,在 T1 阶段(也即 Program 阶段),由于 Scan/sen 信号为高电平,第二、三薄膜晶体管 T2 、 T3 开启,第一薄膜晶体管 T1 的栅极 g 点的电压 Vg 与 s 点的电压 Vs 分别等于 Vdata 、 Vref 。比如以第一行像素 Line1 为例,第一行像素的 Vg 等于 Vdata0 ,以第二行像素 Line2 为例,第二行像素的 Vg 等于 Vdata1 。因此在 T1 阶段形成跨压 Vgs ,由于 Vref 小于有机发光二极管 D1 的开启电压,因此 Program 阶段, OLED 不会发光。当 Scan 与 Sen 信号同时为低电平时, Vs 电压抬升,进入了 T2 阶段,也即发光阶段。
在发光阶段时,画面的功能耗 P 等于 OVDD*Ids ,其中 Ids 为流过 OLED 的电流。
如图 3 所示,由于有机发光二极管显示器的阴极为整层结构,因此对于不同位置的像素在阴极端形成等效电阻 R ,导致在发光阶段, Vg 上升,此时第一薄膜晶体管 T1 的栅极的电压 Vg '如下式:
Vg ' =Vgs+Ids*R+Voled ;
其中 Voled 为有机发光二极管的电压,由于 OVDD 与 Vg 相关,且每一帧画面的 Vg 增大的幅度不同,如果对不同的画面都输入同一 OVDD ,导致显示器的功耗变大。
因此,有必要提供一种有机发光二极管显示器的驱动方法及装置,以解决现有技术所存在的问题。
技术问题
本发明的目的在于提供一种有机发光二极管显示器的驱动方法及装置,能够降低显示器的功耗。
技术解决方案
为解决上述技术问题,本发明提供一种有机发光二极管显示器的驱动方法, 其中所述有机发光二极管显示器包括阴极,所述有机发光二极管显示器输入有电源正电压和电源负电压,所述方法包括:
根据输入的视频信号,获取流过各有机发光二极管的电流;
根据所述有机发光二极管的电流计算所有像素在阴极与电源负电压的接入端之间的等效电压;
根据所述视频信号,获取所有有机发光二极管的电压的最大值,得到最大电压值;
根据所述等效电压和所述最大电压值计算所述驱动薄膜晶体管的栅极的当前电压;
根据所述驱动薄膜晶体管的栅极的当前电压控制实际输入的电源正电压的电压值,以降低有机发光二极管显示器的功耗。
在本发明的有机发光二极管显示器的驱动方法中,所述根据所述有机发光二极管的电流计算等效电压的步骤包括:
获取每个像素在所述阴极与所述电源负电压的接入端之间的等效电阻;
根据所述等效电阻和所述有机发光二极管的电流获取等效电压。
在本发明的有机发光二极管显示器的驱动方法中,所述根据输入的视频信号,获取流过各有机发光二极管的电流的步骤包括:
获取所述视频信号的直方图,以得到显示画面的灰阶分布信息;
根据所述灰阶分布信息获取流过各有机发光二极管的电流。
在本发明的有机发光二极管显示器的驱动方法中,所述驱动薄膜晶体管的栅极的当前电压 Vg '为:
Vg ' =Vgs+U2+U3+Vth ;
其中 Vgs 为所述驱动薄膜晶体管的栅极与源极之间的压差, U2 为所述等效电压, U3 为所述最大电压值, Vth 为所述驱动薄膜晶体管的阈值电压。
本发明提供一种有机发光二极管显示器的驱动方法, 其中所述有机发光二极管显示器包括阴极,所述有机发光二极管显示器输入有电源正电压和电源负电压,所述方法包括:
根据输入的视频信号,获取所有像素在阴极与电源负电压的接入端之间的等效电压;
根据所述等效电压计算发光阶段驱动薄膜晶体管的栅极的当前电压;
根据所述驱动薄膜晶体管的栅极的当前电压控制实际输入的电源正电压的电压值,以降低有机发光二极管显示器的功耗。
在本发明的有机发光二极管显示器的驱动方法中,所述根据输入的视频信号,获取所有像素在阴极与电源负电压的接入端之间的等效电压的步骤包括:
根据输入的视频信号,获取流过各有机发光二极管的电流;
根据所述有机发光二极管的电流计算等效电压。
在本发明的有机发光二极管显示器的驱动方法中,所述根据所述有机发光二极管的电流计算等效电压的步骤包括:
获取每个像素在所述阴极与所述电源负电压的接入端之间的等效电阻;
根据所述等效电阻和所述有机发光二极管的电流获取等效电压。
在本发明的有机发光二极管显示器的驱动方法中,所述根据输入的视频信号,获取流过各有机发光二极管的电流的步骤包括:
