WO2023102996A1 - 显示器的驱动方法及显示器 - Google Patents

显示器的驱动方法及显示器 Download PDF

Info

Publication number
WO2023102996A1
WO2023102996A1 PCT/CN2021/138669 CN2021138669W WO2023102996A1 WO 2023102996 A1 WO2023102996 A1 WO 2023102996A1 CN 2021138669 W CN2021138669 W CN 2021138669W WO 2023102996 A1 WO2023102996 A1 WO 2023102996A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
frame image
target frame
power supply
supply voltage
Prior art date
Application number
PCT/CN2021/138669
Other languages
English (en)
French (fr)
Inventor
卢小冰
陈小龙
Original Assignee
惠州华星光电显示有限公司
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州华星光电显示有限公司, 深圳市华星光电半导体显示技术有限公司 filed Critical 惠州华星光电显示有限公司
Priority to CN202180006041.XA priority Critical patent/CN114787904A/zh
Priority to US17/768,540 priority patent/US20240119882A1/en
Publication of WO2023102996A1 publication Critical patent/WO2023102996A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present application relates to the field of display technology, in particular to a display driving method and the display.
  • This application is mainly aimed at the technical problem of how to reduce the power consumption of the display panel while ensuring the quality of the displayed image.
  • the present application proposes a display driving method and a display, which can dynamically and adaptively adjust the second power supply voltage, thereby further reducing the energy consumption of the display panel while ensuring the display effect of the display panel.
  • a display driving method comprising: obtaining the first grayscale extreme value of the target frame image according to the display data of the target frame image; Adjusting the extreme value of the first power supply voltage to obtain a second power supply voltage, the first power supply voltage is used to drive the display to display; driving the display according to the second power supply voltage and the display data of the target frame image to display.
  • a display includes: a first acquisition module electrically connected to a second acquisition module, the first acquisition module is used to obtain the target frame according to the display data of the target frame image The first grayscale extreme value of the image; the second acquisition module is electrically connected to the first acquisition module and the display module, and the second acquisition module is used to adjust the first power supply voltage according to the first grayscale extreme value, Obtaining a second power supply voltage, the first power supply voltage is used to drive the display to display; a display module is electrically connected to a second acquisition module, and the display module is used to obtain the second power supply voltage and the target frame image The display data drives the display to display.
  • the first extreme grayscale value of the target frame image according to the display data of the target frame image, then adjust the first power supply voltage according to the first grayscale extreme value to obtain the second power supply voltage, and finally obtain the second power supply voltage according to the second power supply
  • the voltage and the display data of the target frame image drive the display to display.
  • the second power supply voltage can be dynamically and adaptively adjusted, thereby further reducing the display effect of the display panel while ensuring the display effect of the display panel. energy consumption.
  • FIG. 1 shows a flow chart of a display driving method according to an embodiment of the present application.
  • FIG. 2 shows a schematic diagram before gray scale transformation of the embodiment of the present application.
  • FIG. 3 shows a schematic diagram of the grayscale conversion of the embodiment of the present application.
  • FIG. 4 shows a schematic diagram of a driving method of a display according to an embodiment of the present application.
  • FIG. 5 shows a schematic structural diagram of a display according to an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; may be mechanically connected, may also be electrically connected or may communicate with each other; may be directly connected, or indirectly connected through an intermediary, may be the internal communication of two components or the interaction of two components relation. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the present application provides a display driving method.
  • the display driving method includes: obtaining the first grayscale extreme value of the target frame image according to the display data of the target frame image; The power supply voltage is adjusted to obtain a second power supply voltage, and the first power supply voltage is used to drive the display to display; the display is driven to display according to the second power supply voltage and the display data of the target frame image.
  • the present application can dynamically and adaptively adjust the second power supply voltage, thereby further reducing the energy consumption of the display panel while ensuring the display effect of the display panel.
  • FIG. 1 shows a flow chart of a display driving method according to an embodiment of the present application.
  • the display includes a drive module and a display panel, the drive module is electrically connected to the display panel, the display data of the target frame image is pre-stored in the drive module, and the drive method of the display includes :
  • Step S10 Obtain the first gray scale extremum of the target frame image according to the display data of the target frame image;
  • the display data of the target frame image is pre-stored in the driving module.
  • a memory may be set in the driving module for pre-storing the display data of the target frame image.
  • the display picture of the display panel may include multiple frames, and the display data of all the frames of the display panel may also be pre-stored in the driving module.
  • the target frame image of the display panel includes a plurality of pixels, wherein at least one pixel is preset with a gray scale corresponding to the pixel.
  • the display data of the target frame image can be represented by a one-dimensional array or a multi-dimensional array, and each element in the array can correspond to each pixel of the display screen, and is used to drive each pixel in the display panel according to the preset displayed in grayscale. It can be understood that the present application does not limit how to display the data.
  • the first grayscale extremum of the target frame image is obtained according to the display data of the target frame image, including:
  • Step S101 Obtain the first gray scale range of the target frame image according to the display data of the target frame image;
  • Step S102 Obtain the first grayscale extremum of the target frame image according to the first grayscale range.
  • the first grayscale extremum of the target frame image may be a maximum value of multiple first grayscales of the target frame image.
  • the first gray scale may be a preset gray scale
  • the display data of the target frame image may include multiple first gray scales, each first gray scale corresponds to a pixel of the target frame image. correspond.
  • the gray scales of the display data of all frames of the display panel can be represented by 8-bit binary numbers, and the range of gray scales ranges from 0 to 255.
  • the frame of display picture may include 1024*768 pixels, and the first grayscale range of each pixel of the frame of display picture may be 16 to 128, that is, for the frame of display picture, the frame
  • the first grayscale extreme value of the display picture may be 128, that is, the maximum grayscale of the frame display picture.
  • the target frame image may be divided into multiple display areas, the first grayscale extremum value is the maximum value of multiple first grayscales of at least one display area in the multiple display areas, and the The second grayscale extremum value is a maximum value of multiple second grayscales of at least one display area among the multiple display areas.
  • the maximum value of the gray scale of each display area may be different. Therefore, the first grayscale extremum of the target frame image may also be the maximum value of multiple first grayscales in a display area of the frame image.
  • the target frame image may be divided into two display areas.
  • the first grayscale range of the first display area is from 16 to 108
  • the first grayscale range of the second display area is from 32 to 116.
  • the first grayscale extreme value of the target frame image may be the first
  • the maximum value 108 of the gray scale of one display area may also be the maximum value 116 of the gray scale of the second display area.
  • the first grayscale extreme value of the target frame image is a preferred solution, and how to select the first grayscale extreme value of the target frame image is not limited in this application.
  • the method further includes:
  • Step S11 Transforming multiple first grayscales of the target frame image to obtain second grayscale extremum values of the target frame image.
  • each pixel in the target frame image may correspond to a first gray scale, therefore, each of the first gray scales may be Transformation is performed to obtain a plurality of transformed second gray scales.
  • the multiple first gray scales of the target frame image may also be divided into multiple sub-intervals, and the conversion is performed segmentally according to the multiple sub-intervals.
  • the present application does not limit how to transform the multiple first gray scales of the target frame image.