获取所述视频信号的直方图,以得到显示画面的灰阶分布信息;
根据所述灰阶分布信息获取流过各有机发光二极管的电流。
在本发明的有机发光二极管显示器的驱动方法中,所述根据所述等效电压计算发光阶段驱动薄膜晶体管的栅极的当前电压的步骤包括:
根据所述视频信号,获取所有有机发光二极管的电压的最大值,得到最大电压值;
根据所述等效电压和所述最大电压值计算所述驱动薄膜晶体管的栅极的当前电压。
在本发明的有机发光二极管显示器的驱动方法中,所述驱动薄膜晶体管的栅极的当前电压 Vg '为: Vg ' =Vgs+U2+U3+Vth ;
其中 Vgs 为所述驱动薄膜晶体管的栅极与源极之间的压差, U2 为所述等效电压, U3 为所述最大电压值, Vth 为所述驱动薄膜晶体管的阈值电压。
本发明还提供一种有机发光二极管显示器的驱动装置,其中所述有机发光二极管显示器包括阴极,所述有机发光二极管显示器输入有电源正电压和电源负电压,所述驱动装置包括:
第一电压获取模块,用于根据输入的视频信号,获取所有像素在阴极与电源负电压的接入端之间的等效电压;
第二电压获取模块,用于根据所述等效电压计算发光阶段驱动薄膜晶体管的栅极的当前电压;
控制模块,用于根据所述驱动薄膜晶体管的栅极的当前电压控制实际输入的电源正电压的电压值,以降低有机发光二极管显示器的功耗。
在本发明的有机发光二极管显示器的驱动装置中,所述第一电压获取模块具体用于:根据输入的视频信号,获取流过各有机发光二极管的电流;以及根据所述有机发光二极管的电流计算等效电压。
在本发明的有机发光二极管显示器的驱动装置中,所述第一电压获取模块具体用于:获取每个像素在所述阴极与所述电源负电压的接入端之间的等效电阻;并根据所述等效电阻和所述有机发光二极管的电流获取等效电压。
在本发明的有机发光二极管显示器的驱动装置中,所述第一电压获取模块具体用于:获取所述视频信号的直方图,以得到显示画面的灰阶分布信息;
根据所述灰阶分布信息获取流过各有机发光二极管的电流。
在本发明的有机发光二极管显示器的驱动装置中,所述第二电压获取模块具体用于:根据所述视频信号,获取所有有机发光二极管的电压的最大值,得到最大电压值;并根据所述等效电压和所述最大电压值计算所述驱动薄膜晶体管的栅极的当前电压。
在本发明的有机发光二极管显示器的驱动装置中,所述驱动薄膜晶体管的栅极的当前电压 Vg '为:
Vg ' =Vgs+U2+U3+Vth ;
其中 Vgs 为所述驱动薄膜晶体管的栅极与源极之间的压差, U2 为所述等效电压, U3 为所述最大电压值, Vth 为所述驱动薄膜晶体管的阈值电压。
有益效果
本发明的有机发光二极管显示器的驱动方法及装置,通过计算每一帧画面的发光阶段驱动薄膜晶体管的栅极的电压,根据该电压控制输入到显示器的电源正电压的大小,从而降低了显示器的功耗。
附图说明
图 1 为现有的 AMOLED 的像素驱动电路的电路图;
图 2 为图 1 的像素驱动电路的时序图;
图 3 为现有的 AMOLED 的像素驱动电路在发光阶段的等效电路图;
图 4 为本发明的 有机发光二极管显示器的阴极的结构示意图;
图 5 为本发明的 AMOLED 的像素驱动电路在发光阶段的等效电路图;
图 6 为本发明的 有机发光二极管显示器的驱动装置的结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
其中所述有机发光二极管显示器包括阴极,所述有机发光二极管显示器输入有电源正电压 OVDD 和电源负电压 OVSS ,本发明的有机发光二极管显示器的驱动方法包括以下步骤:
S101 、根据输入的视频信号,获取所有像素在阴极与电源负电压的接入端之间的等效电压。
例如,结合图 4 和 5 ,由于有机发光二极管显示器的阴极 11 为整层结构,因此对于每个像素在阴极 11 与电源负电压的接入端 12 之间形成等效电阻,从而使得每个像素在阴极 11 与电源负电压的接入端 12 之间存在等效电压。
具体地,根据输入到有机发光二极管显示器的视频信号,也即每一帧画面,获取流过每个有机发光二极管 P1-Pn 上的电流 Id0 - Idn ,再根据每个有机发光二极管的电流和对应的电阻计算得到等效电压,该等效电压为阴极节点相对于电源负电压 OVSS 的接入端 12 之间的电压。
其中,上述步骤 S101 、根据输入的视频信号,获取所有像素在阴极与电源负电压的接入端之间的等效电压的步骤包括:
S201 、根据输入的视频信号,获取流过各有机发光二极管的电流;
例如,根据输入到有机发光二极管显示器的视频信号,获取流过每个有机发光二极管上的电流 Id0 - Idn 。
其中上述步骤 S201 、根据输入的视频信号,获取流过各有机发光二极管的电流的步骤包括:
S2011 、获取所述视频信号的直方图,以得到显示画面的灰阶分布信息;
S2012 、根据所述灰阶分布信息获取流过各有机发光二极管的电流。
例如,获取该视频信号的直方图,该直方图用于展示视频信号在显示时,画面的灰阶分布信息,再根据灰阶分布信息计算流过每个有机发光二极管的电流 Id0 - Idn 。
S202 、根据所述有机发光二极管的电流计算等效电压。
具体地,该步骤可以包括:
S2021 、获取每个像素在所述阴极与所述电源负电压的接入端之间的等效电阻;
S2022 、根据所述等效电阻和所述有机发光二极管的电流获取等效电压。
例如,每个像素在阴极 11 与电源负电压的接入端 12 之间形成等效电阻 R0-Rn ;可以理解的,该等效电阻 R0-Rn 成正态分布。
根据每个有机发光二极管的电流和对应的等效电阻得到每个像素的电压,再计算所有像素的电压之和,得到该等效电压,其中该等效电压 U2 具体如下式:
U2=Id0*R0+Id1*R1+…+Idn*Rn ;
S102 、根据所述等效电压计算发光阶段驱动薄膜晶体管的栅极的当前电压。
例如,根据等效电压计算发光阶段第一薄膜晶体管 T1 的栅极的当前电压 Vg' 。
具体地,该步骤 S102 、根据所述等效电压计算发光阶段驱动薄膜晶体管的栅极的当前电压的步骤包括:
S1021 、根据所述视频信号,获取所有有机发光二极管的电压的最大值,得到最大电压值;
例如,根据输入的视频信号,对视频信号显示出的画面进行直分图分析,从而获得显示画面的灰阶分布,灰阶分布可以相应地得出电流分布,根据电流分布可以计算出每个有机发光二极管的电压,再将所有电压中的最大值作为最大电压值 U3 。
S1022 根据所述等效电压和所述最大电压值计算所述驱动薄膜晶体管的栅极的当前电压。
具体地,驱动薄膜晶体管的栅极的当前电压 Vg' 如下:
Vg' = Vgs + U2 + U3 + Vth ;
其中 Vgs 为驱动薄膜晶体管的栅极与源极之间的压差, U2 为等效电压, U3 为最大电压值, Vth 为所述驱动薄膜晶体管的阈值电压。
S103 、根据所述驱动薄膜晶体管的栅极的当前电压控制实际输入的电源正电压的电压值,以降低有机发光二极管显示器的功耗。
对于显示器的功耗 P 如下:
P=OVDD*Ids ;
因此通过降低 OVDD 电压,以达到降低显示器的功耗的目的,由于 OVDD 满足下式:
OVDD>Vg'+Vth;
可见,电源正电压与驱动薄膜晶体管的栅极的当前电压 Vg' 有关,即所述电源正电压大于所述驱动薄膜晶体管的栅极的当前电压与所述驱动薄膜晶体管的阈值电压之和。即使驱动薄膜晶体管 T1 处于饱和的情况下,根据每一帧画面的 Vg' 控制实际输入的 OVDD ,可以减小 OVDD 的大小,以降低显示器功耗。
本发明还提供一种有机发光二极管显示器的驱动装置,如图 6 所示,该驱动装置 20 与有机发光二极管显示器 10 连接,所述驱动装置 20 包括:第一电压获取模块 21 、第一电压获取模块 22 以及控制模块 23 。
第一电压获取模块 21 用于根据输入的视频信号,获取所有像素在阴极与电源负电压的接入端之间的等效电压;该第一电压获取模块 21 输入有视频信号。
第二电压获取模块 22 用于根据所述等效电压计算发光阶段驱动薄膜晶体管的栅极的当前电压;也即第二电压获取模块 22 与第一电压获取模块 21 连接。其中,该第二电压获取模块 22 还可以与中心控制板 TCON 连接,中心控制板 TCON 与有机发光二极管显示器连接。
控制模块 23 用于根据所述驱动薄膜晶体管的栅极的当前电压控制实际输入的电源正电压的电压值,以降低有机发光二极管显示器的功耗。也即该控制模块 23 输出有电源正电压 OVDD 。
所述第一电压获取模块 21 具体用于:根据输入的视频信号,获取流过各有机发光二极管的电流;以及根据所述有机发光二极管的电流计算等效电压。