  • the driving module transforms multiple first gray scales of the target frame image based on nonlinear characteristics between visual perception and brightness to obtain multiple second gray scales after conversion.
  • the visual perception can be represented by the brightness value that can be observed by the human eye
  • the brightness can be represented by the brightness factor. Therefore, based on the nonlinear relationship between the visual perception of the image and the brightness, statistics can be made on each pixel of the target frame image Analyze to obtain the brightness value range of the target frame image.
  • the gray scale of the target frame image can also be statistically analyzed to obtain the range of the gray scale.
  • the multiple first grayscales of the target frame image are transformed to obtain the second grayscale extremum of the target frame image, including:
  • Step S111 Transforming multiple first gray scales of the target frame image to obtain multiple second gray scales after conversion
  • Step S112 Obtain the second grayscale extremum of the target frame image according to the transformed second grayscales.
  • each of the multiple second gray scales after conversion may correspond to one first gray scale before conversion, or may correspond to multiple first gray scales before conversion. It can be understood that different conversion methods will produce different correspondences between the first grayscale and the second grayscale, and the application does not limit the correspondence between the first grayscale and the second grayscale.
  • the second grayscale extremum value is a maximum value of multiple second grayscales of the target frame image. That is, the second extreme gray scale has similar meanings to the first extreme gray scale.
  • the frame of display picture may include 1024*768 pixels, and the first grayscale range of each pixel of the frame of display picture may be 16 to 128, that is, for the frame of display picture, The first extreme value of the gray scale of the display frame may be 128.
  • the second grayscale range of each pixel of the frame display image may be 32 to 216, and the first grayscale extreme value of the frame display image may be 216.
  • the multiple first gray scales of the target frame image are transformed to obtain multiple second gray scales after conversion, including:
  • Step S1111 dividing the first grayscale range of the target frame image into a plurality of sub-intervals
  • Step S1112 Transform the multiple first gray scales of the target frame image according to the multiple divided sub-intervals and the preset conversion coefficients to obtain multiple second gray scales after conversion.
  • step S2012 can be expressed by formula (1) as follows:
  • Dinn can represent the first grayscale of the nth pixel in the input target frame image before transformation; ⁇ 1 can indicate that the first grayscale of the nth pixel in the input target frame image is located in the range of C0 to C1 In this case, it corresponds to the coefficient of Dinn; ⁇ 2 may represent the coefficient corresponding to Dinn when the grayscale of the nth pixel in the target frame image is in the range from C1 to C2.
  • ⁇ m may represent the coefficient corresponding to Dinn when the grayscale of the nth pixel in the target frame image is within the range from Cm-1 to Cm.
  • Dout(n) may represent the transformed second grayscale of the nth pixel in the target frame image.
  • m can be used to represent the number of subintervals.
  • C0 can be 0 and Cm can be 255.
  • the first gray scale range of the target frame image is divided into a plurality of sub-intervals.
  • the frame of display picture may include 1024*768 pixels, the first grayscale range of each pixel of the frame of display picture may be 16 to 128, at this time C0 may be 16, and C1 may be is 32, Cm can be 126. It can be understood that the present application does not limit how to divide multiple sub-intervals and the number of sub-intervals.
  • the first gray scale may be transformed according to formula (1).
  • a conversion coefficient may be assigned to the first gray scale, and the conversion coefficient may be multiplied by the first gray scale to obtain a second gray scale corresponding to the first gray scale.
  • the transform coefficients may be stored in memory in advance. It can be understood that the present application does not limit how to determine the transformation coefficient.
  • Step S20 adjusting the first power supply voltage according to the first gray scale extreme value to obtain a second power supply voltage, and the first power supply voltage is used to drive the display to display;
  • the first power supply voltage is adjusted according to the first gray scale extreme value to obtain the second power supply voltage, including:
  • Step S201 Determine a first gamma voltage corresponding to the first gray-scale extreme value according to the first gray-scale extreme value
  • Step S202 determining a gamma reference voltage according to the first gamma voltage
  • Step S203 Adjust the first power supply voltage according to the gamma reference voltage to obtain a second power supply voltage.
  • the gamma reference voltage corresponding to the first gamma voltage may be determined first, and then a new gamma reference voltage may be re-determined. Since the first gamma voltages of each stage are associated with the gamma reference voltage, after the new gamma reference voltage is re-determined, the first gamma voltages of other stages will be adjusted synchronously as a whole.
  • FIG. 2 shows a schematic diagram of the embodiment of the present application before gray scale conversion
  • FIG. 3 shows a schematic diagram of the embodiment of the present application after gray scale conversion.
  • the horizontal axis may represent voltage
  • the vertical axis may represent grayscale.
  • the maximum value of the first gray scale of the target frame image may correspond to the 10th level gamma voltage
  • the maximum value of the second grayscale of the target frame image may correspond to the first level of gamma voltage. That is, after the transformation, the maximum value of the grayscale of the target frame image may be greater than the maximum value of the grayscale before transformation.
  • the embodiment of the present application can adapt the grayscale of the target frame picture to the first power supply voltage, ensuring the quality of the displayed picture after adjusting the first power supply voltage.
  • the first gray scale extremum may be the first gray scale extremum among multiple first gray scales of the target frame image before transformation
  • the second gray scale extremum may be the target frame image before transformation
  • the first gray scale extreme value and the second gray scale extreme value may be different.
  • the preset first power supply voltage can be adjusted by using the difference between the first extreme value of the gray scale before conversion and the second extreme value of gray scale after conversion, and it is possible to find the required voltage for optimal display.
  • the minimum first power supply voltage is used as the second power supply voltage, thereby further reducing the energy consumption of the display panel while ensuring the display effect of the display panel.
  • the first power supply voltage is adjusted according to the first gray scale extreme value to obtain a second power supply voltage, including:
  • Step S21 Adjust the first power supply voltage according to the first gray scale extreme value and the second gray scale extreme value to obtain a second power supply voltage.
  • the first power supply voltage is adjusted according to the first gray scale extreme value and the second gray scale extreme value to obtain a second power supply voltage, including:
  • Step S211 Determine the first gamma voltage corresponding to the first gray-scale extreme value according to the first gray-scale extreme value, and determine the gamma voltage corresponding to the second gray-scale extreme value according to the second gray-scale extreme value second gamma voltage;
  • Step S212 determining a gamma reference voltage according to the second gamma voltage
  • Step S213 Adjust the preset first power supply voltage according to the gamma reference voltage and the first gamma voltage to obtain a second power supply voltage.
  • each level of gamma voltage may correspond to a gray scale (ie, gray).
  • the gamma voltage corresponding to the gray scale of 0 may be the first gamma voltage, namely gamma_1; the gamma voltage corresponding to the gray scale of 228 may be the 14th gamma voltage, namely gamma_14.
  • the 14-level gamma voltage may correspond to one first power supply voltage (ie, AVDD voltage).
  • each set of gamma voltages can include 14 levels of gamma voltages. It can be understood that the present application does not limit the corresponding relationship between the gray scale, the gamma voltage and the first power supply voltage.
  • the first gamma voltage corresponding to the first gray-scale extreme value is determined according to the first gray-scale extreme value, which can be expressed by formula (2) as follows:
  • Dinmax may represent the first extreme grayscale value of the input target frame image
  • gamma_num represents the gamma voltage (ie, the first gamma voltage) corresponding to the first extreme grayscale value of the target frame image.
  • num can represent the series of gamma voltage, for example, gamma_num can be gamma_1 or gamma_3.
  • Doutmax may represent the second grayscale extremum of the transformed target frame image.