所述第一电压获取模块 21 具体用于:获取每个像素在所述阴极与所述电源负电压的接入端之间的等效电阻;并根据所述等效电阻和所述有机发光二极管的电流获取等效电压。
所述第一电压获取模块 21 具体用于:获取所述视频信号的直方图,以得到显示画面的灰阶分布信息;并根据所述灰阶分布信息获取流过各有机发光二极管的电流。
所述第二电压获取模块 22 具体用于:根据所述视频信号,获取所有有机发光二极管的电压的最大值,得到最大电压值;并根据所述等效电压和所述最大电压值计算所述驱动薄膜晶体管的栅极的当前电压。
本发明的有机发光二极管显示器的驱动方法及装置,通过计算每一帧画面的发光阶段驱动薄膜晶体管的栅极的电压,根据该电压控制输入到显示器的电源正电压的大小,从而降低了显示器的功耗。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (16)

  1. 一种有机发光二极管显示器的驱动方法,其中所述有机发光二极管显示器包括阴极,所述有机发光二极管显示器输入有电源正电压和电源负电压,所述方法包括:
    根据输入的视频信号,获取流过各有机发光二极管的电流;
    根据所述有机发光二极管的电流计算所有像素在阴极与电源负电压的接入端之间的等效电压;
    根据所述视频信号,获取所有有机发光二极管的电压的最大值,得到最大电压值;
    根据所述等效电压和所述最大电压值计算所述驱动薄膜晶体管的栅极的当前电压;
    根据所述驱动薄膜晶体管的栅极的当前电压控制实际输入的电源正电压的电压值,以降低有机发光二极管显示器的功耗。
  2. 如权利要求 1 所述的有机发光二极管显示器的驱动方法,其中所述根据所述有机发光二极管的电流计算等效电压的步骤包括:
    获取每个像素在所述阴极与所述电源负电压的接入端之间的等效电阻;
    根据所述等效电阻和所述有机发光二极管的电流获取等效电压。
  3. 如权利要求 1 所述的有机发光二极管显示器的驱动方法,其中所述根据输入的视频信号,获取流过各有机发光二极管的电流的步骤包括:
    获取所述视频信号的直方图,以得到显示画面的灰阶分布信息;
    根据所述灰阶分布信息获取流过各有机发光二极管的电流。
  4. 如权利要求 1 所述的有机发光二极管显示器的驱动方法,其中所述驱动薄膜晶体管的栅极的当前电压 Vg '为:
    Vg ' =Vgs+U2+U3+Vth ;
    其中 Vgs 为所述驱动薄膜晶体管的栅极与源极之间的压差, U2 为所述等效电压, U3 为所述最大电压值, Vth 为所述驱动薄膜晶体管的阈值电压。
  5. 一种有机发光二极管显示器的驱动方法,其中所述有机发光二极管显示器包括阴极,所述有机发光二极管显示器输入有电源正电压和电源负电压,所述方法包括:
    根据输入的视频信号,获取所有像素在阴极与电源负电压的接入端之间的等效电压;
    根据所述等效电压计算发光阶段驱动薄膜晶体管的栅极的当前电压;
    根据所述驱动薄膜晶体管的栅极的当前电压控制实际输入的电源正电压的电压值,以降低有机发光二极管显示器的功耗。
  6. 如权利要求 5 所述的有机发光二极管显示器的驱动方法,其中所述根据输入的视频信号,获取所有像素在阴极与电源负电压的接入端之间的等效电压的步骤包括:
    根据输入的视频信号,获取流过各有机发光二极管的电流;
    根据所述有机发光二极管的电流计算等效电压。
  7. 如权利要求 6 所述的有机发光二极管显示器的驱动方法,其中所述根据所述有机发光二极管的电流计算等效电压的步骤包括:
    获取每个像素在所述阴极与所述电源负电压的接入端之间的等效电阻;
    根据所述等效电阻和所述有机发光二极管的电流获取等效电压。
  8. 如权利要求 6 所述的有机发光二极管显示器的驱动方法,其中所述根据输入的视频信号,获取流过各有机发光二极管的电流的步骤包括:
    获取所述视频信号的直方图,以得到显示画面的灰阶分布信息;
    根据所述灰阶分布信息获取流过各有机发光二极管的电流。
  9. 如权利要求 5 所述的有机发光二极管显示器的驱动方法,其中所述根据所述等效电压计算发光阶段驱动薄膜晶体管的栅极的当前电压的步骤包括:
    根据所述视频信号,获取所有有机发光二极管的电压的最大值,得到最大电压值;
    根据所述等效电压和所述最大电压值计算所述驱动薄膜晶体管的栅极的当前电压。
  10. 如权利要求 9 所述的有机发光二极管显示器的驱动方法,其中所述驱动薄膜晶体管的栅极的当前电压 Vg '为:
    Vg ' =Vgs+U2+U3+Vth ;
    其中 Vgs 为所述驱动薄膜晶体管的栅极与源极之间的压差, U2 为所述等效电压, U3 为所述最大电压值, Vth 为所述驱动薄膜晶体管的阈值电压。
  11. 一种有机发光二极管显示器的驱动装置,其中所述有机发光二极管显示器包括阴极,所述有机发光二极管显示器输入有电源正电压和电源负电压,所述驱动装置包括:
    第一电压获取模块,用于根据输入的视频信号,获取所有像素在阴极与电源负电压的接入端之间的等效电压;
    第二电压获取模块,用于根据所述等效电压计算发光阶段驱动薄膜晶体管的栅极的当前电压;
    控制模块,用于根据所述驱动薄膜晶体管的栅极的当前电压控制实际输入的电源正电压的电压值,以降低有机发光二极管显示器的功耗。
  12. 如权利要求 11 所述的有机发光二极管显示器的驱动装置,其中所述第一电压获取模块具体用于:根据输入的视频信号,获取流过各有机发光二极管的电流;以及根据所述有机发光二极管的电流计算等效电压。
  13. 如权利要求 12 所述的有机发光二极管显示器的驱动装置,其中所述第一电压获取模块具体用于:获取每个像素在所述阴极与所述电源负电压的接入端之间的等效电阻;并根据所述等效电阻和所述有机发光二极管的电流获取等效电压。
  14. 如权利要求 12 所述的有机发光二极管显示器的驱动装置,其中所述第一电压获取模块具体用于:获取所述视频信号的直方图,以得到显示画面的灰阶分布信息;
    根据所述灰阶分布信息获取流过各有机发光二极管的电流。
  15. 如权利要求 11 所述的有机发光二极管显示器的驱动装置,其中所述第二电压获取模块具体用于:根据所述视频信号,获取所有有机发光二极管的电压的最大值,得到最大电压值;并根据所述等效电压和所述最大电压值计算所述驱动薄膜晶体管的栅极的当前电压。
  16. 如权利要求 15 所述的有机发光二极管显示器的驱动装置,其中所述驱动薄膜晶体管的栅极的当前电压 Vg '为:
    Vg ' =Vgs+U2+U3+Vth ;
    其中 Vgs 为所述驱动薄膜晶体管的栅极与源极之间的压差, U2 为所述等效电压, U3 为所述最大电压值, Vth 为所述驱动薄膜晶体管的阈值电压。
PCT/CN2017/113689 2017-08-17 2017-11-30 一种有机发光二极管显示器的驱动方法及装置 WO2019033612A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/578,716 US10535307B2 (en) 2017-08-17 2017-11-30 Method and device for driving organic light emitting diode display device that includes acquiring each current flowing through each organic light emitting diode according to a video signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710704916.9A CN107316608B (zh) 2017-08-17 2017-08-17 一种有机发光二极管显示器的驱动方法及装置
CN201710704916.9 2017-08-17

Publications (1)

Publication Number Publication Date
WO2019033612A1 true WO2019033612A1 (zh) 2019-02-21

Family

ID=60175860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113689 WO2019033612A1 (zh) 2017-08-17 2017-11-30 一种有机发光二极管显示器的驱动方法及装置