  • the formula (2) taking Doutmax as an input, the second gamma voltage gamma_num' corresponding to the second extreme value of the gray scale can be obtained.
  • the preset first power supply voltage may be represented by a string of binary numbers, for example, 1010 may represent that the first power supply voltage is 10V.
  • the preset first power supply voltage may be pre-stored in a memory. It can be understood that the present application does not limit how to express the power supply voltage.
  • gamma_ref represents the gamma reference voltage
  • gamma_num' represents the second gamma voltage corresponding to the second grayscale extremum of the target frame image.
  • the preset first power supply voltage is adjusted according to the gamma reference voltage and the first gamma voltage to obtain a second power supply voltage, which can be expressed by formula (4) as follows:
  • AVDD' represents the second power supply voltage obtained by adjusting the preset first power supply voltage.
  • the functions f1, f2 and f3 may be the same or different. It can be understood that in practical applications, corresponding functions can be configured according to actual needs, and this application does not limit the functions f1, f2, and f3.
  • Step S30 Drive the display to display according to the second power supply voltage and the display data of the target frame image.
  • the driving module may also drive the display panel to display according to the second power supply voltage and the display data of the target frame image corresponding to the second gray scale. That is, the display data of the target frame image may include both the first gray scale and the transformed second gray scale.
  • the driving module may first determine a gamma reference voltage according to the first gamma voltage; Adjust to obtain the second power supply voltage.
  • the driving method of the display further includes:
  • Step S40 Adjust the driving power of the display panel according to the second power supply voltage.
  • adjusting the driving power of the display panel according to the second power supply voltage can be expressed as follows by formula (5):
  • Power may represent the power of the display panel in the embodiment of the present application
  • I may represent the current corresponding to AVDD'. Since AVDD' in the driving method of the present application can be minimized while ensuring the display quality, the energy consumption of the display panel can be further reduced while ensuring the display effect of the display panel.
  • FIG. 4 shows a schematic diagram of a driving method of a display according to an embodiment of the present application.
  • the input image data can be cached first, and then through image analysis, the first gray scale range of the target frame image and the first gray scale of the target frame image can be found. and adjust the input display data according to the first gray scale range of the target frame image to obtain adjusted input image data and a plurality of second gray scales. Then, the second gray-scale extremum and the second gamma voltage corresponding to the second gray-scale extremum can be found in the plurality of second gray-scales, and the gamma reference voltage can be calculated. At the same time, the first gray scale extreme value and the first gamma voltage corresponding to the first gray scale extreme value may also be calculated.
  • the present application also provides a display, which includes: a first acquisition module electrically connected to a second acquisition module, the first acquisition module is used to obtain the first grayscale of the target frame image according to the display data of the target frame image scale extreme value; the second acquisition module is electrically connected to the first acquisition module and the display module, and the second acquisition module is used to adjust the first power supply voltage according to the first gray scale extreme value to obtain a second power supply voltage , the first power supply voltage is used to drive the display to display; the display module is electrically connected to the second acquisition module, and the display module is used to drive the display according to the second power supply voltage and the display data of the target frame image displayed on the display.
  • the first acquisition module includes: a first grayscale range acquisition module, configured to obtain the first grayscale range of the target frame image according to the display data of the target frame image; a first grayscale extreme value acquisition module, configured to The first grayscale extremum of the target frame image is obtained according to the first grayscale range.
  • the second acquisition module includes: a first gamma voltage determination module, configured to determine a first gamma voltage corresponding to the first gray scale extreme value according to the first gray scale extreme value; the first gamma voltage The gamma reference voltage determination module is configured to determine a gamma reference voltage according to the first gamma voltage; the first adjustment module is configured to adjust the first power supply voltage according to the gamma reference voltage to obtain a second power supply voltage.
  • the display further includes: a third acquisition module, configured to transform a plurality of first gray scales of the target frame image to obtain a second gray scale extremum of the target frame image.
  • the third acquisition module includes: a second grayscale acquisition module, configured to transform a plurality of first grayscales of the target frame image to obtain transformed second grayscales; a fourth acquisition module, The method is used to obtain the second grayscale extremum of the target frame image according to the transformed second grayscales.
  • the second acquisition module includes: a second adjustment module, configured to adjust the first power supply voltage according to the first gray scale extreme value and the second gray scale extreme value to obtain a second power supply voltage.
  • the second adjustment module includes: a second gamma voltage determination module, configured to determine a first gamma voltage corresponding to the first gray-scale extreme value according to the first gray-scale extreme value, and The second gray scale extreme value determines a second gamma voltage corresponding to the second gray scale extreme value; a second gamma reference voltage determination module is configured to determine a gamma reference voltage according to the second gamma voltage; Three adjustment modules, configured to adjust the preset first power supply voltage according to the gamma reference voltage and the first gamma voltage to obtain a second power supply voltage.
  • the display further includes: a driving power adjustment module, configured to adjust the driving power of the display panel according to the second power supply voltage.
  • the first extreme value of the gray scale is the maximum value of the multiple first gray scales of the target frame image
  • the second extreme value of the gray scale is the maximum value of the multiple second gray scales of the target frame image
  • the target frame image of the display panel includes a plurality of pixels, wherein at least one pixel is preset with a gray scale corresponding to the pixel.
  • FIG. 5 shows a schematic structural diagram of a display according to an embodiment of the present application.
  • the input image can be image cached.
  • the image cache can be realized by registers.
  • the image cache can read and cache the pre-stored display data of the target frame.
  • the image cache receives an instruction from the system to start image processing, the image cache can send the cached display data of the target frame to the image analysis for analysis.
  • the image analysis may receive the display data of the target frame sent from the image cache, and analyze the display data of the target frame. Since there is a nonlinear relationship between the visual perception and brightness of an image, and visual perception can be characterized by the brightness value that can be observed by the human eye, and brightness can be represented by a brightness factor, the nonlinear relationship between image-based visual perception and brightness relationship, each pixel of the target frame image can be statistically analyzed to obtain the brightness value range of the target frame image.
  • the gray scale of the target frame image can also be statistically analyzed to obtain the range of the gray scale.
  • the gray scale of the target frame image can be segmented, and the first gray scale can be transformed using the segmentation function to obtain the transformed second gray scale .
  • the power supply voltage can be adjusted based on the image analysis result, and the adjusted power supply voltage can be sent to the voltage driver, and together with the image-processed data, the final image output can be controlled.
  • the embodiment of the present application obtains the first grayscale extreme value of the target frame image according to the display data of the target frame image, and then adjusts the first power supply voltage according to the first grayscale extreme value to obtain the second power supply voltage. voltage, and finally drives the display to display according to the second power supply voltage and the display data of the target frame image, and can dynamically and adaptively adjust the second power supply voltage, thereby further reducing the display effect while ensuring the display panel display effect. Displays the power consumption of the panel.

Abstract

本申请涉及一种显示器的驱动方法及显示器,该驱动方法包括:根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值;根据第一灰阶极值对第一电源电压进行调整得到第二电源电压;根据第二电源电压以及目标帧图像的显示数据驱动显示器进行显示。本申请能够动态调整第二电源电压,保证显示效果,降低显示面板的能耗。

Description

显示器的驱动方法及显示器 技术领域
本申请涉及显示技术领域,尤其涉及一种显示器的驱动方法及显示器。
背景技术
大尺寸、高刷新率以及高解析度的显示面板,普遍存在功耗过大的情况,因此,如何降低大尺寸、高刷新率以及高解析度的显示面板的功耗是一个值得研究的问题。尤其是在当前为控制生态环境污染,提升耗能产品的环境绩效的大环境下。
然而,相关技术的方案在实际应用中功耗过大。如何在保证显示画面质量的同时,降低显示面板的功耗是一个值得研究的问题。
技术问题
本申请主要针对如何在保证显示画面质量的同时,降低显示面板的功耗的技术问题。
技术解决方案
有鉴于此,本申请提出了一种显示器的驱动方法及显示器,能够动态自适应地调整第二电源电压,进而在保证显示面板的显示效果的同时,进一步降低显示面板的能耗。
根据本申请的一方面,提供了一种显示器的驱动方法,所述显示器的驱动方法包括:根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值;根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压,所述第一电源电压用于驱动所述显示器显示;根据所述第二电源电压以及所述目标帧图像的显示数据驱动所述显示器进行显示。
根据本申请的另一方面,提供了一种显示器,所述显示器包括:第一获取模块,与第二获取模块电连接,所述第一获取模块用于根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值;第二获取模块,与第一获取模块以及显示模块电连接,所述第二获取模块用于根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压,所述第一电源电压用于驱动所述显示器显示;显示模块,与第二获取模块电连接,所述显示模块用于根据所述第二电源电压以及所述目标帧图像的显示数据驱动所述显示器进行显示。
有益效果
通过根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值,接着根据所述第一灰阶极值对第一电源电压进行调整得到第二电源电压,最后根据所述第二电源电压以及所述目标帧图像的显示数据驱动所述显示器进行显示,根据本申请的各方面能够动态自适应地调整第二电源电压,进而在保证显示面板的显示效果的同时,进一步降低显示面板的能耗。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1示出本申请实施例的显示器的驱动方法的流程图。
图2示出本申请实施例的灰阶变换前的示意图。
图3示出本申请实施例的灰阶变换后的示意图。
图4示出本申请实施例的显示器的驱动方法的示意图。
图5示出本申请实施例的显示器的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接连接,也可以通过中间媒介间接连接,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
本申请提供了一种显示器的驱动方法,所述显示器的驱动方法包括:根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值;根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压,所述第一电源电压用于驱动所述显示器显示;根据所述第二电源电压以及所述目标帧图像的显示数据驱动所述显示器进行显示。
通过根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值,接着根据所述第一灰阶极值对第一电源电压进行调整得到第二电源电压,最后根据所述第二电源电压以及所述目标帧图像的显示数据驱动所述显示器进行显示,本申请能够动态自适应地调整第二电源电压,进而在保证显示面板的显示效果的同时,进一步降低显示面板的能耗。
图1示出本申请实施例的显示器的驱动方法的流程图。
如图1所示,所述显示器包括驱动模块以及显示面板,所述驱动模块与所述显示面板电连接,所述驱动模块中预先存储有目标帧图像的显示数据,所述显示器的驱动方法包括:
步骤S10:根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值;
其中,所述驱动模块中预先存储有目标帧图像的显示数据。例如,所述驱动模块中可以设置存储器,用于预先存储目标帧图像的显示数据。当然,所述显示面板的显示画面可以包括多个帧,所述驱动模块中也可以预先存储所述显示面板的全部帧的显示数据。
进一步地,所述显示面板的目标帧图像包括多个像素点,其中,至少一个像素点预设有与该像素点对应的灰阶。所述目标帧图像的显示数据可以用一维数组或多维数组表示,数组中的每个元素可以与显示画面的每个像素点相对应,用于驱动所述显示面板中每个像素按照预设 的灰阶进行显示。可以理解,本申请对于显示数据如何表示并不限定。
进一步地,根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值,包括:
步骤S101:根据目标帧图像的显示数据得到目标帧图像的第一灰阶范围;
步骤S102:根据所述第一灰阶范围得到目标帧图像的第一灰阶极值。
进一步地,所述目标帧图像的第一灰阶极值可以是目标帧图像的多个第一灰阶的最大值。其中,所述第一灰阶可以是预先设置的灰阶,所述目标帧图像的显示数据可以包括多个所述第一灰阶,每个第一灰阶与目标帧图像的一个像素点相对应。例如,所述显示面板的全部帧的显示数据的灰阶可以用8位二进制数字表示,灰阶的表示范围从0至255。对于一帧显示画面而言,该帧显示画面可以包括1024*768个像素,该帧显示画面的各个像素的第一灰阶范围可以是16至128,即对于该帧显示画面而言,该帧显示画面的第一灰阶极值可以是128,即该帧显示画面的最大灰阶。
进一步地,所述目标帧图像可以分为多个显示区域,所述第一灰阶极值为所述多个显示区域中的至少一个显示区域的多个第一灰阶的最大值,所述第二灰阶极值为所述多个显示区域中的至少一个显示区域的多个第二灰阶的最大值。每个显示区域的灰阶的最大值可以不同。因此,所述目标帧图像的第一灰阶极值也可以是该帧图像的一个显示区域中的多个第一灰阶的最大值。例如,所述目标帧图像可以分为两个显示区域。第一个显示区域的第一灰阶范围从16至108,第二个显示区域的第一灰阶范围从32至116,此时,所述目标帧图像的第一灰阶极值可以是第一个显示区域的灰阶的最大值108,也可以是第二个显示区域的灰阶的最大值116。
需要说明的是,也可以在目标帧图像的第一灰阶范围内任意选择一个第一灰阶进行处理,只要选择的第一灰阶有利于利用本申请的实施例降低显示面板的能耗。在本申请实施例中,目标帧图像的第一灰阶极值作为优选的方案,对于如何选择目标帧图像的第一灰阶极值,本申请并不限定。
进一步地,根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压的步骤之前,还包括:
步骤S11:对目标帧图像的多个第一灰阶进行变换,得到目标帧图像的第二灰阶极值。
进一步地,由于所述目标帧图像可包括多个第一灰阶,所述目标帧图像中的每个像素点可对应一个第一灰阶,因此,可对每个所述第一灰阶均进行变换,得到变换后的多个第二灰阶。当然,在对目标帧图像的多个第一灰阶进行变换的过程中,也可以对目标帧图像的多个第一灰阶划分为多个子区间,按照多个子区间分段进行变换。又例如,在对目标帧图像的多个第一灰阶进行变换的过程中,也可以只对所述目标帧图像中的部分像素点所对应的第一灰阶进行变换,而所述目标帧图像中的其他像素点所对应的第一灰阶则不进行变换。可以理解,本申请对于如何对目标帧图像的多个第一灰阶进行变换并不限定。
需要说明的是,所述驱动模块基于视觉感知与亮度之间的非线性特性对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶。其中,视觉感知可以用人眼能够观察到的明度值来表征,亮度可以用亮度因子来表征,因此基于图像的视觉感知与亮度之间的非线性关系,可以对目标帧图像的各个像素点进行统计分析,得到目标帧图像的明度值范围。当然,也可以对目标帧图像的灰阶进行统计分析,得到灰阶的范围。
进一步地,对目标帧图像的多个第一灰阶进行变换,得到目标帧图像的第二灰阶极值,包括:
步骤S111:对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶;
步骤S112:根据所述变换后的多个第二灰阶得到目标帧图像的第二灰阶极值。
其中,所述变换后的多个第二灰阶中每个第二灰阶可以与变换前的一个第一灰阶相对应,也可以与变换前的多个第一灰阶相对应。可以理解,不同的变换方式会在第一灰阶与第二灰阶产生不同的对应关系,本申请对于第一灰阶与第二灰阶的对应关系并不限定。
进一步地,所述第二灰阶极值为目标帧图像的多个第二灰阶的最大值。即,所述第二灰阶极值与所述第一灰阶极值有类似的含义。例如,对于一帧显示画面而言,该帧显示画面可以包括1024*768个像素,该帧显示画面的各个像素的第一灰阶范围可以是16至128,即对于该帧显示画面而言,该帧显示画面的第一灰阶极值可以是128。在对目标帧图像的多个第一灰阶进行变换后,该帧显示画面的各个像素的第二灰阶范围可以是32至216,该帧显示画面的第一灰阶极值可以是216。
进一步地,对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶,包括:
步骤S1111:将所述目标帧图像的第一灰阶范围划分为多个子区间;
步骤S1112:根据所述划分的多个子区间以及预设的变换系数对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶。
示例性地,步骤S2012可以用式(1)表示如下:
Figure PCTCN2021138669-appb-000001