Country Status (2)

Country Link
CN (1) CN107316608B (zh)
WO (1) WO2019033612A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107316608B (zh) * 2017-08-17 2019-11-26 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器的驱动方法及装置
CN111767016B (zh) * 2020-06-29 2023-09-26 Oppo广东移动通信有限公司 显示处理方法及装置
WO2023102996A1 (zh) * 2021-12-07 2023-06-15 惠州华星光电显示有限公司 显示器的驱动方法及显示器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100277513A1 (en) * 2009-04-29 2010-11-04 Seungchan Byun Organic light emitting diode display and driving method
CN101989402A (zh) * 2009-07-30 2011-03-23 三星移动显示器株式会社 有机发光显示装置及其驱动电压设置方法
CN102347000A (zh) * 2010-07-23 2012-02-08 群康科技(深圳)有限公司 有机发光二极管面板及其功率控制方法及设备
CN106847178A (zh) * 2017-04-11 2017-06-13 深圳市华星光电技术有限公司 一种减少oled面板功耗的装置及方法
CN107316608A (zh) * 2017-08-17 2017-11-03 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器的驱动方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395806C (zh) * 2004-04-06 2008-06-18 友达光电股份有限公司 主动矩阵有机发光二极管驱动控制电路及调整白平衡方法
JP5037795B2 (ja) * 2005-03-17 2012-10-03 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー 表示装置
KR20090084444A (ko) * 2008-02-01 2009-08-05 삼성모바일디스플레이주식회사 유기전계발광표시장치 및 그의 구동방법
KR101957152B1 (ko) * 2012-05-02 2019-06-19 엘지디스플레이 주식회사 유기전계 발광소자 표시장치, 이의 구동회로 및 방법
KR101922002B1 (ko) * 2012-06-22 2019-02-21 삼성디스플레이 주식회사 유기 전계 표시 장치
CN103021335B (zh) * 2012-12-14 2015-01-07 京东方科技集团股份有限公司 一种oled驱动电路、oled显示装置及其亮度调节的方法
CN103559860B (zh) * 2013-08-16 2015-07-22 京东方科技集团股份有限公司 像素电路驱动电压调节方法及其调节装置、显示设备
KR102383741B1 (ko) * 2015-09-10 2022-04-08 삼성디스플레이 주식회사 화소, 화소를 포함하는 유기전계발광 표시장치 및 화소의 구동 방법
CN105845086B (zh) * 2016-05-31 2017-08-25 京东方科技集团股份有限公司 基于amoled显示器件的elvdd供电方法及供电装置和显示设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100277513A1 (en) * 2009-04-29 2010-11-04 Seungchan Byun Organic light emitting diode display and driving method