其中,Dinn可表示输入的目标帧图像中第n个像素点变换前的第一灰阶;λ1可表示在输入的目标帧图像中第n个像素点的第一灰阶位于C0至C1范围的情况下,对应于Dinn的系数;λ2可表示在目标帧图像中第n个像素点的灰阶位于C1至C2范围的情况下,对应于Dinn的系数。依次类推,λm可表示在目标帧图像中第n个像素点的灰阶位于Cm-1至Cm范围的情况下,对应于Dinn的系数。Dout(n)可表示目标帧图像中第n个像素点变换后的第二灰阶。m可以用于表示所述子区间的数量。在一个示例中,C0可以是0,Cm可以是255。进一步地,将所述目标帧图像的第一灰阶范围划分为多个子区间。例如,对于一帧显示画面而言,该帧显示画面可以包括1024*768个像素,该帧显示画面的各个像素的第一灰阶范围可以是16至128,此时C0可以是16,C1可以是32,Cm可以是126。可以理解,本申请对于如何划分多个子区间以及子区间的数量并不限定。
进一步地,对于所述目标帧图像的至少一个像素点所对应的第一灰阶,可以根据式(1)对该第一灰阶进行变换。例如,可以为该第一灰阶赋予一个变换系数,并将该变换系数与该第一灰阶相乘,从而得到对应于该第一灰阶的第二灰阶。所述变换系数可以预先存储在存储器中。可以理解,本申请对于所述变换系数如何确定并不限定。
通过对将所述目标帧图像的第一灰阶范围划分为多个子区间,并根据所述划分的多个子区间以及预设的变换系数对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶,本申请实施例能够灵活配置对目标帧图像的灰阶进行变换,进而能够在不同的应用场景下动态自适应地调整所述第一电源电压,使所述第一电源电压的调整达到最优,进一步节省功耗。步骤S20:根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压,所述第一电源电压用于驱动所述显示器显示;
具体的,根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压,包括:
步骤S201:根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压;
步骤S202:根据所述第一伽马电压确定伽马基准电压;
步骤S203:根据所述伽马基准电压对第一电源电压进行调整,得到第二电源电压。
例如,根据所述第一伽马电压确定伽马基准电压,可先确定所述第一伽马电压对应的伽马基准电压,再重新确定新的伽马基准电压。由于各级第一伽马电压均与所述伽马基准电压相关联,因此在新的伽马基准电压被重新确定后,其他级数的第一伽马电压则会作为整体同步被调整。
图2示出本申请实施例的灰阶变换前的示意图,图3示出本申请实施例的灰阶变换后的示意图。
如图2和图3所示,横轴可以表示电压,纵轴可以表示灰阶。在图2中,对所述第一灰阶变换前,可以看出所述目标帧图像的第一灰阶的最大值可以对应于第10级伽马电压;在图3中,对所述第一灰阶变换后,可以看出所述目标帧图像的第二灰阶的最大值可以对应于第1级伽马电压。即,经过变换后,所述目标帧图像的灰阶的最大值相较于变换前的灰阶的最大值可以更大。
通过使用式(1)中的分段函数进行变换,本申请实施例能够使目标帧画面的灰阶与第一电源电压相适应,保证调整第一电源电压后显示画面的质量。
其中,所述第一灰阶极值可以是变换前的目标帧图像的多个第一灰阶中的第一灰阶极值,所述第二灰阶极值可以是变换前的目标帧图像的多个第二灰阶中的第二灰阶极值。第一灰阶极值与第二灰阶极值可以不同。在本申请实施例中,利用变换前的第一灰阶极值与变换后的第二灰阶极值的差异对预先设置的第一电源电压进行调整,能够寻找到保证最优显示下所需要的最小的第一电源电压,并将该最小的第一电源电压作为第二电源电压,从而在保证显示面板的显示效果的同时,进一步降低显示面板的能耗。
进一步地,根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压,包括:
步骤S21:根据所述第一灰阶极值以及所述第二灰阶极值对第一电源电压进行调整,得到第二电源电压。
具体的,根据所述第一灰阶极值以及所述第二灰阶极值对第一电源电压进行调整,得到第二电源电压,包括:
步骤S211:根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压,并根据所述第二灰阶极值确定与该第二灰阶极值对应的第二伽马电压;
步骤S212:根据所述第二伽马电压确定伽马基准电压;
步骤S213:根据所述伽马基准电压以及所述第一伽马电压对预先设置的第一电源电压进行调整,得到第二电源电压。
在一示例中,所述驱动模块中预先存储有14级伽马(即,gamma)电压,每级伽马电压可与一个灰阶(即,gray)相对应。例如,灰阶为0所对应的伽马电压可以是第1级伽马电压,即gamma_1;灰阶为228所对应的伽马电压可以是第14级伽马电压,即gamma_14。此外,14级伽马电压可以与一个第一电源电压(即,AVDD电压)相对应。需要说明的是,所述驱动模块中可以设置多组伽马电压,每组伽马电压均可包括14级伽马电压。可以理解,本申请对于灰阶、伽马电压以及第一电源电压相互之间的对应关系并不限定。
进一步地,根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压,可以用式(2)表示如下:
gamma_num=f1(Din max)
其中,Dinmax可以表示输入的目标帧图像的第一灰阶极值;gamma_num表示与目标帧图像的第一灰阶极值相对应的伽马电压(即,第一伽马电压)。num可以表示伽马电压的级数,例如gamma_num可以是gamma_1,也可以是gamma_3。
同理,Doutmax可以表示经过变换的目标帧图像的第二灰阶极值。利用公式(2),将Doutmax作为输入,可以得到与该第二灰阶极值对应的第二伽马电压gamma_num’。
进一步地,所述预先设置的第一电源电压可以用一串二进制数字表示,例如1010可以表示第一电源电压为10V。所述预先设置的第一电源电压可预先存储在存储器中。可以理解,本申请对于电源电压如何表示并不限定。
进一步地,所述伽马基准电压可以用于确定所述第二电源电压。根据所述第二伽马电压确定伽马基准电压,可以用式(3)表示如下:
gamma_ref=f2(gamma_num′)
其中,gamma_ref表示伽马基准电压,gamma_num’表示与目标帧图像的第二灰阶极值相对应的第二伽马电压。
进一步地,根据所述伽马基准电压以及所述第一伽马电压对预先设置的第一电源电压进行调整,得到第二电源电压,可以用式(4)表示如下:
AVDD′=f3(gamma_num,gamma_ref)
其中,AVDD’表示对预先设置的第一电源电压进行调整后得到的第二电源电压。
需要说明的是,在本申请实施例中,函数f1、f2以及f3可以相同,也可以不同。可以理解,在实际应用中,可以根据实际需要配置相应的函数,本申请对于函数f1、f2以及f3并不限定。
步骤S30:根据所述第二电源电压以及所述目标帧图像的显示数据驱动所述显示器进行显示。需要说明的是,所述驱动模块也可以根据所述第二电源电压以及与所述第二灰阶对应的目标帧图像的显示数据驱动所述显示面板进行显示。即,目标帧图像的显示数据既可以包括第一灰阶,也可以包括经过变换的第二灰阶。此外,所述驱动模块也可以先根据所述第一伽马电压确定伽马基准电压;所述驱动模块根据所述伽马基准电压以及所述第二伽马电压对预先设置的第一电源电压进行调整,得到第二电源电压。
进一步地,所述显示器的驱动方法还包括:
步骤S40:根据所述第二电源电压来调整所述显示面板的驱动功率。
例如,根据所述第二电源电压来调整所述显示面板的驱动功率,可以用式(5)表示如下:
Power=AVDD′*I
其中,Power可表示本申请实施例的显示面板的功率,I可表示对应于AVDD’的电流。由于本申请的驱动方式中AVDD’可以在保证显示质量的情况下达到最小,因此能够在保证显示面板的显示效果的同时,进一步降低显示面板的能耗。
图4示出本申请实施例的显示器的驱动方法的示意图。
如图4所示,在本申请实施例中,示例性的,可以先对输入的图像数据进行缓存,然后经过图像分析,找到目标帧图像的第一灰阶范围以及目标帧图像的第一灰阶极值,并根据目标帧图像的第一灰阶范围对输入的显示数据进行调整,得到经过调整的输入图像数据以及多个第二灰阶。接着可以在多个第二灰阶中找到第二灰阶极值及该第二灰阶极值所对应的第二伽马电压,并计算伽马基准电压。同时,也可计算第一灰阶极值以及该第一灰阶极值所对应的第一伽马电压。最后计算经过调整的AVDD值(即,第二电源电压),并根据第二电源电压调节外部的电源驱动器,最终与经过调整的输入图像数据一起,驱动显示面板进行画面的显示。可以理解,图4中的顺序对于本申请实施例的实施步骤并不构成限定。
本申请还提供了一种显示器,所述显示器包括:第一获取模块,与第二获取模块电连接,所述第一获取模块用于根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值;第二获取模块,与第一获取模块以及显示模块电连接,所述第二获取模块用于根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压,所述第一电源电压用于驱动所述显示器显示;显示模块,与第二获取模块电连接,所述显示模块用于根据所述第二电源电压以及所述目标帧图像的显示数据驱动所述显示器进行显示。
进一步地,所述第一获取模块包括:第一灰阶范围获取模块,用于根据目标帧图像的显示数据得到目标帧图像的第一灰阶范围;第一灰阶极值获取模块,用于根据所述第一灰阶范围得到目标帧图像的第一灰阶极值。
进一步地,所述第二获取模块包括:第一伽马电压确定模块,用于根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压;第一伽马基准电压确定模块,用于根据所述第一伽马电压确定伽马基准电压;第一调整模块,用于根据所述伽马基准电压对第一电源电压进 行调整,得到第二电源电压。
进一步地,所述显示器还包括:第三获取模块,用于对目标帧图像的多个第一灰阶进行变换,得到目标帧图像的第二灰阶极值。
进一步地,所述第三获取模块包括:第二灰阶获取模块,用于对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶;第四获取模块,用于根据所述变换后的多个第二灰阶得到目标帧图像的第二灰阶极值。