CN101989402A (zh) * 2009-07-30 2011-03-23 三星移动显示器株式会社 有机发光显示装置及其驱动电压设置方法
CN102347000A (zh) * 2010-07-23 2012-02-08 群康科技(深圳)有限公司 有机发光二极管面板及其功率控制方法及设备
CN106847178A (zh) * 2017-04-11 2017-06-13 深圳市华星光电技术有限公司 一种减少oled面板功耗的装置及方法
CN107316608A (zh) * 2017-08-17 2017-11-03 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器的驱动方法及装置

Also Published As

Publication number Publication date
CN107316608B (zh) 2019-11-26
CN107316608A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
WO2020027445A1 (ko) 화소 회로 및 이를 포함하는 표시 장치
WO2019024256A1 (zh) 具有温度补偿功能的amoled显示面板及显示装置
WO2019037232A1 (zh) 一种 oled 像素电路及减缓 oled 器件老化的方法
WO2019019276A1 (zh) 一种像素补偿电路及显示装置
WO2015137706A1 (ko) 표시장치 및 그 구동방법
WO2021158004A1 (en) Led based display panel including common led driving circuit and display apparatus including the same
WO2018090431A1 (zh) 画面亮度调整方法及画面亮度调整装置
WO2019132177A1 (en) Electroluminescent display device and method for driving the same
WO2019010900A1 (zh) Amoled 像素驱动电路及 amoled 像素驱动方法
WO2019245189A1 (ko) 표시 장치
WO2019033612A1 (zh) 一种有机发光二极管显示器的驱动方法及装置
WO2020062556A1 (zh) 伽马电压调节电路及显示装置
WO2016095239A1 (zh) 一种图像显示方法、图像显示装置及显示器件
WO2017164458A1 (en) Organic light emitting diode display device and method of operating the same
WO2016061830A1 (zh) 电湿润显示面板及电湿润显示装置
WO2020082466A1 (zh) 伽马电压校正电路、方法及显示装置
WO2021149922A1 (ko) 디스플레이를 포함하는 전자 장치 및 상기 디스플레이를 구동하는 방법
WO2020135074A1 (zh) 显示面板及其控制方法、控制装置、控制设备
WO2019037268A1 (zh) Amoled显示面板及显示装置
WO2020082523A1 (zh) Amoled显示残影消除方法、显示终端及存储介质
WO2020105860A1 (ko) 주사 구동부
WO2019006851A1 (zh) 一种amoled像素驱动电路及像素驱动方法
WO2017024604A1 (zh) 一种有机发光二极管显示器
WO2020073417A1 (zh) 显示驱动方法以及装置、显示装置
WO2012134162A2 (ko) 유기전계발광 표시패널의 구동 장치 및 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921860

Country of ref document: EP

Kind code of ref document: A1