进一步地,所述第二获取模块包括:第二调整模块,用于根据所述第一灰阶极值以及所述第二灰阶极值对第一电源电压进行调整,得到第二电源电压。
进一步地,所述第二调整模块包括:第二伽马电压确定模块,用于根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压,并根据所述第二灰阶极值确定与该第二灰阶极值对应的第二伽马电压;第二伽马基准电压确定模块,用于根据所述第二伽马电压确定伽马基准电压;第三调整模块,用于根据所述伽马基准电压以及所述第一伽马电压对预先设置的第一电源电压进行调整,得到第二电源电压。
进一步地,所述显示器还包括:驱动功率调整模块,用于根据所述第二电源电压来调整所述显示面板的驱动功率。
进一步地,所述第一灰阶极值为目标帧图像的多个第一灰阶的最大值,所述第二灰阶极值为目标帧图像的多个第二灰阶的最大值。
进一步地,所述显示面板的目标帧图像包括多个像素点,其中,至少一个像素点预设有与该像素点对应的灰阶。
图5示出本申请实施例的显示器的结构示意图。
如图5所示,输入的图像可以进行图像缓存。其中,所述图像缓存可以用寄存器实现。所述图像缓存可以读取预先存储的目标帧的显示数据,并进行缓存。当所述图像缓存接收到系统发出的开始进行图像处理的指令时,所述图像缓存可以将已缓存的目标帧的显示数据发送至图像分析中进行分析。
进一步地,所述图像分析可以接收所述图像缓存发来的目标帧的显示数据,并对所述目标帧的显示数据进行分析。由于图像的视觉感知与亮度之间具有非线性关系,而视觉感知可以用人眼能够观察到的明度值来表征,亮度可以用亮度因子来表征,因此基于图像的视觉感知与亮度之间的非线性关系,可以对目标帧图像的各个像素点进行统计分析,得到目标帧图像的明度值范围。当然,也可以对目标帧图像的灰阶进行统计分析,得到灰阶的范围。
进一步地,基于图像的视觉感知与亮度之间具有非线性关系,可以对目标帧图像的灰度进行分段,并利用分段函数对第一灰阶进行变换,得到变换后的第二灰阶。
进一步地,可以基于图像分析的结果对电源电压进行调整,并将调整后的电源电压送入电压驱动器中,与经过图像处理后的数据一起,控制最终的图像输出。
综上所述,本申请实施例通过根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值,接着根据所述第一灰阶极值对第一电源电压进行调整得到第二电源电压,最后根据所述第二电源电压以及所述目标帧图像的显示数据驱动所述显示器进行显示,能够动态自适应地调整第二电源电压,进而在保证显示面板的显示效果的同时,进一步降低显示面板的能耗。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的显示器的驱动方法及显示器进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种显示器的驱动方法,其中,所述显示器的驱动方法包括:
    根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值;
    根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压,所述第一电源电压用于驱动所述显示器显示;
    根据所述第二电源电压以及所述目标帧图像的显示数据驱动所述显示器进行显示。
  2. 根据权利要求1所述的显示器的驱动方法,其中,根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值,包括:
    根据目标帧图像的显示数据得到目标帧图像的第一灰阶范围;
    根据所述第一灰阶范围得到目标帧图像的第一灰阶极值。
  3. 根据权利要求2所述的显示器的驱动方法,其中,根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压,包括:
    根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压;
    根据所述第一伽马电压确定伽马基准电压;
    根据所述伽马基准电压对第一电源电压进行调整,得到第二电源电压。
  4. 根据权利要求1所述的显示器的驱动方法,其中,根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压的步骤之前,还包括:
    对目标帧图像的多个第一灰阶进行变换,得到目标帧图像的第二灰阶极值。
  5. 根据权利要求4所述的显示器的驱动方法,其中,对目标帧图像的多个第一灰阶进行变换,得到目标帧图像的第二灰阶极值,包括:
    对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶;
    根据所述变换后的多个第二灰阶得到目标帧图像的第二灰阶极值。
  6. 根据权利要求5所述的显示器的驱动方法,其中,根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压,包括:
    根据所述第一灰阶极值以及所述第二灰阶极值对第一电源电压进行调整,得到第二电源电压。
  7. 根据权利要求6所述的显示器的驱动方法,其中,根据所述第一灰阶极值以及所述第二灰阶极值对第一电源电压进行调整,得到第二电源电压,包括:
    根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压,并根据所述第二灰阶极值确定与该第二灰阶极值对应的第二伽马电压;
    根据所述第二伽马电压确定伽马基准电压;
    根据所述伽马基准电压以及所述第一伽马电压对预先设置的第一电源电压进行调整,得到第二电源电压。
  8. 根据权利要求1所述的显示器的驱动方法,其中,所述显示器的驱动方法还包括:根据所述第二电源电压来调整所述显示面板的驱动功率。
  9. 根据权利要求5所述的显示器的驱动方法,其中,所述第一灰阶极值为目标帧图像的多个第一灰阶的最大值,所述第二灰阶极值为目标帧图像的多个第二灰阶的最大值。
  10. 根据权利要求1所述的显示器的驱动方法,其中,所述显示面板的目标帧图像包括多个像素点,其中,至少一个像素点预设有与该像素点对应的灰阶。
  11. 一种显示器,其中,所述显示器包括:
    第一获取模块,与第二获取模块电连接,所述第一获取模块用于根据目标帧图像的显示数据得到目标帧图像的第一灰阶极值;
    第二获取模块,与第一获取模块以及显示模块电连接,所述第二获取模块用于根据所述第一灰阶极值对第一电源电压进行调整,得到第二电源电压,所述第一电源电压用于驱动所述显 示器显示;
    显示模块,与第二获取模块电连接,所述显示模块用于根据所述第二电源电压以及所述目标帧图像的显示数据驱动所述显示器进行显示。
  12. 根据权利要求11所述的显示器,其中,所述第一获取模块包括:
    第一灰阶范围获取模块,用于根据目标帧图像的显示数据得到目标帧图像的第一灰阶范围;
    第一灰阶极值获取模块,用于根据所述第一灰阶范围得到目标帧图像的第一灰阶极值。
  13. 根据权利要求12所述的显示器,其中,所述第二获取模块包括:
    第一伽马电压确定模块,用于根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压;
    第一伽马基准电压确定模块,用于根据所述第一伽马电压确定伽马基准电压;
    第一调整模块,用于根据所述伽马基准电压对第一电源电压进行调整,得到第二电源电压。
  14. 根据权利要求11所述的显示器,其中,所述显示器还包括:
    第三获取模块,用于对目标帧图像的多个第一灰阶进行变换,得到目标帧图像的第二灰阶极值。
  15. 根据权利要求14所述的显示器,其中,所述第三获取模块包括:
    第二灰阶获取模块,用于对目标帧图像的多个第一灰阶进行变换,得到变换后的多个第二灰阶;
    第四获取模块,用于根据所述变换后的多个第二灰阶得到目标帧图像的第二灰阶极值。
  16. 根据权利要求15所述的显示器,其中,所述第二获取模块包括:
    第二调整模块,用于根据所述第一灰阶极值以及所述第二灰阶极值对第一电源电压进行调整,得到第二电源电压。
  17. 根据权利要求16所述的显示器,其中,所述第二调整模块包括:
    第二伽马电压确定模块,用于根据所述第一灰阶极值确定与该第一灰阶极值对应的第一伽马电压,并根据所述第二灰阶极值确定与该第二灰阶极值对应的第二伽马电压;
    第二伽马基准电压确定模块,用于根据所述第二伽马电压确定伽马基准电压;
    第三调整模块,用于根据所述伽马基准电压以及所述第一伽马电压对预先设置的第一电源电压进行调整,得到第二电源电压。
  18. 根据权利要求11所述的显示器,其中,所述显示器还包括:驱动功率调整模块,用于根据所述第二电源电压来调整所述显示面板的驱动功率。
  19. 根据权利要求15所述的显示器,其中,所述第一灰阶极值为目标帧图像的多个第一灰阶的最大值,所述第二灰阶极值为目标帧图像的多个第二灰阶的最大值。
  20. 根据权利要求11所述的显示器,其中,所述显示面板的目标帧图像包括多个像素点,其中,至少一个像素点预设有与该像素点对应的灰阶。
PCT/CN2021/138669 2021-12-07 2021-12-16 显示器的驱动方法及显示器 WO2023102996A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180006041.XA CN114787904A (zh) 2021-12-07 2021-12-16 显示器的驱动方法及显示器
US17/768,540 US20240119882A1 (en) 2021-12-07 2021-12-16 Driving method for display and display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111485219.1 2021-12-07
CN202111485219 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023102996A1 true WO2023102996A1 (zh) 2023-06-15

Family

ID=81108638

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2021/138669 WO2023102996A1 (zh) 2021-12-07 2021-12-16 显示器的驱动方法及显示器
PCT/CN2022/073006 WO2023103154A1 (zh) 2021-12-07 2022-01-20 显示器的驱动方法及显示器
PCT/CN2022/072941 WO2023103152A1 (zh) 2021-12-07 2022-01-20 显示器的驱动方法及显示器
PCT/CN2022/073599 WO2023103166A1 (zh) 2021-12-07 2022-01-24 显示器的驱动方法及显示器

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/073006 WO2023103154A1 (zh) 2021-12-07 2022-01-20 显示器的驱动方法及显示器
PCT/CN2022/072941 WO2023103152A1 (zh) 2021-12-07 2022-01-20 显示器的驱动方法及显示器
PCT/CN2022/073599 WO2023103166A1 (zh) 2021-12-07 2022-01-24 显示器的驱动方法及显示器

Country Status (2)

Country Link
CN (3) CN114360428B (zh)
WO (4) WO2023102996A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102996A1 (zh) * 2021-12-07 2023-06-15 惠州华星光电显示有限公司 显示器的驱动方法及显示器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077932A (ja) * 2009-09-30 2011-04-14 Canon Inc 画像処理装置、画像処理方法
CN102750927A (zh) * 2011-04-20 2012-10-24 纬创资通股份有限公司 依据环境光的亮度调整画面灰阶度的显示装置及方法
CN103680401A (zh) * 2012-08-31 2014-03-26 三星显示有限公司 伽马补正曲线生成方法、伽马补正单元及显示装置
CN103956143A (zh) * 2014-05-21 2014-07-30 友达光电股份有限公司 一种用于主动矩阵有机发光二极管显示器的驱动装置
CN108932936A (zh) * 2018-09-10 2018-12-04 深圳市华星光电技术有限公司 灰阶亮度的调节方法及显示装置
CN213025334U (zh) * 2020-08-13 2021-04-20 昆山龙腾光电股份有限公司 驱动电压选择电路、驱动电压选择系统与显示装置
CN114360428A (zh) * 2021-12-07 2022-04-15 惠州华星光电显示有限公司 显示器的驱动方法及显示器
CN114787904A (zh) * 2021-12-07 2022-07-22 惠州华星光电显示有限公司 显示器的驱动方法及显示器

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06332409A (ja) * 1993-03-24 1994-12-02 Asahi Glass Co Ltd 液晶表示装置
JPH0981081A (ja) * 1995-09-11 1997-03-28 Sharp Corp 液晶ディスプレイシステム
KR20070010675A (ko) * 2005-07-19 2007-01-24 삼성전자주식회사 액정표시장치와 액정표시장치의 제조방법
JP4198720B2 (ja) * 2006-05-17 2008-12-17 Necエレクトロニクス株式会社 表示装置、表示パネルドライバ、及び表示パネルの駆動方法
CN101615382B (zh) * 2008-06-27 2012-07-04 群康科技(深圳)有限公司 液晶显示装置
JP5301344B2 (ja) * 2009-04-24 2013-09-25 ルネサスエレクトロニクス株式会社 昇圧回路
KR101765798B1 (ko) * 2010-12-28 2017-08-07 엘지디스플레이 주식회사 액정표시장치 및 그 구동방법
CN102024440B (zh) * 2011-01-13 2012-11-21 华映光电股份有限公司 显示面板的画素电压补偿方法及其架构
KR101883925B1 (ko) * 2011-04-08 2018-08-02 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그의 구동방법
CN102956173A (zh) * 2011-08-17 2013-03-06 联咏科技股份有限公司 显示器的驱动装置及其驱动方法
KR101966393B1 (ko) * 2011-11-18 2019-04-08 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
KR101354427B1 (ko) * 2011-12-13 2014-01-27 엘지디스플레이 주식회사 표시장치 및 그 구동방법
KR101921990B1 (ko) * 2012-03-23 2019-02-13 엘지디스플레이 주식회사 액정표시장치
CN103680431B (zh) * 2012-09-26 2016-12-21 联咏科技股份有限公司 源极驱动器及更新伽玛曲线的方法
CN103390393B (zh) * 2013-07-19 2015-11-25 深圳市华星光电技术有限公司 一种调灰电压产生方法及其装置、面板驱动电路和显示面板
JP6480114B2 (ja) * 2014-07-09 2019-03-06 ルネサスエレクトロニクス株式会社 固体撮像装置、画像データ伝送方法、およびカメラシステム
CN104200785B (zh) * 2014-07-31 2016-08-17 京东方科技集团股份有限公司 一种显示面板源极驱动器的供电方法、装置及显示装置
KR102332592B1 (ko) * 2014-08-11 2021-11-30 삼성디스플레이 주식회사 표시 장치 및 표시 방법
CN104240661B (zh) * 2014-09-05 2017-02-08 京东方科技集团股份有限公司 极性反转驱动方法、极性反转驱动装置和显示设备
CN105118437B (zh) * 2015-09-21 2018-04-10 京东方科技集团股份有限公司 一种显示驱动方法、装置及显示装置
KR102454423B1 (ko) * 2015-10-29 2022-10-17 삼성디스플레이 주식회사 표시장치
CN105405424B (zh) * 2015-12-16 2018-12-28 京东方科技集团股份有限公司 像素电路及其驱动方法、驱动电路、显示装置
CN105895044B (zh) * 2016-06-07 2019-02-26 深圳市华星光电技术有限公司 液晶显示器及改善液晶显示器的大视角色偏的方法
CN106324875B (zh) * 2016-10-24 2019-04-30 京东方科技集团股份有限公司 一种确定过驱动电压的方法、装置及显示设备
CN106847217B (zh) * 2017-03-03 2019-11-19 昆山龙腾光电有限公司 伽马电压产生电路、液晶显示装置以及驱动方法
CN107065252B (zh) * 2017-05-10 2019-09-20 京东方科技集团股份有限公司 一种液晶显示面板的闪烁调试方法及装置
CN107068098B (zh) * 2017-05-16 2019-12-31 深圳市华星光电半导体显示技术有限公司 一种液晶显示面板的驱动方法及装置
CN107316608B (zh) * 2017-08-17 2019-11-26 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器的驱动方法及装置
KR102473198B1 (ko) * 2018-02-01 2022-12-05 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN108665844B (zh) * 2018-05-21 2021-05-14 京东方科技集团股份有限公司 显示装置及其驱动方法、驱动装置
CN108986762B (zh) * 2018-09-11 2021-09-14 惠科股份有限公司 显示装置及其电压调节方法
CN109308883B (zh) * 2018-11-28 2020-10-27 惠科股份有限公司 显示面板的电压补偿方法
CN109830210B (zh) * 2019-01-25 2021-03-12 合肥鑫晟光电科技有限公司 置位电压生成单元、置位电压生成方法和显示装置
CN109859670A (zh) * 2019-03-28 2019-06-07 京东方科技集团股份有限公司 一种移位寄存器单元及其驱动方法、栅极驱动电路
CN109872701B (zh) * 2019-04-22 2021-10-01 京东方科技集团股份有限公司 源电极电压调节方法、显示调节方法、显示模组和液晶屏
KR102659619B1 (ko) * 2019-07-10 2024-04-23 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
KR20210127275A (ko) * 2020-04-13 2021-10-22 삼성디스플레이 주식회사 구동 제어부, 이를 포함하는 표시 장치 및 이를 이용한 표시 패널의 구동 방법
CN111415616B (zh) * 2020-04-27 2021-04-13 京东方科技集团股份有限公司 提高画面显示质量的方法、时序控制器及显示装置
US11151941B1 (en) * 2020-06-05 2021-10-19 Synaptics Incorporated Device and method for controlling a display panel
CN111968567B (zh) * 2020-08-31 2022-02-25 上海天马微电子有限公司 一种显示面板及电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077932A (ja) * 2009-09-30 2011-04-14 Canon Inc 画像処理装置、画像処理方法
CN102750927A (zh) * 2011-04-20 2012-10-24 纬创资通股份有限公司 依据环境光的亮度调整画面灰阶度的显示装置及方法
CN103680401A (zh) * 2012-08-31 2014-03-26 三星显示有限公司 伽马补正曲线生成方法、伽马补正单元及显示装置
CN103956143A (zh) * 2014-05-21 2014-07-30 友达光电股份有限公司 一种用于主动矩阵有机发光二极管显示器的驱动装置
CN108932936A (zh) * 2018-09-10 2018-12-04 深圳市华星光电技术有限公司 灰阶亮度的调节方法及显示装置
CN213025334U (zh) * 2020-08-13 2021-04-20 昆山龙腾光电股份有限公司 驱动电压选择电路、驱动电压选择系统与显示装置
CN114360428A (zh) * 2021-12-07 2022-04-15 惠州华星光电显示有限公司 显示器的驱动方法及显示器
CN114360427A (zh) * 2021-12-07 2022-04-15 惠州华星光电显示有限公司 显示器的驱动方法及显示器
CN114787904A (zh) * 2021-12-07 2022-07-22 惠州华星光电显示有限公司 显示器的驱动方法及显示器

Also Published As

Publication number Publication date
WO2023103152A1 (zh) 2023-06-15
CN114360428A (zh) 2022-04-15
CN114360427B (zh) 2023-10-31
CN114360467B (zh) 2023-10-17
CN114360467A (zh) 2022-04-15
WO2023103166A1 (zh) 2023-06-15
CN114360428B (zh) 2023-11-28
WO2023103154A1 (zh) 2023-06-15
CN114360427A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
TWI483235B (zh) 調整影像強度之方法與裝置
WO2021169613A1 (zh) 灰阶数据补偿方法、装置和驱动芯片
CN1711584A (zh) 液晶显示器及其驱动方法
CN109243384B (zh) 显示设备及其驱动方法、驱动装置和计算机可读介质
CN109427306B (zh) 亮度补偿方法及电路
CN101771827A (zh) 一种通过伽玛校正调整图像亮度的装置及方法
WO2023102996A1 (zh) 显示器的驱动方法及显示器
US9007295B2 (en) Dynamic contrast ratio processing method and apparatus of liquid crystal displaying apparatus
CN1711583A (zh) 液晶显示器及其驱动方法
US20190026872A1 (en) Driving circuit of processing high dynamic range image signal and display device having the same
US8462181B2 (en) Driving method and display device capable of enhancing image brightness and reducing image distortion
KR101245664B1 (ko) 액정표시장치의 구동방법
CN104376810B (zh) 控制电路及其显示装置
CN114787904A (zh) 显示器的驱动方法及显示器
KR20200040325A (ko) 표시 장치 및 이의 구동 방법
KR102102697B1 (ko) 표시패널 구동방법 및 이를 수행하는 표시장치
JP2023047330A (ja) 表示パネルにおける焼き付きの領域ベースでの可変補償のためのシステム及び方法
US20050243075A1 (en) Liquid crystal display and processing method thereof
KR101255271B1 (ko) 액정 표시장치의 구동장치 및 구동방법
US20240161675A1 (en) Driving method of display and display
CN114120877A (zh) 显示器的驱动方法及显示器
EP3570640B1 (en) Led dimming method, apparatus and device, and storage medium
KR20160058361A (ko) 표시 패널의 구동 방법 및 이를 수행하는 표시 장치
US20240135895A1 (en) Method for driving display and display
KR101441381B1 (ko) 액정 표시장치의 구동장치와 그 구동방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17768540

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966912

Country of ref document: EP

Kind code of ref document: A1